US20050176817A1 - Anti-inflammatory nitro- and thia- fatty acids - Google Patents
Anti-inflammatory nitro- and thia- fatty acids Download PDFInfo
- Publication number
- US20050176817A1 US20050176817A1 US11/072,573 US7257305A US2005176817A1 US 20050176817 A1 US20050176817 A1 US 20050176817A1 US 7257305 A US7257305 A US 7257305A US 2005176817 A1 US2005176817 A1 US 2005176817A1
- Authority
- US
- United States
- Prior art keywords
- canceled
- acid
- compounds
- compound
- arachidonic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000003110 anti-inflammatory effect Effects 0.000 title claims description 7
- 239000000194 fatty acid Substances 0.000 title description 71
- 235000014113 dietary fatty acids Nutrition 0.000 title description 70
- 229930195729 fatty acid Natural products 0.000 title description 70
- 150000001875 compounds Chemical class 0.000 claims abstract description 157
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 18
- -1 hydroxy, hydroperoxy Chemical group 0.000 claims abstract description 15
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims abstract description 9
- 239000004593 Epoxy Chemical group 0.000 claims abstract description 4
- 125000000864 peroxy group Chemical group O(O*)* 0.000 claims abstract description 4
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract 7
- 238000000034 method Methods 0.000 claims description 54
- 239000000203 mixture Substances 0.000 claims description 34
- 208000006673 asthma Diseases 0.000 claims description 18
- 230000004054 inflammatory process Effects 0.000 claims description 9
- 206010061218 Inflammation Diseases 0.000 claims description 8
- 201000003883 Cystic fibrosis Diseases 0.000 claims description 7
- 230000001225 therapeutic effect Effects 0.000 claims description 7
- 206010020751 Hypersensitivity Diseases 0.000 claims description 5
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims description 5
- 208000026935 allergic disease Diseases 0.000 claims description 5
- 230000007815 allergy Effects 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 5
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 claims description 4
- 208000023275 Autoimmune disease Diseases 0.000 claims description 4
- 206010012438 Dermatitis atopic Diseases 0.000 claims description 4
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 claims description 4
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 claims description 4
- 201000000028 adult respiratory distress syndrome Diseases 0.000 claims description 4
- 201000008937 atopic dermatitis Diseases 0.000 claims description 4
- 239000003085 diluting agent Substances 0.000 claims description 4
- 208000028867 ischemia Diseases 0.000 claims description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 4
- 201000006417 multiple sclerosis Diseases 0.000 claims description 4
- 208000024172 Cardiovascular disease Diseases 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- 201000000596 systemic lupus erythematosus Diseases 0.000 claims description 3
- 206010012601 diabetes mellitus Diseases 0.000 claims 2
- 239000008194 pharmaceutical composition Substances 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 abstract description 16
- 239000001301 oxygen Substances 0.000 abstract description 16
- 229920006395 saturated elastomer Polymers 0.000 abstract description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 12
- 230000004071 biological effect Effects 0.000 abstract description 5
- 229930195734 saturated hydrocarbon Natural products 0.000 abstract description 4
- 238000006467 substitution reaction Methods 0.000 abstract description 3
- 230000002924 anti-infective effect Effects 0.000 abstract description 2
- 229940121363 anti-inflammatory agent Drugs 0.000 abstract description 2
- 239000002260 anti-inflammatory agent Substances 0.000 abstract description 2
- 229960005475 antiinfective agent Drugs 0.000 abstract description 2
- 239000004599 antimicrobial Substances 0.000 abstract 1
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 245
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 124
- 235000021342 arachidonic acid Nutrition 0.000 description 122
- 229940114079 arachidonic acid Drugs 0.000 description 122
- 150000004665 fatty acids Chemical class 0.000 description 63
- 230000000694 effects Effects 0.000 description 56
- 238000006701 autoxidation reaction Methods 0.000 description 55
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 50
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 44
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 44
- 238000006243 chemical reaction Methods 0.000 description 37
- 230000015572 biosynthetic process Effects 0.000 description 35
- 238000007254 oxidation reaction Methods 0.000 description 35
- 125000004971 nitroalkyl group Chemical group 0.000 description 30
- 239000000047 product Substances 0.000 description 30
- 238000005160 1H NMR spectroscopy Methods 0.000 description 28
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- 238000003786 synthesis reaction Methods 0.000 description 26
- 230000003647 oxidation Effects 0.000 description 25
- 239000000243 solution Substances 0.000 description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 24
- GSYMYSYDHKNXFU-UHFFFAOYSA-N 1-nitrooctadecane Chemical compound CCCCCCCCCCCCCCCCCC[N+]([O-])=O GSYMYSYDHKNXFU-UHFFFAOYSA-N 0.000 description 23
- 230000003078 antioxidant effect Effects 0.000 description 23
- 239000010408 film Substances 0.000 description 23
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 22
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 22
- 210000003743 erythrocyte Anatomy 0.000 description 21
- 235000019198 oils Nutrition 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 239000003963 antioxidant agent Substances 0.000 description 19
- 235000006708 antioxidants Nutrition 0.000 description 19
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 19
- 150000003568 thioethers Chemical class 0.000 description 19
- 210000000440 neutrophil Anatomy 0.000 description 18
- 239000002904 solvent Substances 0.000 description 18
- 239000002253 acid Substances 0.000 description 17
- WSULSMOGMLRGKU-UHFFFAOYSA-N 1-bromooctadecane Chemical compound CCCCCCCCCCCCCCCCCCBr WSULSMOGMLRGKU-UHFFFAOYSA-N 0.000 description 16
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 16
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 16
- 150000002828 nitro derivatives Chemical class 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 16
- 239000010409 thin film Substances 0.000 description 16
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 description 15
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 15
- 238000003818 flash chromatography Methods 0.000 description 15
- 244000045947 parasite Species 0.000 description 15
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 14
- 241000534944 Thia Species 0.000 description 14
- 239000000872 buffer Substances 0.000 description 14
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 14
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 14
- 102000003820 Lipoxygenases Human genes 0.000 description 13
- 108090000128 Lipoxygenases Proteins 0.000 description 13
- 102100022364 Polyunsaturated fatty acid 5-lipoxygenase Human genes 0.000 description 13
- 101710156627 Polyunsaturated fatty acid 5-lipoxygenase Proteins 0.000 description 13
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 13
- FWWQKRXKHIRPJY-UHFFFAOYSA-N octadecanal Chemical compound CCCCCCCCCCCCCCCCCC=O FWWQKRXKHIRPJY-UHFFFAOYSA-N 0.000 description 13
- 230000002829 reductive effect Effects 0.000 description 13
- 0 B*[N+](=O)[O-] Chemical compound B*[N+](=O)[O-] 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 12
- 230000000078 anti-malarial effect Effects 0.000 description 12
- 230000002401 inhibitory effect Effects 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 230000037361 pathway Effects 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 229910052717 sulfur Inorganic materials 0.000 description 12
- 239000011593 sulfur Substances 0.000 description 12
- 241000223960 Plasmodium falciparum Species 0.000 description 11
- 150000002632 lipids Chemical class 0.000 description 11
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 241000699670 Mus sp. Species 0.000 description 10
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 10
- 201000010099 disease Diseases 0.000 description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 10
- 238000004128 high performance liquid chromatography Methods 0.000 description 10
- 208000015181 infectious disease Diseases 0.000 description 10
- 201000004792 malaria Diseases 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- VARXTSKLYGKLMS-UHFFFAOYSA-N 4-heptadecyl-4-nitroheptanedioic acid Chemical compound CCCCCCCCCCCCCCCCCC(CCC(O)=O)(CCC(O)=O)[N+]([O-])=O VARXTSKLYGKLMS-UHFFFAOYSA-N 0.000 description 9
- GIPVRMKDDQKWSN-UHFFFAOYSA-N 4-nitrohenicosanoic acid Chemical compound CCCCCCCCCCCCCCCCCC([N+]([O-])=O)CCC(O)=O GIPVRMKDDQKWSN-UHFFFAOYSA-N 0.000 description 9
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 9
- 238000003556 assay Methods 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 9
- SUZKKHGKWSOOSZ-UHFFFAOYSA-N dimethyl 4-heptadecyl-4-nitroheptanedioate Chemical compound CCCCCCCCCCCCCCCCCC(CCC(=O)OC)(CCC(=O)OC)[N+]([O-])=O SUZKKHGKWSOOSZ-UHFFFAOYSA-N 0.000 description 9
- 150000002148 esters Chemical class 0.000 description 9
- QPRAVZUZDYILJN-UHFFFAOYSA-N methyl 4-nitrohenicosanoate Chemical compound CCCCCCCCCCCCCCCCCC([N+]([O-])=O)CCC(=O)OC QPRAVZUZDYILJN-UHFFFAOYSA-N 0.000 description 9
- 239000012071 phase Substances 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 229910052938 sodium sulfate Inorganic materials 0.000 description 9
- 150000003462 sulfoxides Chemical class 0.000 description 9
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 238000000451 chemical ionisation Methods 0.000 description 8
- 150000002430 hydrocarbons Chemical group 0.000 description 8
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 8
- 235000019260 propionic acid Nutrition 0.000 description 8
- LEHBURLTIWGHEM-UHFFFAOYSA-N pyridinium chlorochromate Chemical compound [O-][Cr](Cl)(=O)=O.C1=CC=[NH+]C=C1 LEHBURLTIWGHEM-UHFFFAOYSA-N 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 7
- 239000005639 Lauric acid Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 150000002432 hydroperoxides Chemical class 0.000 description 7
- 230000002757 inflammatory effect Effects 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 7
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- MTVBMWGRNUSRMU-PDBXOOCHSA-N (3z,6z,9z)-18-bromooctadeca-3,6,9-triene Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCCBr MTVBMWGRNUSRMU-PDBXOOCHSA-N 0.000 description 6
- NYBCZSBDKXGAGM-DOFZRALJSA-N (5Z,8Z,11Z,14Z)-icosatetraen-1-ol Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCCO NYBCZSBDKXGAGM-DOFZRALJSA-N 0.000 description 6
- LWQNAPNKRSBNIH-QNEBEIHSSA-N (6z,9z,12z)-1-nitrooctadeca-6,9,12-triene Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC[N+]([O-])=O LWQNAPNKRSBNIH-QNEBEIHSSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000007832 Na2SO4 Substances 0.000 description 6
- 241000224017 Plasmodium berghei Species 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 6
- 239000003430 antimalarial agent Substances 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 239000003480 eluent Substances 0.000 description 6
- 235000004626 essential fatty acids Nutrition 0.000 description 6
- ZKQFHRVKCYFVCN-UHFFFAOYSA-N ethoxyethane;hexane Chemical compound CCOCC.CCCCCC ZKQFHRVKCYFVCN-UHFFFAOYSA-N 0.000 description 6
- 125000001867 hydroperoxy group Chemical group [*]OO[H] 0.000 description 6
- 208000027866 inflammatory disease Diseases 0.000 description 6
- 150000002617 leukotrienes Chemical class 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 150000003904 phospholipids Chemical class 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 239000000741 silica gel Substances 0.000 description 6
- 229910002027 silica gel Inorganic materials 0.000 description 6
- 229960001866 silicon dioxide Drugs 0.000 description 6
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 6
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 6
- 238000004809 thin layer chromatography Methods 0.000 description 6
- KAFZOLYKKCWUBI-HPMAGDRPSA-N (2s)-2-[[(2s)-2-[[(2s)-1-[(2s)-3-amino-2-[[(2s)-2-[[(2s)-2-(3-cyclohexylpropanoylamino)-4-methylpentanoyl]amino]-5-methylhexanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]butanediamide Chemical compound N([C@@H](CC(C)C)C(=O)N[C@@H](CCC(C)C)C(=O)N[C@@H](CN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC(N)=O)C(N)=O)C(=O)CCC1CCCCC1 KAFZOLYKKCWUBI-HPMAGDRPSA-N 0.000 description 5
- IKYKEVDKGZYRMQ-PDBXOOCHSA-N (9Z,12Z,15Z)-octadecatrien-1-ol Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCCO IKYKEVDKGZYRMQ-PDBXOOCHSA-N 0.000 description 5
- RBDOMIOTNCCZGU-UHFFFAOYSA-N 1-nitrononadecan-2-ol Chemical compound CCCCCCCCCCCCCCCCCC(O)C[N+]([O-])=O RBDOMIOTNCCZGU-UHFFFAOYSA-N 0.000 description 5
- UHNRLQRZRNKOKU-UHFFFAOYSA-N CCN(CC1=NC2=C(N1)C1=CC=C(C=C1N=C2N)C1=NNC=C1)C(C)=O Chemical compound CCN(CC1=NC2=C(N1)C1=CC=C(C=C1N=C2N)C1=NNC=C1)C(C)=O UHNRLQRZRNKOKU-UHFFFAOYSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 239000012267 brine Substances 0.000 description 5
- 235000019439 ethyl acetate Nutrition 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 238000011835 investigation Methods 0.000 description 5
- 210000000265 leukocyte Anatomy 0.000 description 5
- YTJSFYQNRXLOIC-UHFFFAOYSA-N octadecylsilane Chemical compound CCCCCCCCCCCCCCCCCC[SiH3] YTJSFYQNRXLOIC-UHFFFAOYSA-N 0.000 description 5
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 5
- 239000012074 organic phase Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 5
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 5
- LJIOTBMDLVHTBO-CUYJMHBOSA-N (2s)-2-amino-n-[(1r,2r)-1-cyano-2-[4-[4-(4-methylpiperazin-1-yl)sulfonylphenyl]phenyl]cyclopropyl]butanamide Chemical compound CC[C@H](N)C(=O)N[C@]1(C#N)C[C@@H]1C1=CC=C(C=2C=CC(=CC=2)S(=O)(=O)N2CCN(C)CC2)C=C1 LJIOTBMDLVHTBO-CUYJMHBOSA-N 0.000 description 4
- WFYSUQMCIPGKKK-YHTMAJSVSA-N (6e,9e,12e)-octadeca-6,9,12-trien-1-ol Chemical compound CCCCC\C=C\C\C=C\C\C=C\CCCCCO WFYSUQMCIPGKKK-YHTMAJSVSA-N 0.000 description 4
- RCEKGPZZUIICRC-QNEBEIHSSA-N (6z,9z,12z)-1-bromooctadeca-6,9,12-triene Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCCBr RCEKGPZZUIICRC-QNEBEIHSSA-N 0.000 description 4
- NPLJCVKGDPWCAE-CWWKMNTPSA-N 3-[(3z,6z)-nona-3,6-dienyl]sulfanylpropanoic acid Chemical compound CC\C=C/C\C=C/CCSCCC(O)=O NPLJCVKGDPWCAE-CWWKMNTPSA-N 0.000 description 4
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- 102100037850 Interferon gamma Human genes 0.000 description 4
- 108010074328 Interferon-gamma Proteins 0.000 description 4
- 238000006845 Michael addition reaction Methods 0.000 description 4
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 102100040247 Tumor necrosis factor Human genes 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229920001429 chelating resin Polymers 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- TZTFFIFDGZOKCS-UHFFFAOYSA-N heptadecanethioic s-acid Chemical compound CCCCCCCCCCCCCCCCC(O)=S TZTFFIFDGZOKCS-UHFFFAOYSA-N 0.000 description 4
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- CHKVEDLTACTUAS-UHFFFAOYSA-L magnesium;methyl carbonate Chemical compound [Mg+2].COC([O-])=O.COC([O-])=O CHKVEDLTACTUAS-UHFFFAOYSA-L 0.000 description 4
- 238000001819 mass spectrum Methods 0.000 description 4
- 230000004060 metabolic process Effects 0.000 description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- ISYWECDDZWTKFF-UHFFFAOYSA-N nonadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCCC(O)=O ISYWECDDZWTKFF-UHFFFAOYSA-N 0.000 description 4
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 description 4
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 4
- 238000004007 reversed phase HPLC Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000011550 stock solution Substances 0.000 description 4
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 4
- DPKBAXPHAYBPRL-UHFFFAOYSA-M tetrabutylazanium;iodide Chemical compound [I-].CCCC[N+](CCCC)(CCCC)CCCC DPKBAXPHAYBPRL-UHFFFAOYSA-M 0.000 description 4
- 238000010626 work up procedure Methods 0.000 description 4
- PICGPEBVZGCYBV-UHFFFAOYSA-N (3Z,6E)-3,6-Nonadien-1-ol Natural products CCC=CCC=CCCO PICGPEBVZGCYBV-UHFFFAOYSA-N 0.000 description 3
- PICGPEBVZGCYBV-CWWKMNTPSA-N (3z,6z)-nona-3,6-dien-1-ol Chemical compound CC\C=C/C\C=C/CCO PICGPEBVZGCYBV-CWWKMNTPSA-N 0.000 description 3
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 3
- KOFZTCSTGIWCQG-UHFFFAOYSA-N 1-bromotetradecane Chemical compound CCCCCCCCCCCCCCBr KOFZTCSTGIWCQG-UHFFFAOYSA-N 0.000 description 3
- QWZXZBTXXNPJBP-UHFFFAOYSA-N 1-propylsulfanyltetradecane Chemical compound CCCCCCCCCCCCCCSCCC QWZXZBTXXNPJBP-UHFFFAOYSA-N 0.000 description 3
- UNMRRTSXKVMTER-UHFFFAOYSA-N 2-tetradecylsulfinylacetic acid Chemical compound CCCCCCCCCCCCCCS(=O)CC(O)=O UNMRRTSXKVMTER-UHFFFAOYSA-N 0.000 description 3
- OQJBHWXNMJAZMI-UHFFFAOYSA-N 3-tetradecylsulfinylpropanoic acid Chemical compound CCCCCCCCCCCCCCS(=O)CCC(O)=O OQJBHWXNMJAZMI-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 206010059866 Drug resistance Diseases 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 102000053187 Glucuronidase Human genes 0.000 description 3
- 108010060309 Glucuronidase Proteins 0.000 description 3
- 239000012981 Hank's balanced salt solution Substances 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 229940124639 Selective inhibitor Drugs 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 102000011409 Transcobalamins Human genes 0.000 description 3
- 108010023603 Transcobalamins Proteins 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 3
- 229940087168 alpha tocopherol Drugs 0.000 description 3
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 3
- 230000002141 anti-parasite Effects 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 230000016396 cytokine production Effects 0.000 description 3
- 238000006114 decarboxylation reaction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 3
- KKQBNQXZNTVMBZ-UHFFFAOYSA-N docosa-1,3,5,7,9,11-hexaen-1-ol Chemical compound CCCCCCCCCCC=CC=CC=CC=CC=CC=CO KKQBNQXZNTVMBZ-UHFFFAOYSA-N 0.000 description 3
- 150000002191 fatty alcohols Chemical class 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 3
- KPUXJBYSYFEKKB-UHFFFAOYSA-N hexadecanethioic s-acid Chemical compound CCCCCCCCCCCCCCCC(S)=O KPUXJBYSYFEKKB-UHFFFAOYSA-N 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 3
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 3
- XWVNDRMKMOGSBS-UHFFFAOYSA-N octadecyl nitrate Chemical compound CCCCCCCCCCCCCCCCCCO[N+]([O-])=O XWVNDRMKMOGSBS-UHFFFAOYSA-N 0.000 description 3
- 235000020665 omega-6 fatty acid Nutrition 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 229910001961 silver nitrate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 229960000984 tocofersolan Drugs 0.000 description 3
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 3
- 239000002076 α-tocopherol Substances 0.000 description 3
- 235000004835 α-tocopherol Nutrition 0.000 description 3
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 2
- JSZOAYXJRCEYSX-UHFFFAOYSA-N 1-nitropropane Chemical compound CCC[N+]([O-])=O JSZOAYXJRCEYSX-UHFFFAOYSA-N 0.000 description 2
- OMLOASXVBUNPTN-UHFFFAOYSA-N 2,4-dimethylcyclohexane-1-carbaldehyde Chemical compound CC1CCC(C=O)C(C)C1 OMLOASXVBUNPTN-UHFFFAOYSA-N 0.000 description 2
- VXGCKRNAUZOFHA-QNEBEIHSSA-N 2-[(6z,9z,12z)-octadeca-6,9,12-trienoxy]acetic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCCOCC(O)=O VXGCKRNAUZOFHA-QNEBEIHSSA-N 0.000 description 2
- QDIPTUSTLYICMM-UHFFFAOYSA-N 2-nitrononadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(C(O)=O)[N+]([O-])=O QDIPTUSTLYICMM-UHFFFAOYSA-N 0.000 description 2
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 238000006842 Henry reaction Methods 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 241001505483 Plasmodium falciparum 3D7 Species 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 108050007852 Tumour necrosis factor Proteins 0.000 description 2
- 102000018594 Tumour necrosis factor Human genes 0.000 description 2
- MZYCRMXDQHZTBX-UTOQUPLUSA-N [(3z,6z)-nona-3,6-dienyl] 4-methylbenzenesulfonate Chemical compound CC\C=C/C\C=C/CCOS(=O)(=O)C1=CC=C(C)C=C1 MZYCRMXDQHZTBX-UTOQUPLUSA-N 0.000 description 2
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 125000004097 arachidonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])/C([H])=C([H])\C([H])([H])/C([H])=C([H])\C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000001649 bromium compounds Chemical class 0.000 description 2
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229960003677 chloroquine Drugs 0.000 description 2
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 229940126142 compound 16 Drugs 0.000 description 2
- 239000003246 corticosteroid Substances 0.000 description 2
- 229960001334 corticosteroids Drugs 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 150000002066 eicosanoids Chemical class 0.000 description 2
- 238000001378 electrochemiluminescence detection Methods 0.000 description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- GWNVDXQDILPJIG-NXOLIXFESA-N leukotriene C4 Chemical compound CCCCC\C=C/C\C=C/C=C/C=C/[C@H]([C@@H](O)CCCC(O)=O)SC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O GWNVDXQDILPJIG-NXOLIXFESA-N 0.000 description 2
- YEESKJGWJFYOOK-IJHYULJSSA-N leukotriene D4 Chemical compound CCCCC\C=C/C\C=C/C=C/C=C/[C@H]([C@@H](O)CCCC(O)=O)SC[C@H](N)C(=O)NCC(O)=O YEESKJGWJFYOOK-IJHYULJSSA-N 0.000 description 2
- OTZRAYGBFWZKMX-JUDRUQEKSA-N leukotriene E4 Chemical compound CCCCCC=CCC=C\C=C\C=C\[C@@H](SC[C@H](N)C(O)=O)[C@@H](O)CCCC(O)=O OTZRAYGBFWZKMX-JUDRUQEKSA-N 0.000 description 2
- 239000003199 leukotriene receptor blocking agent Substances 0.000 description 2
- 235000020778 linoleic acid Nutrition 0.000 description 2
- KNJDBYZZKAZQNG-UHFFFAOYSA-N lucigenin Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.C12=CC=CC=C2[N+](C)=C(C=CC=C2)C2=C1C1=C(C=CC=C2)C2=[N+](C)C2=CC=CC=C12 KNJDBYZZKAZQNG-UHFFFAOYSA-N 0.000 description 2
- 206010025135 lupus erythematosus Diseases 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 230000002132 lysosomal effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- XMJHPCRAQCTCFT-UHFFFAOYSA-N methyl chloroformate Chemical compound COC(Cl)=O XMJHPCRAQCTCFT-UHFFFAOYSA-N 0.000 description 2
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 2
- RGHXWDVNBYKJQH-UHFFFAOYSA-N nitroacetic acid Chemical compound OC(=O)C[N+]([O-])=O RGHXWDVNBYKJQH-UHFFFAOYSA-N 0.000 description 2
- ASBDYPIHQWUNHE-UHFFFAOYSA-N nona-3,6-diyn-1-ol Chemical compound CCC#CCC#CCCO ASBDYPIHQWUNHE-UHFFFAOYSA-N 0.000 description 2
- MYCGLJRATIRCNC-UHFFFAOYSA-N octadecyl nitrite Chemical compound CCCCCCCCCCCCCCCCCCON=O MYCGLJRATIRCNC-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 235000003441 saturated fatty acids Nutrition 0.000 description 2
- 208000017520 skin disease Diseases 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000009518 sodium iodide Nutrition 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- PNHBRYIAJCYNDA-VQCQRNETSA-N (4r)-6-[2-[2-ethyl-4-(4-fluorophenyl)-6-phenylpyridin-3-yl]ethyl]-4-hydroxyoxan-2-one Chemical compound C([C@H](O)C1)C(=O)OC1CCC=1C(CC)=NC(C=2C=CC=CC=2)=CC=1C1=CC=C(F)C=C1 PNHBRYIAJCYNDA-VQCQRNETSA-N 0.000 description 1
- FRJJJAKBRKABFA-TYFAACHXSA-N (4r,6s)-6-[(e)-2-[6-chloro-4-(4-fluorophenyl)-2-propan-2-ylquinolin-3-yl]ethenyl]-4-hydroxyoxan-2-one Chemical compound C(\[C@H]1OC(=O)C[C@H](O)C1)=C/C=1C(C(C)C)=NC2=CC=C(Cl)C=C2C=1C1=CC=C(F)C=C1 FRJJJAKBRKABFA-TYFAACHXSA-N 0.000 description 1
- VIMMECPCYZXUCI-MIMFYIINSA-N (4s,6r)-6-[(1e)-4,4-bis(4-fluorophenyl)-3-(1-methyltetrazol-5-yl)buta-1,3-dienyl]-4-hydroxyoxan-2-one Chemical compound CN1N=NN=C1C(\C=C\[C@@H]1OC(=O)C[C@@H](O)C1)=C(C=1C=CC(F)=CC=1)C1=CC=C(F)C=C1 VIMMECPCYZXUCI-MIMFYIINSA-N 0.000 description 1
- JWZLRYCDDXHXDL-LCMHIRPZSA-N (5Z,8Z,11Z,14Z,17Z)-icosapentaenoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 JWZLRYCDDXHXDL-LCMHIRPZSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- IGVKWAAPMVVTFX-BUHFOSPRSA-N (e)-octadec-5-en-7,9-diynoic acid Chemical compound CCCCCCCCC#CC#C\C=C\CCCC(O)=O IGVKWAAPMVVTFX-BUHFOSPRSA-N 0.000 description 1
- DEVSOMFAQLZNKR-RJRFIUFISA-N (z)-3-[3-[3,5-bis(trifluoromethyl)phenyl]-1,2,4-triazol-1-yl]-n'-pyrazin-2-ylprop-2-enehydrazide Chemical compound FC(F)(F)C1=CC(C(F)(F)F)=CC(C2=NN(\C=C/C(=O)NNC=3N=CC=NC=3)C=N2)=C1 DEVSOMFAQLZNKR-RJRFIUFISA-N 0.000 description 1
- ZNJOCVLVYVOUGB-UHFFFAOYSA-N 1-iodooctadecane Chemical compound CCCCCCCCCCCCCCCCCCI ZNJOCVLVYVOUGB-UHFFFAOYSA-N 0.000 description 1
- JSFATNQSLKRBCI-VAEKSGALSA-N 15-HETE Natural products CCCCC[C@H](O)\C=C\C=C/C\C=C/C\C=C/CCCC(O)=O JSFATNQSLKRBCI-VAEKSGALSA-N 0.000 description 1
- BFWYTORDSFIVKP-USWFWKISSA-N 15-HPETE Chemical compound CCCCCC(OO)\C=C\C=C/C\C=C/C\C=C/CCCC(O)=O BFWYTORDSFIVKP-USWFWKISSA-N 0.000 description 1
- JSFATNQSLKRBCI-UHFFFAOYSA-N 15-Hydroxyeicosatetraenoic acid Chemical compound CCCCCC(O)C=CC=CCC=CCC=CCCCC(O)=O JSFATNQSLKRBCI-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- IGLOFNYTFIPUBB-UHFFFAOYSA-N 2-methylhexadecanethioic s-acid Chemical compound CCCCCCCCCCCCCCC(C)C(O)=S IGLOFNYTFIPUBB-UHFFFAOYSA-N 0.000 description 1
- KSYBRTXOXKWUIR-UHFFFAOYSA-N 2-nitrobutanoic acid Chemical compound CCC(C(O)=O)[N+]([O-])=O KSYBRTXOXKWUIR-UHFFFAOYSA-N 0.000 description 1
- PTYVBEKOPJHZLJ-UHFFFAOYSA-N 2-nitropropanoic acid Chemical compound OC(=O)C(C)[N+]([O-])=O PTYVBEKOPJHZLJ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- MITGKKFYIJJQGL-UHFFFAOYSA-N 9-(4-chlorobenzoyl)-6-methylsulfonyl-2,3-dihydro-1H-carbazol-4-one Chemical compound ClC1=CC=C(C(=O)N2C3=CC=C(C=C3C=3C(CCCC2=3)=O)S(=O)(=O)C)C=C1 MITGKKFYIJJQGL-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 208000000884 Airway Obstruction Diseases 0.000 description 1
- 241000256186 Anopheles <genus> Species 0.000 description 1
- 200000000007 Arterial disease Diseases 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 206010006482 Bronchospasm Diseases 0.000 description 1
- GSKSTZUMHXWYPD-UHFFFAOYSA-L C.C=CC.C=CC.C=CC.C=CC.CC.ClCCl.O=[N+]([O-])[Ag].[Na]I Chemical compound C.C=CC.C=CC.C=CC.C=CC.CC.ClCCl.O=[N+]([O-])[Ag].[Na]I GSKSTZUMHXWYPD-UHFFFAOYSA-L 0.000 description 1
- KABDQRXLBSHLKS-IGTUGWINSA-N C/C=C\C/C=C\C/C=C\CCCC(CCC(=O)O)(CCC(=O)O)[N+](=O)[O-].C/C=C\C/C=C\C/C=C\CCCC(CCC(=O)O)[N+](=O)[O-].C/C=C\CCCCC.C/C=C\CCCCC.CCCCCCCC.CCCCCCCC.CCCCCCCCCCC(CCC(=O)O)(CCC(=O)O)[N+](=O)[O-].CCCCCCCCCCC(CCC(=O)O)[N+](=O)[O-] Chemical compound C/C=C\C/C=C\C/C=C\CCCC(CCC(=O)O)(CCC(=O)O)[N+](=O)[O-].C/C=C\C/C=C\C/C=C\CCCC(CCC(=O)O)[N+](=O)[O-].C/C=C\CCCCC.C/C=C\CCCCC.CCCCCCCC.CCCCCCCC.CCCCCCCCCCC(CCC(=O)O)(CCC(=O)O)[N+](=O)[O-].CCCCCCCCCCC(CCC(=O)O)[N+](=O)[O-] KABDQRXLBSHLKS-IGTUGWINSA-N 0.000 description 1
- QTWKLIRZXRSJDT-KUBAVDMBSA-N CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCC[N+](=O)[O-] Chemical compound CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCC[N+](=O)[O-] QTWKLIRZXRSJDT-KUBAVDMBSA-N 0.000 description 1
- FQJRMIJVJZCQKO-TXMZTRRZSA-N CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCC[N+](=O)[O-].CC/C=C\C/C=C\C/C=C\CCCCCCCC[N+](=O)[O-].CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC[N+](=O)[O-].CCCCC/C=C\C/C=C\C/C=C\CCCCC[N+](=O)[O-].CCCCCCCCCCCCCCCCCC[N+](=O)[O-] Chemical compound CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCC[N+](=O)[O-].CC/C=C\C/C=C\C/C=C\CCCCCCCC[N+](=O)[O-].CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC[N+](=O)[O-].CCCCC/C=C\C/C=C\C/C=C\CCCCC[N+](=O)[O-].CCCCCCCCCCCCCCCCCC[N+](=O)[O-] FQJRMIJVJZCQKO-TXMZTRRZSA-N 0.000 description 1
- UKRZVKNQMOFJEO-JLNKQSITSA-N CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCSCCC(=O)O Chemical compound CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCSCCC(=O)O UKRZVKNQMOFJEO-JLNKQSITSA-N 0.000 description 1
- YQBXRPDYPDQQTE-PDBXOOCHSA-N CC/C=C\C/C=C\C/C=C\CCCCCCCCOCC(=O)O Chemical compound CC/C=C\C/C=C\C/C=C\CCCCCCCCOCC(=O)O YQBXRPDYPDQQTE-PDBXOOCHSA-N 0.000 description 1
- WTEODYNYUACWIM-PDBXOOCHSA-N CC/C=C\C/C=C\C/C=C\CCCCCCCC[N+](=O)[O-] Chemical compound CC/C=C\C/C=C\C/C=C\CCCCCCCC[N+](=O)[O-] WTEODYNYUACWIM-PDBXOOCHSA-N 0.000 description 1
- PBMQIJREYYRJDT-DOFZRALJSA-N CCCCC/C=C\C/C=C\C/C=C\C/C=C\CC(CCC(=O)O)(CCC(=O)O)[N+](=O)[O-] Chemical compound CCCCC/C=C\C/C=C\C/C=C\C/C=C\CC(CCC(=O)O)(CCC(=O)O)[N+](=O)[O-] PBMQIJREYYRJDT-DOFZRALJSA-N 0.000 description 1
- HAJDTNUBEPXDJY-NBIYQHLYSA-N CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(CCC(=O)O)[N+](=O)[O-].CCCCC[C@@H](/C=C/C=C\C/C=C\C/C=C\CCCC(CCC(=O)O)[N+](=O)[O-])OO.CCCCC[C@H](O)/C=C/C=C\C/C=C\C/C=C\CCCC(CCC(=O)O)[N+](=O)[O-] Chemical compound CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(CCC(=O)O)[N+](=O)[O-].CCCCC[C@@H](/C=C/C=C\C/C=C\C/C=C\CCCC(CCC(=O)O)[N+](=O)[O-])OO.CCCCC[C@H](O)/C=C/C=C\C/C=C\C/C=C\CCCC(CCC(=O)O)[N+](=O)[O-] HAJDTNUBEPXDJY-NBIYQHLYSA-N 0.000 description 1
- KNLHUNJBRICNPS-DOFZRALJSA-N CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCCSCC(=O)O Chemical compound CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCCSCC(=O)O KNLHUNJBRICNPS-DOFZRALJSA-N 0.000 description 1
- ZXNBTTCBXYUUGM-GKFVBPDJSA-N CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCCSCCC Chemical compound CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCCSCCC ZXNBTTCBXYUUGM-GKFVBPDJSA-N 0.000 description 1
- KONOIKUOSPIYDU-DOFZRALJSA-N CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCCSCCC(=O)O Chemical compound CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCCSCCC(=O)O KONOIKUOSPIYDU-DOFZRALJSA-N 0.000 description 1
- CGPPLWASXYMPON-DOFZRALJSA-N CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC[N+](=O)[O-] Chemical compound CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC[N+](=O)[O-] CGPPLWASXYMPON-DOFZRALJSA-N 0.000 description 1
- SLDQFTRCEWFKHQ-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCCCC(CCC(=O)O)[N+](=O)[O-] Chemical compound CCCCCCCCCCCCCCCCCCCC(CCC(=O)O)[N+](=O)[O-] SLDQFTRCEWFKHQ-UHFFFAOYSA-N 0.000 description 1
- RNVBSHOWTNMOLV-UHFFFAOYSA-N CCCCCCCCCCCCCCS(=O)CC(=O)O.CCCCCCCCCCCCCCS(=O)CCC(=O)O.CCCCCCCCCCCCCCSCC(=O)O.CCCCCCCCCCCCCCSCCC(=O)O Chemical compound CCCCCCCCCCCCCCS(=O)CC(=O)O.CCCCCCCCCCCCCCS(=O)CCC(=O)O.CCCCCCCCCCCCCCSCC(=O)O.CCCCCCCCCCCCCCSCCC(=O)O RNVBSHOWTNMOLV-UHFFFAOYSA-N 0.000 description 1
- IPBCWPPBAWQYOO-UHFFFAOYSA-N CCCCCCCCCCCCCCSCC(=O)O Chemical compound CCCCCCCCCCCCCCSCC(=O)O IPBCWPPBAWQYOO-UHFFFAOYSA-N 0.000 description 1
- OWXXRDGGTZWLQY-UHFFFAOYSA-N CCCCCCCCCCCCCCSCCC(=O)O Chemical compound CCCCCCCCCCCCCCSCCC(=O)O OWXXRDGGTZWLQY-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 229940126657 Compound 17 Drugs 0.000 description 1
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- 102000030914 Fatty Acid-Binding Human genes 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 229910004373 HOAc Inorganic materials 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101000632319 Homo sapiens Septin-7 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 229930184725 Lipoxin Natural products 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical class O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 102100037224 Noncompact myelin-associated protein Human genes 0.000 description 1
- 101710184695 Noncompact myelin-associated protein Proteins 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- TZRXHJWUDPFEEY-UHFFFAOYSA-N Pentaerythritol Tetranitrate Chemical class [O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O TZRXHJWUDPFEEY-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- 241000224024 Plasmodium chabaudi Species 0.000 description 1
- 206010035500 Plasmodium falciparum infection Diseases 0.000 description 1
- 241000223810 Plasmodium vivax Species 0.000 description 1
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 1
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 102100027981 Septin-7 Human genes 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 241000223091 Trypanosoma lewisi Species 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- YEEZWCHGZNKEEK-UHFFFAOYSA-N Zafirlukast Chemical compound COC1=CC(C(=O)NS(=O)(=O)C=2C(=CC=CC=2)C)=CC=C1CC(C1=C2)=CN(C)C1=CC=C2NC(=O)OC1CCCC1 YEEZWCHGZNKEEK-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229940100228 acetyl coenzyme a Drugs 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 230000036428 airway hyperreactivity Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 1
- 201000009961 allergic asthma Diseases 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PQLAYKMGZDUDLQ-UHFFFAOYSA-K aluminium bromide Chemical compound Br[Al](Br)Br PQLAYKMGZDUDLQ-UHFFFAOYSA-K 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 229940033495 antimalarials Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000007885 bronchoconstriction Effects 0.000 description 1
- OTJZCIYGRUNXTP-UHFFFAOYSA-N but-3-yn-1-ol Chemical compound OCCC#C OTJZCIYGRUNXTP-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000006041 cell recruitment Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- AEULIVPVIDOLIN-UHFFFAOYSA-N cep-11981 Chemical compound C1=C2C3=C4CNC(=O)C4=C4C5=CN(C)N=C5CCC4=C3N(CC(C)C)C2=CC=C1NC1=NC=CC=N1 AEULIVPVIDOLIN-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- RGJOEKWQDUBAIZ-UHFFFAOYSA-N coenzime A Natural products OC1C(OP(O)(O)=O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-UHFFFAOYSA-N 0.000 description 1
- 239000005516 coenzyme A Substances 0.000 description 1
- 229940093530 coenzyme a Drugs 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229940125872 compound 4d Drugs 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- KDTSHFARGAKYJN-UHFFFAOYSA-N dephosphocoenzyme A Natural products OC1C(O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 KDTSHFARGAKYJN-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 1
- 229940090949 docosahexaenoic acid Drugs 0.000 description 1
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 1
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 1
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 108091022862 fatty acid binding Proteins 0.000 description 1
- 230000004129 fatty acid metabolism Effects 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000001030 gas--liquid chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 244000000011 human parasite Species 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 208000013403 hyperactivity Diseases 0.000 description 1
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229940030980 inova Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- VNYSSYRCGWBHLG-AMOLWHMGSA-N leukotriene B4 Chemical class CCCCC\C=C/C[C@@H](O)\C=C\C=C\C=C/[C@@H](O)CCCC(O)=O VNYSSYRCGWBHLG-AMOLWHMGSA-N 0.000 description 1
- 229940065725 leukotriene receptor antagonists for obstructive airway diseases Drugs 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- 150000002639 lipoxins Chemical class 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- ZWJCKQNCUPKFCA-UHFFFAOYSA-N methyl 2-nitrononadecanoate Chemical compound CCCCCCCCCCCCCCCCCC([N+]([O-])=O)C(=O)OC ZWJCKQNCUPKFCA-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 230000006961 mixed inhibition Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 235000021281 monounsaturated fatty acids Nutrition 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000011206 morphological examination Methods 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 239000012740 non-selective inhibitor Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- WLPYSOCRPHTIDZ-UHFFFAOYSA-N pent-2-yn-1-ol Chemical compound CCC#CCO WLPYSOCRPHTIDZ-UHFFFAOYSA-N 0.000 description 1
- VLHQNZIPSBLCKM-UHFFFAOYSA-N pent-2-ynyl 4-methylbenzenesulfonate Chemical compound CCC#CCOS(=O)(=O)C1=CC=C(C)C=C1 VLHQNZIPSBLCKM-UHFFFAOYSA-N 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 244000000040 protozoan parasite Species 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000019254 respiratory burst Effects 0.000 description 1
- 230000012865 response to insecticide Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 206010039083 rhinitis Diseases 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 210000001563 schizont Anatomy 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- KKKDGYXNGYJJRX-UHFFFAOYSA-M silver nitrite Chemical compound [Ag+].[O-]N=O KKKDGYXNGYJJRX-UHFFFAOYSA-M 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- WWUZIQQURGPMPG-KRWOKUGFSA-N sphingosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO WWUZIQQURGPMPG-KRWOKUGFSA-N 0.000 description 1
- 238000011272 standard treatment Methods 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 125000004354 sulfur functional group Chemical group 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- FKHIFSZMMVMEQY-UHFFFAOYSA-N talc Chemical compound [Mg+2].[O-][Si]([O-])=O FKHIFSZMMVMEQY-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 150000003595 thromboxanes Chemical class 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 210000003812 trophozoite Anatomy 0.000 description 1
- 238000003211 trypan blue cell staining Methods 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 229960004764 zafirlukast Drugs 0.000 description 1
- MWLSOWXNZPKENC-SSDOTTSWSA-N zileuton Chemical compound C1=CC=C2SC([C@H](N(O)C(N)=O)C)=CC2=C1 MWLSOWXNZPKENC-SSDOTTSWSA-N 0.000 description 1
- 229960005332 zileuton Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C409/00—Peroxy compounds
- C07C409/40—Peroxy compounds containing nitrogen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
- A61K31/202—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/18—Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/02—Nasal agents, e.g. decongestants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
- A61P33/02—Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
- A61P33/06—Antimalarials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
- A61P39/06—Free radical scavengers or antioxidants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/16—Preparation of halogenated hydrocarbons by replacement by halogens of hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/01—Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to acyclic carbon atoms
- C07C205/02—Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to acyclic carbon atoms of a saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/01—Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to acyclic carbon atoms
- C07C205/03—Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/13—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups
- C07C205/14—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/13—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups
- C07C205/14—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to acyclic carbon atoms
- C07C205/15—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to acyclic carbon atoms of a saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/49—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
- C07C205/50—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to acyclic carbon atoms of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/49—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
- C07C205/50—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to acyclic carbon atoms of the carbon skeleton
- C07C205/51—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/44—Sulfones; Sulfoxides having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/50—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
- C07C323/51—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
- C07C323/52—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/30—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with halogen containing compounds, e.g. hypohalogenation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to compounds which include a carbon chain of 14 to 26 carbon atoms and a nitro or sulphur group.
- the invention relates to nitro analogues of polyunsaturated fatty acids.
- the present invention further relates to the use of these compounds in methods of treatment.
- Fatty acids are one of the most extensively studied classes of compounds due to their important role in biological systems (1-2) .
- 1-2 Hundreds of different fatty acids exist in nature. They consist of saturated, monounsaturated and polyunsaturated fatty acids, having chain lengths from 4 to 22 carbon atoms.
- Polyunsaturated fatty acids (PUFAs) contain 16 to 22 carbon atoms with two or more methylene-interrupted double bonds.
- the PUFA, arachidonic acid contains 20 carbons and four methylene-interrupted cis-double bonds commencing six carbons from the terminal methyl group, which therefore leads to an abbreviated nomenclature of 20:4 (n-6).
- PUFAs can be divided into four families, based on the parent fatty acids from which they are derived: linoleic acid (18:2 n-6), ⁇ -linolenic acid (18:3 n-3), oleic acid (18:1 n-9) and palmitoleic acid (16:1 n-7).
- the n-6 and n-3 PUFAs cannot be synthesised by mammals and are known as essential fatty acids (EFAs). They are required by mammalian bodies indirectly through desaturation or elongation of linoleic and ⁇ -linolenic acids, which must be supplied in the diet.
- EFAs essential fatty acids
- EFAs have a variety of biological activities. For instance, it has been suggested that they can play an important role in modulating cystic fibrosis (3) . Intake of n-3 PUFAs has been found to be associated with a reduced incidence of coronary arterial diseases, and various mechanisms by which n-3 PUFAs act have been proposed. [4,5] Some n-3 and n-6 PUFAs also possess antimalarial [6] or anti-inflammatory properties. [7] Furthermore, one of the EFAs' most important biological roles is to supply precursors for the production of bioactive fatty acid metabolites that can modulate many immune functions. [8] .
- Arachidonic acid is the most extensively studied of the EFAs and it is a principal precursor for many important biological mediators. There are two pathways for arachidonic acid metabolism (1) the cycloxygenase pathway which leads to the formation of prostaglandins and thromboxanes, and (2) the lipoxygenase pathway which is responsible for the generation of leukotrienes and lipoxins. These metabolites, collectively called eicosanoids, have been implicated in the pathology of a variety of diseases such as asthma [9] and other inflammatory disorders. [10,11 ]
- EFAs play important roles in the biological process of the mammalian body, they are not widely used as therapeutics due to their limited availability in vivo. They are readily degradable by ⁇ -oxidation, which is the major oxidative pathway in fatty acid metabolism.
- ⁇ -oxidation is the major oxidative pathway in fatty acid metabolism.
- the net process of ⁇ -oxidation is characterised by the degradation of the fatty acid carbon chain by two carbon atoms with the concomitant production of equimolar amounts of acetyl-coenzyme A.
- modified PUFAs such as the ⁇ -oxa and ⁇ -thia PUFAs [12,13] . These compounds were shown to have enhanced resistance to ⁇ -oxidation while still retaining certain biological activities of the native PUFAs.
- the present invention relates to the design and preparation of another group of modified PUFAs, the nitro analogues of PUFAs.
- the rationale was that the nitro group is chemically similar to COOH group with regard to size, charge and shape.
- the nitro compounds are a group of relatively stable compounds and are resistant to ⁇ -oxidation by preventing CoA thioester production, which is the first step in ⁇ -oxidation of fatty acids. This also means that the nitro compounds will not be incorporated into lipids and will more likely be present in a free form.
- the present invention consists in a compound of the general formula:- in which A is a saturated or unsaturated hydrocarbon chain of 14 to 26 carbon atoms; and B is (CH 2 ) n (COOH) m in which n is 0 to 2 and m is 0 to 2; and the derivatives thereof having a further one or more than one substitution selected from the group consisting of hydroxy, hydroperoxy, epoxy and peroxy.
- A is a hydrocarbon chain of 18 to 22 carbon atoms which is preferably polyunsaturated, and in particular has 3-6 double bonds.
- the compound has an unsaturated hydrocarbon chain having 18 carbon atoms and three double bonds separated by methylene groups, with the first double bond relative to the omega carbon atom being between the 3 rd and 4 th or 6 th and 7 th carbon atoms.
- the compound is selected from the group consisting of those set out in Table 1.
- Table 1 Structure and nomeclature of nitro fatty acid analogues Structure Systematic Name WCH Report Thesis 1-Nitrooctadecane L ⁇ 1 4a 55 (z,z,z)-1-Nitro-9,12,15-octadecatriene L ⁇ 2 4c 60a (z,z,z)-1-Nitro-6,9,12-octadecatriene L ⁇ 3 4d 60b (all-z)-1-Nitro-5,8,11,14- eicosatetraene L ⁇ 4 4b 60c (all-z)-1-Nitro-4,7,10,13,16,19- docosahexaene L ⁇ 5 4e 60 4-Nitrohenicosanoic acid L ⁇ 6 6a 80 (all-Z)-4-Nitrotricosa-8,11,14,17-
- the compound is Lx2 or Lx3.
- the compound is Lx7 or Lx9.
- the compounds of the present invention are useful as anti-infectives and show anti-malarial activity.
- the biological properties of the compounds studied to date also suggest that these compounds could form the basis for therapeutics in treatment of infectious diseases e.g. malaria. They may also find application in the treatment of autoimmune and allergic inflammatory diseases.
- the compounds could also be used to prevent oxidative damage including as anti-ageing agents.
- Asthma is a serious, chronic inflammatory condition with a number of characteristic features in addition to acute airway constriction. These include inflammatory cell recruitment and activation, mucous hypersecretion, airway hyperreactivity and changes in airway morphology.
- the understanding of the inflammatory process may be the key to choosing the appropriate therapy for asthmatic patients.
- the standard treatment currently available for the long term management of the inflammation associated with asthma is the corticosteroids. However, these have unwanted side-effects. It is well established that the airways of individuals with asthma are infiltrated with leukocytes that can produce inflammatory mediators.
- the inflammatory mediators implicated in the asthmatic lesion are the cysteinyl-leukotrienes predominantly elaborated by eosinophils, neutrophils and monocytes.
- the leukotrienes belong to a family of structurally similar compounds derived from 20:4(n-6), of which the most active are the cysteinyl-leukotrienes [leukotriene C 4 (LTC 4 ), leukotriene D 4 (LTD 4 ) and leukotriene E 4 (LTE 4 )] and the dihydroxylated fatty acid, leukotriene B 4 (LTB 4 ).
- the ability of the compounds to inhibit IFN- ⁇ and TNF makes the substances useful to treat autoimmune diseases e.g. systemic lupus erythromatosis, multiple sclerosis, rheumatoid arthritis, ischaemia, adult respiratory distress syndrome, inflammatory bowel diseases and cystic fibrosis.
- autoimmune diseases e.g. systemic lupus erythromatosis, multiple sclerosis, rheumatoid arthritis, ischaemia, adult respiratory distress syndrome, inflammatory bowel diseases and cystic fibrosis.
- the compounds may also be useful in the treatment of allergy and skin diseases where IFN- ⁇ plays a pathogenic role e.g. atopic dermatitis.
- arachidonic acid The metabolism of arachidonic acid has been a topic of great interest, particularly in relation to its role in inflammation.
- a major interest has been the search for selective inhibitors of the various enzymes in the arachidonic acid cascade. This is critical for the development of compounds with therapeutic potential for control of the pathological processes mediated by arachidonic acid metabolites, and is also important in providing useful biochemical tools for mechanistic investigation of the enzymes involved.
- Considerable effort in this area has been made in association with the cycloxygenase pathway, and a number of nonsteroidal anti-inflammatory drugs (e.g. aspirin, and indomethacin) have been found to have inhibitory effects on cycloxygenase.
- nonsteroidal anti-inflammatory drugs e.g. aspirin, and indomethacin
- the present invention consists in a therapeutic composition
- a therapeutic composition comprising at least one compound of the first aspect of the present invention and a pharmaceutically acceptable carrier or diluent.
- the present invention consists in a method of treating a condition, selected from the group consisting of infection (eg malaria, and in particular malaria caused by the malaria parasite Plasmodium falciparum or Plasmodium vivax ), inflammation, a condition involving elevated levels of unesterified arachidonic acid or products of arachidonic acid metabolism (eg psoriasis, allergic asthma, rhinitis, leukoclastic vasculitis, urticaria or angiodema), asthma, autoimmune disease, systemic lupus erythromatosis, multiple sclerosis, rheumatoid arthritis, ischaemia, adult respiratory distress syndrome, inflammatory bowel diseases, cystic fibrosis, allergy and skin diseases where IFN- ⁇ plays a pathogenic role e.g. atopic dermatitis, in a subject, the method comprising administering to the subject a therapeutic amount of the compound of the first aspect of the present invention.
- infection eg malaria, and in particular malaria caused by
- the present invention consists in a compound of the general formula:- in which A is a saturated or unsaturated hydrocarbon chain of 9 to 26 carbon atoms; X is oxygen or is absent; and B is (CH 2 ) j (COOH) k in which j is an integer from 1 to 3 and k is 0 or 1; and the derivatives thereof in which the hydrocarbon chain includes one or more than one substitution selected from the group consisting of hydroxy, hydroperoxy, epoxy and peroxy.
- A is a hydrocarbon chain of 14 to 18 carbon atoms which is preferably saturated.
- the compound is selected from the group consisting of compounds 108, 109, 110, 111, 113 and 114 set out in Table 7.
- the compound is Lx7 or Lx9.
- the compounds of the fourth aspect of the present invention are useful as anti-oxidants.
- the present invention consists in a therapeutic composition comprising at least one compound of the fourth aspect of the present invention and a pharmaceutically acceptable carrier or diluent.
- the present invention consists in a method of treating or ameliorating the symptoms of a condition involving elevated levels of unesterified arachidonic acid or products of arachidonic acid metabolism in a subject, the method comprising administering to the subject a therapeutic amount of a compound of the fourth aspect of the present invention.
- the present invention consists in a method of treating an infection or an inflammatory disease (eg as listed with respect to the third aspect if the invention) in a subject, the method comprising administering to the subject a therapeutic amount of a compound of the fourth aspect of the present invention.
- the first target compounds were a series of nitro compounds with chain lengths of 18 to 2:2 carbons and 3 to 5 double bonds, being prepared by modification of commercially available polyunsaturated fatty alcohols. Since the unsaturated alcohols are relatively expensive to obtain, stearyl alcohol was used as the starting material for establishing synthetic methods.
- the synthetic nitroalkane and nitroalkene (Lx1 and Lx4) were further used as starting material for synthesis of ⁇ -nitroalkanoic and ⁇ -nitroalkenoic acids (Lx6 and Lx7).
- the ⁇ -nitroalkanoic and ⁇ -nitroalkenoic acid esters 3a and 5b were produced by Michael addition of the respective nitroalkane and nitroalkene 4a and 4b to methyl acrylate. The esters were then hydrolysed to give the ⁇ -nitroalkanoic and ⁇ -nitroalkenoic acids 6a and 6b (Scheme 2):
- a published method [16] for the synthesis of short chain ⁇ -nitroalkanoic acid esters was investigated for synthesis of the long chain acid ester 5a.
- the nitroalkane 4a was treated with methyl acrylate in a two phase system of water and dichloromethane in the presence of sodium hydroxide at room temperature for 24 hours. No reaction occurred under these conditions and a modification was then made where tetrabutylammonium iodide (TBAI), a phase transfer catalyst, was introduced into the reaction to improve the solubility of the base in the organic phase. With this change, a small amount of the expected product was detected by 1 H NMR analysis of the crude reaction residue.
- TBAI tetrabutylammonium iodide
- the yield of ⁇ -nitroalkanoic acid ester 5a was further improved (reaching 69% yield) by increasing the relative amount to 3:1 (for methyl acrylate nitroalkane) and by increasing the reaction temperature to 50° C.
- the ⁇ -nitroalkanoic acid ester 5a was hydrolysed by treatment with either 1.5M lithium hydroxide in dimethoxyethane (DME) or aluminium tribromide in tetrahydrothiophene (THT) at room temperature to afford the ⁇ -nitroalkanoic acid 6a in 98% yield.
- DME dimethoxyethane
- THT tetrahydrothiophene
- the unsaturated nitroalkenoic acid 6b was generated in similar yield using the same method, and both 6a and 6b were fully characterised.
- ⁇ , ⁇ -dipropanate ester nitroalkane and nitroalkene 7a and 7b were prepared by Michael addition of the nitroalkane and nitroalkene 4a and 4b to methyl acrylate in the presence of 1,8-diazabicyclo [5,4,0] undec-7-ene (DBU) as a strong base.
- DBU 1,8-diazabicyclo [5,4,0] undec-7-ene
- Fatty alcohol 1a was oxidised by pyridinium chlorochromate (PCC) in dichloromethane at room temperature to yield corresponding aldehyde 9a.
- PCC pyridinium chlorochromate
- ⁇ -hydroxy nitroalkane can be efficiently obtained by nitroaldol reaction, [19] and in this case, the aldehyde 9a reacted with nitromethane in ether, with Amberlyst A-21 as a heterogeneous basic catalyst, generating the ⁇ -hydroxy nitroalkanes in 89% yield after purification.
- conjugated 11a and nonconjugated nitro compound 12a were distinguishable by 1 H NMR and 13 C NMR, and were separable by TLC, no pure samples of either compound were obtained by flash chromatography due to decomposition. A similar result was obtained for synthesis of conjugated compound 11b.
- the variation in the product distribution (11a and 12a) during reaction may be explained on the basis of kinetic versus thermodynamic control. It is possible that the nonconjugated compound 12a is thermodynamically more stable, but the formation of the conjugated product 11a is kinetically favoured over that of the nonconjugated product 12a. However, once the reaction for conjugated compound formation reached a kinetic equilibrium, formation of the nonconjugated compound will become predominant because of its higher thermodynamic stability. However, further work is needed to elucidate this.
- the polyunsaturated fatty alcohols 1b-e and the saturated analogue, octadecanol 1a are commercially available and were used as starting materials.
- Short chain bromoalkanes react with silver nitrite to give nitroalkanes (24) but the bromides 2a-e were inert to such treatment. Instead, they were first treated with sodium iodide to give the iodides 3a-e, which were used without purification and converted to the nitroalkanes 4a-e, respectively.
- This product (ie nitroalkane 4a) may be attributed to rapid decarboxylation of the monoanion of 2-nitrononadecanoic acid, since the analogous process has been reported for 2-nitroacetic acid. (27) Given that this decarboxylation would be expected to affect the integrity of 2-nitrocarboxylic acids physiological studies at near neutral pH, the synthesis of compounds of this type was not further pursued.
- nitroalkane 4a was inert when treated with butyl lithium and ⁇ -haloacetates, indicating that long chain 3-nitrocarboxylates could not be prepared using this approach.
- the nitroalkanes 4a,b reacted with sodium hydroxide and methyl acrylate (28) in the presence of tetrabutylammonium iodide (29) to give the ⁇ -nitroesters 5a,b, which were hydrolysed using lithium hydroxide to afford the corresponding nitroacids 6a,b.
- DBU 1,8-diazobicyclo[5.4.0]undec-7-ene
- Octadecan-1-ol (1a) was obtained from Aldrich Chemical Co.
- Arachidonyl alcohol (1b), linolenyl alcohol (1c), gamma linolenyl alcohol (1d) and docosahexaenyl alcohol 1e were purchased from Nu-Chek Prep. Inc. (Elysian, Minn., USA).
- Octadecan-1-ol (1a) (520 mg, 1.92 mmol) and Ph 3 P (550 mg, 2.10 mmol) were dissolved in CH 2 Cl 2 (25 mL). The mixture was cooled in an ice bath and CBr 4 (630 mg, 1.90 mmol) was added with stirring. The mixture was allowed to warm to r.t. and was stirred overnight, then it was concentrated under a stream of N 2 and the residue was subjected to flash column chromatography on silica, eluting with hexane, to afford 1-bromooctadecane (2a) (605 mg, 96%) as a waxy solid; mp 26-28° C.
- IR (film): ⁇ 3013 (s), 2957 (s), 2928 (s); 2857 (s), 1648 (w), 1555 (s), 1457 (m), 1435 (m), 1381 (s), 1267 (w), 1106 (w), 1047 (w), 969 (w), 914 (w), 716 (m) cm ⁇ 1 .
- IR (film): ⁇ 3011 (s), 2962 (s), 2929 (s), 2856 (s), 1652 (w), 1554 (s), 1463 (m), 1435 (m), 1383 (m), 1268 (w), 1148 (w), 1069 (w), 968 (m), 912 (w), 724 (m), 614 (w) cm ⁇ 1 .
- IR (film): ⁇ 3012 (s), 2956 (s), 2928 (s), 2858-(s), 1652 (m), 1555 (s), 1464 (s), 1435 (s), 1382(s), 1266 (m), 1159 (w), 1067 (w), 1040 (w), 970 (w), 914 (w), 720 (s), 614 (w) cm ⁇ 1 .
- IR (film): ⁇ 3014 (s), 2962 (s), 2926 (s), 2873 (s), 2854 (s), 1653 (m), 1554 (s), 1434 (s), 1381 (s), 1352 (m), 1267 (m), 1069 (w), 917 (w), 712 (s), 611 (w) cm ⁇ 1 .
- IR (film): ⁇ 3065 (w), 3013(m), 2956 (s), 2930 (s), 2859 (m), 1737(s), 1552 (s), 1439 (m), 1363 (w), 1267 (w), 1263 (w), 1259 (w), 1204 (m), 1178 (m), 981 (w) cm ⁇ 1 .
- Methyl 4-nitroheneicosanoate (5a) (147 mg, 0.38 mmol) was dissolved in 1,2-dimethoxyethane (DME) (2 mL) and sat. aq LiOH solution (2 mL) was added. The mixture was left for 24 h, then it was acidified with dilute HCl (10%, 10 mL) and the mixture was extracted with EtOAc (2 ⁇ 10 mL).
- IR (KBr): ⁇ 3500-2600 (br), 2955 (m), 2919 (s), 2849 (s), 1698 (s), 1615 (w), 1543 (s), 1467 (m), 1445 (m), 1413 (w), 1360 (w), 1334 (w), 1266 (w), 923 (w), 827 (w), 723 (w), 612 (w) cm ⁇ 1 .
- IR (film): ⁇ 3611-3317 (br), 3013 (m), 2922 (s), 2852 (m), 2693 (m), 2361 (w), 1714 (s), 1551 (s), 1441 (s), 1379 (m), 1360 (m), 1270 (m), 1071 (m), 969 (w), 916 (m), 844 (m), 824 (w), 720 (m) cm ⁇ 1 .
- IR (film): ⁇ 2954 (m), 2914 (s), 2849 (s), 1744 (s), 1732 (s), 1537 (s), 1470 (s), 1458 (s) 1439 (s), 1378 (s), 1355 (s), 1319 (s), 1298 (s), 1203 (s), li80 (s), 1129 (s), 1110 (m), 1071 (m), 1022 (m), 986 (s), 894 (s), 864 (m), 842 (s), 826 (s), 807 (m), 788 (m), 717 (s), 705 (m) cm ⁇ 1 .
- IR (film): ⁇ 3012 (m), 2955 (m), 2929 (m), 2857 (m), 1742 (s), 1540 (s), 1438 (m), 1379 (w), 1351 (m), 1321 (m), 1260 (m), 1200 (m), 1176 (m), 990 (w), 721 (w) cm ⁇ 1 .
- IR (Nujol): ⁇ 3600-2700 (br), 2919 (s), 2852 (s), 1740 (s), 1700 (w), 1652 (w), 1534 (s), 1467 (m), 1454 (m), 1428 (m), 1353 (w), 1323 (m), 1282 (m), 1267 (w), 1234 (m), 1224 (s), 894 (w), 834 (w), 814 (w), 721 (w) cm ⁇ 1 .
- IR (film): ⁇ 3400-2300 (br), 3013 (s), 2955 (s), 2927 (s), 2855 (s), 2734 (m), 2630 (m), 1742 (s), 1714 (s), 1538 (s), 1439 (s), 1353 (s), 1321 (s), 1291 (s), 1231 (s), 1068 (m), 989 (m), 918 (s), 833 (s), 807 (m), 803 (m), 732 (m), 678 (m), 622 (w) cm ⁇ 1 .
- PCC (6 g, 27.83 mmol) was suspended in CH 2 Cl 2 (30 mL), and octadecan-1-ol (1a) (5.02 g, 18.57 mmol) in CH 2 Cl 2 (15 mL) was then rapidly added at r.t. The solution became briefly homogeneous before the deposition of the black insoluble reduced reagent. After 2 h, the black mixture was diluted with five volumes of anhyd Et 2 O, the solvent was decanted, and the black solid was washed twice with Et 2 O. The crude product was isolated by filtration of the organic solutions through Florisil and concentration of the filtrate under reduced pressure.
- IR Infrared
- HPLC was performed using a Waters HPLC system with ultraviolet (UV) or refractive index (RI) detection.
- UV ultraviolet
- RI refractive index
- the column used contained Alltech Spherisorb octadecylsilane (ODS) (4.6 mm ⁇ 250 mm, 3 ⁇ m).
- ODS Alltech Spherisorb octadecylsilane
- the mobile phase was comprised of acetonitrile (or methanol) and phosphoric acid (30 mM) solution in the ratios indicated in the text, with a flow rate of 1 ml/min.
- 15-LO was obtained from Sigma Chemical Company, and 12-LO from Cayman Chemical Company.
- Arachidonic acid 1, linolenyl alcohol 57a, gamma linolenyl alcohol 57b, arachidonyl alcohol 57c and docosahexaenyl alcohol 57d were purchased from Nu-Chek Prep. Inc. Elysian, Minn., USA. Other chemicals were commercially available from Aldrich Chemical Company.
- a stock solution in dichloromethane (2 ml) containing arachidonic acid 1 (18 mg) and 3-[(3Z,6Z)-nona-3,6-dienylthio]propionic acid 106 (18 mg) was prepared with lauric acid (18 mg) as an internal standard.
- Samples of the stock solution (100 ⁇ l) were added to glass Petri-dishes followed by ethanol (400 ⁇ l). After evaporation of the solvent, a well-distributed thin film was formed on each Petri-dish.
- the Petri-dishes were placed in a desiccator, which was then evacuated, filled with oxygen and stored in the darkness. Dishes were removed from the desiccator after 1, 2, 3, 5 and 7 days.
- Pent-2-ynyl p-toluenesulfonate 102.
- 2-Pentyn-1-ol 101 (1.03 g, 12 mmol) was dissolved in chloroform (10 ml) and the mixture was cooled in an ice bath. Pyridine (1.90 g, 24 mmol, 2 eq) was then added, followed by p-toluenesulfonyl chloride (3.43 g, 18 mmol, 1.5 eq) in small portions with constant stirring. The reaction was complete in 4 h (monitrored by TLC).
- Nona-3,6-diyn-1-ol, 103 Pent-2-ynyl p-toluenesolfonate 102 (1.37 g, 5.78 mmol, 1.1 eq) was added at ⁇ 30° C. under nitrogen to a well-stirred suspension in DMF (15 ml) of but-3-yn-1-ol (368 mg, 5.25 mmol, 1 eq), sodium carbonate (834 mg, 7.87 mmol, 1.5 eq), tetrabutylamorrum chloride (1.46 g, 5.25 mmol) and copper(I) iodide (1.00 g, 5.25 mmol, 1 eq). The mixture was stirred at room temperature for 48 h.
- Nona-3,6-diyn-1-ol 103 (198 mg, 1.45 mmol) was hydrogenated at atmospheric pressure, in the presence of a mixture of quinoline (44 mg) and palladium (5%) on calcium carbonate (100 mg), poisoned with lead in methanol (25 ml). The reaction was stopped after 2.5 h when the uptake of hydrogen was 61 ml.
- (3Z,6Z)-Nona-3,6-dien-1-ol 104 (167 mg, 1.19 mmol) was dissolved in chloroform (5 ml) and the solution was cooled in an ice bath. Pyridine (376 mg 4.76 mmol, 4 eq) was then added, followed by the addition of p-toluenesulfonyl chloride (340 mg, 1.78 mmol, 1.5 eq) in small portions with constant stirring. The mixture was stirred for 24 h at 15° C.
- 3-[(3Z,6Z)-Nona-3,6-dienylthio]propionic acid, 106 3-Mercaptopropionic acid (150 mg, 1.41 mmol, 1.5-eq) was added, under an atmosphere of dry nitrogen, to a stirred solution of sodium methoxide, prepared from sodium (64 mg, 2.78 mmol, 3 eq) and methanol (20 ml). After the initial white precipitate had dissolved, a solution of (3Z,6Z)-nona-3,6-dienyl p-toluenesulfonate 105 (276 mg, 0.94 mmol) in diethyl ether was added. The mixture was stirred at 40° C.
- 3-Tetradecylthiopropionic acid 108.
- 3-mercaptopropionic acid 261 mg, 2.46 mmol, 1.2 eq
- sodium methoxide prepared from sodium (142 mg, 6.17 mmol, 3 eq)
- methanol 20 ml
- 2-Tetradecylthioacetic acid 109.
- 2-Mercaptoacetic acid (288 mg, 3.13 mmol, 1.2 eq) was added, under an atmosphere of dry nitrogen, to a stirred solution of sodium methoxide, prepared from sodium (180 mg, 7.83 mmol, 3 eq) and methanol (20 ml).
- a solution of 1-bromotetradecane 107 (725 mg, 2.61 mmol) in diethyl ether (2 ml) was added and the mixture was stirred for 16 h at room temperature under nitrogen.
- Propyl (all-Z)-eicosa-5,8,11,14-tetraenyl sulfide 110 was added, under an atmosphere of dry nitrogen, to a stirred solution of sodium methoxide, prepared from sodium (20 mg, 0.87 mmol, 3 eq) and methanol (10 ml). After the initial white precipitate had dissolved, a solution of (all-Z)-1-bromo-5,8,11,14-eicosatetrane 58c (101 mg, 0.29 mmol) in diethyl ether (1 ml) was added.
- Propyl tetradecyl sulfide 111.
- propanethiol 165 mg, 2.16 mmol, 1.2 eq
- sodium methoxide prepared from sodium (82 mg, 3.56 mmol, 2 eq) and methanol (10 ml).
- a solution of 1-bromotetradecane 107 500 mg, 1.80 mmol in diethyl ether (2 ml) was added.
- 3-(Tetradecylsulfinyl)propionic acid, 113 Arachidonic acid 1 (175 mg) was dissolved in 5 ml of dichloromethane to make a stock solution (35 mg/ml). 3-Tetradecylthiopropanoic acid 108 (10 mg, 0.03 mmol), arachidonic acid 1 (10 mg, 0.03 mmol, 284 ⁇ l ) and dichloromethane (10 ml) were added into a one-neck flask (500 ml). The solvent was evaporated using a rotary evaporator to allow the reagents to form a thin film on the internal surface of the flask. The flask was filled with oxygen and placed in darkness for 7 days.
- 2-(Tetradecylsulfinyl)acetic acid 114.
- 2-Tetradecylthioacetic acid 109 (19 mg, 0.066 mmol) was dissolved in dichloromethane (2 ml) and tert-butylhydroperoxide (11 ml, 0.08 mmol, 1.2 eq) was added. After 48 h reaction at room temperature, the solvent was removed and the residue was chromatographed using ether-hexane-acetic acid (60:40:2) ⁇ methanol as the eluent to obtain the white product 114 (17 mg, 86%).
- the inhibitor constant (K i or K l ) of compound 8a was also determined.
- the graph of 1/v vs 1/[s] with varying concentrations of compound 8a indicates that the inhibition is of the mixed inhibition pattern as shown in the following scheme.
- the K i and K l values in the scheme were calculated giving the result of 27.42 ⁇ M for K i and 55.15 ⁇ M for K l .
- PUFA polyunsaturated fatty acids
- Both n-6 and n-3 fatty acids were effective as shown by their ability to cause intraerythrocytic death of the asexual forms of P. falciparum (36) , and by the ability to significantly depress the parasitaemia in mice infected with P. berghei (36) .
- Studies on fatty acid structure and its relation to intraerythrocytic killing of parasites demonstrated that these effects were dependent on specific structural elements of the fatty acids. Thus the activity was dependent on carbon chain length, degrees of unsaturation, hydroxylation and hydroperoxidation (36) .
- the saturated twenty carbon fatty acid had very little parasite killing activity compared to the corresponding unsaturated twenty carbon fatty acids 20:4n-6 and 20:5n-3 (36) .
- Unsaturated-fatty acids with 18 carbons were also quite effective if these had at least two double bonds, such as 18:2n-6, but 18:1n-9 showed similar activity to saturated fatty acids (36) .
- Pre-oxidation of 20:4n-6 and 22:6n-3 prior to addition to the P. falciparum infected erythrocytes resulted in an increase in antiparasite activity (36) .
- Addition of antioxidants to the infected erythrocytes markedly reduced the activity of these fatty acids (36) .
- Further studies showed that the hydroxy and hydroperoxy derivatives of these PUFA were more active than their parent fatty acids (36) .
- PUFA percutaneous endothelial cells
- these properties could exacerbate the illness in malaria.
- the hydroxy- and hydroperoxy-derivatives lack the neutrophil stimulating activity (39, 41, 43) .
- Lx compounds nitro long chain saturated and unsaturated molecules
- Table 1 The series of nitro long chain saturated and unsaturated molecules (designated Lx compounds) presented in Table 1 are a new class of antimalarial agents based on fatty acids which may be established as lead compounds for malaria chemotherapeutic drugs. These compounds have been examined for the action of engineered fatty acids of different structures for their antimalarial activity against asexual blood stages of P. faciparum (human parasite) in vitro and in murine P. berghei infections.
- the Plasmodium falciparum isolates used were 3D7, FC27, K 1 and K + . These were maintained in human blood, group O + erythrocytes essentially as described previously using RPM-1640 (HEPES modification) supplemented with 0.25% D-glucose, 0.2% Tess buffer (Sigma Chemical Co, Lt Louis, Mo.) and 10% heat inactivated (56° C., 20 min) human blood group AB serum. Cultures were maintained in tissue culture flasks (Corning, N.Y.) at 37° C. under an atmosphere of 1% O 2 , 5% CO 2 in N 2 . P.
- falciparum cultures containing approximately 3.0% parasitaeria were adjusted to 1 ⁇ 10 8 erythrocytes/ml.
- To 50 ⁇ l of the parasite-erythrocyte culture (5 ⁇ 10 6 erythrocytes) in wells of 96-well microdilution plates was added 50 ⁇ l of the designated concentration of fatty acid or equivalent amounts of solutions or media.
- the treated cultures were incubated at 37° C. for 4 h and then pulsed with 50 ⁇ l (2.5 ⁇ Ci) of 3 H-hypoxanthine. After a further 18 h incubation the parasites-erythrocytes were harvested onto glass fibre filter papers using a cell harvester. The amount of radioactivity incorporated was measured in a ⁇ -counter. The results have been expressed as % inhibition of parasite growth i.e. the dpm in the fatty acid diluent-dpm in the fatty acid treated cultures/dpm in diluent ⁇ 100.
- FIG. 1 illustrates the effects of chemically engineered nitro compounds on P. falciparum 3D7. Results are the mean ⁇ SEM of 3 to 10 experiments. It can be seen that 19:3(n-6)-NO, (Lx3) had the greatest activity. The compounds Lx1 to Lx5 did not contain a carboxyl group. In terms of these five compounds it is evident that, apart from Lx3, there was no increase in antimalarial activity of the compounds by introducing double bonds. It is possible that the difference in activity seen between Lx2 and Lx3 is due to the position of the double bonds, ie the n-6 is more active than the n-3. Perhaps the reason why activity is lost with Lx4 is because of the increase in carbon chain length.
- FIG. 4 shows the results of examination of parasites by morphological criteria. Parasites were treated with 20 ⁇ g/ml of compound. Results are means of triplicate assays of one experiment and are consistent with that found in three experiments. Morphological examination of cultures essentially supported the results of those of the radiometric technique where cultures showed degenerate mature rings, trophozoites and shizonts in the presence of Lx3 and there was no general lysis of erythrocytes.
- FIG. 5 shows the effects of human serum on the ability of 22:6 n-3 and Lx3 (19:3 n-6NO 2 ) to kill asexual blood stages of P. falciparum in culture. The compounds were tested at 20 ⁇ g/ml. Results are the means of six determinations. The data in FIG. 5 show that, while the antimalarial activity of 22:6n-3 was substantially reduced (85%) by serum, the presence of serum did not affect the activity of Lx3.
- Lx3 is emerging as an interesting molecule with unique properties
- Red blood cells or parasitised red blood cells (K+strain, 9.25% parasitaemia) (5 ⁇ 10 8 cells) were incubated with 200 ⁇ g of Lx3 in 10 mls of HBSS at 37° C. for 4 h. The incubate was centrifuged (3,000 rpm for 10 min) and the medium aspirated. The cell pellet was washed 3 times with 5 ml of HBSS with centrifugation. Lipids were extracted from the cell pellet and neutral lipids, phospholipids and unesterified Lx3 were resolved by thin-layer chromatography. The neutral lipid and phospholipid samples were transesterified to release any bound Lx3.
- the amount of Lx3 associated with the unesterifield, neutral lipid and phospholipid fractions was quantitated by gas-liquid chromatography using nonadecanoic acid (nonadecylic acid (19:0)) methyl ester (48 nmol) as a reference standard.
- a combined gas-liquid chromatography-mass spectrometry (GC-MS) technique was employed.
- FIG. 6 is the GC-MS (expanded view) of Lx3 isolated from parasitised RBC. The mass spectrum of each peak unambiguously identifies 19:0 and Lx3 (19:3(n-6)-NO 2 ) respectively.
- Lx3 was found to be taken up by the cells and remained exclusively in the unesterified form. No Lx3 was esterified in neutral lipids and phospholipids (Table 4). It is important to note that parasitised red blood cells took up approximately 6 times more Lx3 than non-parasitised cells. No elongation, chain-shortening or de-saturation products of Lx3 were detected in either cell population. The lack of derivatisation or incorporation of Lx3 into neutral lipids and phospholipids is almost certainly due to Lx3 not having a carboxylic acid group which is mandatory for the conversion of a fatty acid to its coenzyme A ester.
- neutrophils The activation of human neutrophils by nitro compounds was assessed by the ability to stimulate superoxide production (chemiluminescence response) and release of lysosomal enzymes from specific and azurophilic granules.
- Neutrophils were prepared from whole blood taken from normal healthy volunteers by the rapid-single step procedure (41) . Briefly, blood anticoagulated with heparin was carefully layered on a hypaque-ficoll medium of 1.114 g/ml and centrifuged in swing-out-buckets at 200 g/30 min. The leukocytes were resolved into two bands and the erythrocytes sedimented at the bottom of the tube.
- the second leukocyte band approximately 0.7 cm from the mononuclear cell containing band at the interface contained neutrophils of >98% purity and >99% viability (trypan blue dye exclusion criteria).
- the neutrophils were carefully harvested with a pasteur pipette, and washed and resuspended in tissue culture medium.
- the respiratory burst response of neutrophils was assessed by measuring superoxide production by the lucigenin dependent chemiluminescence assay essentially as described previously (42) . Briefly, 1 ⁇ 10 6 neutrophils (100 ⁇ l) in HBSS were treated with the nitro analogues of fatty acids (100 ⁇ l), then lucigenin was added and the volume made up.
- FIG. 7 illustrates the effects of Lx compounds on the neutrophil chemiluminescence reponse. Results are the means ⁇ SEM of 4-12 experiments. Each compound was tested at 20 ⁇ M. The results showed that all the compounds (Lx1-Lx9), apart from Lx7, did not induce a chemiluminescence response. Even the response induced by Lx7 was marginal compared to 20:4n-6 and 22:6n-3.
- FIG. 7 The pattern of neutrophil activation, as shown in FIG. 7 , was reflected also in the degranulation response. Both in relation to release of vitamin B12 binding protein (specific granule maker) and ⁇ -glucuronidase (azurophilic granule marker), all of the Lx compounds except for Lx7 were poor inducers of the release of vitamin B12 binding protein as well as release of ⁇ -glucuronidase.
- FIG. 8 illustrates the effects of Lx compounds on the release of ⁇ -glucuronidase
- FIG. 9 illustrates the effects of Lx compounds on the release of vitamin B12 binding protein. In each case, the results are means ⁇ SEM of 3-8 experiments. All compounds were tested at 20 ⁇ g/ml. Interestingly, Lx7 was as potent as 20:4n-6 and 22:6n-3 in stimulating degranulation.
- FIG. 10 illustrates the effect of Lx3 on the level of P. berghei parasitaemia in the mice.
- Results are the means ⁇ SEM of five mice per group. Mice were infected intraperitoneally with the parasite and when an appropriate parasitaemia was reached they were treated intravenously with 40 mg/kg weight of MP3. These experiments showed that mice tolerated Lx3 quite well and that mice treated with a single dose intravenously showed a marked drop in circulating parasites (parasitaemia) within 5 h after injection. Similar results were obtained with changes in the period of observation (Table 5) as well as with a different species, P.
- mice were treated at one day prior to infection with 2 doses of 40 mg/kg body weight and then another dose 60 min prior to infection (0 time) on the following day.
- the parasitaemia was checked 4 h later and at the times stipulated in the Table.
- the animals were treated with either DPC or Lx3 twice a day 30 min after taking a parasitaemia reading. The results are presented as mean ⁇ SEM of parasitaemia of 4 mice per group.
- Arachidonic acid is a natural agonist which stimulates oxygen radical production in neutrophils leading to tissue damage during inflammation. Studies were conducted to examine whether or not the Lx compounds could antagonise the effects of AA. Neutrophils were pretreated with Lx compounds and then examined for chemiluminescence response to AA addition. The data above show that some Lx compounds inhibit the ability of AA to stimulate oxygen radical production. This is particularly evident with Lx7 and Lx9. The effect of Lx compounds on AA-enhanced chemiluminescence in human neutrophils is shown graphically in FIG. 11 .
- AA could be a target for anti-inflammatory activity. Therefore, some Lx compounds could be used as anti-inflammatory agents.
- nitroalkanes Lx1-Lx5
- the compound 4a is inflammatory while the compound 4d may be either inflammatory or anti-inflammatory depending on the dose administered, the eliciting agent and the time of measurement of the response.
- arachidonic acid underwent rapid autoxidation in the presence of compound 16, as reflected by reduction in the percentage of recovered arachidonic acid (23 or 17%) after 7 days of autoxidation without the additive AIBN or after 60 h with 10% AIBN.
- the data showed that arachidonic acid also underwent a substantial degree of autoxidation in the presence of compounds 17 and 18 during the same periods.
- autoxidation of arachidonic acid was completely inhibited during the testing periods when the thin film reaction was carried out in the presence of the ⁇ -thia fatty acid, 3-[(all-Z)-(eicosa-5,8,11,14-tetraenylthio)] propionic 19, even when the reaction contained the radical initiator AIBN.
- the result indicates that compound 19 is an antioxidant.
- the specific objective of this project in regard to the thia-fatty acids was to examine the basis of the selective antioxidant activity of the ⁇ -thia fatty acid 19. This was to be done by synthesis of a series of analogues of compound 19 and subsequent investigation of their effects on arachidonic acid autoxidation.
- the analogues include an unsaturated ⁇ -thia fatty acid with two methylene-interrupted cis double bonds, which brings unsaturation closer to the sulfur than is the case in compound 19, saturated ⁇ -thia and ⁇ -thia fatty acids, and unsaturated and saturated sulfides.
- a thin film method on Petri-dishes was to be employed for assessing autoxidation of arachidonic acid in the presence of the thia fatty acids and sulfides, in conjunction with a reversed phase HPLC technique for analysis of recovered arachidonic acid and thia fatty acids and sulphides.
- the aim was to examine if the degree of unsaturation, the carboxyl group and the location of sulfur in the thia fatty acids affects their antioxidative activity.
- Petri-dishes with uniform size 80 mm in diameter were used instead of flasks for thin film formation and the oxidation was carried out by placing the Petri-dishes in a dessicator filled with oxygen.
- thin films of arachidonic acid with lauric acid as a standard were prepared on six Petri-dishes using identical treatment, and then subjected to oxidation in the same dessicator filled with oxygen. After 24 h, the percentage of arachidonic acid recovered following autoxidation in each Petri-dish was determined by HPLC.
- the advantage of using a Petri-dish over a flask is that the thin films on each Petri-dish are spread over the same area, and each Petri-dish is exposed to oxygen to the same extent.
- the unsaturation of compounds 19, 106 and 112 is not essential for antioxidant activity. Neither is the carboxyl group.
- Compound 111 is saturated and neither compound 110 nor 111 possesses a carboxyl group. Yet when present in 1:1 ratio with arachidonic acid, both of the sulfides 110 and 111 effectively inhibit the oxidation of arachidonic acid (Tables 15A and 16A). Even when the amount of the sulfides 110 and 111 used was reduced to one-tenth that of arachidonic acid, they were still effective antioxidants (Tables 15B and 16B). Apparently the sulfur alone is the key to the antioxidant activity of compounds 19, 106, 108 and 110-112.
- the saturated ⁇ -thia PUFA 108 is converted to the sulfoxide 113 on autoxidation in the presence of arachidonic acid, but not alone. Therefore, it seems likely that hydroperoxides of arachidonic acid are responsible for production of the sulfoxide 113.
- the ⁇ -thia fatty acids 19, 106, 108 and 112 are effective antioxidants, but the ⁇ -thia fatty acids 18 and 109 are not.
- compounds 108 and 109 (in a ratio of 1:1 in CH 2 Cl 2 ) were allowed to, react with tert-butyl hydroperoxide.
- ⁇ -thia fatty acids such as compound 18 and 109 may be ineffective as antioxidants due to the proximity of the sulfur to the carboxyl group. This may affect the nucleophilicity of the sulfur or introduce steric hindrance in the reactions with hydroperoxides.
- the carboxyl group is relatively close to the sulfur and consequently the nucleophilicity of the sulfur may be weakened because of the electron-withdrawing nature of the carboxyl group.
- the proximity of the carboxyl group to the sulfur in the ⁇ -thia fatty acids may also cause steric hindrance to the nucleophilic substitution process.
- the carboxyl group is either absent or more remote.
- ⁇ -Tocopherol (vitamin E) is a widely used, naturally occurring, phenolic antioxidant which inhibits free-radical chains in biological systems.
- the ⁇ -thia fatty acids 19, 106, 108 and 112, and the sulfides 110 and 111, of the present work should be more readily miscible in lipids than is ⁇ -tocopherol. Therefore, they may be more effective antioxidants than ⁇ -tocopherol in this environment.
- PUFAs polyunsaturated fatty acids
- the main group of compounds targeted in this project was the nitro analogues of PUFAs. They were expected to be potentially useful due to their generally high stability and the chemical similarity of the nitro group to the carboxyl group.
- the other group of compounds investigated was the ⁇ -thia fatty acids.
- Such compounds were expected to be useful lipid antioxidants due to their miscibility with and structural similarity to natural fatty acids.
- Non-selective inhibitors have the disadvantages of causing possible side effects. For instance, asthma has been treated as an inflammatory disease, and corticosteroids are the therapy of choice for the inflammatory component of asthma. [49] Although this class of drugs provides powerful anti-inflammatory effects in most patients, these effects are not specific and in some cases result in serious side effects. Since leukotrienes, a family of inflammatory mediators generated through the 5-LO pathway, have been shown to enhance bronchoconstriction and airway mucus secretion, agents that target the specific inflammatory pathway have been developed to treat asthma by modulating leukotriene activity.
- ⁇ -thia fatty acids were not antioxidants, probably due to their relatively slow reaction with hydroperoxides.
- the closeness of the carboxyl group to the sulfur in the ⁇ -thia fatty acids may cause steric hindrance or reduce the nucleophilicity of the sulfur.
- Lx1 to Lx9 compounds The most promising of these were Lx2 and Lx3.
- Lx3 was examined in detail and found to be very active against the human malarial parasite Plasmodium falciparum . The agent was active also against a chloroquine resistant isolate. Thus this compound has the additional advantage of being able to be used against drug resistant malaria. It is also likely to act synergistically with other antimalarial drugs.
- Lx3 was also found to be active in an experimental model of malaria, P. berghei infections in mice, given either prophylactically or curatively.
- Lx3 was much more readily taken up (up to tenfold) by P. falciparum infected erythrocytes than normal erythrocytes. Its action was primarily the killing of the late ring stage to immature schizonts of the asexual stage of the parasite. Unlike other fatty acids previously shown to be bound to albumin and their activity quenched by serum, the activity of Lx3 was not inhibited by serum. Unlike other fatty acids, the Lx compounds did not cause non-specific activation of neutrophils and release of oxygen radicals or the release of granule constituents. Thus they have the advantage of not displaying any of the pathology inducing activity seen with other fatty acids. Lx compounds will have broad spectrum antimicrobial activity, in particular against infection caused by protozoan parasites. In addition, they are active against viruses, bacteria and fungi, especially as the nitro group may overcome the problem presented by the carboxyl group.
- Lx7 and Lx9 Some of the Lx compounds which did not have appreciable antimalarial activity (e.g. Lx7 and Lx9) inhibited the arachidonic acid response which is related to inflammation, showing that Lx compounds can be used as agents to inhibit diseases which have an inflammatory response basis, such as asthma, inflammatory bowel disease, arthritis, reperfusion injury, cystic fibrosis etc.
- Lx compounds inhibited two important cytokines, TNF and IFN ⁇ , which play major roles in inflammatory diseases. These compounds have uses in treating and managing a wide-range of diseases in which these cytokines have been shown to be of major importance. Transplantation of organs and other grafts will also benefit from the use of Lx compounds as immunosuppressive agents.
- the thia and sulfinyl compounds of the invention also have antioxidant properties, and may be incorporated in pharmaceutical or cosmetic compositions, in particular to prevent odixation of polyunsaturated fatty acids.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Pulmonology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Emergency Medicine (AREA)
- Diabetes (AREA)
- Cardiology (AREA)
- Dermatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Obesity (AREA)
- Communicable Diseases (AREA)
- Biochemistry (AREA)
- Endocrinology (AREA)
- Hematology (AREA)
- Transplantation (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Toxicology (AREA)
- Oncology (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Otolaryngology (AREA)
Abstract
The present invention relates to compounds of the general formula: NO2-A-B wherein A is a saturated or unsaturated hydrocarbon chain of 14-26 carbon atoms and B is (CH2)n(COOH)m in which n is an integer from 0 to 2 and m is an integer from 0 to 2; or of general formula (I), wherein A′ is a saturated or unsaturated hydrocarbon chain of 9-26 carbon atoms, X is oxygen or is absent and B′ is (CH2)j(COOH)k in which j is an integer from 1 to 3 and k is 0 or 1; and the derivatives thereof in which the hydrocarbon chain includes one or more than one substitution selected from the group consisting of hydroxy, hydroperoxy, epoxy and peroxy. These compounds have biological activity, e.g. as anti-infective or anti-inflammatory agents.
Description
- The present invention relates to compounds which include a carbon chain of 14 to 26 carbon atoms and a nitro or sulphur group. In a particular embodiment the invention relates to nitro analogues of polyunsaturated fatty acids. The present invention further relates to the use of these compounds in methods of treatment.
- Fatty acids are one of the most extensively studied classes of compounds due to their important role in biological systems(1-2). Hundreds of different fatty acids exist in nature. They consist of saturated, monounsaturated and polyunsaturated fatty acids, having chain lengths from 4 to 22 carbon atoms. Polyunsaturated fatty acids (PUFAs) contain 16 to 22 carbon atoms with two or more methylene-interrupted double bonds. The PUFA, arachidonic acid, contains 20 carbons and four methylene-interrupted cis-double bonds commencing six carbons from the terminal methyl group, which therefore leads to an abbreviated nomenclature of 20:4 (n-6).
- PUFAs can be divided into four families, based on the parent fatty acids from which they are derived: linoleic acid (18:2 n-6), α-linolenic acid (18:3 n-3), oleic acid (18:1 n-9) and palmitoleic acid (16:1 n-7). The n-6 and n-3 PUFAs cannot be synthesised by mammals and are known as essential fatty acids (EFAs). They are required by mammalian bodies indirectly through desaturation or elongation of linoleic and α-linolenic acids, which must be supplied in the diet.
- EFAs have a variety of biological activities. For instance, it has been suggested that they can play an important role in modulating cystic fibrosis(3). Intake of n-3 PUFAs has been found to be associated with a reduced incidence of coronary arterial diseases, and various mechanisms by which n-3 PUFAs act have been proposed.[4,5] Some n-3 and n-6 PUFAs also possess antimalarial[6] or anti-inflammatory properties.[7] Furthermore, one of the EFAs' most important biological roles is to supply precursors for the production of bioactive fatty acid metabolites that can modulate many immune functions.[8].
- Arachidonic acid (AA) is the most extensively studied of the EFAs and it is a principal precursor for many important biological mediators. There are two pathways for arachidonic acid metabolism (1) the cycloxygenase pathway which leads to the formation of prostaglandins and thromboxanes, and (2) the lipoxygenase pathway which is responsible for the generation of leukotrienes and lipoxins. These metabolites, collectively called eicosanoids, have been implicated in the pathology of a variety of diseases such as asthma[9] and other inflammatory disorders.[10,11 ]
- Although EFAs play important roles in the biological process of the mammalian body, they are not widely used as therapeutics due to their limited availability in vivo. They are readily degradable by β-oxidation, which is the major oxidative pathway in fatty acid metabolism. The net process of β-oxidation is characterised by the degradation of the fatty acid carbon chain by two carbon atoms with the concomitant production of equimolar amounts of acetyl-coenzyme A.
- To overcome the problem of β-oxidation, some work has been done to design and synthesise modified PUFAs,:such as the β-oxa and β-thia PUFAs[12,13]. These compounds were shown to have enhanced resistance to β-oxidation while still retaining certain biological activities of the native PUFAs.
- The present invention relates to the design and preparation of another group of modified PUFAs, the nitro analogues of PUFAs. The rationale was that the nitro group is chemically similar to COOH group with regard to size, charge and shape. In addition, the nitro compounds are a group of relatively stable compounds and are resistant to β-oxidation by preventing CoA thioester production, which is the first step in β-oxidation of fatty acids. This also means that the nitro compounds will not be incorporated into lipids and will more likely be present in a free form.
- In a first aspect, the present invention consists in a compound of the general formula:-
in which A is a saturated or unsaturated hydrocarbon chain of 14 to 26 carbon atoms; and B is (CH2)n(COOH)m in which n is 0 to 2 and m is 0 to 2; and the derivatives thereof having a further one or more than one substitution selected from the group consisting of hydroxy, hydroperoxy, epoxy and peroxy. - In a preferred embodiment of the present invention, A is a hydrocarbon chain of 18 to 22 carbon atoms which is preferably polyunsaturated, and in particular has 3-6 double bonds.
- More preferably, the compound has an unsaturated hydrocarbon chain having 18 carbon atoms and three double bonds separated by methylene groups, with the first double bond relative to the omega carbon atom being between the 3rd and 4th or 6th and 7th carbon atoms.
- In a further preferred embodiment, the compound is selected from the group consisting of those set out in Table 1.
TABLE 1 Structure and nomeclature of nitro fatty acid analogues Structure Systematic Name WCH Report Thesis 1-Nitrooctadecane L × 1 4a 55 (z,z,z)-1-Nitro-9,12,15-octadecatriene L × 2 4c 60a (z,z,z)-1-Nitro-6,9,12-octadecatriene L × 3 4d 60b (all-z)-1-Nitro-5,8,11,14- eicosatetraene L × 4 4b 60c (all-z)-1-Nitro-4,7,10,13,16,19- docosahexaene L × 5 4e 60 4-Nitrohenicosanoic acid L × 6 6a 80 (all-Z)-4-Nitrotricosa-8,11,14,17- tetraenoic acid L × 7 6b 82 3-Heptadecyl-3-nitropentane-1,5- dicarboxylic acid L × 8 8a 84 3-[(all-Z)-Nonadeca-4,7,10,13-tetraenyl]- 3-nitropentane-1,5-dicarboxylic acid L × 9 8b 86 - In yet a further preferred embodiment, the compound is Lx2 or Lx3.
- In yet a further preferred embodiment, the compound is Lx7 or Lx9.
- The compounds of the present invention are useful as anti-infectives and show anti-malarial activity. The biological properties of the compounds studied to date also suggest that these compounds could form the basis for therapeutics in treatment of infectious diseases e.g. malaria. They may also find application in the treatment of autoimmune and allergic inflammatory diseases.
- Their ability to penetrate cells and tissues also suggests their use as drug or antigen carriers. The compounds could also be used to prevent oxidative damage including as anti-ageing agents.
- The ability of a number of the compounds to inhibit lipoxygenase activity suggests that the compounds may be useful to treat asthma where leukotrienes are major mediators of airways' hyperactivity.
- Asthma is a serious, chronic inflammatory condition with a number of characteristic features in addition to acute airway constriction. These include inflammatory cell recruitment and activation, mucous hypersecretion, airway hyperreactivity and changes in airway morphology. The understanding of the inflammatory process may be the key to choosing the appropriate therapy for asthmatic patients. The standard treatment currently available for the long term management of the inflammation associated with asthma is the corticosteroids. However, these have unwanted side-effects. It is well established that the airways of individuals with asthma are infiltrated with leukocytes that can produce inflammatory mediators. Among the inflammatory mediators implicated in the asthmatic lesion are the cysteinyl-leukotrienes predominantly elaborated by eosinophils, neutrophils and monocytes. The leukotrienes belong to a family of structurally similar compounds derived from 20:4(n-6), of which the most active are the cysteinyl-leukotrienes [leukotriene C4 (LTC4), leukotriene D4 (LTD4) and leukotriene E4 (LTE4)] and the dihydroxylated fatty acid, leukotriene B4 (LTB4). Apart from being potent mediators of airway obstruction, these compounds are implicated in the pathogenesis of a number of inflammatory disorders, including cystic fibrosis, rheumatoid arthritis, systemic lupus erythematosis and cardiovascular diseases. Modulation of the effects of leukotrienes has been attempted by inhibiting the synthesis of these eicosanoids with eicosapentaenoic acid [20:5(n-3)] and docosahexaenoic acid [22.6(n-3)], which are enriched in fish oil diets. Unfortunately, the results of such strategies have been controversial and disappointing.
- The ability of the compounds to inhibit IFN-γ and TNF makes the substances useful to treat autoimmune diseases e.g. systemic lupus erythromatosis, multiple sclerosis, rheumatoid arthritis, ischaemia, adult respiratory distress syndrome, inflammatory bowel diseases and cystic fibrosis. The compounds may also be useful in the treatment of allergy and skin diseases where IFN-γ plays a pathogenic role e.g. atopic dermatitis.
- The metabolism of arachidonic acid has been a topic of great interest, particularly in relation to its role in inflammation. A major interest has been the search for selective inhibitors of the various enzymes in the arachidonic acid cascade. This is critical for the development of compounds with therapeutic potential for control of the pathological processes mediated by arachidonic acid metabolites, and is also important in providing useful biochemical tools for mechanistic investigation of the enzymes involved. Considerable effort in this area has been made in association with the cycloxygenase pathway, and a number of nonsteroidal anti-inflammatory drugs (e.g. aspirin, and indomethacin) have been found to have inhibitory effects on cycloxygenase.[1-4] More recently, efforts have been extended to a study of the lipoxygenase (LO) pathway and the search for selective inhibitors of the enzymes involved in the pathway. Another major objective of the present work is to assess the possible activity for enzyme inhibition or other potential physiological activities of the synthetic nitro compounds using enzymological and biological assays.
- In a second aspect, the present invention consists in a therapeutic composition comprising at least one compound of the first aspect of the present invention and a pharmaceutically acceptable carrier or diluent.
- In a third aspect, the present invention consists in a method of treating a condition, selected from the group consisting of infection (eg malaria, and in particular malaria caused by the malaria parasite Plasmodium falciparum or Plasmodium vivax), inflammation, a condition involving elevated levels of unesterified arachidonic acid or products of arachidonic acid metabolism (eg psoriasis, allergic asthma, rhinitis, leukoclastic vasculitis, urticaria or angiodema), asthma, autoimmune disease, systemic lupus erythromatosis, multiple sclerosis, rheumatoid arthritis, ischaemia, adult respiratory distress syndrome, inflammatory bowel diseases, cystic fibrosis, allergy and skin diseases where IFN-γ plays a pathogenic role e.g. atopic dermatitis, in a subject, the method comprising administering to the subject a therapeutic amount of the compound of the first aspect of the present invention.
- In a fourth aspect, the present invention consists in a compound of the general formula:-
in which A is a saturated or unsaturated hydrocarbon chain of 9 to 26 carbon atoms; X is oxygen or is absent; and B is (CH2)j(COOH)k in which j is an integer from 1 to 3 and k is 0 or 1; and the derivatives thereof in which the hydrocarbon chain includes one or more than one substitution selected from the group consisting of hydroxy, hydroperoxy, epoxy and peroxy. - Such compounds, with the exception of some compounds comprising both an unsaturated hydrocarbon chain and a carboxyl group, are novel.
- In a preferred embodiment of the present invention, A is a hydrocarbon chain of 14 to 18 carbon atoms which is preferably saturated.
- In a further preferred embodiment, the compound is selected from the group consisting of
compounds 108, 109, 110, 111, 113 and 114 set out in Table 7. - In yet a further preferred embodiment, the compound is Lx7 or Lx9.
- The compounds of the fourth aspect of the present invention are useful as anti-oxidants.
- In a fifth aspect, the present invention consists in a therapeutic composition comprising at least one compound of the fourth aspect of the present invention and a pharmaceutically acceptable carrier or diluent.
- In a sixth aspect, the present invention consists in a method of treating or ameliorating the symptoms of a condition involving elevated levels of unesterified arachidonic acid or products of arachidonic acid metabolism in a subject, the method comprising administering to the subject a therapeutic amount of a compound of the fourth aspect of the present invention.
- In a seventh aspect, the present invention consists in a method of treating an infection or an inflammatory disease (eg as listed with respect to the third aspect if the invention) in a subject, the method comprising administering to the subject a therapeutic amount of a compound of the fourth aspect of the present invention.
- In order that the nature of the present invention may be more clearly understood, preferred forms thereof will now be described with reference to the following examples.
- (1) Synthesis of Nitroalkanes/Nitroalkenes (Lx1 to Lx5)
- The first target compounds were a series of nitro compounds with chain lengths of 18 to 2:2 carbons and 3 to 5 double bonds, being prepared by modification of commercially available polyunsaturated fatty alcohols. Since the unsaturated alcohols are relatively expensive to obtain, stearyl alcohol was used as the starting material for establishing synthetic methods.
- The synthesis of nitroalkanes/nitroalkenes[15] Lx1 to Lx5 is summarised in
Scheme 1.
Stearyl alcohol 1a was converted to stearyl bromide 2a by treatment with triphenyl phosphine (PPh3) and carbon tetrabromide (CBr4) in dichoromethane overnight at room temperature. After purification by flash chromatography on silica gel, stearyl bromide 2a was obtained in 96% yield. Treatment at the stearyl bromide with silver nitrate in ether afforded stearyl nitrate 4a in low yield (<10%). Attempts to improve the yield of the nitroalkane 4a from this procedure by extending reaction time and increasing the amount of silver nitrate used were unsuccessful and so conversion of the bromide to the nitroalkane via the iodide was investigated. Conversion of stearyl bromide 2a to the corresponding iodide 3a was achieved in the yields of >90% as estimated by the 1H NMR spectrum of crude reaction mixture. Stearyl iodide 3a was converted in situ to stearyl nitrate 4a, by treatment with silver nitrate in ether for 3 days at room temperature, and the product, stearyl nitrate 4a, was obtained in 65% yield. Based on this approach, nitroalkenes 4be were synthesised and fully characterised (Scheme 1).
(2) Synthesis of γ-nitroalkanoic and γ- nitroalkenoic Acids [6a (Lx6) and 6b (Lx7)] - The synthetic nitroalkane and nitroalkene (Lx1 and Lx4) were further used as starting material for synthesis of γ-nitroalkanoic and γ-nitroalkenoic acids (Lx6 and Lx7). The γ-nitroalkanoic and γ-nitroalkenoic acid esters 3a and 5b were produced by Michael addition of the respective nitroalkane and nitroalkene 4a and 4b to methyl acrylate. The esters were then hydrolysed to give the γ-nitroalkanoic and γ-nitroalkenoic acids 6a and 6b (Scheme 2):
- A published method[16] for the synthesis of short chain γ-nitroalkanoic acid esters was investigated for synthesis of the long chain acid ester 5a. The nitroalkane 4a was treated with methyl acrylate in a two phase system of water and dichloromethane in the presence of sodium hydroxide at room temperature for 24 hours. No reaction occurred under these conditions and a modification was then made where tetrabutylammonium iodide (TBAI), a phase transfer catalyst, was introduced into the reaction to improve the solubility of the base in the organic phase. With this change, a small amount of the expected product was detected by 1H NMR analysis of the crude reaction residue. The yield of γ-nitroalkanoic acid ester 5a was further improved (reaching 69% yield) by increasing the relative amount to 3:1 (for methyl acrylate nitroalkane) and by increasing the reaction temperature to 50° C. The γ-nitroalkanoic acid ester 5a was hydrolysed by treatment with either 1.5M lithium hydroxide in dimethoxyethane (DME) or aluminium tribromide in tetrahydrothiophene (THT) at room temperature to afford the γ-nitroalkanoic acid 6a in 98% yield. The unsaturated nitroalkenoic acid 6b was generated in similar yield using the same method, and both 6a and 6b were fully characterised.
- (3) Synthesis of α,α-dipropanate Nitroalkane and Nitroalkene [8a (Lx8) and 8b (Lx9)]
- Multiple Michael addition to primary nitroalkanes can lead to the production of multiply substituted nitroalkanes.[17] Based on this, α,α-dipropanate ester nitroalkane and nitroalkene 7a and 7b were prepared by Michael addition of the nitroalkane and nitroalkene 4a and 4b to methyl acrylate in the presence of 1,8-diazabicyclo [5,4,0] undec-7-ene (DBU) as a strong base. The resulting diesters 7a and 7b were converted to the corresponding dicarboxylic acids 8a and 8b by lithium hydroxide hydrolysis (78-80% yield) (Scheme 3):
(4) Synthesis of α,β-unsaturated Nitroalkenes (11a and 11b) -
- Fatty alcohol 1a was oxidised by pyridinium chlorochromate (PCC) in dichloromethane at room temperature to yield corresponding aldehyde 9a.[18] β-hydroxy nitroalkane can be efficiently obtained by nitroaldol reaction,[19] and in this case, the aldehyde 9a reacted with nitromethane in ether, with Amberlyst A-21 as a heterogeneous basic catalyst, generating the β-hydroxy nitroalkanes in 89% yield after purification. Dehydration of β-hydroxy nitroalkane 10a[20] was undertaken by mixing with 1 equivalent of methanesulfonyl chloride (CH3SO2Cl) and 4 equivalents of triethylamine in dry dichloromethane at 0° C. The 1H NMR spectrum of the residue indicated that the products were a mixture of conjugated and nonconjugated nitro compounds. In subsequent experiments, this reaction was monitored by TLC from 5 mins to 2.5 hours. The result showed that only the conjugated product 11a could be seen at 5 mins, and after 10 mins of reaction, the nonconjugated product 12a showed up and it became predominant after 2 hrs reaction. Although conjugated 11a and nonconjugated nitro compound 12a were distinguishable by 1H NMR and 13C NMR, and were separable by TLC, no pure samples of either compound were obtained by flash chromatography due to decomposition. A similar result was obtained for synthesis of conjugated compound 11b.
- The variation in the product distribution (11a and 12a) during reaction may be explained on the basis of kinetic versus thermodynamic control. It is possible that the nonconjugated compound 12a is thermodynamically more stable, but the formation of the conjugated product 11a is kinetically favoured over that of the nonconjugated product 12a. However, once the reaction for conjugated compound formation reached a kinetic equilibrium, formation of the nonconjugated compound will become predominant because of its higher thermodynamic stability. However, further work is needed to elucidate this.
- (5) Synthesis of α-nitro Acids 13a
-
- When 1-nitropropane was used as the starting material, the 1H NMR of the residue obtained after workup indicated formation of the corresponding α-nitro carboxylic acid. However, when the long chain nitroalkane 4a was used as the starting material, the expected α-nitro acid product 13a was not detected in the crude reaction mixture. The lack of reaction for stearyl nitrite may be attributed to poor solubility of stearyl nitrite in MMC solution.
-
- Using this scheme, the saturated nitro acid ester 13a was obtained in 25% yield from the corresponding nitroalkane 4a. Treatment of the ester 14a with lithium hydroxide in dimethoxyethane (DME) did not give rise to the desired acid 13a. The nitroalkane 4a, however, was isolated as the sole product of this reaction. This result can be explained as illustrated in Scheme 7.
- It has been reported[22] that free α-nitroacetic acid and its dianion salt are quite stable at room temperature, but that the monoanion salt decarboxylates rapidly at room temperature. The failure in generating the α-nitropropanoic acid is then likely due to decarboxylation of the monoanion in the basic reaction medium.
- (6) Synthesis of Hydroxy and Hydroperoxy Derivatives of Compound 6b
- Synthesis of hydroxy and hydroperoxy products of compound 6b was based on
Scheme 8. Pure compound 17 was obtained in the yield of 32%. Compound 16 was relatively unstable, but the product with 90% purity was obtained by column chromatography at 0° C., and was used for investigation of its inhibitory effect on 15-LO catalysed oxidation of arachidonic acid.
(7) Synthesis of Polyunsaturated Nitroalkanes and Nitro-Substituted Fatty Acids. - The polyunsaturated fatty alcohols 1b-e and the saturated analogue, octadecanol 1a, are commercially available and were used as starting materials. Their treatment with triphenylphosphine and carbon tetrabromide according to the method of Hayashi et al.(23) afforded the corresponding bromides 2a-e. Short chain bromoalkanes react with silver nitrite to give nitroalkanes(24) but the bromides 2a-e were inert to such treatment. Instead, they were first treated with sodium iodide to give the iodides 3a-e, which were used without purification and converted to the nitroalkanes 4a-e, respectively.
- In order to prepare nitro-substituted fatty acids, a variety of reactions of nitroalkanes were investigated. Carboxylation using the method of Finkbeiner et al.(25) was examined. Accordingly reaction of 1-nitropropane with magnesium methyl carbonate afforded 2-nitrobutanoic acid, but 1-nitrooctadecane (4a) was recovered unchanged when treated under the same conditions. Apparently the aliphatic chain prevents reaction in the latter case. 1-Nitrboctadecane (4a) was treated with butyl lithium then methyl chloroformate(26) to give methyl 2-nitrononadecanoate. However, all attempts to hydrolyse this material to give 2-nitrononadecanoic acid failed, the reactions instead affording the nitroalkane 4a.
- This product (ie nitroalkane 4a) may be attributed to rapid decarboxylation of the monoanion of 2-nitrononadecanoic acid, since the analogous process has been reported for 2-nitroacetic acid.(27) Given that this decarboxylation would be expected to affect the integrity of 2-nitrocarboxylic acids physiological studies at near neutral pH, the synthesis of compounds of this type was not further pursued.
- The nitroalkane 4a was inert when treated with butyl lithium and α-haloacetates, indicating that long chain 3-nitrocarboxylates could not be prepared using this approach. However, the nitroalkanes 4a,b reacted with sodium hydroxide and methyl acrylate(28) in the presence of tetrabutylammonium iodide(29) to give the γ-nitroesters 5a,b, which were hydrolysed using lithium hydroxide to afford the corresponding nitroacids 6a,b. Using 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) as the base, in place of sodium hydroxide, the nitroalkanes 4a,b reacted by sequential Michael additions with methyl acrylate to give the diesters 7a,b, which hydrolysed to the nitrodiacids 8a,b.
- To obtain substituted nitroalkanes, the alcohols 1a,b were oxidised to the corresponding aldehydes 9a,b using pyridinium chlorochromate.(30) Henry condensation(31) of these compounds with nitromethane in the presence of Amberlyst A-21(32) afforded the 2-hydroxynitroalkanes 10a,b which reacted with methanesulfonyl chloride and triethylamine(33) to give the corresponding α,β-unsaturated nitroalkanes. Unfortunately it was not possible to isolate pure samples of these analogues of α,β-unsaturated fatty acids, because they equilibrated with the corresponding β,γ-unsaturated nitroalkanes and the mixtures of isomers decomposed on chromatography.
- The reactions described above were carried out under nitrogen and in the dark. After purification the compounds were stored at −30° C. under nitrogen. By taking these precautions there were no complications from isomerisation or autoxidation of the methylene-interrupted polyenes. Such reactions result in the formation of conjugated dienes and none of the compounds showed absorption at 234 nm which is characteristic of this structural feature.(3-4)
- Experimental
- Octadecan-1-ol (1a) was obtained from Aldrich Chemical Co. Arachidonyl alcohol (1b), linolenyl alcohol (1c), gamma linolenyl alcohol (1d) and docosahexaenyl alcohol 1e were purchased from Nu-Chek Prep. Inc. (Elysian, Minn., USA).
- 1-Bromooctadecane (2a); Typical Procedure
- Octadecan-1-ol (1a) (520 mg, 1.92 mmol) and Ph3P (550 mg, 2.10 mmol) were dissolved in CH2Cl2 (25 mL). The mixture was cooled in an ice bath and CBr4 (630 mg, 1.90 mmol) was added with stirring. The mixture was allowed to warm to r.t. and was stirred overnight, then it was concentrated under a stream of N2 and the residue was subjected to flash column chromatography on silica, eluting with hexane, to afford 1-bromooctadecane (2a) (605 mg, 96%) as a waxy solid; mp 26-28° C. IR (KBr): ν=2920 (s), 2848 (s), 1468 (s), 1378 (w), 1254 (w), 1144 (m), 720 (m), 658 (s) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.87 (t, 3H, J=6.7 Hz, C18-H3), 1.25-1.32 [m, 30H, (C3-17)-H2)], 1.82-1.85 (m, 2H, C2-H2), 3.40 (t, 2H, J=6.8 Hz, C1-H2). 13C NMR (CDCl3, 300 MHz): δ=14.7, 23.2, 28.7, 29.3, 29.9, 30.0, 30.1, 30.1(6), 30.2(3), 32.5, 33.4, 34.6. MS (EI): m/z (%)=334 (M+, 8), 332 (M+, 10), 253 (25),151 (27), 149 (28), 137 (67), 135 (69), 113 (19), 97 (30), 85 (50), 71 (70), 57 (100). HRMS: m/z calcd for C13H37Br 334.2058 (M+) and 332.2078 (M+). Found: 334.2070 and 332.2086.
- (all-Z)-1-Bromo-5,8,11,14-eicosatetraene (2b)
- From arachidonyl alcohol (1b) (740 mg, 2.54 mmol), using the procedure described above for preparation of 1-bromooctadecane (2a), (all-Z)-1-bromo-5,8,11,14-eicosatetraene (2b) (826 mg, 93%) was obtained as a colourless oil. IR (film): ν=3012 (s), 2958 (s), 2927 (s), 2856 (s), 1653 (m), 1456 (m), 1394 (m), 1251 (m), 1199 (w), 1041 (m), 915 (w), 807 (w), 715 (s) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.89 (t, 3H, J=6.8 Hz, C20-H3), 1.29-1.38 (m, 6H, C17-H2, C18-H2, C19-H2), 1.47-1.56 (m, 2H, C3-H2), 1.83-1.93 (m, 2H, C2-H2), 2.03-2.14 (m, 4H, C4H2, C16-H2), 2.80-2.83 (m, 6H, C7-H2, C10-H2, C13-H2), 3.42 (t, 2H, J=6.8 Hz, C1-H2), 5.30-5.41 (m, 8H, C5-H, C6-H, C8-H, C9-H, C11-H, C12-H, C14-H, C15-H). 13C NMR (CDCl3, 300 MHz): δ=14.7, 23.2, 26.2, 26.9, 27.8, 28.7, 29.9, 32.1, 329, 34.3, 128.1, 128.4, 128.7 (2C), 129.0, 129.1, 129.9, 131.1. MS (EI): m/z (%)=354 (M−, 5), 352 (M+, 6), 283 (8), 281 (8), 256 (15), 254 (15), 216 (25), 214 (25), 150 (34), 119 (29), 105 (36), 93 (53), 91 (56), 79 (100), 67 (75). HRMS: m/z calcd for C20H33Br 354.1745 (M+) and 352.1766 (M+). Found: 354.1748 and 352.1772. Anal. Calcd for C20H33Br: C, 67.98; H, 9.41. Found: C, 68.05; H, 9.28.
- (Z,Z,Z)-1-Bromo-9,12,15-octadecatriene (2c)
- From linolenyl alcohol (1c): (102 mg, 0.39 mmol), using the procedure described above for preparation of 1-bromooctadecane (2a), (Z,Z,Z)-1-bromo-9,12,15-octadecatriene (2c) (118 mg, 93%) was obtained as a colourless oil. IR (film): ν=3001 (s), 2960 (s), 2920 (s), 2850 (s), 1460 (m), 1430 (m), 1395 (w), 1270 (w), 720 (w) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.98 (t, 3H, J=7.5 Hz, C18-H3), 1.30-1.45 (m, 10H, C3-H2, C4-H2, C5-H2, C6-H2, C7-H2), 1.81-1.88 (m, 2H, C2-H2), 2.03-2.11 (m, 4H, C8-H2, C17-H2), 2.80-2.83 (m, 4H, C11-H2, C14-H2), 3.41 (t, 2H, J=6.8 Hz, C1-H2), 5.30-5.42 (m, 6H, C9-H, C10-H, C12-H, C13-H, C15-H, C16-H). 3C NMR (CDCl3, 300 MHz): δ=14.9, 21.1, 26.1, 26.2, 27.8, 28.7, 29.3, 29.8, 29.9, 30.2, 33.4, 34.6, 127.7, 128.3, 128.8 (2C), 130.8, 132.5. MS (EI): m/z (%)=328 (M+, 14), 326 (M+, 14), 272 (42), 270 (41), 149 (13), 135 (28), 121 (33), 108 (92), 95 (53), 79(100), 67(7I) 55 (59) Anal. Calcd for C15H31Br: C, 66.05; H, 9.54. Found: C, 65.82; H, 9.32.
- (Z,Z,Z)-1-Bromo-6,9,12-octadecatriene (2d)
- From garmma linolenyl alcohol (1d) (143 mg, 0.54 mmol), using the procedure described above for preparation of 1-bromooctadecane (2a), (Z,Z,Z)-1-bromo-6,9,12-octadeca-triene (2d) (170 Mg, 96%) was obtained as a colourless oil. IR (film): ν=3002 (s), 2950 (s), 2920 (s), 2850 (s), 1460 (s), 1378 (w), 1260 (w), 715 (m) 648 (m) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.89 (t, 3H, J=6.8 Hz, C18-H3), 1.29-145 (m, 10H, C3-H2, C4-H2, C15-H2, C16-H2, C17-H2), 1.82-1.91 (m, 2H, C2-H2), 2.02-2.17 (m, 4H, C5-H2, C14-H2), 2.79-2.83 (m, 4H, C8-H2, C11-H2), 3.40 (t, 2H, J=6.7 Hz, C1-H2), 5.30-5.41 (m, 6H, C6-H, C7-H, C9-H, C10-H, C12-H, C13-H). 13C NMR (CDCl3, 300 MHz): δ=14.7, 23.2, 26.2, 27.6, 27.8, 28.4, 29.3, 29.9, 32.1, 33.3, 34.5, 128.2, 128.6(5), 128.7(1), 129.0, 130.3, 131.0. MS (EI): m/z (%)=328 (M+, 10), 326 (M+, 8), 230 (49), 228 (50), 150 (66), 135 (15), 121 (25), 107 (32), 93 (59), 79 (100), 67 (95), 55 (64). HRMS: m/z calcd for C18H31Br 328.1589 (M+) and 326.1609 (M+). Found: 328.1592 and 326.1611.
- (all-Z)-Bromo-4,7,10,13,16,19-docosahexaene (2e)
- From docosahexaenyl alcohol 1e (201 mg, 0.64 mmol), using the procedure described above for preparation of 1-bromooctadecane (2a), (all-Z)-1-bromo-4,7,10,13,16,19-docosahexaene (2e) (221 mg, 92%) was obtained as a colourless oil. IR (film): ν=3008 (s), 2960 (s), 2928 (s), 2868 (s), 1650 (m), 1434 (s), 1392 (s), 1348 (w), 1322 (w),1266 (s), 1244 (s), 1068 (m), 1044 (m), 928 (m), 714 (s) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.98 (t, 3H, J=7.5 Hz, C22-H3), 1.85-2.30 (6H, C2-H2, C3-H2, C21-H2), 2.80-2.90 (m, 10H, C6-H2, C9-H2, C12-H2, C15-H2, C18-H2), 3.42 (t, 2H, J=6.6 Hz, C1-H2), 5.31-5.45 (m, 12H, C4-H, C5-H, C7-H, C8-H, C10-H, C11-H, C13-H, C14-H, C16-H, C17-H, C19-H, C20-H). 13C NMR (CDCl3, 300 MHz): δ=14.4, 20.5, 25.5, 25.6, 32.5 33.2, 127.0, 127.8(5), 127.9(4), 128.0(6), 128.1(1) (2C), 128.1(8) (2C), 128.2(4), 128.6, 129.5, 132.0. MS (EI): m/z (%)=378 (M+, 10), 376 (M+, 10), 349 (20), 347 (20), 309 (46), 307 (53), 244 (75), 242 (74), 227 (49), 202 (30), 200 (30), 173 (12), 133 (34), 119 (45), 108 (50), 91 (65), 79 (100), 67 (66). HRMS: m/z calcd for C22H33Br 378.1745 (M+) and 376.1766 (M+). Found: 378.1742 and 376.1760.
- 1-Nitrooctadecane (4a); Typical Procedure
- To a solution of 1-bromooctadecane (2a) (480 mg, 1.44 mmol) in dry acetone (25 mL) at r.t. was added NaI (430 mg 2.87 mmol). The mixture was stirred at r.t. overnight, then the solvent was removed in vacuo. The residue was mixed with 25 mL of sat. aq sodium bisulfite and then the mixture was extracted with Et2O (3×25 mL). The combined extracts were dried (Na2SO4) and the solvent was removed in vacuo. The residue (502 mg) was dissolved in anhyd Et2O and AgNO2 (406 mg, 2.64 mmol) was added. After 3 days of stirring, the mixture was filtered through a bed of celite and the filtrate was evaporated under a stream of dry N2. The residue was subjected to flash column chromatography on silica (Et2O/hexane, 5/95) to give crude iodide 3a (97 mg) and 1-nitrooctadecane (4a) (220 mg, 51%) as a white solid; mp 4142° C. IR (film): ν=2934 (s), 2919 (s), 2850 (s), 1563 (s), 1470 (m), 1385 (w), 1147 (w), 742 (w), 720 (m), 650 (w) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.88 (t, 3H, J=6.6 Hz, C18-H3), 1.25-1.34 [m, 30H, (C3-C17)-H2], 1.96-2.05 (m, 2H, C2-H2), 4.38 (t, 2H,=7.1 Hz, C1-H2). 13C NMR (CDCl3, 300 MHz): δ=14.7, 23.3, 26.7, 28.0, 29.4, 29.8, 29.9, 30.0, 30.1, 30.2, 30.3, 32.5, 76.3. MS (EI): m/z (%)=299 (M+, <1), 282 (4), 264 (20), 252 (7), 238 (7), 224 (7), 210 (5), 196 (4), 154 (5), 139 (7), 125 (20), 111 (40), 97(74), 83 (87), 69(95), 57(100), 55 (96). Anal. Calcd for C18H37NO2: C, 72.19; H, 12.45; N, 4.68. Found: C, 72.33; H, 12.77; N, 4.57.
- (all-Z)-1-Nitro-5,8,11,14-eicosatetraene (4b)
- According to the procedure described above for preparation of 1-nitrooctadecane (4a), (all-Z)-1-bromo-5,8,11,14-eicosatetraene (2b) (782 m, 2.21 mmol) gave crude iodide (3b) (71 mg) and (all-Z)-1-nitro-5,8,11,14-eicosatetraene (4b) (397 mg, 56%) as a colourless oil. IR (film): ν=3013 (s), 2957 (s), 2928 (s); 2857 (s), 1648 (w), 1555 (s), 1457 (m), 1435 (m), 1381 (s), 1267 (w), 1106 (w), 1047 (w), 969 (w), 914 (w), 716 (m) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.89 (t, 3H, J=6.8 Hz, C20-H3), 1.20-1.51 (m, 8H, C3-C2, C17-H2, C18-H2, C19-H2), 1.99-2.16 (m, 6H, C2-H2, C4-H2, C16-H2), 2.79-2.86 (m, 6H, C7-H2, C10-H2, C13-H2), 4.39 (t, 2H, J=7.0 Hz, C1-H2), 5.32-5.43 (m, 8H, C5-H, C6-H, C8-H, C9-H, C11-H, C12-H, C14-H, C15-H). 13C NMR (CDCl3, 300 MHz): δ=14.6, 23.1, 26.2, 26.7, 26.9, 27.5, 27.8 29.9, 32.1, 76.1, 128.1, 128;4, 128.5, 128.9, 129.2 (2C), 129.6, 131.1. MS (EI): m/z (%)=319 (M+, 6), 302 (14), 220 (27), 205 (15), 190 (11), 181 (24), 177 (20), 164 (25),150 (41),119 (48),105 (63), 91 (90), 79 (100), 67 (97), 55 (77). Anal. Calcd for C20H33NO2: C, 75.19; H, 10.41; N, 4.38. Found: C, 74.92; H, 10.40; N, 4.43.
- (Z,Z,Z)-1-Nitro-9,12,15-octadecatriene (4c)
- Following the procedure described above for preparation of 1-nitrooctadecane (4a), (Z,Z,Z)-1-bromo-9,12,15-octadecatriene (2c) (79 mg, 0.24 mmol) gave crude iodide 3c (12 mg) and (Z,Z,Z)-1-nitro-9,12,15-octadecatriene (4c4 (37 mg, 53%) as a colourless oil. IR (film): ν=3011 (s), 2962 (s), 2929 (s), 2856 (s), 1652 (w), 1554 (s), 1463 (m), 1435 (m), 1383 (m), 1268 (w), 1148 (w), 1069 (w), 968 (m), 912 (w), 724 (m), 614 (w) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.98 (t, 3H, 7.5 Hz, C18-H3), 1.25-1.33 (m, 10H, C3-H2, C4-H2, C5-H2, C6-H2, C7-H2) 1.97-2.06 (m, 6H, C2-H2, C8-H2, C17-H2), 2.79-2.81 (m, 4H, C11-H2, C14-H2), 4.37 (t, 2H, J=7.1 Hz, C1-H2), 5.36-5.40 (m, 6H, C9-H, C10-H, C12-H, C13-H, C15-H, C16-H). 13C NMR (CDCl3, 300 MHz): δ=14.9, 21.1, 26.1, 26.2, 26.8, 27.7, 28.0, 29.4, 29.6, 29.7, 30.1, 76.3, 127.7, 128.4, 128.8, 128.9, 130.7,132.5. MS (EI): m/z (%)=293 (M+, 24), 276 (14), 264 (5), 246 (5), 237 (32), 224 (17), 135 (26), 121 (35),108 (63), 95 (84), 93 (75), 91 (69), 79 (100), 67 (95). Anal Calcd for C18H31NO2: C, 73.67; H, 10.65; N, 4.77. Found: C, 73.69; H, 10.57; N, 4.85.
- (Z,Z,Z)-1-Nitro-6,9,12-octadecatriene (4d)
- Following the procedure described above for preparation of 1-nitrooctadecane (4a), (ZZZ)-1-bromo-6,9,12-octadecatriene (2d) (122 mg, 0.37 mmol) gave crude iodide 3d (15 mg) and (Z,Z,Z)-1-nitro-6,9,12-octadecatriene (4d) (56 mg, 51%) as a colourless oil. IR (film): ν=3012 (s), 2956 (s), 2928 (s), 2858-(s), 1652 (m), 1555 (s), 1464 (s), 1435 (s), 1382(s), 1266 (m), 1159 (w), 1067 (w), 1040 (w), 970 (w), 914 (w), 720 (s), 614 (w) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.88 (t, 3H, J=7.1 Hz, C18-H3), 1.29-1.43 (m, 10H, C3-H2, C4-H2, C15-H2, C16-H2, C17-H2), 2.01-2.08 (m, 6H, C2-H2, C5-H2, C14-H2), 2.78-2.82 (m, 4H, C8-H2, C11-H2), 4.38 (t, 2H, J=7.1 Hz, C1-H2), 5.34-5.40 (m, 6H, C6-H, C7-H, C9-H, C10-H, C12-H, C13-H). 13C NMR (CDCl3, 300 MHz): δ=14.7, 23.2, 26.2, 26.4, 27.4, 27.8, 27.9, 29.4,. 29.9, 32.1, 76.2, 128.1, 128.5, 129.0 (2C), 129. 9, 131.0. MS (EI): m/z (%)=293 (M+, 31), 276 (25), 258 (12), 246 (4), 222 (7), 195 (72), 150 (36), 137 (18), 105 (25), 91 (84), 81 (80), 80 (79), 79 (100), 67 (82), 55 (60). Anal. Calcd for C18H31NO2: C, 73.67; H, 10.65; N, 4.77. Found: C, 73.56; H, 10.56; N, 4.74.
- (all-Z)-1-Nitro-4,7,10,13,16,19-docosahexaene (4e)
- Following the procedure described above for preparation of 1-nitrooctadecane (4a), (all-Z)-1-bromo4,7,10,13,16,19-docosahexaene (2e) (165 mg, 0.44 mmol) gave crude iodide 3e (27 mg) and (all-Z)-1-nitro-4,7,10,13,16,19-docosahexaene (4e) (80 mg, 53%) as a colourless oil. IR (film): ν=3014 (s), 2962 (s), 2926 (s), 2873 (s), 2854 (s), 1653 (m), 1554 (s), 1434 (s), 1381 (s), 1352 (m), 1267 (m), 1069 (w), 917 (w), 712 (s), 611 (w) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.98 (t, 3H, J=7.6 Hz, C22-H3), 2.05-2.23 (m, 6H, C2-H2, C3-H2, C21-H2), 2.78-2.85 (m, 10H, C6-H2, C9-H2, C12-H2, C15-H2, C18-H2), 4.38 (t, 2H, J=6.7 Hz, C1-H2), 5.31-5.47 (m, 12H, C4-H, C5-H, C7-H, C8-H, C10-H, C11-H, C13-H, C14-H, C16-H, C17-H, C19-H, C20-H). 13C NMR (CDCl3, 300 MHz): δ=14.8, 21.1, 24.4, 26.1, 26.2, 27.7, 75.4, 127.6, 128.3, 128.4, 128.5(5), 128.6(0), 128.9 (3C), 129.1, 129.2, 130.9, 132.6. MS (EI): m/z (%)=343 (M+, 10), 326 (59), 314 (21), 274 (44), 215 (55), 207 (42), 167 (16), 145 (18), 131 (16), 119 (36), 105 (48), 91 (77), 79 (100), 67 (78), 55 (42). Anal. Calcd for C22H33NO2: C, 76.92; H, 9.68; N, 4.08. Found: C, 76.52; H, 9.87; N, 4.26.
- Methyl 4-Nitroheneicosanoate (5a); Typical Procedure
- A solution of NaOH (136 mg, 3.4 mmol) and Bu4NI (158 mg, 0.43 mmol) in water (10 mL) was added to a solution of 1-nitrooctadecane (4a) (510 mg, 1.70 mmol) and methyl acrylate (442 mg, ;.13 mmol) in CH2Cl2 (10 mL) at r.t. The mixture was stirred and heated at reflux for 24 h, then it was cooled and the layers were separated. The organic phase was washed with water (2×25 mL) and dried with Na2SO4. The solvent was evaporated and the residue was subjected tq flash column chromatography on silica (Et2O/hexane, 5/95), giving methyl 4-nitroheneicosanoate (5a) (498 mg, 76%) as a waxy solid. . IR (Nujol): ν=2924 (s), 2853 (s), 1744 (s), 1554 (s), 1466 (m), 1439 (m), 1367 (m), 1201 (m), 1175 (m), 1120 (m), 829 (w), 722, (w) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.87 (t, 3H, J=6.7 Hz, C21-H3), 1.19-1.25 [m, 30H, (C6-C20)-H2], 1.69-1.78 (m, 1H), 1.92-2.30 (m, 3H), 2.32-2.40- (m, 2H, C2-H2), 3.69 (s, 3H, OCH3), 4.50-4.59 (m, 1H, C4-H). 13C NMR (CDCl3, 300 MHz): δ=14.7, 23.3, 26.2, 29.2, 29.5, 29.8, 29.9, 30.0, 30.1, 30.2, 30.3,30.5, 32.5,34.5, 52.5,88.4, 173.0. MS (EI): m/z (%)=386 [(M+1)+, 25], 368 (12), 354 (18), 339 (20), 305 (24), 287 (28), 263 (18), 221 (15), 193 (10), 179 (15), 165 (21), 151 (26), 137 (31), 123 (36), lll (52), 97 (76), 83 (86), 69 (88), 55 (100). HRMS: m/z calcd for C22H44NO4 386.3270 (M+H)+. Found 386.3275. Anal. Calcd for C22H43NO4: C, 68.53; H, 11.24; N, 3.63. Found: C, 68.39; H, 11.53; N, 3.50.
- Methyl (all-Z)-4-Nitrotricosa-8,11,14,17-tetraenoate (5b)
- Following the procedure described above for preparation of methyl 4-nitroheneicosanoate (5a), (all-Z)-1-nitro-5,8,11,14eicosatetraene (4b) (650 m&g 2.03 mmol) gave methyl (all-Z)-4-nitrotricosa-8,11,14,17-tetraenoate (5b) (594 mg, 72%) as a colourless oil. IR (film): ν=3065 (w), 3013(m), 2956 (s), 2930 (s), 2859 (m), 1737(s), 1552 (s), 1439 (m), 1363 (w), 1267 (w), 1263 (w), 1259 (w), 1204 (m), 1178 (m), 981 (w) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.88 (t, 3H, J=6.8 Hz, C23-H3), 1.24-1.45 (m, 8H, C6-H2, C20-H2, C21-H2, C22-H2), 1.70-1.81 (m, 1H), 1.91-2.27 (m, 7H), 2.32-2.40 (m, 2H, C2-H2), 2.73-2.83 (m, 6H, C10-H2, C13-H2, C16-H2), 3.68 (s, 3H, OCH3), 4.51-4.58 (m, 1H, C4-H), 5.29-5.44 (m, 8H, C8-H, C9-H, C11-H, C12-H, C14H, C15-H, C17-H, C18-H). 13C NMR (CDCl3, 300 MHz): δ=14.7, 23.1, 26.1, 26.2, 26.9, 27.8, 29.2, 29.9, 30.3, 30.5, 32.1, 33.9, 52.5, 88.2, 128.1, 128.4, 128.6, 128.9, 129.2 (2C), 129.6, 131.1, 172.9. MS (EI): m/z (%)=405 (M+, 7), 374 (8), 359 (5), 327 (4), 307 (15), 294 (6), 267 (4), 229 (5), 215 (10), 190 (13), 177 (27), 164 (33), 150 (36), 147 (24), 131 (35), 119 (43), 105 (54), 91 (70), 79 (93), 67 (100), 55 (56). HRMS: m/z calcd for C24H39NO4 405.2879 (M+). Found 405.2870. Anal. Calcd for C24H39NO4: C, 71.08; H, 9.69; N, 3.45. Found: C, 71.50; H, 10.03; N, 3.34.
- 4-Nitroheneicosanoic Acid (6a); Typical Procedure
- Methyl 4-nitroheneicosanoate (5a) (147 mg, 0.38 mmol) was dissolved in 1,2-dimethoxyethane (DME) (2 mL) and sat. aq LiOH solution (2 mL) was added. The mixture was left for 24 h, then it was acidified with dilute HCl (10%, 10 mL) and the mixture was extracted with EtOAc (2×10 mL). The extracts were concentrated under a stream of dry N2 and the residue was subjected to flash column chromatography on silica (Et2O/hexane, 100/20, then Et2O/hexane/HOAc, 60/40/1) to afford 4-nitroheneicosanoic acid (6a) (121 mg, 85%) as a white solid; mp 53-56° C. IR (KBr): ν=3500-2600 (br), 2955 (m), 2919 (s), 2849 (s), 1698 (s), 1615 (w), 1543 (s), 1467 (m), 1445 (m), 1413 (w), 1360 (w), 1334 (w), 1266 (w), 923 (w), 827 (w), 723 (w), 612 (w) cm−1. 1H -NMR (CDCl3, 300 MHz): δ=0.87 (t, 3H, J=7.1 Hz, C21-H3), 1.20-1.28 [m, 30H, (C6-C20)-H2], 1.69-1.78 (m, 1), 1.98-2.30 (m, 3H), 2.39-2.48 (mn, 2H, C2-H2), 4.53-4.60 (m, 1H, C4-H). 13C NMR (CDCl3, 300 MHz): δ=14.7, 23.3, 26.2, 28.8, 29.5, 29.8, 29.9, 30.0, 30.1, 30.2(6), 30.3(3), 32.5, 34.4, 88.2, 177.5. MS (CI): m/z=389.3 (M+NH4)+. MS (EI): m/z (%)=354 [(M−OH)+, 2], 323 (19), 321 (19), 305 (17), 287 (14), 263 (12), 236 (5),221 (9), 193 (10), 179 (15), 165 (15), 151 (17), 137 (20), 125 (25), 110 (73), 97 (100), 83 (64), 69 (64), 55 (73). HRMS: m/z calcd for C21H40NO3 354.3008 (M−OH)+. Found 354.3006. Anal. Calcd for C21H41NO4: C, 67.88; H, 11.12; N, 3.77. Found: C, 67.58; H, 11.08; N, 3.81.
- (all-Z)-4-Nitrotricosa-8,11,14,17-tetraenoic Acid (6b)
- Following the procedure described above for preparation of 4-nitroheneicosanoic acid (6a), methyl (all-Z)-4-nitrotricosa-8,11,14,17-tetraenoate (5b) (230 mg, 0.57 mmol) gave (all-Z)-4-nitrotricosa8,11,14,17-tetraenoic acid (6b) (207 mg, 93%) as a colourless oil. IR (film): ν=3611-3317 (br), 3013 (m), 2922 (s), 2852 (m), 2693 (m), 2361 (w), 1714 (s), 1551 (s), 1441 (s), 1379 (m), 1360 (m), 1270 (m), 1071 (m), 969 (w), 916 (m), 844 (m), 824 (w), 720 (m) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.89 (t, 3H, J=7.1 Hz, C23-H3), 1.27-1.44 (m, 8H, C6-H2, C20-H2, C21-H2, C22-H2), 1.70-1.82 (m, 1H), 1.93-2.27 (m, 7H), 2.40-2.48 (m, 2H, C2-H2), 2.78-2.86 (m, 6H, C10-H2, C13-H2, C16-H2), 4.56-4.59 (m, 1H, C4-H), 5.30-5.43 (m, 8H, C8-H, C9-H, C11-H, C12-H, C14-H, C15-H, C17-H, C18-H). 13C NMR (CDCl3, 300 MHz): δ=14.7, 23.1, 26.1, 26.2, 26.9, 27.8, 28.9, 29.9, 30.2, 32.1, 33.9, 88.1, 128.1, 128.4, 128.5, 128.9, 129.1, 129.2, 129.7, 131.1, 176.8. MS (EI): m/z (%)=391 (M+, 8), 345 (8); 320 (4), 293 (13), 280 (8), 253 (10), 203 (15), 190 (25), 177 (28), 164 (42), 130 (46), 131 (34), 1O (100), 91 (72), 79 (93), 67 (97). HRMS: m/z calcd for C23H37NO4 391.2723 (M+). Found 391.2725. Anal. Calcd for C23H37NO4: C, 70.55; H, 9.52; N, 3.58. Found: C, 70.29; H, 9.86; N, 3.43.
- Dimethyl 3-Heptadecyl-3-nitropentane-1,5-dicarboxylate (7a); Typical Procedure
- A solution containing 1-nitrooctadecane (4a) (50 mg, 0.17 mmol), methyl acrylate (88 mg, 1.02 mmol) and DBU (13 mg, 0.085 mmol) in CH2Cl2 (2 mL) was kept at r.t. for 24 h, then it was acidified with HCl (10%, 5 mL) and the mixture was extracted with CH2C2 (2×10 mL). The combined extracts were dried with Na2SO4 and concentrated, and the residue was subjected to flash column chromatography on silica (EtOAc/petroleum spirit, 15/85), to give dimethyl 3-heptadecyl-3-nitropentane-1,5-dicarboxylate (7a) (76 mg, 95%) as a colourless oil. IR (film): ν=2954 (m), 2914 (s), 2849 (s), 1744 (s), 1732 (s), 1537 (s), 1470 (s), 1458 (s) 1439 (s), 1378 (s), 1355 (s), 1319 (s), 1298 (s), 1203 (s), li80 (s), 1129 (s), 1110 (m), 1071 (m), 1022 (m), 986 (s), 894 (s), 864 (m), 842 (s), 826 (s), 807 (m), 788 (m), 717 (s), 705 (m) cm−1. 1H NMR (CDC3, 300 MHz): δ=0.88 (t, 3H, J=6.8 Hz, C17′-H3), 1.16-1.25 [m, 30H, (C2′-C16′)-H2], 1.85-1.91 (m, 2H, C1′-H2), 2.23-2.28 (m, 8H, C2-H2, C3-H2, C5-H2, C6-H2), 3.69 (s, 6H, OCH3). 13C NMR (CDCl3, 300 MHz): δ=14.7, 23.3, 24.1, 29.1, 29.8, 29.9, 30.0(5), 30.1(2), 30.3, 30.9, 32.5, 36.0, 52.5, 93.3, 173.0. MS (CI): m/z=489 (M+NH4)+. MS (EI): m/z (%)=440 [(M−OCHS)+, 9], 425 (28), 393 (100), 392 (83), 364 (19), 333 (18), 305 (14),194 (11),168 (42),138 (82),109 (35),81 (53). HRMS: m/z calcd for C25H46NO5 440.3376 (M−OCH3)+. Found 440.3379. Anal. Calcd for C26H49NO6: C, 66.21; H, 10.47; N, 2.97. Found: C, 66.63; H, 10.91; N, 2.71.
- Dimethyl 3-[(all-Z)-Nonadeca-4,7,10,13-tetraenyl]-3-nitropentane-1,5-dicarboxylate (7b)
- Following the procedure described above for synthesis of dimethyl 3-heptadecyl-3-nitropentane-1,5-dicarboxylate (7a), (all-Z)-1-nitro-5,8,11,14-eicosatetraene (4b) (96 mg, 0.30 mmol) gave dimethyl 3-[(all-Z)-nonadeca4,7,10,13-tetraenyl]-3-nitropentane-1,5-dicarboxylate (7b) (127 mg, 86%) as a colourless oil. IR (film): ν=3012 (m), 2955 (m), 2929 (m), 2857 (m), 1742 (s), 1540 (s), 1438 (m), 1379 (w), 1351 (m), 1321 (m), 1260 (m), 1200 (m), 1176 (m), 990 (w), 721 (w) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.88 (t, 3H, J=6.8 Hz, C19′-H), 1.25-1.35 (m, 8H, C2′-H, C16′-H2, C17′-H2, C18′-H2), 1.86-1.92 (m, 2H, C1′-H2), 2.03-210 (m, 4H, C3′-H2, C15′-H2), 2.25-2.37 (m, 8H, C2-H2, C3-H, C5-H2, C6-H2), 2.78-2.86 (m, 6H, C6′-H:, C9′-H2, C12′-H2), 3.69 (s, 6H, OCH3), 5.31-5.43 (m, 8H, C4′-H, C5′-H, C7′-H, C8′-H, C10′-H, C11′-H, C13′-H, C14′-H). 13C NMR (CDCl3, 300 MHz): δ=14.6, 23.1, 24.1, 26.2, 27.4, 27.8, 29.1, 29.9, 30.9, 32.1, 33.4, 52.6, 93.2, 128.1, 128.3, 128.5, 128.9, 129.1, 129.2, 129.9, 131.1, 172.9. MS (EI): m/z (%)=491 (M+, 16), 460 (72), 444 (50), 429 (28), 413 (70), 393 (42), 381 (28), 357 (36), 333 (14), 301 (50), 207 (26), 181 (32), 164 (34), 150 (40), 133 (40), 121 (50), 106 (71), 93 (86), 80 (78), 79 (100), 67 (98), 55 (60). HMRS: m/z calcd for C28H45NO6 491.3247 (M+). Found 491.3247. Anal. Calcd for C28H45NO6: C, 68.40; H, 9.22; N, 2.85. Found C, 68.77; H, 9.57; N, 2.85.
- 3-Heptadecyl-3-nitropentane-1,5-dicarboxylic Acid (8a); Typical Procedure
- Dimethyl 3-heptadecyl-3-nitropentane-1,5-dicarboxylate (7a) (138 mg, 0.29 mmol) was dissolved in DME (2 mL) and sat. aq LiOH solution (2 mL) was added. The mixture was let stand for 22 h, then, it was acidified with dilute HCl (10%, 10 mL) and extracted with EtOAc (2×10 mL). The extracts were concentrated under a stream of dry N2 and the residue was subjected to flash column chromatography on silica (EtOAc/petroleum spirit, 15/85) to afford 3-heptadecyl-3-nitropentane-1,5-dicarboxylic acid (8a) (93 mg, 90%) as a white solid; mp 102° C. IR (Nujol): ν=3600-2700 (br), 2919 (s), 2852 (s), 1740 (s), 1700 (w), 1652 (w), 1534 (s), 1467 (m), 1454 (m), 1428 (m), 1353 (w), 1323 (m), 1282 (m), 1267 (w), 1234 (m), 1224 (s), 894 (w), 834 (w), 814 (w), 721 (w) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.88 (t, 3H, J=6.8 Hz, C17′-H3), 1.17-1.30 [m, 30H, (C2′-C16′)-H2], 1.85-1.91 (m, 2H, C1′-H2), 2.26-2.40 (m, 8H, C1-H2, C2-H2, C4-H2, C5-H2). 13C NMR (CDCl, 300 MHz): δ=14.7, 23.3, 23.9, 29.1, 29.4, 29.8, 29.9(0), 29.9(3), 30.0, 30.1, 30.2, 30.3, 32.5, 37.7, 93.8, 179.2. MS (CI): m/z=461 (M+NH4)+. MS (EI): m/z (%)=426 [(M−OH)+, 1]397 (3), 379 (68), 377 (70), 359 (56), 350 (28), 332 (42), 323 (56), 305 (30), 168 (77),157 (100),138 (56), 129 (36), 111 (58), 97 (58), 81 (58), 71 (64), 57 (68). HRMS: m/z calcd for C24H44NO5 426.3219 (M−OH)+. Found 426.3229.Anal. Calcd for C24H45NO6: C, 64.98; H, 10.22; N, 3.16. Found: C, 64.55; H, 10.69; N, 2.81.
- 3-[(all-Z)-Nonadeca-4,7,10,13-tetraenyl]-3-nitropentane-1,5-dicarboxylic Acid (8b)
- Following the procedure described above for synthesis of 3-heptadecyl-3-nitropentane-1,5-dicarboxylic acid (8a), dimethyl 3-[(all-Z)-nonadeca-4,7,10,13-tetraenyl]-3-nitropentane-1,5-dicarboxylate (7b) (110 mg, 0.22 mmol) gave 3-[(all-Z)-nonadeca-4,7,10,13-tetraenyl]-3-nitropentane-1,5-dicarboxylic acid (8b) (90 mg, 88%) as a white solid; mp 50-51° C. IR (film): ν=3400-2300 (br), 3013 (s), 2955 (s), 2927 (s), 2855 (s), 2734 (m), 2630 (m), 1742 (s), 1714 (s), 1538 (s), 1439 (s), 1353 (s), 1321 (s), 1291 (s), 1231 (s), 1068 (m), 989 (m), 918 (s), 833 (s), 807 (m), 803 (m), 732 (m), 678 (m), 622 (w) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.89 (t, 3H, J=6.9 Hz, C19′-H3), 1.21-1.38 (m, 8H, C2′-H2, C16′-H2, C17′-H2, C18′-H2), 1.85-1.91 (m, 2H, C1′-H2), 2.03-2.09 (m, 4H, C3′-H2, C15′-H2), 2.26-2.38 (m, 8H, C1-H2, C2-H2, C4-H2, C5-H2), 2.77-2.86 (m, 6H, C6′-H2, C9′-H2, C12′-H2), 5.25-5.47 (m, 8H, C4′-H, C5′-H, C7′-H, C8′-H, C10′-H, C11′-H, CH13′-H, C14′-H). 13C NMR (CDCl3, 300 MHz): δ=14.7, 23.1, 23.9, 26.2, 27.2, 27.8, 29.2, 29.7, 29.9, 32.1, 36.4, 93.4, 128.1, 128.3, 128.4, 128.9 (2C), 129.2, 130.0, 131.1, 178.8. MS (EI): m/z (%)=463 (M+, 16), 446 (4), 416 (24), 397 (6), 365 (4), 343 (8), 305 (6), 278 (10), 245 (12), 231 (12), 217 (14), 203 (22), 192 (20), 177 (56), 164 (42), 157 (38), 143 (30), 138 (50), 119 (54), 106 (72), 93 (82), 91 (76), 80 (72), 79 (100), 69 (46), 67 (98), 55 (64). HRMS: m/z calcd for C26H41NO6 463.2934 (M+). Found 463.2942. Anal. Calcd for C26H41NO6: C, 67.36; H, 8.91; N, 3.02. Found: C, 67.51, H, 9.23; N, 2.92.
- Octadecanal (9a); Typical Procedure
- PCC (6 g, 27.83 mmol) was suspended in CH2Cl2 (30 mL), and octadecan-1-ol (1a) (5.02 g, 18.57 mmol) in CH2Cl2 (15 mL) was then rapidly added at r.t. The solution became briefly homogeneous before the deposition of the black insoluble reduced reagent. After 2 h, the black mixture was diluted with five volumes of anhyd Et2O, the solvent was decanted, and the black solid was washed twice with Et2O. The crude product was isolated by filtration of the organic solutions through Florisil and concentration of the filtrate under reduced pressure. Purification by flash column chromatography on silica (Et2O/hexane, 4/96) gave octadecanal (9a) (4.02 g, 81%) as a white solid; mp 43-44° C. IR (Nujol): ν=2960 (s), 2910 (s), 2850 (s), 2705 (w), 1730 (s), 1460 (s), 1375 (s), 720 (w) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.88 (t, 3H, J=6.4 Hz, C18-H2), 1.28 [m, 28H, (C4-C17)-H2], 1.58-1.65 (m, 2H, C3-H2), 2.42 (t, 2H, J=7.3 Hz, C2-H2), 9.76 (s, 1H, CHO). 13C NMR (CDCl3, 300 MHz): δ−14.7, 22.7, 23,3, 29.7, 29.9, 30.0, 30.1, 30.3, 32.5, 44.5, 203.6. MS (EI): m/z (%) 268 (M+, 4), 250 (34), 224 (17), 222 (18), 208 (6), 194 (10), 182 (8), 166 (8), 152 (10), 137(20) 124 (30), 110 (42), 96 (74), 82 (100), 71 (82), 69 (69), 57 (53), 55 (57). HRMS: m/z calcd for C18H36O 268.2766 (M+). Found: 268.2765. Anal. Calcd. for C 18H36O: C, 80.53; H, 13.51. Found: 80.46, H, 13.49.
- (all-Z)-Eicosa-5,8,11,14-tetraenal (9b)
- According to the procedure described above for preparation of octadecanal (9a), arachidonyl alcohol (1b) (402 mg, 1.38 mmol) gave (all-Z)-eicosa-5,8,11,14-tetraenal (9b) (303 mg, 76%) as a colourless oil. IR (film): ν=3005 (s), 2960 (s), 2910 (s), 2850 (s), 1730 (s), 1460 (w), 1390 (w), 1160 (w), 920 (w) cm−1. 1H NMR DCl3, 360 MHz): δ=0.89 (t, 3H, J=6.8 Hz, C20-H), 1.28-1.34 (m, 6H, C17-H2, C18-H2, C19-H2), 1.69-1.74 (m, 2H, C3-H2), 2.04-2.14 (m, 4H, C4-H2, C16-H2), 242-2.45 (m, 2H, C2-H2), 2.79-2.85 (m, 6H, C7-H2, C10-H2, C13-H2), 5.34-5.40 (m, 8H, C5-H, C6-H, C8-H, C9-H, C11-H, C12-H, C14-H, C15H), 9.78 (s, 1H, CHO). 13C NMR (CDCl, 300 MHz): δ=14.5, 22.3, 23.0, 26.1, 26.9, 27.6, 29.7, 31.9, 43.7, 127.9, 128.2, 128.4, 128.7, 129.0, 129.2, 129.5, 130.9, 202.9. MS (EI): m/z (%)=288 (M−, <1), 244 (1), 234 (1), 217 (2), 203 (3), 177 (9), 164 (13), 150 (30), 131 (12), 119 (19), 106 (59), 93 (56), 91 (64), 80 (77), 79 (100), 67 (93), 55 (43). HRMS: m/z calcd for C20H32O 288.2453 (M+). Found: 288.2449. Anal. Calcd for C20H32O: C, 83.27; H, 11.18. Found: C, 83.28; H, 11.12.
- 1-Nitrononadecan-2-ol (10a); Typical Procedure
- To a solution of octadecanal (9a) (2.22 g, 8.28 mmol) and nitromethane (1.52 g, 24.90 mmol) in anhyd Et2O (10 mL), Amberlyst A-21 (1.2 g) was added at r.t. The mixture was stirred and heated at reflux for 48 h. After removal of the Amberlyst A-21 by filtration, the filtrate was concentrated under reduced pressure. Flash column chromatography of the residue (EtOAc/petroleum spirit, 5/95) gave 1-nitrononadecan-2-ol (10a) (2.41 g, 89%) as a white solid; mp 55-56° C. IR (Nujol): ν=3500-3300 (br), 2960 (s), 2910 (s), 2850 (s), 1550 (m), 1460 (s), 1375 (s), 720 (w) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.86-0.90 (m, 3H, C19-H3), 1.26 [m, 30H, (C4-C18)-H2, 1.43-1.55 (m, 2H, C3-H2), 2.22-2.43 (bs, 1H, OH), 4.28-4.46 (m, 3H, C1-H2, C2-H). 13C NMR (CDCl3, 300 MHz): δ=14.7, 23.3, 25.7, 29.8(8), 29.9(2), 30.0, 30.1, 30.2, 30.3, 32.5, 34.3, 69.2, 81.2. MS (CI):. m/z=347 (M+NH4)+. MS (EI):, m/z (%)=311 [(M−H2O)+, 3], 294 (32), 282 (9), 276 (27), 267 (31), 250 (34), 240 (6), 222 (15), 208 (8), 194 (9), 179 (7), 165 (10), 151 (16), 137 (37), 123 (62), 109 (85), 97 (95), 95 (100), 83(100), 69 (88), 57 (92), 5; (92). HRMS: m/z calcd for C19H37NO2311.2824 (M−H2O)+. Found: 311.2831. Anal. Calcd for C19H39NO3, C, 69.25; H, 11.93, N, 4.25. Found: C, 69.54, H, 12.18, N, 4.13.
- (all-Z)-1-Nitroheneicosa-6,9,12,15-tetraen-2-ol (10b)
- According to the procedure described above for synthesis of 1-nitrononadecan-2-ol (10a), (all-Z)-eicosa-5,8,11,14-tetraenal (9b) (220 mg, 0.76 mmol) gave (all-Z)-1-nitroheneicosa-6,9,12,15-tetraen-2-ol (10b) (240 mg, 90%) as a colourless oil. IR (film): ν=3600-3300 (br), 3005 (s), 2960 (s), 2910 (s), 2850 (s), 1650 (w), 1550 (s), 1460 (m), 1440 (m), 1380 (s), 1260.(w), 910 (w), 720 (s) cm−1. 1H NMR (CDCl3, 300 MHz): δ=0.87-0.91 (m, 3H, C21-H3), 1.27-1.39 (m, 6H, C18-H2, C19-H2, C20-H2), 1.50-1.56 (m, 4H, C3-H2, C4-H2), 2.02-2.16 (m, 4H, C5-H2, C17-H2), 2.40-2.60 (bs, 1H, OH), 2.80-2.86 (m, 6H, C8-H2, C11-H2, C14-H2), 4.29-4.45 (m, 3H, C1-H2, C2-H), 5.30-5.45 (m, 8H, C6-H, C7-H, C9-H, C10-H, C12-H, C13-H, C15-H, C16-H). 13C NMR (CDCl3, 300 MHz): δ=14.5, 23.0, 25.5, 26.0, 27.1, 27.6, 29.7, 31.9, 33.5, 68.9, 81.0, 127.9, 128.2, 128.5, 128.6, 129.0, 129.1,129.5, 130.9. MS (EI): m/z (%)=349 (M+, <1), 314 (1), 251 (2), 234 (1), 217 (2), 203 (3), 177 (6), 164 (10), 150 (24),131 (13),119 (21),106 (43), 93 (57), 91 (71), 79 (100), 67 (92), 55 (48). HRMS: m/z calcd for C21H35NO3 349.2617 (M+). Found: 349.2614. Anal. Calcd for C21H35NO3: C, 72.17; H, 10.09, N, 4.01. Found: C, 72.25, H, 9.91; N, 3.64.
- Experimental
- 1H NMR and 13C NMR spectra were recorded on a Gemini 300 MHz or a Unity Inova 500 MHz spectrometers with tetramethylsilane (TMS) as the internal standard (δ 0.00 ppm). Samples were run in deuterochloroform (99.8% D) unless indicated otherwise. The following abbreviations are adopted: s (singlet); d (doublet); t (triplet); m (multiplet); dd (doublet of doublets); bs (broad singlet). J values are given in Hz.
- Infrared (IR) spectra were recorded on Perkin-Elmer 683 and 7700 infrared spectrophotometers. The following abbreviations are used: br (broad), w (weak), m (medium), s (strong).
- Ultraviolet spectra were recorded on a Shimadzu UV 2101 PC spectrophotometer with a temperature controller and kinetic software.
- Low and high resolution electron ionisation (EI) mass spectra and chemical ionisation (CI) mass spectra were run on a Fisons VG Autospec. A Fisons VG Instrument Quattro II mass spectrometer was used for negative ion electrospray mass spectra. Gas chromatography-mass spectrometry (GC-MS) was carried out with a HP 5970 mass selective detector connected to a HP 5890 gas chromatography with a 12.5 in BP-1 column.
- Melting points were determined using a Reichert microscope with a Köfler heating stage and are uncorrected. Buffers were adjusted to the required Ph using a model 520A pH meter. Microanalyses were conducted by the Microanalytical Laboratory, Research School of Chemistry, Australian National University.
- HPLC was performed using a Waters HPLC system with ultraviolet (UV) or refractive index (RI) detection. The column used contained Alltech Spherisorb octadecylsilane (ODS) (4.6 mm×250 mm, 3 μm). The mobile phase was comprised of acetonitrile (or methanol) and phosphoric acid (30 mM) solution in the ratios indicated in the text, with a flow rate of 1 ml/min.
- Column chromatography was carried out using
Merck Silicagel 60 as the absorbent. Analytical TLC was performed on Merck Silicagel 60 F254 silica on aluminium baked plates. - 15-LO was obtained from Sigma Chemical Company, and 12-LO from Cayman Chemical Company.
Arachidonic acid 1, linolenyl alcohol 57a, gamma linolenyl alcohol 57b, arachidonyl alcohol 57c and docosahexaenyl alcohol 57d, were purchased from Nu-Chek Prep. Inc. Elysian, Minn., USA. Other chemicals were commercially available from Aldrich Chemical Company. - Determination of Stability of Thia Fatty Acids and Sulfides
- Compounds 110 (4.3 mg) and 106 (6 mg) were each dissolved in 5 ml of dichloromethane and added into 250 ml one-neck flasks. Compound 18 (20 mg) and compounds 19, 108, 109 and 111-112 (14-20 mg) were each dissolved in 10 ml of dichloromethane and added into 500 ml flasks. The solvent dichloromethane was then evaporated with continuous rotation of the flasks, allowing the compounds to form thin films. The flasks were flushed with oxygen, sealed and kept in darkness. The compounds in the flasks were redissolved in chloroform-d and analysed by 1H NMR every two weeks for up to six weeks.
- Determination of Antioxidant Behaviour of 3-[(3Z,6Z)-nona-3,6-dienylthio]propionic Acid on Arachidonic Acid Autoxidation
- This is a typical autoxidation; assay designed to investigate the antioxidant properties of thia fatty acids and sulfides in the autoxidation of
arachidonic acid 1. - A stock solution in dichloromethane (2 ml) containing arachidonic acid 1 (18 mg) and 3-[(3Z,6Z)-nona-3,6-dienylthio]propionic acid 106 (18 mg) was prepared with lauric acid (18 mg) as an internal standard. Samples of the stock solution (100 μl) were added to glass Petri-dishes followed by ethanol (400 μl). After evaporation of the solvent, a well-distributed thin film was formed on each Petri-dish. The Petri-dishes were placed in a desiccator, which was then evacuated, filled with oxygen and stored in the darkness. Dishes were removed from the desiccator after 1, 2, 3, 5 and 7 days. The mixture on each dish was redissolved in diethyl ether and transferred to a 2 ml vial. After evaporation of the solvent, the residue was dissolved in the HPLC mobile phase (100 μl) and 10% of the solution was analysed by HPLC using a reverse phase column (octadecylsilane) (4.6 mm×250 mm, 3 μm) and a refractive index detector. Table 2 shows the mobile phases used for different thia fatty acids and sulfides, and their retention times by HPLC.
TABLE 2 HPLC mobile phase and retention time of thia fatty acids and sulfides Mobile phase Retention (Buffer = time (min) Retention Retention 30 mM (Arachidonic time (min) time (min) (Compound) H3PO4) acid 1) (Lauric acid) (Compound) 18 Acetonitrile- 6.53 4.23 8.75 Buffer (80:20) 19 Acetonitrile- 6.80 4.44 10.91 Buffer (80:20) 106 Acetonitrile- 14.71 7.13 3.15 Buffer (70:30) 108 Methanol- 6.71 4.00 10.74 Buffer (90:10) 109 Methanol- 6.82 4.05 9.38 Buffer (90:10) 110 Acetonitrile- 3.48 3.09 14.05 Buffer (95:5) 111 Acetonitrile- 3.38 3.05 21.57 Buffer (95:5) 112 Acetonitrile- 5.24 3.80 6.97 Buffer (90:10)
Synthesis of Analogues of 3[(all-Z)-(eicosa-5,8,11,14-tetraenyl-thio)]propionic Acid - Pent-2-ynyl p-toluenesulfonate, 102. 2-Pentyn-1-ol 101 (1.03 g, 12 mmol) was dissolved in chloroform (10 ml) and the mixture was cooled in an ice bath. Pyridine (1.90 g, 24 mmol, 2 eq) was then added, followed by p-toluenesulfonyl chloride (3.43 g, 18 mmol, 1.5 eq) in small portions with constant stirring. The reaction was complete in 4 h (monitrored by TLC). Ether (30 ml) and water (7 ml) were added and the organic layer was washed successively with 1 N HCl (7 ml), 5% NaHCO3, water (7 ml) and brine (20 ml), and then dried with Na2SO4. The solvent was removed under reduced pressure and the crude tosylate was flash column chromatographed on silica gel using ether-hexane (20:80) as the eluent to yield the title compound 102 (1.85 g, 65%) as a colourless oil. Found: C, 60.24; H, 5.93; S, 13.22., Calc. for C12H14SO3:, C, 60.48; H, 5.92; S, 13.45%. νmax (film)/cm−1 2980 (m), 2940 (w), 2878 (w), 2240 (m), 1598 (s), 1495 (w), 1450 (m), 1360 (s), 1180 (s), 1175 (s), 1095 (s), 1020 (m), 1000 (m), 960 (s), 940 (s), 840 (s), 815 (s), 735 (s), 662 (s); δH (300 MHz, CDCl3) 0.98-1.03 (3H, m, C5-H3); 2.04-2.10 (2H, m, C4-H2), 2.44 (3H, s, ArCH3), 4.69 (2H, m, C1-H2), 7.35 and 7.82 (4H, dd, J 8.3 and 8.7 ArH); δC (300 MHz, CDCl3) 12.91, 13.72, 22.22, 59.35, 71.72, 92.33, 128.69, 130.30, 133.90, 145.47; m/e (EI): 238 (M+, <0.1%), 209 (1), 155 (24), 139 (100), 129 (6), 117 (18), 107 (10), 92 (42), 91 (87), 83 (29), 66 (50) 65 (48).
- Nona-3,6-diyn-1-ol, 103. Pent-2-ynyl p-toluenesolfonate 102 (1.37 g, 5.78 mmol, 1.1 eq) was added at −30° C. under nitrogen to a well-stirred suspension in DMF (15 ml) of but-3-yn-1-ol (368 mg, 5.25 mmol, 1 eq), sodium carbonate (834 mg, 7.87 mmol, 1.5 eq), tetrabutylamorrum chloride (1.46 g, 5.25 mmol) and copper(I) iodide (1.00 g, 5.25 mmol, 1 eq). The mixture was stirred at room temperature for 48 h. Ether (30 ml) and 1M HCl (30 ml) were then added. After filtration through a bed of celite, the organic phase was washed with brine, dried over sodium sulfate and the solvent was evaporated under reduced pressure. Purification of the residue by flash column chromatography on silica gel with ether-hexane (40:60) as the eluent gave the product 103 (442 mg, 62%) as a colourless oil. Found: C, 79.55; H, 8.82., Calc. for C9H12O: C, 79.37; H, 8.88%. νmax (film)/cm−1 3650-3100 (br), 2975 (s), 2938 (s), 2905 (s), 2880 (s), 2500 (m), 1415 (m), 1375 (w), 1320 (s), 1180 (w), 1120 (w), 1040 (s), 900 (m), 735 (w); δH (300 MHz, CDCl3) 1.10 (3H, t, J 7.4, C9-H3), 1.96 (H, bs, OH), 2.13-2.20 (2H, m, C8-H2), 2.41-2.45 (2H, m, C2-H2), 3.11-3.13 (2H, m, C5-H2), 3.69 (2H, t, J 6.1, C1-H2); δC (Acetone, 300 MHz) 10.14, 13.07, 14.72, 24.03, 61.95, 75.08, 76.83, 78.46, 82.42; m/e (EI): 135 [(M−H)+, 12%], 121 (44), 107 (30), 105 (51), 103 (29), 93 (44), 91 (100), 79 (58), 77 (80), 65 (41), 63 (29), 57 (14), 53 (27), 51 (37); HRMS: found m/e 135.081144 (M−H)+; calc. for C9H11O: 135.080990.
- (3Z,6Z)-Nona-3,6-dien-1-ol, 104. Nona-3,6-diyn-1-ol 103 (198 mg, 1.45 mmol) was hydrogenated at atmospheric pressure, in the presence of a mixture of quinoline (44 mg) and palladium (5%) on calcium carbonate (100 mg), poisoned with lead in methanol (25 ml). The reaction was stopped after 2.5 h when the uptake of hydrogen was 61 ml. Removal of methanol in vacuo, followed by silica gel column chromatography to remove quinoline using ether-hexane (35:65) as the eluent gave 187 mg (92%) of (3Z, 6Z)-nona-3,6-dien-1-ol 104 as a colourless oil. Found: C, 77.42; H, 11.75., Calc. for C9H16O: C, 77.09; H, 11.50%. νmax (film)/cm−1 3500-3160 (br), 3011 (s), 2960 (s), 2930 (s), 2870 (s), 1462 (m), 1377 (m), 1050 (m), 722 (m); δH (300 MHz, CDCl3);0;97 (3H, t, J 7.6, H9-H3), 2.01-2.12.(2H; m, C8-H), 2.32-2.40 (2H, m, C2-H2), 2.79-2.84 (2H, t, J 7.1, C5-H2), 3.64 (2H, m, C1-H2), 5.27-5.43 (3H, m), 5.49-5.56 (H, m); δC (300 MHz, CDCl3) 14.82, 21.14, 26.20, 31.33, 62.77, 125.90, 127.40, 132.04, 132.74; m/e (EI): 140 (M+, 2%); 122 (15), 111 (7), 109 (12), 107 (22), 98 (12 ), 96 (19), 95 (21), 93 (72), 91 (33), 81 (39), 79 (56), 68 (31), 67 (100), 55 (59), 54 (21), 53 (21); HRMS: found m/e 140;120290 (M+); calc. for C9H16O: 140.120115.
- (3Z,6Z)-Nona-3,6-dienyl p-toluenesulfonate, 105. (3Z,6Z)-Nona-3,6-dien-1-ol 104 (167 mg, 1.19 mmol) was dissolved in chloroform (5 ml) and the solution was cooled in an ice bath. Pyridine (376 mg 4.76 mmol, 4 eq) was then added, followed by the addition of p-toluenesulfonyl chloride (340 mg, 1.78 mmol, 1.5 eq) in small portions with constant stirring. The mixture was stirred for 24 h at 15° C. Ether (15 ml) and water (5 ml) were added and the organic layer was washed successively with 1 N HCl (10 ml), 5% NaHCO3, water (10 ml), and brine (10 ml), and then dried over Na2SO4. The solvent was removed under reduced pressure and the crude tosylate was flash column chromatographed on silica gel with ether-hexane (20:80) as the eluent to yield starting material (15 mg, 9%) and the title product 105 (201 mg, 57%) as a colourless oil. Found: C, 65.17; H, 7.44; S, 11.27., Calc. for C16H22SO3: C, 65.28; H, 7.53; S, 10.89%. νmax (film)/cm−1 3005 (m), 2960 (s), 2930 (m), 2870 (m), 1599 (m), 1462 (m), 1377 (s), 1310 (w), 1290 (w), 1189 (s), 1178 (s), 1100 (s), 1020 (w), 973 (s), 815 (s), 770 (m), 660 (s); δH (300 MHz, CDCl3) 0.95 (3H, t, J 7.6, C9-H3), 2.00-2.05 (2H, m, C8-H2), 2.38-2.44 (2H, m, C2-H2), 2.45 (3H, s, ArCH3), 2.69-2.74 (2H, t, J 7.0, C5-H2), 3.99-4.04 (2H, m, C1-H2), 5.20-5.28 (2H, m), 5.34-5.50 (2H, m) 7.33, 7.80 (4H, dd, J 8.2 and 8.7, AA′BB′ and ArH); δC (300 MHz, CDCl3) 14.78, 21.09, 22.20, 26.12, 27.64, 70.20, 123.53, 126.94, 128.47, 130.37, 132.61, 132.92, 145.28; m/e (EI): [277 (M−OH)+, 1%], 155 (25), 139 (2), 122 (67), 107 (47), 93 (100), 91,(77), 79 (66), 67 (47), 55 (32); m/e (CI): 312 (M+NH4)+.
- 3-[(3Z,6Z)-Nona-3,6-dienylthio]propionic acid, 106. 3-Mercaptopropionic acid (150 mg, 1.41 mmol, 1.5-eq) was added, under an atmosphere of dry nitrogen, to a stirred solution of sodium methoxide, prepared from sodium (64 mg, 2.78 mmol, 3 eq) and methanol (20 ml). After the initial white precipitate had dissolved, a solution of (3Z,6Z)-nona-3,6-dienyl p-toluenesulfonate 105 (276 mg, 0.94 mmol) in diethyl ether was added. The mixture was stirred at 40° C. for 2 days under nitrogen, then hydrochloric acid (10% v/v, 20 ml) and diethyl ether, (20 ml) were poured into the crude reaction mixture. The organic phase was separated and washed with water and brine, and dried over sodium sulfate. After removal of the solvent, the residue was purified by flash column chromatography using ether-hexane-acetic acid (60:40:2) as the eluent to afford 3-[(3Z,6Z)-noca-3,6--dienylthio]propionic acid 106 (88 mg, 41%) as a colourless oil. Found: C, 62.90; H, 8.73; S, 14.01., Calc. for C12H20SO2: C, 63.12; H, 8.83; S, 14.04%. νmax (film)/cm−1 3400-2500 (br), 3005 (m), 2960 (m), 2910 (m), 2870 (w), 1713 (s), 1459 (m), 1377 (w), 1264 (m), 1195 (w), 1140 (w), 940 (w); δH (500 MHz, CDCl3) 0.97 (3H, t, J 7.8, C9′-H3), 2.05-2.08 (2H, m, C8′-H2), 2.34-2.39 (2H, m, C2′-H2), 2.57-2.60 (2H, t, J 7.4, C1′-H2), 2.65-2.69 (2H, t, J 7.3, C3-H2), 2.78-2.82 (4H, m, C5′-H2, C2-H2), 3.27-5.32 (H, m), 5.37-5.47 (3H, m), 5.50-6.10 (H, bs, COOH); δC (300 MHz, CDCl3) 14.83, 21.14, 26.20, 27.19, 27.95, 32.62, 35.21, 127.37, 127.97, 130.53, 132.72, 178.66; m/e (EI): 228 (M+, 34%), 169 (14), 159 (18), 155 (45), 133 (8), 122 (54), 119 (42), 113 (12), 107 (44), 93 (100), 89 (66), 79 (57), 77 (53), 67 (52), 61 (33), 55 (43); HRMS: found m/e 228.118179 (M+); calc. for C12H20SO2: 228.118402.
- 3-Tetradecylthiopropionic acid, 108. According to the procedure described for the preparation of 3-[3Z,6Z)-nona-3,6-dienylthio]propionic acid 106, 3-mercaptopropionic acid (261 mg, 2.46 mmol, 1.2 eq) was added, under an atmosphere of dry nitrogen, to a stirred solution of sodium methoxide prepared from sodium (142 mg, 6.17 mmol, 3 eq), and methanol (20 ml). After the, initial white, precipitate had dissolved, a solution of 1-bromotetradecane 107 (568 mg, 2.05 mmol) in diethyl ether (2 ml) was added. The reaction mixture was stirred for 16 h at room temperature. After workup and purification by flash column chromatography using ether-hexane (20:80)→ether-hexane-acetic acid (60:40:1) for elution, the title compound 108 (450 mg, 73%) was obtained as a white solid, mp: 67° C. Found: C, 67.32; H, 11.32; S, 10.41., Calc., for. C17H34SO2: C, 67.50; H, 11.33; S, 10.60%. νmax (Nujol)/cm−1 3100-2600 (br), 2965 (s), 2910 (s), 2840 (s), 1680 (s), 1460 (s), 1405 (w), 1375 (m), 1265 (m), 1255 (w), 1231 (w), 1210 (w), 1200 (m), 1080 (w), 915 (m), 725 (m); OH (500 MHz, CDCl3) 0.88 (3H, t, J 6.7, C14′-H3), 1.25-1.38 [22H, m, (C3′-C13′)-H2], 1.56-1.61 (2H, m, C2′-H2), 2.54 (2H, bs, C1′-H2), 2.65-2.68 (2H, t, J 6.6, C3-H2), 2.79 (2H, bs, C2-H2); δC (300 MHz, CDCl3) 14.69, 23.26, 27.16, 29.44; 29.80, 29.93, 30.02, 30.10, 30.17, 30.23, 32.49, 32.78, 35.25, 178.50; m/e (EI): 302 (M+, 21%), 230 (24), 229 (100), 185 (2), 161 (4), 119 (8), 106 (24), 97 (15), 89 (21), 83 (22), 69 (25), 55 (32); HRMS: found m/e 302.227166 (M+); calc. for C17H34SO2: 302.227952.
- 2-Tetradecylthioacetic acid, 109. 2-Mercaptoacetic acid (288 mg, 3.13 mmol, 1.2 eq) was added, under an atmosphere of dry nitrogen, to a stirred solution of sodium methoxide, prepared from sodium (180 mg, 7.83 mmol, 3 eq) and methanol (20 ml). After the initial white precipitate had dissolved, a solution of 1-bromotetradecane 107 (725 mg, 2.61 mmol) in diethyl ether (2 ml) was added and the mixture was stirred for 16 h at room temperature under nitrogen. The crude reaction mixture was poured into an equal volume of hydrochloric acid (10% v/v), and the organic phase was separated and washed with water and brine, and dried over sodium sulfate. After removal of the solvent, the residue was purified by flash column chromatographv using diethyl ether-hexane (20:80)→diethyl ether-hexane-acetic acid (60:40:2) for elution and crystallised to afford 2-tetradecylthioacetic acid 109 (580 mg, 77%) as a white solid, mp: 68° C. Found: C, 66.46; H, 10.93; S, 10.83., Calc. for C16H32SO2; C, 66.61; H. 11.18; S, 11.11%. νmax (Nujol)/cm−1 3200-2600 (br), 2950 (s), 2910 (s), 2840 (s), 1680 (s), 1460 (s), 1425 (w), 1375 (s), 1265 (m), 1140 (w), 908 (w), 725 (w); δH (300 MHz, CDCl3) 0.88 (3H, t, J 6.6, C14′-H3), 1.26-1.40 [22H, m, (C3′-C13′)-H2], 1.56-1.64 (2H, m, C2′-H2), 2.64-2.69 (2H, t, J 7.4, C1′-H2) 3.26. (2H, s, C2-H2); δC (300 MHz CDCl3) 14.68, 23.26, 29.30, 29.46, 29.75, 29.93, 30.06, 30.15, 30.22, 32.49, 33.36, 34.05, 177.57; m/e (EI): 288 (M+, 12%), 230 (21), 229 (100), 111(6), 97 (17), 83 (27), 69 (30), 55 (34); HRMS: found m/e 288.212125 (M+); calc. for C16H32SO2: 288.212302.
- Propyl (all-Z)-eicosa-5,8,11,14-tetraenyl sulfide 110. Using the procedure described for the preparation of 3-
tetradecylthiopropionic acid 108, propanethiol (26 mg, 0.34 mmol, 1.2 eq) was added, under an atmosphere of dry nitrogen, to a stirred solution of sodium methoxide, prepared from sodium (20 mg, 0.87 mmol, 3 eq) and methanol (10 ml). After the initial white precipitate had dissolved, a solution of (all-Z)-1-bromo-5,8,11,14-eicosatetrane 58c (101 mg, 0.29 mmol) in diethyl ether (1 ml) was added. The reaction mixture was stirred for 15 h at room temperature. After workup, purification by flash column chromatography using hexane for elution gave the title compound 110 (75 mg, 75%) as a colourless oil. Found: C, 78.91; H. 11.38; S, 8.96. Calc. for C23H40S: C, 79.24; H, 11.56; S, 9.20%. νmax (film)/cm−1 3005 (s), 2950 (s), 2920 (s), 2850 (s), 1650 (w), 1450 (m), 1390 (w), 1375 (w), 1290 (w), 1260 (w), 1230 (w), 910 (w), 720 (m); δH (CDCl3, 300 MHz) 0.89 (3H, t, J 6.8, C20-H3), 0.99 (3H, t, J 7.2, C3-H3), 1.26-1.35 (6H, m, C17-H2, C18-H2, C19-H2), 1.43-1.48 (2H, C3-H2), 157-1.64 (4H, m, C2-H2, C2′-H2), 2.05-2.13 (4H, m, C4-H2, C16H2), 2.50-2.51 (4H, m, C1-H2, C1-H2), 2.80-2.86 (6H, m, C7-H2, C10-H2, C13-H2), 5.32-5.43 (8H, m, C5-H, C6-H, C8-H, C9-H, C11-H, C12-H, C14H, C15-H); δC (CDCl3, 300 MHz) 14.13, 14.67, 23.17, 23.60, 26.22, 27.41, 27.81, 29.44, 29.91, 32.11, 32.54, 34.79, 128.12, 128.48, 128.64(2C), 128.90, 129.11, 130.40, 131.06; m/e (EI): 348 (M+, 44%), 305 (38), 273 (4), 251 (6), 237 (14), 205 (17), 177 (19), 161 (36), 130 (27), 131 (29), 119 (40), 10o (48), 93 (77), 91 (76), 81 (79), 79 (95), 67 (100), 55 (69); HRMS: found m/e 348.285378 (M+); calc. for C23H40S: 348.285073. - Propyl tetradecyl sulfide, 111. Using the procedure described above for the synthesis of propyl (all-Z)-eicosa-5,8,11,14-tetraenyl sulfide 110, propanethiol (165 mg, 2.16 mmol, 1.2 eq) was added, under an atmosphere of dry nitrogen, to a stirred solution of sodium methoxide, prepared from sodium (82 mg, 3.56 mmol, 2 eq) and methanol (10 ml). After the initial white precipitate had dissolved, a solution of 1-bromotetradecane 107 (500 mg, 1.80 mmol) in diethyl ether (2 ml) was added. The reaction mixture was stirred for 15 h at room temperature. After workup, purification by flash column chromatography using hexane, for elution gave the title compound 111 (435 mg, 89%) as a colourless oil. Found: C, 75.05; H, 13.27; S, 11.50., Calc. for C17H35S: C, 74.92; H, 13.31; S, 11.76%. νmax (film)/cm−1 2960 (s), 2910 (s), 2850 (s), 1460 (s), 1375 (w), 1290 (w), 1270 (w), 890 (w), 720 (w); δH (CDCl3, 300 MHz) 0.87 (3H, t, J 6.5, C14-H3), 0.99 (3H, t, J 7.4, C3′-H3), 1.25 [22H, m, (C3-C13)-H2], 1.54-1.63 (4H, m, C2-H2), C2′-H2) 2.47-2.51 (4H, m, C1-H2); δC (CDCl3, 300 MHz) 14.13, 14.71, 23.28, 23.59, 29.55, 29.85, 29.94, 30.12, 30.18, 30.23, 30.33, 32.50, 32.69, 34.78; m/e (EI): 272 (M+, 52%), 243 (18), 229 (100), 196 (8), 187 (2), 168 (5), 145 (6), 131 (15), 111 (14), 97 (22), 89 (34), 83 (27), 76 (33), 69 (32), 57 (30), 55 (44).
- 3-(Tetradecylsulfinyl)propionic acid, 113. Arachidonic acid 1 (175 mg) was dissolved in 5 ml of dichloromethane to make a stock solution (35 mg/ml). 3-Tetradecylthiopropanoic acid 108 (10 mg, 0.03 mmol), arachidonic acid 1 (10 mg, 0.03 mmol, 284 μl ) and dichloromethane (10 ml) were added into a one-neck flask (500 ml). The solvent was evaporated using a rotary evaporator to allow the reagents to form a thin film on the internal surface of the flask. The flask was filled with oxygen and placed in darkness for 7 days. Dichloromethane (5 ml) was then added into the flask to dissolve the mixture and the solution was then transferred to a 2 ml vial. After evaporation of the solvent, the residue was dissolved in 300 μl of the mobile phase (methanol-30 mM phosphoric acid, 90:10) and then subject to reverse phase HPLC analysis. The HPLC was performed on an Alltech Spherisorb octadecylsilane (ODS) column with RI detection. The flow rate of the mobile phase was 3 ml/min. Fifty microlitres of the sample was loaded each time. The product with a retention time of 5.49 min was collected and pooled. After evaporation of the solvent at reduced pressure, the product was extracted with diethyl ether (2 ml). The resulting extract was washed with water and dried with Na2SO4 and the solvent evaporated, yielding the title compound 113 (2 mg) as a white solid, mp: 166-167° C. Found: 64.33, H, 10.50., Calc. for C17H34SO3: C, 64.11; H, 10.76%. νmax (Nujol)/cm−1 3600-2500 (br), 2965 (s), 2910 (s), 2840 (s), 1695 (m), 1460 (s), 1375 (s), 1330 (w), 1305 (w), 1125 (w), 1040 (w), 1025 (w), 920 (w), 720 (w); δH (CDCl3, 500 MHz) 0.81 (3H, t, J 7.0, C14′-H3), 1.19-1.26 [20H, m, C4′-C13′)-H2], 1.34-1.37 (2H, m, C3′-H2), 1.68-1.72 (2H, m, C2′-H2), 2.70-2.76 (H, m), 2.82-2.89 (3H, m), 2.88-3.03 (H, m), 3.05-3.10 (H, m), 7.96 (H. bs, COOH); δC (CDCl3, 300 MHz) 14.67, 23.19, 23.24, 27.78, 29.29, 29.72, 29.91, 30.09, 30.17, 30.20, 32.47, 46.66, 52.53, 174.37; m/e (CI): 319 (MH+); m/e (EI): 301 [(M−OH)+, 27%], 246 (21), 245 (16), 229 (100), 196 (5), 121 (15), 94 (22), 97 (22), 83 (29), 71 (32), 70 (34), 57 (51); HRMS: found m/e 301.219714 (M−OH)+; calc. for C17H33SO2: 301.220127.
- 2-(Tetradecylsulfinyl)acetic acid, 114. 2-Tetradecylthioacetic acid 109 (19 mg, 0.066 mmol) was dissolved in dichloromethane (2 ml) and tert-butylhydroperoxide (11 ml, 0.08 mmol, 1.2 eq) was added. After 48 h reaction at room temperature, the solvent was removed and the residue was chromatographed using ether-hexane-acetic acid (60:40:2)→methanol as the eluent to obtain the white product 114 (17 mg, 86%). δH (CDCl3, 300 MHz) 0.88 (3H, t, J 6.4, C14′-H3), 1.20-1.29 [20H, m, (C4′-C13)-H2], 1,44-1.50 (2H, m, C3′-H2), 1.77-1.82 (2H, m, C2′-H2), 2.88-2.95 (H, m, C1′-H), 3.02-3.07 (H, m, C1′-H′), 3.63-3.68 (H, d, J 14, C2-H), 3.81-3.86 (H, d, J 14, C2-H′), 7.92 (H, bs, COOH); δC (CDCl3, 300 MHz) 14.69, 23.20, 23.26, 29.18, 29.70, 29.89, 29.93, 30.09, 30.18, 30.22, 32.49, 52.27, 53.47, 166.93; m/e (EI): 305 [(M+1)+, 1%], 287 (50), 243 (60), 229 (94), 196 (12), 168 (6), 149 (6), 125 (10), 111 (21), 97 (45), 83 (63), 69 (74), 57 (100), 55 (91); HRMS: found m/e 305.215275 (M+1)+ calc. for C16H33SO3: 305.215042.
- (1) Investigation of 15-LO, 5-LO and 12-LO Catalysed Oxidation of the Nitro Compounds (4a, 4b, 6a, 6b, 8a and 8b; Table 1)
- It has been suggested the various hydroxy and hydroperoxy fatty acid derivatives (such as 15-HETE and 15 HPETE) have inhibitory effects on lipoxygenase enzymes.[35] Based on this consideration, 5-LO, 12-LO and 15-LO catalysed oxidation of the nitro compounds (4a, 4b, 6a, 6b, 8a and 8b) was investigated. Each of the nitro compounds was treated with 15-LO in pH 9.0 buffer (or 5-LO in pH 6.3 buffer and 12-LO in pH 7.4 buffer), and the formation of 15-hydroperoxy derivatives (or 5-hydroperoxy or 12-hydroperoxy derivatives) over time was monitrored by UV spectroscopy at 234 nm. The result shows that, among the nitro compounds, compound 6b was the only one that underwent lipoxygenase catalysed oxidation. It served as a substrate for both 15-LO and 12-LO, but not for 5-LO.
- (2) The Effect of Nitro Compounds 4a (Lx1), 4b (Lx4), 6a (Lx6), 6b (Lx7), 8a (Lx8) and 8b (Lx9) on 15-LO, 5-LO and 12-LO Catalysed Oxidation of Arachidonic Acid
- The result from the preliminary experiment is summarised in Table 3. It shows that compound 8a has an inhibitory effect on 15-LO but not on 5-LO, while compound 6a displays complementary activity inhibiting 5-LO but not 15-LO. Neither 8a nor 6a inhibits 12-LO. Compound 8b appears to have a significant inhibitory effect on 12-LO catalysed oxidation of arachidonic acid, giving a relatively long lagtime at the early stage of arachidonic acid oxidation.
- (3) The Inhibitory Effect of 15-hydroperoxy and 15-hydroxy Derivatives from Compound 6b on 15-LO Catalysed Oxidation of Arachidonic Acid
- An enzyme assay shows that these two compounds did have inhibitory effect on 15-LO catalysed oxidation of arachidonic acid, giving IC50 values of 50 μM for 15-hydroperoxy derivative of 6b and 120 μM for 15-hydroxy derivative of 6b.
- (4) Determination of Km and Vmax for 15-LO Catalysed Oxidation of Compound 6b, and Inhibitor Constant of Compound 8a on 15-LO Catalysed Oxidation of Arachidonic Acid
- The Michaelis constant Km and the value of Vmax for 15-LO catalysed oxidation of compound 6b were measured and calculated based on the Lineweaver Burke equation, with Km as 8.4 μM and Vmax as 24.48 μM/min.
- The inhibitor constant (Ki or Kl) of compound 8a was also determined. The graph of 1/v vs 1/[s] with varying concentrations of compound 8a indicates that the inhibition is of the mixed inhibition pattern as shown in the following scheme. Thus the Ki and Kl values in the scheme were calculated giving the result of 27.42 μM for Ki and 55.15 μM for Kl.
TABLE 3 Effect of nitro compounds on oxidation of arachidonic acid (AA) catalysed by 15-LO, 5-LO or 12-LO Effect on 5-LO Effect on 12-LO Effect on 15-LO catalysed catalysed catalysed oxidation oxidation Compounds oxidation of AA of AA of AA Lx1 Nil Nil Nil Lx4 Nil Nil Nil Lx6 Activatory Inhibitory Activatory IC50 = 60 μM Lx8 Inhibitory Nil Activatory Ki = 27.42 μM Kl = 55.15 μM Lx7 Substrate Activatory Substrate Km = 8.4 μM Vmax = 24.48 μM/min Lx9 Nil Activatory Inhibitory Lx2 Nil Nd Nd Lx3 Nil Nd Nd Lx5 Nil Nd Nd
Nd = Not done
- It has been estimated that 1 to 3 million individuals per year, primarily children, die from Plasmodium falciparum infections and that the parasite is responsible for hundreds of millions of clinical infections world-wide. Widespread drug resistance displayed by the parasite, coupled with the fact that the vector Anopheles mosquito shows insecticide resistance, has led to a deteriorating situation where we possess fewer tools to fight the disease than we had some forty years ago. The limited number of anti-malarial drugs available has contributed to drug resistance. There is a need to develop new drugs which may supplement existing antimalarials.
- Recently we have demonstrated the antimalarial properties of purified polyunsaturated fatty acids (PUFA), both in vitro and in vivo(36). Both n-6 and n-3 fatty acids were effective as shown by their ability to cause intraerythrocytic death of the asexual forms of P. falciparum (36), and by the ability to significantly depress the parasitaemia in mice infected with P. berghei (36). Studies on fatty acid structure and its relation to intraerythrocytic killing of parasites demonstrated that these effects were dependent on specific structural elements of the fatty acids. Thus the activity was dependent on carbon chain length, degrees of unsaturation, hydroxylation and hydroperoxidation(36). The saturated twenty carbon fatty acid had very little parasite killing activity compared to the corresponding unsaturated twenty carbon fatty acids 20:4n-6 and 20:5n-3(36).
- Unsaturated-fatty acids with 18 carbons were also quite effective if these had at least two double bonds, such as 18:2n-6, but 18:1n-9 showed similar activity to saturated fatty acids(36). Pre-oxidation of 20:4n-6 and 22:6n-3 prior to addition to the P. falciparum infected erythrocytes resulted in an increase in antiparasite activity(36). Addition of antioxidants to the infected erythrocytes markedly reduced the activity of these fatty acids(36). Further studies showed that the hydroxy and hydroperoxy derivatives of these PUFA were more active than their parent fatty acids(36).
- These results have suggested that the hydroperoxy derivative, in particular, displayed the most active antiparasite effect. It also illustrated that the conversion of 20:4n-6/22:6n-3 to the oxidised forms was essential for antiparasite activity. Most likely, the parasites were particularly sensitive because of the delicate environment within the erythrocyte. Supporting this idea was our finding(unpublished) that the extracellular blood flagellate, Trypanosoma lewisi, was relatively resistant to similar concentrations of fatty acids. The effects of fatty acids were not due to damage to erythrocytes(36). When in vivo studies were extended to treatment with hydroperoxy derivatives of PUFA, these were found to be even more effective than the PUFA (unpublished observations).
- A limitation in the use of PUFA in diseases such as malaria is their ability to activate neutrophil and macrophage and induce the non-specific release of oxygen derived reactive species, lysosomal enzyme release and increased adhesion to endothelial cells(37-45). Furthermore, it has recently been demonstrated that PUFA synergise with the cytokine, tumour necrosis factor, to increase oxygen radical production in neutrophils(46). These properties could exacerbate the illness in malaria. In contrast to the parent PUFA, the hydroxy- and hydroperoxy-derivatives lack the neutrophil stimulating activity(39, 41, 43). This makes these derivatives, especially the hydroperoxy-PUFA, attractive as models on which the synthesis of a range of compounds could be based, and which could be examined for their antimalarial properties. The compounds of particular interest are the nitroso-PUFA which are more stable.
- The series of nitro long chain saturated and unsaturated molecules (designated Lx compounds) presented in Table 1 are a new class of antimalarial agents based on fatty acids which may be established as lead compounds for malaria chemotherapeutic drugs. These compounds have been examined for the action of engineered fatty acids of different structures for their antimalarial activity against asexual blood stages of P. faciparum (human parasite) in vitro and in murine P. berghei infections.
- (1) Using the LX Compounds on Asexual Blood Stages of P. falciparum
- Using the radiometric assay(36), the effects of the Lx compounds were examined for antimalarial activity. The Plasmodium falciparum isolates used were 3D7, FC27, K1 and K+. These were maintained in human blood, group O+ erythrocytes essentially as described previously using RPM-1640 (HEPES modification) supplemented with 0.25% D-glucose, 0.2% Tess buffer (Sigma Chemical Co, Lt Louis, Mo.) and 10% heat inactivated (56° C., 20 min) human blood group AB serum. Cultures were maintained in tissue culture flasks (Corning, N.Y.) at 37° C. under an atmosphere of 1% O2, 5% CO2 in N2 . P. falciparum cultures containing approximately 3.0% parasitaeria were adjusted to 1×108 erythrocytes/ml. To 50 μl of the parasite-erythrocyte culture (5×106 erythrocytes) in wells of 96-well microdilution plates was added 50 μl of the designated concentration of fatty acid or equivalent amounts of solutions or media. The treated cultures were incubated at 37° C. for 4 h and then pulsed with 50 μl (2.5 μCi) of 3H-hypoxanthine. After a further 18 h incubation the parasites-erythrocytes were harvested onto glass fibre filter papers using a cell harvester. The amount of radioactivity incorporated was measured in a β-counter. The results have been expressed as % inhibition of parasite growth i.e. the dpm in the fatty acid diluent-dpm in the fatty acid treated cultures/dpm in diluent×100.
-
FIG. 1 illustrates the effects of chemically engineered nitro compounds on P. falciparum 3D7. Results are the mean±SEM of 3 to 10 experiments. It can be seen that 19:3(n-6)-NO, (Lx3) had the greatest activity. The compounds Lx1 to Lx5 did not contain a carboxyl group. In terms of these five compounds it is evident that, apart from Lx3, there was no increase in antimalarial activity of the compounds by introducing double bonds. It is possible that the difference in activity seen between Lx2 and Lx3 is due to the position of the double bonds, ie the n-6 is more active than the n-3. Perhaps the reason why activity is lost with Lx4 is because of the increase in carbon chain length. - Similar results were seen when a different parasite isolate was used. The data for the antimalarial properties of Lx1 to 9 on P. falciparum K+ isolate are shown in
FIG. 2 . The results are the mean±SEM of 12 determinations from 2 experimental runs. A typical concentration related effect of the antimalarial properties of these compounds is shown for Lx3 on P. falciparum 3D7 isolate (FIG. 3 ). The results are the mean±SEM of triplicates and relate to a representative experiment. Lx3 had an EC50 of 6, 2 and 3 μg/ml for activity against isolates FC27, 3D7 and K+, respectively. In comparison, the EC50 for 22:6n-3 against FC27 and K+ strain were 12 μg/ml and 4 μg/ml, respectively. -
FIG. 4 shows the results of examination of parasites by morphological criteria. Parasites were treated with 20 μg/ml of compound. Results are means of triplicate assays of one experiment and are consistent with that found in three experiments. Morphological examination of cultures essentially supported the results of those of the radiometric technique where cultures showed degenerate mature rings, trophozoites and shizonts in the presence of Lx3 and there was no general lysis of erythrocytes. - The Lx3 compound, without a carboxylic acid group, would be expected to be handled quite differently from compounds with a carboxylic acid group by fatty acid binding proteins and by the enzymes that metabolise fatty acids. It was therefore of major interest to examine whether or not Lx3 was affected by albumin which normally binds and sequesters fatty acids.
FIG. 5 shows the effects of human serum on the ability of 22:6 n-3 and Lx3 (19:3 n-6NO2) to kill asexual blood stages of P. falciparum in culture. The compounds were tested at 20 μg/ml. Results are the means of six determinations. The data inFIG. 5 show that, while the antimalarial activity of 22:6n-3 was substantially reduced (85%) by serum, the presence of serum did not affect the activity of Lx3. - (2) Incorporation of Lx3 Into Parasitised Erythrocytes
- Because Lx3 is emerging as an interesting molecule with unique properties, a study was conducted to examine whether parasitised erythrocytes incorporated more of the Lx3 than normal erythrocytes as well as investigating the cellular distribution of Lx3.
- Red blood cells or parasitised red blood cells (K+strain, 9.25% parasitaemia) (5×108 cells) were incubated with 200 μg of Lx3 in 10 mls of HBSS at 37° C. for 4 h. The incubate was centrifuged (3,000 rpm for 10 min) and the medium aspirated. The cell pellet was washed 3 times with 5 ml of HBSS with centrifugation. Lipids were extracted from the cell pellet and neutral lipids, phospholipids and unesterified Lx3 were resolved by thin-layer chromatography. The neutral lipid and phospholipid samples were transesterified to release any bound Lx3. The amount of Lx3 associated with the unesterifield, neutral lipid and phospholipid fractions was quantitated by gas-liquid chromatography using nonadecanoic acid (nonadecylic acid (19:0)) methyl ester (48 nmol) as a reference standard. For definitive identification of Lx3 and possible products (elongation, de-saturation, shorter-chain products), a combined gas-liquid chromatography-mass spectrometry (GC-MS) technique was employed.
FIG. 6 is the GC-MS (expanded view) of Lx3 isolated from parasitised RBC. The mass spectrum of each peak unambiguously identifies 19:0 and Lx3 (19:3(n-6)-NO2) respectively. Lx3 was found to be taken up by the cells and remained exclusively in the unesterified form. No Lx3 was esterified in neutral lipids and phospholipids (Table 4). It is important to note that parasitised red blood cells took up approximately 6 times more Lx3 than non-parasitised cells. No elongation, chain-shortening or de-saturation products of Lx3 were detected in either cell population. The lack of derivatisation or incorporation of Lx3 into neutral lipids and phospholipids is almost certainly due to Lx3 not having a carboxylic acid group which is mandatory for the conversion of a fatty acid to its coenzyme A ester. Since Lx3 does not appear to be readily metabolised in the cell, more will be available to kill the parasite.TABLE 4 Summary of the incorporation of Lx3 into normal and P. falciparum infected red blood cells. The results represent the mean ± SEM of four analyses and are expressed as % of total recovered Lx3. Recovered cellular Lx3 (% of total added) Lipid Fraction Red Blood Cells Parasitised red blood cells Unesterified Lx3 2.1 ± 0.2 12.9 ± 0.4 Neutral lipids N.D. N.D. Phospholipids N.D. N.D.
N.D. Not detectable.
(3) Effects of Nitro/Nitro Fatty Acid Compounds on Neutrophil Functions - The activation of human neutrophils by nitro compounds was assessed by the ability to stimulate superoxide production (chemiluminescence response) and release of lysosomal enzymes from specific and azurophilic granules. Neutrophils were prepared from whole blood taken from normal healthy volunteers by the rapid-single step procedure(41). Briefly, blood anticoagulated with heparin was carefully layered on a hypaque-ficoll medium of 1.114 g/ml and centrifuged in swing-out-buckets at 200 g/30 min. The leukocytes were resolved into two bands and the erythrocytes sedimented at the bottom of the tube. The second leukocyte band approximately 0.7 cm from the mononuclear cell containing band at the interface contained neutrophils of >98% purity and >99% viability (trypan blue dye exclusion criteria). The neutrophils were carefully harvested with a pasteur pipette, and washed and resuspended in tissue culture medium. The respiratory burst response of neutrophils was assessed by measuring superoxide production by the lucigenin dependent chemiluminescence assay essentially as described previously(42). Briefly, 1×106 neutrophils (100 μl) in HBSS were treated with the nitro analogues of fatty acids (100 μl), then lucigenin was added and the volume made up.
-
FIG. 7 illustrates the effects of Lx compounds on the neutrophil chemiluminescence reponse. Results are the means±SEM of 4-12 experiments. Each compound was tested at 20 μM. The results showed that all the compounds (Lx1-Lx9), apart from Lx7, did not induce a chemiluminescence response. Even the response induced by Lx7 was marginal compared to 20:4n-6 and 22:6n-3. - The pattern of neutrophil activation, as shown in
FIG. 7 , was reflected also in the degranulation response. Both in relation to release of vitamin B12 binding protein (specific granule maker) and β-glucuronidase (azurophilic granule marker), all of the Lx compounds except for Lx7 were poor inducers of the release of vitamin B12 binding protein as well as release of β-glucuronidase.FIG. 8 illustrates the effects of Lx compounds on the release of β-glucuronidase, andFIG. 9 illustrates the effects of Lx compounds on the release of vitamin B12 binding protein. In each case, the results are means±SEM of 3-8 experiments. All compounds were tested at 20 μg/ml. Interestingly, Lx7 was as potent as 20:4n-6 and 22:6n-3 in stimulating degranulation. - (4) In Vivo Studies with Chemically Engineered PUFA and Related Compounds on P. berghei
- In other sets of experiments, the effects of Lx3 were examined in vivo in mice infected with P. berghei.
FIG. 10 illustrates the effect of Lx3 on the level of P. berghei parasitaemia in the mice. Results are the means±SEM of five mice per group. Mice were infected intraperitoneally with the parasite and when an appropriate parasitaemia was reached they were treated intravenously with 40 mg/kg weight of MP3. These experiments showed that mice tolerated Lx3 quite well and that mice treated with a single dose intravenously showed a marked drop in circulating parasites (parasitaemia) within 5 h after injection. Similar results were obtained with changes in the period of observation (Table 5) as well as with a different species, P. chabaudi (data not presented).TABLE 5 Effects of Lx3 on P berghei infection Treatment Time (h) after infection DPC Lx3 4 0.75 ± 0.04 0.18 ± 0.05 22 0.83 ± 0.40 0.30 ± 0.10 28 1.20 ± 0.54 0.14 ± 0.05 46 4.16 ± 0.91 0.40 ± 0.14 - Mice were treated at one day prior to infection with 2 doses of 40 mg/kg body weight and then another
dose 60 min prior to infection (0 time) on the following day. The parasitaemia was checked 4 h later and at the times stipulated in the Table. The animals were treated with either DPC or Lx3 twice aday 30 min after taking a parasitaemia reading. The results are presented as mean±SEM of parasitaemia of 4 mice per group. - (1) Effect of Lx Compounds on AA-Enhanced Chemiluminescence in Human Neutrophils
- Arachidonic acid (AA) is a natural agonist which stimulates oxygen radical production in neutrophils leading to tissue damage during inflammation. Studies were conducted to examine whether or not the Lx compounds could antagonise the effects of AA. Neutrophils were pretreated with Lx compounds and then examined for chemiluminescence response to AA addition. The data above show that some Lx compounds inhibit the ability of AA to stimulate oxygen radical production. This is particularly evident with Lx7 and Lx9. The effect of Lx compounds on AA-enhanced chemiluminescence in human neutrophils is shown graphically in
FIG. 11 . - AA could be a target for anti-inflammatory activity. Therefore, some Lx compounds could be used as anti-inflammatory agents.
- (2) Effects of Lx Compounds on Lymphocyte Activation and Cytokine Production
- The effects of the nitroalkanes (Lx1-Lx5) on lymphocyte activation and cytokine production were examined. The ability of the PUFA to suppress mitogen-induced proliferation in response to PHA and S. aureus, and to inhibit cytokine production (TNFα and IFNγ), was assessed.
- Data on Lx1, Lx2, Lx3, and Lx4 indicate that, of these compounds, Lx4 is worthy of further investigation, particularly with respect to effects on IFNγ production (Table 6), and additional experiments are in progress.
TABLE 6 Effects of Lx compounds on production of cytokines by human peripheral blood leukocytes % Inhibition (compared to control) Stimulus (S. aureus) Stimulus (PHA) Compound TNF-α IFN-γ Lx2 43.7 40.4 Lx3 48.2 37.6 Lx4 34 79.8
All PUFA were used at 20 μM.(TNF = tumour necrosis factor; IFN = Interferon)
- Studies in paw oedema indicate that the compound 4a is inflammatory while the compound 4d may be either inflammatory or anti-inflammatory depending on the dose administered, the eliciting agent and the time of measurement of the response.
- Other analogues of PUFAs targeted in this project were the oxa and thia fatty acids, owing to their potential antioxidants. Compounds of types 16-19, as identified in Table 7, were constructed as PUFA analogues having the property of resistance to β-oxidation(47,13).
TABLE 7 Structure and nomenclature of the oxa and thia fatty acid analogues and other thia compounds Structure Systematic name WCH Thesis (Z,Z,Z)-(octadeca-6,9,12-trienyloxy) acetic acid 16 MP4 (Z,Z,Z)-(octadeca-9,12,15-trienyloxy) acetic acid 17 MP5 (all-Z)-(eicosa-5,8,11,14-tetraenylthio) acetic acid 18 MP8 3-[(all-Z)-(eicosa-5,8,11,14-tetraenylthio) propionic acid 19 MP11 3-[(3Z,6Z)-nona-3,6-dienylthiopropionic acid 106 3- tetradecylthiopropionic acid 108 2-tetradecylthiopropionic acid 109 propyl(all-Z)-eicosa-5,8,11,14-tetraenyl- propyl ssulfide 110 propyltetradecyl sulfide 111 3-[(Z,Z,Z)-(octadeca-9,12,15-trienylthio)]- propionic acid 112 MP13 3-(tetradecylsulfinyl) propionic acid 113 2-(tetradecylsulfinyl) acetic acid 114 - Subsequently, the autoxidation of compounds 16-19 and their effects on the autoxidation of arachidonic acid were investigated. In these experiments, a thin film assay method was employed. For each reaction, arachidonic acid was mixed with one of the
synthetic compounds 16, 17, 18 or 19 at 1:1 ratio with or without the radical initiator, azobisisobutyronitrile (AIBN). A reverse phase HPLC method was used to simultaneously measure the relative amounts of arachidonic acid and thesynthetic compounds 16, 17, 18 or 19 recovered following 60 or 70 hours or 7 days of thin film autoxidation. Part of the results are summarised in Table 8.TABLE 8 Percentages of arachidonic acid and compounds 16-19 recovered following thin film autoxidation. (The initial ratio of arachidonic acid to each other PUFA compound is 1:1). Percentage of compounds recovered Reaction conditions no additive no additive 10% AIBN Compound 70 h 7 day 60 h Arachidonic acid + 16 97% 23% 17% 16 88% 27% 11% Arachidonic acid + 17 92% 30% 44% 17 102% 41% 49% Arachidonic acid + 18 98% 68% 87% 18 99% 28% 57% Arachidonic acid + 19 101% 102% 100% 19 98% 96% 96% - As shown in Table 8, arachidonic acid underwent rapid autoxidation in the presence of compound 16, as reflected by reduction in the percentage of recovered arachidonic acid (23 or 17%) after 7 days of autoxidation without the additive AIBN or after 60 h with 10% AIBN. The data showed that arachidonic acid also underwent a substantial degree of autoxidation in the presence of compounds 17 and 18 during the same periods. In contrast, autoxidation of arachidonic acid was completely inhibited during the testing periods when the thin film reaction was carried out in the presence of the γ-thia fatty acid, 3-[(all-Z)-(eicosa-5,8,11,14-tetraenylthio)]
propionic 19, even when the reaction contained the radical initiator AIBN. The result indicates thatcompound 19 is an antioxidant. - The specific objective of this project in regard to the thia-fatty acids was to examine the basis of the selective antioxidant activity of the γ-
thia fatty acid 19. This was to be done by synthesis of a series of analogues ofcompound 19 and subsequent investigation of their effects on arachidonic acid autoxidation. The analogues include an unsaturated γ-thia fatty acid with two methylene-interrupted cis double bonds, which brings unsaturation closer to the sulfur than is the case incompound 19, saturated γ-thia and β-thia fatty acids, and unsaturated and saturated sulfides. A thin film method on Petri-dishes was to be employed for assessing autoxidation of arachidonic acid in the presence of the thia fatty acids and sulfides, in conjunction with a reversed phase HPLC technique for analysis of recovered arachidonic acid and thia fatty acids and sulphides. The aim was to examine if the degree of unsaturation, the carboxyl group and the location of sulfur in the thia fatty acids affects their antioxidative activity. - (1) Effects of Thia Polyunsaturated Fatty Acids and Sulfides on Autoxidation of Arachidonic Acid.
- Having prepared analogues of
compound 19, the subsequent aim was to investigate their effects on autoxidation of arachidonic acid. Based on previous work, a thin film method was employed for this purpose, in conjunction with a reverse phase HPLC technique for analysis of the recovered arachidonic acid and thia PUFAs and sulfides, with lauric acid as an internal standard. - Autoxidation of arachidonic acid was conducted in the presence of
compound 19 and lauric acid. Stock solutions of arachidonic acid,compound 19 and lauric acid in dichloromethane with equal concentrations were added to a 25 ml round-bottomed flask, and the solvent was evaporated to leave a thin film on the internal surface of the flask. The flask was then filled with oxygen and kept in the dark. The percentages of arachidonic acid andcompound 19 remaining after 7 days were measured by HPLC. The same assay was carried out simultaneously with several flasks but the results were not reproducible. The variation was attributed to differences in oxygen concentration and the surface area of the thin films formed in the flasks. Therefore, in order to establish a reproducible assay for the analysis of the autoxidation of arachidonic acid, Petri-dishes with uniform size (80 mm in diameter) were used instead of flasks for thin film formation and the oxidation was carried out by placing the Petri-dishes in a dessicator filled with oxygen. To assess this method, thin films of arachidonic acid with lauric acid as a standard were prepared on six Petri-dishes using identical treatment, and then subjected to oxidation in the same dessicator filled with oxygen. After 24 h, the percentage of arachidonic acid recovered following autoxidation in each Petri-dish was determined by HPLC. The results showed that the variation in the data obtained for the six samples was smaller than 7%. The advantage of using a Petri-dish over a flask is that the thin films on each Petri-dish are spread over the same area, and each Petri-dish is exposed to oxygen to the same extent. - Using the Petri-dish assay method, the effects of the thia PUFAs and sulfides 106 and 108-111, along with
compounds 18, 19 and 3-[(Z,Z,Z-(octadeca-9,12,15-trienylthio)] propionic acid 112 which were available in the laboratory, on the autoxidation of arachidonic acid, were examined. In addition, the stability of these compounds in the presence of arachidonic acid was also investigated. Arachidonic acid and lauric acid as a standard were mixed with each sulfur compound at different ratios and the mixtures were subjected to thin film autoxidation. The mixtures were analysed by HPLC after 1,2,3,5 and 7 days. The results are summarized in Tables 9-17 below. The yields given in the tables are the mean values of at least duplicate experiments, which showed good reproducibility with standard errors within ±12%.TABLE 9 Percentage of arachidonic acid recovered following autoxidation Autoxidation time (days) Arachidonic acid (%) 1 91 2 20 3 16 5 12 7 N.D.
N.D. = None detectable
-
TABLE 10 Percentages of arachidonic acid and compound 18 recovered following autoxidation Using a ratio of arachidonic acid and compound 18 of 1:1. Autoxidation time (days) Arachidonic acid (%) Compound 18 (%) 1 68 26 2 29 7 3 10 N.D. 5 7 N.D. 7 5 N.D. -
TABLE 11 Percentages of arachidonic acid and compound 19 recovered followingautoxidation Autoxidation time (days) Arachidonic acid (%) Compound 19 (%) A: Using a ratio of arachidonic acid and compound 19 of 1:11 99 99 2 100 100 3 99 99 5 99 98 7 98 99 B: Using a ratio of arachidonic acid and compound 19 of 2:11 100 98 2 99 96 3 100 96 5 98 94 7 97 90 C: Using a ratio of arachidonic acid and compound 19 of 2:1,with AIBN at 10% the amount of arachidonic acid 1 100 98 2 98 95 3 94 80 5 49 47 7 35 43 D: Using a ratio of arachidonic acid and compound 19 of 10:11 99 95 2 99 87 3 87 38 5 42 N.D. 7 17 N.D. -
TABLE 12 Percentages of arachidonic acid and compound 106 recovered following autoxidation Autoxidation time (days) Arachidonic acid (%) Compound 106 (%) A: Using a ratio of arachidonic acid and compound 106 of 1:1 1 99 98 2 98 96 3 99 98 5 100 97 7 101 98 B: Using a ratio of arachidonic acid and compound 106 of 2:1 1 98 97 2 99 98 3 98 97 5 99 97 7 99 100 C: Using a ratio of arachidonic acid and compound 106 of 10:1 1 101 94 2 101 84 3 99 59 5 79 N.D. 7 16 N.D. -
TABLE 13 Percentages of arachidonic acid and compound 108recovered following autoxidation Using a ratio of arachidonic acid and compound 108 of 1:1Autoxidation time (days) Arachidonic acid (%) Compound 108 (%) 1 98 99 2 93 91 3 79 86 5 30 44 7 N.D. 37 -
TABLE 14 Percentages of arachidonic acid and compound 109 recovered following autoxidation Using a ratio of arachidonic acid and compound 109 is 1:1 Autoxidation time (days) Arachidonic acid (%) Compound 109 (%) 1 53 50 2 10 16 3 N.D. 17 5 N.D. 17 7 N.D. 16 -
TABLE 15 Percentages of arachidonic acid and compound 110 recovered following autoxidation Autoxidation time (days) Arachidonic acid (%) Compound 110 (%) A: Using a ratio of arachidonic acid and compound 110 of 1:1 3 100 99 7 100 100 B: Using a ratio of arachidonic acid and compound 110 of 10:1 1 97 85 2 89 22 3 67 N.D. 5 24 N.D. 7 10 N.D. -
TABLE 16 Percentages of arachidonic acid and compound 111 recovered following autoxidation Autoxidation time (days) Arachidonic acid (%) Compound 111 (%) A: Using a ratio of arachidonic acid and compound 111 of 1:1 1 100 101 2 98 91 3 98 92 5 98 92 7 97 90 B: Using a ratio of arachidonic acid and compound 111 of 10:1 1 99 81 2 99 63 3 97 38 5 68 N.D. 7 17 N.D. -
TABLE 17 Percentages of arachidonic acid and compound 112 recovered following autoxidation Autoxidation time (days) Arachidonic acid (%) Compound 112 (%) A: Using a ratio of arachidonic acid and compound 112 of 1:1 1 100 100 2 99 98 3 98 97 5 99 97 7 93 86 B: Using a ratio of arachidonic acid and compound 112 of 10:1 1 82 25 2 33 N.D. 3 17 N.D. 5 4 N.D. 7 N.D. N.D. - The results in Table 9 show that arachidonic acid undergoes autoxidation readily. After 2 days, only 20% of the arachidonic acid remained. As shown in Tables 11A and 12A, the introduction of
compound 19 or 106 at a ratio of 1:1 results in almost complete prevention of autoxidation of arachidonic acid, even over the extended 7 days assay period, indicating that compounds 19 and 106 are both effective antioxidants. When the concentration ofcompounds 19 and 106 was reduced to one-tenth that of arachidonic acid (Tables 11D and 12C), autoxidation of arachidonic acid was very slow over the first 3 days, but faster after that period, coinciding with decomposition ofcompounds 19 and 106. The antioxidative activity compounds 19 and 106 is quite similar. Compound 112 was also effective as an antioxidant when used in a 1:1 ratio with arachidonic acid (Table 17A), but it was less effective than eithercompound 19 or 106 at the lower concentration (Table 17B). - The unsaturation of
compounds 19, 106 and 112 is not essential for antioxidant activity. Neither is the carboxyl group. Compound 111 is saturated and neither compound 110 nor 111 possesses a carboxyl group. Yet when present in 1:1 ratio with arachidonic acid, both of the sulfides 110 and 111 effectively inhibit the oxidation of arachidonic acid (Tables 15A and 16A). Even when the amount of the sulfides 110 and 111 used was reduced to one-tenth that of arachidonic acid, they were still effective antioxidants (Tables 15B and 16B). Apparently the sulfur alone is the key to the antioxidant activity ofcompounds - By contrast, the autoxidation of arachidonic acid is not significantly inhibited by either of the β-thia fatty acids 18 and 109 (Tables 10 and 14). To examine possible reasons for this lack of antioxidative activity, the chemical stability of compounds 18 and 109 in the absence of arachidonic acid was investigated. For comparison, the stability of
compounds compounds 19, 106 and 108-112 are all stable under these conditions. However, the unsaturated β-thia PUFA 18 decomposed after 7 days. The product mixture was analysed by 1H NMR, which showed a complex mixture of products. The results for compound 109 show that β-thia PUFAs are not inherently unstable, so the decomposition of compound 18 presumably relates to its unsaturation. This is consistent with compound 109 decomposing in the presence of arachidonic acid, but not alone. - (2) Mechanism of Antioxidant Activity
- The saturated γ-
thia PUFA 108 is converted to the sulfoxide 113 on autoxidation in the presence of arachidonic acid, but not alone. Therefore, it seems likely that hydroperoxides of arachidonic acid are responsible for production of the sulfoxide 113. - As mentioned earlier, the γ-
thia fatty acids thia fatty acids compounds 108 and 109 (in a ratio of 1:1 in CH2Cl2) were allowed to, react with tert-butyl hydroperoxide. - The reaction was monitrored by TLC and 1H NMR analysis. This showed that 55% of compound 109 was converted to the product 114 after 9 h, while
compound 108 was completely converted to the corresponding sulfoxide 113 during the same period. NMR spectral analysis of the product from compound 109 isolated after completion of the reaction (48 h) showed that it is the sulfoxide 114. The 1H NMR spectrum of compound 114 contains two multiplets at δ2.88-3.07 and two doublets at δ3.63-3.86 corresponding to the methylene protons on the carbons adjacent to sulfur. The 13C NMR spectrum shows characteristic peaks at δ52.27 and 53.47 representing the corresponding carbons. - This shows that both the γ-
thia fatty acid 108 and the β-thia fatty acid 109 react with organic hydroperoxides to form sulfoxides, but the reaction rate is much faster for the γ-thia fatty acid 108. This explains why the γ-thia fatty acid 108 is a much better antioxidant than the β-thia fatty acid 109. The former reacts fast with and destroys hydroperoxides, which are initiators of free-radical oxidation chain processes. Consequently, it functions as an effective antioxidant. In contrast, the saturated β-thia fatty acid 109 reacts relatively slowly with hydroperoxides and therefore is ineffective as an antioxidant. - General conclusions may be drawn from these preliminary experiments. It appears that β-thia fatty acids such as compound 18 and 109 may be ineffective as antioxidants due to the proximity of the sulfur to the carboxyl group. This may affect the nucleophilicity of the sulfur or introduce steric hindrance in the reactions with hydroperoxides. In β-thia fatty acids, the carboxyl group is relatively close to the sulfur and consequently the nucleophilicity of the sulfur may be weakened because of the electron-withdrawing nature of the carboxyl group. The proximity of the carboxyl group to the sulfur in the β-thia fatty acids may also cause steric hindrance to the nucleophilic substitution process. In the γ-
thia fatty acids - Earlier studies indicated that some sulfoxides are more effective inhibitors of hydrocarbon autoxidation than the parent sulfides. However, the results of the present work indicate that sulfides but not sulfoxides have antioxidant activity. For instance, protection conferred by slow conversion of the
sulfide 108 to the sulfoxide 113 (Table 18) contrasts with rapid autoxidation of arachidonic acid alone (Table 9) and is summarised inFIG. 12 .FIG. 12 was compiled from the data of Tables 9 and 18, and illustrates the antioxidant effect ofcompound 108.TABLE 18 Percentages of arachidonic acid and compound 108recovered following autoxidation Using a ratio of arachidonic acid and compound 108 of 1:1Autoxidation time (days) Arachidonic acid (%) Compound 108 (%) 1 98 99 2 93 91 3 79 86 5 30 44 7 N.D. 37 - α-Tocopherol (vitamin E) is a widely used, naturally occurring, phenolic antioxidant which inhibits free-radical chains in biological systems. The γ-
thia fatty acids - The oxidation of polyunsaturated fatty acids (PUFAs) plays an important role in biological systems and some of the metabolic products from PUFA oxidation are important biological mediators that have been implicated in the pathology of many diseases such as asthma, inflammation and allergy. There are three major oxidative pathways for PUFAs: β-oxidation, autoxidation and oxidation catalysed by enzymes such as cyclooxygenases and lipoxygenases. The aim of this research was to pursue analogues of PUFAs that are effective in control of both non-enzymatic and lipoxy genase-catalysed PUFA oxidation and would therefore be potentially useful as therapeutic agents for the control of diseases related to the oxidative pathways. Such analogues were required to display certain properties including resistance to β-oxidation, antioxidant activity and selective inhibition of different lipoxygenases.
- The main group of compounds targeted in this project was the nitro analogues of PUFAs. They were expected to be potentially useful due to their generally high stability and the chemical similarity of the nitro group to the carboxyl group. The other group of compounds investigated was the γ-thia fatty acids. The γ-thia fatty acid, 3[all-Z]-(eicosa-5,8,11,14-tetraenylthio)]propionic acid, had been previously shown to inhibit autoxidation of arachidonic acid. Such compounds were expected to be useful lipid antioxidants due to their miscibility with and structural similarity to natural fatty acids.
- From the nine nitro analogues of PUFAs that were synthesised, including long chain nitroalkanes, γ-nitro fatty acids and carboxyethyl nitro fatty acids, (all-Z)-4-nitrotricosa-8,11,14,17-tetraenoic acid has been identified as a good substrate of soybean 15-LO and a 12-LO from porcine leukocytes. The substrate activity of this compound with the soybean 15-LO is comparable to that of arachidonic acid, which is a major substrate of the lipoxygenase.
- A more significant outcome of this work was the identification of 4-nitrohenicosanoic acid, 3-(all-Z)-nonadeca-4,7,10,13-tetraenyl]-3-nitropentane-1,5-dicarboxylic acid and 3-heptadecyl-3-nitropentane-1,5-dicarboxylic acid as selective inhibitors of 5-LO, 12-LO and 15-LO catalysed oxidation of arachidonic acid, respectively. Although a large number of inhibitors have been reported for these three lipoxygenases, so far few inhibitors have entered clinical trials and no agents that are selective for 15-LO vs 5-LO (or vs 12-LO) are available.[48]
- Selective inhibition of a specific lipoxygenase is particularly desirable for treatment of diseases related to these metabolic pathways. Non-selective inhibitors have the disadvantages of causing possible side effects. For instance, asthma has been treated as an inflammatory disease, and corticosteroids are the therapy of choice for the inflammatory component of asthma.[49] Although this class of drugs provides powerful anti-inflammatory effects in most patients, these effects are not specific and in some cases result in serious side effects. Since leukotrienes, a family of inflammatory mediators generated through the 5-LO pathway, have been shown to enhance bronchoconstriction and airway mucus secretion, agents that target the specific inflammatory pathway have been developed to treat asthma by modulating leukotriene activity. So far, specific leukotriene receptor antagonists and synthesis inhibitors have been extensively studied in laboratory-induced asthma and currently show promise in clinical trials; one leukotriene receptor antagonist (zafirlukast) and one 5-LO inhibitor (zileuton) were recently approved for the treatment of asthma.[49] The identification of the three nitro analogues of PUFAs having selective inhibition activity with the three lipoxygenases may lead toward a new class of drugs with specificity and reduced side effects for treating diseases that are associated with lipoxygenase pathways.
- Studies to examine the basis of the antioxidant behaviour of 3-(all-Z)-(eicosa-5,8,11,14-tetraenylthio)]propionic acid suggest that the activity results from interaction with the hydroperoxide products of PUFA autoxidation. Hydroperoxides are initiators of the radical-chain autoxidation process and decomposition of these compounds through reaction with γ-thia fatty acids and sulfides can therefore reduce the rate of autoxidation. This work showed that the key structural component required for antioxidant activity is a sulfur and neither a carboxyl group nor unsaturation play direct roles. Thus, all the γ-thia fatty acids and sulfides tested showed substantial antioxidant activity on arachidonic acid autoxidation. β-thia fatty acids were not antioxidants, probably due to their relatively slow reaction with hydroperoxides. The closeness of the carboxyl group to the sulfur in the β-thia fatty acids may cause steric hindrance or reduce the nucleophilicity of the sulfur. These data may provide useful information for the design of antioxidants based on destruction of the hydroperoxide products of PUFA autoxidation.
- It is evident that malaria is one of the most devastating diseases facing our community today. Our ability to treat patients has been severely compromised by the significant increase in drug resistance, such as chloroquine resistance. We have now described a new class of antimalarial agents: the Lx1 to Lx9 compounds. The most promising of these were Lx2 and Lx3. Lx3 was examined in detail and found to be very active against the human malarial parasite Plasmodium falciparum. The agent was active also against a chloroquine resistant isolate. Thus this compound has the additional advantage of being able to be used against drug resistant malaria. It is also likely to act synergistically with other antimalarial drugs. Lx3 was also found to be active in an experimental model of malaria, P. berghei infections in mice, given either prophylactically or curatively.
- The work showed that Lx3 was much more readily taken up (up to tenfold) by P. falciparum infected erythrocytes than normal erythrocytes. Its action was primarily the killing of the late ring stage to immature schizonts of the asexual stage of the parasite. Unlike other fatty acids previously shown to be bound to albumin and their activity quenched by serum, the activity of Lx3 was not inhibited by serum. Unlike other fatty acids, the Lx compounds did not cause non-specific activation of neutrophils and release of oxygen radicals or the release of granule constituents. Thus they have the advantage of not displaying any of the pathology inducing activity seen with other fatty acids. Lx compounds will have broad spectrum antimicrobial activity, in particular against infection caused by protozoan parasites. In addition, they are active against viruses, bacteria and fungi, especially as the nitro group may overcome the problem presented by the carboxyl group.
- Some of the Lx compounds which did not have appreciable antimalarial activity (e.g. Lx7 and Lx9) inhibited the arachidonic acid response which is related to inflammation, showing that Lx compounds can be used as agents to inhibit diseases which have an inflammatory response basis, such as asthma, inflammatory bowel disease, arthritis, reperfusion injury, cystic fibrosis etc.
- Some Lx compounds inhibited two important cytokines, TNF and IFNγ, which play major roles in inflammatory diseases. These compounds have uses in treating and managing a wide-range of diseases in which these cytokines have been shown to be of major importance. Transplantation of organs and other grafts will also benefit from the use of Lx compounds as immunosuppressive agents.
- The thia and sulfinyl compounds of the invention also have antioxidant properties, and may be incorporated in pharmaceutical or cosmetic compositions, in particular to prevent odixation of polyunsaturated fatty acids.
- It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
- 1. Ferrante, A., Hii, C. S. T., Huang, Z. H., Rathjen, D. A. In The Neutrophils: New Outlook for the Old Cells. (Ed. Gabrilovich, D.) Imperial College Press (1999) 4: 79-150.
- 2. Sinclair, A., and Gibson, R. (eds) 1992. Invited papers from the Third International Congress. American Oil Chemists' Society, Champaign, Ill. 1-482.
- 3. Freedman, S. D., Katz, M. H., Parker, E. M., Laposata, M., Urman, M. Y. and Alvarez, J. G. P.N.A.S. 96(24):13995-14000 (1999).
- 4. Krombout, D. Nutr. Rev. 50:49-53 (1992).
- 5. Kinsella, J. E., Lokesh, B., Stone R. A. Am. J. Clin. Nutr. 52:1-28 (1990)
- 6. Kumaratilake, L. M., Robinson, B. S., Ferrante, A., Poulos A. J. Am. Soc. Clin. Investigation 89: 961-967 (1992).
- 7. Weber, P. C. Biochem. Soc. Trans. 18: 1045-1049 (1990).
- 8. Arm, J. P., and Lee, T. H. Clin. Sci. 84: 501-510 (1993).
- 9. Thien, F. K. C. K., and Walters, E. H. Pros. Leuko and Essential 52:271-288 (1995).
- 10. Ford-Hutchinson, A. W. Crit. Rev. Immunol. 10(1):1 (1990).
- 11. Bates, E. J. Pros. Leitko and Essential. 53: 75-86 (1995).
- 12. Ferrante, A., Poulos, A., Easton, C. J., Pitt, M. J., Robertson, T. A., Rathjen, D. A. International Patent Application No. PCT/AU95/00677 (1995)-WO96/11908: Chem. Abstr. 125: 58194 (1996).
- 13. Pitt, M. J., Easton, C. J., Moody, C. J., Ferrante, A., Poulos, A., and Rathjen, D. A. Synthesis 11:1239-1242(1997).
- 14. Barnes, N. C., Hui, P. K. Pulmonary Pharmacol. 6(1): 3-9 (1993).
- 15. Kornblum, N., Taub, B., Ungnade, H. E. J. Am. Chem. Soc. 76:3209-3211 (1954).
- 16. Chasar, D. W. Synthesis 841-842 (1982).
- 17. Pollini, G. P., Barco, A., and de Guili, G. Synthesis. 44-45 (1972).
- 18. Corey, E. J., and Suggs, J. W. Tetrahedron Letters 31:2647-2650 (1975).
- 19. Rosini, G., Ballini, R., and Petrini, M. Synthesis 269-271 (1985).
- 20. Melton, J., and McMurry, J. E. J. Org. Chem. 4(14) (1975).
- 21. Finkbeiner, H. L., and Wagner, G. W. J. Org. Chem. 28:215 (1963).
- 22. Finkbeiner, H. L., and Stiles, M. J. Am. Chem. Soc. 85: 616-632 (1962).
- 23. Hayashi, H.; Nakanishi, K.; Brandon, C.; Marmur, J. J. Am. Chem. Soc. 1973, 95, 8749.
- 24. Kornblum, N.; Taub, B.; Ungnade, H. E. J. Am. Clem. Soc. 1954, 76, 3209.
- 25. a) Stiles, M.; Finkbeiner, H. L. J. Am. Chem. Soc. 1959, 87, 505.
-
- b) Finkbeiner, H. L.; Wagner, G. W. J. Org. Chem. 1963, 28, 215.
- 26. Seebach, D.; Lehr, F. Angew. Chem., Int. Ed. Engl. 1976, 15, 505.
- 27. a) Finkbeiner, H. L.; Stiles, M. J. Am. Chem. Soc. 1963, 85, 616.
-
- b) Feuer, H.; Hass, H. B.; Warren, K. S. J. Am. Chem. Soc. 1949, 71, 3078.
- 28., Chasar, D. W. Synthesis 1982, 841.
- 29. Baldwin, J. E.; Au, A.; Christie, M.; Haber, S. B.; Hesson, D. J. Am. Chem. Soc. 1975, 97,5957.
- 30. Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 31, 2647.
- 31. Rosini, G.; Ballini, R. Synthesis 1988, 833.
- 32. Ballini, R.; Bosica, G.; Forconi. P. Tetrahedron 1996, 52, 1677.
- 33. Melton, J.; McMurry, J. E. J. Org. Chem. 1975, 40, 2138.
- 34. a) Porter, N. A.; Wolf, R. A.; Yarbro, E. M.; Weenen, H. Biochem. Biophys. Res. Commun. 1979, 89,1058.
-
- b) Porter, N. A.; Logan, J.; Kontoyiannidou, V. J. Org. Chem. 1979, 44, 3177.
- c) Terao, J.; Matsushita, S. Agric. Biol. Chem. 1981, 45, 587.
- 35., Corey, E. J., and Park, H. J. Am Chem. Soc. 104:1750-1752 (1982).
- 36. Kumaratilake, L. M., Robinson, B. S., Ferrante A. and Poulos, A.. J. Clin. Invest. 89: 961-967 (1992).
- 37. Ferrante, A., Poulos, A., Kumaratilake. L. M., Robinson, B. Methods and compositions for treating malaria and, other diseases. US08/170176; European 92912835.3; AU 21726/92 (1992).
- 38. Hardy, S. J., Robinson, B. S., Poulos, A., Harvey, D. P., Ferrante, A. & Murray, A. W. Eur. J. Biochem. 198, 801-806 (1991).
- 39. Bates, E. J., Ferrante, A., Harvey, D. P. and Poulos, A. J. Leukocyte Biol. 53:420-426 (1993).
- 40. Bates, E. J., Ferrante, A., Harvey D. P., Nandoskar, M. and Poulos, A. J Leuk. Biol. 54:590-598 (1993).
- 41. Ferrante, A., Goh, D. H. B., Harvey, D. P., Robinson, B. S., Hii, C. S. T., Bates, E. J., Hardy, S. J., Johnson, D. W. and Poulos, A. J. Clin. Invest. 93, 1063-1070 (1994).
- 42. Hardy, S. J., Ferrante, A., Poulos, A., Robinson, A., Johnson, D. W. and Murray, A. W. J. Immunol 153, 1754-1760 (1994).
- 43. Bates, E.J., Ferrante. A., Robinson, B., Smithers, L. and, Poulos, A. Atherosclerosis. 116, 247-259 (1995).
- 44. Huang, Z. H., Hii. C. S. T., Rathjen, D. A., Poulos, A., Murray, A. W., and Ferrante. A. Biochem J. 325, 553-557 (1997).
- 45. Hardy, S. J., Robinson, B. S.,; Ferrante, A., Hii, C. S. T., Johnson, D. W., Poulos. A., Murray, A. W. Biochem. J. 311, 689-697 (1995)
- 46. Li, Y., Ferrante, A., Poulos, A. and Harvey, D. P. J. Clin. Invest. 97, 1605-1609 (1996)
- 47 Pitt M J., Easton C J. Ferrante A., Poulos, A., Rathjen D A. Chem. Phys. Lipids 92: 63-69 (1998).
- 48. Editorial, J. Clin. Invest. 99: 1147-1148 (1997).
- 49. Wenzel, S. E. Am. J. Med. 104: 287-300 (1998).
Claims (80)
1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. (canceled)
12. (canceled)
13. (canceled)
14. (canceled)
15. (canceled)
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)
21. (canceled)
22. (canceled)
23. (canceled)
24. (canceled)
25. (canceled)
26. (canceled)
27. (canceled)
28. (canceled)
29. (canceled)
30. (canceled)
31. (canceled)
32. (canceled)
33. (canceled)
34. (canceled)
35. (canceled)
36. (canceled)
37. (canceled)
38. (canceled)
39. (canceled)
40. (canceled)
41. (canceled)
42. (canceled)
43. (canceled)
44. (canceled)
45. (canceled)
46. (canceled)
47. (canceled)
48. (canceled)
49. (canceled)
50. (canceled)
51. (canceled)
52. (canceled)
53. (canceled)
54. (canceled)
55. (canceled)
56. (canceled)
57. (canceled)
58. (canceled)
59. (canceled)
60. (canceled)
61. (canceled)
62. (canceled)
63. (canceled)
64. (canceled)
65. (canceled)
66. (canceled)
67. (canceled)
68. (canceled)
69. (canceled)
70. (canceled)
71. (canceled)
72. (canceled)
73. (canceled)
74. An anti-inflammatory pharmaceutical composition comprising a compound having the general formula:
wherein A is an unsaturated hydrocarbon chain of 14 to 26 carbon atoms or a derivative thereof selected from the group consisting of hydroxy, hydroperoxy, epoxy and peroxy; and B is (CH2)n(COOH)m in which n is an integer from 0 to 2 and m is 1 or 2; wherein the NO2 group is a side group on any one of the carbon atoms of A.and a pharmaceutically acceptable carrier or diluent.
75. A composition according to claim 74 wherein the unsaturated hydrocarbon chain comprises 18 to 22 carbon atoms.
76. A composition according to claim 74 wherein the unsaturated hydrocarbon chain comprises 3 to 6 double bonds.
77. A composition according to claim 74 wherein the hydrocarbon chain comprises 18 carbon atoms and three double bonds separated by methylene groups, with the first double bond between the 3rd and 4th or 6th and 7 th carbon atoms relative to the omega carbon atom.
78. A composition according to claim 74 effective for treating asthma, an autoimmune disease, multiple sclerosis, rheumatoid arthritis, adult respiratory distress syndrome, inflammatory bowel disease, cystic fibrosis, an allergy, diabetes, atopic dermatitis, systemic lupus erythematosus, ischaemia or a cardiovascular disease.
79. A method for treating an inflammation in a subject comprising administering to the subject a therapeutic amount of a composition of claim 1 .
80. A method according to claim 79 wherein the inflammation is selected from the group consisting of asthma, an autoimmune disease, multiple sclerosis, rheumatoid arthritis, adult respiratory distress syndrome, inflammatory bowel disease, cystic fibrosis, an allergy, diabetes, atopic dermatitis, systemic lupus erythematosus, ischaemia and a cardiovascular disease.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/072,573 US20050176817A1 (en) | 1999-09-17 | 2005-03-04 | Anti-inflammatory nitro- and thia- fatty acids |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPQ2914 | 1999-09-17 | ||
AUPQ2914A AUPQ291499A0 (en) | 1999-09-17 | 1999-09-17 | Novel nitro and sulphur containing compounds |
US10/100,490 US6924309B2 (en) | 1999-09-17 | 2002-03-18 | Anti-inflammatory nitro and thia-fatty acids |
US11/072,573 US20050176817A1 (en) | 1999-09-17 | 2005-03-04 | Anti-inflammatory nitro- and thia- fatty acids |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/100,490 Division US6924309B2 (en) | 1999-09-17 | 2002-03-18 | Anti-inflammatory nitro and thia-fatty acids |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050176817A1 true US20050176817A1 (en) | 2005-08-11 |
Family
ID=3817079
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/100,274 Abandoned US20030078299A1 (en) | 1999-09-17 | 2002-03-18 | Anti-cancer nitro- and thia-fatty acids |
US10/100,490 Expired - Fee Related US6924309B2 (en) | 1999-09-17 | 2002-03-18 | Anti-inflammatory nitro and thia-fatty acids |
US10/818,436 Abandoned US20040254240A1 (en) | 1999-09-17 | 2004-04-05 | Anti-cancer nitro- and thia-fatty acids |
US11/072,573 Abandoned US20050176817A1 (en) | 1999-09-17 | 2005-03-04 | Anti-inflammatory nitro- and thia- fatty acids |
US11/072,195 Abandoned US20050176815A1 (en) | 1999-09-17 | 2005-03-04 | Anti-inflammatory nitro-and thia-fatty acids |
US11/072,389 Abandoned US20050176816A1 (en) | 1999-09-17 | 2005-03-04 | Anti-inflammatory nitro- and thia-fatty acids |
US11/133,029 Abandoned US20050222253A1 (en) | 1999-09-17 | 2005-05-19 | Anti-cancer nitro- and thia-fatty acids |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/100,274 Abandoned US20030078299A1 (en) | 1999-09-17 | 2002-03-18 | Anti-cancer nitro- and thia-fatty acids |
US10/100,490 Expired - Fee Related US6924309B2 (en) | 1999-09-17 | 2002-03-18 | Anti-inflammatory nitro and thia-fatty acids |
US10/818,436 Abandoned US20040254240A1 (en) | 1999-09-17 | 2004-04-05 | Anti-cancer nitro- and thia-fatty acids |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/072,195 Abandoned US20050176815A1 (en) | 1999-09-17 | 2005-03-04 | Anti-inflammatory nitro-and thia-fatty acids |
US11/072,389 Abandoned US20050176816A1 (en) | 1999-09-17 | 2005-03-04 | Anti-inflammatory nitro- and thia-fatty acids |
US11/133,029 Abandoned US20050222253A1 (en) | 1999-09-17 | 2005-05-19 | Anti-cancer nitro- and thia-fatty acids |
Country Status (5)
Country | Link |
---|---|
US (7) | US20030078299A1 (en) |
EP (2) | EP1218333A4 (en) |
JP (2) | JP2003509460A (en) |
AU (1) | AUPQ291499A0 (en) |
WO (2) | WO2001021172A1 (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPQ291499A0 (en) * | 1999-09-17 | 1999-10-07 | Women's And Children's Hospital Adelaide | Novel nitro and sulphur containing compounds |
NO328803B1 (en) * | 2000-03-03 | 2010-05-18 | Thia Medica | New fatty acid analogues |
NO20004844L (en) * | 2000-09-27 | 2002-05-10 | Thia Medica As | Fatty acid analogues for the treatment of proliferative skin diseases |
NO20006008L (en) * | 2000-11-28 | 2002-05-29 | Thia Medica As | Fatty acid analogues for the treatment of inflammatory and autoimmune diseases |
CA2554735A1 (en) * | 2004-01-30 | 2005-08-11 | Peplin Biolipids Pty Ltd | Therapeutic and carrier molecules |
WO2005110396A2 (en) * | 2004-04-28 | 2005-11-24 | Uab Research Foundation | Nitrated lipids and methods of making and using thereof |
US7467857B2 (en) | 2005-12-20 | 2008-12-23 | Palo Alto Research Center Incorporated | Micromachined fluid ejectors using piezoelectric actuation |
US20100104546A1 (en) * | 2007-02-05 | 2010-04-29 | Children, Youth And Women's Health Service | Modulators of antigen-dependent t cell proliferation |
EP2180787B1 (en) | 2007-08-01 | 2013-10-30 | University of Pittsburgh - Of the Commonwealth System of Higher Education | Nitro oleic acid modulation of type ii diabetes |
EP2280928B1 (en) * | 2008-05-01 | 2018-07-25 | Complexa Inc. | Vinyl substituted fatty acids |
WO2009149496A1 (en) * | 2008-06-10 | 2009-12-17 | Central Northern Adelaide Health Service | Treatment of diabetes and complications thereof and related disorders |
EP2299997A4 (en) | 2008-06-19 | 2012-01-11 | Univ Utah Res Found | Use of nitrated lipids for treatment of side effects of toxic medical therapies |
US20140024713A1 (en) | 2008-06-19 | 2014-01-23 | University Of Utah Research Foundation | Use of nitrated lipids for treatment of side effects of toxic medical therapies |
US8937194B2 (en) * | 2008-12-31 | 2015-01-20 | Nitromega Corp. | Topical compositions containing nitro fatty acids |
CA2929998A1 (en) * | 2008-12-31 | 2010-07-08 | Raymond A. Miller | Dietary supplements comprising activated fatty acids |
US20100286271A1 (en) * | 2009-05-08 | 2010-11-11 | Perricone Nicholas V | Nitro-alkyl Compound Compositions |
US20100286272A1 (en) * | 2009-05-08 | 2010-11-11 | Perricone Nicholas V | Methods Of Use Of Nitroalkene Compositions In Dermatologic Applications |
US20100286257A1 (en) * | 2009-05-08 | 2010-11-11 | Perricone Nicholas V | Methods Of Use Of Nitroalkane Compositions In Dermatologic Applications To Prevent or Treat Skin Aging |
EP3045167A1 (en) | 2009-07-31 | 2016-07-20 | University of Pittsburgh - Of the Commonwealth System of Higher Education | Keto fatty acids as anti-inflammatory agents |
CA2781276A1 (en) | 2009-10-02 | 2011-04-07 | Complexa, Inc. | Heteroatom containing substituted fatty acids |
EP2547322A2 (en) * | 2010-03-15 | 2013-01-23 | Ulrich Dietz | Use of nitrocarboxylic acids for the treatment, diagnosis and prophylaxis of aggressive healing patterns |
CN102843922B (en) * | 2010-05-13 | 2015-12-16 | 尼特罗米加公司 | The neuroprotective of Xiao base Zhi Fang Suan – cognitive decline and/or suppression |
WO2011152832A1 (en) | 2010-06-04 | 2011-12-08 | N.V. Perricone Llc | Methods of use of nitroalkene compositions in dermatologic applications to prevent or treat skin aging |
WO2013028501A1 (en) | 2011-08-19 | 2013-02-28 | The University Of Utah Research Foundation | Combination therapy with nitrated lipids and inhibitors of the renin-angiotensin-aldosterone system |
AU2016289856B2 (en) | 2015-07-07 | 2020-11-26 | H. Lundbeck A/S | PDE9 inhibitors with imidazo triazinone backbone and imidazo pyrazinone backbone for treatment of peripheral diseases |
CA3000842A1 (en) | 2015-10-02 | 2017-04-06 | Complexa, Inc. | Prevention, treatment and reversal of disease using therapeutically effective amounts of activated fatty acids |
US11690825B2 (en) | 2016-03-09 | 2023-07-04 | Board Of Regents, The University Of Texas System | 20-HETE receptor (GPR75) antagonists and methods of use |
WO2018229284A1 (en) * | 2017-06-16 | 2018-12-20 | Avexxin As | Compositions and methods for treatment of a fibrotic disease |
CN111712240A (en) * | 2017-12-06 | 2020-09-25 | 巴斯夫股份公司 | Fatty acid derivatives for the treatment of non-alcoholic steatohepatitis |
BR122023022641A2 (en) | 2018-05-25 | 2024-02-20 | Imara Inc. | CRYSTALLINE FORM OF MONOHYDRATE, PHARMACEUTICAL COMPOSITION COMPRISING THE SAME, METHOD OF INHIBITING PDE9 ACTIVITY IN A PATIENT AND PROCESS FOR PREPARING THE MONOHYDRATE FORM 2 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3415856A (en) * | 1965-06-24 | 1968-12-10 | Texaco Inc | Process for producing carboxylic acids and nitrogen containing intermediates from olefins |
US3578687A (en) * | 1968-01-30 | 1971-05-11 | Texaco Inc | Process for producing 4-nitroalkanoic acids |
US4046886A (en) * | 1975-01-17 | 1977-09-06 | The Procter & Gamble Company | Dermatological compositions |
US4780319A (en) * | 1985-07-08 | 1988-10-25 | Merck & Co., Inc. | Organic acids as catalysts for the erosion of polymers |
US5610198A (en) * | 1994-03-18 | 1997-03-11 | The United States Of America As Represented By The Department Of Health And Human Services | Anti-mycobacterial compositions and their use for the treatment of tuberculosis and related diseases |
US5998476A (en) * | 1994-10-26 | 1999-12-07 | Peptide Technology Limited | Synthetic polyunsaturated fatty acid analogues |
US6046237A (en) * | 1995-07-14 | 2000-04-04 | Berge; Rolf | Non-β-oxidizable fatty acid analogues, their uses as therapeutic active medicaments |
US6376688B1 (en) * | 1994-10-13 | 2002-04-23 | Peptide Technology Limited | Modified polyunsaturated fatty acids |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1400643A (en) * | 1919-09-13 | 1921-12-20 | Elias Van Dyke | Refrigerator |
GB587992A (en) * | 1944-12-11 | 1947-05-12 | Charles William Scaife | Improvements in and relating to the production of organic nitrogen compounds |
FR5551M (en) * | 1965-04-29 | 1967-11-20 | ||
DE1617839A1 (en) * | 1967-04-19 | 1971-04-08 | Schering Ag | Method of contraception |
DE2208533A1 (en) * | 1972-02-23 | 1973-09-27 | Kolmar Laboratories | Long chain alkyl thioethers - surfactants, bacteriostats fungistats and anticancer agents |
IE37447B1 (en) * | 1972-04-05 | 1977-07-20 | Procter & Gamble | Dermatological compositions |
US5659049A (en) * | 1988-02-18 | 1997-08-19 | Virginia Commonwealth University | Antioxidant, antiphospholipase derivatives of ricinoleic acid |
GB8813012D0 (en) * | 1988-06-02 | 1988-07-06 | Norsk Hydro As | Non-b-oxidizable fatty acid analogues to reduce concentration of cholesterol & triglycerides in blood of mammals |
US5654334A (en) * | 1995-06-23 | 1997-08-05 | Oklahoma Medical Research Foundation | Analgesic use of N-L-α-aspartyl-L-phenylalanine 1-methyl ester |
US5747537A (en) * | 1995-09-05 | 1998-05-05 | Washington University | Method of inhibiting parasitic activity |
GB2328155B (en) * | 1996-04-12 | 2000-08-02 | Peptide Technology Pty Limited | Methods of treating immunopathologies using polyunsaturated fattyacids |
WO1999058120A1 (en) * | 1998-05-08 | 1999-11-18 | Rolf Berge | USE OF NON-β-OXIDIZABLE FATTY ACID ANALOGUES FOR TREATMENT OF SYNDROME-X CONDITIONS |
AUPQ291499A0 (en) * | 1999-09-17 | 1999-10-07 | Women's And Children's Hospital Adelaide | Novel nitro and sulphur containing compounds |
-
1999
- 1999-09-17 AU AUPQ2914A patent/AUPQ291499A0/en not_active Abandoned
-
2000
- 2000-09-18 JP JP2001524598A patent/JP2003509460A/en active Pending
- 2000-09-18 WO PCT/AU2000/001137 patent/WO2001021172A1/en not_active Application Discontinuation
- 2000-09-18 JP JP2001524956A patent/JP2003509485A/en active Pending
- 2000-09-18 EP EP00965631A patent/EP1218333A4/en not_active Withdrawn
- 2000-09-18 WO PCT/AU2000/001138 patent/WO2001021575A1/en active Application Filing
- 2000-09-18 EP EP00965630A patent/EP1218000A4/en not_active Withdrawn
-
2002
- 2002-03-18 US US10/100,274 patent/US20030078299A1/en not_active Abandoned
- 2002-03-18 US US10/100,490 patent/US6924309B2/en not_active Expired - Fee Related
-
2004
- 2004-04-05 US US10/818,436 patent/US20040254240A1/en not_active Abandoned
-
2005
- 2005-03-04 US US11/072,573 patent/US20050176817A1/en not_active Abandoned
- 2005-03-04 US US11/072,195 patent/US20050176815A1/en not_active Abandoned
- 2005-03-04 US US11/072,389 patent/US20050176816A1/en not_active Abandoned
- 2005-05-19 US US11/133,029 patent/US20050222253A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3415856A (en) * | 1965-06-24 | 1968-12-10 | Texaco Inc | Process for producing carboxylic acids and nitrogen containing intermediates from olefins |
US3578687A (en) * | 1968-01-30 | 1971-05-11 | Texaco Inc | Process for producing 4-nitroalkanoic acids |
US4046886A (en) * | 1975-01-17 | 1977-09-06 | The Procter & Gamble Company | Dermatological compositions |
US4780319A (en) * | 1985-07-08 | 1988-10-25 | Merck & Co., Inc. | Organic acids as catalysts for the erosion of polymers |
US5610198A (en) * | 1994-03-18 | 1997-03-11 | The United States Of America As Represented By The Department Of Health And Human Services | Anti-mycobacterial compositions and their use for the treatment of tuberculosis and related diseases |
US6376688B1 (en) * | 1994-10-13 | 2002-04-23 | Peptide Technology Limited | Modified polyunsaturated fatty acids |
US5998476A (en) * | 1994-10-26 | 1999-12-07 | Peptide Technology Limited | Synthetic polyunsaturated fatty acid analogues |
US6046237A (en) * | 1995-07-14 | 2000-04-04 | Berge; Rolf | Non-β-oxidizable fatty acid analogues, their uses as therapeutic active medicaments |
Also Published As
Publication number | Publication date |
---|---|
EP1218333A1 (en) | 2002-07-03 |
US20050176815A1 (en) | 2005-08-11 |
JP2003509460A (en) | 2003-03-11 |
JP2003509485A (en) | 2003-03-11 |
US20030078299A1 (en) | 2003-04-24 |
US6924309B2 (en) | 2005-08-02 |
EP1218000A4 (en) | 2003-07-09 |
US20040254240A1 (en) | 2004-12-16 |
EP1218333A4 (en) | 2003-07-09 |
EP1218000A1 (en) | 2002-07-03 |
WO2001021575A1 (en) | 2001-03-29 |
AUPQ291499A0 (en) | 1999-10-07 |
US20050176816A1 (en) | 2005-08-11 |
US20050222253A1 (en) | 2005-10-06 |
WO2001021172A1 (en) | 2001-03-29 |
US20030092762A1 (en) | 2003-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6924309B2 (en) | Anti-inflammatory nitro and thia-fatty acids | |
AU2017225070B2 (en) | Impaired energy processing disorders and mitochondrial deficiency | |
Siddiqui et al. | Anticancer properties of oxidation products of docosahexaenoic acid | |
US6569075B2 (en) | Lipoxin compounds and their use in treating cell proliferative disorders | |
US5401774A (en) | Method for treating patients with precancerous lesions by administering substituted sulfonyl idenyl acetic and propionic acids and esters to patients with lesions sensitive to such compounds | |
US7741369B2 (en) | Lipoxin compounds and their use in treating cell proliferative disorders | |
CA2834274C (en) | Neurodegenerative disorders and muscle diseases implicating pufas | |
JP2016138138A (en) | Alleviation of oxidative stress disorders with pufa derivatives | |
JPH10507179A (en) | Modified polyunsaturated fatty acids | |
EP0508586A1 (en) | Substituted indenyl compounds | |
JP2009073810A (en) | Lipoxin compound | |
Ramwell | Biologic importance of arachidonic acid | |
AU784588B2 (en) | Anti-inflammatory nitro- and thia- fatty acids | |
Amoruso et al. | The nitric oxide-donating pravastatin, NCX 6550, inhibits cytokine release and NF-κB activation while enhancing PPARγ expression in human monocyte/macrophages | |
AU7631400A (en) | Anti-cancer nitro- and thia-fatty acids | |
TWI243053B (en) | Anti-cancer fatty acids and lipids and analogues and pharmaceutical compositions thereof | |
AU2005239705A2 (en) | Anti-cancer nitro- and thia-fatty acids | |
Singh et al. | GENOTOXICITY AND GENETIC MARKERS IN DISEASE CONDITIONS–Key Areas of Human Concern And When DNA Repair Interventions Will Not Work | |
Serhan et al. | Contribution of Bidirectional Transcellular Routes to Lipoxin Biosynthesis | |
Jain | NSAID Prodrugs with Improved Anti-inflammatory Activity and Low Ulcerogenicity: Wake Up Call to Pharmaceutical Companies and Health Authorities | |
POUBELLE et al. | Leukotrienes: Biosynthesis, Metabolism, and Analysis | |
RECE | 2-ARACHIDONOYLGLYCEROL: A NOVEL TYPE OF ENDOGENOUS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |