US20050171305A1 - Solid metallocene catalyst system - Google Patents

Solid metallocene catalyst system Download PDF

Info

Publication number
US20050171305A1
US20050171305A1 US11/055,910 US5591005A US2005171305A1 US 20050171305 A1 US20050171305 A1 US 20050171305A1 US 5591005 A US5591005 A US 5591005A US 2005171305 A1 US2005171305 A1 US 2005171305A1
Authority
US
United States
Prior art keywords
polymer
metallocene
liquid
catalyst system
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/055,910
Inventor
Kent Mitchell
Gary Glass
L. Kirchman
Robert Provence
Leigh Ford
Randall Muninger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/055,910 priority Critical patent/US20050171305A1/en
Publication of US20050171305A1 publication Critical patent/US20050171305A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6491Catalysts containing a specific non-metal or metal-free compound organic hydrocarbon
    • C08F4/6492Catalysts containing a specific non-metal or metal-free compound organic hydrocarbon containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/904Monomer polymerized in presence of transition metal containing catalyst at least part of which is supported on a polymer, e.g. prepolymerized catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Definitions

  • This invention relates to a new type of solid particulate metallocene catalyst system useful for the polymerization and/or copolymerization of olefins.
  • the invention is also related to a process for conducting polymerization of olefins using the inventive solid metallocene catalyst system.
  • Metallocene refers to a derivative of cyclopentadienylidene which is a metal derivative containing at least one cyclopentadienyl component which is bonded to a transition metal.
  • the transition metal is selected from Groups IVB, VB, and VIB, preferably IVB and VIB. Examples include titanium, zirconium, hafnium, chromium, and vanadium.
  • a number of metallocenes have been found to be useful for the polymerization of olefins. Generally, the more preferred catalysts are metallocenes of Zr, Hf, or Ti.
  • fouling refers to polymer buildup on the surfaces inside the reactor.
  • An object of the present invention is to provide yet further improvements for the making of solid catalyst systems of the type disclosed in U.S. Pat. No. 5,498,581.
  • a method for polymerizing olefins using the new improved version of such solid prepolymerized metallocene catalyst systems.
  • a solid particulate metallocene-containing catalyst system is produced by (a) combining an organoaluminoxane and at least one metallocene having at least one olefinic unsaturated substituent in an aliphatic liquid to form a liquid catalyst system, (b) conducting prepolymerization of at least one olefin in the presence of said liquid catalyst system, optionally in multiple steps, to produce a prepolymerized solid catalyst, and (c) separating the resulting solid from the liquid and the components dissolved in the liquid, said solid being the solid particulate metallocene catalyst system.
  • liquid catalyst system refers to the combination of the aluminoxane, the metallocene, and the aliphatic liquid, irrespective of whether the aluminoxane and/or the metallocene are dissolved in the liquid.
  • the resulting inventive solid particulate metallocene-containing catalyst system is employed in the polymerization of an olefin by contacting the olefin with the inventive solid particulate metallocene-containing catalyst system under suitable reaction conditions.
  • metallocenes are considered to be applicable to the present process.
  • the essential feature is that the metallocene be one wherein at least one cyclopentadienyl-type ligand has a substituent having a polymerizable olefinic group.
  • Some examples of such olefin-containing metallocenes are disclosed in U.S. Pat. No. 5,169,818 and published European Application No. 574,370.
  • the invention is considered applicable to both bridged and unbridged metallocenes.
  • the unbridged metallocenes can even include bridged ligands which contain two cyclopentadienyl-type radicals connected by a suitable bridging structure but wherein only one of the cyclopentadienyl-type radicals of that ligand is bonded to the transition metal.
  • the olefinic substituent can be on the bridge connecting the two cyclopentadienyl-type groups.
  • the metallocenes of the type contemplated as useful for the present invention include those represented by the formula R x (Z)(Z)MQ k wherein each Z bound to M and is the same or different and is a cyclopentadienyl-type ligand selected from substituted or unsubstituted cyclopentadienyl, indenyl, tetrahydroindenyl, octahydrofluorenyl, and fluorenyl ligands; R is a structural bridge linking the Z's and M is a metal selected from the group consisting of IVB, VB, and VIB metals of the periodic table, each Q is the same or different and is selected from the group consisting of hydrogen, halogens, and organoradicals; x is 1 or 0; k is a number sufficient to fill out the remaining balances of M; further characterized by the fact that at least one Z has at least one olefinically unsaturated substituent attached.
  • a Q is an organo radical
  • it can be selected from any of the organo radicals known to be suitable for metallocenes that are useful as polymerization catalysts. Some examples include aryl, alkyl, alkenyl, alkylaryl, and arylalkyl radicals.
  • the organo radical has 1 to 20 carbon atoms.
  • a particularly preferred type of bridged metallocene includes those in which the olefinically unsaturated substituent has the formula wherein R′′ is a hydrocarbyl diradical having 1 to 20 carbon atoms; more preferably 2 to 10; n is 1 or 0, and each R′ is individually selected from the group consisting of organo radicals having 1 to 10 carbon atoms and hydrogen. Most preferably R′′ has at least two carbons in its main alkylene chain, i.e. it is a divalent ethylene radical or a higher homolog thereof.
  • Some olefinic branched bridged ligands useful for making metallocenes suitable for the present invention can be prepared by reacting a dihalo olefinic compound with an alkali metal salt of a suitable cyclopentadiene-type compound to produce a compound of the formula Z-R-Z where R is a bridge having olefinic unsaturation and wherein each Z is the same or alternatively to first produce a compound of the formula Z-R—X wherein X is a halogen and then reacting that compound with an alkali metal salt of another different cyclopentadiene-type compound to produce a compound of the formula Z-R-Z wherein the two Z's differ.
  • Such reactions can be carried out using conditions of the type disclosed in U.S. Pat. No. 5,191,132.
  • An alternate technique for forming an olefinic branched bridged ligand involves reacting a carbonyl compound having olefinic unsaturation with a cyclopentadiene-type compound in the presence of a base and methanol to yield an alkenyl fulvene which is then reacted with an alkali metal salt of a cyclopentadiene-type compound, such as, for example, fluorene, to yield the unsaturated-branched-bridged ligand containing two cyclopentadienyl-type groups, i.e. fluorenyl and cyclopentadienyl.
  • 5-hexene-2-one with cyclopentadiene using a procedure like that disclosed by Stone et al. in J. Org. Chem., 49, 1849 (1984) to yield 6-(but-3-enyl)-6-methylfulvene which could then be reacted with fluorenyllithium and subsequently hydrolyzed to yield 5-cyclopentadienyl-5-(9-fluorenyl)-1-hexene, also sometimes referred to as 1-(9-fluorenyl)-1-(cyclopentadienyl)-1-(methyl)-1-(but-3-enyl) methane.
  • n is a number typically in the range of about 0 to 20; more preferably 2-10; R iv is Si, Ge, C, or Sn; R′′′ and R′ are each individually selected from hydrogen, or organo groups having 1 to 10 carbons.
  • R′ and R′′′ components are hydrogen or alkyl groups typically having 1 to 10 carbon atoms, or aryl groups typically having 6 to 10 carbon atoms.
  • Z is a cyclopentadienyl-type radical as described earlier.
  • the metallocenes of such olefinically unsaturated branched-bridged ligands can be prepared by reacting the olefinically branched-bridged bis(cyclopentadienyl-type) ligand with an alkali metal alkyl to produce a divalent ligand salt that is then reacted with the transition metal compound to yield the metallocene, using the techniques generally known in the art for forming such metallocenes. See, for example, the technique disclosed in European Published Application 524,624, the disclosure of which is incorporated herein by reference.
  • Some typical examples of some metallocenes containing a substituent having olefinic unsaturation include 5-(cyclopentadienyl)-5-(9-fluorenyl)-1-hexene zirconium dichloride, bis(9-fluorenyl)(methyl)(vinyl)silane zirconium dichloride, bis(9-fluorenyl)(methyl)(prop-2-enyl)silane zirconium dichloride, bis(9-fluorenyl) (methyl)(but-3-enyl)silane zirconium dichloride, bis(9-fluorenyl)(methyl) (hex-5-enyl) silane zirconium dichloride, bis(9-fluorenyl)(methyl)(oct-7-enyl)silane zirconium dichloride, (cyclopentadienyl)(1-allylindenyl) zirconium dichloride, bis(1-allylind
  • the organo aluminoxane component used in preparing the inventive solid catalyst system is an oligomeric aluminum compound having repeating units of the formula Some examples are often represented by the general formula (R—Al—O) n or R(R—Al—O—) n AlR 2 .
  • R is a C 1 -C 5 alkyl radical, for example, methyl, ethyl, propyl, butyl or pentyl and “n” is an integer from 1 to about 50. Most preferably, R is methyl and “n” is at least 4.
  • Aluminoxanes can be prepared by various procedures known in the art.
  • an aluminum alkyl may be treated with water dissolved in an inert organic solvent, or it may be contacted with a hydrated salt, such as hydrated copper sulfate suspended in an inert organic solvent, to yield an aluminoxane.
  • a hydrated salt such as hydrated copper sulfate suspended in an inert organic solvent
  • the reaction of an aluminum alkyl with a limited amount of water is postulated to yield a mixture of the linear and cyclic species of the aluminoxane.
  • the metallocene and aluminoxane are combined with an aliphatic liquid to form a liquid catalyst system.
  • aliphatic liquid examples include pentane, isopentane, hexane, octane, heptane, and the like.
  • the amount of aliphatic liquid employed should preferably be such as to allow for good mixing in the subsequent steps and to allow for a desirable viscosity during the prepolymerization step.
  • the liquid catalyst system be prepared using an aluminoxane that is dissolved in an aromatic liquid.
  • aromatic liquid examples include benzene, toluene, ethylbenzene, diethylbenzene, and the like.
  • the currently preferred aromatic liquid is toluene.
  • the amount of liquid in which the aluminoxane is dissolved is not particularly critical, however the aromatic liquid is commonly used in such an amount that the aluminoxane solution would contain about 5 to about 40 weight percent aluminoxane, more preferably about 10 to about 30 weight percent.
  • the amount of aliphatic liquid employed in step (a) can vary over a wide range depending upon the results desired. Typically, however, the aliphatic liquid would be used in such an amount that the volume ratio of the aliphatic liquid to the aromatic solution of aluminoxane would be in the range of from about 0.5/1 to about 15/1, more preferably about 1/1 to about 13.5/1, still more preferably at least 5/1, and even still more preferably at least 6/1.
  • the temperature is preferably kept below that which would cause the metallocene to decompose.
  • the temperature would be in the range of ⁇ 50° C. to 100° C.
  • the metallocene, the aluminoxane, and the liquid diluent are combined at room temperature, i.e. around 10 to 30° C.
  • the reaction between the aluminoxane and the metallocene is relatively rapid. The reaction rate can vary depending upon the ligands of the metallocene. It is generally desired that they be contacted for at least about a minute to about 1 hour.
  • particulate solid can be any organic or inorganic solid that does not interfere with the desired end result.
  • porous supports such as talc, inorganic oxides, and resinous support materials such as particulate polyolefins.
  • inorganic oxide materials include oxides of metals of Groups II, III, IV or V of the Periodic Table, such as silica, alumina, silica-alumina, and mixtures thereof.
  • suitable support materials which can be employed include such as, magnesium dichloride, and finely divided polyolefins, such as polyethylene. It is within the scope of the present invention to use a mixture of one or more of the particulate solids.
  • Thermal dehydration treatment may be carried out in vacuum or while purging with a dry inert gas such as nitrogen at a temperature of about 20° C. to about 1000° C., and preferably, from about 300° C. to about 800° C. Pressure considerations are not critical.
  • the duration of thermal treatment can be from about 1 to about 24 hours. However, shorter or longer times can be employed provided equilibrium is established with the surface hydroxyl groups.
  • Dehydration can also be accomplished by subjecting the solid to a chemical treatment in order to remove water and reduce the concentration of surface hydroxyl groups.
  • Chemical treatment is generally capable of converting all water and hydroxyl groups in the oxide surface to relatively inert species.
  • Useful chemical agents are for example, trimethylaluminum, ethyl magnesium chloride, chlorosilanes such as SiCl 4 , disilazane, trimethylchlorosilane, dimethylaminotrimethylsilane, and the like.
  • the chemical dehydration can be accomplished by slurrying the inorganic particulate material such as, for example silica, in an inert low boiling hydrocarbon, such as for example, hexane. During the chemical dehydration treatment, the silica should be maintained in a moisture and oxygen free atmosphere. To the silica slurry is then added a low boiling inert hydrocarbon solution of the chemical dehydrating agent, such as, for example dichloroldimethylsilane. The solution is added slowly to the slurry.
  • the temperature ranges during chemical dehydration reaction can be from about 20° C. to about 120° C., however, higher and lower temperatures can be employed. Preferably, the temperature will be about 50° C. to about 100° C.
  • the chemical dehydration procedure should be allowed to proceed until all the substantially reactive groups are removed from the particulate support material as indicated by cessation of gas evolution. Normally, the chemical dehydration reaction will be allowed to proceed from about 30 minutes to about 16 hours, preferably, 1 to 5 hours.
  • the solid particulate material may be filtered under a nitrogen atmosphere and washed one or more times with a dry, oxygen free inert solvent.
  • the wash solvents as well as the diluents employed to form the slurry and the solution of chemical dehydrating agent can be any suitable inert hydrocarbon. Illustrative of such hydrocarbons are pentane, heptane, hexane, toluene, isopentane, and the like.
  • Another chemical treatment that can be used on solid inorganic oxides such as silica involves reduction by contacting the solid with carbon monoxide at an elevated temperature sufficient to convert substantially all the water and hydroxyl groups to relatively inactive species.
  • the specific particle size of the support or inorganic oxide, surface area, pore volume, and number of hydroxyl groups is not considered critical to its utility in the practice of this invention. However, such characteristics often determine the amount of support to be employed in preparing the catalyst compositions, as well as affecting the particle morphology of polymers formed. The characteristics of the carrier or support must therefore be taken into consideration in choosing the same for use in the particular invention.
  • the amount of aluminoxane and metallocene used in forming the liquid catalyst system for the prepolymerization can vary over a wide range. Typically, however, the molar ratio of aluminum in the aluminoxane to transition metal of the metallocene is in the range of about 1:1 to about 20,000:1, more preferably, a molar ratio of about 50:1 to about 2000:1 is used. If a particulate solid, i.e. silica, is used, generally it is used in an amount such that the weight ratio of the metallocene to the particulate solid is in the range of about 0.00001/1 to 1/1, more preferably 0.0005/1 to 0.2/1.
  • the aromatic solution of the aluminoxane is combined with the metallocene before being combined with the aliphatic liquid.
  • the aromatic solution of the aluminoxane is combined with the aliphatic liquid and then combined with the metallocene. It is also within the scope of the present invention to combine the metallocene with the aliphatic liquid and then combine that mixture with the aromatic solution of the aluminoxane.
  • the prepolymerization is conducted in the liquid catalyst system, which can be a solution, a slurry, or a gel in a liquid.
  • the liquid catalyst system can be a solution, a slurry, or a gel in a liquid.
  • a wide range of olefins can be used for the prepolymerization.
  • the prepolymerization will be conducted using an olefin, preferably selected from ethylene and non-aromatic alpha-olefins, and as propylene. It is within the scope of the invention to use a mixture of olefins, for example, ethylene and a higher alpha olefin can be used for the prepolymerization.
  • the prepolymerization can be conducted under relatively mild conditions. Typically, this would involve using low pressures of the olefin and relatively low temperatures designed to prevent site decomposition resulting from high concentrations of localized heat.
  • the prepolymerization typically occurs at temperatures in the range of about ⁇ 15° C. to about +110° C., more preferably in the range of about +10 to about +30° C.
  • the amount of prepolymer can be varied but typically would be in the range of from about 1 to about 95 wt % of the resulting prepolymerized solid catalyst system, more preferably about 5 to 80 wt %. It is generally desirable to carry out the prepolymerization to at least a point where substantially all of the metallocene is in the solid rather than in the liquid since that maximizes the use of the metallocene.
  • the resulting solid prepolymerized catalyst is separated from the liquid of the reaction mixture.
  • Various techniques known in the art can be used for carrying out this step.
  • the material could be separated by filtration, decantation, or by vacuum evaporation. It is currently preferred, however, not to rely upon vacuum evaporation since it is considered desirable to remove substantially all of the soluble components in the liquid reaction product of the prepolymerization from the resulting solid prepolymerized catalyst before it is stored or used for subsequent polymerization.
  • the resulting solid is preferably washed with a hydrocarbon and then dried using high vacuum to remove substantially all the liquids and other volatile components that might still be associated with the solid.
  • the vacuum drying is preferably carried out under relatively mild conditions, i.e. temperatures below 100° C. More typically the prepolymerized solid is dried by subjection to a high vacuum at a temperature of about 30° C. until a substantially constant weight is achieved.
  • a preferred technique employs at least one initial wash with an aromatic hydrocarbon, such as toluene, followed by a wash with a paraffinic hydrocarbon, such as hexane, and then vacuum drying.
  • a liquid in which the prepolymer is sparingly soluble i.e. a counter solvent for the prepolymer, to help cause soluble prepolymer to precipitate from the solution.
  • a liquid is also useful for the subsequent washing of the prepolymerized solid.
  • the recovered solid prepolymerized catalyst system can be screened to give particles having sizes that meet the particular needs for a particular type of polymerization.
  • Another option is to combine the recovered inventive solid prepolymerized catalyst system with an inert hydrocarbon, such as one of the type used as a wash liquid, and then to remove that liquid using a vacuum. In such a process it is sometimes desirable to subject the resulting mixture to sonification before stripping off the liquid.
  • an inert hydrocarbon such as one of the type used as a wash liquid
  • organoaluminum compounds include compounds such as triethylaluminum, trimethylaluminum, diethylaluminum chloride, ethylaluminum dichloride, ethylaluminum sesquichloride, and the like. Trialkyl aluminum compounds are currently preferred.
  • the inventive catalyst system when added to a reactor as a slurry in a liquid, it is sometimes desirable to add a particulate dried solid as a flow aid for the slurry.
  • a particulate dried solid Preferably the solid has been dried using one of the methods described earlier.
  • Inorganic oxides such as silica are particularly preferred.
  • a fumed silica such as that sold under the tradename Cab-o-sil.
  • the fumed silica is dried using heat and trimethylaluminum.
  • the solid catalyst system is particularly useful for the polymerization of alpha-olefins having 2 to 10 carbon atoms.
  • olefins include ethylene, propylene, butene-1, pentene-1,3-methylbutene-1, hexene-1,4-methylpentene-1,3-methylpentene-1, heptene-1, octene-1, decene-1,4,4-dimethyl-1-pentene, 4,4-diethyl-1-hexene, 3,4-dimethyl-1-hexene, and the like and mixtures thereof.
  • the catalysts are also useful for preparing copolymers of ethylene and propylene and copolymers of ethylene or propylene and a higher molecular weight olefin.
  • the polymerizations can be carried out under a wide range of conditions depending upon the particular metallocene employed and the particular results desired.
  • inventive catalyst system is a solid, it is considered that it is useful for polymerization conducted under solution, slurry, or gas phase reaction conditions.
  • liquid diluents include propane, butane, isobutane, pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, toluene, xylene, and the like.
  • the polymerization temperature can vary over a wide range, temperatures typically would be in a range of about ⁇ 60° C. to about 300° C., more preferably in the range of about 20° C. to about 160° C.
  • the pressure of the polymerization would be in the range of from about 1 to about 500 atmospheres or even greater.
  • the inventive catalyst system is particularly useful for polymerizations carried out under particle form, i.e., slurry-type polymerization conditions.
  • the polymers produced with this invention have a wide range of uses that will be apparent to those skilled in the art from the physical properties of the respective polymers. Applications such as molding, films, adhesives, and the like are indicated.
  • the Table demonstrates that one obtains a catalyst having improved activity if one uses an aliphatic liquid in forming the liquid catalyst system.
  • a comparison of catalysts A and B reveals that increasing the amount of aliphatic liquid employed can result in a further increase in activity.
  • Example G reveals a good balance of both polymer particle size distribution and catalyst activity.
  • One preferred catalyst preparation involved the employment of the same metallocene as used in Example I and no silica.
  • the catalyst was prepared by adding 2 liters of a 13 weight percent toluene solution of methyl aluminoxane to a reactor which was cooled to about 25° C. and agitated. Then 19.7 grams of the metallocene was added followed by 6.6 liters of hexane. The resulting liquid catalyst system was then reacted with 226 grams of ethylene at 25° C. to form prepolymer.
  • the resulting solid catalyst particles were transferred to a filter dryer and filtered. They were subsequently washed twice with hexane and dried under a vacuum until substantially free of toluene.
  • the resulting prepolymerized catalyst had a catalyst activity of 15,487 grams of polymer per gram of catalyst and 96 weight percent of the polymer was in the 20 mesh range.
  • the metallocene employed is the same metallocene as used in Example I and no silica was employed.
  • the procedure involves pressurizing and depressurizing a reactor with nitrogen five times, charging 2.456 liters of a toluene solution of methyl aluminoxane, allowing the reactor to cool to about 25° C., adding about 21.26 grams of the metallocene compound, pressurizing and depressurizing the reactor with nitrogen 3 times, charging 13 liters of hexane to the reactor, allowing the reactor to cool to about 25° C. Then the reactor is pressurized with 20 psi ethylene and held for 20 minutes.
  • the temperature during this period would be in the range of about 23° C. to about 33° C.
  • the reactor After the 20 minutes of prepolymerization the reactor would be depressurized and charged with 13 liters of hexane, then the reactor repressurized with ethylene and prepolymerization continued. Subsequent to the prepolymerization the reactor would be depressurized and the solid prepolymerized catalyst recovered by filtering, washing, and drying.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

A solid metallocene-containing catalyst system of an organoaluminoxane, at least one metallocene having at least one olefinically unsaturated substituent and a polyolefin is disclosed. The polyolefin is formed from at least one olefin polymerized in the presence of a combination of a solution of the organoluminoxane in an aromatic liquid, the at least one metallocene, and an aliphatic liquid. The solid metallocene-containing catalyst system may also include one or more the particulate solids.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 09/805,277 filed on Mar. 13, 2001, the disclosure of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates to a new type of solid particulate metallocene catalyst system useful for the polymerization and/or copolymerization of olefins. The invention is also related to a process for conducting polymerization of olefins using the inventive solid metallocene catalyst system.
  • BACKGROUND OF THE INVENTION
  • The term “Metallocene” as used herein refers to a derivative of cyclopentadienylidene which is a metal derivative containing at least one cyclopentadienyl component which is bonded to a transition metal. The transition metal is selected from Groups IVB, VB, and VIB, preferably IVB and VIB. Examples include titanium, zirconium, hafnium, chromium, and vanadium. A number of metallocenes have been found to be useful for the polymerization of olefins. Generally, the more preferred catalysts are metallocenes of Zr, Hf, or Ti.
  • Generally, in order to obtain the highest activity from metallocene catalysts, it has been necessary to use them with an organoaluminoxane cocatalyst, such as methylaluminoxane. This resulting catalyst system is generally referred to as a homogenous catalyst system since at least part of the metallocene or the organoaluminoxane is in solution in the polymerization media. These homogenous catalysts systems have the disadvantage that when they are used under slurry polymerization conditions, they produce polymer which sticks to reactor walls during the polymerization process and/or polymer having small particle size and low bulk density which limits the commercial utility.
  • Some attempts to overcome the disadvantages of the homogenous metallocene catalyst systems are disclosed in U.S. Pat. Nos. 5,240,894; 4,871,705; and 5,106,804. Typically, these procedures have involved the prepolymerization of the metallocene aluminoxane catalyst system either in the presence of or in the absence of a support. An evaluation of these techniques has revealed that there is still room for improvement, particularly when the catalyst is one which is to be used in a slurry type polymerization where the object is to produce a slurry of insoluble particles of the end product polymer rather than a solution of polymer which could result in fouling of the reactor. In the operation of a slurry polymerization in a continuous loop reactor it is extremely important for efficient operations to limit polymer fouling of the internal surfaces of the reactor. The term “fouling” as used herein refers to polymer buildup on the surfaces inside the reactor.
  • An improved type of solid metallocene catalyst composition that can be used in a slurry polymerization process was revealed in U.S. Pat. No. 5,498,581, the disclosure of which is incorporated herein by reference. That catalyst composition was prepared by combining a cocatalyst with a metallocene that had an olefinically unsaturated substituent, subjecting that mixture to prepolymerization with an olefin in the presence of a liquid to produce a solid prepolymerized catalyst, and separating the resulting prepolymerized catalyst from the liquid and the components dissolved in the liquid. Some specific variations of producing such catalysts are disclosed in WO 99/29738 and WO 98/52686, the disclosures of which are also incorporated herein by reference.
  • An object of the present invention is to provide yet further improvements for the making of solid catalyst systems of the type disclosed in U.S. Pat. No. 5,498,581. In accordance with another aspect of the present invention, there is provided a method for polymerizing olefins using the new improved version of such solid prepolymerized metallocene catalyst systems.
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, a solid particulate metallocene-containing catalyst system is produced by (a) combining an organoaluminoxane and at least one metallocene having at least one olefinic unsaturated substituent in an aliphatic liquid to form a liquid catalyst system, (b) conducting prepolymerization of at least one olefin in the presence of said liquid catalyst system, optionally in multiple steps, to produce a prepolymerized solid catalyst, and (c) separating the resulting solid from the liquid and the components dissolved in the liquid, said solid being the solid particulate metallocene catalyst system. The phrase “liquid catalyst system” as used herein refers to the combination of the aluminoxane, the metallocene, and the aliphatic liquid, irrespective of whether the aluminoxane and/or the metallocene are dissolved in the liquid.
  • In accordance with another aspect of the present invention, the resulting inventive solid particulate metallocene-containing catalyst system is employed in the polymerization of an olefin by contacting the olefin with the inventive solid particulate metallocene-containing catalyst system under suitable reaction conditions.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A wide range of metallocenes are considered to be applicable to the present process. The essential feature is that the metallocene be one wherein at least one cyclopentadienyl-type ligand has a substituent having a polymerizable olefinic group. Some examples of such olefin-containing metallocenes are disclosed in U.S. Pat. No. 5,169,818 and published European Application No. 574,370. The invention is considered applicable to both bridged and unbridged metallocenes. The unbridged metallocenes can even include bridged ligands which contain two cyclopentadienyl-type radicals connected by a suitable bridging structure but wherein only one of the cyclopentadienyl-type radicals of that ligand is bonded to the transition metal. Alternatively, the olefinic substituent can be on the bridge connecting the two cyclopentadienyl-type groups.
  • The metallocenes of the type contemplated as useful for the present invention include those represented by the formula Rx(Z)(Z)MQk wherein each Z bound to M and is the same or different and is a cyclopentadienyl-type ligand selected from substituted or unsubstituted cyclopentadienyl, indenyl, tetrahydroindenyl, octahydrofluorenyl, and fluorenyl ligands; R is a structural bridge linking the Z's and M is a metal selected from the group consisting of IVB, VB, and VIB metals of the periodic table, each Q is the same or different and is selected from the group consisting of hydrogen, halogens, and organoradicals; x is 1 or 0; k is a number sufficient to fill out the remaining balances of M; further characterized by the fact that at least one Z has at least one olefinically unsaturated substituent attached. In bridged metallocenes this olefinically unsaturated substituent can be a branch on the bridging unit or on one or both of the cyclopentadienyl-type groups of the bridged ligands.
  • When a Q is an organo radical, it can be selected from any of the organo radicals known to be suitable for metallocenes that are useful as polymerization catalysts. Some examples include aryl, alkyl, alkenyl, alkylaryl, and arylalkyl radicals. Preferably, if Q is an argano radical, the organo radical has 1 to 20 carbon atoms.
  • A particularly preferred type of bridged metallocene includes those in which the olefinically unsaturated substituent has the formula
    Figure US20050171305A1-20050804-C00001

    wherein R″ is a hydrocarbyl diradical having 1 to 20 carbon atoms; more preferably 2 to 10; n is 1 or 0, and each R′ is individually selected from the group consisting of organo radicals having 1 to 10 carbon atoms and hydrogen. Most preferably R″ has at least two carbons in its main alkylene chain, i.e. it is a divalent ethylene radical or a higher homolog thereof.
  • Some olefinic branched bridged ligands useful for making metallocenes suitable for the present invention can be prepared by reacting a dihalo olefinic compound with an alkali metal salt of a suitable cyclopentadiene-type compound to produce a compound of the formula Z-R-Z where R is a bridge having olefinic unsaturation and wherein each Z is the same or alternatively to first produce a compound of the formula Z-R—X wherein X is a halogen and then reacting that compound with an alkali metal salt of another different cyclopentadiene-type compound to produce a compound of the formula Z-R-Z wherein the two Z's differ. Such reactions can be carried out using conditions of the type disclosed in U.S. Pat. No. 5,191,132.
  • An alternate technique for forming an olefinic branched bridged ligand involves reacting a carbonyl compound having olefinic unsaturation with a cyclopentadiene-type compound in the presence of a base and methanol to yield an alkenyl fulvene which is then reacted with an alkali metal salt of a cyclopentadiene-type compound, such as, for example, fluorene, to yield the unsaturated-branched-bridged ligand containing two cyclopentadienyl-type groups, i.e. fluorenyl and cyclopentadienyl. For example, one could react 5-hexene-2-one with cyclopentadiene using a procedure like that disclosed by Stone et al. in J. Org. Chem., 49, 1849 (1984) to yield 6-(but-3-enyl)-6-methylfulvene which could then be reacted with fluorenyllithium and subsequently hydrolyzed to yield 5-cyclopentadienyl-5-(9-fluorenyl)-1-hexene, also sometimes referred to as 1-(9-fluorenyl)-1-(cyclopentadienyl)-1-(methyl)-1-(but-3-enyl) methane.
  • The present invention thus envisions using bridged metallocenes prepared from vinyl terminated branched bridged ligands of the formula
    Figure US20050171305A1-20050804-C00002

    wherein n is a number typically in the range of about 0 to 20; more preferably 2-10; Riv is Si, Ge, C, or Sn; R′″ and R′ are each individually selected from hydrogen, or organo groups having 1 to 10 carbons. Currently preferred R′ and R′″ components are hydrogen or alkyl groups typically having 1 to 10 carbon atoms, or aryl groups typically having 6 to 10 carbon atoms. Z is a cyclopentadienyl-type radical as described earlier.
  • The metallocenes of such olefinically unsaturated branched-bridged ligands can be prepared by reacting the olefinically branched-bridged bis(cyclopentadienyl-type) ligand with an alkali metal alkyl to produce a divalent ligand salt that is then reacted with the transition metal compound to yield the metallocene, using the techniques generally known in the art for forming such metallocenes. See, for example, the technique disclosed in European Published Application 524,624, the disclosure of which is incorporated herein by reference.
  • Some typical examples of some metallocenes containing a substituent having olefinic unsaturation include 5-(cyclopentadienyl)-5-(9-fluorenyl)-1-hexene zirconium dichloride, bis(9-fluorenyl)(methyl)(vinyl)silane zirconium dichloride, bis(9-fluorenyl)(methyl)(prop-2-enyl)silane zirconium dichloride, bis(9-fluorenyl) (methyl)(but-3-enyl)silane zirconium dichloride, bis(9-fluorenyl)(methyl) (hex-5-enyl) silane zirconium dichloride, bis(9-fluorenyl)(methyl)(oct-7-enyl)silane zirconium dichloride, (cyclopentadienyl)(1-allylindenyl) zirconium dichloride, bis(1-allylindenyl) zirconium dichloride, (9-(prop-2-enyl) fluorenyl) (cyclopentadienyl) zirconium dichloride, (9-(prop-2-enyl) fluorenyl)(pentamethylcyclopentadienyl) zirconium dichloride, bis(9-(prop-2-enyl)fluorenyl) zirconium dichloride, (9-(cyclopent-2-enyl) fluorenyl) (cyclopentadienyl) zirconium dichloride, bis(9-(cyclopent-2-enyl) (fluorenyl) zirconium dichloride, 5-(2-methylcyclopentadienyl)-5-(9-fluorenyl)-1-hexene zirconium dichloride, 5-(fluorenyl)-5-(cyclopentadienyl)-1-hexene hafnium dichloride, (9-fluorenyl)(1-allylindenyl)dimethylsilane zirconium dichloride, 1-(2,7-di(alpha-methylvinyl)(9-fluorenyl))-1-(cyclopentadienyl)-1,1-dimethylmethane zirconium dichloride, 1-(2,7-di(cyclohex-1-enyl)(9-fluorenyl))-1-(cyclopentadienyl)-1,1-methane zirconium dichloride, 5(cyclopentadienyl)-5-(9-fluorenyl)-1-hexene titanium dichloride, and the like.
  • These various metallocenes can be prepared by reacting the necessary cyclopentadienyl-type alkali metal salt with a transition metal compound. Some examples of such reactions are disclosed in the aforementioned published EPC application no. 524,624.
  • The organo aluminoxane component used in preparing the inventive solid catalyst system is an oligomeric aluminum compound having repeating units of the formula
    Figure US20050171305A1-20050804-C00003

    Some examples are often represented by the general formula (R—Al—O)n or R(R—Al—O—)nAlR2. In the general alumoxane formula R is a C1-C5 alkyl radical, for example, methyl, ethyl, propyl, butyl or pentyl and “n” is an integer from 1 to about 50. Most preferably, R is methyl and “n” is at least 4. Aluminoxanes can be prepared by various procedures known in the art. For example, an aluminum alkyl may be treated with water dissolved in an inert organic solvent, or it may be contacted with a hydrated salt, such as hydrated copper sulfate suspended in an inert organic solvent, to yield an aluminoxane. Generally the reaction of an aluminum alkyl with a limited amount of water is postulated to yield a mixture of the linear and cyclic species of the aluminoxane.
  • In the first step of the present invention, the metallocene and aluminoxane are combined with an aliphatic liquid to form a liquid catalyst system. Examples of what is meant by aliphatic liquid include pentane, isopentane, hexane, octane, heptane, and the like. The amount of aliphatic liquid employed should preferably be such as to allow for good mixing in the subsequent steps and to allow for a desirable viscosity during the prepolymerization step.
  • It is preferred that the liquid catalyst system be prepared using an aluminoxane that is dissolved in an aromatic liquid. Examples of what is meant by aromatic liquid include benzene, toluene, ethylbenzene, diethylbenzene, and the like. The currently preferred aromatic liquid is toluene. The amount of liquid in which the aluminoxane is dissolved is not particularly critical, however the aromatic liquid is commonly used in such an amount that the aluminoxane solution would contain about 5 to about 40 weight percent aluminoxane, more preferably about 10 to about 30 weight percent.
  • The amount of aliphatic liquid employed in step (a) can vary over a wide range depending upon the results desired. Typically, however, the aliphatic liquid would be used in such an amount that the volume ratio of the aliphatic liquid to the aromatic solution of aluminoxane would be in the range of from about 0.5/1 to about 15/1, more preferably about 1/1 to about 13.5/1, still more preferably at least 5/1, and even still more preferably at least 6/1.
  • In combining the metallocene and the aluminoxane the temperature is preferably kept below that which would cause the metallocene to decompose. Typically the temperature would be in the range of −50° C. to 100° C. Preferably, the metallocene, the aluminoxane, and the liquid diluent are combined at room temperature, i.e. around 10 to 30° C. The reaction between the aluminoxane and the metallocene is relatively rapid. The reaction rate can vary depending upon the ligands of the metallocene. It is generally desired that they be contacted for at least about a minute to about 1 hour.
  • It is within the scope of the invention to form the liquid catalyst system in the presence of a particulate solid. Any number of particulate solids can be employed as the particulate solid. Typically the particulate solid can be any organic or inorganic solid that does not interfere with the desired end result. Examples include porous supports such as talc, inorganic oxides, and resinous support materials such as particulate polyolefins. Examples of inorganic oxide materials include oxides of metals of Groups II, III, IV or V of the Periodic Table, such as silica, alumina, silica-alumina, and mixtures thereof. Other examples of inorganic oxides are magnesia, titania, zirconia, and the like. Other suitable support materials which can be employed include such as, magnesium dichloride, and finely divided polyolefins, such as polyethylene. It is within the scope of the present invention to use a mixture of one or more of the particulate solids.
  • It is generally desirable for the solid to be thoroughly dehydrated prior to use, preferably it is dehydrated so as to contain less than 1% loss on ignition. Thermal dehydration treatment may be carried out in vacuum or while purging with a dry inert gas such as nitrogen at a temperature of about 20° C. to about 1000° C., and preferably, from about 300° C. to about 800° C. Pressure considerations are not critical. The duration of thermal treatment can be from about 1 to about 24 hours. However, shorter or longer times can be employed provided equilibrium is established with the surface hydroxyl groups.
  • Dehydration can also be accomplished by subjecting the solid to a chemical treatment in order to remove water and reduce the concentration of surface hydroxyl groups. Chemical treatment is generally capable of converting all water and hydroxyl groups in the oxide surface to relatively inert species. Useful chemical agents are for example, trimethylaluminum, ethyl magnesium chloride, chlorosilanes such as SiCl4, disilazane, trimethylchlorosilane, dimethylaminotrimethylsilane, and the like.
  • The chemical dehydration can be accomplished by slurrying the inorganic particulate material such as, for example silica, in an inert low boiling hydrocarbon, such as for example, hexane. During the chemical dehydration treatment, the silica should be maintained in a moisture and oxygen free atmosphere. To the silica slurry is then added a low boiling inert hydrocarbon solution of the chemical dehydrating agent, such as, for example dichloroldimethylsilane. The solution is added slowly to the slurry. The temperature ranges during chemical dehydration reaction can be from about 20° C. to about 120° C., however, higher and lower temperatures can be employed. Preferably, the temperature will be about 50° C. to about 100° C. The chemical dehydration procedure should be allowed to proceed until all the substantially reactive groups are removed from the particulate support material as indicated by cessation of gas evolution. Normally, the chemical dehydration reaction will be allowed to proceed from about 30 minutes to about 16 hours, preferably, 1 to 5 hours. Upon completion of the chemical dehydration, the solid particulate material may be filtered under a nitrogen atmosphere and washed one or more times with a dry, oxygen free inert solvent. The wash solvents as well as the diluents employed to form the slurry and the solution of chemical dehydrating agent, can be any suitable inert hydrocarbon. Illustrative of such hydrocarbons are pentane, heptane, hexane, toluene, isopentane, and the like.
  • Another chemical treatment that can be used on solid inorganic oxides such as silica involves reduction by contacting the solid with carbon monoxide at an elevated temperature sufficient to convert substantially all the water and hydroxyl groups to relatively inactive species.
  • The specific particle size of the support or inorganic oxide, surface area, pore volume, and number of hydroxyl groups is not considered critical to its utility in the practice of this invention. However, such characteristics often determine the amount of support to be employed in preparing the catalyst compositions, as well as affecting the particle morphology of polymers formed. The characteristics of the carrier or support must therefore be taken into consideration in choosing the same for use in the particular invention.
  • It is also within the scope of the present invention to add such a particulate solid to the liquid catalyst system after it has been formed and to carry out the prepolymerization in the presence of that solid.
  • The amount of aluminoxane and metallocene used in forming the liquid catalyst system for the prepolymerization can vary over a wide range. Typically, however, the molar ratio of aluminum in the aluminoxane to transition metal of the metallocene is in the range of about 1:1 to about 20,000:1, more preferably, a molar ratio of about 50:1 to about 2000:1 is used. If a particulate solid, i.e. silica, is used, generally it is used in an amount such that the weight ratio of the metallocene to the particulate solid is in the range of about 0.00001/1 to 1/1, more preferably 0.0005/1 to 0.2/1.
  • In a particularly preferred process the aromatic solution of the aluminoxane is combined with the metallocene before being combined with the aliphatic liquid. In another preferred process, however, the aromatic solution of the aluminoxane is combined with the aliphatic liquid and then combined with the metallocene. It is also within the scope of the present invention to combine the metallocene with the aliphatic liquid and then combine that mixture with the aromatic solution of the aluminoxane.
  • The prepolymerization is conducted in the liquid catalyst system, which can be a solution, a slurry, or a gel in a liquid. A wide range of olefins can be used for the prepolymerization. Typically, the prepolymerization will be conducted using an olefin, preferably selected from ethylene and non-aromatic alpha-olefins, and as propylene. It is within the scope of the invention to use a mixture of olefins, for example, ethylene and a higher alpha olefin can be used for the prepolymerization. The use of, a higher alpha olefin, such as 1-butene, with ethylene is believed to increase the amount of copolymerization occurring between the olefin monomer and the olefinically unsaturated portion of the metallocene.
  • The prepolymerization can be conducted under relatively mild conditions. Typically, this would involve using low pressures of the olefin and relatively low temperatures designed to prevent site decomposition resulting from high concentrations of localized heat. The prepolymerization typically occurs at temperatures in the range of about −15° C. to about +110° C., more preferably in the range of about +10 to about +30° C. The amount of prepolymer can be varied but typically would be in the range of from about 1 to about 95 wt % of the resulting prepolymerized solid catalyst system, more preferably about 5 to 80 wt %. It is generally desirable to carry out the prepolymerization to at least a point where substantially all of the metallocene is in the solid rather than in the liquid since that maximizes the use of the metallocene.
  • After the prepolymerization, the resulting solid prepolymerized catalyst is separated from the liquid of the reaction mixture. Various techniques known in the art can be used for carrying out this step. For example, the material could be separated by filtration, decantation, or by vacuum evaporation. It is currently preferred, however, not to rely upon vacuum evaporation since it is considered desirable to remove substantially all of the soluble components in the liquid reaction product of the prepolymerization from the resulting solid prepolymerized catalyst before it is stored or used for subsequent polymerization. After separating the solid from the liquid, the resulting solid is preferably washed with a hydrocarbon and then dried using high vacuum to remove substantially all the liquids and other volatile components that might still be associated with the solid. The vacuum drying is preferably carried out under relatively mild conditions, i.e. temperatures below 100° C. More typically the prepolymerized solid is dried by subjection to a high vacuum at a temperature of about 30° C. until a substantially constant weight is achieved. A preferred technique employs at least one initial wash with an aromatic hydrocarbon, such as toluene, followed by a wash with a paraffinic hydrocarbon, such as hexane, and then vacuum drying.
  • It is within the scope of the present invention to contact the prepolymerization reaction mixture product with a liquid in which the prepolymer is sparingly soluble, i.e. a counter solvent for the prepolymer, to help cause soluble prepolymer to precipitate from the solution. Such a liquid is also useful for the subsequent washing of the prepolymerized solid.
  • It is also within the scope of the present invention to add a particulate solid of the type aforementioned after the prepolymerization. Thus one can add the solid to the liquid prepolymerization product before the counter solvent is added. In this manner soluble prepolymer tends to precipitate onto the surface of the solid to aid in the recovery of the filtrate in a particulate form and to prevent agglomeration during drying. The liquid mixture resulting from the prepolymerization or the inventive solid prepolymerized catalyst can be subjected to sonification to help break up particles if desired.
  • Further, if desired the recovered solid prepolymerized catalyst system can be screened to give particles having sizes that meet the particular needs for a particular type of polymerization.
  • Another option is to combine the recovered inventive solid prepolymerized catalyst system with an inert hydrocarbon, such as one of the type used as a wash liquid, and then to remove that liquid using a vacuum. In such a process it is sometimes desirable to subject the resulting mixture to sonification before stripping off the liquid.
  • The resulting solid prepolymerized metallocene-containing catalyst system is useful for the polymerization of olefins. Generally, it is not necessary to add any additional aluminoxane to this catalyst system. In some cases it may be found desirable to employ small amounts of an organoaluminum compound as a scavenger for poisons. The term organoaluminum compounds include compounds such as triethylaluminum, trimethylaluminum, diethylaluminum chloride, ethylaluminum dichloride, ethylaluminum sesquichloride, and the like. Trialkyl aluminum compounds are currently preferred. Also in some applications it may be desirable to employ small amounts of antistatic agents which assist in preventing the agglomeration of polymer particles during polymerization. Still further, when the inventive catalyst system is added to a reactor as a slurry in a liquid, it is sometimes desirable to add a particulate dried solid as a flow aid for the slurry. Preferably the solid has been dried using one of the methods described earlier. Inorganic oxides such as silica are particularly preferred. Currently, it is preferred to use a fumed silica such as that sold under the tradename Cab-o-sil. Generally the fumed silica is dried using heat and trimethylaluminum.
  • The solid catalyst system is particularly useful for the polymerization of alpha-olefins having 2 to 10 carbon atoms. Examples of such olefins include ethylene, propylene, butene-1, pentene-1,3-methylbutene-1, hexene-1,4-methylpentene-1,3-methylpentene-1, heptene-1, octene-1, decene-1,4,4-dimethyl-1-pentene, 4,4-diethyl-1-hexene, 3,4-dimethyl-1-hexene, and the like and mixtures thereof. The catalysts are also useful for preparing copolymers of ethylene and propylene and copolymers of ethylene or propylene and a higher molecular weight olefin.
  • The polymerizations can be carried out under a wide range of conditions depending upon the particular metallocene employed and the particular results desired. Although the inventive catalyst system is a solid, it is considered that it is useful for polymerization conducted under solution, slurry, or gas phase reaction conditions.
  • When the polymerizations are carried out in the presence of liquid diluents obviously it is important to use diluents which do not have an adverse effect upon the catalyst system. Typical liquid diluents include propane, butane, isobutane, pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, toluene, xylene, and the like. Typically the polymerization temperature can vary over a wide range, temperatures typically would be in a range of about −60° C. to about 300° C., more preferably in the range of about 20° C. to about 160° C. Typically the pressure of the polymerization would be in the range of from about 1 to about 500 atmospheres or even greater. The inventive catalyst system is particularly useful for polymerizations carried out under particle form, i.e., slurry-type polymerization conditions.
  • The polymers produced with this invention have a wide range of uses that will be apparent to those skilled in the art from the physical properties of the respective polymers. Applications such as molding, films, adhesives, and the like are indicated.
  • A further understanding of the present invention, its various aspects, objects and advantages will be provided by the following examples.
  • EXAMPLE I
  • Two experiments were carried out to evaluate the effect of using an aliphatic liquid in forming the liquid catalyst system instead of using only toluene to form the liquid catalyst system. In both cases the preparation of the solid particulate prepolymerized catalyst systems involved the employment of a dried particulate silica which had been treated with trimethylaluminum.
  • In the first experiment, 1.5 grams of the silica was charged to a reaction vessel along with 6 milliliters of toluene. Then 10 milliliters of a toluene solution containing 10 weight percent methylaluminoxane, obtained from Albemarle, was charged. Then 0.035 gram of metallocene was charged. This resulting mixture was then subjected to prepolymerization employing 0.975 gram of ethylene. The resulting prepolymerized solid catalyst particles were filtered, washed two times with toluene, washed two times with hexane, and then vacuum dried. The resulting prepolymerized catalyst system was then employed in the polymerization of ethylene and the observed activity was 9649 grams of polyethylene per gram of catalyst.
  • In a second experiment, which involves the present invention, the same technique was used for forming the solid prepolymerized catalyst system, however, instead of using 6 milliliters of toluene, 6 milliliters of hexane was employed, and the amount of metallocene employed was 0.0279 gram. The amount of ethylene used in the prepolymerization was 0.9817. The metallocene in both experiments was 1-(9-fluorenyl)-1-(cyclopentadienyl)-1-(but-3-enyl)-1-(methyl) methane zirconium dichloride. The prepolymerized catalyst system prepared using hexane instead of toluene, when evaluated under the same conditions as was used with the other catalyst system, revealed an activity of 14,433 grams of polymer per gram of catalyst. This demonstrates that substituting hexane for the toluene when forming the liquid catalyst system can result in the solid prepolymerized catalyst system having more activity.
  • EXAMPLE II
  • Another series of prepolymerized catalyst systems were prepared using the same metallocene as used in Example I. In this series no particulate silica was employed. The metallocene employed in this case was a 30 weight percent toluene solution of methylaluminoxane obtained from Akzo. A comparison of the conditions employed in these four experiments is summarized in the following Table:
    TABLE I
    A B C D
    Charge 6 ml Charge 8 ml Charge 9 ml toluene Charge 0.0114 g
    hexane hexane metallocene
    Charge Charge Charge 0.02709 g Charge 5 ml toluene
    2 ml 30% 2 ml 30% metallocene
    Akzo MAO Akzo MAO
    Charge Charge Charge 2 ml 30% Charge 5 ml hexane
    0.01056 g 0.0119 g Akzo MAO
    metallocene metallocene
    Charge 2 ml 20%
    Akzo MAO
    Charge Charge Charge 0.5060 g Charge 0.5091 g
    0.4971 g 0.5091 g ethylene ethylene
    ethylene ethylene
    Wash 2 Wash 2 Wash 2 times with Wash 2 times with
    times with times with toluene toluene
    toluene toluene
    Wash 2 Wash 2 Wash 2 times with Wash 2 times with
    times with times with hexane hexane
    hexane hexane
    Vacuum dry Vacuum dry Vacuum dry Vacuum dry
    26,429 g/g 32,310 g/g 14,758 g/g activity 14,257 g/g activity
    activity activity
  • The Table demonstrates that one obtains a catalyst having improved activity if one uses an aliphatic liquid in forming the liquid catalyst system. A comparison of catalysts A and B reveals that increasing the amount of aliphatic liquid employed can result in a further increase in activity.
  • EXAMPLE III
  • Two additional experiments were conducted to evaluate the effect of the order of addition of the metallocene, aluminoxane, and hexane. In preparing these two catalysts the same metallocene was used that was employed in Example I and no silica was employed. The only difference in the two catalyst preparations was that in one the methyl aluminoxane toluene solution and the metallocene were combined and then added to the hexane, whereas, in the other the metallocene was added to the hexane and then combined with the toluene solution of the methyl aluminoxane. It was noted that the prepolymerized solid catalyst produced using the latter method was more active than the catalyst produced using the former method, i.e. 26,575 grams of polymer per gram of catalyst as compared to 15,418 grams of polymer per gram of catalyst; however, the prepolymerized catalyst prepared by mixing the metallocene with the hexane before the addition of the toluene solution of methyl aluminoxane had significantly higher levels of fines than the prepolymer prepared in the other method. The level of fines produced was such that the prepolymer prepared by first combining the methyl aluminoxane and the metallocene would have been the preferred catalyst.
  • EXAMPLE IV
  • Another series of experiments were carried out in an attempt to find a combination of steps which would give a good balance of both catalyst particle size distribution and activity. Again the metallocene that was employed was the metallocene of Example I and no silica was employed. In these experiments the metallocene was mixed with the toluene solution of methyl aluminoxane prior to being combined with the hexane. In one experiment the amount of hexane employed was 6 milliliters. In another experiment, the amount of hexane employed was 10 milliliters. In the third experiment the mixture of the metallocene and the aluminoxane was combined with 6 milliliters of hexane and then prepolymerization was conducted using a portion of the ethylene. Then an additional 6 milliliters of the hexane was added and additional ethylene was added for the production of additional prepolymer. The results of these comparisons are illustrated in the following Table:
    TABLE II
    E F G
    6 ml 10 ml 2-6 ml Hexane
    Hexane Hexane Charges
    +10 mesh 1.8% 40.6% 6.0%
     20 mesh 5.8% 7.0% 13.2%
     40 mesh 53.4% 6.2% 45.6%
     60 mesh 26.6% 15.9% 26.1%
    100 mesh 9.9% 19.9% 7.7%
    200 mesh 5.5% 9.7% 1.3%
    pan 0.1% 0.6% 0.0%
    Productivity 18,072 g/g 27,989 g/g 22,517 g/g
  • The Table reveals that, as was noticed in other experiments, the employment of higher levels of hexane resulted in a catalyst having higher activity but with poorer catalyst particle size distribution. Example G, on the other hand, reveals a good balance of both polymer particle size distribution and catalyst activity.
  • EXAMPLE V
  • One preferred catalyst preparation involved the employment of the same metallocene as used in Example I and no silica. The catalyst was prepared by adding 2 liters of a 13 weight percent toluene solution of methyl aluminoxane to a reactor which was cooled to about 25° C. and agitated. Then 19.7 grams of the metallocene was added followed by 6.6 liters of hexane. The resulting liquid catalyst system was then reacted with 226 grams of ethylene at 25° C. to form prepolymer. After the formation of prepolymer from that ethylene, an additional 6.6 liters of hexane was added to the reactor and an additional 583 grams of ethylene was added to the reactor and the prepolymerization was continued at a temperature of about 25° C. After the prepolymerization was complete, the resulting solid catalyst particles were transferred to a filter dryer and filtered. They were subsequently washed twice with hexane and dried under a vacuum until substantially free of toluene. The resulting prepolymerized catalyst had a catalyst activity of 15,487 grams of polymer per gram of catalyst and 96 weight percent of the polymer was in the 20 mesh range.
  • EXAMPLE VI
  • This describes a particularly preferred method for preparing an inventive catalyst composition. The metallocene employed is the same metallocene as used in Example I and no silica was employed. The procedure involves pressurizing and depressurizing a reactor with nitrogen five times, charging 2.456 liters of a toluene solution of methyl aluminoxane, allowing the reactor to cool to about 25° C., adding about 21.26 grams of the metallocene compound, pressurizing and depressurizing the reactor with nitrogen 3 times, charging 13 liters of hexane to the reactor, allowing the reactor to cool to about 25° C. Then the reactor is pressurized with 20 psi ethylene and held for 20 minutes. The temperature during this period would be in the range of about 23° C. to about 33° C. After the 20 minutes of prepolymerization the reactor would be depressurized and charged with 13 liters of hexane, then the reactor repressurized with ethylene and prepolymerization continued. Subsequent to the prepolymerization the reactor would be depressurized and the solid prepolymerized catalyst recovered by filtering, washing, and drying.

Claims (21)

1-30. (canceled)
31. A polymer produced using a polymerization process comprising contacting, under polymerization conditions, at least one monomer and a solid prepolymerized catalyst system, wherein the solid prepolymerized catalyst system is produced by
(a) combining an aromatic solution comprising an organoaluminoxane dissolved in an aromatic liquid, at least one metallocene having at least one olefinically unsaturated substituent, an aliphatic liquid, and, optionally, a solid particulate support to form a liquid catalyst system;
(b) conducting prepolymerization of at least one olefin in the presence of the liquid catalyst system to produce a prepolymerized solid catalyst; and
(c) separating the resulting solid from the liquid and components dissolved in the liquid.
32. The polymer of claim 31, wherein the liquid catalyst system is formed by combining the aromatic solution with the at least one metallocene and then combining the resulting composition with an aliphatic liquid.
33. The polymer of claim 31, wherein the liquid catalyst system is formed by combining the aromatic solution with the aliphatic liquid and then combining the resulting composition with the at least one metallocene.
34. The polymer of claim 31, wherein the solid particulate support is talc, an inorganic oxide, a resinous particulate, one or more oxides of metals of Groups II, III, IV or V of the Periodic Table, or any combination thereof.
35. The polymer of claim 31, wherein the at least one olefin is ethylene, a mixture of ethylene and 1-butene, or a mixture of ethylene and an alpha olefin having 3 or more carbon atoms.
36. The polymer of claim 31, wherein the at least one olefin is ethylene or a non-aromatic alpha-olefin.
37. The polymer of claim 31, wherein the monomer is ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 3-ethyl-1-hexene, 1-heptene, 1-octene, 1-decene, 4,4-dimethyl-1-pentene, 4,4-diethyl-1-hexene, 3,4-dimethyl-1-hexene, or any combination thereof.
38. The polymer of claim 31, wherein step (a) is conducted in the presence of a bridged metallocene having olefinic unsaturation in a branch extending outwardly from the bridge, the bridging ligand of said metallocene having the formula
Figure US20050171305A1-20050804-C00004
n is 1 or 0;
Riv is Si, Ge, C, or Sn;
each R′ is individually selected from hydrogen or hydrocarbyl radicals having 1 to 10 carbons;
R″ is selected from hydrocarbyl diradicals containing 1 to 10 carbons;
R′″ is selected from hydrogen or hydrocarbyl groups containing 1 to 10 carbons; and
Z is the same or different and is independently selected from substituted or unsubstituted cyclopentadienyl, indenyl, tetrahydroindenyl, or fluorenyl radicals.
39. The polymer claim 31, wherein the metallocene is a compound of the formula Rx(Z)(Z)MQk, wherein:
each Z is bound to M, and is a cyclopentadienyl-type ligand independently selected from substituted or unsubstituted cyclopentadienyl, indenyl, tetrahydroindenyl, octahydrofluorenyl, or fluorenyl ligands;
R is a structural bridge linking the Z's;
M is a metal selected from IVB, VB, and VIB metals of the periodic table;
each Q is the same or different and is selected from hydrogen, halogens, or organoradicals;
x is 1 or 0; and
k is a number sufficient to fill out the remaining balances of M.
40. The polymer of claim 39, wherein at least one Z has at least one olefinically unsaturated substituent attached.
41. The polymer of claim 40, wherein the metallocene is a bridged metallocene and the olefinically unsaturated substituent is a branch on the bridging unit or on one or both of the cyclopentadienyl-type groups of the bridged ligands.
42. The polymer of claim 39, wherein Q is an organo radical selected from aryl, alkyl, alkenyl, alkylaryl, or arylalkyl radicals.
43. The polymer of claim 31, wherein the metallocene is a bridged metallocene having an olefinically unsaturated substituent of the formula
Figure US20050171305A1-20050804-C00005
R″ is a hydrocarbyl diradical having 1 to 20 carbon atoms;
n is 1 or 0; and
R′ is independently selected from organo radicals having 1 to 10 carbon atoms or hydrogen.
44. The polymer of claim 31, wherein the aliphatic liquid is present an amount to produce a volume ratio of the aliphatic liquid to the aromatic solution of organoaluminoxane of at least about 5:1.
45. The catalyst system as claimed in claim 31, wherein the aromatic liquid is selected from benzene, toluene, ethylbenzene, or diethylbenzene.
46. The polymer of claim 31, wherein the aliphatic liquid is selected from pentane, isopentane, hexane, octane, or heptane.
47. The polymer of claim 31, wherein the at least one metallocene is 5-(9-fluorenyl)-5-(cyclopentadienyl)-hexene-1 zirconium dichloride, the organoaluminoxane is methylaluminoxane, the aromatic liquid is toluene, and the aliphatic liquid is hexane.
48. The polymer of claim 31, wherein the polymerization conditions comprise slurry polymerization conditions, gas phase polymerization conditions, or solution polymerization conditions.
49. The polymer of claim 48, wherein the slurry polymerization is conducted in a loop reactor.
50. The polymer of claim 49, wherein the monomer and the solid prepolymerized catalyst system are contacted in the presence of a diluent selected from propane, butane, isobutane, pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, toluene, xylene, or any combination thereof.
US11/055,910 2001-03-13 2005-02-11 Solid metallocene catalyst system Abandoned US20050171305A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/055,910 US20050171305A1 (en) 2001-03-13 2005-02-11 Solid metallocene catalyst system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/805,277 US6534609B2 (en) 2001-03-13 2001-03-13 Method for making and using a metallocene catalyst system
US10/348,555 US6852660B2 (en) 2001-03-13 2003-01-21 Solid metallocene catalyst system
US11/055,910 US20050171305A1 (en) 2001-03-13 2005-02-11 Solid metallocene catalyst system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/348,555 Division US6852660B2 (en) 2001-03-13 2003-01-21 Solid metallocene catalyst system

Publications (1)

Publication Number Publication Date
US20050171305A1 true US20050171305A1 (en) 2005-08-04

Family

ID=25191116

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/805,277 Expired - Lifetime US6534609B2 (en) 2001-03-13 2001-03-13 Method for making and using a metallocene catalyst system
US10/348,555 Expired - Fee Related US6852660B2 (en) 2001-03-13 2003-01-21 Solid metallocene catalyst system
US11/055,910 Abandoned US20050171305A1 (en) 2001-03-13 2005-02-11 Solid metallocene catalyst system

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/805,277 Expired - Lifetime US6534609B2 (en) 2001-03-13 2001-03-13 Method for making and using a metallocene catalyst system
US10/348,555 Expired - Fee Related US6852660B2 (en) 2001-03-13 2003-01-21 Solid metallocene catalyst system

Country Status (2)

Country Link
US (3) US6534609B2 (en)
WO (1) WO2002072641A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460972B1 (en) 2001-11-06 2002-10-08 Eastman Kodak Company Thermal actuator drop-on-demand apparatus and method for high frequency
US7875568B2 (en) * 2004-12-17 2011-01-25 Yangzi Petrochemical Company Co., Ltd. Supported nonmetallocene olefin polymerization catalyst, preparation method and use thereof
US7420010B2 (en) * 2005-11-02 2008-09-02 Chevron Philips Chemical Company Lp Polyethylene compositions
WO2011058091A1 (en) * 2009-11-13 2011-05-19 Borealis Ag Process for olefin polymerization
US8932975B2 (en) 2010-09-07 2015-01-13 Chevron Phillips Chemical Company Lp Catalyst systems and methods of making and using same
US20120301647A1 (en) * 2011-05-23 2012-11-29 Ppg Industries Ohio, Inc. Phosphatized polyesters and coating compositions containing the same
US9303106B1 (en) 2014-10-17 2016-04-05 Chevron Phillips Chemical Company Lp Processes for preparing solid metallocene-based catalyst systems
US9861955B2 (en) 2015-06-11 2018-01-09 Chevron Phillips Chemical Company, Lp Treater regeneration
US9289748B1 (en) 2015-06-11 2016-03-22 Chevron Phillips Chemical Company Lp Treater regeneration
EP3618942B1 (en) 2017-05-03 2024-06-12 Chevron Phillips Chemical Company LP Regeneration of a desiccant in an off-line treater of a polyolefin production process
US10792609B2 (en) 2018-05-07 2020-10-06 Chevron Phillips Chemical Company Lp Nitrogen conservation in polymerization processes

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871705A (en) * 1988-06-16 1989-10-03 Exxon Chemical Patents Inc. Process for production of a high molecular weight ethylene a-olefin elastomer with a metallocene alumoxane catalyst
US5008228A (en) * 1988-03-29 1991-04-16 Exxon Chemical Patents Inc. Method for preparing a silica gel supported metallocene-alumoxane catalyst
US5106804A (en) * 1989-12-22 1992-04-21 Bp Chemicals Limited Catalyst and prepolymer used for the preparation of polyolefins
US5169818A (en) * 1991-01-12 1992-12-08 Hoechst Aktiengesellschaft Metallocene (co)polymers, process for their preparation and their use as catalysts
US5191132A (en) * 1991-05-09 1993-03-02 Phillips Petroleum Company Cyclopentadiene type compounds and method for making
US5240894A (en) * 1992-05-18 1993-08-31 Exxon Chemical Patents Inc. Method for making and using a supported metallocene catalyst system
US5393851A (en) * 1992-05-26 1995-02-28 Fina Technology, Inc. Process for using metallocene catalyst in a continuous reactor system
US5594078A (en) * 1991-07-23 1997-01-14 Phillips Petroleum Company Process for producing broad molecular weight polyolefin
US5654454A (en) * 1995-05-30 1997-08-05 Phillips Petroleum Company Metallocene preparation and use
US5705578A (en) * 1995-05-04 1998-01-06 Phillips Petroleum Company Method for making and using a supported metallocene catalyst system
US5886202A (en) * 1997-01-08 1999-03-23 Jung; Michael Bridged fluorenyl/indenyl metallocenes and the use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498581A (en) * 1994-06-01 1996-03-12 Phillips Petroleum Company Method for making and using a supported metallocene catalyst system
CA2287840A1 (en) 1997-05-22 1998-11-26 Phillips Petroleum Company Method for making and using a prepolymerized olefin polymerization catalyst
DE69821528T2 (en) 1997-12-08 2004-07-01 Albemarle Corp. CATALYST COMPOSITIONS WITH INCREASED PERFORMANCE

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008228A (en) * 1988-03-29 1991-04-16 Exxon Chemical Patents Inc. Method for preparing a silica gel supported metallocene-alumoxane catalyst
US4871705A (en) * 1988-06-16 1989-10-03 Exxon Chemical Patents Inc. Process for production of a high molecular weight ethylene a-olefin elastomer with a metallocene alumoxane catalyst
US5106804A (en) * 1989-12-22 1992-04-21 Bp Chemicals Limited Catalyst and prepolymer used for the preparation of polyolefins
US5169818A (en) * 1991-01-12 1992-12-08 Hoechst Aktiengesellschaft Metallocene (co)polymers, process for their preparation and their use as catalysts
US5191132A (en) * 1991-05-09 1993-03-02 Phillips Petroleum Company Cyclopentadiene type compounds and method for making
US5594078A (en) * 1991-07-23 1997-01-14 Phillips Petroleum Company Process for producing broad molecular weight polyolefin
US5240894A (en) * 1992-05-18 1993-08-31 Exxon Chemical Patents Inc. Method for making and using a supported metallocene catalyst system
US5393851A (en) * 1992-05-26 1995-02-28 Fina Technology, Inc. Process for using metallocene catalyst in a continuous reactor system
US5705578A (en) * 1995-05-04 1998-01-06 Phillips Petroleum Company Method for making and using a supported metallocene catalyst system
US5654454A (en) * 1995-05-30 1997-08-05 Phillips Petroleum Company Metallocene preparation and use
US5770663A (en) * 1995-05-30 1998-06-23 Phillips Petroleum Company Metallocene preparation and use
US5886202A (en) * 1997-01-08 1999-03-23 Jung; Michael Bridged fluorenyl/indenyl metallocenes and the use thereof

Also Published As

Publication number Publication date
US6534609B2 (en) 2003-03-18
US20030144436A1 (en) 2003-07-31
US6852660B2 (en) 2005-02-08
US20020177676A1 (en) 2002-11-28
WO2002072641A1 (en) 2002-09-19

Similar Documents

Publication Publication Date Title
EP0685495B1 (en) Method for using a supported metallocene catalyst system
US5705578A (en) Method for making and using a supported metallocene catalyst system
US6509427B1 (en) Metallocenes, polymerization catalyst systems, their preparation, and use
US20050171305A1 (en) Solid metallocene catalyst system
CA2177407C (en) Metallocene preparation and use
EP0819705B1 (en) Olefin polymerization
US6340651B1 (en) Multicyclic metallocycle metallocenes and their use
CA2287840A1 (en) Method for making and using a prepolymerized olefin polymerization catalyst
US5830958A (en) Polynuclear metallocene preparation and use
US6166152A (en) Process to produce low density polymer in a loop reactor
US6482967B2 (en) Metallocenes, polymerization catalyst systems, their preparation, and use
US6221981B1 (en) Method for making and using a supported metallcene catalyst system
US6239060B1 (en) Supported metallocene catalyst system and method for polymerizing olefins
US6384161B1 (en) Method and catalyst system for producing polyolefins with broadened molecular weight distributions
US6329312B1 (en) Metallocycle metallocenes and their use
US20030105252A1 (en) Amido half sandwich metallocene catalyst system and its preparation and use
KR101203772B1 (en) Activating supports for metallocene catalysis
US6475947B1 (en) Oligomeric metallocenes and their use
US20030130447A1 (en) Method and catalyst system for producing polyolefins with a selected melt index

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION