US20050183840A1 - Casting solidification expansion materials - Google Patents

Casting solidification expansion materials Download PDF

Info

Publication number
US20050183840A1
US20050183840A1 US11/114,423 US11442305A US2005183840A1 US 20050183840 A1 US20050183840 A1 US 20050183840A1 US 11442305 A US11442305 A US 11442305A US 2005183840 A1 US2005183840 A1 US 2005183840A1
Authority
US
United States
Prior art keywords
mold
solidification
cavity
pressure
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/114,423
Inventor
Michael Garin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Water Gremlin Co
Original Assignee
Water Gremlin Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Water Gremlin Co filed Critical Water Gremlin Co
Priority to US11/114,423 priority Critical patent/US20050183840A1/en
Publication of US20050183840A1 publication Critical patent/US20050183840A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor

Definitions

  • This invention relates to casting parts of a material that expands during the solidification stage and, more particularly, to casting fishing articles which contain bismuth metal.
  • the present invention relates to formation of cast article by use of a mold cavity that expands during the solidification phase to maintain or limit the increase in an internal pressure in the mold cavity and hence in the cast article.
  • the pressure within the cavity is maintained at a pressure less than what can be consider a “fracture pressure” during the solidification phase of the cast article but equal or greater than the injection molding pressure.
  • fracture pressure it is meant that if the cast article solidified under such pressure that the cast article would contain cracks or voids that render the cast article undesirable for the intended use.
  • voids or cracks there are voids or cracks in the finished part.
  • a void or crack in a finished part is a result of having insufficient material in the mold cavity as the metal solidifies.
  • the voids or cracks are not formed as a result of having an insufficient amount of material in the mold cavity but as a result of the increase of the pressure during the solidification phase. While the exact mechanism of why the increase in solidification pressure can result in cracks and voids in the finished product is not fully understood, the present invention provides a method and apparatus that inhibits or eliminates the voids or cracks in the finished product by reducing mold pressure on the article.
  • a mold having a mold cavity that expands during the solidification phase to limit an increase in internal pressure in the cast article during the solidification phase is used to form a cast article.
  • the present invention comprises a mold that has an expandable mold cavity that is maintained at a first volume during an injection phase and expands to a second volume during the solidification phase to inhibit or prevent the formation of voids or cracks in a material that expands during the solidification process and a method whereby the pressure within a mold cavity during the solidification process is limited to inhibit or prevent formation of cracks or fissures in a cast article that expands during a solidification stage.
  • FIG. 1 is a cross sectional view of a mold in an injection condition
  • FIG. 2 is a cross section of the mold of FIG. 1 in the injection condition
  • FIG. 3 is a cross section view of the mold of FIG. 1 in the solidification condition
  • FIG. 4 is cross sectional view of an alternate embodiment of the solidification expansion mold of the present invention.
  • FIG. 5 is a schematic view of a system for simultaneously injecting an expandable material into a set of cavities in a mold.
  • reference numeral 10 identifies the expandable mold of the present invention that is used to form a conventional egg shaped fishing sinker having a central opening therethrough.
  • the expandable mold 10 is particularly useable with materials, such as bismuth and bismuth alloys, that expand during the solidification phase.
  • Mold 10 can be used to form a fishing sinker of non uniform size, for example, with the fishing sinker having at least one region of greater mass than an adjoining region as evidenced by the pear shaped configuration of cavity 12 in FIG. 1 .
  • Mold 10 includes an inlet port 11 that connects to a mold cavity 12 , which is formed by a first mold part 15 having a fixed mold surface 15 a and a second movable mold part 16 having a movable mold surface 16 a that is displaceable relative to mold surface 15 a.
  • Mold cavity 12 which is shown in the casting condition, has a mold volume identified as V 1 .
  • the movable mold part 16 is slidable along an axis 14 much like a piston slides in a cylinder and is laterally stabilized and supported by a cylindrical side wall 19 and by an upward extension member 17 thereon that is axially slidable within a guide slot 17 a located in fixed mold part 15 .
  • a compression spring 18 extends around extension member 17 .
  • Compression spring 18 exerts a downward force on mold part 16 causing mold part 16 and consequently mold surface 16 a to extend into the cavity 12 a distance beyond the normal end of mold surface 15 a with the distance between the mismatched surfaces denoted by X 1 .
  • Mold part 16 while slidable along sidewall 19 is limited in the downward movement by either the spring 18 or a stop in order to provide a closed casting volume for receiving the molten metal.
  • an extension member 13 extends from the movable mold part 16 to form an opening in the cast article.
  • the end of extension 13 is received by a guide slot 15 b in mold part 15 .
  • the end 13 a of extension 13 can be used in conjunction with the guide slot 15 b to form a stop to limit downward movement of mold part 16 .
  • a stop can be incorporated into movable member 16 and mold part 15 .
  • the mold 10 as illustrated in FIG. 1 , is in the casting condition with a casting volume designated by V 1 .
  • spring 18 is preloaded so as to generate sufficient pressure to retain mold part 16 in place during the injection phase.
  • the compression spring 18 retracts allowing the volume of the mold cavity 12 to increase thereby inhibiting the solidification pressure from substantially increasing as a result of the conflict between the expansion forces of the solidifying molten metal and the immovable mold surfaces which can producing stress cracks or voids in a cast article.
  • a reference to FIG. 2 shows the mold 10 in a condition when the metal therein has begun to solidify. That is, the molten metal from supply source 20 has been injected through port 21 into the cavity and the supply of molten metal from source 20 has been shut off. In this condition, as the pressure of the metal in the mold increases, in response the movable mold part 16 slides axially upward as indicated by the decreased difference X 2 between the mold surface 16 a and mold surface 15 a.
  • a reference to FIG. 3 shows the mold 10 in the solidification condition.
  • the mold part 16 has slid upward until the movable mold part face 16 a is in alignment with fixed mold face 15 a, which is indicated by the distance X f equal to 0.
  • the mold cavity has a final volume V 2 with the final volume V 2 resulting from the retraction of the movable mold part 16 as a result of the pressure P 1 in mold cavity 12 . That is, as the solidification continues and the metal expands it pushes member 16 against spring 18 which responds by compressing to allow the mold cavity 12 to increase in volume.
  • the increase in mold cavity volume limits the increased solidification pressure of the molten metal that would normally occur if the volume of the mold cavity were kept constant during the injection and solidification phase.
  • FIG. 4 shows an alternate embodiment to the invention wherein mold 50 includes a fixed mold part 60 and a movable mold part 52 with a movable mold face 52 a.
  • a source of molten metal 57 under a pressure P O is shown connected to mold 50 though a conduit 58 .
  • the molten metal flows into mold cavity 59 under pressure P 1 , which is known as the injection pressure.
  • the movable member 52 is maintained in the casting condition by maintaining the fluid pressure P 2 in chamber 54 . That is an external pressure supply 56 supplies fluid under pressure P 2 to chamber 54 which acts on face 52 b to force member 52 downward.
  • the extension member 61 which functions as a stop, limits the downward movement to member 52 while the pressure acting on face 52 b limits the upward movement of member 52 .
  • the pressure P 2 is maintained such that the member 52 remains in the condition shown in FIG. 4 until the solidification phase begins. In this condition the injection pressure P 1 is such that it is insufficient to cause retraction of member 52 .
  • the solidified metal begins to expand and exert an upward pressure that overcomes the pressure P 2 causing a retraction of member 52 to the condition wherein the two mold surfaces are mated with each other. That is mold surface 52 a and 60 a become aligned to form a continuous surface. While a continuous surface between the movable mold surface 52 a and the fixed mold surface 60 a can be obtained with the present invention by balancing the expansion forces with the retaining forces, the present invention can also be used in those cases where there is not a continuous surface between the fixed mold surface and the movable mold surface.
  • FIG. 5 shows an alternate embodiment of a system wherein a multiple cavity mold 30 that includes both a fixed surface and a movable surface in each of the mold cavities (not shown).
  • the mold 30 connect to a source of molten metal 40 by a conduit 41 which can inject molten metal under an injection pressure P O .
  • a manifold 31 having a set of conduits 32 - 38 which respectively connect to a retraction chamber, which is illustrated in FIG. 4 , allows each of the movable mold parts in the mold cavities to move in response to the solidification pressure. That is, the manifold 31 is connected to source of fluid under a pressure that normally maintains the force against the moveable mold part so that the injection pressure does not displace the movable mold part.
  • the increase in internal pressure in the mold cavity as a result of the solidification of the metal eventually causes the movable mold part to retract as described herein before and thereby prevent the internal solidification pressure from reaching levels that would cause the cast article to reach a fracture pressure that results in cracks or voids in the cast article that could render the cast article unsuitable for use.
  • the present invention as illustrated includes a pressure responsive mold 10 with a mold part 15 having a fixed sidewall 15 a defining a portion of an exterior surface of a pressure cast article.
  • a retractable member 16 having a face 16 a for defining a further portion of the exterior surface of a pressure cast article with the face 16 a and the fixed sidewall 15 a forming a cavity 12 of a first volume V 1 when the mold is in an unpressurized condition.
  • An entry port 11 allows one to introduce a molten metal that expands during a solidification phase into a cavity 12 in the mold.
  • a retaining member comprising a compression spring 18 maintains movable face 16 a with a movable sidewall at least partially in the cavity 51 of the mold during the casting of an article to maintain the first volume V 1 .
  • the retaining member 18 is retractable in response to an increase in mold pressure in cavity 12 caused by solidifying of the article therein to bring the face into alignment with the sidewall to thereby form a solidification cavity wherein the face and the fixed sidewall are contiguous with each other.
  • the face and the sidewall are not in contiguous alignment with each other but in either case the solidification pressure is maintained at a level such that the cast article does exhibit cracks and voids that would render the part unsuitable.

Abstract

A mold that has an expandable mold cavity that is maintained at a first volume during an injection phase and expands to a second volume during the solidification phase to inhibit or prevent the formation of voids or cracks in a material that expands during the solidification process and a method whereby the pressure within a mold cavity during the solidification process is limited to inhibit or prevent formation of cracks or fissures in a cast article that normally expands during solidification.

Description

    FIELD OF THE INVENTION
  • This invention relates to casting parts of a material that expands during the solidification stage and, more particularly, to casting fishing articles which contain bismuth metal.
  • CROSS REFERENCE TO RELATED APPLICATIONS
  • None
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • None
  • REFERENCE TO A MICROFICHE APPENDIX
  • None
  • BACKGROUND OF THE INVENTION
  • One of the problems with casting materials that expand during solidification is that the solidified materials often develop cracks or fractures that reduce the effectiveness and appeal of the cast product as well as the integrity of the product. This is particularly true in the sporting industry where bismuth and bismuth alloy metals are being touted to replace lead and lead alloy articles such as fishing sinkers. In order to remove such a cast article from a mold, the molds have been made in multiple parts that allow the mold parts to be removed in sections thereby preventing the cast article from being retained in the mold cavity due to an interference fit between the mold surfaces and the surfaces of the solidified cast article.
  • In contrast to the above method of separating the mold parts after a cast article has been cast, the present invention relates to formation of cast article by use of a mold cavity that expands during the solidification phase to maintain or limit the increase in an internal pressure in the mold cavity and hence in the cast article. The pressure within the cavity is maintained at a pressure less than what can be consider a “fracture pressure” during the solidification phase of the cast article but equal or greater than the injection molding pressure. By fracture pressure it is meant that if the cast article solidified under such pressure that the cast article would contain cracks or voids that render the cast article undesirable for the intended use.
  • During the casting of parts with materials such as bismuth and bismuth alloys in a fixed volume mold it has been found that there are voids or cracks in the finished part. Normally, a void or crack in a finished part is a result of having insufficient material in the mold cavity as the metal solidifies. In the present invention, it appears that the voids or cracks are not formed as a result of having an insufficient amount of material in the mold cavity but as a result of the increase of the pressure during the solidification phase. While the exact mechanism of why the increase in solidification pressure can result in cracks and voids in the finished product is not fully understood, the present invention provides a method and apparatus that inhibits or eliminates the voids or cracks in the finished product by reducing mold pressure on the article. In the preferred embodiment a mold having a mold cavity that expands during the solidification phase to limit an increase in internal pressure in the cast article during the solidification phase is used to form a cast article.
  • SUMMARY OF THE INVENTION
  • Briefly, the present invention comprises a mold that has an expandable mold cavity that is maintained at a first volume during an injection phase and expands to a second volume during the solidification phase to inhibit or prevent the formation of voids or cracks in a material that expands during the solidification process and a method whereby the pressure within a mold cavity during the solidification process is limited to inhibit or prevent formation of cracks or fissures in a cast article that expands during a solidification stage.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross sectional view of a mold in an injection condition;
  • FIG. 2 is a cross section of the mold of FIG. 1 in the injection condition;
  • FIG. 3 is a cross section view of the mold of FIG. 1 in the solidification condition;
  • FIG. 4 is cross sectional view of an alternate embodiment of the solidification expansion mold of the present invention; and
  • FIG. 5 is a schematic view of a system for simultaneously injecting an expandable material into a set of cavities in a mold.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to FIG. 1, reference numeral 10 identifies the expandable mold of the present invention that is used to form a conventional egg shaped fishing sinker having a central opening therethrough. The expandable mold 10 is particularly useable with materials, such as bismuth and bismuth alloys, that expand during the solidification phase. Mold 10 can be used to form a fishing sinker of non uniform size, for example, with the fishing sinker having at least one region of greater mass than an adjoining region as evidenced by the pear shaped configuration of cavity 12 in FIG. 1.
  • Mold 10 includes an inlet port 11 that connects to a mold cavity 12, which is formed by a first mold part 15 having a fixed mold surface 15 a and a second movable mold part 16 having a movable mold surface 16 a that is displaceable relative to mold surface 15 a. Mold cavity 12, which is shown in the casting condition, has a mold volume identified as V1. The movable mold part 16 is slidable along an axis 14 much like a piston slides in a cylinder and is laterally stabilized and supported by a cylindrical side wall 19 and by an upward extension member 17 thereon that is axially slidable within a guide slot 17 a located in fixed mold part 15.
  • A compression spring 18 extends around extension member 17. Compression spring 18 exerts a downward force on mold part 16 causing mold part 16 and consequently mold surface 16 a to extend into the cavity 12 a distance beyond the normal end of mold surface 15 a with the distance between the mismatched surfaces denoted by X1. Mold part 16 while slidable along sidewall 19 is limited in the downward movement by either the spring 18 or a stop in order to provide a closed casting volume for receiving the molten metal.
  • In the embodiment shown, an extension member 13 extends from the movable mold part 16 to form an opening in the cast article. The end of extension 13 is received by a guide slot 15 b in mold part 15. In this embodiment the end 13 a of extension 13 can be used in conjunction with the guide slot 15 b to form a stop to limit downward movement of mold part 16. In other embodiments, not having a central extension, a stop can be incorporated into movable member 16 and mold part 15.
  • The mold 10, as illustrated in FIG. 1, is in the casting condition with a casting volume designated by V1. In order to maintain the volume of the mold in the casting condition spring 18 is preloaded so as to generate sufficient pressure to retain mold part 16 in place during the injection phase. That is, if molten metal is injected at a pressure P1 the pressure P1 is insufficient to cause retraction of moveable mold part 16 into a retraction cavity 19 a However, when the pressure in mold cavity 12 begins to increase, as a result of the expansion of the metal during the metal solidification phase, the compression spring 18 retracts allowing the volume of the mold cavity 12 to increase thereby inhibiting the solidification pressure from substantially increasing as a result of the conflict between the expansion forces of the solidifying molten metal and the immovable mold surfaces which can producing stress cracks or voids in a cast article.
  • A reference to FIG. 2 shows the mold 10 in a condition when the metal therein has begun to solidify. That is, the molten metal from supply source 20 has been injected through port 21 into the cavity and the supply of molten metal from source 20 has been shut off. In this condition, as the pressure of the metal in the mold increases, in response the movable mold part 16 slides axially upward as indicated by the decreased difference X2 between the mold surface 16 a and mold surface 15 a.
  • A reference to FIG. 3 shows the mold 10 in the solidification condition. In the solidification condition, the mold part 16 has slid upward until the movable mold part face 16 a is in alignment with fixed mold face 15 a, which is indicated by the distance Xf equal to 0. In this condition, the mold cavity has a final volume V2 with the final volume V2 resulting from the retraction of the movable mold part 16 as a result of the pressure P1 in mold cavity 12. That is, as the solidification continues and the metal expands it pushes member 16 against spring 18 which responds by compressing to allow the mold cavity 12 to increase in volume. The increase in mold cavity volume limits the increased solidification pressure of the molten metal that would normally occur if the volume of the mold cavity were kept constant during the injection and solidification phase.
  • FIG. 4 shows an alternate embodiment to the invention wherein mold 50 includes a fixed mold part 60 and a movable mold part 52 with a movable mold face 52 a. A source of molten metal 57 under a pressure PO is shown connected to mold 50 though a conduit 58. The molten metal flows into mold cavity 59 under pressure P1, which is known as the injection pressure.
  • In the embodiment of FIG. 4 the movable member 52 is maintained in the casting condition by maintaining the fluid pressure P2 in chamber 54. That is an external pressure supply 56 supplies fluid under pressure P2 to chamber 54 which acts on face 52 b to force member 52 downward. The extension member 61, which functions as a stop, limits the downward movement to member 52 while the pressure acting on face 52 b limits the upward movement of member 52. In this embodiment the pressure P2 is maintained such that the member 52 remains in the condition shown in FIG. 4 until the solidification phase begins. In this condition the injection pressure P1 is such that it is insufficient to cause retraction of member 52. However, once the supply of molten metal to chamber 59 is shut off and the solidification phase begins the solidified metal begins to expand and exert an upward pressure that overcomes the pressure P2 causing a retraction of member 52 to the condition wherein the two mold surfaces are mated with each other. That is mold surface 52 a and 60 a become aligned to form a continuous surface. While a continuous surface between the movable mold surface 52 a and the fixed mold surface 60 a can be obtained with the present invention by balancing the expansion forces with the retaining forces, the present invention can also be used in those cases where there is not a continuous surface between the fixed mold surface and the movable mold surface.
  • FIG. 5 shows an alternate embodiment of a system wherein a multiple cavity mold 30 that includes both a fixed surface and a movable surface in each of the mold cavities (not shown). The mold 30 connect to a source of molten metal 40 by a conduit 41 which can inject molten metal under an injection pressure PO. In this embodiment a manifold 31 having a set of conduits 32-38 which respectively connect to a retraction chamber, which is illustrated in FIG. 4, allows each of the movable mold parts in the mold cavities to move in response to the solidification pressure. That is, the manifold 31 is connected to source of fluid under a pressure that normally maintains the force against the moveable mold part so that the injection pressure does not displace the movable mold part. The increase in internal pressure in the mold cavity as a result of the solidification of the metal eventually causes the movable mold part to retract as described herein before and thereby prevent the internal solidification pressure from reaching levels that would cause the cast article to reach a fracture pressure that results in cracks or voids in the cast article that could render the cast article unsuitable for use.
  • The present invention as illustrated includes a pressure responsive mold 10 with a mold part 15 having a fixed sidewall 15 a defining a portion of an exterior surface of a pressure cast article. A retractable member 16 having a face 16 a for defining a further portion of the exterior surface of a pressure cast article with the face 16 a and the fixed sidewall 15 a forming a cavity 12 of a first volume V1 when the mold is in an unpressurized condition. An entry port 11 allows one to introduce a molten metal that expands during a solidification phase into a cavity 12 in the mold. A retaining member comprising a compression spring 18 maintains movable face 16 a with a movable sidewall at least partially in the cavity 51 of the mold during the casting of an article to maintain the first volume V1. The retaining member 18 is retractable in response to an increase in mold pressure in cavity 12 caused by solidifying of the article therein to bring the face into alignment with the sidewall to thereby form a solidification cavity wherein the face and the fixed sidewall are contiguous with each other. In an alternate embodiment the face and the sidewall are not in contiguous alignment with each other but in either case the solidification pressure is maintained at a level such that the cast article does exhibit cracks and voids that would render the part unsuitable.
  • With the present invention one can cast an article from a metal that expands during solidification by introducing a metal at a first pressure into a mold cavity and maintaining a pressure in the mold cavity which is greater than the first pressure but is less than a fracture pressure to thereby inhibit or prevent the formation of voids or cracks in the cast article.

Claims (23)

1-4. (canceled)
5. A method of casting a fishing sinker from a solidification expandable material comprising:
forming a mold having a fixed surface and a movable surface with the fixed surface and the movable surface coacting to define an injection cavity;
injecting a solidification expandable material into the injection cavity at an injection pressure to thereby fill the injection cavity with the solidification expandable material;
expanding the injection cavity to a solidification cavity by allowing the movable surface to retract when a solidification pressure of the molten metal exceeds the injection pressure to thereby inhibit solidification stress on an article cast therein.
6. The method of claim 5 including the step of placing a retaining member in the mold to retain the moveable surface in position as the solidification expandable material is injected into the injection cavity.
7. The method of claim 6 including the step of preloading the retaining member in the mold to prevent the expansion of the injection cavity until a supply of expandable material to the injection cavity has been shut off.
8. The method of claim 6 wherein the step of placing a retaining member comprises placing a preloaded spring therein.
9. The method of claim 8 wherein the step of placing the preloaded spring includes the step of placing spring with a spring constant that allows expanding of the volume of the injection cavity without the solidification pressure exceeding a fracturing pressure.
10. The method of claim 9 wherein the step of placing a bismuth or a bismuth alloy in the expandable material.
11. A mold for pressure casting:
a first mold part, said first mold part having a mold surface;
a second mold part, said second mold part having a movable mold surface with the mold surface and the movable mold surface coacting to define an injection cavity when the mold surface and the movable mold surface are in a first condition and a solidification cavity when the mold surface and the moveable mold surface are in a second condition with said injection cavity having an injection volume and the solidification cavity having a solidification volume with the solidification volume greater than the injection volume to thereby inhibit solidification stress on an article cast therein.
12. The mold of claim 11 including a retaining member for maintaining the first and second mold part in the first condition until a solidification pressure within the cavity pressure exceeds a mold injection pressure.
13. The mold of claim 12 wherein the retaining member comprises a preloaded spring.
14. The mold of claim 12 wherein the retaining member comprises a pressure cylinder.
15. The mold of claim 12 wherein the moveable surface extends along an end portion of the injection mold cavity.
16. The mold of claim 12 wherein the moveable surface is a substantially flat surface.
17. The method of casting an article that expands upon solidification comprising:
injecting a molten metal that expands upon solidification into a cavity having a volume V1; and
increasing the volume of the cavity to a volume V2 as the molten metal solidifies to thereby inhibit or prevent the formation of cracks and fissures in a cast article due to the expansion of the metal during the solidification phase.
18. The method of claim 17 including the step of forming the cavity in the shape of a fishing sinker.
19. The method of claim 17 including the step of extending a member through the cavity to form a fishing sinker with an internal opening.
20. The method of claim 17 including the step of forming a fishing sinker with the fishing sinker having at least one region of greater mass than an adjoining region.
21. The method of claim 17 wherein the step of injecting a molten metal comprises injecting bismuth in an unalloyed condition.
22. The method of claim 17 wherein the step of injecting a molten metal comprises injecting a bismuth alloy.
23. The method of casting an article from a metal that expands during solidification comprising the steps of;
introducing a metal at a first pressure into a mold cavity; and
maintaining a pressure in the mold cavity which is greater than the first pressure but is less than a fracture pressure as the metal in the mold cavity solidifies to thereby inhibit the formation of cracks and voids in the cast article.
24. The method of claim 18 including the step of maintaining a solidification pressure at below a fracture pressure by gradually increasing the volume from V1 to V2.
25. The method of claim 18 including the step of maintaining the pressure in the mold cavity by forming the mold with at least one moving part and retaining the at least one moving part in position with a retaining force that is at least equal to the force on the part produced by an injection pressure.
26. The method of claim 18 including the step of maintaining the retaining force on the at least one moving part while the at least one moving part retracts.
US11/114,423 2003-09-24 2005-04-26 Casting solidification expansion materials Abandoned US20050183840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/114,423 US20050183840A1 (en) 2003-09-24 2005-04-26 Casting solidification expansion materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/670,700 US6926065B2 (en) 2003-09-24 2003-09-24 Casting solidification expansion materials
US11/114,423 US20050183840A1 (en) 2003-09-24 2005-04-26 Casting solidification expansion materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/670,700 Division US6926065B2 (en) 2003-09-24 2003-09-24 Casting solidification expansion materials

Publications (1)

Publication Number Publication Date
US20050183840A1 true US20050183840A1 (en) 2005-08-25

Family

ID=34313864

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/670,700 Expired - Lifetime US6926065B2 (en) 2003-09-24 2003-09-24 Casting solidification expansion materials
US11/114,423 Abandoned US20050183840A1 (en) 2003-09-24 2005-04-26 Casting solidification expansion materials

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/670,700 Expired - Lifetime US6926065B2 (en) 2003-09-24 2003-09-24 Casting solidification expansion materials

Country Status (2)

Country Link
US (2) US6926065B2 (en)
CA (1) CA2482379A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103878317A (en) * 2012-12-20 2014-06-25 润禾粉业南通有限公司 Fish-shaped casting mold

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6926065B2 (en) * 2003-09-24 2005-08-09 Michael Garin Casting solidification expansion materials
CN104162642B (en) * 2013-05-17 2016-06-29 贵州大学 A kind of casting forming flexibility feeding elasticity device for exerting
KR101786229B1 (en) * 2015-12-01 2017-11-16 현대자동차주식회사 Mold apparatus for high pressure casting
CN113118412B (en) * 2019-12-31 2022-08-02 苏州圣美特压铸科技有限公司 Forming device for metal piece

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1869305A (en) * 1930-12-15 1932-07-26 Dockman Louis Aloysius Sinker
US4497359A (en) * 1979-02-14 1985-02-05 Nippondenso Co., Ltd. Die-casting method
US4932458A (en) * 1988-01-30 1990-06-12 Toshiba Machine Co., Ltd. Method of and system for operating squeeze plunger in die cast machine
US5782285A (en) * 1995-07-31 1998-07-21 Trickel; Jerry E. Die casting small parts from materials that expand when transitioning from the liquid to the solid state
US6325136B1 (en) * 1999-04-15 2001-12-04 Water Gremlin-Co. Bismuth and bismuth alloy fishing sinker
US6591893B1 (en) * 2002-02-08 2003-07-15 Water Gremlin Company Sinker casting mold
US6926065B2 (en) * 2003-09-24 2005-08-09 Michael Garin Casting solidification expansion materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1869305A (en) * 1930-12-15 1932-07-26 Dockman Louis Aloysius Sinker
US4497359A (en) * 1979-02-14 1985-02-05 Nippondenso Co., Ltd. Die-casting method
US4932458A (en) * 1988-01-30 1990-06-12 Toshiba Machine Co., Ltd. Method of and system for operating squeeze plunger in die cast machine
US5782285A (en) * 1995-07-31 1998-07-21 Trickel; Jerry E. Die casting small parts from materials that expand when transitioning from the liquid to the solid state
US6325136B1 (en) * 1999-04-15 2001-12-04 Water Gremlin-Co. Bismuth and bismuth alloy fishing sinker
US6591893B1 (en) * 2002-02-08 2003-07-15 Water Gremlin Company Sinker casting mold
US6926065B2 (en) * 2003-09-24 2005-08-09 Michael Garin Casting solidification expansion materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103878317A (en) * 2012-12-20 2014-06-25 润禾粉业南通有限公司 Fish-shaped casting mold

Also Published As

Publication number Publication date
CA2482379A1 (en) 2005-03-24
US6926065B2 (en) 2005-08-09
US20050061467A1 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US4614630A (en) Mold having ceramic insert, method for injection molding using the same
US20050183840A1 (en) Casting solidification expansion materials
RU2461439C2 (en) Method and device for making ceramic mould cores for gas turbine engine blades
US4704079A (en) Mold having ceramic insert
US20040076849A1 (en) Process and device for manufacturing free-flowing metal foam
JPH06210426A (en) Manufacture of casting and its manufacturing equipment
JPH10265865A (en) Precast injection forming method of metal, device therefor and formed product produced by the method
KR20140071915A (en) Method and device for producing of a form part
US5273098A (en) Removable cores for metal castings
US9427794B2 (en) Method and apparatus for forging
US4570693A (en) Method of squeeze forming metal articles
TWI613018B (en) Method and apparatus for forming a liquid-forged article
CN100496805C (en) Mould for lquid forging, that is, extrusion casting aluminium piston of internal combustion engine, and casting method therefor
EP0882534B1 (en) Apparatus and use of the apparatus for producing a cylinder block of an internal combustion engine
US6591893B1 (en) Sinker casting mold
CN108655362B (en) Hollow salt core and preparation method thereof
CA1048227A (en) Die-casting using reactive gas and force-rod concepts
US5356590A (en) Method of moulding an attachment structure to a moulded part
EP2949413A1 (en) A method of making a casting of a heat exchanger
GB2055315A (en) Die casting method
US2439450A (en) Casting apparatus compensating for shrinkage of the cast material
JP3410331B2 (en) Equipment for manufacturing low-melting metal cores
CN100427577C (en) Soap-molding die
RU1792791C (en) Method of producing headless castings of cast iron with spheroidized graphite in vacuum-film molds
JPH0699415A (en) Mold for ceramic injection molding

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE