US20050174670A1 - Adaptive data format method integrating spare sectors - Google Patents

Adaptive data format method integrating spare sectors Download PDF

Info

Publication number
US20050174670A1
US20050174670A1 US10/775,269 US77526904A US2005174670A1 US 20050174670 A1 US20050174670 A1 US 20050174670A1 US 77526904 A US77526904 A US 77526904A US 2005174670 A1 US2005174670 A1 US 2005174670A1
Authority
US
United States
Prior art keywords
hard disk
head
zone
storage
tracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/775,269
Other versions
US6927930B1 (en
Inventor
George Dunn
Daniel Malone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Western Digital Technologies Inc
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to US10/775,269 priority Critical patent/US6927930B1/en
Assigned to HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V. reassignment HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUNN, GEORGE ANTHONY, MALONE, DANIEL J.
Application granted granted Critical
Publication of US6927930B1 publication Critical patent/US6927930B1/en
Publication of US20050174670A1 publication Critical patent/US20050174670A1/en
Assigned to HGST Netherlands B.V. reassignment HGST Netherlands B.V. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
Assigned to WESTERN DIGITAL TECHNOLOGIES, INC. reassignment WESTERN DIGITAL TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HGST Netherlands B.V.
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/455Arrangements for functional testing of heads; Measuring arrangements for heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/09Digital recording

Definitions

  • the present invention relates to hard disk drives (HDDs). More particularly, the present invention relates to an adaptive format that takes advantage of the performance capability of different heads that are part of the same HDD.
  • FIG. 1 shows an exemplary high-RPM hard disk drive (HDD) 100 having at least one magnetic read/write head (or a recording slider) 101 and at least one magnetic disk 102 .
  • Each magnetic read/write head 101 includes, for example, a tunnel-valve read sensor, that is positioned over a selected track on a magnetic disk 102 using, for example, a two-stage servo system for reading data stored on disk 102 .
  • the two-stage servo system includes a voice-coil motor (VCM) 104 for coarse positioning a read/write head suspension 105 and may include a microactuator, or micropositioner, for fine positioning a read/write head 101 over the selected track.
  • VCM voice-coil motor
  • a microactuator or a micropositioner
  • a microactuator is a small actuator that is placed between a suspension and a slider, and moves the slider relative to the suspension.
  • Adaptive format techniques are well known for modifying the structure of customer data on each magnetic disk 102 of HDD 100 to compensate for the radial position on each disk and for the bits-per-inch (BPI) performance capability of each head. Nevertheless, the complexity of implementation of conventional adaptive formats has caused only a small percentage of HDDs in the marketplace use an adaptive format technique.
  • FIG. 2 shows a graph 200 representing the relative BPI of storage as a function of position along the radius of a hard disk for a conventional standard adaptive format.
  • the abscissa of graph 200 is the position along the radius of a disk, with the Inside Diameter (ID) of a disk shown on the left and the Outside Diameter (OD) of the disk shown on the right.
  • the left ordinate of graph 200 is the relative BPI of storage and the right ordinate of graph 200 is the relative data rate in MB/S.
  • Curve 201 represents the data rate as a function of position along the radius of an exemplary hard disk.
  • Curve 202 represents the actual bits per inch as a function of position along the radius of the exemplary hard disk. Curve 202 shows that the actual bits per inch increases as the radius decreases until the number of data bits per revolution steps to a different value, as represented by curve 201 .
  • Curve 203 represents what is commonly referred to as the profile of the head BPI capability and is based on curve 202 .
  • FIG. 3 depicts the arrangement of a conventional standard adaptive format on an HDD for four heads, indicated as heads n through n+3.
  • Storage zones 301 - 303 represent three adjacent portions of hard disks.
  • Storage zone 301 is positioned along the radius of a disk as the closest of the three storage zones to the OD of the disk.
  • storage zone 303 is positioned along the radius of the disk as the closest of the three storage zones to the ID of the disk.
  • Each storage zone 301 - 303 includes a plurality of tracks 304 and each storage zone 301 - 303 is separated from each adjacent storage zone by unused or blank tracks 305 .
  • the storage zones for each head changes at the same position in the radius of the hard disk. That is, all of the storage zones are aligned with the tracks and with each other.
  • storage zones 301 - 303 are each depicted as being about the same size in FIG. 3 , it should be understood that the storage zones do not necessarily need to be the same size.
  • storage zone 301 could, for example, correspond to the portion of curve 201 indicated as 204 ; zone 302 could correspond to the portion of curve 201 indicated as 205 ; and zone 303 could correspond to the portion of curve 201 indicated as 206 .
  • each storage zone shows the tracks associated with four heads grouped together, it should be understood that the tracks associated with each respective head can be physically associated on different hard disks.
  • FIGS. 2 and 3 depict a conventional standard format technique on a BPI by head basis
  • conventional standard adaptive format techniques on a tracks-per-inch (TPI) by head basis are also well-known and can be depicted by both FIGS. 2 and 3 .
  • FIG. 4 shows a graph 400 representing the performance capability distribution of an exemplary plurality of read/write heads with respect to the conventional adaptive format technique represented in FIGS. 2 and 3 .
  • Portion 401 of graph 400 represents the portion (a 4 to 5 ⁇ level) of read/write heads that do not have the performance capability to meet the profile represented by curve 203 in FIG. 2 .
  • the mean performance capability 402 of the read/write heads exceeds the performance capability profile.
  • FIG. 5 shows a graph 500 contrasting the relative BPI performance capability of two exemplary read/write heads, such as heads n and n+1 in FIG. 3 , as a function of position along the radius of a hard disk for the standard format technique depicted by FIG. 3 .
  • the abscissa of graph 500 is the radius of a disk, with the ID of a disk shown on the left and the OD of the disk shown on the right.
  • the left ordinate of graph 500 is the relative BPI and the right ordinate of graph 500 is the relative data rate in MB/S.
  • Curve 501 represents the data rate as a function of position along the radius of an exemplary hard disk for head n.
  • Curve 503 represents the relative BPI performance capability for head n, which, for this example, has a relatively high BPI performance capability, that is, a performance capability that would be located on the right side of graph 400 .
  • Curve 502 represents the data rate as a function of position along the radius of an exemplary hard disk for head n+1.
  • Curve 504 represents the relative BPI performance capability for head n+1, which has a relatively low BPI performance capability, that is, a performance capability that would be located on the left side of graph 400 . Because head n is a relatively higher performance head, a portion of curve 503 is at the highest BPI in comparison to curve 504 for head n+1.
  • FIG. 6 depicts the arrangement of a conventional variable-zone-by-head adaptive format on an HDD for four heads, indicated as heads n through n+3.
  • Storage zones 601 - 603 represent three adjacent portions of a hard disk.
  • Storage zone 601 is positioned along the radius of a disk as the closest of the three storage zones to the OD of the disk. Accordingly, storage zone 603 is positioned along the radius of the disk as the closest of the three storage zones to the ID of the disk.
  • Each storage zone 601 - 603 includes a plurality of tracks 604 and each storage zone 601 - 603 is separated from each adjacent storage zone by unused or blank tracks 605 . Additionally, while each storage zone shows the tracks associated with four heads grouped together, it should be understood that the tracks associated with each respective head are physically associated with different hard disks. Further still, while FIG. 6 depicts a conventional variable-zone-by-head adaptive format technique on a BPI by head basis, conventional variable-zone-by-head adaptive format techniques on a ⁇ TPI by head basis are also well-known and can be depicted by FIG. 6 .
  • a conventional variable-zone-by-head adaptive format can be characterized by zones that vary by the BPI performance capability of the corresponding head. For example, as shown in FIG. 6 , head n+3 has a higher BPI performance capability than heads n, n+1 and n+2. Thus, storage zone 601 for head n+3 extends less toward the ID of the disk than the corresponding storage zone for each of heads n, n+1 and n+2. As should be readily observable, there is a significant creep in the alignment of the storage zones and the data sectors that can occur with variable-zone-by-head adaptive format that degrades performance. For example, the creep between storage zones 602 and 603 , represented by 606 , is greater than the creep between storage zones 601 and 602 , represented by 607 .
  • the present invention provides a simplified adaptive format technique that takes advantage of the capability performance of different heads that are part of the same HDD and that is not utilized by a conventional standard format technique. Additionally, the adaptive format of the present invention does not suffer from the disadvantage of creep exhibited by a conventional variable-zone-by-head adaptive format.
  • an adaptive format for a hard disk of a hard disk drive that includes a plurality of storage zones and at least one reset zone.
  • the storage zones and each reset zone are distributed along a radius of the hard disk with a reset zone being disposed between two adjacent storage zones.
  • Each storage zone has a plurality of associated data tracks and each reset zone includes a plurality of data tracks.
  • the number of data tracks associated with each respective storage zone is based on a performance capability of a head associated with the hard disk.
  • the number of tracks associated with each respective reset zone is based on predetermined allowed track creep and performance requirements for the hard disk drive.
  • the performance capability of the head can be a tracks-per-inch performance capability and/or a bits-per-inch performance capability of the head.
  • the present invention also provides a hard disk drive having at least one head, and a hard disk associated with each head.
  • the hard disk has a plurality of storage zones and at least one reset zone.
  • the storage zones and each reset zone are distributed along a radius of a hard disk with a reset zone being disposed between two adjacent storage zones.
  • Each storage zone has a plurality of associated data tracks and each reset zone includes a plurality of data tracks.
  • the number of data tracks associated with each respective storage zone is based on a performance capability of a head associated with the hard disk and includes at least one data track of at least one reset zone that is adjacent to the storage zone when the number of data tracks associated with the storage zone exceeds a number of data tracks that are between each reset zone.
  • a plurality of adjacent storage zones can have the same tracks-per-inch storage capability and/or the same bits-per-inch storage capability.
  • the performance capability of the head can be a tracks-per-inch performance capability and/or a bits-per-inch performance capability of the head.
  • FIG. 1 shows an exemplary high-RPM disk drive having a magnetic read/write head
  • FIG. 2 shows a graph representing the relative BPI of storage as a function of position along the radius of a hard disk for a conventional standard format
  • FIG. 3 depicts the arrangement of a conventional standard format on an HDD for four heads, indicated as heads n through n+3;
  • FIG. 4 shows a graph representing the performance capability distribution of an exemplary plurality of read/write heads with respect to the conventional format technique represented in FIGS. 2 and 3 ;
  • FIG. 5 shows a graph contrasting the relative BPI performance of two exemplary read/write heads as a function of position along the radius of a hard disk for the adaptive format technique depicted by FIG. 3 ;
  • FIG. 6 depicts the arrangement of a conventional variable-zone-by-head adaptive format on an HDD for four heads, indicated as heads n through n+3;
  • FIG. 7 depicts an exemplary arrangement of a simplified adaptive format technique according to the present invention, referred to herein as a “reset-on-the-zone” adaptive format.
  • the present invention provides a simplified adaptive format technique that takes advantage of the performance capability of different heads that are part of the same HDD and that is not utilized by a conventional standard format technique. Moreover, the adaptive format of the present invention does not suffer from the disadvantage of creep exhibited by a conventional variable-zone-by-head adaptive format. In this regard, the adaptive format of the present invention allows for either the bits-per-inch or the tracks-per-inch or both at a given point along the radius of a hard disk to be different for different heads on the same HDD. Additionally, the adaptive format of the present invention allows unused blocks to be assigned, thereby further increasing the overall performance of an HDD.
  • FIG. 7 depicts an exemplary arrangement of a simplified adaptive format technique on a hard disk drive for four heads, indicated as heads n through n+3.
  • the adaptive format of the present invention is referred to as a “reset-on-the-zone” adaptive format.
  • Storage zones 701 - 703 shown in FIG. 7 represent three adjacent portions of a hard disk.
  • Storage zone 701 is positioned along the radius of a disk as the closest of the three storage zones to the OD of the disk.
  • storage zone 703 is positioned along the radius of the disk as the closest of the three storage zones to the ID of the disk.
  • Each storage zone 701 - 703 includes a plurality of tracks 704 and each storage zone 701 - 703 is separated from each adjacent zone by unused or blank tracks 705 .
  • Adjacent storage zones can have the same BPI based on the BPI capability of the respective heads.
  • each of zones 701 - 703 can have the same BPI recording density.
  • storage zones 701 and 702 can have the same BPI storage density and storage zone 703 can have a lesser BPI storage density. While each storage zone shows the tracks associated with four heads grouped together, it should be understood that the tracks associated with each respective head can be physically associated with different hard disks.
  • the reset-on-the-zone adaptive format of the present invention allows the BPI and/or the TPI to be different for each head for a given position along the radius of a hard disk.
  • head n+3 has a higher BPI performance capability than heads n, n+1 and n+2.
  • the BPI performance capability of heads n and n+2 are about the same, but are both greater than the BPI performance capability of head n+1.
  • storage zone 701 for head n+3 having the highest BPI performance capability extends the least distance toward the ID of the disk than the corresponding storage zone for each of heads n, n+1 and n+2.
  • Storage zone 701 for heads n and n+2 extend about the same distance toward the ID of the disk.
  • Storage zone 701 for head n+1 extends the greatest distance toward the ID of the disk.
  • the performance capability of each head with respect to each zone could be based on a TPI performance capability of the head.
  • the performance capability of each head with respect to each zone could be based on both a BPI and a TPI performance capability of the head.
  • the present invention also includes reset zones 706 that are positioned at regular intervals across the radius of a disk and that span a short distance, typically four to five tracks wide.
  • the distance a storage zone for a particular head extends into a particular reset zone can differ from head to head.
  • zone 701 for head n+1 extends into reset zone 706 a toward the ID of the disk to the greatest number of tracks.
  • zone 702 for each of heads n, n+2 and n+3 extend into reset zone 706 b toward the ID of the disk to a lesser number of tracks.
  • a region of a hard disk designated to have a predetermined BPI storage density and/or data rate can have a plurality of storage zones and a plurality of reset zones
  • Tracks 705 within a reset zone 706 can be used as buffer sectors for defective sites and/or for spares in the field, thereby minimizing the number of wasted storage space.

Abstract

The performance capability of different heads that are part of the same hard disk drive (HDD) are utilized by an adaptive format that includes a plurality of storage zones and at least one reset zone that are distributed along a radius of the hard disk such that a reset zone is disposed between two adjacent storage zones. Each storage zone has a plurality of associated data tracks and each reset zone includes a plurality of data tracks. The number of data tracks associated with each respective storage zone is based on a performance capability of a head associated with the hard disk and includes at least one data track of at least one reset zone adjacent to the storage zone when the number of data tracks associated with the storage zone exceeds the number of data tracks that are between each reset zone adjacent to the storage zone.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to hard disk drives (HDDs). More particularly, the present invention relates to an adaptive format that takes advantage of the performance capability of different heads that are part of the same HDD.
  • 2. Description of the Related Art
  • FIG. 1 shows an exemplary high-RPM hard disk drive (HDD) 100 having at least one magnetic read/write head (or a recording slider) 101 and at least one magnetic disk 102. Each magnetic read/write head 101 includes, for example, a tunnel-valve read sensor, that is positioned over a selected track on a magnetic disk 102 using, for example, a two-stage servo system for reading data stored on disk 102. The two-stage servo system includes a voice-coil motor (VCM) 104 for coarse positioning a read/write head suspension 105 and may include a microactuator, or micropositioner, for fine positioning a read/write head 101 over the selected track. As used herein, a microactuator (or a micropositioner) is a small actuator that is placed between a suspension and a slider, and moves the slider relative to the suspension.
  • Adaptive format techniques are well known for modifying the structure of customer data on each magnetic disk 102 of HDD 100 to compensate for the radial position on each disk and for the bits-per-inch (BPI) performance capability of each head. Nevertheless, the complexity of implementation of conventional adaptive formats has caused only a small percentage of HDDs in the marketplace use an adaptive format technique.
  • FIG. 2 shows a graph 200 representing the relative BPI of storage as a function of position along the radius of a hard disk for a conventional standard adaptive format. The abscissa of graph 200 is the position along the radius of a disk, with the Inside Diameter (ID) of a disk shown on the left and the Outside Diameter (OD) of the disk shown on the right. The left ordinate of graph 200 is the relative BPI of storage and the right ordinate of graph 200 is the relative data rate in MB/S. Curve 201 represents the data rate as a function of position along the radius of an exemplary hard disk. Because the circumference is greater at the outer diameter of the disk relative to the inner diameter, the data rate at the outer diameter of the disk corresponds to a greater number of bits of data for a single complete revolution of the disk. The data rate and the number of data bits per revolution are reduced in discrete steps represented by curve 201. Curve 202 represents the actual bits per inch as a function of position along the radius of the exemplary hard disk. Curve 202 shows that the actual bits per inch increases as the radius decreases until the number of data bits per revolution steps to a different value, as represented by curve 201. Curve 203 represents what is commonly referred to as the profile of the head BPI capability and is based on curve 202.
  • FIG. 3 depicts the arrangement of a conventional standard adaptive format on an HDD for four heads, indicated as heads n through n+3. Storage zones 301-303 represent three adjacent portions of hard disks. Storage zone 301 is positioned along the radius of a disk as the closest of the three storage zones to the OD of the disk. Accordingly, storage zone 303 is positioned along the radius of the disk as the closest of the three storage zones to the ID of the disk. Each storage zone 301-303 includes a plurality of tracks 304 and each storage zone 301-303 is separated from each adjacent storage zone by unused or blank tracks 305. As can be seen in FIG. 3, the storage zones for each head changes at the same position in the radius of the hard disk. That is, all of the storage zones are aligned with the tracks and with each other.
  • Although storage zones 301-303 are each depicted as being about the same size in FIG. 3, it should be understood that the storage zones do not necessarily need to be the same size. For example, storage zone 301 could, for example, correspond to the portion of curve 201 indicated as 204; zone 302 could correspond to the portion of curve 201 indicated as 205; and zone 303 could correspond to the portion of curve 201 indicated as 206. Additionally, while each storage zone shows the tracks associated with four heads grouped together, it should be understood that the tracks associated with each respective head can be physically associated on different hard disks. Further still, while FIGS. 2 and 3 depict a conventional standard format technique on a BPI by head basis, conventional standard adaptive format techniques on a tracks-per-inch (TPI) by head basis are also well-known and can be depicted by both FIGS. 2 and 3.
  • FIG. 4 shows a graph 400 representing the performance capability distribution of an exemplary plurality of read/write heads with respect to the conventional adaptive format technique represented in FIGS. 2 and 3. Portion 401 of graph 400 represents the portion (a 4 to 5 σ level) of read/write heads that do not have the performance capability to meet the profile represented by curve 203 in FIG. 2. Typically, the mean performance capability 402 of the read/write heads exceeds the performance capability profile.
  • FIG. 5 shows a graph 500 contrasting the relative BPI performance capability of two exemplary read/write heads, such as heads n and n+1 in FIG. 3, as a function of position along the radius of a hard disk for the standard format technique depicted by FIG. 3. The abscissa of graph 500 is the radius of a disk, with the ID of a disk shown on the left and the OD of the disk shown on the right. The left ordinate of graph 500 is the relative BPI and the right ordinate of graph 500 is the relative data rate in MB/S. Curve 501 represents the data rate as a function of position along the radius of an exemplary hard disk for head n. Curve 503 represents the relative BPI performance capability for head n, which, for this example, has a relatively high BPI performance capability, that is, a performance capability that would be located on the right side of graph 400. Curve 502 represents the data rate as a function of position along the radius of an exemplary hard disk for head n+1. Curve 504 represents the relative BPI performance capability for head n+1, which has a relatively low BPI performance capability, that is, a performance capability that would be located on the left side of graph 400. Because head n is a relatively higher performance head, a portion of curve 503 is at the highest BPI in comparison to curve 504 for head n+1. Nevertheless,.because the two heads are part of the same HDD, they are each used to the minimum design BPI performance capability corresponding to curve 400 to the right of portion 401. Moreover, the relatively-higher BPI performance capability of head n is simply not utilized. Curve 505 represents the limit of the bits per inch curve 503 that was conventionally utilized.
  • One conventional approach to take advantage of the variations in BPI performance capability of different heads is to use a variable-zone-by-head adaptive format technique on a TPI by head or by BPI by head basis. FIG. 6 depicts the arrangement of a conventional variable-zone-by-head adaptive format on an HDD for four heads, indicated as heads n through n+3. Storage zones 601-603 represent three adjacent portions of a hard disk. Storage zone 601 is positioned along the radius of a disk as the closest of the three storage zones to the OD of the disk. Accordingly, storage zone 603 is positioned along the radius of the disk as the closest of the three storage zones to the ID of the disk. Each storage zone 601-603 includes a plurality of tracks 604 and each storage zone 601-603 is separated from each adjacent storage zone by unused or blank tracks 605. Additionally, while each storage zone shows the tracks associated with four heads grouped together, it should be understood that the tracks associated with each respective head are physically associated with different hard disks. Further still, while FIG. 6 depicts a conventional variable-zone-by-head adaptive format technique on a BPI by head basis, conventional variable-zone-by-head adaptive format techniques on a −TPI by head basis are also well-known and can be depicted by FIG. 6.
  • A conventional variable-zone-by-head adaptive format can be characterized by zones that vary by the BPI performance capability of the corresponding head. For example, as shown in FIG. 6, head n+3 has a higher BPI performance capability than heads n, n+1 and n+2. Thus, storage zone 601 for head n+3 extends less toward the ID of the disk than the corresponding storage zone for each of heads n, n+1 and n+2. As should be readily observable, there is a significant creep in the alignment of the storage zones and the data sectors that can occur with variable-zone-by-head adaptive format that degrades performance. For example, the creep between storage zones 602 and 603, represented by 606, is greater than the creep between storage zones 601 and 602, represented by 607.
  • Continued market pressures to increase areal densities of HDDs and the slowing of the read/write technology to achieve continued increased areal densities, new adaptive format techniques are needed.
  • Consequently, what is needed is an adaptive format technique that takes advantage of the performance capability of different heads that are part of the same HDD and that is not utilized by a conventional standard format technique. What is also needed is an adaptive format that does not have the disadvantage of creep exhibited by a conventional variable-zone-by-head adaptive format.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention provides a simplified adaptive format technique that takes advantage of the capability performance of different heads that are part of the same HDD and that is not utilized by a conventional standard format technique. Additionally, the adaptive format of the present invention does not suffer from the disadvantage of creep exhibited by a conventional variable-zone-by-head adaptive format.
  • The advantages of the present invention are provided by an adaptive format for a hard disk of a hard disk drive that includes a plurality of storage zones and at least one reset zone. The storage zones and each reset zone are distributed along a radius of the hard disk with a reset zone being disposed between two adjacent storage zones. Each storage zone has a plurality of associated data tracks and each reset zone includes a plurality of data tracks. The number of data tracks associated with each respective storage zone is based on a performance capability of a head associated with the hard disk. The number of tracks associated with each respective reset zone is based on predetermined allowed track creep and performance requirements for the hard disk drive. According to the invention, the performance capability of the head can be a tracks-per-inch performance capability and/or a bits-per-inch performance capability of the head.
  • The present invention also provides a hard disk drive having at least one head, and a hard disk associated with each head. The hard disk has a plurality of storage zones and at least one reset zone. The storage zones and each reset zone are distributed along a radius of a hard disk with a reset zone being disposed between two adjacent storage zones. Each storage zone has a plurality of associated data tracks and each reset zone includes a plurality of data tracks. The number of data tracks associated with each respective storage zone is based on a performance capability of a head associated with the hard disk and includes at least one data track of at least one reset zone that is adjacent to the storage zone when the number of data tracks associated with the storage zone exceeds a number of data tracks that are between each reset zone. A plurality of adjacent storage zones can have the same tracks-per-inch storage capability and/or the same bits-per-inch storage capability. According to the invention, the performance capability of the head can be a tracks-per-inch performance capability and/or a bits-per-inch performance capability of the head.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is illustrated by way of example and not by limitation in the accompanying figures in which like reference numerals indicate similar elements and in which:
  • FIG. 1 shows an exemplary high-RPM disk drive having a magnetic read/write head;
  • FIG. 2 shows a graph representing the relative BPI of storage as a function of position along the radius of a hard disk for a conventional standard format;
  • FIG. 3 depicts the arrangement of a conventional standard format on an HDD for four heads, indicated as heads n through n+3;
  • FIG. 4 shows a graph representing the performance capability distribution of an exemplary plurality of read/write heads with respect to the conventional format technique represented in FIGS. 2 and 3;
  • FIG. 5 shows a graph contrasting the relative BPI performance of two exemplary read/write heads as a function of position along the radius of a hard disk for the adaptive format technique depicted by FIG. 3;
  • FIG. 6 depicts the arrangement of a conventional variable-zone-by-head adaptive format on an HDD for four heads, indicated as heads n through n+3;
  • FIG. 7 depicts an exemplary arrangement of a simplified adaptive format technique according to the present invention, referred to herein as a “reset-on-the-zone” adaptive format.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides a simplified adaptive format technique that takes advantage of the performance capability of different heads that are part of the same HDD and that is not utilized by a conventional standard format technique. Moreover, the adaptive format of the present invention does not suffer from the disadvantage of creep exhibited by a conventional variable-zone-by-head adaptive format. In this regard, the adaptive format of the present invention allows for either the bits-per-inch or the tracks-per-inch or both at a given point along the radius of a hard disk to be different for different heads on the same HDD. Additionally, the adaptive format of the present invention allows unused blocks to be assigned, thereby further increasing the overall performance of an HDD.
  • FIG. 7 depicts an exemplary arrangement of a simplified adaptive format technique on a hard disk drive for four heads, indicated as heads n through n+3. As referred to herein, the adaptive format of the present invention is referred to as a “reset-on-the-zone” adaptive format. Storage zones 701-703 shown in FIG. 7 represent three adjacent portions of a hard disk. Storage zone 701 is positioned along the radius of a disk as the closest of the three storage zones to the OD of the disk. Accordingly, storage zone 703 is positioned along the radius of the disk as the closest of the three storage zones to the ID of the disk. Each storage zone 701-703 includes a plurality of tracks 704 and each storage zone 701-703 is separated from each adjacent zone by unused or blank tracks 705. Adjacent storage zones can have the same BPI based on the BPI capability of the respective heads. For example, each of zones 701-703 can have the same BPI recording density. Alternatively, storage zones 701 and 702 can have the same BPI storage density and storage zone 703 can have a lesser BPI storage density. While each storage zone shows the tracks associated with four heads grouped together, it should be understood that the tracks associated with each respective head can be physically associated with different hard disks.
  • The reset-on-the-zone adaptive format of the present invention allows the BPI and/or the TPI to be different for each head for a given position along the radius of a hard disk. For example, as shown in FIG. 7, head n+3 has a higher BPI performance capability than heads n, n+1 and n+2. Further, the BPI performance capability of heads n and n+2 are about the same, but are both greater than the BPI performance capability of head n+1. Thus, storage zone 701 for head n+3 having the highest BPI performance capability extends the least distance toward the ID of the disk than the corresponding storage zone for each of heads n, n+1 and n+2. Storage zone 701 for heads n and n+2 extend about the same distance toward the ID of the disk. Storage zone 701 for head n+1 extends the greatest distance toward the ID of the disk. Alternatively, the performance capability of each head with respect to each zone could be based on a TPI performance capability of the head. As yet another alternative, the performance capability of each head with respect to each zone could be based on both a BPI and a TPI performance capability of the head.
  • The present invention also includes reset zones 706 that are positioned at regular intervals across the radius of a disk and that span a short distance, typically four to five tracks wide. The distance a storage zone for a particular head extends into a particular reset zone can differ from head to head. For example, zone 701 for head n+1 extends into reset zone 706a toward the ID of the disk to the greatest number of tracks. Similarly, zone 702 for each of heads n, n+2 and n+3 extend into reset zone 706b toward the ID of the disk to a lesser number of tracks. Additionally, a region of a hard disk designated to have a predetermined BPI storage density and/or data rate can have a plurality of storage zones and a plurality of reset zones
  • Depending upon the number of defects found during the manufacturing process, however, the difference in the number of tracks that a storage zone extends into a reset zone could change or even reverse, that is, extend into a reset zone toward the OD of the hard disk. Tracks 705 within a reset zone 706 can be used as buffer sectors for defective sites and/or for spares in the field, thereby minimizing the number of wasted storage space.
  • Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced that are within the scope of the appended claims. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

Claims (18)

1. An adaptive format for a hard disk of a hard disk drive, the adaptive format comprising a plurality of storage zones and a plurality of reset zones alternatingly distributed along the radius of a hard disk, each reset zone being separated by a first predetermined number of data tracks and containing a second predetermined number of data tracks, and each storage zone including a number of data tracks that is based on a performance capability of a head associated with the hard disk and overlapping at least one reset zone that is adjacent to the storage zone when the number of data tracks of the storage zone exceeds the first number of data tracks separating consecutive reset zones.
2. The adaptive format according to claim 1, wherein the performance capability of the head is a tracks-per-inch performance capability of the head.
3. The adaptive format according to claim 1, wherein the performance capability of the head is a bit-per-inch performance capability of the head.
4. The adaptive format according to claim 3, wherein the performance capability of the head is further based on a tracks-per-inch performance capability of the head.
5. The adaptive format according to claim 1, wherein a plurality of adjacent storage zones have the same bits-per-inch storage capability.
6. The adaptive format according to claim 1, wherein a plurality of adjacent storage zones have the same tracks-per-inch storage capability.
7. The adaptive format according to claim 6, wherein a plurality of adjacent storage zones further have the same bits-per-inch storage capability.
8. The adaptive format according to claim 1, wherein a number of tracks associated with each respective reset zone is based on predetermined allowed track creep for the hard disk drive.
9. The adaptive format according to claim 8, wherein the number of tracks associated with each respective reset zone is further based on a performance requirement for the hard disk drive.
10. A hard disk drive, comprising:
at least one head; and
a hard disk associated with each head, the hard disk having a plurality of storage zones and a plurality of reset zones alternatingly distributed along the radius of a hard disk, each reset zone being separated by a first predetermined number of data tracks and containing a second predetermined number of data tracks, and each storage zone including a number of data tracks that is based on a performance capability of a head associated with the hard disk and overlapping at least one reset zone that is adjacent to the storage zone when the number of data tracks of the storage zone exceeds the first number of data tracks separating consecutive reset zones.
11. The hard disk drive according to claim 10, wherein the performance capability of at least one head is a tracks-per-inch performance capability of the head.
12. The hard disk according to claim 10, wherein the performance capability of at least one head is a bit-per-inch performance capability of the head.
13. The hard disk drive according to claim 12, wherein the performance capability of at least one head is further based on a tracks-per-inch performance capability of the head.
14. The hard disk drive according to claim 10, wherein a plurality of adjacent storage zones have the same bits-per-inch storage capability.
15. The hard disk drive according to claim 10, wherein a plurality of adjacent storage zones have the same tracks-per-inch storage capability.
16. The hard disk drive according to claim 15, wherein a plurality of adjacent storage zones further have the same bits-per-inch storage capability.
17. The hard disk drive according to claim 10, wherein a number of tracks associated with each respective reset zone is based on predetermined allowed track creep for the hard disk drive.
18. The hard disk drive according to claim 17, wherein the number of tracks associated with each respective reset zone is further based on a performance requirement for the hard disk drive.
US10/775,269 2004-02-10 2004-02-10 Adaptive data format method integrating spare sectors Expired - Fee Related US6927930B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/775,269 US6927930B1 (en) 2004-02-10 2004-02-10 Adaptive data format method integrating spare sectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/775,269 US6927930B1 (en) 2004-02-10 2004-02-10 Adaptive data format method integrating spare sectors

Publications (2)

Publication Number Publication Date
US6927930B1 US6927930B1 (en) 2005-08-09
US20050174670A1 true US20050174670A1 (en) 2005-08-11

Family

ID=34808653

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/775,269 Expired - Fee Related US6927930B1 (en) 2004-02-10 2004-02-10 Adaptive data format method integrating spare sectors

Country Status (1)

Country Link
US (1) US6927930B1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10923156B1 (en) * 2020-02-19 2021-02-16 Alibaba Group Holding Limited Method and system for facilitating low-cost high-throughput storage for accessing large-size I/O blocks in a hard disk drive
US10921992B2 (en) 2018-06-25 2021-02-16 Alibaba Group Holding Limited Method and system for data placement in a hard disk drive based on access frequency for improved IOPS and utilization efficiency
US10977122B2 (en) 2018-12-31 2021-04-13 Alibaba Group Holding Limited System and method for facilitating differentiated error correction in high-density flash devices
US10996886B2 (en) 2018-08-02 2021-05-04 Alibaba Group Holding Limited Method and system for facilitating atomicity and latency assurance on variable sized I/O
US11061735B2 (en) 2019-01-02 2021-07-13 Alibaba Group Holding Limited System and method for offloading computation to storage nodes in distributed system
US11068409B2 (en) 2018-02-07 2021-07-20 Alibaba Group Holding Limited Method and system for user-space storage I/O stack with user-space flash translation layer
US11126561B2 (en) 2019-10-01 2021-09-21 Alibaba Group Holding Limited Method and system for organizing NAND blocks and placing data to facilitate high-throughput for random writes in a solid state drive
US11132291B2 (en) 2019-01-04 2021-09-28 Alibaba Group Holding Limited System and method of FPGA-executed flash translation layer in multiple solid state drives
US11150986B2 (en) 2020-02-26 2021-10-19 Alibaba Group Holding Limited Efficient compaction on log-structured distributed file system using erasure coding for resource consumption reduction
US11200337B2 (en) 2019-02-11 2021-12-14 Alibaba Group Holding Limited System and method for user data isolation
US11200114B2 (en) 2020-03-17 2021-12-14 Alibaba Group Holding Limited System and method for facilitating elastic error correction code in memory
US11218165B2 (en) 2020-05-15 2022-01-04 Alibaba Group Holding Limited Memory-mapped two-dimensional error correction code for multi-bit error tolerance in DRAM
US11263132B2 (en) 2020-06-11 2022-03-01 Alibaba Group Holding Limited Method and system for facilitating log-structure data organization
US11281575B2 (en) 2020-05-11 2022-03-22 Alibaba Group Holding Limited Method and system for facilitating data placement and control of physical addresses with multi-queue I/O blocks
US11327929B2 (en) 2018-09-17 2022-05-10 Alibaba Group Holding Limited Method and system for reduced data movement compression using in-storage computing and a customized file system
US11354200B2 (en) 2020-06-17 2022-06-07 Alibaba Group Holding Limited Method and system for facilitating data recovery and version rollback in a storage device
US11354233B2 (en) 2020-07-27 2022-06-07 Alibaba Group Holding Limited Method and system for facilitating fast crash recovery in a storage device
US11372774B2 (en) 2020-08-24 2022-06-28 Alibaba Group Holding Limited Method and system for a solid state drive with on-chip memory integration
US11379155B2 (en) 2018-05-24 2022-07-05 Alibaba Group Holding Limited System and method for flash storage management using multiple open page stripes
US11379127B2 (en) 2019-07-18 2022-07-05 Alibaba Group Holding Limited Method and system for enhancing a distributed storage system by decoupling computation and network tasks
US11416365B2 (en) 2020-12-30 2022-08-16 Alibaba Group Holding Limited Method and system for open NAND block detection and correction in an open-channel SSD
US11422931B2 (en) 2020-06-17 2022-08-23 Alibaba Group Holding Limited Method and system for facilitating a physically isolated storage unit for multi-tenancy virtualization
US11449455B2 (en) 2020-01-15 2022-09-20 Alibaba Group Holding Limited Method and system for facilitating a high-capacity object storage system with configuration agility and mixed deployment flexibility
US11461173B1 (en) 2021-04-21 2022-10-04 Alibaba Singapore Holding Private Limited Method and system for facilitating efficient data compression based on error correction code and reorganization of data placement
US11461262B2 (en) 2020-05-13 2022-10-04 Alibaba Group Holding Limited Method and system for facilitating a converged computation and storage node in a distributed storage system
US11476874B1 (en) 2021-05-14 2022-10-18 Alibaba Singapore Holding Private Limited Method and system for facilitating a storage server with hybrid memory for journaling and data storage
US11487465B2 (en) 2020-12-11 2022-11-01 Alibaba Group Holding Limited Method and system for a local storage engine collaborating with a solid state drive controller
US11494115B2 (en) 2020-05-13 2022-11-08 Alibaba Group Holding Limited System method for facilitating memory media as file storage device based on real-time hashing by performing integrity check with a cyclical redundancy check (CRC)
US11507499B2 (en) 2020-05-19 2022-11-22 Alibaba Group Holding Limited System and method for facilitating mitigation of read/write amplification in data compression
US11556277B2 (en) 2020-05-19 2023-01-17 Alibaba Group Holding Limited System and method for facilitating improved performance in ordering key-value storage with input/output stack simplification
US11617282B2 (en) 2019-10-01 2023-03-28 Alibaba Group Holding Limited System and method for reshaping power budget of cabinet to facilitate improved deployment density of servers
US11726699B2 (en) 2021-03-30 2023-08-15 Alibaba Singapore Holding Private Limited Method and system for facilitating multi-stream sequential read performance improvement with reduced read amplification
US11734115B2 (en) 2020-12-28 2023-08-22 Alibaba Group Holding Limited Method and system for facilitating write latency reduction in a queue depth of one scenario
US11816043B2 (en) 2018-06-25 2023-11-14 Alibaba Group Holding Limited System and method for managing resources of a storage device and quantifying the cost of I/O requests

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596458A (en) * 1994-12-19 1997-01-21 Integral Peripherals, Inc. Variable zone layout for information storage disk drive
US6061195A (en) * 1994-12-19 2000-05-09 Mobile Storage Technology, Inv. Variable zone layout and track pitch parameter considerations for information storage disk drive
US6466387B1 (en) * 1997-07-29 2002-10-15 International Business Machines Corporation Data recording disk and disk drive device for reducing wasted space on a data recording disk

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19983333T1 (en) 1998-06-26 2001-06-13 Seagate Technology Variable disk drive cylinder recording system
JP2001184800A (en) 1999-12-21 2001-07-06 Matsushita Electric Ind Co Ltd Disk device and reassigning method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596458A (en) * 1994-12-19 1997-01-21 Integral Peripherals, Inc. Variable zone layout for information storage disk drive
US6061195A (en) * 1994-12-19 2000-05-09 Mobile Storage Technology, Inv. Variable zone layout and track pitch parameter considerations for information storage disk drive
US6466387B1 (en) * 1997-07-29 2002-10-15 International Business Machines Corporation Data recording disk and disk drive device for reducing wasted space on a data recording disk

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11068409B2 (en) 2018-02-07 2021-07-20 Alibaba Group Holding Limited Method and system for user-space storage I/O stack with user-space flash translation layer
US11379155B2 (en) 2018-05-24 2022-07-05 Alibaba Group Holding Limited System and method for flash storage management using multiple open page stripes
US11816043B2 (en) 2018-06-25 2023-11-14 Alibaba Group Holding Limited System and method for managing resources of a storage device and quantifying the cost of I/O requests
US10921992B2 (en) 2018-06-25 2021-02-16 Alibaba Group Holding Limited Method and system for data placement in a hard disk drive based on access frequency for improved IOPS and utilization efficiency
US10996886B2 (en) 2018-08-02 2021-05-04 Alibaba Group Holding Limited Method and system for facilitating atomicity and latency assurance on variable sized I/O
US11327929B2 (en) 2018-09-17 2022-05-10 Alibaba Group Holding Limited Method and system for reduced data movement compression using in-storage computing and a customized file system
US10977122B2 (en) 2018-12-31 2021-04-13 Alibaba Group Holding Limited System and method for facilitating differentiated error correction in high-density flash devices
US11768709B2 (en) 2019-01-02 2023-09-26 Alibaba Group Holding Limited System and method for offloading computation to storage nodes in distributed system
US11061735B2 (en) 2019-01-02 2021-07-13 Alibaba Group Holding Limited System and method for offloading computation to storage nodes in distributed system
US11132291B2 (en) 2019-01-04 2021-09-28 Alibaba Group Holding Limited System and method of FPGA-executed flash translation layer in multiple solid state drives
US11200337B2 (en) 2019-02-11 2021-12-14 Alibaba Group Holding Limited System and method for user data isolation
US11379127B2 (en) 2019-07-18 2022-07-05 Alibaba Group Holding Limited Method and system for enhancing a distributed storage system by decoupling computation and network tasks
US11126561B2 (en) 2019-10-01 2021-09-21 Alibaba Group Holding Limited Method and system for organizing NAND blocks and placing data to facilitate high-throughput for random writes in a solid state drive
US11617282B2 (en) 2019-10-01 2023-03-28 Alibaba Group Holding Limited System and method for reshaping power budget of cabinet to facilitate improved deployment density of servers
US11449455B2 (en) 2020-01-15 2022-09-20 Alibaba Group Holding Limited Method and system for facilitating a high-capacity object storage system with configuration agility and mixed deployment flexibility
US10923156B1 (en) * 2020-02-19 2021-02-16 Alibaba Group Holding Limited Method and system for facilitating low-cost high-throughput storage for accessing large-size I/O blocks in a hard disk drive
US11150986B2 (en) 2020-02-26 2021-10-19 Alibaba Group Holding Limited Efficient compaction on log-structured distributed file system using erasure coding for resource consumption reduction
US11200114B2 (en) 2020-03-17 2021-12-14 Alibaba Group Holding Limited System and method for facilitating elastic error correction code in memory
US11281575B2 (en) 2020-05-11 2022-03-22 Alibaba Group Holding Limited Method and system for facilitating data placement and control of physical addresses with multi-queue I/O blocks
US11461262B2 (en) 2020-05-13 2022-10-04 Alibaba Group Holding Limited Method and system for facilitating a converged computation and storage node in a distributed storage system
US11494115B2 (en) 2020-05-13 2022-11-08 Alibaba Group Holding Limited System method for facilitating memory media as file storage device based on real-time hashing by performing integrity check with a cyclical redundancy check (CRC)
US11218165B2 (en) 2020-05-15 2022-01-04 Alibaba Group Holding Limited Memory-mapped two-dimensional error correction code for multi-bit error tolerance in DRAM
US11556277B2 (en) 2020-05-19 2023-01-17 Alibaba Group Holding Limited System and method for facilitating improved performance in ordering key-value storage with input/output stack simplification
US11507499B2 (en) 2020-05-19 2022-11-22 Alibaba Group Holding Limited System and method for facilitating mitigation of read/write amplification in data compression
US11263132B2 (en) 2020-06-11 2022-03-01 Alibaba Group Holding Limited Method and system for facilitating log-structure data organization
US11422931B2 (en) 2020-06-17 2022-08-23 Alibaba Group Holding Limited Method and system for facilitating a physically isolated storage unit for multi-tenancy virtualization
US11354200B2 (en) 2020-06-17 2022-06-07 Alibaba Group Holding Limited Method and system for facilitating data recovery and version rollback in a storage device
US11354233B2 (en) 2020-07-27 2022-06-07 Alibaba Group Holding Limited Method and system for facilitating fast crash recovery in a storage device
US11372774B2 (en) 2020-08-24 2022-06-28 Alibaba Group Holding Limited Method and system for a solid state drive with on-chip memory integration
US11487465B2 (en) 2020-12-11 2022-11-01 Alibaba Group Holding Limited Method and system for a local storage engine collaborating with a solid state drive controller
US11734115B2 (en) 2020-12-28 2023-08-22 Alibaba Group Holding Limited Method and system for facilitating write latency reduction in a queue depth of one scenario
US11416365B2 (en) 2020-12-30 2022-08-16 Alibaba Group Holding Limited Method and system for open NAND block detection and correction in an open-channel SSD
US11726699B2 (en) 2021-03-30 2023-08-15 Alibaba Singapore Holding Private Limited Method and system for facilitating multi-stream sequential read performance improvement with reduced read amplification
US11461173B1 (en) 2021-04-21 2022-10-04 Alibaba Singapore Holding Private Limited Method and system for facilitating efficient data compression based on error correction code and reorganization of data placement
US11476874B1 (en) 2021-05-14 2022-10-18 Alibaba Singapore Holding Private Limited Method and system for facilitating a storage server with hybrid memory for journaling and data storage

Also Published As

Publication number Publication date
US6927930B1 (en) 2005-08-09

Similar Documents

Publication Publication Date Title
US6927930B1 (en) Adaptive data format method integrating spare sectors
US7082007B2 (en) Method to achieve higher track density by allowing only one-sided track encroachment
US7675699B2 (en) Patterned-media magnetic recording disk and disk drive with data zones having nondata regions near the zone boundaries
US7907360B2 (en) Setting writer boundaries for multiple writers
US7589925B1 (en) Method of accessing variable density data tracks in a disk drive
US7046471B2 (en) Method and apparatus for utilizing variable tracks per inch to reduce bits per inch for a head
US6130796A (en) Adaptive track pitch control method and apparatus for disk drives
US6388829B1 (en) High servo sampling disk drive with minimum overhead
US6445525B1 (en) Disc drive performance by reducing areal data storage density
JP4353161B2 (en) Information storage device
US5870241A (en) Method and apparatus for evasive maneuvering to keep DASD heads away from protruding surface defects
US8824079B2 (en) Servo patterns for bit patterned media with multiple dots per servo period
JP2004110896A (en) Perpendicular magnetic recording/reproducing system
US20080186616A1 (en) Hard disk drive
US6108150A (en) Formation of servo information and method for servo control therefor in disk drive data storage system
US5999352A (en) Variable bits per inch recording
US7511912B2 (en) Writing multiple servo sector patterns to improve servo sector alignment on multiple surfaces
US20020039246A1 (en) Variable TPI data recording in hard disc drives
KR100688556B1 (en) Write controlling method of hard disk drive, and hard disk drive and recording medium therefor
KR101430613B1 (en) Patterned magnetic recording media and method for self servo writing onto the same
KR100900201B1 (en) Magnetic recording media, hard disk drive employing the same and method for detecting WR offset of hard disk drive
JP4157311B2 (en) Magnetic recording medium and magnetic recording apparatus
US20110149437A1 (en) Method and apparatus for read and write data in a disk drive with discrete track disk
US20090195917A1 (en) Hard disc apparatus and head alignment method
JP2010040114A (en) Magnetic disk drive

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUNN, GEORGE ANTHONY;MALONE, DANIEL J.;REEL/FRAME:014984/0714

Effective date: 20040209

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: HGST, NETHERLANDS B.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:HGST, NETHERLANDS B.V.;REEL/FRAME:029341/0777

Effective date: 20120723

Owner name: HGST NETHERLANDS B.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.;REEL/FRAME:029341/0777

Effective date: 20120723

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: WESTERN DIGITAL TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HGST NETHERLANDS B.V.;REEL/FRAME:040819/0450

Effective date: 20160831

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.)

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20170809