US20050194182A1 - Surface real-time processing of downhole data - Google Patents
Surface real-time processing of downhole data Download PDFInfo
- Publication number
- US20050194182A1 US20050194182A1 US10/792,541 US79254104A US2005194182A1 US 20050194182 A1 US20050194182 A1 US 20050194182A1 US 79254104 A US79254104 A US 79254104A US 2005194182 A1 US2005194182 A1 US 2005194182A1
- Authority
- US
- United States
- Prior art keywords
- sensor
- downhole
- sensors
- modules
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012545 processing Methods 0.000 title claims description 33
- 238000004891 communication Methods 0.000 claims abstract description 93
- 238000005553 drilling Methods 0.000 claims abstract description 81
- 238000000034 method Methods 0.000 claims abstract description 59
- 230000008569 process Effects 0.000 claims abstract description 39
- 239000003129 oil well Substances 0.000 claims abstract description 21
- 230000015572 biosynthetic process Effects 0.000 claims description 22
- 230000009471 action Effects 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 3
- 238000012935 Averaging Methods 0.000 claims description 2
- 230000003321 amplification Effects 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 24
- 238000005755 formation reaction Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000009530 blood pressure measurement Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000005251 gamma ray Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000010223 real-time analysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B44/00—Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
Definitions
- FIG. 1 shows a system for surface real-time processing of downhole data.
- FIG. 2 shows a logical representation of a system for surface real-time processing of downhole data.
- FIG. 3 shows a data flow diagram for a system for surface real-time processing of downhole data.
- FIG. 4 shows a block diagram for a sensor module.
- FIG. 5 shows a block diagram for a controllable element module.
- FIGS. 6 and 7 show block diagrams of interfaces to the communications media.
- FIGS. 8-14 show a data flow diagrams for systems for surface real-time processing of downhole data.
- oil well drilling equipment 100 (simplified for ease of understanding) includes a derrick 105 , derrick floor 110 , draw works 115 (schematically represented by the drilling line and the traveling block), hook 120 , swivel 125 , kelly joint 130 , rotary table 135 , drill string 140 , drill collar 145 , LWD tool or tools 150 , and drill bit 155 .
- Mud is injected into the swivel by a mud supply line (not shown). The mud travels through the kelly joint 130 , drill string 140 , drill collars 145 , and LWD tool(s) 150 , and exits through jets or nozzles in the drill bit 155 .
- the mud then flows up the annulus between the drill string and the wall of the borehole 160 .
- a mud return line 165 returns mud from the borehole 160 and circulates it to a mud pit (not shown) and back to the mud supply line (not shown).
- the combination of the drill collar 145 , LWD tool(s) 150 , and drill bit 155 is known as the bottomhole assembly (or “BHA”).
- the drill string is comprised of all the tubular elements from the earth's surface to the bit, inclusive of the BHA elements.
- the rotary table 135 may provide rotation to the drill string, or alternatively the drill string may be rotated via a top drive assembly.
- the term “couple” or “couples” used herein is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect electrical connection via other devices and connections.
- a number of downhole sensor modules and downhole controllable elements modules 170 are distributed along the drill string 140 , with the distribution depending on the type of sensor or type of downhole controllable element.
- Other downhole sensor modules and downhole controllable element modules 175 are located in the drill collar 145 or the LWD tools.
- Still other downhole sensor modules and downhole controllable element modules 180 are located in the bit 180 .
- the downhole sensors incorporated in the downhole sensor modules include acoustic sensors, magnetic sensors, gravitational field sensors, gyroscopes, calipers, electrodes, gamma ray detectors, density sensors, neutron sensors, dipmeters, resistivity sensors, imaging sensors, weight on bit, torque on bit, bending moment at bit, vibration sensors, rotation sensors, rate of penetration sensors (or WOB, TOB, BOB, vibration sensors, rotation sensors or rate of penetration sensors distributed along the drillstring), and other sensors useful in well logging and well drilling.
- acoustic sensors include acoustic sensors, magnetic sensors, gravitational field sensors, gyroscopes, calipers, electrodes, gamma ray detectors, density sensors, neutron sensors, dipmeters, resistivity sensors, imaging sensors, weight on bit, torque on bit, bending moment at bit, vibration sensors, rotation sensors, rate of penetration sensors (or WOB, TOB, BOB, vibration sensors, rotation sensors or rate of penetration sensors distributed along the drillstring), and
- the downhole controllable elements incorporated in the downhole controllable element modules include transducers, such as acoustic transducers, or other forms of transmitters, such as x-ray sources, gamma ray sources, and neutron sources, and actuators, such as valves, ports, brakes, clutches, thrusters, bumper subs, extendable stabilizers, extendable rollers, extendible feet, etc.
- transducers such as acoustic transducers, or other forms of transmitters, such as x-ray sources, gamma ray sources, and neutron sources
- actuators such as valves, ports, brakes, clutches, thrusters, bumper subs, extendable stabilizers, extendable rollers, extendible feet, etc.
- Preferred embodiments of many of the sensors discussed above and throughout may include controllable acquisition attributes such as filter parameters, dynamic range, amplification, attenuation, resolution, time window or data point count for acquisition, data rate for acquisition, averaging, or synchronicity of data acquisition with related parameter (e.g. azimuth). Control and varying of such parameters improves the quality of the individual measurements, and allows for a far richer data set for improved interpretations. Additionally, the manner in which any particular sensor module communicates may be controllable. A particular sensor module's data rate, resolution, order, priority, or other parameter of communication over the communication media (discussed below) may be deliberately controlled, in which case that sensor too is considered a controlled element for purposes herein.
- controllable acquisition attributes such as filter parameters, dynamic range, amplification, attenuation, resolution, time window or data point count for acquisition, data rate for acquisition, averaging, or synchronicity of data acquisition with related parameter (e.g. azimuth). Control and varying of such parameters improves the quality of
- the sensor modules and downhole controllable element modules communicate with a surface real-time processor 185 through communications media 190 .
- the communications media can be a wire, a cable, a waveguide, a fiber, or any other media that allows high data rates.
- Communications over the communications media 190 can be in the form of network communications, using, for example Ethernet, with each of the sensor modules and downhole controllable element modules being addressable individually or in groups. Alternatively, communications can be point-to-point. Whatever form it takes, the communications media 190 provides high speed data communication between the devices in the borehole 160 and the one or more surface real-time processors.
- the communication and addressing protocols are of a type that is not computationally intensive, so as to drive a relatively minimal hardware requirement dedicated downhole to the communication and addressing function, as discussed further below.
- the surface real-time processor 185 may have data communication, via communications media 190 or via another route, with surface sensor modules and surface controllable element modules 195 .
- the surface sensors which are incorporated in the surface sensor modules as discussed below, may include, for example, hook load (for weight-on-bit) sensors and rotation speed sensors.
- the surface controllable elements which are incorporated in the surface controllable element modules, as discussed below, include, for example, controls for the draw works 115 and the rotary table 135 .
- the surface real-time processor 185 may also include a terminal 197 , which may have capabilities ranging from those of a dumb terminal to those of a workstation.
- the terminal 197 allows a user to interact with the surface real-time processor 185 .
- the terminal 197 may be local to the surface real-time processor 185 or it may be remotely located and in communication with the surface real-time processor 185 via telephone, a cellular network, a satellite, the Internet, another network, or any combination of these.
- the oil well drilling equipment may also include a power source 198 .
- Power source 198 is shown in FIG. 1 as being ambiguously located to convey the idea that the power source can be (a) located at the surface with the surface processor; (b) located in the borehole; or (c) distributed along the drill string or a combination of those configurations. If it is on the surface, the power source may be the local power grid, a generator or a battery. If it is in the borehole the power source may be an alternator, which may be used to convert the energy in the mud flowing through the drill string into electrical energy, or it may be one or more batteries or other energy storage devices. Power may be generated downhole using a turbine driven by mud flow or by pressure differential being used, for example, to set a spring.
- the high speed communications media 190 provides high speed communications between the surface sensors and controllable elements 195 , and/or the downhole sensor modules and controllable element modules 170 , 175 , 180 , and the surface real-time processor 185 .
- the communications from one downhole sensor module or controllable element module 215 may be relayed through another downhole sensor module or downhole controllable element module 220 .
- the link between the two downhole sensor modules or downhole controllable element modules 215 and 220 may be part of the communications media 190 .
- communications from one surface sensor module or surface controllable element module 205 may be relayed through another surface sensor module or surface controllable element module 210 .
- the link between the two surface sensor modules or surface controllable element modules 205 and 210 may be part of the communications media 190 .
- the high speed communications media 190 may be a single communications path or it may be more than one.
- one communications path e.g. cabling
- Another, e.g. wired pipe, may connect the downhole sensors and controllable elements 170 , 175 , 180 to the surface real-time processor 185 .
- the communications media 190 is labeled “high speed” on FIG. 2 . This designation indicates that the communications media 190 operates at a speed sufficient to allow real-time control, e.g., at wire-speed, through the surface real time processor 185 , of the surface controllable elements and the downhole controllable elements based on signals from the surface sensors and the surface controllable elements.
- the high speed communications media 190 provides communications at a rate greater than that provided by mud telemetry, acoustic telemetry, or electromagnetic (EM) telemetry.
- the high speed communications are provided by wired pipe, which at the time of filing was capable of transmitting data at a rate of up to approximately 1 megabit/second.
- real time as used herein to describe various processes is intended to have an operational and contextual definition tied to the particular processes, such process steps being sufficiently timely for facilitating the particular new measurement or control process herein focused upon.
- RPM revolutions per minute
- a “real time” series of process steps would occur sufficiently timely in context of the 1/144 of a second duration for that 5 degrees of rotation.
- the outputs from the sensors are transmitted to the surface real-time processor in a particular sequence, in other embodiments of the invention the transmission of the outputs of the sensors to the surface real-time processor is in response to a query addressed to a particular sensor by surface real-time processor 185 .
- outputs to the controllable elements modules may be sequenced or individually addressed.
- communications between the sensors and the surface real-time processor is via the Transmission Control Protocol (TCP), the Transmission Control Protocol/Internet Protocol (TCP/IP), or the User Datagram Protocol (UDP).
- TCP Transmission Control Protocol
- TCP/IP Transmission Control Protocol/Internet Protocol
- UDP User Datagram Protocol
- the surface real-time processor may be locally disposed at the surface of the well bore or remotely disposed at any location on the earth's surface.
- the power source 198 is illustrated in FIG. 2 in several ways, designated by references 198 A . . . E.
- power source 198 A may be on the surface with, and may provide power to, the surface real-time processor 185 .
- the power source 198 A may provide power from the surface to other oil well drilling equipment located at or near the surface or throughout the borehole. The power could be provided from this surface via an electric line or via a high power fiber optic cable with power converters at the locations where power is to be delivered.
- Power source 198 B may be co-located with and provide power to a single surface sensor or controllable element module 185 .
- power source 198 C may be co-located with one surface sensor and controllable element module 185 and provide power for more than one surface sensor or controllable element module 185 .
- power source 198 D may be co-located with and provide power to a single downhole sensor or controllable element module 185 .
- power source 198 E may be co-located with one downhole sensor and controllable element module 185 and provide power for more than one downhole sensor or controllable element module 185 .
- a general system for real-time control of downhole and surface logging while drilling operations using data collected from downhole sensors and surface sensors includes downhole sensor module(s) 305 and surface sensor module(s) 310 .
- Raw data is collected from the downhole sensor module(s) 305 and sent to the surface (block 315 ) where it may be stored in a surface raw data store 320 .
- raw data is collected from the surface sensor module(s) 310 and may be stored in the surface raw data store 320 .
- Raw data store 320 may be transient memory such as random access memory (RAM), or persistent memory, e.g., read only memory (ROM), or magnetic or optical storage media.
- RAM random access memory
- ROM read only memory
- Raw data from the surface raw data store 320 is then processed in real time (block 325 ) and the processed data may be stored in a surface processed data store 330 .
- the processed data is used to generate control commands (block 335 ).
- the system provides displays to a user 340 through, for example, terminal 197 , who can influence the generation of the control commands.
- the control commands are used to control downhole controllable elements 345 and/or surface controllable elements 350 .
- the control commands are automatically generated, e.g., by real time processor 185 , during or after processing of the raw data and the control commands are used to control the downhole controllable elements 345 and/or surface controllable elements 350 .
- control commands produce changes or otherwise influence what is detected by the downhole sensors and/or the surface sensors, and consequently the signals that they produce.
- This control loop from the sensors through the real-time processor to the controllable elements and back to the sensors allows intelligent control of logging while drilling operations.
- proper operation of the control loops requires a high speed communication media and a real-time surface processor.
- the high-speed communications media 190 permits data to be transmitted to the surface where it can be processed by the surface real-time processor 185 .
- the surface real-time processor 185 may produce commands that can be transmitted at least to the downhole sensors and downhole controllable elements to affect the operation of the drilling equipment.
- Surface real-time processor 185 may be any of a wide variety of general purpose processors or microprocessors (such as the Pentium® family of processors manufactured by Intel® Corporation), a special purpose processor, a Reduced Instruction Set Computer (RISC) processor, or even a specifically programmed logic device.
- the real-time processor may comprise a single microprocessor based computer, or a more powerful machine with multiple multiprocessors, or may comprise multiple processor elements networked together, any or all of which may be local or remote to the location of the drilling operation.
- An example sensor module 400 illustrated in FIG. 4 , includes, at a minimum, a sensor device or devices 405 and an interface to the communications medium 410 (which is described in more detail with respect to FIGS. 6 and 7 ).
- the output of each sensor device 405 is an analog signal and generally the interface to the communications media 410 is digital.
- An analog to digital converter (ADC) 415 is provided to make that conversion. If the sensor device 405 produces a digital output or if the interface to the communications media 410 can communicate an analog signal through the communications media 190 , the ADC 415 is not necessary.
- a microcontroller 420 may also be included. If it is included, the microcontroller 420 manages some or all of the other devices in the example sensor module 400 . For example, if the sensor device 405 has one or more controllable parameters, such as frequency response or sensitivity, the microcontroller 420 may be programmed to control those parameters. The control may be independent, based on programming included in memory attached to the microcontroller 420 , or the control may be provided remotely through the high-speed communications media 190 and the interface to the communications media 410 . Alternatively, if a microcontroller 420 is not present, the same types of controls may be provided through the high-speed communications media 190 and the interface to communications media 410 .
- the microcontroller may additionally handle the particular sensor or other device's addressing and interface to the high-speed communications media.
- Microcontrollers such as members of the PICmicro® family of microcontrollers from Microchip Technology Inc. with a limited (as compared to the real-time processor described earlier) but adequate capability for the limited downhole control purposes set out herein are capable of high efficiency packaging and high temperature operation.
- the sensor module 400 may also include an azimuth sensor 425 , which produces an output related to the azimuthal orientation of the sensor module 400 , which may be related to the orientation of the drill string if the sensor modules are coupled to the drill string.
- Data from the azimuth sensor 425 is compiled by the microcontroller 420 , if one is present, and sent to the surface through the interface to the communications media 410 and the high-speed communications media 190 .
- Data from the azimuth sensor 425 may need to be digitized before it can be presented to the microcontroller 420 . If so, one or more additional ADCs (not shown) would be included for that purpose.
- the surface processor 185 combines the azimuthal information with other information related to the depth of the sensor module 400 to identify the location of the sensor module 400 in the earth. As that information is compiled, the surface processor (or some other processor) can compile a good map of the particular borehole parameters measured by sensor module 400 .
- the sensor module 400 may also include a gyroscope 430 , which may provide true geographic orientation information rather than Just the magnetic orientation information provided by the azimuth sensor 425 .
- a gyroscope 430 may provide true geographic orientation information rather than Just the magnetic orientation information provided by the azimuth sensor 425 .
- one or more gyroscopes or magnetometers disposed along the drill pipe may provide the angular velocity of the drill pipe at each location of the gyroscope.
- the information from the gyroscope is handled in the same manner as the azimuthal information from the azimuth sensor, as described above.
- the sensor module 400 may also include one or more accelerometers. These are used to compensate the gyro for motion and to provide an indication of the inclination and gravity tool face of the survey tool.
- An example controllable element module 500 shown in FIG. 5 , includes, at a minimum, an actuator 505 and/or a transmitter device or devices 510 and an interface to the communications media 515 .
- the actuator 505 is one of the actuators described above and may be activated through application of a signal from, for example, a microcontroller 520 , which is similar in fuiction to the microcontroller 420 shown in FIG. 4 .
- the transmitter device is a device that transmits a form of energy in response to the application of an analog signal.
- An example of a transmitter device is a piezoelectric acoustic transmitter that converts an analog electric signal into acoustic energy by deforming a piezoelectric crystal.
- the microcontroller 520 generates the signal that is to drive the transmitter device 510 .
- the microcontroller generates a digital signal and the transmitter device is driven by an analog signal.
- a digital-to-analog converter (“DAC”) 525 is necessary to convert the digital signal output of the microcontroller 520 to the analog signal to drive the transmitter device 510 .
- the example controllable element module 500 may include an azimuth sensor 530 or a gyroscope 535 , which are similar to those described above in the description of the sensor module 400 , or it may include an inclination sensor, a tool face sensor, a vibration sensor or a standoff sensor.
- the interface to the communications media 415 , 515 can take a variety of forms.
- the interface to the communications media 415 , 515 is a simple communication device and protocol built from, for example, (a) discrete components with high temperature tolerances or (b) from programmable logic devices (PLDs) with high temperature tolerances, or (c) the microcontroller with associated limited high temperature memory module discussed earlier with high temperature tolerances.
- PLDs programmable logic devices
- the interface to the communications media 415 , 515 may take the form illustrated in FIG. 6 .
- the interface to the communications media 415 , 515 includes a communications media transmitter 605 which receives digital information from within the sensor module 400 or the controllable element module 500 and applies it to a bus 610 .
- a communications receiver 615 receives digital information from the bus and provides it to the remainder of the sensor module 400 or the controllable element module 500 .
- a communications media arbitrator 620 arbitrates access to the bus.
- the arrangement in FIG. 6 can be accomplished with a variety of conventional networking schemes, including Ethernet, and other networking schemes that include a communications arbitrator 620 .
- the interface to communications media 415 , 515 is a simple device, as illustrated in FIG. 7 . It includes a Manchester encoder 705 and a Manchester decoder 710 .
- the Manchester encoder accepts digital information from the sensor module 400 or the controllable element module 500 and applies it to a bus 715 .
- the Manchester decoder 710 takes the digital data from the bus 715 and provides it to the sensor module 400 or controllable element module 500 .
- the bus 715 can be arranged such that it is connected to all sensor modules 400 and all controllable element modules 500 , in which case a collision avoidance technique would be applied.
- the data from the various sensor modules 400 and controllable element modules 500 could be multiplexed, using a time division multiplex scheme or a frequency division multiplex scheme.
- collisions could be allowed and sorted out on the surface using various filtering techniques.
- Other simple communications protocols that could be applied to the interface to the communications media 415 , 515 include the Discrete Multitone protocol and the VDSL (Very High Rate Digital Subscriber Line) CDMA (Code Division Multiple Access) protocol.
- each sensor module 400 and each controllable element module 500 could have a dedicated connection to the surface, using for example a single conductor of a multi-conductor cable or a single strand of a multi-stranded optical cable.
- the overall approach to the sensor module 400 and the controllable element module 500 is to simplify the downhole processing and communication elements and to move the complex processing and electronics to the surface.
- the complex processing is done at a location remotely disposed from the high temperatures of the drilling environment, e.g., nearer the surface end of the drill string.
- surface processor herein to mean the real time processor as defined earlier.
- locating the real-time processor fully at surface may be preferred in many circumstances, there may be advantages in certain applications to locating part or all of the real-time processor near but not necessarily at surface, or on or near the sea bed, but in all cases remote from the high temperature drilling environment.
- the apparatus and method illustrated in FIGS. 2 and 3 can be applied to a large number of logging while drilling or measurement while drilling applications.
- the apparatus and method can be applied to sonic logging while drilling.
- sonic sensor modules 805 A . . . M emit acoustic energy and sense acoustic energy from the formations around the drill string where the sensor modules are located, although in some applications the sonic sensor modules 805 A . . . M do not emit energy.
- the sonic energy detected is generated by another source, such as, for example, the action of the bit in the borehole.
- the sensor modules produce raw data.
- the raw data is sent to the surface (block 315 ) where it is stored in the surface raw data store (block 320 ).
- the raw data is processed to determine wave speed in the formations surrounding the drill string where the sonic sensor modules 805 A . . . M are located (block 810 ).
- Real-time measurement of compressional wave speed is usually possible with downhole hardware, but real-time measurement of shear wave speed or measurement of other downhole modes of sonic energy propagation requires significant analysis.
- the resulting processed data is stored in the surface process data store 330 .
- real-time analysis would indicate that it is desirable to change the operating frequency of the sensor and the transmitter in order to get a more accurate or a less ambiguous measurement.
- the data in the surface processed data store 330 is processed to determine if the frequency or frequencies being used by the sonic transmitters should be changed (block 815 ).
- This processing may produce commands that are provided to sonic transmitter modules 820 , if they are being used to generate the sonic energy, and to the sonic sensor modules 805 A . . . M. Further, the user 340 may be provided with displays which illustrate operation of the sonic logging while drilling system. The system may allow the user to provide commands to modify that operation.
- Look-ahead sensors are intended to detect a formation property or a change in a formation property ahead of the bit, ideally tens of feet or more ahead of the bit. This information is important for drilling decisions, for example recognizing an upcoming seismic horizon and possible highly pressured zone in time to take precautionary measures (e.g. weighting up the mud) before the bit encounters such zone.
- Look-around sensors take this concept to the next level, not just detecting properties straight ahead of the bit, but also tens of feet to the sides (i.e. radially).
- the look-around concept may be especially applicable to steering through horizontal zones where the properties above and below may be even more important than that ahead of the bit, e.g.
- Look-around sensors are most useful when they have azimuthal capability, which means that they produce very large volumes of data. Because of non-uniqueness of interpretation of these data, they should be interpreted at the surface, with assistance from an expert.
- two types of technology have been used for such measurements (with various combinations of these two technologies, such as in electroseismics): (1) acoustic look-ahead/look-around; and (2) electromagnetic look-ahead/look-around (including borehole radar sensors).
- Information from look-ahead/look-around sensors 905 A . . . M is gathered and converted into raw data which is sent to the surface (block 315 ).
- the raw data is stored in the surface raw data store (block 320 ) and interpreted (block 910 ).
- the processed data is stored in the surface process data store (block 330 ) and a process to control, for example, the frequency of the look-ahead/look-around sensors 905 A . . . M (block 915 ) produces the necessary command to accomplish that function.
- the system provides the user 340 with displays and accepts commands from the user.
- the interpretation of data process (block 910 ), which is performed by the surface real-time processor 185 , allows interpretation and processing to identify reflections and mode conversions of acoustic and electromagnetic waves.
- Surface processing allows dynamic control of the look-ahead/look-around sensors and the associated transmitters. If the look-ahead/look-around sensor 905 A . . . M is an acoustic device, each channel may be sampled at a frequency on the order of 5,000 samples per second. Suppose there are 14 such channels, and each channel is digitized to 16 bits (a very conservative value). Then the data rate for the acoustic signals alone is 140K bytes per second.
- Magnetic resonance sensors 1005 A . . . M generate raw data which is digitized and transmitted to the surface (block 320 ). Because of the high data rate available from the high speed communications media 190 , the raw data transmitted to the surface can represent the full received wave form rather than an abbreviated wave form.
- the raw data is stored in a surface raw data store (block 320 ).
- the raw data is analyzed (block 1010 ), which is possible with greater precision than is conventional because raw data representing the entire wave is received, and the processed data is stored in a surface processed data store (block 330 ).
- the data stored in the surface processed data store at 330 is further processed to determine how best to adjust the transmitted waves (block 1015 ).
- the process for adjusting transmitted waves (block 1015 ) provides displays to a user 340 and receives commands from the user that are used to modify the process for adjusting transmitted waves (block 1015 ).
- the process for adjusting the transmitted waves (block 1015 ) produces commands that are transmitted to the magnetic resonance sensors 1005 A . . . M, which modify the performance characteristics of the magnetic resonance sensors.
- Drilling mechanics sensors 1105 A . . . M are located in various locations in the drilling equipment, including in the drilling rig, the drill string and the bottom hole assembly (“BHA”).
- Raw data is gathered from the drilling mechanics sensors 1105 A . . . M and sent to the surface (block 315 ).
- the raw data is stored in the surface raw data store (block 320 ).
- the raw data in the surface raw data store is analyzed (block 1110 ) to produce processed data, which is stored in a surface processed data store (block 330 ).
- the data in the surface processed data store (block 330 ) is further processed to determine adjustments that should be made to the drilling equipment (block 1115 ).
- the process to adjust the drilling equipment provides displays to a user 340 who can then provide commands to the process for adjusting drilling equipment (block 1115 ).
- the process to adjust drilling equipment provides commands that are used to adjust downhole controllable drilling equipment 1120 and surface controllable drilling equipment 1125 .
- the drilling mechanics sensors may be accelerometers, strain gauges, pressure transducers, and magnetometers and they may be located at various locations along the drill string. Providing the data from these downhole drilling mechanics sensors to the surface real-time processor 185 allows drilling dynamics at any desired point along the drill string to be monitored and controlled in real time. This continuous monitoring allows drilling parameters to be adjusted to optimize the drilling process and/or to reduce wear on downhole equipment.
- the downhole drilling mechanics sensors may also include one or more standoff transducers, which are typically high frequency (250 KHz to one MHz) acoustic pingers. Typically, the standoff transducers both transmit and receive an acoustic signal. The time interval from the transmission to the reception of the acoustic signal is indicative of standoff. Interpretation of data from the standoff transducers can be ambiguous due to borehole irregularities, interference from cuttings, and a phenomenon known as “cycle skipping,” in which destructive interference prevents a return from an acoustic emission from being detected. Emissions from subsequent cycles are detected instead, resulting in erroneous time of flight measurements, and hence erroneous standoff measurements. Transmitting the data from the downhole drilling mechanics sensors to the surface allows a more complete analysis of the data to reduce the effect of cycle skipping and other anomalies of such processing.
- the downhole drilling mechanics sensors may also include borehole imaging devices, which may be acoustic, electromagnetic (resistive and/or dielectric) or which may image with neutrons or gamma rays.
- An improved interpretation of this data is made in conjunction with drill string dynamics sensors and borehole standoff sensors. Using such data, the images can be sharpened by compensating for standoff, mud density, and other drilling parameters detected by the downhole drilling mechanics sensors and other sensors. The resulting sharpened data can be used to make improved estimates of formation depth.
- borehole images and the data from standoff sensors are not only useful in their own right in formation evaluation, they may also be useful in processing the data from other drilling mechanics sensors.
- the same apparatus and method can be used with downhole surveying instruments, as illustrated in FIG. 12 .
- Raw data from downhole surveying instruments 1205 A . . . M is sent to the surface (block 315 ) and stored in a surface raw data store (block 320 ).
- the raw data is then used to determine the locations of the various downhole surveying instruments 1205 A . . . M (block 1210 ).
- the processed data is stored in surface processed data store (block 330 ). That data is used by a process to adjust drilling equipment (block 1215 ), with the adjustments potentially affecting the drilling trajectory.
- the process to adjust drilling equipment may produce displays which are provided to a user 340 .
- the user 340 can enter commands which are accepted by the process for adjusting drilling equipment and used in its processing.
- the process for adjusting drilling equipment (block 1215 ) produces commands that are used to adjust downhole controllable drilling equipment 1220 and surface controllable drilling equipment 1225 .
- the use of such downhole surveying instruments and real time surface data processing improves the precision with which downhole positions can be measured.
- the positional accuracy achievable with even a perfect survey tool is a function of the spatial frequency at which surveys are taken. Even with a perfect survey tool, the resulting surveys will contain errors unless the surveys are taken continuously and interpreted continuously.
- a practical compromise to continuous surveying is suggested by the realization that the spatial frequency of surveys taken more frequently than about once per centimeter has little impact on survey accuracy.
- the high-speed communications media 190 and the surface real-time processor 185 provides very high data rate telemetry and allows surveys to be taken and interpreted at this rate. Further, other types of survey instruments can be used when very high data rate telemetry is available. In particular, several types of gyroscopes, as discussed above with respect to FIGS. 4 and 5 , could be used downhole.
- Raw data from pressure sensors 1305 A . . . M is sent to the surface (block 315 ) where it is stored in the surface raw data store (block 320 ).
- the raw data is processed to identify pressure characteristics at, for example, a particular point along the drill string or in the borehole or to characterize the pressure distribution all along the drill string and throughout the borehole (block 310 ).
- Processed data regarding these pressure parameters is stored in the surface processed data store (block 330 ).
- the data stored in the surface processed data store (block 330 ) is processed in order to react to the pressure parameters (block 1315 ).
- Displays are provided to a user 340 who can then issue commands to effect how the system is going to respond to the pressure parameters.
- the process for reacting to pressure parameters (block 1315 ) produces commands for downhole controllable drilling equipment 1320 and surface controllable drilling equipment 1325 .
- the same apparatus and method can be used to provide real-time joint inversion of data from multiple sensors, as illustrated in FIG. 14 .
- Raw data from various types of downhole sensors 1405 A . . . M which can include any of the above-described sensors or other sensors that are used in oil well drilling and logging, is gathered and sent to the surface (block 315 ) where it is stored in a surface raw data store (block 320 ).
- the raw data from the surface raw data store (block 320 ) is processed to jointly invert the data as described below (block 1410 ).
- joint inversion is just one example of the type of processing that could be performed on the data. Other analytical, computational or signal processing may be applied to the data as well.
- the resulting processed data is stored in the surface processed data store (block 330 ). That data is further processed to adjust a well model (block 1415 ).
- the process to adjust the well model provides displays to a user 340 and receives commands from the user 340 that affect how the well model is adjusted.
- the process for adjusting the well model (block 1415 ) produces modifications which are applied to well model 1420 .
- the well model 1420 may be used in planning drilling and subsequent operations, and may be used in adjusting the plan for the drilling and subsequent operations currently underway or imminent.
- Resistivity as a function of depth into a formation through frequency sweeping, measurements at multiple axial and/or azimuthal spacings, or pulsing;
- the sensor modules 400 and the controllable element modules 500 may include local azimuthal and/or positional reporting mechanisms (i.e., azimuthal sensors 425 and 530 and gyroscopes 430 and 535 ), it is possible to build directionally biased detection into the formation evaluation and mechanical sensors described above (either via individually interrogated sensor modules in a circular or spiral array and/or via a single sensor module being rotated with the drill pipe), and including an absolute or relative directional sensor (such as the azimuthal sensors 425 and 530 or the gyroscopes 430 and 535 ) set with or indexed to the formation evaluation and mechanical sensors.
- an absolute or relative directional sensor such as the azimuthal sensors 425 and 530 or the gyroscopes 430 and 535
- arrays of certain types of sensors e.g. electromagnetic or acoustic
- Such measurements require rapid and near simultaneous sampling from all sensors that form the array.
- Real time and moment-by-moment azimuthal and/or position indexing available with each sensor module and each controllable element module at various locations in the drill string and bottom hole assembly make possible enhanced formation and drilling process interpretations and model corrections, as well as real-time control actions.
- Such real-time control actions here and in a general sense as a result of this or other embodiments of the invention may be carried out directly via control signals sent from the processor to a sensor or other controllable element.
- the data available at the surface processor, or an associated interpretation, visualization, approximation, or threshold/set-point alert or alarm may be provided to a human user at the terminal (either on location or not), with the user then making such a real-time control decision and instructing, either through a control signal, or through manual actions (his own or those of others), to change a particular sensor or controlled element.
- the various arrangements of sensor modules and controllable element modules described above can be used in making measurements while tripping.
- the high speed communications media 190 allows the measurement while tripping to proceed with no practical limitation on the rate of tripping other than sensor physics.
- the same arrangements can be used during the well completion process (e.g., cementing) by using “throw-away” sensors and controllable elements connected to surface real-time processing with a high-speed communications media.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Earth Drilling (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Geophysics And Detection Of Objects (AREA)
- Drilling And Boring (AREA)
Abstract
Description
- As oil well drilling becomes more and more complex, the importance of maintaining control over as much of the drilling equipment as possible increases in importance.
-
FIG. 1 shows a system for surface real-time processing of downhole data. -
FIG. 2 shows a logical representation of a system for surface real-time processing of downhole data. -
FIG. 3 shows a data flow diagram for a system for surface real-time processing of downhole data. -
FIG. 4 shows a block diagram for a sensor module. -
FIG. 5 shows a block diagram for a controllable element module. -
FIGS. 6 and 7 show block diagrams of interfaces to the communications media. -
FIGS. 8-14 show a data flow diagrams for systems for surface real-time processing of downhole data. - As shown in
FIG. 1 , oil well drilling equipment 100 (simplified for ease of understanding) includes aderrick 105,derrick floor 110, draw works 115 (schematically represented by the drilling line and the traveling block),hook 120,swivel 125, kelly joint 130, rotary table 135,drill string 140,drill collar 145, LWD tool ortools 150, anddrill bit 155. Mud is injected into the swivel by a mud supply line (not shown). The mud travels through the kelly joint 130,drill string 140,drill collars 145, and LWD tool(s) 150, and exits through jets or nozzles in thedrill bit 155. The mud then flows up the annulus between the drill string and the wall of theborehole 160. Amud return line 165 returns mud from theborehole 160 and circulates it to a mud pit (not shown) and back to the mud supply line (not shown). The combination of thedrill collar 145, LWD tool(s) 150, anddrill bit 155 is known as the bottomhole assembly (or “BHA”). In one embodiment of the invention, the drill string is comprised of all the tubular elements from the earth's surface to the bit, inclusive of the BHA elements. In rotary drilling the rotary table 135 may provide rotation to the drill string, or alternatively the drill string may be rotated via a top drive assembly. The term “couple” or “couples” used herein is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect electrical connection via other devices and connections. - A number of downhole sensor modules and downhole
controllable elements modules 170 are distributed along thedrill string 140, with the distribution depending on the type of sensor or type of downhole controllable element. Other downhole sensor modules and downholecontrollable element modules 175 are located in thedrill collar 145 or the LWD tools. Still other downhole sensor modules and downholecontrollable element modules 180 are located in thebit 180. The downhole sensors incorporated in the downhole sensor modules, as discussed below, include acoustic sensors, magnetic sensors, gravitational field sensors, gyroscopes, calipers, electrodes, gamma ray detectors, density sensors, neutron sensors, dipmeters, resistivity sensors, imaging sensors, weight on bit, torque on bit, bending moment at bit, vibration sensors, rotation sensors, rate of penetration sensors (or WOB, TOB, BOB, vibration sensors, rotation sensors or rate of penetration sensors distributed along the drillstring), and other sensors useful in well logging and well drilling. The downhole controllable elements incorporated in the downhole controllable element modules, as discussed below, include transducers, such as acoustic transducers, or other forms of transmitters, such as x-ray sources, gamma ray sources, and neutron sources, and actuators, such as valves, ports, brakes, clutches, thrusters, bumper subs, extendable stabilizers, extendable rollers, extendible feet, etc. To be clear, even sensor modules that do not incorporate an active source may still for purposes herein be considered to be controllable elements. Preferred embodiments of many of the sensors discussed above and throughout may include controllable acquisition attributes such as filter parameters, dynamic range, amplification, attenuation, resolution, time window or data point count for acquisition, data rate for acquisition, averaging, or synchronicity of data acquisition with related parameter (e.g. azimuth). Control and varying of such parameters improves the quality of the individual measurements, and allows for a far richer data set for improved interpretations. Additionally, the manner in which any particular sensor module communicates may be controllable. A particular sensor module's data rate, resolution, order, priority, or other parameter of communication over the communication media (discussed below) may be deliberately controlled, in which case that sensor too is considered a controlled element for purposes herein. - The sensor modules and downhole controllable element modules communicate with a surface real-
time processor 185 throughcommunications media 190. The communications media can be a wire, a cable, a waveguide, a fiber, or any other media that allows high data rates. Communications over thecommunications media 190 can be in the form of network communications, using, for example Ethernet, with each of the sensor modules and downhole controllable element modules being addressable individually or in groups. Alternatively, communications can be point-to-point. Whatever form it takes, thecommunications media 190 provides high speed data communication between the devices in theborehole 160 and the one or more surface real-time processors. Preferably, the communication and addressing protocols are of a type that is not computationally intensive, so as to drive a relatively minimal hardware requirement dedicated downhole to the communication and addressing function, as discussed further below. - The surface real-
time processor 185 may have data communication, viacommunications media 190 or via another route, with surface sensor modules and surfacecontrollable element modules 195. The surface sensors, which are incorporated in the surface sensor modules as discussed below, may include, for example, hook load (for weight-on-bit) sensors and rotation speed sensors. The surface controllable elements, which are incorporated in the surface controllable element modules, as discussed below, include, for example, controls for thedraw works 115 and the rotary table 135. - The surface real-
time processor 185 may also include aterminal 197, which may have capabilities ranging from those of a dumb terminal to those of a workstation. Theterminal 197 allows a user to interact with the surface real-time processor 185. Theterminal 197 may be local to the surface real-time processor 185 or it may be remotely located and in communication with the surface real-time processor 185 via telephone, a cellular network, a satellite, the Internet, another network, or any combination of these. - The oil well drilling equipment may also include a
power source 198.Power source 198 is shown inFIG. 1 as being ambiguously located to convey the idea that the power source can be (a) located at the surface with the surface processor; (b) located in the borehole; or (c) distributed along the drill string or a combination of those configurations. If it is on the surface, the power source may be the local power grid, a generator or a battery. If it is in the borehole the power source may be an alternator, which may be used to convert the energy in the mud flowing through the drill string into electrical energy, or it may be one or more batteries or other energy storage devices. Power may be generated downhole using a turbine driven by mud flow or by pressure differential being used, for example, to set a spring. - As illustrated by the logical schematic of the system in
FIG. 2 , the highspeed communications media 190 provides high speed communications between the surface sensors andcontrollable elements 195, and/or the downhole sensor modules andcontrollable element modules time processor 185. In some cases, the communications from one downhole sensor module orcontrollable element module 215 may be relayed through another downhole sensor module or downholecontrollable element module 220. The link between the two downhole sensor modules or downholecontrollable element modules communications media 190. Similarly, communications from one surface sensor module or surfacecontrollable element module 205 may be relayed through another surface sensor module or surfacecontrollable element module 210. The link between the two surface sensor modules or surfacecontrollable element modules communications media 190. - The high
speed communications media 190 may be a single communications path or it may be more than one. For example, one communications path, e.g. cabling, may connect the surface sensors andcontrollable elements 195 to the surface real-time processor 185. Another, e.g. wired pipe, may connect the downhole sensors andcontrollable elements time processor 185. - The
communications media 190 is labeled “high speed” onFIG. 2 . This designation indicates that thecommunications media 190 operates at a speed sufficient to allow real-time control, e.g., at wire-speed, through the surfacereal time processor 185, of the surface controllable elements and the downhole controllable elements based on signals from the surface sensors and the surface controllable elements. Generally, the highspeed communications media 190 provides communications at a rate greater than that provided by mud telemetry, acoustic telemetry, or electromagnetic (EM) telemetry. In some example systems, the high speed communications are provided by wired pipe, which at the time of filing was capable of transmitting data at a rate of up to approximately 1 megabit/second. Considerably higher data rates are expected in the future and fall within the scope of this disclosure and the appended claims. It is recognized that mechanical connections between segments of the communications path, addressing and other overhead functions, and other practical implementation factors may reduce the actual data rate attained substantially from these megabit ideals. So long as the effective data transmission rates are substantially higher than those available through mud, acoustic, and EM telemetry (i.e. substantially above 10-100 Hz), and sufficient for the new measurement and control purposes contemplated herein, they are deemed for purposes of this application to be “high speed”. For many of the measurement and control purposes contemplated herein, a 1000 Hz data rate would fulfill these requirement. Likewise, the term “real time” as used herein to describe various processes is intended to have an operational and contextual definition tied to the particular processes, such process steps being sufficiently timely for facilitating the particular new measurement or control process herein focused upon. For example, in the context of drill pipe being rotated at 120 revolutions per minute (RPM), and an improved measurement process providing for azimuthal resolution of 5 degrees, a “real time” series of process steps would occur sufficiently timely in context of the 1/144 of a second duration for that 5 degrees of rotation. - In one embodiment of the invention, the outputs from the sensors are transmitted to the surface real-time processor in a particular sequence, in other embodiments of the invention the transmission of the outputs of the sensors to the surface real-time processor is in response to a query addressed to a particular sensor by surface real-
time processor 185. Similarly, outputs to the controllable elements modules may be sequenced or individually addressed. In one embodiment of the invention, communications between the sensors and the surface real-time processor is via the Transmission Control Protocol (TCP), the Transmission Control Protocol/Internet Protocol (TCP/IP), or the User Datagram Protocol (UDP). By using one or more of these protocols, the surface real-time processor may be locally disposed at the surface of the well bore or remotely disposed at any location on the earth's surface. - The
power source 198 is illustrated inFIG. 2 in several ways, designated byreferences 198A . . . E. For example,power source 198A may be on the surface with, and may provide power to, the surface real-time processor 185. In addition, thepower source 198A may provide power from the surface to other oil well drilling equipment located at or near the surface or throughout the borehole. The power could be provided from this surface via an electric line or via a high power fiber optic cable with power converters at the locations where power is to be delivered. -
Power source 198B may be co-located with and provide power to a single surface sensor orcontrollable element module 185. Alternatively, power source 198C may be co-located with one surface sensor andcontrollable element module 185 and provide power for more than one surface sensor orcontrollable element module 185. - Similarly,
power source 198D may be co-located with and provide power to a single downhole sensor orcontrollable element module 185. Alternatively,power source 198E may be co-located with one downhole sensor andcontrollable element module 185 and provide power for more than one downhole sensor orcontrollable element module 185. - A general system for real-time control of downhole and surface logging while drilling operations using data collected from downhole sensors and surface sensors, illustrated in
FIG. 3 , includes downhole sensor module(s) 305 and surface sensor module(s) 310. Raw data is collected from the downhole sensor module(s) 305 and sent to the surface (block 315) where it may be stored in a surfaceraw data store 320. Similarly, raw data is collected from the surface sensor module(s) 310 and may be stored in the surfaceraw data store 320.Raw data store 320 may be transient memory such as random access memory (RAM), or persistent memory, e.g., read only memory (ROM), or magnetic or optical storage media. - Raw data from the surface
raw data store 320 is then processed in real time (block 325) and the processed data may be stored in a surface processeddata store 330. The processed data is used to generate control commands (block 335). In some cases, the system provides displays to auser 340 through, for example, terminal 197, who can influence the generation of the control commands. The control commands are used to control downholecontrollable elements 345 and/or surfacecontrollable elements 350. In one embodiment of the invention the control commands are automatically generated, e.g., byreal time processor 185, during or after processing of the raw data and the control commands are used to control the downholecontrollable elements 345 and/or surfacecontrollable elements 350. - In many cases, the control commands produce changes or otherwise influence what is detected by the downhole sensors and/or the surface sensors, and consequently the signals that they produce. This control loop from the sensors through the real-time processor to the controllable elements and back to the sensors allows intelligent control of logging while drilling operations. In many cases, as described below, proper operation of the control loops requires a high speed communication media and a real-time surface processor.
- Generally, the high-
speed communications media 190 permits data to be transmitted to the surface where it can be processed by the surface real-time processor 185. The surface real-time processor 185, in turn, may produce commands that can be transmitted at least to the downhole sensors and downhole controllable elements to affect the operation of the drilling equipment. Surface real-time processor 185 may be any of a wide variety of general purpose processors or microprocessors (such as the Pentium® family of processors manufactured by Intel® Corporation), a special purpose processor, a Reduced Instruction Set Computer (RISC) processor, or even a specifically programmed logic device. The real-time processor may comprise a single microprocessor based computer, or a more powerful machine with multiple multiprocessors, or may comprise multiple processor elements networked together, any or all of which may be local or remote to the location of the drilling operation. - Moving the processing to the surface and eliminating much, if not all, of the downhole processing makes it possible in some cases to reduce the diameter of the drill string producing a smaller diameter well bore than would otherwise be reasonable. This allows a given suite of downhole sensors (and their associated tools or other vehicles) to be used in a wider variety of applications and markets.
- Further, locating much, if not all, of the processing at the surface reduces the number of temperature-sensitive components that operate in the severe environment encountered as a well is being drilled. Few components are available which operate at high temperatures (above about 200° C.) and design and testing of these components is very expensive. Hence, it is desirable to use as few high temperature components as possible.
- Further, locating much, if not all, of the processing at the surface improves the reliability of the downhole tool design because there are fewer downhole parts. Further, such designs allow a few common elements to be incorporated in an array of sensors. This higher volume use of a few components results in a cost reduction in these components.
- An
example sensor module 400, illustrated inFIG. 4 , includes, at a minimum, a sensor device ordevices 405 and an interface to the communications medium 410 (which is described in more detail with respect toFIGS. 6 and 7 ). In most cases, the output of eachsensor device 405 is an analog signal and generally the interface to thecommunications media 410 is digital. An analog to digital converter (ADC) 415 is provided to make that conversion. If thesensor device 405 produces a digital output or if the interface to thecommunications media 410 can communicate an analog signal through thecommunications media 190, theADC 415 is not necessary. - A
microcontroller 420 may also be included. If it is included, themicrocontroller 420 manages some or all of the other devices in theexample sensor module 400. For example, if thesensor device 405 has one or more controllable parameters, such as frequency response or sensitivity, themicrocontroller 420 may be programmed to control those parameters. The control may be independent, based on programming included in memory attached to themicrocontroller 420, or the control may be provided remotely through the high-speed communications media 190 and the interface to thecommunications media 410. Alternatively, if amicrocontroller 420 is not present, the same types of controls may be provided through the high-speed communications media 190 and the interface tocommunications media 410. The microcontroller, if included, may additionally handle the particular sensor or other device's addressing and interface to the high-speed communications media. Microcontrollers such as members of the PICmicro® family of microcontrollers from Microchip Technology Inc. with a limited (as compared to the real-time processor described earlier) but adequate capability for the limited downhole control purposes set out herein are capable of high efficiency packaging and high temperature operation. - The
sensor module 400 may also include anazimuth sensor 425, which produces an output related to the azimuthal orientation of thesensor module 400, which may be related to the orientation of the drill string if the sensor modules are coupled to the drill string. Data from theazimuth sensor 425 is compiled by themicrocontroller 420, if one is present, and sent to the surface through the interface to thecommunications media 410 and the high-speed communications media 190. Data from theazimuth sensor 425 may need to be digitized before it can be presented to themicrocontroller 420. If so, one or more additional ADCs (not shown) would be included for that purpose. At the surface, thesurface processor 185 combines the azimuthal information with other information related to the depth of thesensor module 400 to identify the location of thesensor module 400 in the earth. As that information is compiled, the surface processor (or some other processor) can compile a good map of the particular borehole parameters measured bysensor module 400. - The
sensor module 400 may also include agyroscope 430, which may provide true geographic orientation information rather than Just the magnetic orientation information provided by theazimuth sensor 425. Alternately, one or more gyroscopes or magnetometers disposed along the drill pipe may provide the angular velocity of the drill pipe at each location of the gyroscope. The information from the gyroscope is handled in the same manner as the azimuthal information from the azimuth sensor, as described above. Thesensor module 400 may also include one or more accelerometers. These are used to compensate the gyro for motion and to provide an indication of the inclination and gravity tool face of the survey tool. - An example
controllable element module 500, shown inFIG. 5 , includes, at a minimum, anactuator 505 and/or a transmitter device ordevices 510 and an interface to thecommunications media 515. Theactuator 505 is one of the actuators described above and may be activated through application of a signal from, for example, amicrocontroller 520, which is similar in fuiction to themicrocontroller 420 shown inFIG. 4 . The transmitter device is a device that transmits a form of energy in response to the application of an analog signal. An example of a transmitter device is a piezoelectric acoustic transmitter that converts an analog electric signal into acoustic energy by deforming a piezoelectric crystal. In the examplecontrollable element module 500 illustrated inFIG. 5 , themicrocontroller 520 generates the signal that is to drive thetransmitter device 510. Generally, the microcontroller generates a digital signal and the transmitter device is driven by an analog signal. In those instances, a digital-to-analog converter (“DAC”) 525 is necessary to convert the digital signal output of themicrocontroller 520 to the analog signal to drive thetransmitter device 510. - The example
controllable element module 500 may include anazimuth sensor 530 or agyroscope 535, which are similar to those described above in the description of thesensor module 400, or it may include an inclination sensor, a tool face sensor, a vibration sensor or a standoff sensor. - The interface to the
communications media communications media - The interface to the
communications media FIG. 6 . In the example shown inFIG. 6 , the interface to thecommunications media communications media transmitter 605 which receives digital information from within thesensor module 400 or thecontrollable element module 500 and applies it to abus 610. Acommunications receiver 615 receives digital information from the bus and provides it to the remainder of thesensor module 400 or thecontrollable element module 500. Acommunications media arbitrator 620 arbitrates access to the bus. Thus, the arrangement inFIG. 6 can be accomplished with a variety of conventional networking schemes, including Ethernet, and other networking schemes that include acommunications arbitrator 620. - Preferably, however, the interface to
communications media FIG. 7 . It includes aManchester encoder 705 and aManchester decoder 710. The Manchester encoder accepts digital information from thesensor module 400 or thecontrollable element module 500 and applies it to abus 715. TheManchester decoder 710 takes the digital data from thebus 715 and provides it to thesensor module 400 orcontrollable element module 500. Thebus 715 can be arranged such that it is connected to allsensor modules 400 and allcontrollable element modules 500, in which case a collision avoidance technique would be applied. For example, the data from thevarious sensor modules 400 andcontrollable element modules 500 could be multiplexed, using a time division multiplex scheme or a frequency division multiplex scheme. Alternatively, collisions could be allowed and sorted out on the surface using various filtering techniques. Other simple communications protocols that could be applied to the interface to thecommunications media - Alternatively, each
sensor module 400 and eachcontrollable element module 500 could have a dedicated connection to the surface, using for example a single conductor of a multi-conductor cable or a single strand of a multi-stranded optical cable. - The overall approach to the
sensor module 400 and thecontrollable element module 500 is to simplify the downhole processing and communication elements and to move the complex processing and electronics to the surface. In one embodiment of the invention, the complex processing is done at a location remotely disposed from the high temperatures of the drilling environment, e.g., nearer the surface end of the drill string. We use the term “surface processor” herein to mean the real time processor as defined earlier. However, while locating the real-time processor fully at surface may be preferred in many circumstances, there may be advantages in certain applications to locating part or all of the real-time processor near but not necessarily at surface, or on or near the sea bed, but in all cases remote from the high temperature drilling environment. - The apparatus and method illustrated in
FIGS. 2 and 3 can be applied to a large number of logging while drilling or measurement while drilling applications. For example, as illustrated inFIG. 8 , the apparatus and method can be applied to sonic logging while drilling. For example, as illustrated inFIG. 8 ,sonic sensor modules 805A . . . M emit acoustic energy and sense acoustic energy from the formations around the drill string where the sensor modules are located, although in some applications thesonic sensor modules 805A . . . M do not emit energy. In those cases, the sonic energy detected is generated by another source, such as, for example, the action of the bit in the borehole. The sensor modules produce raw data. The raw data is sent to the surface (block 315) where it is stored in the surface raw data store (block 320). The raw data is processed to determine wave speed in the formations surrounding the drill string where thesonic sensor modules 805A . . . M are located (block 810). - Real-time measurement of compressional wave speed is usually possible with downhole hardware, but real-time measurement of shear wave speed or measurement of other downhole modes of sonic energy propagation requires significant analysis. By moving the raw data to the surface in real time, it is possible to apply the significant power provided by the surface real-
time processor 185. The resulting processed data is stored in the surfaceprocess data store 330. In some cases, real-time analysis would indicate that it is desirable to change the operating frequency of the sensor and the transmitter in order to get a more accurate or a less ambiguous measurement. To accomplish this, the data in the surface processeddata store 330 is processed to determine if the frequency or frequencies being used by the sonic transmitters should be changed (block 815). This processing may produce commands that are provided tosonic transmitter modules 820, if they are being used to generate the sonic energy, and to thesonic sensor modules 805A . . . M. Further, theuser 340 may be provided with displays which illustrate operation of the sonic logging while drilling system. The system may allow the user to provide commands to modify that operation. - The same apparatus and methods can be applied to look-ahead/look-around sensors. Look-ahead sensors are intended to detect a formation property or a change in a formation property ahead of the bit, ideally tens of feet or more ahead of the bit. This information is important for drilling decisions, for example recognizing an upcoming seismic horizon and possible highly pressured zone in time to take precautionary measures (e.g. weighting up the mud) before the bit encounters such zone. Look-around sensors take this concept to the next level, not just detecting properties straight ahead of the bit, but also tens of feet to the sides (i.e. radially). The look-around concept may be especially applicable to steering through horizontal zones where the properties above and below may be even more important than that ahead of the bit, e.g. in geophysical steering through particular fault blocks and other structures. Look-around sensors are most useful when they have azimuthal capability, which means that they produce very large volumes of data. Because of non-uniqueness of interpretation of these data, they should be interpreted at the surface, with assistance from an expert. Generally, two types of technology have been used for such measurements (with various combinations of these two technologies, such as in electroseismics): (1) acoustic look-ahead/look-around; and (2) electromagnetic look-ahead/look-around (including borehole radar sensors). Information from look-ahead/look-around
sensors 905A . . . M is gathered and converted into raw data which is sent to the surface (block 315). The raw data is stored in the surface raw data store (block 320) and interpreted (block 910). The processed data is stored in the surface process data store (block 330) and a process to control, for example, the frequency of the look-ahead/look-aroundsensors 905A . . . M (block 915) produces the necessary command to accomplish that function. As before, the system provides theuser 340 with displays and accepts commands from the user. - The interpretation of data process (block 910), which is performed by the surface real-
time processor 185, allows interpretation and processing to identify reflections and mode conversions of acoustic and electromagnetic waves. Surface processing allows dynamic control of the look-ahead/look-around sensors and the associated transmitters. If the look-ahead/look-aroundsensor 905A . . . M is an acoustic device, each channel may be sampled at a frequency on the order of 5,000 samples per second. Suppose there are 14 such channels, and each channel is digitized to 16 bits (a very conservative value). Then the data rate for the acoustic signals alone is 140K bytes per second. Most of the proposed electromagnetic systems operate a bit differently, but would achieve similar effective sampling rates, while combined systems (EM+acoustic) would require even higher data rates. For some implementations, these estimates may be low by more than an order of magnitude. Enough data must be acquired to unambiguously identify the direction and relative depth of all reflectors. Having the processing at surface rather than downhole enables this raw processing, the modifying of the data acquisition parameters as required, but also allows the marriage of these downhole data to surface data and interpretations already available, such as a surface seismics-based earth model. With such a marriage of data sources at surface better interpretations can be made. - Similarly, as illustrated in
FIG. 10 , magnetic resonance while drilling can be accomplished using a similar arrangement of sensors and processing.Magnetic resonance sensors 1005A . . . M generate raw data which is digitized and transmitted to the surface (block 320). Because of the high data rate available from the highspeed communications media 190, the raw data transmitted to the surface can represent the full received wave form rather than an abbreviated wave form. The raw data is stored in a surface raw data store (block 320). The raw data is analyzed (block 1010), which is possible with greater precision than is conventional because raw data representing the entire wave is received, and the processed data is stored in a surface processed data store (block 330). The data stored in the surface processed data store at 330 is further processed to determine how best to adjust the transmitted waves (block 1015). The process for adjusting transmitted waves (block 1015) provides displays to auser 340 and receives commands from the user that are used to modify the process for adjusting transmitted waves (block 1015). The process for adjusting the transmitted waves (block 1015) produces commands that are transmitted to themagnetic resonance sensors 1005A . . . M, which modify the performance characteristics of the magnetic resonance sensors. - The same apparatus and method can be used with drilling mechanics sensors, as illustrated in
FIG. 11 .Drilling mechanics sensors 1105A . . . M are located in various locations in the drilling equipment, including in the drilling rig, the drill string and the bottom hole assembly (“BHA”). Raw data is gathered from thedrilling mechanics sensors 1105A . . . M and sent to the surface (block 315). The raw data is stored in the surface raw data store (block 320). The raw data in the surface raw data store is analyzed (block 1110) to produce processed data, which is stored in a surface processed data store (block 330). The data in the surface processed data store (block 330) is further processed to determine adjustments that should be made to the drilling equipment (block 1115). The process to adjust the drilling equipment (block 1115) provides displays to auser 340 who can then provide commands to the process for adjusting drilling equipment (block 1115). The process to adjust drilling equipment (block 1115) provides commands that are used to adjust downholecontrollable drilling equipment 1120 and surfacecontrollable drilling equipment 1125. - The drilling mechanics sensors may be accelerometers, strain gauges, pressure transducers, and magnetometers and they may be located at various locations along the drill string. Providing the data from these downhole drilling mechanics sensors to the surface real-
time processor 185 allows drilling dynamics at any desired point along the drill string to be monitored and controlled in real time. This continuous monitoring allows drilling parameters to be adjusted to optimize the drilling process and/or to reduce wear on downhole equipment. - The downhole drilling mechanics sensors may also include one or more standoff transducers, which are typically high frequency (250 KHz to one MHz) acoustic pingers. Typically, the standoff transducers both transmit and receive an acoustic signal. The time interval from the transmission to the reception of the acoustic signal is indicative of standoff. Interpretation of data from the standoff transducers can be ambiguous due to borehole irregularities, interference from cuttings, and a phenomenon known as “cycle skipping,” in which destructive interference prevents a return from an acoustic emission from being detected. Emissions from subsequent cycles are detected instead, resulting in erroneous time of flight measurements, and hence erroneous standoff measurements. Transmitting the data from the downhole drilling mechanics sensors to the surface allows a more complete analysis of the data to reduce the effect of cycle skipping and other anomalies of such processing.
- The downhole drilling mechanics sensors may also include borehole imaging devices, which may be acoustic, electromagnetic (resistive and/or dielectric) or which may image with neutrons or gamma rays. An improved interpretation of this data is made in conjunction with drill string dynamics sensors and borehole standoff sensors. Using such data, the images can be sharpened by compensating for standoff, mud density, and other drilling parameters detected by the downhole drilling mechanics sensors and other sensors. The resulting sharpened data can be used to make improved estimates of formation depth.
- Thus, borehole images and the data from standoff sensors are not only useful in their own right in formation evaluation, they may also be useful in processing the data from other drilling mechanics sensors.
- The same apparatus and method can be used with downhole surveying instruments, as illustrated in
FIG. 12 . Raw data fromdownhole surveying instruments 1205A . . . M is sent to the surface (block 315) and stored in a surface raw data store (block 320). The raw data is then used to determine the locations of the variousdownhole surveying instruments 1205A . . . M (block 1210). The processed data is stored in surface processed data store (block 330). That data is used by a process to adjust drilling equipment (block 1215), with the adjustments potentially affecting the drilling trajectory. The process to adjust drilling equipment may produce displays which are provided to auser 340. Theuser 340 can enter commands which are accepted by the process for adjusting drilling equipment and used in its processing. The process for adjusting drilling equipment (block 1215) produces commands that are used to adjust downholecontrollable drilling equipment 1220 and surfacecontrollable drilling equipment 1225. - The use of such downhole surveying instruments and real time surface data processing improves the precision with which downhole positions can be measured. The positional accuracy achievable with even a perfect survey tool (i.e., one that produces errorless measurements) is a function of the spatial frequency at which surveys are taken. Even with a perfect survey tool, the resulting surveys will contain errors unless the surveys are taken continuously and interpreted continuously. A practical compromise to continuous surveying is suggested by the realization that the spatial frequency of surveys taken more frequently than about once per centimeter has little impact on survey accuracy. The high-
speed communications media 190 and the surface real-time processor 185 provides very high data rate telemetry and allows surveys to be taken and interpreted at this rate. Further, other types of survey instruments can be used when very high data rate telemetry is available. In particular, several types of gyroscopes, as discussed above with respect toFIGS. 4 and 5 , could be used downhole. - The same apparatus and method can be applied in real-time pressure measurements, as illustrated in
FIG. 13 . Raw data from pressure sensors 1305A . . . M is sent to the surface (block 315) where it is stored in the surface raw data store (block 320). The raw data is processed to identify pressure characteristics at, for example, a particular point along the drill string or in the borehole or to characterize the pressure distribution all along the drill string and throughout the borehole (block 310). Processed data regarding these pressure parameters is stored in the surface processed data store (block 330). The data stored in the surface processed data store (block 330) is processed in order to react to the pressure parameters (block 1315). Displays are provided to auser 340 who can then issue commands to effect how the system is going to respond to the pressure parameters. The process for reacting to pressure parameters (block 1315) produces commands for downhole controllable drilling equipment 1320 and surface controllable drilling equipment 1325. - This virtually instantaneous transfer of real-time pressure measurements, possibly from numerous locations along the drill string, makes it possible to make a number of real-time measurements of borehole and drilling equipment characteristics, such as leakoff tests, real-time determination of circulating density, and other parameters determined from pressure measurements.
- The same apparatus and method can be used to provide real-time joint inversion of data from multiple sensors, as illustrated in
FIG. 14 . Raw data from various types ofdownhole sensors 1405A . . . M, which can include any of the above-described sensors or other sensors that are used in oil well drilling and logging, is gathered and sent to the surface (block 315) where it is stored in a surface raw data store (block 320). The raw data from the surface raw data store (block 320) is processed to jointly invert the data as described below (block 1410). Note that joint inversion is just one example of the type of processing that could be performed on the data. Other analytical, computational or signal processing may be applied to the data as well. The resulting processed data is stored in the surface processed data store (block 330). That data is further processed to adjust a well model (block 1415). The process to adjust the well model provides displays to auser 340 and receives commands from theuser 340 that affect how the well model is adjusted. The process for adjusting the well model (block 1415) produces modifications which are applied towell model 1420. Thewell model 1420 may be used in planning drilling and subsequent operations, and may be used in adjusting the plan for the drilling and subsequent operations currently underway or imminent. - If the variables v1 , v2, . . . , vN are related by N functions f1, f2, . . . , fN of the N variables x1, x2, . . . , xN by the relation
- Then the process of determining specific values of x1, x2, . . . , xN from given values of v1, v2, . . . , vN and the known functions, f1, f2, . . . , fN is called joint inversion. The process of finding specific functions g1, g2, . . . gN (if they exist) such that
is also called joint inversion. This process is sometimes carried out algebraically, sometimes numerically, and sometimes using Jacobian transformations, and more generally with any combination of these techniques. - More general types of inversions are indeed possible, where
- but in this case, there is no unique set of functions g1, g2, . . . gM.
- Such joint inversions of data collected from different types of sensors provides an ability to perform comprehensive analysis of formation parameters. Traditionally, a separate interpretation is made of data from each sensor in an MWD or LWD drill string. While this is useful, for a full suite of measurements and for a full suite of sensors, it is difficult to make measurements with adequate frequency to support a comprehensive analysis of formation properties. With the system illustrated in
FIG. 14 , measurements are available in real time, and information can be combined to provide interpretations such as: - 1. Resistivity as a function of depth into a formation (through frequency sweeping, measurements at multiple axial and/or azimuthal spacings, or pulsing);
- 2. Thickness of formation beds (through joint deconvolution of different types of logs);
- 3. Mineral composition of formations (e.g. cross-plot several measurements).
- Further, since the
sensor modules 400 and thecontrollable element modules 500 may include local azimuthal and/or positional reporting mechanisms (i.e.,azimuthal sensors gyroscopes 430 and 535), it is possible to build directionally biased detection into the formation evaluation and mechanical sensors described above (either via individually interrogated sensor modules in a circular or spiral array and/or via a single sensor module being rotated with the drill pipe), and including an absolute or relative directional sensor (such as theazimuthal sensors gyroscopes 430 and 535) set with or indexed to the formation evaluation and mechanical sensors. Thereby, all formation evaluation and mechanical data is accompanied by real-time azimuthal information. At a sensing frequency of, for example, 120 hertz, and with the rotary turning at 120 RPM, this would provide an azimuthal resolution of 6 degrees. Using a gyroscope, the sensor placement in the well bore will be highly resolvable notwithstanding drill string precession (whirl) and bit bounce behaviors, which should be well below 100 Hz. - Further, with arrays of certain types of sensors (e.g. electromagnetic or acoustic), it is possible to synthetically steer the direction of greatest sensitivity of the array, making it possible to decouple the rate of acquisition of azimuthal measurements from the rate of rotation of the sensor package. Such measurements require rapid and near simultaneous sampling from all sensors that form the array.
- Real time and moment-by-moment azimuthal and/or position indexing available with each sensor module and each controllable element module at various locations in the drill string and bottom hole assembly make possible enhanced formation and drilling process interpretations and model corrections, as well as real-time control actions. Such real-time control actions here and in a general sense as a result of this or other embodiments of the invention may be carried out directly via control signals sent from the processor to a sensor or other controllable element. But in other embodiments the data available at the surface processor, or an associated interpretation, visualization, approximation, or threshold/set-point alert or alarm, may be provided to a human user at the terminal (either on location or not), with the user then making such a real-time control decision and instructing, either through a control signal, or through manual actions (his own or those of others), to change a particular sensor or controlled element.
- The various arrangements of sensor modules and controllable element modules described above can be used in making measurements while tripping. The high
speed communications media 190 allows the measurement while tripping to proceed with no practical limitation on the rate of tripping other than sensor physics. The same arrangements can be used during the well completion process (e.g., cementing) by using “throw-away” sensors and controllable elements connected to surface real-time processing with a high-speed communications media. - The present invention is therefore well-adapted to carry out the objects and attain the ends mentioned, as well as those that are inherent therein. While the invention has been depicted, described and is defined by references to examples of the invention, such a reference does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is capable of considerable modification, alteration and equivalents in form and function, as will occur to those ordinarily skilled in the art having the benefit of this disclosure. The depicted and described examples are not exhaustive of the invention. Consequently, the invention is intended to be limited only by the spirit and scope of the appended claims, giving full cognizance to equivalents in all respects.
Claims (61)
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/792,541 US7999695B2 (en) | 2004-03-03 | 2004-03-03 | Surface real-time processing of downhole data |
CA3039966A CA3039966A1 (en) | 2004-03-03 | 2005-02-28 | Surface real-time processing of downhole data |
BRPI0508369-9A BRPI0508369A (en) | 2004-03-03 | 2005-02-28 | surface real-time processing of well data below |
CA3040332A CA3040332A1 (en) | 2004-03-03 | 2005-02-28 | Surface real-time processing of downhole data |
PCT/US2005/006470 WO2005091899A2 (en) | 2004-03-03 | 2005-02-28 | Surface real-time processing of downhole data |
CN2010101445339A CN101832130B (en) | 2004-03-03 | 2005-02-28 | Surface real-time processing of downhole data |
CN2010101445377A CN101832131B (en) | 2004-03-03 | 2005-02-28 | Surface real-time processing of downhole data |
CN2005800054180A CN1965249B (en) | 2004-03-03 | 2005-02-28 | Surface real-time processing of downhole data |
CA2867817A CA2867817C (en) | 2004-03-03 | 2005-02-28 | Surface real-time processing of downhole data |
CA2558162A CA2558162C (en) | 2004-03-03 | 2005-02-28 | Surface real-time processing of downhole data |
GB0619313A GB2428820B (en) | 2004-03-03 | 2005-02-28 | Surface real-time processing of downhole data |
CA3040336A CA3040336A1 (en) | 2004-03-03 | 2005-02-28 | Surface real-time processing of downhole data |
GB0811860A GB2448256B (en) | 2004-03-03 | 2005-02-28 | Surface real-time processing of downhole data |
NO20064496A NO342371B1 (en) | 2004-03-03 | 2006-10-03 | Real-time processing of downhole data on the ground surface |
US13/206,318 US20110290559A1 (en) | 2004-03-03 | 2011-08-09 | Surface real-time processing of downhole data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/792,541 US7999695B2 (en) | 2004-03-03 | 2004-03-03 | Surface real-time processing of downhole data |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/206,318 Division US20110290559A1 (en) | 2004-03-03 | 2011-08-09 | Surface real-time processing of downhole data |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050194182A1 true US20050194182A1 (en) | 2005-09-08 |
US7999695B2 US7999695B2 (en) | 2011-08-16 |
Family
ID=34911875
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/792,541 Active 2026-09-28 US7999695B2 (en) | 2004-03-03 | 2004-03-03 | Surface real-time processing of downhole data |
US13/206,318 Abandoned US20110290559A1 (en) | 2004-03-03 | 2011-08-09 | Surface real-time processing of downhole data |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/206,318 Abandoned US20110290559A1 (en) | 2004-03-03 | 2011-08-09 | Surface real-time processing of downhole data |
Country Status (7)
Country | Link |
---|---|
US (2) | US7999695B2 (en) |
CN (3) | CN101832131B (en) |
BR (1) | BRPI0508369A (en) |
CA (5) | CA3040332A1 (en) |
GB (2) | GB2428820B (en) |
NO (1) | NO342371B1 (en) |
WO (1) | WO2005091899A2 (en) |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050197777A1 (en) * | 2004-03-04 | 2005-09-08 | Rodney Paul F. | Method and system to model, measure, recalibrate, and optimize control of the drilling of a borehole |
US20050194183A1 (en) * | 2004-03-04 | 2005-09-08 | Gleitman Daniel D. | Providing a local response to a local condition in an oil well |
US20060077095A1 (en) * | 2004-07-20 | 2006-04-13 | Tucker Layne D | Precision GPS driven utility asset management and utility damage prevention system and method |
US20060214814A1 (en) * | 2005-03-24 | 2006-09-28 | Schlumberger Technology Corporation | Wellbore communication system |
US20070062692A1 (en) * | 2005-09-19 | 2007-03-22 | Schlumberger Technology Corporation | Wellsite communication system and method |
US20070115754A1 (en) * | 2004-02-26 | 2007-05-24 | Thompson Arthur H | Electrode configurations for suppression of electroseismic source noise |
US20070188344A1 (en) * | 2005-09-16 | 2007-08-16 | Schlumberger Technology Center | Wellbore telemetry system and method |
WO2007112363A2 (en) * | 2006-03-27 | 2007-10-04 | Key Energy Services, Inc. | Methods and system for evaluating and displaying depth data |
US20070227225A1 (en) * | 2006-03-28 | 2007-10-04 | Newman Frederic M | Method and system for calibrating a tube scanner |
US20070278009A1 (en) * | 2006-06-06 | 2007-12-06 | Maximo Hernandez | Method and Apparatus for Sensing Downhole Characteristics |
US20080030367A1 (en) * | 2006-07-24 | 2008-02-07 | Fink Kevin D | Shear coupled acoustic telemetry system |
US20080031091A1 (en) * | 2006-07-24 | 2008-02-07 | Fripp Michael L | Thermal expansion matching for acoustic telemetry system |
EP1887181A1 (en) * | 2006-07-24 | 2008-02-13 | Halliburton Energy Services, Inc. | Multi-sensor wireless telemetry system |
US20080035333A1 (en) * | 2006-03-27 | 2008-02-14 | Newman Frederic M | Method and system for scanning tubing |
US20080158004A1 (en) * | 2006-12-27 | 2008-07-03 | Frederic Latrille | Method and apparatus for downloading while drilling data |
US20080184827A1 (en) * | 2007-02-02 | 2008-08-07 | The Board Of Regents Of The Nevada System Of Higher Ed. On Behalf Of The Desert Research Inst. | Monitoring probes and methods of use |
US20080195260A1 (en) * | 2004-12-10 | 2008-08-14 | Sumitomo Wiring Systems, Ltd. | Communication Control Apparatus |
US20090045973A1 (en) * | 2007-08-16 | 2009-02-19 | Rodney Paul F | Communications of downhole tools from different service providers |
WO2009032729A1 (en) * | 2007-08-29 | 2009-03-12 | Baker Hughes Incorporated | Methods and apparatus for high-speed telemetry while drilling |
US20090145601A1 (en) * | 2007-12-06 | 2009-06-11 | Schlumberger Technology Corporation | Technique and apparatus to deploy a cement plug in a well |
US20090152005A1 (en) * | 2007-12-17 | 2009-06-18 | Schlumberger Technology Corporation | Oilfield well planning and operation |
US20090166031A1 (en) * | 2007-01-25 | 2009-07-02 | Intelliserv, Inc. | Monitoring downhole conditions with drill string distributed measurement system |
GB2456232A (en) * | 2008-01-14 | 2009-07-15 | Logined Bv | Real-time, bi-directional data management involving conversion of formats and communication protocols |
US7571054B2 (en) | 2006-03-27 | 2009-08-04 | Key Energy Services, Inc. | Method and system for interpreting tubing data |
US20090201170A1 (en) * | 2007-08-29 | 2009-08-13 | Baker Hughes Incorporated | High speed data transfer for measuring lithology and monitoring drilling operations |
US20090207041A1 (en) * | 2008-02-19 | 2009-08-20 | Baker Hughes Incorporated | Downhole measurement while drilling system and method |
US20090216455A1 (en) * | 2008-02-21 | 2009-08-27 | Baker Hughes Incorporated | Distributed sensors for dynamics modeling |
US20090266609A1 (en) * | 2008-04-24 | 2009-10-29 | Hall David R | Downhole sample rate system |
US20090294174A1 (en) * | 2008-05-28 | 2009-12-03 | Schlumberger Technology Corporation | Downhole sensor system |
US20100017138A1 (en) * | 2008-07-16 | 2010-01-21 | Brady James P | System having a network connected to multiple different types of survey sensors |
US20100045517A1 (en) * | 2004-07-20 | 2010-02-25 | Global Precision Solutions, Llp | Precision GPS Driven Utility Asset Management and Utility Damage Prevention System and Method |
US20100051292A1 (en) * | 2008-08-26 | 2010-03-04 | Baker Hughes Incorporated | Drill Bit With Weight And Torque Sensors |
US20100116550A1 (en) * | 2005-08-04 | 2010-05-13 | Remi Hutin | Interface and method for wellbore telemetry system |
GB2458356B (en) * | 2007-12-17 | 2010-12-29 | Logined Bv | Oilfield well planning and operation |
US7962288B2 (en) | 2004-03-04 | 2011-06-14 | Halliburton Energy Services, Inc. | Multiple distributed force measurements |
US20110232917A1 (en) * | 2010-03-25 | 2011-09-29 | Halliburton Energy Services, Inc. | Electrically operated isolation valve |
US20110232916A1 (en) * | 2010-03-25 | 2011-09-29 | Halliburton Energy Services, Inc. | Bi-directional flapper/sealing mechanism and technique |
CN102231696A (en) * | 2011-05-23 | 2011-11-02 | 中国石油大学(华东) | Method for packaging datagram message of measurement while drilling (WMD) system |
US20120127830A1 (en) * | 2010-11-23 | 2012-05-24 | Smith International, Inc. | Downhole imaging system and related methods of use |
CN102606144A (en) * | 2011-11-17 | 2012-07-25 | 日照凌智软件科技有限公司 | Front data acquisition system for mud logging unit |
US20130000922A1 (en) * | 2011-07-01 | 2013-01-03 | Halliburton Energy Services, Inc. | Well tool actuator and isolation valve for use in drilling operations |
CN103015966A (en) * | 2012-12-20 | 2013-04-03 | 中国科学院自动化研究所 | Visually-operated hydraulic control system of petroleum drilling machine |
CN103049980A (en) * | 2012-11-22 | 2013-04-17 | 浙江盾安精工集团有限公司 | Alarm system of all-casing full-slewing drilling machine |
CN103095381A (en) * | 2013-01-22 | 2013-05-08 | 长沙五维地科勘察技术有限责任公司 | Underground life calling system |
US20130306373A1 (en) * | 2008-06-27 | 2013-11-21 | Wajid Rasheed | Electronically activated underreamer and calliper tool |
US20140041865A1 (en) * | 2011-10-25 | 2014-02-13 | Marty Paulk | Methods and systems for providing a package of sensors to enhance subterranean operations |
WO2013152072A3 (en) * | 2012-04-03 | 2014-07-31 | National Oilwell Varco, L.P. | Drilling control and information system |
US20140241111A1 (en) * | 2013-02-28 | 2014-08-28 | Weatherford/Lamb, Inc. | Acoustic borehole imaging tool |
WO2015023654A1 (en) * | 2013-08-13 | 2015-02-19 | Abrado, Inc. | Method and apparatus for real time streaming and onboard recordation of video data |
US20150167393A1 (en) * | 2009-12-30 | 2015-06-18 | Wajid Rasheed | Look Ahead Advance Formation Evaluation Tool |
US9121962B2 (en) | 2005-03-31 | 2015-09-01 | Intelliserv, Llc | Method and conduit for transmitting signals |
US9157313B2 (en) | 2012-06-01 | 2015-10-13 | Intelliserv, Llc | Systems and methods for detecting drillstring loads |
CN105051325A (en) * | 2012-10-17 | 2015-11-11 | 越洋创新实验室有限公司 | Communications systems and methods for subsea processors |
US9243489B2 (en) | 2011-11-11 | 2016-01-26 | Intelliserv, Llc | System and method for steering a relief well |
US9494033B2 (en) | 2012-06-22 | 2016-11-15 | Intelliserv, Llc | Apparatus and method for kick detection using acoustic sensors |
US20160333682A1 (en) * | 2014-12-31 | 2016-11-17 | Halliburton Energy Services, Inc. | Magnetic sensor rotation and orientation about drill |
EP3159474A1 (en) * | 2015-10-22 | 2017-04-26 | Sandvik Mining and Construction Oy | Arrangement in rock drilling rig |
NL1042322A (en) * | 2016-04-28 | 2017-11-06 | Halliburton Energy Services Inc | Distributed Sensor Systems and Methods |
US20170342815A1 (en) * | 2014-12-31 | 2017-11-30 | Halliburton Energy Services, Inc. | Visualization of look-ahead sensor data for wellbore drilling tools |
CN107809361A (en) * | 2017-10-26 | 2018-03-16 | 中国石油集团渤海钻探工程有限公司 | A kind of puppy parc conversion equipment with brill downhole instrument |
NO342371B1 (en) * | 2004-03-03 | 2018-05-14 | Halliburton Energy Services Inc | Real-time processing of downhole data on the ground surface |
US20180136356A1 (en) * | 2015-06-26 | 2018-05-17 | Halliburton Energy Services, Inc. | Systems and Methods for Characterizing Materials External of a Casing |
US10060248B2 (en) * | 2009-05-27 | 2018-08-28 | Halliburton Energy Services, Inc. | Vibration detection in a drill string based on multi-positioned sensors |
US20190145248A1 (en) * | 2017-11-14 | 2019-05-16 | Saudi Arabian Oil Company | Remotely operated inflow control valve |
CN110630252A (en) * | 2018-06-21 | 2019-12-31 | 中国石油化工股份有限公司 | Measurement while drilling system and method for coiled tubing drilling |
GB2579366A (en) * | 2018-11-29 | 2020-06-24 | Mhwirth As | Drilling systems and methods |
CN111335873A (en) * | 2020-03-27 | 2020-06-26 | 北京环鼎科技有限责任公司 | Quick detection box of logging instrument |
CN112228038A (en) * | 2020-09-29 | 2021-01-15 | 中铁大桥局集团有限公司 | Intelligent drilling and online detection system for large-diameter drilled pile |
CN112904411A (en) * | 2021-01-21 | 2021-06-04 | 安徽华电工程咨询设计有限公司 | Wave velocity array test probe and test method for optical fiber transmission signals |
CN113137226A (en) * | 2021-04-29 | 2021-07-20 | 中国科学院武汉岩土力学研究所 | Portable rock-soil body mechanics parameter drilling test system and device |
US11242745B2 (en) | 2017-04-26 | 2022-02-08 | Tracto-Technik Gmbh & Co. Kg | Drill head for earth boring, drilling device for earth boring having the drill head, method to detect objects while earth boring, and use of direct digital synthesizer as a signal in detecting an obstacle in earth boring |
US11989790B2 (en) | 2019-10-28 | 2024-05-21 | Schlumberger Technology Corporation | Drilling activity recommendation system and method |
Families Citing this family (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9051781B2 (en) | 2009-08-13 | 2015-06-09 | Smart Drilling And Completion, Inc. | Mud motor assembly |
US9745799B2 (en) | 2001-08-19 | 2017-08-29 | Smart Drilling And Completion, Inc. | Mud motor assembly |
EP2192263A1 (en) * | 2008-11-27 | 2010-06-02 | Services Pétroliers Schlumberger | Method for monitoring cement plugs |
US8729901B2 (en) | 2009-07-06 | 2014-05-20 | Merlin Technology, Inc. | Measurement device and associated method for use in frequency selection for inground transmission |
US8397562B2 (en) | 2009-07-30 | 2013-03-19 | Aps Technology, Inc. | Apparatus for measuring bending on a drill bit operating in a well |
US8645571B2 (en) * | 2009-08-05 | 2014-02-04 | Schlumberger Technology Corporation | System and method for managing and/or using data for tools in a wellbore |
US9618643B2 (en) * | 2010-01-04 | 2017-04-11 | Pason Systems Corp. | Method and apparatus for decoding a signal sent from a measurement-while-drilling tool |
CN102754105B (en) | 2010-02-12 | 2016-05-25 | 埃克森美孚上游研究公司 | For creating the method and system of historical coupling simulation model |
CN101813478B (en) * | 2010-04-23 | 2012-01-04 | 上海市地质调查研究院 | Ground sedimentation monitoring system |
CN102667657B (en) * | 2010-06-10 | 2016-02-10 | 哈里伯顿能源服务公司 | For the system and method that long-range well is monitored |
US9001495B2 (en) | 2011-02-23 | 2015-04-07 | Fastcap Systems Corporation | High power and high energy electrodes using carbon nanotubes |
EP3229045B1 (en) * | 2011-03-30 | 2019-02-27 | Hunt Energy Enterprises, LLC | Apparatus and system for passive electroseismic surveying |
CN104271880A (en) | 2011-05-24 | 2015-01-07 | 快帽系统公司 | Power system for high temperature applications with rechargeable energy storage |
JP2014523841A (en) | 2011-06-07 | 2014-09-18 | ファーストキャップ・システムズ・コーポレイション | Energy storage medium for ultracapacitors |
US10316624B2 (en) | 2011-06-14 | 2019-06-11 | Rei, Inc. | Method of and system for drilling information management and resource planning |
US9157279B2 (en) | 2011-06-14 | 2015-10-13 | Rei, Inc. | Method of and system for drilling information management and resource planning |
CN102287183B (en) * | 2011-06-24 | 2014-10-08 | 北京市三一重机有限公司 | Device and method for measuring drill hole inclination of rotary drilling rig |
CN102287182B (en) * | 2011-06-24 | 2014-12-24 | 北京市三一重机有限公司 | Drill hole monitoring system for rotary drilling rig and monitoring method thereof |
IL287733B2 (en) | 2011-07-08 | 2023-04-01 | Fastcap Systems Corp | High temperature energy storage device |
US9558894B2 (en) | 2011-07-08 | 2017-01-31 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
EA038017B1 (en) | 2011-11-03 | 2021-06-23 | Фасткэп Системз Корпорейшн | Production logging instrument |
US10215013B2 (en) * | 2011-11-10 | 2019-02-26 | Baker Hughes, A Ge Company, Llc | Real time downhole sensor data for controlling surface stimulation equipment |
CN102828739B (en) * | 2012-09-14 | 2015-09-30 | 陕西格兰浮实业有限公司 | A kind of down-hole multi-parameter imaging measurement system |
CN102889078A (en) * | 2012-10-10 | 2013-01-23 | 河海大学 | Time difference positioning system and method for deep well drill bit position |
CN103883315A (en) * | 2012-12-21 | 2014-06-25 | 中国石油天然气集团公司 | Downhole and ground information transmission network system and method |
CA2942818A1 (en) * | 2013-03-15 | 2014-09-18 | Fastcap Systems Corporation | Modular signal interface devices and related downhole power and data systems |
US20190218894A9 (en) | 2013-03-15 | 2019-07-18 | Fastcap Systems Corporation | Power system for downhole toolstring |
CN103334725B (en) * | 2013-06-27 | 2017-03-08 | 中国石油天然气股份有限公司 | Method and device for evaluating displacement effectiveness of low-permeability reservoir |
CA2917462C (en) * | 2013-08-17 | 2017-02-28 | Halliburton Energy Services, Inc. | Method to optimize drilling efficiency while reducing stick slip |
WO2015047256A1 (en) | 2013-09-25 | 2015-04-02 | Halliburton Energy Services, Inc. | Workflow adjustment methods and systems for logging operations |
US10872737B2 (en) | 2013-10-09 | 2020-12-22 | Fastcap Systems Corporation | Advanced electrolytes for high temperature energy storage device |
WO2015070045A1 (en) | 2013-11-08 | 2015-05-14 | Baylor College Of Medicine | A novel diagnostic/prognostic markers and therapeutic target for cancer |
US11270850B2 (en) | 2013-12-20 | 2022-03-08 | Fastcap Systems Corporation | Ultracapacitors with high frequency response |
EP4325025A3 (en) | 2013-12-20 | 2024-04-24 | Fastcap Systems Corporation | Electromagnetic telemetry device |
US9927310B2 (en) | 2014-02-03 | 2018-03-27 | Aps Technology, Inc. | Strain sensor assembly |
GB2537565A (en) | 2014-02-03 | 2016-10-19 | Aps Tech Inc | System, apparatus and method for guiding a drill bit based on forces applied to a drill bit |
US9664011B2 (en) | 2014-05-27 | 2017-05-30 | Baker Hughes Incorporated | High-speed camera to monitor surface drilling dynamics and provide optical data link for receiving downhole data |
WO2015196278A1 (en) | 2014-06-23 | 2015-12-30 | Evolution Engineering Inc. | Optimizing downhole data communication with at bit sensors and nodes |
WO2015200048A1 (en) * | 2014-06-25 | 2015-12-30 | AOI (Advanced Oilfield Innovations, Inc.) | Piping assembly control system with addressed datagrams |
US9739140B2 (en) | 2014-09-05 | 2017-08-22 | Merlin Technology, Inc. | Communication protocol in directional drilling system, apparatus and method utilizing multi-bit data symbol transmission |
CN104200642B (en) * | 2014-09-14 | 2017-07-21 | 哈尔滨理工大学 | One kind carries out the ground control system and method for underground equipment |
KR102459315B1 (en) | 2014-10-09 | 2022-10-27 | 패스트캡 시스템즈 코포레이션 | Nanostructured electrode for energy storage device |
US10036203B2 (en) | 2014-10-29 | 2018-07-31 | Baker Hughes, A Ge Company, Llc | Automated spiraling detection |
US10113363B2 (en) | 2014-11-07 | 2018-10-30 | Aps Technology, Inc. | System and related methods for control of a directional drilling operation |
US10175094B2 (en) * | 2014-12-04 | 2019-01-08 | Exxonmobil Upstream Research Company | Fiber optic communications with subsea sensors |
DE112014007031T5 (en) | 2014-12-31 | 2017-07-20 | Halliburton Energy Services, Inc. | Improved geosteering inversion using an electromagnetic look-ahead look-around tool |
EP3251133A4 (en) | 2015-01-27 | 2018-12-05 | FastCAP Systems Corporation | Wide temperature range ultracapacitor |
KR20170125055A (en) * | 2015-02-23 | 2017-11-13 | 트랜스오션 세드코 포렉스 벤쳐스 리미티드 | Smart load pin for drilling rig |
US10233700B2 (en) | 2015-03-31 | 2019-03-19 | Aps Technology, Inc. | Downhole drilling motor with an adjustment assembly |
CA3009894C (en) | 2016-01-25 | 2020-10-13 | Halliburton Energy Services, Inc. | Electromagnetic telemetry using a transceiver in an adjacent wellbore |
CN107130957A (en) * | 2016-02-26 | 2017-09-05 | 中国石油化工股份有限公司 | A kind of Oil/gas Well downhole monitoring system and the confession method for electrically for the monitoring system |
US11448524B2 (en) | 2016-04-07 | 2022-09-20 | Phoenix America Inc. | Multipole magnet for use with a pitched magnetic sensor |
CN107701170B (en) * | 2016-08-03 | 2021-02-05 | 中国石油化工股份有限公司 | Near-bit imaging measurement device and method |
MX2019006454A (en) | 2016-12-02 | 2019-08-01 | Fastcap Systems Corp | Composite electrode. |
US10378338B2 (en) | 2017-06-28 | 2019-08-13 | Merlin Technology, Inc. | Advanced passive interference management in directional drilling system, apparatus and methods |
US10871068B2 (en) * | 2017-07-27 | 2020-12-22 | Aol | Piping assembly with probes utilizing addressed datagrams |
WO2019067987A1 (en) | 2017-09-29 | 2019-04-04 | Baker Hughes, A Ge Company, Llc | Downhole system for determining a rate of penetration of a downhole tool and related methods |
US10394193B2 (en) * | 2017-09-29 | 2019-08-27 | Saudi Arabian Oil Company | Wellbore non-retrieval sensing system |
WO2019067777A1 (en) | 2017-09-29 | 2019-04-04 | Baker Hughes, A Ge Company, Llc | Downhole acoustic systems and related methods of operating a wellbore |
US10738598B2 (en) | 2018-05-18 | 2020-08-11 | China Petroleum & Chemical Corporation | System and method for transmitting signals downhole |
WO2020014769A1 (en) * | 2018-07-17 | 2020-01-23 | Quantum Design And Technologies Inc. | System and method for monitoring wellhead equipment and downhole activity |
CN109162691A (en) * | 2018-09-05 | 2019-01-08 | 北京航天地基工程有限责任公司 | Geotechnical engineering investigation intelligence probing acquisition device and method |
CN109281658A (en) * | 2018-12-04 | 2019-01-29 | 东华理工大学 | A kind of geophysical log measuring system |
US11162356B2 (en) | 2019-02-05 | 2021-11-02 | Motive Drilling Technologies, Inc. | Downhole display |
EP3942145A4 (en) | 2019-03-18 | 2022-11-16 | Magnetic Variation Services, LLC | Steering a wellbore using stratigraphic misfit heat maps |
US11946360B2 (en) | 2019-05-07 | 2024-04-02 | Magnetic Variation Services, Llc | Determining the likelihood and uncertainty of the wellbore being at a particular stratigraphic vertical depth |
WO2020223825A1 (en) * | 2019-05-08 | 2020-11-12 | General Downhole Tools, Ltd. | Systems, methods, and devices for directionally drilling an oil well while rotating including remotely controlling drilling equipment |
US11078727B2 (en) | 2019-05-23 | 2021-08-03 | Halliburton Energy Services, Inc. | Downhole reconfiguration of pulsed-power drilling system components during pulsed drilling operations |
US11557765B2 (en) | 2019-07-05 | 2023-01-17 | Fastcap Systems Corporation | Electrodes for energy storage devices |
US11726223B2 (en) | 2019-12-10 | 2023-08-15 | Origin Rose Llc | Spectral analysis and machine learning to detect offset well communication using high frequency acoustic or vibration sensing |
CN110939437A (en) * | 2019-12-16 | 2020-03-31 | 北京港震科技股份有限公司 | Underground data acquisition device and system |
CN111119866B (en) * | 2019-12-18 | 2021-02-02 | 中海石油(中国)有限公司湛江分公司 | Remote transmission short joint with cable |
CN111119767B (en) * | 2019-12-24 | 2024-03-12 | 深圳市长勘勘察设计有限公司 | Intelligent drilling acquisition equipment for geotechnical engineering investigation |
US12084959B2 (en) * | 2020-06-18 | 2024-09-10 | Halliburton Energy Services, Inc. | Estimating borehole shape between stationary survey locations |
CN112432811A (en) * | 2020-12-01 | 2021-03-02 | 中科土壤环境科技(江苏)有限公司 | Drilling follow-up underground object identification control system |
Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3223184A (en) * | 1961-05-31 | 1965-12-14 | Sun Oil Co | Bore hole logging apparatus |
US4273212A (en) * | 1979-01-26 | 1981-06-16 | Westinghouse Electric Corp. | Oil and gas well kick detector |
US4379493A (en) * | 1981-05-22 | 1983-04-12 | Gene Thibodeaux | Method and apparatus for preventing wireline kinking in a directional drilling system |
US4384483A (en) * | 1981-08-11 | 1983-05-24 | Mobil Oil Corporation | Preventing buckling in drill string |
US4535429A (en) * | 1982-07-10 | 1985-08-13 | Nl Sperry-Sun, Inc. | Apparatus for signalling within a borehole while drilling |
US4553428A (en) * | 1983-11-03 | 1985-11-19 | Schlumberger Technology Corporation | Drill stem testing apparatus with multiple pressure sensing ports |
US4697650A (en) * | 1984-09-24 | 1987-10-06 | Nl Industries, Inc. | Method for estimating formation characteristics of the exposed bottomhole formation |
US4779852A (en) * | 1987-08-17 | 1988-10-25 | Teleco Oilfield Services Inc. | Vibration isolator and shock absorber device with conical disc springs |
US4791797A (en) * | 1986-03-24 | 1988-12-20 | Nl Industries, Inc. | Density neutron self-consistent caliper |
US4805449A (en) * | 1987-12-01 | 1989-02-21 | Anadrill, Inc. | Apparatus and method for measuring differential pressure while drilling |
US4995058A (en) * | 1987-11-04 | 1991-02-19 | Baker Hughes Inc. | Wireline transmission method and apparatus |
US5156223A (en) * | 1989-06-16 | 1992-10-20 | Hipp James E | Fluid operated vibratory jar with rotating bit |
US5331318A (en) * | 1991-09-05 | 1994-07-19 | Schlumberger Technology Corporation | Communications protocol for digital telemetry system |
US5563512A (en) * | 1994-06-14 | 1996-10-08 | Halliburton Company | Well logging apparatus having a removable sleeve for sealing and protecting multiple antenna arrays |
US5679894A (en) * | 1993-05-12 | 1997-10-21 | Baker Hughes Incorporated | Apparatus and method for drilling boreholes |
US5691712A (en) * | 1995-07-25 | 1997-11-25 | Schlumberger Technology Corporation | Multiple wellbore tool apparatus including a plurality of microprocessor implemented wellbore tools for operating a corresponding plurality of included wellbore tools and acoustic transducers in response to stimulus signals and acoustic signals |
US5729697A (en) * | 1995-04-24 | 1998-03-17 | International Business Machines Corporation | Intelligent shopping cart |
US5798488A (en) * | 1994-03-30 | 1998-08-25 | Gec Marconi Limited | Acoustic sensor |
US5804713A (en) * | 1994-09-21 | 1998-09-08 | Sensor Dynamics Ltd. | Apparatus for sensor installations in wells |
US5886303A (en) * | 1997-10-20 | 1999-03-23 | Dresser Industries, Inc. | Method and apparatus for cancellation of unwanted signals in MWD acoustic tools |
US5959547A (en) * | 1995-02-09 | 1999-09-28 | Baker Hughes Incorporated | Well control systems employing downhole network |
US5995020A (en) * | 1995-10-17 | 1999-11-30 | Pes, Inc. | Downhole power and communication system |
US6026914A (en) * | 1998-01-28 | 2000-02-22 | Alberta Oil Sands Technology And Research Authority | Wellbore profiling system |
US6061634A (en) * | 1997-04-14 | 2000-05-09 | Schlumberger Technology Corporation | Method and apparatus for characterizing earth formation properties through joint pressure-resistivity inversion |
US6079505A (en) * | 1992-02-27 | 2000-06-27 | Institut Francais Du Petrole | System and method for the acquisition of physical data linked to a drilling operation in progress |
US6101486A (en) * | 1998-04-20 | 2000-08-08 | Nortel Networks Corporation | System and method for retrieving customer information at a transaction center |
US6252518B1 (en) * | 1998-11-17 | 2001-06-26 | Schlumberger Technology Corporation | Communications systems in a well |
US6257332B1 (en) * | 1999-09-14 | 2001-07-10 | Halliburton Energy Services, Inc. | Well management system |
US6266649B1 (en) * | 1998-09-18 | 2001-07-24 | Amazon.Com, Inc. | Collaborative recommendations using item-to-item similarity mappings |
US6279392B1 (en) * | 1996-03-28 | 2001-08-28 | Snell Oil Company | Method and system for distributed well monitoring |
US6325123B1 (en) * | 1999-12-23 | 2001-12-04 | Dana Corporation | Tire inflation system for a steering knuckle wheel end |
US20020017386A1 (en) * | 1999-03-31 | 2002-02-14 | Halliburton Energy Services, Inc. | Methods of downhole testing subterranean formations and associated apparatus therefor |
US20020074165A1 (en) * | 2000-09-22 | 2002-06-20 | Chack Fan Lee | Drilling process monitor |
US20020111852A1 (en) * | 2001-01-16 | 2002-08-15 | Levine Robyn R. | Business offering content delivery |
US20020143613A1 (en) * | 2001-02-05 | 2002-10-03 | Hong Se June | Fast method for renewal and associated recommendations for market basket items |
US6464021B1 (en) * | 1997-06-02 | 2002-10-15 | Schlumberger Technology Corporation | Equi-pressure geosteering |
US20020161651A1 (en) * | 2000-08-29 | 2002-10-31 | Procter & Gamble | System and methods for tracking consumers in a store environment |
US6516880B1 (en) * | 2000-09-29 | 2003-02-11 | Grant Prideco, L.P. | System, method and apparatus for deploying a data resource within a threaded pipe coupling |
US6516898B1 (en) * | 1999-08-05 | 2003-02-11 | Baker Hughes Incorporated | Continuous wellbore drilling system with stationary sensor measurements |
US6568486B1 (en) * | 2000-09-06 | 2003-05-27 | Schlumberger Technology Corporation | Multipole acoustic logging with azimuthal spatial transform filtering |
US6581455B1 (en) * | 1995-03-31 | 2003-06-24 | Baker Hughes Incorporated | Modified formation testing apparatus with borehole grippers and method of formation testing |
US20030209365A1 (en) * | 2002-05-13 | 2003-11-13 | Geoff Downton | Recalibration of Downhole Sensors |
US20040039466A1 (en) * | 2002-05-24 | 2004-02-26 | Baker Hughes Incorporated | Method and apparatus for high speed data dumping and communication for a down hole tool |
US20040111454A1 (en) * | 2002-09-20 | 2004-06-10 | Herb Sorensen | Shopping environment analysis system and method with normalization |
US20040154831A1 (en) * | 2003-02-11 | 2004-08-12 | Jean Seydoux | Systems for deep resistivity while drilling for proactive geosteering |
US20050024231A1 (en) * | 2003-06-13 | 2005-02-03 | Baker Hughes Incorporated | Apparatus and methods for self-powered communication and sensor network |
US20050035875A1 (en) * | 2003-08-13 | 2005-02-17 | Hall David R. | Method and System for Downhole Clock Synchronization |
US20050115741A1 (en) * | 1997-10-27 | 2005-06-02 | Halliburton Energy Services, Inc. | Well system |
US20050187819A1 (en) * | 2004-02-20 | 2005-08-25 | International Business Machines Corporation | Method and system for measuring effectiveness of shopping cart advertisements based on purchases of advertised items |
US6976000B1 (en) * | 2000-02-22 | 2005-12-13 | International Business Machines Corporation | Method and system for researching product dynamics in market baskets in conjunction with aggregate market basket properties |
US20060032915A1 (en) * | 2004-08-12 | 2006-02-16 | International Business Machines | Retail store method and system |
US20070069014A1 (en) * | 2005-09-29 | 2007-03-29 | International Business Machines Corporation | Retail environment |
US20070291118A1 (en) * | 2006-06-16 | 2007-12-20 | Shu Chiao-Fe | Intelligent surveillance system and method for integrated event based surveillance |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2613159B1 (en) * | 1987-03-27 | 1989-07-21 | Inst Francais Du Petrole | SYSTEM FOR TRANSMITTING SIGNALS BETWEEN A WELL-DOWN RECEPTION ASSEMBLY AND A CENTRAL CONTROL AND RECORDING LABORATORY |
US4837753A (en) * | 1987-04-10 | 1989-06-06 | Amoco Corporation | Method and apparatus for logging a borehole |
CA2019343C (en) | 1989-08-31 | 1994-11-01 | Gary R. Holzhausen | Evaluating properties of porous formations |
WO1995003557A1 (en) * | 1993-07-21 | 1995-02-02 | Western Atlas International, Inc. | Method of determining formation resistivity utilizing combined measurements of inductive and galvanic logging instruments |
US5724308A (en) * | 1995-10-10 | 1998-03-03 | Western Atlas International, Inc. | Programmable acoustic borehole logging |
CA2195896A1 (en) * | 1996-01-25 | 1997-07-26 | Paulo Tubel | Downhole production well instrumentation |
WO2000060777A1 (en) * | 1999-04-08 | 2000-10-12 | Honeywell International Inc. | Method and apparatus for data communication with an underground instrument package |
WO2002006716A1 (en) * | 2000-07-19 | 2002-01-24 | Novatek Engineering Inc. | Data transmission system for a string of downhole components |
US20020148606A1 (en) * | 2001-03-01 | 2002-10-17 | Shunfeng Zheng | Method and apparatus to vibrate a downhole component by use of acoustic resonance |
US6661737B2 (en) * | 2002-01-02 | 2003-12-09 | Halliburton Energy Services, Inc. | Acoustic logging tool having programmable source waveforms |
US6984980B2 (en) * | 2002-02-14 | 2006-01-10 | Baker Hughes Incorporated | Method and apparatus for NMR sensor with loop-gap resonator |
GB0216647D0 (en) * | 2002-07-17 | 2002-08-28 | Schlumberger Holdings | System and method for obtaining and analyzing well data |
US7999695B2 (en) * | 2004-03-03 | 2011-08-16 | Halliburton Energy Services, Inc. | Surface real-time processing of downhole data |
-
2004
- 2004-03-03 US US10/792,541 patent/US7999695B2/en active Active
-
2005
- 2005-02-28 CA CA3040332A patent/CA3040332A1/en not_active Abandoned
- 2005-02-28 CA CA2867817A patent/CA2867817C/en not_active Expired - Fee Related
- 2005-02-28 CA CA2558162A patent/CA2558162C/en active Active
- 2005-02-28 CN CN2010101445377A patent/CN101832131B/en not_active Expired - Fee Related
- 2005-02-28 BR BRPI0508369-9A patent/BRPI0508369A/en not_active Application Discontinuation
- 2005-02-28 CN CN2010101445339A patent/CN101832130B/en not_active Expired - Fee Related
- 2005-02-28 CN CN2005800054180A patent/CN1965249B/en not_active Expired - Fee Related
- 2005-02-28 WO PCT/US2005/006470 patent/WO2005091899A2/en active Application Filing
- 2005-02-28 GB GB0619313A patent/GB2428820B/en active Active
- 2005-02-28 GB GB0811860A patent/GB2448256B/en active Active
- 2005-02-28 CA CA3040336A patent/CA3040336A1/en not_active Abandoned
- 2005-02-28 CA CA3039966A patent/CA3039966A1/en not_active Abandoned
-
2006
- 2006-10-03 NO NO20064496A patent/NO342371B1/en not_active IP Right Cessation
-
2011
- 2011-08-09 US US13/206,318 patent/US20110290559A1/en not_active Abandoned
Patent Citations (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3223184A (en) * | 1961-05-31 | 1965-12-14 | Sun Oil Co | Bore hole logging apparatus |
US4273212A (en) * | 1979-01-26 | 1981-06-16 | Westinghouse Electric Corp. | Oil and gas well kick detector |
US4379493A (en) * | 1981-05-22 | 1983-04-12 | Gene Thibodeaux | Method and apparatus for preventing wireline kinking in a directional drilling system |
US4384483A (en) * | 1981-08-11 | 1983-05-24 | Mobil Oil Corporation | Preventing buckling in drill string |
US4535429A (en) * | 1982-07-10 | 1985-08-13 | Nl Sperry-Sun, Inc. | Apparatus for signalling within a borehole while drilling |
US4553428A (en) * | 1983-11-03 | 1985-11-19 | Schlumberger Technology Corporation | Drill stem testing apparatus with multiple pressure sensing ports |
US4697650A (en) * | 1984-09-24 | 1987-10-06 | Nl Industries, Inc. | Method for estimating formation characteristics of the exposed bottomhole formation |
US4791797A (en) * | 1986-03-24 | 1988-12-20 | Nl Industries, Inc. | Density neutron self-consistent caliper |
US4779852A (en) * | 1987-08-17 | 1988-10-25 | Teleco Oilfield Services Inc. | Vibration isolator and shock absorber device with conical disc springs |
US4995058A (en) * | 1987-11-04 | 1991-02-19 | Baker Hughes Inc. | Wireline transmission method and apparatus |
US4805449A (en) * | 1987-12-01 | 1989-02-21 | Anadrill, Inc. | Apparatus and method for measuring differential pressure while drilling |
US5156223A (en) * | 1989-06-16 | 1992-10-20 | Hipp James E | Fluid operated vibratory jar with rotating bit |
US5331318A (en) * | 1991-09-05 | 1994-07-19 | Schlumberger Technology Corporation | Communications protocol for digital telemetry system |
US6079505A (en) * | 1992-02-27 | 2000-06-27 | Institut Francais Du Petrole | System and method for the acquisition of physical data linked to a drilling operation in progress |
US5679894A (en) * | 1993-05-12 | 1997-10-21 | Baker Hughes Incorporated | Apparatus and method for drilling boreholes |
US5798488A (en) * | 1994-03-30 | 1998-08-25 | Gec Marconi Limited | Acoustic sensor |
US5563512A (en) * | 1994-06-14 | 1996-10-08 | Halliburton Company | Well logging apparatus having a removable sleeve for sealing and protecting multiple antenna arrays |
US5804713A (en) * | 1994-09-21 | 1998-09-08 | Sensor Dynamics Ltd. | Apparatus for sensor installations in wells |
US5959547A (en) * | 1995-02-09 | 1999-09-28 | Baker Hughes Incorporated | Well control systems employing downhole network |
US6581455B1 (en) * | 1995-03-31 | 2003-06-24 | Baker Hughes Incorporated | Modified formation testing apparatus with borehole grippers and method of formation testing |
US5729697A (en) * | 1995-04-24 | 1998-03-17 | International Business Machines Corporation | Intelligent shopping cart |
US5691712A (en) * | 1995-07-25 | 1997-11-25 | Schlumberger Technology Corporation | Multiple wellbore tool apparatus including a plurality of microprocessor implemented wellbore tools for operating a corresponding plurality of included wellbore tools and acoustic transducers in response to stimulus signals and acoustic signals |
US5995020A (en) * | 1995-10-17 | 1999-11-30 | Pes, Inc. | Downhole power and communication system |
US6279392B1 (en) * | 1996-03-28 | 2001-08-28 | Snell Oil Company | Method and system for distributed well monitoring |
US6061634A (en) * | 1997-04-14 | 2000-05-09 | Schlumberger Technology Corporation | Method and apparatus for characterizing earth formation properties through joint pressure-resistivity inversion |
US6464021B1 (en) * | 1997-06-02 | 2002-10-15 | Schlumberger Technology Corporation | Equi-pressure geosteering |
US5886303A (en) * | 1997-10-20 | 1999-03-23 | Dresser Industries, Inc. | Method and apparatus for cancellation of unwanted signals in MWD acoustic tools |
US20050115741A1 (en) * | 1997-10-27 | 2005-06-02 | Halliburton Energy Services, Inc. | Well system |
US6026914A (en) * | 1998-01-28 | 2000-02-22 | Alberta Oil Sands Technology And Research Authority | Wellbore profiling system |
US6101486A (en) * | 1998-04-20 | 2000-08-08 | Nortel Networks Corporation | System and method for retrieving customer information at a transaction center |
US6266649B1 (en) * | 1998-09-18 | 2001-07-24 | Amazon.Com, Inc. | Collaborative recommendations using item-to-item similarity mappings |
US6252518B1 (en) * | 1998-11-17 | 2001-06-26 | Schlumberger Technology Corporation | Communications systems in a well |
US20020017386A1 (en) * | 1999-03-31 | 2002-02-14 | Halliburton Energy Services, Inc. | Methods of downhole testing subterranean formations and associated apparatus therefor |
US6516898B1 (en) * | 1999-08-05 | 2003-02-11 | Baker Hughes Incorporated | Continuous wellbore drilling system with stationary sensor measurements |
US6257332B1 (en) * | 1999-09-14 | 2001-07-10 | Halliburton Energy Services, Inc. | Well management system |
US6325123B1 (en) * | 1999-12-23 | 2001-12-04 | Dana Corporation | Tire inflation system for a steering knuckle wheel end |
US6976000B1 (en) * | 2000-02-22 | 2005-12-13 | International Business Machines Corporation | Method and system for researching product dynamics in market baskets in conjunction with aggregate market basket properties |
US20020161651A1 (en) * | 2000-08-29 | 2002-10-31 | Procter & Gamble | System and methods for tracking consumers in a store environment |
US6568486B1 (en) * | 2000-09-06 | 2003-05-27 | Schlumberger Technology Corporation | Multipole acoustic logging with azimuthal spatial transform filtering |
US20020074165A1 (en) * | 2000-09-22 | 2002-06-20 | Chack Fan Lee | Drilling process monitor |
US6516880B1 (en) * | 2000-09-29 | 2003-02-11 | Grant Prideco, L.P. | System, method and apparatus for deploying a data resource within a threaded pipe coupling |
US20020111852A1 (en) * | 2001-01-16 | 2002-08-15 | Levine Robyn R. | Business offering content delivery |
US20020143613A1 (en) * | 2001-02-05 | 2002-10-03 | Hong Se June | Fast method for renewal and associated recommendations for market basket items |
US20030209365A1 (en) * | 2002-05-13 | 2003-11-13 | Geoff Downton | Recalibration of Downhole Sensors |
US20040039466A1 (en) * | 2002-05-24 | 2004-02-26 | Baker Hughes Incorporated | Method and apparatus for high speed data dumping and communication for a down hole tool |
US7145472B2 (en) * | 2002-05-24 | 2006-12-05 | Baker Hughes Incorporated | Method and apparatus for high speed data dumping and communication for a down hole tool |
US20040111454A1 (en) * | 2002-09-20 | 2004-06-10 | Herb Sorensen | Shopping environment analysis system and method with normalization |
US20040154831A1 (en) * | 2003-02-11 | 2004-08-12 | Jean Seydoux | Systems for deep resistivity while drilling for proactive geosteering |
US20050024231A1 (en) * | 2003-06-13 | 2005-02-03 | Baker Hughes Incorporated | Apparatus and methods for self-powered communication and sensor network |
US20050035875A1 (en) * | 2003-08-13 | 2005-02-17 | Hall David R. | Method and System for Downhole Clock Synchronization |
US20050187819A1 (en) * | 2004-02-20 | 2005-08-25 | International Business Machines Corporation | Method and system for measuring effectiveness of shopping cart advertisements based on purchases of advertised items |
US20060032915A1 (en) * | 2004-08-12 | 2006-02-16 | International Business Machines | Retail store method and system |
US20070069014A1 (en) * | 2005-09-29 | 2007-03-29 | International Business Machines Corporation | Retail environment |
US20070291118A1 (en) * | 2006-06-16 | 2007-12-20 | Shu Chiao-Fe | Intelligent surveillance system and method for integrated event based surveillance |
Cited By (137)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7573780B2 (en) * | 2004-02-26 | 2009-08-11 | Exxonmobil Upstream Research Co. | Electrode configurations for suppression of electroseismic source noise |
US20070115754A1 (en) * | 2004-02-26 | 2007-05-24 | Thompson Arthur H | Electrode configurations for suppression of electroseismic source noise |
NO342371B1 (en) * | 2004-03-03 | 2018-05-14 | Halliburton Energy Services Inc | Real-time processing of downhole data on the ground surface |
US7962288B2 (en) | 2004-03-04 | 2011-06-14 | Halliburton Energy Services, Inc. | Multiple distributed force measurements |
US20050194183A1 (en) * | 2004-03-04 | 2005-09-08 | Gleitman Daniel D. | Providing a local response to a local condition in an oil well |
US7054750B2 (en) | 2004-03-04 | 2006-05-30 | Halliburton Energy Services, Inc. | Method and system to model, measure, recalibrate, and optimize control of the drilling of a borehole |
US7219747B2 (en) * | 2004-03-04 | 2007-05-22 | Halliburton Energy Services, Inc. | Providing a local response to a local condition in an oil well |
US20050197777A1 (en) * | 2004-03-04 | 2005-09-08 | Rodney Paul F. | Method and system to model, measure, recalibrate, and optimize control of the drilling of a borehole |
US20060077095A1 (en) * | 2004-07-20 | 2006-04-13 | Tucker Layne D | Precision GPS driven utility asset management and utility damage prevention system and method |
US7834806B2 (en) | 2004-07-20 | 2010-11-16 | Global Precision Solutions, Llp | System and method for utility asset data collection and management |
US20100045517A1 (en) * | 2004-07-20 | 2010-02-25 | Global Precision Solutions, Llp | Precision GPS Driven Utility Asset Management and Utility Damage Prevention System and Method |
US20090121933A1 (en) * | 2004-07-20 | 2009-05-14 | Global Precision Solutions, Llp. | Precision gps driven utility asset management and utility damage prevention system and method |
US8081112B2 (en) | 2004-07-20 | 2011-12-20 | Global Precision Solutions, Llp. | System and method for collecting information related to utility assets |
US7482973B2 (en) * | 2004-07-20 | 2009-01-27 | Global Precision Solutions, Llp. | Precision GPS driven utility asset management and utility damage prevention system and method |
US20080195260A1 (en) * | 2004-12-10 | 2008-08-14 | Sumitomo Wiring Systems, Ltd. | Communication Control Apparatus |
US8224521B2 (en) * | 2004-12-10 | 2012-07-17 | Sumitomo Wiring Systems, Ltd. | Communication control apparatus |
US20060214814A1 (en) * | 2005-03-24 | 2006-09-28 | Schlumberger Technology Corporation | Wellbore communication system |
US9121962B2 (en) | 2005-03-31 | 2015-09-01 | Intelliserv, Llc | Method and conduit for transmitting signals |
US20100116550A1 (en) * | 2005-08-04 | 2010-05-13 | Remi Hutin | Interface and method for wellbore telemetry system |
US9366092B2 (en) | 2005-08-04 | 2016-06-14 | Intelliserv, Llc | Interface and method for wellbore telemetry system |
US20070188344A1 (en) * | 2005-09-16 | 2007-08-16 | Schlumberger Technology Center | Wellbore telemetry system and method |
US9109439B2 (en) | 2005-09-16 | 2015-08-18 | Intelliserv, Llc | Wellbore telemetry system and method |
NO339229B1 (en) * | 2005-09-19 | 2016-11-21 | Schlumberger Technology Bv | Wellbore communication system for a well site |
US8692685B2 (en) | 2005-09-19 | 2014-04-08 | Schlumberger Technology Corporation | Wellsite communication system and method |
US20070062692A1 (en) * | 2005-09-19 | 2007-03-22 | Schlumberger Technology Corporation | Wellsite communication system and method |
US20080035333A1 (en) * | 2006-03-27 | 2008-02-14 | Newman Frederic M | Method and system for scanning tubing |
US7672785B2 (en) | 2006-03-27 | 2010-03-02 | Key Energy Services, Inc. | Method and system for evaluating and displaying depth data |
US7588083B2 (en) | 2006-03-27 | 2009-09-15 | Key Energy Services, Inc. | Method and system for scanning tubing |
US20080035335A1 (en) * | 2006-03-27 | 2008-02-14 | Newman Frederic M | Method and system for evaluating and displaying depth data |
US7571054B2 (en) | 2006-03-27 | 2009-08-04 | Key Energy Services, Inc. | Method and system for interpreting tubing data |
WO2007112363A2 (en) * | 2006-03-27 | 2007-10-04 | Key Energy Services, Inc. | Methods and system for evaluating and displaying depth data |
WO2007112363A3 (en) * | 2006-03-27 | 2008-05-08 | Key Energy Services Inc | Methods and system for evaluating and displaying depth data |
US7788054B2 (en) | 2006-03-28 | 2010-08-31 | Key Energy Services, Llc | Method and system for calibrating a tube scanner |
US20070227225A1 (en) * | 2006-03-28 | 2007-10-04 | Newman Frederic M | Method and system for calibrating a tube scanner |
US20070278009A1 (en) * | 2006-06-06 | 2007-12-06 | Maximo Hernandez | Method and Apparatus for Sensing Downhole Characteristics |
US20080030367A1 (en) * | 2006-07-24 | 2008-02-07 | Fink Kevin D | Shear coupled acoustic telemetry system |
US7781939B2 (en) | 2006-07-24 | 2010-08-24 | Halliburton Energy Services, Inc. | Thermal expansion matching for acoustic telemetry system |
US20090245024A1 (en) * | 2006-07-24 | 2009-10-01 | Halliburton Energy Services, Inc. | Thermal expansion matching for acoustic telemetry system |
US20080031091A1 (en) * | 2006-07-24 | 2008-02-07 | Fripp Michael L | Thermal expansion matching for acoustic telemetry system |
EP1887181A1 (en) * | 2006-07-24 | 2008-02-13 | Halliburton Energy Services, Inc. | Multi-sensor wireless telemetry system |
US20080158004A1 (en) * | 2006-12-27 | 2008-07-03 | Frederic Latrille | Method and apparatus for downloading while drilling data |
US10502051B2 (en) * | 2006-12-27 | 2019-12-10 | Schlumberger Technology Corporation | Method and apparatus for downloading while drilling data |
GB2450865B (en) * | 2006-12-27 | 2009-08-19 | Schlumberger Holdings | Method and apparatus for downloading while drilling data |
GB2450865A (en) * | 2006-12-27 | 2009-01-14 | Schlumberger Holdings | A method and apparatus for transferring data between a surface computer and a downhole assembly while drilling |
US20090166031A1 (en) * | 2007-01-25 | 2009-07-02 | Intelliserv, Inc. | Monitoring downhole conditions with drill string distributed measurement system |
US8636060B2 (en) | 2007-01-25 | 2014-01-28 | Intelliserv, Llc | Monitoring downhole conditions with drill string distributed measurement system |
US20080184827A1 (en) * | 2007-02-02 | 2008-08-07 | The Board Of Regents Of The Nevada System Of Higher Ed. On Behalf Of The Desert Research Inst. | Monitoring probes and methods of use |
US7793559B2 (en) * | 2007-02-02 | 2010-09-14 | Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The Desert Research Institute | Monitoring probes and methods of use |
US20090045973A1 (en) * | 2007-08-16 | 2009-02-19 | Rodney Paul F | Communications of downhole tools from different service providers |
GB2452147A (en) * | 2007-08-16 | 2009-02-25 | Halliburton Energy Serv Inc | Communications of downhole tools from different service providers |
GB2452147B (en) * | 2007-08-16 | 2011-01-12 | Halliburton Energy Serv Inc | Communications of downhole tools from different service providers |
NO344070B1 (en) * | 2007-08-29 | 2019-08-26 | Baker Hughes A Ge Co Llc | System, method and computer program product for determining a change in lithology for a formation intersected by a borehole |
US8447523B2 (en) | 2007-08-29 | 2013-05-21 | Baker Hughes Incorporated | High speed data transfer for measuring lithology and monitoring drilling operations |
GB2464892A (en) * | 2007-08-29 | 2010-05-05 | Baker Hughes Inc | Methods and apparatus for high-speed telemetry while drilling |
GB2466888B (en) * | 2007-08-29 | 2013-06-19 | Baker Hughes Inc | High speed data transfer for measuring lithology and monitoring drilling operations |
US20090201170A1 (en) * | 2007-08-29 | 2009-08-13 | Baker Hughes Incorporated | High speed data transfer for measuring lithology and monitoring drilling operations |
US20090195408A1 (en) * | 2007-08-29 | 2009-08-06 | Baker Hughes Incorporated | Methods and apparatus for high-speed telemetry while drilling |
WO2009032595A3 (en) * | 2007-08-29 | 2011-11-03 | Baker Hughes Incorporated | High speed data transfer for measuring lithology and monitoring drilling operations |
WO2009032729A1 (en) * | 2007-08-29 | 2009-03-12 | Baker Hughes Incorporated | Methods and apparatus for high-speed telemetry while drilling |
US7963323B2 (en) * | 2007-12-06 | 2011-06-21 | Schlumberger Technology Corporation | Technique and apparatus to deploy a cement plug in a well |
US20090145601A1 (en) * | 2007-12-06 | 2009-06-11 | Schlumberger Technology Corporation | Technique and apparatus to deploy a cement plug in a well |
GB2458356B (en) * | 2007-12-17 | 2010-12-29 | Logined Bv | Oilfield well planning and operation |
US7878268B2 (en) * | 2007-12-17 | 2011-02-01 | Schlumberger Technology Corporation | Oilfield well planning and operation |
US20090152005A1 (en) * | 2007-12-17 | 2009-06-18 | Schlumberger Technology Corporation | Oilfield well planning and operation |
US8135862B2 (en) * | 2008-01-14 | 2012-03-13 | Schlumberger Technology Corporation | Real-time, bi-directional data management |
GB2456232A (en) * | 2008-01-14 | 2009-07-15 | Logined Bv | Real-time, bi-directional data management involving conversion of formats and communication protocols |
GB2456232B (en) * | 2008-01-14 | 2010-05-26 | Logined Bv | Real-time, bi-directional data management involving conversion of formats and communication protocols |
US20090182472A1 (en) * | 2008-01-14 | 2009-07-16 | Schlumberber Technology Corporation | Real-time, bi-directional data management |
US20090207041A1 (en) * | 2008-02-19 | 2009-08-20 | Baker Hughes Incorporated | Downhole measurement while drilling system and method |
US8775085B2 (en) | 2008-02-21 | 2014-07-08 | Baker Hughes Incorporated | Distributed sensors for dynamics modeling |
US20090216455A1 (en) * | 2008-02-21 | 2009-08-27 | Baker Hughes Incorporated | Distributed sensors for dynamics modeling |
GB2470150B (en) * | 2008-02-21 | 2013-04-17 | Baker Hughes Inc | Distributed sensors for dynamics modeling |
US20090266609A1 (en) * | 2008-04-24 | 2009-10-29 | Hall David R | Downhole sample rate system |
US8061443B2 (en) * | 2008-04-24 | 2011-11-22 | Schlumberger Technology Corporation | Downhole sample rate system |
US20090294174A1 (en) * | 2008-05-28 | 2009-12-03 | Schlumberger Technology Corporation | Downhole sensor system |
US9447676B2 (en) * | 2008-06-27 | 2016-09-20 | Wajid Rasheed | Electronically activated underreamer and calliper tool |
US20130306373A1 (en) * | 2008-06-27 | 2013-11-21 | Wajid Rasheed | Electronically activated underreamer and calliper tool |
US8055730B2 (en) | 2008-07-16 | 2011-11-08 | Westerngeco L. L. C. | System having a network connected to multiple different types of survey sensors |
US20100017138A1 (en) * | 2008-07-16 | 2010-01-21 | Brady James P | System having a network connected to multiple different types of survey sensors |
WO2010009165A2 (en) * | 2008-07-16 | 2010-01-21 | Geco Technology B.V. | A system having a network connected to multiple different types of survey sensors |
WO2010009165A3 (en) * | 2008-07-16 | 2010-03-11 | Geco Technology B.V. | A system having a network connected to multiple different types of survey sensors |
US8245792B2 (en) * | 2008-08-26 | 2012-08-21 | Baker Hughes Incorporated | Drill bit with weight and torque sensors and method of making a drill bit |
US20100051292A1 (en) * | 2008-08-26 | 2010-03-04 | Baker Hughes Incorporated | Drill Bit With Weight And Torque Sensors |
US10066474B2 (en) | 2009-05-27 | 2018-09-04 | Halliburton Energy Services, Inc. | Vibration detection in a drill string based on multi-positioned sensors |
US10060248B2 (en) * | 2009-05-27 | 2018-08-28 | Halliburton Energy Services, Inc. | Vibration detection in a drill string based on multi-positioned sensors |
US20150167393A1 (en) * | 2009-12-30 | 2015-06-18 | Wajid Rasheed | Look Ahead Advance Formation Evaluation Tool |
US20110232917A1 (en) * | 2010-03-25 | 2011-09-29 | Halliburton Energy Services, Inc. | Electrically operated isolation valve |
US8689885B2 (en) | 2010-03-25 | 2014-04-08 | Halliburton Energy Services, Inc. | Bi-directional flapper/sealing mechanism and technique |
US8733448B2 (en) | 2010-03-25 | 2014-05-27 | Halliburton Energy Services, Inc. | Electrically operated isolation valve |
US20110232916A1 (en) * | 2010-03-25 | 2011-09-29 | Halliburton Energy Services, Inc. | Bi-directional flapper/sealing mechanism and technique |
US20120127830A1 (en) * | 2010-11-23 | 2012-05-24 | Smith International, Inc. | Downhole imaging system and related methods of use |
CN102231696A (en) * | 2011-05-23 | 2011-11-02 | 中国石油大学(华东) | Method for packaging datagram message of measurement while drilling (WMD) system |
US20130000922A1 (en) * | 2011-07-01 | 2013-01-03 | Halliburton Energy Services, Inc. | Well tool actuator and isolation valve for use in drilling operations |
US10202824B2 (en) | 2011-07-01 | 2019-02-12 | Halliburton Energy Services, Inc. | Well tool actuator and isolation valve for use in drilling operations |
US8757274B2 (en) * | 2011-07-01 | 2014-06-24 | Halliburton Energy Services, Inc. | Well tool actuator and isolation valve for use in drilling operations |
US9429009B2 (en) * | 2011-10-25 | 2016-08-30 | Halliburton Energy Services, Inc. | Methods and systems for providing a package of sensors to enhance subterranean operations |
US20140041865A1 (en) * | 2011-10-25 | 2014-02-13 | Marty Paulk | Methods and systems for providing a package of sensors to enhance subterranean operations |
US9243489B2 (en) | 2011-11-11 | 2016-01-26 | Intelliserv, Llc | System and method for steering a relief well |
CN102606144A (en) * | 2011-11-17 | 2012-07-25 | 日照凌智软件科技有限公司 | Front data acquisition system for mud logging unit |
WO2013152072A3 (en) * | 2012-04-03 | 2014-07-31 | National Oilwell Varco, L.P. | Drilling control and information system |
US10273752B2 (en) * | 2012-04-03 | 2019-04-30 | National Oilwell Varco, L.P. | Drilling control and information system |
US20150053483A1 (en) * | 2012-04-03 | 2015-02-26 | National Oilwell Varco, L.P. | Drilling control and information system |
US20190234145A1 (en) * | 2012-04-03 | 2019-08-01 | National Oilwell Varco, L.P. | Drilling control and information system |
US9157313B2 (en) | 2012-06-01 | 2015-10-13 | Intelliserv, Llc | Systems and methods for detecting drillstring loads |
US9494033B2 (en) | 2012-06-22 | 2016-11-15 | Intelliserv, Llc | Apparatus and method for kick detection using acoustic sensors |
US10539010B2 (en) | 2012-10-17 | 2020-01-21 | Transocean Innovation Labs Ltd. | Subsea processor for underwater drilling operations |
EP2909436A4 (en) * | 2012-10-17 | 2016-08-24 | Transocean Innovation Labs Ltd | Communications systems and methods for subsea processors |
CN105051325A (en) * | 2012-10-17 | 2015-11-11 | 越洋创新实验室有限公司 | Communications systems and methods for subsea processors |
CN103049980A (en) * | 2012-11-22 | 2013-04-17 | 浙江盾安精工集团有限公司 | Alarm system of all-casing full-slewing drilling machine |
CN103015966A (en) * | 2012-12-20 | 2013-04-03 | 中国科学院自动化研究所 | Visually-operated hydraulic control system of petroleum drilling machine |
CN103095381A (en) * | 2013-01-22 | 2013-05-08 | 长沙五维地科勘察技术有限责任公司 | Underground life calling system |
US20140241111A1 (en) * | 2013-02-28 | 2014-08-28 | Weatherford/Lamb, Inc. | Acoustic borehole imaging tool |
EP2784550A3 (en) * | 2013-02-28 | 2015-08-19 | Weatherford Technology Holdings, LLC | Acoustic borehole imaging tool |
WO2015023654A1 (en) * | 2013-08-13 | 2015-02-19 | Abrado, Inc. | Method and apparatus for real time streaming and onboard recordation of video data |
US10711590B2 (en) * | 2014-12-31 | 2020-07-14 | Halliburton Energy Services, Inc. | Visualization of look-ahead sensor data for wellbore drilling tools |
US20170342815A1 (en) * | 2014-12-31 | 2017-11-30 | Halliburton Energy Services, Inc. | Visualization of look-ahead sensor data for wellbore drilling tools |
US10358910B2 (en) * | 2014-12-31 | 2019-07-23 | Halliburton Energy Services, Inc. | Magnetic sensor rotation and orientation about drill |
US11585209B2 (en) | 2014-12-31 | 2023-02-21 | Halliburton Energy Services, Inc. | Magnetic sensor rotation and orientation about drill |
US20160333682A1 (en) * | 2014-12-31 | 2016-11-17 | Halliburton Energy Services, Inc. | Magnetic sensor rotation and orientation about drill |
US20180136356A1 (en) * | 2015-06-26 | 2018-05-17 | Halliburton Energy Services, Inc. | Systems and Methods for Characterizing Materials External of a Casing |
US10928540B2 (en) * | 2015-06-26 | 2021-02-23 | Halliburton Energy Services, Inc. | Systems and methods for characterizing materials external of a casing |
EP3159474A1 (en) * | 2015-10-22 | 2017-04-26 | Sandvik Mining and Construction Oy | Arrangement in rock drilling rig |
NL1042671A (en) * | 2016-04-28 | 2018-01-05 | Halliburton Energy Services Inc | Distributed Sensor Systems and Methods |
NL1042322A (en) * | 2016-04-28 | 2017-11-06 | Halliburton Energy Services Inc | Distributed Sensor Systems and Methods |
US11180983B2 (en) | 2016-04-28 | 2021-11-23 | Halliburton Energy Services, Inc. | Distributed sensor systems and methods |
US11242745B2 (en) | 2017-04-26 | 2022-02-08 | Tracto-Technik Gmbh & Co. Kg | Drill head for earth boring, drilling device for earth boring having the drill head, method to detect objects while earth boring, and use of direct digital synthesizer as a signal in detecting an obstacle in earth boring |
CN107809361A (en) * | 2017-10-26 | 2018-03-16 | 中国石油集团渤海钻探工程有限公司 | A kind of puppy parc conversion equipment with brill downhole instrument |
US20190145248A1 (en) * | 2017-11-14 | 2019-05-16 | Saudi Arabian Oil Company | Remotely operated inflow control valve |
US10619474B2 (en) * | 2017-11-14 | 2020-04-14 | Saudi Arabian Oil Company | Remotely operated inflow control valve |
CN110630252A (en) * | 2018-06-21 | 2019-12-31 | 中国石油化工股份有限公司 | Measurement while drilling system and method for coiled tubing drilling |
GB2579366A (en) * | 2018-11-29 | 2020-06-24 | Mhwirth As | Drilling systems and methods |
GB2579366B (en) * | 2018-11-29 | 2021-04-07 | Mhwirth As | Drilling systems and methods |
US11989790B2 (en) | 2019-10-28 | 2024-05-21 | Schlumberger Technology Corporation | Drilling activity recommendation system and method |
CN111335873A (en) * | 2020-03-27 | 2020-06-26 | 北京环鼎科技有限责任公司 | Quick detection box of logging instrument |
CN112228038A (en) * | 2020-09-29 | 2021-01-15 | 中铁大桥局集团有限公司 | Intelligent drilling and online detection system for large-diameter drilled pile |
CN112904411A (en) * | 2021-01-21 | 2021-06-04 | 安徽华电工程咨询设计有限公司 | Wave velocity array test probe and test method for optical fiber transmission signals |
CN113137226A (en) * | 2021-04-29 | 2021-07-20 | 中国科学院武汉岩土力学研究所 | Portable rock-soil body mechanics parameter drilling test system and device |
Also Published As
Publication number | Publication date |
---|---|
GB2428820B (en) | 2008-09-24 |
CA2558162A1 (en) | 2005-10-06 |
WO2005091899A3 (en) | 2007-01-25 |
GB2448256A (en) | 2008-10-08 |
CA2558162C (en) | 2015-01-13 |
CN101832131B (en) | 2013-01-23 |
CN1965249B (en) | 2010-10-06 |
NO342371B1 (en) | 2018-05-14 |
GB2448256B (en) | 2008-11-26 |
US7999695B2 (en) | 2011-08-16 |
NO20064496L (en) | 2006-12-04 |
CN1965249A (en) | 2007-05-16 |
CA3040332A1 (en) | 2005-10-06 |
CA2867817A1 (en) | 2005-10-06 |
WO2005091899A2 (en) | 2005-10-06 |
US20110290559A1 (en) | 2011-12-01 |
GB0619313D0 (en) | 2006-11-15 |
BRPI0508369A (en) | 2007-07-31 |
CA3040336A1 (en) | 2005-10-06 |
CN101832130B (en) | 2013-02-20 |
CA3039966A1 (en) | 2005-10-06 |
CA2867817C (en) | 2019-06-04 |
CN101832131A (en) | 2010-09-15 |
CN101832130A (en) | 2010-09-15 |
GB0811860D0 (en) | 2008-07-30 |
GB2428820A (en) | 2007-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7999695B2 (en) | Surface real-time processing of downhole data | |
US6564883B2 (en) | Rib-mounted logging-while-drilling (LWD) sensors | |
EP2519709B1 (en) | Look ahead advance formation evaluation tool | |
US7394257B2 (en) | Modular downhole tool system | |
US6614360B1 (en) | Measurement-while-drilling acoustic system employing multiple, segmented transmitters and receivers | |
US6084826A (en) | Measurement-while-drilling acoustic system employing multiple, segmented transmitters and receivers | |
RU2459221C2 (en) | Instruments to log resistances with matched antennas | |
US6839000B2 (en) | Integrated, single collar measurement while drilling tool | |
US20060290528A1 (en) | Bidirectional telemetry apparatus and methods for wellbore operations | |
US8237584B2 (en) | Changing communication priorities for downhole LWD/MWD applications | |
EP2784550A2 (en) | Acoustic borehole imaging tool | |
EP1592988B1 (en) | Signal processing of array data from an acoustic logging tool | |
US11513247B2 (en) | Data acquisition systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RODNEY, PAUL F.;DUDLEY, JAMES H.;GLEITMAN, DANIEL D.;REEL/FRAME:015655/0852;SIGNING DATES FROM 20040607 TO 20040723 Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RODNEY, PAUL F.;DUDLEY, JAMES H.;GLEITMAN, DANIEL D.;SIGNING DATES FROM 20040607 TO 20040723;REEL/FRAME:015655/0852 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |