US20050154788A1 - Methods and systems for adaptive delivery of multimedia contents - Google Patents

Methods and systems for adaptive delivery of multimedia contents Download PDF

Info

Publication number
US20050154788A1
US20050154788A1 US11/025,262 US2526204A US2005154788A1 US 20050154788 A1 US20050154788 A1 US 20050154788A1 US 2526204 A US2526204 A US 2526204A US 2005154788 A1 US2005154788 A1 US 2005154788A1
Authority
US
United States
Prior art keywords
content
model
int
abstract
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/025,262
Inventor
Yudong Yang
Hong-Jiang Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Corp filed Critical Microsoft Corp
Priority to US11/025,262 priority Critical patent/US20050154788A1/en
Publication of US20050154788A1 publication Critical patent/US20050154788A1/en
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLC reassignment MICROSOFT TECHNOLOGY LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICROSOFT CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/612Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for unicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/565Conversion or adaptation of application format or content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/565Conversion or adaptation of application format or content
    • H04L67/5651Reducing the amount or size of exchanged application data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]

Definitions

  • This invention relates to methods and systems for adaptive delivery of multimedia contents.
  • contents may be authored and suitable for use with a certain type of browser. Yet, the contents may not be suitably acceptable for use in other situations.
  • web contents that are authored for use in connection with a browser installed on a personal computer may not be suitable for display on a small handheld device for reasons not the least of which include the size disparity between the different devices' displays.
  • One area of promise is in the area of so-called adaptive content delivery.
  • One goal of adaptive content delivery is to have content that is readily or easily adaptable to different computing environments.
  • ProxyNet based on TranSend technology
  • SpyGlass and OnlineAnywhere provide proxies or servers that can adjust web pages to fit the display of smaller devices.
  • Their technologies are based on heuristic rules and customized content filters that are designed for specific websites and are used to extract the most important contents from these web pages. Thus, these solutions tend to be rigid and inflexible.
  • this invention arose out of concerns associated with providing adaptive systems and methods for efficient and flexible content delivery.
  • a novel framework features an abstract content model and an abstract adaptive delivery decision engine.
  • the abstract content model recognizes important aspects of contents while hiding their physical details from other parts of the framework.
  • the decision engine then makes content adaptation plans based on the abstracted model of the contents and needs little knowledge of any physical details of the actual contents.
  • adaptive delivery of generic contents is possible.
  • FIG. 1 is an exemplary computer system that can be utilized in accordance with one or more embodiments.
  • FIG. 2 is a block diagram of an exemplary adaptive content delivery system in accordance with one embodiment.
  • FIG. 2 a is a flow diagram that describes steps in a method in accordance with one embodiment.
  • FIG. 2 b is a flow diagram that describes steps in a method in accordance with another embodiment.
  • FIG. 3 is a block diagram that illustrates an exemplary abstract content representation structure in accordance with one embodiment.
  • FIG. 4 is a diagram that illustrates transfers of node statuses.
  • FIG. 5 is a diagram that illustrates an exemplary abstract content representation structure of typical news content combined with possible transcoder capabilities.
  • FIG. 6 is a diagram that illustrates an exemplary abstract content representation structure of an MPEG I video sequence “IPBBIBBPBB . . . ”
  • FIG. 7 is a graph of the unified QOS factor of the FIG. 6 MPEG I abstract content representation structure nodes.
  • FIG. 8 contains graphs that illustrate aspects of adaptive delivery of VBR/CBR MPEG I bitstreams.
  • FIG. 9 contains graphs that illustrate aspects of bandwidth versus frame types, in accordance with an example that is given in the text.
  • Adaptive content delivery systems and methods are described. Efficiency and flexibility are promoted through a novel solution to generic adaptive multimedia content delivery. Described embodiments are based on an abstract content model that captures important or critical structures and attributes of contents. Contents are modeled as hierarchical directional graphs. Nodes on graphs represent elements of contents. The concept of an “edge” is introduced. Edges define logical relationships between these elements. By finding optimized sub-graphs on these graphs under some constraints, optimized plans for adaptive content delivery can be made. With the help of the abstract content model, optimization procedures for many different types of contents can be standardized. Accordingly different types of contents can be treated equally under this framework.
  • FIG. 1 shows components of a typical example of such a computer, referred to by reference numeral 100 .
  • the components shown in FIG. 1 are only examples, and are not intended to suggest any limitation as to the scope of the claimed subject matter; the claimed subject matter is not necessarily dependent on the features shown in FIG. 1 .
  • various different general purpose or special purpose computing system configurations can be used.
  • Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Tasks might also be performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote computer storage media.
  • the instructions and/or program modules are stored at different times in the various computer-readable media that are either part of the computer or that can be read by the computer.
  • Programs are typically distributed, for example, on floppy disks, CD-ROMs, DVD, or some form of communication media such as a modulated signal. From there, they are installed or loaded into the secondary memory of a computer. At execution, they are loaded at least partially into the computer's primary electronic memory.
  • the invention described herein includes these and other various types of computer-readable media when such media contain instructions programs, and/or modules for implementing the steps described below in conjunction with a microprocessor or other data processors.
  • the invention also includes the computer itself when programmed according to the methods and techniques described below.
  • programs and other executable program components such as the operating system are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of the computer, and are executed by the data processor(s) of the computer.
  • the components of computer 100 may include, but are not limited to, a processing unit 120 , a system memory 130 , and a system bus 121 that couples various system components including the system memory to the processing unit 120 .
  • the system bus 121 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures.
  • bus architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISAA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as the Mezzanine bus.
  • Computer 100 typically includes a variety of computer-readable media.
  • Computer-readable media can be any available media that can be accessed by computer 100 and includes both volatile and nonvolatile media, removable and non-removable media.
  • Computer-readable media may comprise computer storage media and communication media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, or other data.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, is digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computer 100 .
  • Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media.
  • modulated data signal means a signal that has one or more if its characteristics set or changed in such a manner as to encode information in the signal.
  • communication media includes wired media such as a wired network or direct-wired connection and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.
  • the system memory 130 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory (RAM) 132 .
  • ROM read only memory
  • RAM random access memory
  • BIOS basic input/output system
  • RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 120 .
  • FIG. 1 illustrates operating system 134 , application programs 135 , other program modules 136 , and program data 137 .
  • the computer 100 may also include other removable/non-removable, volatile/nonvolatile computer storage media.
  • FIG. 1 illustrates a hard disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152 , and an optical disk drive 155 that reads from or writes to a removable, nonvolatile optical disk 156 such as a CD ROM or other optical media.
  • removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like.
  • the hard disk drive 141 is typically connected to the system bus 121 through an non-removable memory interface such as interface 140
  • magnetic disk drive 151 and optical disk drive 155 are typically connected to the system bus 121 by a removable memory interface such as interface 150 .
  • hard disk drive 141 is illustrated as storing operating system 144 , application programs 145 , other program modules 146 , and program data 147 . Note that these components can either be the same as or different from operating system 134 , application programs 135 , other program modules 136 , and program data 137 . Operating system 144 , application programs 145 , other program modules 146 , and program data 147 are given different numbers here to illustrate that, at a minimum, they are different copies.
  • a user may enter commands and information into the computer 100 through input devices such as a keyboard 162 and pointing device 161 , commonly referred to as a mouse, trackball, or touch pad.
  • Other input devices may include a microphone, joystick, game pad, satellite dish, scanner, or the like.
  • These and other input devices are often connected to the processing unit 120 through a user input interface 160 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port, or a universal serial bus (USB).
  • a monitor 191 or other type of display device is also connected to the system bus 121 via an interface, such as a video interface 190 .
  • computers may also include other peripheral output devices such as speakers 197 and printer 196 , which may be connected through an output peripheral interface 195 .
  • the computer may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180 .
  • the remote computer 180 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to computer 100 .
  • the logical connections depicted in FIG. 1 include a local area network (LAN) 171 and a wide area network (WAN) 173 , but may also include other networks.
  • LAN local area network
  • WAN wide area network
  • Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.
  • the computer 100 When used in a LAN networking environment, the computer 100 is connected to the LAN 171 through a network interface or adapter 170 .
  • the computer 100 When used in a WAN networking environment, the computer 100 typically includes a modem 172 or other means for establishing communications over the WAN 173 , such as the Internet.
  • the modem 172 which may be internal or external, may be connected to the system bus 121 via the user input interface 160 , or other appropriate mechanism.
  • program modules depicted relative to the computer 100 may be stored in the remote memory storage device.
  • FIG. 1 illustrates remote application programs 185 as residing on computer 180 . It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.
  • the inventive adaptive content delivery system works as an extended content processor of traditional multimedia content servers. Accordingly, upon receipt of a content request, the server fetches original multimedia contents from a content source and passes them to the adaptive delivery system. Adaptation results are then sent as a response to the request.
  • FIG. 2 shows an adaptation system 200 in accordance with one embodiment.
  • System 200 includes a content host 202 that acts as a front-end between physical multimedia contents and the rest of the system.
  • the content host comprises a content parser 204 and a content mapper 206 .
  • Content host 202 processes the original multimedia contents to provide an abstract content model which is provided to a decision engine 208 for processing.
  • the abstract content model can be the only data of which other system components (e.g. the decision engine) are aware. Physical details of the original multimedia content are thus hidden by the abstract content model.
  • Other input parameters, such as network characteristics and client capabilities, are modeled as resources is (i.e. resource model 210 ) or preference factors (i.e. preference model 212 ).
  • the decision engine 208 then makes best-fit delivery plans based on these parameters and the abstract content model. Each of these components is explored in more detail below.
  • the illustrated and described content host 202 is a front-end between physical contents and other system components, it can be used to manipulate contents based on the abstract content model.
  • the content host 202 also defines a common set of application program interfaces or APIs for retrieving extended properties of the abstract content model. Exemplary APIs are given at the end of this document.
  • the remaining components of the system are content independent, content host 202 itself is dependent on content types. Thus, different media types may desire different implementations of the content host.
  • the content host 202 should comprise two sub-modules: content parser 204 and content mapper 206 .
  • content parser 204 scans input contents and constructs corresponding abstract content model representations either online or offline. Different formats of the same content and capabilities of supported transcoders can also be abstracted into the same model during this process. Specific examples of how this can be done are given below. Characteristics of one suitable technique for implementing the content parser are described in U.S. patent application Ser. No. 09/893,335, entitled “Function-based Object Model for Use in WebSite Adaptation” filed on Jun. 26, 2001, the disclosure of which is incorporated by reference herein.
  • Content mapper 206 functions in a manner that is opposite of the way content parser 204 functions. That is, content mapper 206 converts abstract content model representations back to physical contents. Real-time-capable content transcoders may also be called at this stage to generate desired results.
  • Decision engine 208 provides functionality for making content adaptation plans.
  • decision engine 208 selects appropriate contents that achieve maximum total QoS (i.e. quality of service) values according to current resource constraints and preference factors (as provided by resource model 210 and preference model 212 ). Based on the abstract content model, this problem is solved by finding optimized sub-graphs of the abstract content model that maximize QoS values under resource constraints. Details of an exemplary content optimization procedure are covered in the section entitled “Content Optimization” below.
  • Input parameters such as network characteristics and client capabilities
  • Resources are used as constraints while the decision engine is looking for the best delivering plans.
  • Preference factors are used to alter QoS factors of the abstract content models. For dynamically changing parameters, such as network characteristics, these models should be able to predict future values since the decision engine may use forward-looking algorithms. More information is provided on this topic in the section entitled “A Simple Sub-optimization Algorithm” below.
  • caches can play an important role in real adaptive content delivery systems. Complex transcoding processes can be avoided if the needed results are in cache. Partial plans of delivery can also be saved in the cache and reused under nearly identical content request situations. These savings will decrease the server-side resource requirements and thus better quality of service (QoS) can be achieved when server-side resources become the bottleneck of the delivery plans.
  • QoS quality of service
  • FIG. 2 a is a flow diagram that describes steps in a method in accordance with one embodiment.
  • the steps can be implemented in any suitable hardware, software, firmware or combination thereof.
  • the steps are implemented in software.
  • any suitable software architecture can be utilized to implement the steps about to be described.
  • One exemplary software architecture is shown and described in connection with FIG. 2 above. It should be appreciated, however, that FIG. 2 shows but one exemplary software architecture and should not be construed to limit application of the claimed subject matter except where so specifically recited.
  • the processing steps reflect what can be considered as an “on-line” mode. By “on-line” is meant that the processing can take place responsive to a content request.
  • aspects of the described processing can, however, take place in an “off-line” mode where contents are pre-processed, for example, prior to receiving a specific request for the contents.
  • contents are pre-processed, for example, prior to receiving a specific request for the contents.
  • the content can be pre-processed to build the abstract content model.
  • the server can simply retrieve the abstract content model and select an appropriate delivery plan. Such is explored in more detail in FIG. 2 b.
  • Step 250 receives a content request. This step can be implemented responsive to a client device sending such a request.
  • Step 252 retrieves the requested content from a content source and step 254 parses the content and builds an abstract content model. An exemplary abstract content model is described below in more detail.
  • Step 256 processes the abstract content model to select an optimal delivery plan. Examples of how this can be done are described below.
  • Step 258 then processes the abstract content model to provide deliverable content in accordance with the delivery plan.
  • Step 260 then delivers the content to the content requester.
  • FIG. 2 b is a flow diagram that describes steps in a method in accordance with another embodiment.
  • the steps can be implemented in any suitable hardware, software, firmware or combination thereof.
  • the steps are implemented in software.
  • any suitable software architecture can be utilized to implement the steps about to be described.
  • the processing about to be described can pertain to the “off-line” mode mentioned above.
  • Step 262 receives content.
  • This step can be implemented in any suitable way. For example, this step can be implemented when a server receives content that it is to store for future content requests.
  • Step 264 parses the content and builds an abstract content model. An exemplary abstract content model is described below in more detail.
  • Step 266 processes the abstract content model to select at least one optimal delivery plan. Examples of how this can be done are described below.
  • Step 268 then processes the abstract content model to provide deliverable content in accordance with the delivery plan.
  • content can be pre-processed so that when a content request is received, the system can simply retrieve either the abstract content model and process it to provide a delivery plan, or it can retrieve the deliverable content in accordance with the client device sending the request.
  • the decision engine 208 ( FIG. 2 ) is designed to make optimal content delivery plans without having to consider too many physical details of the contents (such as that of encoding formats, special attributes, and the like).
  • an abstract model of the contents is utilized.
  • This model is desirably able to represent different kinds of contents and their structures (i.e. semantic, dependency, encoding, and the like) for efficient delivery. Described below is an exemplary multi-layered data structure that can represent a huge range of delivery-ready multimedia contents.
  • the abstract content model comprises a directional graph that features a top-down hierarchical structure.
  • the hierarchical structure comprises multiple nodes that represent components of the contents, and edges between the nodes represent relationships between these components.
  • FIG. 3 provides an illustration of an exemplary abstract content representation structure 300 in accordance with one embodiment.
  • a node is an abstract representation of content or content structure.
  • a Node is represented using a circle or square in the drawings of the data structure.
  • five exemplary nodes are indicated at 302 , 304 , 306 , 308 , and 310 .
  • An edge is an abstract representation of relationships between the nodes.
  • edges can be divided into three different types.
  • a dependency edge defines a logical dependency between nodes.
  • a thin dashed line is used to represent dependency edges.
  • Dependency edges are seen to extend between nodes 304 , 310 and 302 , 306 .
  • a route edge defines an ordered or hierarchical dependency between nodes. Thick solid lines are used to represent this kind of edge.
  • a route edge extends between nodes 306 , 310 .
  • a mixed edge is a mixture of a dependency edge and a route edge and can be considered as two edges separately. Thick dashed lines are used in FIG. 3 to represent this type of edge.
  • a mixed edge can be seen to extend between nodes 304 , 306 and 306 , 308 .
  • nodes in N l do not have incoming edges and nodes in N m do not have out going edges.
  • nodes and edges have several basic attributes as listed below.
  • Node status defines the dynamic statuses of nodes during content delivery.
  • the node statuses include the following:
  • FIG. 4 illustrates some possible transfers between these statuses. Specifically, an inactive node can become activable and vice versa. In addition, an activated node can become inactive. Activable nodes can become activated or skipped, and so on.
  • An ignition edge is defined as a dependency edge from a node that is activated, delivered or skipped.
  • which statuses are to be considered are specified deliberately and marked as ‘+’, ‘*’ and ‘ ⁇ ’ respectively, or no markers are drawn if all three statuses are fine, i.e. if no action is to be taken.
  • the edge between nodes 302 and 306 is an ignition edge if node 302 is activated or delivered.
  • An active condition defines how the node becomes activable. In the illustrated example, there are three conditions:
  • An input condition defines when an activable node can be activated.
  • the only condition is that there exists an incoming route edge from an activated, delivered or skipped node.
  • An output behavior defines how nodes on ends of outgoing route edges can be branched.
  • a “branch” comprises the operation of changing an activable node to an activated node. In this example, there are three branch operations:
  • nodes and edges are the basic elements of the described abstract content representation structure. Nodes and edges represent content objects and relationships between these objects. In addition to the basic attributes introduced and discussed above, nodes and edges can have other extended attributes.
  • a node can represent a piece of raw content like a picture, a paragraph of text, a video frame, or a chunk of bits in some coded contents. It can also work as a connection point of content structures where it does not represent any actual contents. In addition to its basic attributes, nodes can have some additional application related attributes.
  • a value is defined as an increment to content quality when this node has been delivered. For a node n ⁇ N, its value is represented by V(n)or V(n, t) if it is related to time.
  • a resource factor defines an amount of resources needed to deliver the node. For some types of resources r, one can represent corresponding resource factors of node n by R(n, r).
  • Edges can represent any kind of relationship between node objects. Some possible edge meanings are listed below:
  • FIG. 5 shows an example that uses an abstract content representation structure to represent contents associated with typical news data and some transcoding scenarios.
  • the news stories are classified or categorized as world, domestic, etc.
  • there may be standalone stories and collections of specific topics that contain related stories such as the node designated “Story 1”.
  • a story can include different contents and these contents can be transcoded into different types, such as multiple encoding formats, multilingual translations, etc.
  • These different possibilities are also represented by the data model and are selected and delivered dynamically according to client capabilities and user preferences.
  • optimized content can be considered as an optimal sub-graph of the corresponding structure.
  • One target of optimization is to maximize preference-altered total QoS factors of abstract content representation structure nodes covered by the sub-graph under the constraints of the resources.
  • some suggestions on choosing proper QoS factors are presented.
  • a discussion of a simple bounded search algorithm as a near optimal solution to this content optimization problem will be presented.
  • the algorithm is also used in a verification prototype that is introduced in the section entitled “Adaptive MPEG I Video Streaming” below.
  • the QoS factors of abstract content representation structure nodes play an important role in content optimization. This is because the decision engine 208 ( FIG. 2 ) is programmed to decide which content is more suitable based on QoS factors. Accordingly, it can be advantageous for properly selected QoS value definitions to at least conform to the following two principles. First, the QoS value definitions should reflect the importance of the corresponding content. Second, the QoS values of different nodes should be comparable.
  • the first principle is easier to follow and conforming to the second principle is usually not trivial. It may not be easy to tell which is more important or meaningful as between two different contents. For example, there is a famous saying that says “a picture is worth a thousand words”. This might be true in some cases, but not in others. In resource critical applications such as mobile communication, text should be more preferable than images most of the time. Thus, it is suggested that QoS definition choices be made on an application specific basis.
  • a bounded search algorithm is adopted to find the near optimal solution of the content optimization problem.
  • the pseudo code listed below describes but one optimized adaptive content delivery algorithm.
  • the pseudo code starts from a candidate set of activable nodes and then tries to simulate following delivery plans by marking nodes on the path as activated temporarily. A back trace is then used to find other possible delivery plans. Finally, the best starting candidate is selected and delivered. Afterwards, system statuses, such as resources and preferences, are updated. The algorithm is then looped until the end condition is met. It will be appreciated that in some cases, dynamically changing factors, such as network resources, may have to be predicted during the search.
  • Pruning of search branches is not currently done because node QoS factors may depend on resource consumption of previously selected nodes and thus may change dynamically. Under such a situation, historical records are not reusable and searching cannot be accelerated by pruning. In order to benefit from pruning, modifications can be made. For example, one way to benefit from pruning is to replace continuous values with approximate discrete ones (as time, QoS, resource).
  • a simple adaptive MPEG I video streaming application was implemented and based on the content optimization algorithm and above-described abstract content representation structure.
  • One goal of this application is to allow smoothed playback of MPEG I video even when transmission bandwidth is less than that which the original video bitstream requires and/or the client-side buffer size is limited.
  • MPEG I video bitstreams do not support scalable delivery.
  • Network bandwidth must be large enough to enable smooth playbacks in normal cases.
  • Transcoders are required if network bandwidth is less than the original video requires.
  • online transcoding of MPEG video bitstreams is computing intensive and does not suit video streaming applications where multiple contents/connections need to be supported simultaneously. For this reason, a simpler adaptation approach is chosen by selectively replacing/skipping encoded video frames. This approach is very efficient and the video bitrate is reduced at the cost of lower frame rates instead of PSNR losses resulting from normal transcoding.
  • frame timing is another issue that is addressed during content adaptation.
  • video bitstreams with some skipped frames can be decoded without any problems, the frame timing is changed.
  • escape-coded frames are used instead of skipping where PB frames should be skipped.
  • frame timing is kept unchanged during playback.
  • the escape-coded frames are MPEG I coded frames too and they stand for nothing changed to the reference frame (or one of the reference frames if the frame type is B).
  • MPEG I syntax all macroblocks of a frame must i be covered by non-overlapped slices, and a slice must start and end by coded macroblocks.
  • the minimal escape coded frame must consist of at least two empty coded macroblocks (top-left and bottom-right) and address skip codes for all other macroblocks between them.
  • the minimal size of an escape coded CIF frame is 32 bytes which is minor, if compared to that of normally coded frames which are at least several kilobytes.
  • FIG. 6 shows an exemplary abstract content representation model of a typical MPEG I video bitstream.
  • Each node in the figure represents data of a coded frame as “I”, “P”, “B”. Additionally, the designations of “a” or “b” represent data of escape-coded frames for P or B frames respectively.
  • the temporal reference of each frame is shown as a number before the frame type. Data of the sequence header and GOP headers are not shown in this figure due to limited space.
  • Each node in this model has attributes including data size, expected time to be decoded (TTD) relative to the starting time of delivery, and QoS factor.
  • the QoS factor is defined dynamically according to the current time and TTD. In this example, this value is assigned based on the following heuristics:
  • FIG. 7 shows the unified QoS factor of all frame types in this experimental system.
  • the function has two parameters: early arrival defines the time the frame data arrives before TTD; timeout defines when the frame data arrives too late to be decoded. These two values are chosen according to application situations. A larger early arrival time may result in larger client-side buffer requirements and a larger timeout may cause delays during playback. On the other hand, smaller values will also affect delivered video quality.
  • the prototype was implemented as a WWW service extension to MS Internet Information Server running on MS Windows NT.
  • the adaptation application runs as an ISAPI extension on IIS.
  • Video data is processed and streamed in real-time from an original source through a standard HTTP protocol stack provided by IIS.
  • a bandwidth-limitation software pipe was used as a simple emulation of network bandwidth. Adapted video data are firstly sent through this pipe before IIS sends it out. Parameters such as emulation bandwidth and optimizer search steps are all sent to the server as request parameters.
  • Several popular client applications that support playback of MPEG I video have been successfully tested using HTTP streaming including Windows Media Player and QuickTime Player.
  • FIGS. 8 and 9 show some of these results.
  • the 3 Mbps VBR MPEG I bitstream is 320 ⁇ 240 ⁇ 30 fps and is two-pass-coded with minimal bitrate at 1 Mbps and maximal bitrate at 4 Mbps.
  • Its GOP structure is 1I5P3B.
  • the 1.2 Mbps CBR bitstream is 320 ⁇ 240 ⁇ 29.97 fps and is one pass coded. Its GOP structure is 1I3P3B.
  • FIG. 8 shows delivered frame sizes of the first 200 frames of these two clips at different bandwidths.
  • the curves show the average frames size over a window of 60 frames. One can clearly see which frames are escape-coded during the adaptive delivery process.
  • the delivery bitrate of the 3 Mbps VBR bitstream is also smoothed because we assumed fixed delivery bandwidth.
  • FIG. 9 shows how the statistics of frame types change when the delivery bandwidth changes.
  • template ⁇ class cYourEdge> class TcEdge ⁇ public: TcEdge(int argnFromNodeID, int argnToNodeID): // The constructor nFromNodeID(argnFromNodeID), nToNodeID(argnToNodeID), pNextOutEdge(0), pNextInEdge(0) ⁇ ⁇ ; virtual ⁇ TcEdge( ) ⁇ ⁇ ; int nFromNodeID; // Which node it is from int nToNodeID; // Which node it goes to cYourEdge *pNextOutEdge; // This is the outgoing edge link list cYourEdge *pNextInEdge; // This is the incoming edge link list ⁇ ; template ⁇ class TcEdge> class TcNode ⁇ public: TcNode
  • the framework features an abstract content model and an abstract adaptation decision engine that can make adaptive delivery plans without knowing much of the physical details of actual content.
  • the capabilities of the framework have been demonstrated with an application of adaptive video streaming.
  • Experimental results further show that the proposed framework is effective and efficient in adaptive delivery of contents under variable network conditions.
  • the described architecture can be easily extended to have much stronger capabilities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

Methods and systems for generic adaptive multimedia content delivery are described. In one embodiment, a novel framework features an abstract content model and an abstract adaptive delivery decision engine. The abstract content model recognizes important aspects of contents while hiding their physical details from other parts of the framework. The decision engine then makes content adaptation plans based on the abstracted model of the contents and needs little knowledge of any physical details of the actual contents. Thus, under the same framework, adaptive delivery of generic contents is possible.

Description

    RELATED APPLICATION
  • This application is a divisional of and claims priority to U.S. patent application Ser. No. 09/995,499, filed on Nov. 26, 2001, the disclosure of which is incorporated by reference herein.
  • TECHNICAL FIELD
  • This invention relates to methods and systems for adaptive delivery of multimedia contents.
  • BACKGROUND
  • Today we live in a diversified world with a seemingly infinite number of diverse and different sources of on-line information. Typically, this information is accessed via a network such as the Internet. As the Internet and, more generally, computing evolve, people are beginning to become accustomed to and demanding better access to different types of electronically available information.
  • Against the backdrop of the diverse and different sources of electronic information is the wide range of devices that are connected being used to access the information. For example, people can now typically access network-accessible information using personal computers, handheld computers, personal digital assistants and the like. The situations encountered by individuals attempting to access this diverse collection of information using an ever growing collection of computing devices differs from user session to user session.
  • For example, some contents may be authored and suitable for use with a certain type of browser. Yet, the contents may not be suitably acceptable for use in other situations. For example, web contents that are authored for use in connection with a browser installed on a personal computer may not be suitable for display on a small handheld device for reasons not the least of which include the size disparity between the different devices' displays.
  • One possible solution for this problem is to author the same contents so that they reside in different forms that are suitable for all of the different situations that might be encountered. While this is theoretically possible, the solution is practically infeasible due to the time and expense involved.
  • One area of promise is in the area of so-called adaptive content delivery. One goal of adaptive content delivery is to have content that is readily or easily adaptable to different computing environments.
  • Early commercial applications focused on providing faster web page downloads for narrow bandwidth connected users (such as dialup and mobile access). Most of the applications accelerated downloads by simply reducing the sizes of embedded image files using aggressive lossy compression schemes. The cost of this solution is lower quality, which is highly undesirable from a customer service standpoint. Some schemes also supported lossless text compression to reduce the transmission time of web pages.
  • Some companies such as ProxyNet (based on TranSend technology), SpyGlass, and OnlineAnywhere provide proxies or servers that can adjust web pages to fit the display of smaller devices. Their technologies, however, are based on heuristic rules and customized content filters that are designed for specific websites and are used to extract the most important contents from these web pages. Thus, these solutions tend to be rigid and inflexible.
  • Accordingly, this invention arose out of concerns associated with providing adaptive systems and methods for efficient and flexible content delivery.
  • SUMMARY
  • Methods and systems for generic adaptive multimedia content delivery are described. In one embodiment, a novel framework features an abstract content model and an abstract adaptive delivery decision engine. The abstract content model recognizes important aspects of contents while hiding their physical details from other parts of the framework. The decision engine then makes content adaptation plans based on the abstracted model of the contents and needs little knowledge of any physical details of the actual contents. Thus, under the same framework, adaptive delivery of generic contents is possible.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exemplary computer system that can be utilized in accordance with one or more embodiments.
  • FIG. 2 is a block diagram of an exemplary adaptive content delivery system in accordance with one embodiment.
  • FIG. 2 a is a flow diagram that describes steps in a method in accordance with one embodiment.
  • FIG. 2 b is a flow diagram that describes steps in a method in accordance with another embodiment.
  • FIG. 3 is a block diagram that illustrates an exemplary abstract content representation structure in accordance with one embodiment.
  • FIG. 4 is a diagram that illustrates transfers of node statuses.
  • FIG. 5 is a diagram that illustrates an exemplary abstract content representation structure of typical news content combined with possible transcoder capabilities.
  • FIG. 6 is a diagram that illustrates an exemplary abstract content representation structure of an MPEG I video sequence “IPBBIBBPBB . . . ”
  • FIG. 7 is a graph of the unified QOS factor of the FIG. 6 MPEG I abstract content representation structure nodes.
  • FIG. 8 contains graphs that illustrate aspects of adaptive delivery of VBR/CBR MPEG I bitstreams.
  • FIG. 9 contains graphs that illustrate aspects of bandwidth versus frame types, in accordance with an example that is given in the text.
  • DETAILED DESCRIPTION
  • Overview
  • Adaptive content delivery systems and methods are described. Efficiency and flexibility are promoted through a novel solution to generic adaptive multimedia content delivery. Described embodiments are based on an abstract content model that captures important or critical structures and attributes of contents. Contents are modeled as hierarchical directional graphs. Nodes on graphs represent elements of contents. The concept of an “edge” is introduced. Edges define logical relationships between these elements. By finding optimized sub-graphs on these graphs under some constraints, optimized plans for adaptive content delivery can be made. With the help of the abstract content model, optimization procedures for many different types of contents can be standardized. Accordingly different types of contents can be treated equally under this framework.
  • Exemplary Computer Environment
  • The various components and functionality described herein can be implemented by various computers. FIG. 1 shows components of a typical example of such a computer, referred to by reference numeral 100. The components shown in FIG. 1 are only examples, and are not intended to suggest any limitation as to the scope of the claimed subject matter; the claimed subject matter is not necessarily dependent on the features shown in FIG. 1.
  • Generally, various different general purpose or special purpose computing system configurations can be used. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
  • The functionality of the computers is embodied in many cases by computer-executable instructions, such as program modules, that are executed by the computers. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Tasks might also be performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media.
  • The instructions and/or program modules are stored at different times in the various computer-readable media that are either part of the computer or that can be read by the computer. Programs are typically distributed, for example, on floppy disks, CD-ROMs, DVD, or some form of communication media such as a modulated signal. From there, they are installed or loaded into the secondary memory of a computer. At execution, they are loaded at least partially into the computer's primary electronic memory. The invention described herein includes these and other various types of computer-readable media when such media contain instructions programs, and/or modules for implementing the steps described below in conjunction with a microprocessor or other data processors. The invention also includes the computer itself when programmed according to the methods and techniques described below.
  • For purposes of illustration, programs and other executable program components such as the operating system are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of the computer, and are executed by the data processor(s) of the computer.
  • With reference to FIG. 1, the components of computer 100 may include, but are not limited to, a processing unit 120, a system memory 130, and a system bus 121 that couples various system components including the system memory to the processing unit 120. The system bus 121 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISAA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as the Mezzanine bus.
  • Computer 100 typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by computer 100 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media. “Computer storage media” includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, is digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computer 100. Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more if its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.
  • The system memory 130 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that help to transfer information between elements within computer 100, such as during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 120. By way of example, and not limitation, FIG. 1 illustrates operating system 134, application programs 135, other program modules 136, and program data 137.
  • The computer 100 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates a hard disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152, and an optical disk drive 155 that reads from or writes to a removable, nonvolatile optical disk 156 such as a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 141 is typically connected to the system bus 121 through an non-removable memory interface such as interface 140, and magnetic disk drive 151 and optical disk drive 155 are typically connected to the system bus 121 by a removable memory interface such as interface 150.
  • The drives and their associated computer storage media discussed above and illustrated in FIG. 1 provide storage of computer-readable instructions, data structures, program modules, and other data for computer 100. In FIG. 1, for example, hard disk drive 141 is illustrated as storing operating system 144, application programs 145, other program modules 146, and program data 147. Note that these components can either be the same as or different from operating system 134, application programs 135, other program modules 136, and program data 137. Operating system 144, application programs 145, other program modules 146, and program data 147 are given different numbers here to illustrate that, at a minimum, they are different copies. A user may enter commands and information into the computer 100 through input devices such as a keyboard 162 and pointing device 161, commonly referred to as a mouse, trackball, or touch pad. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 120 through a user input interface 160 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port, or a universal serial bus (USB). A monitor 191 or other type of display device is also connected to the system bus 121 via an interface, such as a video interface 190. In addition to the monitor, computers may also include other peripheral output devices such as speakers 197 and printer 196, which may be connected through an output peripheral interface 195.
  • The computer may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180. The remote computer 180 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to computer 100. The logical connections depicted in FIG. 1 include a local area network (LAN) 171 and a wide area network (WAN) 173, but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.
  • When used in a LAN networking environment, the computer 100 is connected to the LAN 171 through a network interface or adapter 170. When used in a WAN networking environment, the computer 100 typically includes a modem 172 or other means for establishing communications over the WAN 173, such as the Internet. The modem 172, which may be internal or external, may be connected to the system bus 121 via the user input interface 160, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 100, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation, FIG. 1 illustrates remote application programs 185 as residing on computer 180. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.
  • Exemplary Embodiment
  • In the embodiment about to be described, the inventive adaptive content delivery system works as an extended content processor of traditional multimedia content servers. Accordingly, upon receipt of a content request, the server fetches original multimedia contents from a content source and passes them to the adaptive delivery system. Adaptation results are then sent as a response to the request.
  • FIG. 2 shows an adaptation system 200 in accordance with one embodiment. System 200 includes a content host 202 that acts as a front-end between physical multimedia contents and the rest of the system. The content host comprises a content parser 204 and a content mapper 206. Content host 202 processes the original multimedia contents to provide an abstract content model which is provided to a decision engine 208 for processing. In this example, the abstract content model can be the only data of which other system components (e.g. the decision engine) are aware. Physical details of the original multimedia content are thus hidden by the abstract content model. Other input parameters, such as network characteristics and client capabilities, are modeled as resources is (i.e. resource model 210) or preference factors (i.e. preference model 212). The decision engine 208 then makes best-fit delivery plans based on these parameters and the abstract content model. Each of these components is explored in more detail below.
  • Content Host
  • As the illustrated and described content host 202 is a front-end between physical contents and other system components, it can be used to manipulate contents based on the abstract content model. In addition, the content host 202 also defines a common set of application program interfaces or APIs for retrieving extended properties of the abstract content model. Exemplary APIs are given at the end of this document. Although the remaining components of the system are content independent, content host 202 itself is dependent on content types. Thus, different media types may desire different implementations of the content host. As a common basis, however, the content host 202 should comprise two sub-modules: content parser 204 and content mapper 206.
  • In the illustrated and described embodiment, content parser 204 scans input contents and constructs corresponding abstract content model representations either online or offline. Different formats of the same content and capabilities of supported transcoders can also be abstracted into the same model during this process. Specific examples of how this can be done are given below. Characteristics of one suitable technique for implementing the content parser are described in U.S. patent application Ser. No. 09/893,335, entitled “Function-based Object Model for Use in WebSite Adaptation” filed on Jun. 26, 2001, the disclosure of which is incorporated by reference herein.
  • Content mapper 206 functions in a manner that is opposite of the way content parser 204 functions. That is, content mapper 206 converts abstract content model representations back to physical contents. Real-time-capable content transcoders may also be called at this stage to generate desired results.
  • Decision Engine
  • Decision engine 208 provides functionality for making content adaptation plans. In the illustrated example, decision engine 208 selects appropriate contents that achieve maximum total QoS (i.e. quality of service) values according to current resource constraints and preference factors (as provided by resource model 210 and preference model 212). Based on the abstract content model, this problem is solved by finding optimized sub-graphs of the abstract content model that maximize QoS values under resource constraints. Details of an exemplary content optimization procedure are covered in the section entitled “Content Optimization” below.
  • Resource and Preference Models
  • Input parameters, such as network characteristics and client capabilities, are modeled as resources or preference factors. Resources are used as constraints while the decision engine is looking for the best delivering plans. Preference factors are used to alter QoS factors of the abstract content models. For dynamically changing parameters, such as network characteristics, these models should be able to predict future values since the decision engine may use forward-looking algorithms. More information is provided on this topic in the section entitled “A Simple Sub-optimization Algorithm” below.
  • Caching
  • Although a caching stage is not explicitly included FIG. 2, caches can play an important role in real adaptive content delivery systems. Complex transcoding processes can be avoided if the needed results are in cache. Partial plans of delivery can also be saved in the cache and reused under nearly identical content request situations. These savings will decrease the server-side resource requirements and thus better quality of service (QoS) can be achieved when server-side resources become the bottleneck of the delivery plans.
  • FIG. 2 a is a flow diagram that describes steps in a method in accordance with one embodiment. The steps can be implemented in any suitable hardware, software, firmware or combination thereof. In the present example, the steps are implemented in software. In addition, any suitable software architecture can be utilized to implement the steps about to be described. One exemplary software architecture is shown and described in connection with FIG. 2 above. It should be appreciated, however, that FIG. 2 shows but one exemplary software architecture and should not be construed to limit application of the claimed subject matter except where so specifically recited. In the example about to be described, the processing steps reflect what can be considered as an “on-line” mode. By “on-line” is meant that the processing can take place responsive to a content request. Aspects of the described processing can, however, take place in an “off-line” mode where contents are pre-processed, for example, prior to receiving a specific request for the contents. For example, when content is received by a server for storage, the content can be pre-processed to build the abstract content model. Subsequently, when any requests are received, the server can simply retrieve the abstract content model and select an appropriate delivery plan. Such is explored in more detail in FIG. 2 b.
  • Step 250 receives a content request. This step can be implemented responsive to a client device sending such a request. Step 252 retrieves the requested content from a content source and step 254 parses the content and builds an abstract content model. An exemplary abstract content model is described below in more detail. Step 256 processes the abstract content model to select an optimal delivery plan. Examples of how this can be done are described below. Step 258 then processes the abstract content model to provide deliverable content in accordance with the delivery plan. Step 260 then delivers the content to the content requester.
  • FIG. 2 b is a flow diagram that describes steps in a method in accordance with another embodiment. The steps can be implemented in any suitable hardware, software, firmware or combination thereof. In the present example, the steps are implemented in software. In addition, any suitable software architecture can be utilized to implement the steps about to be described. The processing about to be described can pertain to the “off-line” mode mentioned above.
  • Step 262 receives content. This step can be implemented in any suitable way. For example, this step can be implemented when a server receives content that it is to store for future content requests. Step 264 parses the content and builds an abstract content model. An exemplary abstract content model is described below in more detail. Step 266 processes the abstract content model to select at least one optimal delivery plan. Examples of how this can be done are described below. Step 268 then processes the abstract content model to provide deliverable content in accordance with the delivery plan.
  • In accordance with the FIG. 2 b embodiment, content can be pre-processed so that when a content request is received, the system can simply retrieve either the abstract content model and process it to provide a delivery plan, or it can retrieve the deliverable content in accordance with the client device sending the request.
  • Exemplary Abstract Content Representation Structure (ACRES)
  • One of the important goals of the described adaptive content delivery framework is to make the framework a generic content adaptation solution. The decision engine 208 (FIG. 2) is designed to make optimal content delivery plans without having to consider too many physical details of the contents (such as that of encoding formats, special attributes, and the like). As a result, an abstract model of the contents is utilized. This model is desirably able to represent different kinds of contents and their structures (i.e. semantic, dependency, encoding, and the like) for efficient delivery. Described below is an exemplary multi-layered data structure that can represent a huge range of delivery-ready multimedia contents.
  • Definitions
  • In the illustrated and described embodiment, the abstract content model comprises a directional graph that features a top-down hierarchical structure. The hierarchical structure comprises multiple nodes that represent components of the contents, and edges between the nodes represent relationships between these components. In the discussion that follows, definitions of these data models and their basic attributes are given. Then, a discussion of the details of nodes and edges is presented.
  • For the discussion that follows, the reader is referred to FIG. 3 which provides an illustration of an exemplary abstract content representation structure 300 in accordance with one embodiment.
  • In the illustrated structure 300, a node is an abstract representation of content or content structure. A Node is represented using a circle or square in the drawings of the data structure. In FIG. 3, five exemplary nodes are indicated at 302, 304, 306, 308, and 310. An edge is an abstract representation of relationships between the nodes. In this embodiment, edges can be divided into three different types. A dependency edge defines a logical dependency between nodes. In FIG. 3, a thin dashed line is used to represent dependency edges. Dependency edges are seen to extend between nodes 304, 310 and 302, 306. A route edge defines an ordered or hierarchical dependency between nodes. Thick solid lines are used to represent this kind of edge. In FIG. 3, a route edge extends between nodes 306, 310. A mixed edge is a mixture of a dependency edge and a route edge and can be considered as two edges separately. Thick dashed lines are used in FIG. 3 to represent this type of edge. A mixed edge can be seen to extend between nodes 304, 306 and 306, 308.
  • Abstract content representation structure 300 comprises a directional graph G=(N, E) that satisfies the following condition (layered constraint), where N and E stand for “node” and “edge” sets of G:
      • The node set N can be divided into several subsets as Ni, i=1 . . . m where N = m i = 1 N i
        and Ni∩Nj=Φ,
        ∀i,j=1 . . . m, i≠j.
      • ∀a=(ns, ne)εE, there exists a pair of 1≦i<j≦m such that nsεNi and neεNj.
      • ∀=(nsne)εE,s≠e.
  • From this definition one can also see that nodes in Nl do not have incoming edges and nodes in Nm do not have out going edges. In addition to these definitions, nodes and edges have several basic attributes as listed below.
  • Node and Edge Attributes
  • Node status defines the dynamic statuses of nodes during content delivery. In the illustrated and described embodiment, the node statuses include the following:
      • Inactive: The node is not yet a deliverable object because of an unsatisfied active condition (defined below).
      • Activable: The active condition of the node is satisfied but the node is not yet included in a delivery plan.
      • Activated: The node has been chosen in a delivery plan.
      • Delivered: The node has been delivered successfully to a content receiver.
      • Skipped: The node is not delivered and will not be included in the current plan due to some reason.
  • FIG. 4 illustrates some possible transfers between these statuses. Specifically, an inactive node can become activable and vice versa. In addition, an activated node can become inactive. Activable nodes can become activated or skipped, and so on.
  • An ignition edge is defined as a dependency edge from a node that is activated, delivered or skipped. In FIG. 3, which statuses are to be considered are specified deliberately and marked as ‘+’, ‘*’ and ‘−’ respectively, or no markers are drawn if all three statuses are fine, i.e. if no action is to be taken. For example, in FIG. 3, the edge between nodes 302 and 306 is an ignition edge if node 302 is activated or delivered.
  • An active condition defines how the node becomes activable. In the illustrated example, there are three conditions:
      • Automatic: The node is automatically activable. One example is the top most nodes (such as those in set Nl). These nodes are considered as the potential starting point of delivery. In the drawings in this document, automatically activable nodes are designated mark with a ‘#’.
      • OR condition: The node is activable if at least one of its input edges is an ignition edge. There is no marker for these kinds of nodes in the drawings.
      • AND condition: The node is activable only if all its input edges are ignition edges. These nodes are designated with a “&”in the drawings.
  • An input condition defines when an activable node can be activated. In the present embodiment, except for automatic activable nodes, the only condition is that there exists an incoming route edge from an activated, delivered or skipped node. An output behavior defines how nodes on ends of outgoing route edges can be branched. In the illustrated and described embodiment, a “branch” comprises the operation of changing an activable node to an activated node. In this example, there are three branch operations:
      • Complementary branch: All activable nodes can be branched. In the drawings in this document, there are no markers for these nodes.
      • Exclusive branch: Only one from all activable nodes can be branched. In the drawings in this document, these nodes are designated with a “%”.
      • Tight branch: All activable nodes must be branched. A ‘$’ is used to designate these nodes.
  • Nodes and Edges
  • As indicated above, nodes and edges are the basic elements of the described abstract content representation structure. Nodes and edges represent content objects and relationships between these objects. In addition to the basic attributes introduced and discussed above, nodes and edges can have other extended attributes.
  • Nodes
  • As an abstraction of multimedia contents, a node can represent a piece of raw content like a picture, a paragraph of text, a video frame, or a chunk of bits in some coded contents. It can also work as a connection point of content structures where it does not represent any actual contents. In addition to its basic attributes, nodes can have some additional application related attributes.
  • A value (QoS factor) is defined as an increment to content quality when this node has been delivered. For a node nεN, its value is represented by V(n)or V(n, t) if it is related to time.
  • A resource factor defines an amount of resources needed to deliver the node. For some types of resources r, one can represent corresponding resource factors of node n by R(n, r).
  • Edges
  • Edges can represent any kind of relationship between node objects. Some possible edge meanings are listed below:
      • Semantic inclusion: A node at the end of an edge is included in some semantic scope of the node at the beginning of the edge. E.g.: news stories (each as a node) of a specific category (a structural node), chapters of a book, etc.
      • Dependency: Delivery of a node at the end of an edge depends on delivery of the node at the beginning of the edge. E.g.: succeeding video frames (especially inter-coded ones), different resolution layers of images/video clips, etc.
      • Expansion: A node at the end of an edge is an expansion to contents described by the node at the beginning of the edge. E.g.: high-resolution images to icons, video sequences to key-frames, full texts to abstracts, etc.
      • Transcoder capability: Transcoder capabilities can also be represented by an abstract content representation structure. A structural node of an “exclusive branch” is inserted as a placeholder of original content. Original content and possible transcoding results are inserted under that node. Transcoding complexities can be modeled as some kinds of resource requirement factors of each node. E.g.: different format and resolution of an image, multilingual versions of some articles, etc.
  • Some Examples of Using Abstract Content Representation Structures
  • FIG. 5 shows an example that uses an abstract content representation structure to represent contents associated with typical news data and some transcoding scenarios. Starting from the topmost nodes, the news stories are classified or categorized as world, domestic, etc. Then in each category, there may be standalone stories and collections of specific topics that contain related stories (such as the node designated “Story 1”). A story can include different contents and these contents can be transcoded into different types, such as multiple encoding formats, multilingual translations, etc. These different possibilities are also represented by the data model and are selected and delivered dynamically according to client capabilities and user preferences.
  • In the section entitled “ACRES and Adaptation Methods in Detail” below and the related figure, an example of how to use an abstract content representation structure to represent MPEG I video bitstreams together with frame-skipping transcoders for bitrate adaptation is provided.
  • Content Optimization
  • Using the abstract content representation structure, optimized content can be considered as an optimal sub-graph of the corresponding structure. One target of optimization is to maximize preference-altered total QoS factors of abstract content representation structure nodes covered by the sub-graph under the constraints of the resources. In the section immediately below, some suggestions on choosing proper QoS factors are presented. Then a discussion of a simple bounded search algorithm as a near optimal solution to this content optimization problem will be presented. The algorithm is also used in a verification prototype that is introduced in the section entitled “Adaptive MPEG I Video Streaming” below.
  • Choosing Proper QoS Factors
  • The QoS factors of abstract content representation structure nodes play an important role in content optimization. This is because the decision engine 208 (FIG. 2) is programmed to decide which content is more suitable based on QoS factors. Accordingly, it can be advantageous for properly selected QoS value definitions to at least conform to the following two principles. First, the QoS value definitions should reflect the importance of the corresponding content. Second, the QoS values of different nodes should be comparable.
  • In many cases, the first principle is easier to follow and conforming to the second principle is usually not trivial. It may not be easy to tell which is more important or meaningful as between two different contents. For example, there is a famous saying that says “a picture is worth a thousand words”. This might be true in some cases, but not in others. In resource critical applications such as mobile communication, text should be more preferable than images most of the time. Thus, it is suggested that QoS definition choices be made on an application specific basis.
  • A Simple Sub-Optimization Algorithm
  • In the illustrated and described embodiment, a bounded search algorithm is adopted to find the near optimal solution of the content optimization problem. The pseudo code listed below describes but one optimized adaptive content delivery algorithm. The algorithm is a straightforward implementation of a deep-first search.
    (node, value) BestNode(ACRES, step, max_steps)
    {
    if step >= max_steps then return (NULL, 0);
    BestCandi = NULL;
    BestValue = 0;
    Candi_Set = GetActivableNodes(ACRES);
    Resource = GetFreeResource( );
    for each candi in Candi_Set do
    {
    resCandi = GetResource(candi);
    if resCandi > Resource then next;
    MarkActived(candi);
    ConsumeResource(resCandi);
    valCandi = GetQoSValue(candi)
    *GetPreference(candi)
     + BestNode(ACRES, step+1, max_steps).value;
    if valCandi > BestValue then
    {
    BestCandi = candi;
    BestValue = valCandi;
    }
    FreeResource(resCandi);
    MarkActivable(candi);
    }
    return (BestCandi, BestValue);
    }
    AdaptiveDelivery(ACRES, max_steps)
    {
    do
    {
    (node, value) = BestNode(ACRES, 0, max_steps);
    if node != NULL then
    {
    MarkActived(node);
    ConsumeResource(GetResource(node));
    Deliver(node);
    }
    UpdateSystemStatus( );
    }
    while Not Meet_End_Condition( );
    }
  • The pseudo code starts from a candidate set of activable nodes and then tries to simulate following delivery plans by marking nodes on the path as activated temporarily. A back trace is then used to find other possible delivery plans. Finally, the best starting candidate is selected and delivered. Afterwards, system statuses, such as resources and preferences, are updated. The algorithm is then looped until the end condition is met. It will be appreciated that in some cases, dynamically changing factors, such as network resources, may have to be predicted during the search.
  • Because there are only limited search depths, the complexity of this algorithm is quite acceptable. However, the algorithm may become complex in some cases. Pruning of search branches is not currently done because node QoS factors may depend on resource consumption of previously selected nodes and thus may change dynamically. Under such a situation, historical records are not reusable and searching cannot be accelerated by pruning. In order to benefit from pruning, modifications can be made. For example, one way to benefit from pruning is to replace continuous values with approximate discrete ones (as time, QoS, resource).
  • Adaptive MPEG I Video Streaming Example
  • As a verification and example of the inventive framework, a simple adaptive MPEG I video streaming application was implemented and based on the content optimization algorithm and above-described abstract content representation structure. One goal of this application is to allow smoothed playback of MPEG I video even when transmission bandwidth is less than that which the original video bitstream requires and/or the client-side buffer size is limited.
  • In the discussion that follows, we start from an analysis of the situation and then we will build an abstract content representation structure of the MPEG I video bit stream that is used in our adaptive delivery verification prototype. After that, a brief introduction will be given to our implementation's architecture. Experimental results are discussed later.
  • Abstract Content Representation Structures and Adaptation Methods in Detail
  • Since an adaptable abstract content representation of content is the basis of the inventive approach, this discussion starts by analyzing adaptation schemes of MPEG I video and then constructs the abstract content representation model that enables the adaptation scheme based on the analysis.
  • As it was designed, MPEG I video bitstreams do not support scalable delivery. Network bandwidth must be large enough to enable smooth playbacks in normal cases. Transcoders are required if network bandwidth is less than the original video requires. However, online transcoding of MPEG video bitstreams is computing intensive and does not suit video streaming applications where multiple contents/connections need to be supported simultaneously. For this reason, a simpler adaptation approach is chosen by selectively replacing/skipping encoded video frames. This approach is very efficient and the video bitrate is reduced at the cost of lower frame rates instead of PSNR losses resulting from normal transcoding.
  • There are three kinds of encoded video frames in MPEG I video bitstreams—Intra coded, forward Prediction coded and Bi-directional prediction coded. These frame types provide a trade-off between compression efficiency and playback requirements (as seek and error recovery). Several encoded frames form a GOP (group of picture) and temporal references of frames are defined relatively within GOPs. Beside a sequence header that defines essential attributes, video bitstreams are typically a concatenation of GOPs. I frames can be decoded at anytime, but decoding of P and B frames depends on decoded reference frames. In other words, there are relationships that exist as inter-frame dependencies and temporal orders. As a result, skipping I and P frames will cause P and B frames that follow not to be decodable. Skipping B frames has no impact on other frames.
  • Beside these inter-frame dependencies, frame timing is another issue that is addressed during content adaptation. Although video bitstreams with some skipped frames can be decoded without any problems, the frame timing is changed. As a remedy, escape-coded frames are used instead of skipping where PB frames should be skipped. Thus frame timing is kept unchanged during playback. The escape-coded frames are MPEG I coded frames too and they stand for nothing changed to the reference frame (or one of the reference frames if the frame type is B). According to MPEG I syntax, all macroblocks of a frame must i be covered by non-overlapped slices, and a slice must start and end by coded macroblocks. Thus, the minimal escape coded frame must consist of at least two empty coded macroblocks (top-left and bottom-right) and address skip codes for all other macroblocks between them. As a result, the minimal size of an escape coded CIF frame (P or B) is 32 bytes which is minor, if compared to that of normally coded frames which are at least several kilobytes.
  • In accordance with the above discussion, FIG. 6 shows an exemplary abstract content representation model of a typical MPEG I video bitstream. Each node in the figure represents data of a coded frame as “I”, “P”, “B”. Additionally, the designations of “a” or “b” represent data of escape-coded frames for P or B frames respectively. The temporal reference of each frame is shown as a number before the frame type. Data of the sequence header and GOP headers are not shown in this figure due to limited space.
  • Each node in this model has attributes including data size, expected time to be decoded (TTD) relative to the starting time of delivery, and QoS factor. The QoS factor is defined dynamically according to the current time and TTD. In this example, this value is assigned based on the following heuristics:
      • The value of frame data depends on frame types and effects on decoding of succeeding frames. I>P>B>escape-coded.
      • The value of a frame should be maximized when it is available for the decoder just on or before its TTD and decrease to zero when it is not delivered after TTD plus some maximum tolerable delay time.
  • FIG. 7 shows the unified QoS factor of all frame types in this experimental system. The function has two parameters: early arrival defines the time the frame data arrives before TTD; timeout defines when the frame data arrives too late to be decoded. These two values are chosen according to application situations. A larger early arrival time may result in larger client-side buffer requirements and a larger timeout may cause delays during playback. On the other hand, smaller values will also affect delivered video quality.
  • In the described experimental system, some content information is also taken into consideration. From the viewpoint of sampling theory, we can see that frames in fast motion sequences should be preserved with higher precedence than those in slow motion sequences during the frame dropping process. It is also known that those frames containing more motion information will normally use more bits than those frames containing less motion information when they are predictive-coded. As a result, the QoS factor of node n is defined as V(n, t)=U(t)*coded_size(n). However, its effects are very limited when video bitstreams are CBR coded.
  • System Implementation
  • In this described example, the prototype was implemented as a WWW service extension to MS Internet Information Server running on MS Windows NT. The adaptation application runs as an ISAPI extension on IIS. Video data is processed and streamed in real-time from an original source through a standard HTTP protocol stack provided by IIS. A bandwidth-limitation software pipe was used as a simple emulation of network bandwidth. Adapted video data are firstly sent through this pipe before IIS sends it out. Parameters such as emulation bandwidth and optimizer search steps are all sent to the server as request parameters. Several popular client applications that support playback of MPEG I video have been successfully tested using HTTP streaming including Windows Media Player and QuickTime Player.
  • Experimental Results
  • We tested the implementation using both CBR and VBR bitstreams. FIGS. 8 and 9 show some of these results. The 3 Mbps VBR MPEG I bitstream is 320×240×30 fps and is two-pass-coded with minimal bitrate at 1 Mbps and maximal bitrate at 4 Mbps. Its GOP structure is 1I5P3B. The 1.2 Mbps CBR bitstream is 320×240×29.97 fps and is one pass coded. Its GOP structure is 1I3P3B.
  • FIG. 8 shows delivered frame sizes of the first 200 frames of these two clips at different bandwidths. The curves show the average frames size over a window of 60 frames. One can clearly see which frames are escape-coded during the adaptive delivery process. The delivery bitrate of the 3 Mbps VBR bitstream is also smoothed because we assumed fixed delivery bandwidth. FIG. 9 shows how the statistics of frame types change when the delivery bandwidth changes.
  • From these results one can see that bandwidths of the delivered streams are successfully reduced and smoothed. Thus, playback of these video bitstreams is possible even when the network bandwidth is far narrower than that the source bitstreams demand and when the client side buffer size is limited. From FIG. 9 one can see that frame data are preserved in the order of importance as preferred. This simple adaptation scheme can have its limitation too. For example, the frame rates of adaptation results are still not ideally adjusted because the structures of the MPEG I video sequence are fixed and the QoS factor definition is not optimal.
  • Exemplary Application Programming Interfaces
  • Appearing below are a collection of exemplary application programming interfaces (APIs) that can be utilized to implement embodiments of the system described above.
    template <class cYourEdge> class TcEdge
    {
    public:
    TcEdge(int argnFromNodeID, int argnToNodeID): // The
    constructor
    nFromNodeID(argnFromNodeID), nToNodeID(argnToNodeID),
    pNextOutEdge(0), pNextInEdge(0)
    { };
    virtual ˜TcEdge( ){ };
    int nFromNodeID; // Which node it is from
    int nToNodeID; // Which node it goes to
    cYourEdge *pNextOutEdge; // This is the outgoing edge link list
    cYourEdge *pNextInEdge; // This is the incoming edge link list
    };
    template <class TcEdge> class TcNode
    {
    public:
    TcNode( );
    virtual ˜TcNode( );
    TcEdge *pOutEdge; // This is the outgoing edge link list
    TcEdge *pInEdge; // This is the incoming edge link list
    };
    template <class TcNode, class TcEdge> class TcGraph
    {
    public:
    TcGraph( );
    virtual ˜TcGraph( );
    virtual bool CleanUp( ); // clean up all data in graph
    virtual int AddNode(int nNodeIDPrefered, bool bPreferSmall=true);
    // Add node to graph. You may specify a preferred nodeID or −1 for
    // automatic assignments. Allocation will from small to larger if
    // bPreferSmall is true
    // return new Node ID on success or the prefered ID if exist, −1
    on fail
    virtual int AddNode(TcNode *pNode, int nNodeIDPrefered,
    bool bPreferSmall=true);
    // Add node and assign the node pointer
    // return new Node ID on success or the prefered ID if exist, −1 on fail
    virtual int DeleteNode(int nNodeID);
    // return released Node ID on success, −1 on fail
    virtual unsigned int GetNumNodes( );
    // return the number of nodes on the graph
    virtual TcNode *GetNodePointer(int nNodeID);
    virtual TcNode *SetNodePointer(TcNode *pNode, int nNodeID);
    // Get and Set the node pointer
    virtual TcEdge *AddEdge(int nFromNodeID, int nToNodeID);
    // Add an edge from id1 to id2
    // Return the edge pointer on success or NULL on failure
    virtual int DeleteEdge(int nFromNodeID, int nToNodeID);
    // Delete the edge from ID1 to ID2
    // return the fromid on success and −1 on failure
    virtual TcEdge *GetEdgePointer(int nFromNodeID, int nToNodeID);
    // Get the edge pointer (from , to)
    virtual bool StartNodeEnumeration( );
    // Start enumeration of existing nodes
    // return true if it's ok
    virtual int EnumerateNode( );
    // Get current enumerated node id and advance to next id
    // return current node id on success, return −1 on end of
    enumeration
    virtual unsigned int PreRequireNodeBuffer(unsigned int
    requiredsize);
    // Used to pre-allocate node buffer, for better buffer management
    only
    private:
    virtual bool AdjustNodeBuffer(int nMaxNodeID);
    // adjust the node pointer buffer to hold new IDs
    // return true if succeeded
    // return false if failed or input parameter is not ok
    // throw cGraphError with fatal errors
    virtual int AllocNodeID(int nPreferedNodeID, bool
    bPreferSmall=true);
    virtual int FreeNodeID(int nNodeID);
    // the following two is used internally for node buffer management
    virtual void MoveMinFreeIDPointer( );
    virtual void MoveMaxFreeIDPointer( );
    };
    /////////////////////////////////////////////////////////////////////////
    /////
    class cACRESEdge : public TcEdge<cACRESEdge>
    {
    public:
    cACRESEdge(int argnFromNodeID, int argnToNodeID); // constructor
    virtual ˜cACRESEdge( );
    virtual bool UpdateStatus(ACRES_NODE_STATUS statusInNode);
    // update the edge's status, check if it is ignition edge
    // return true if it is.
    // dump my self to a file
    virtual bool WriteFile(FILE *fp);
    // reinit my self from a file
    virtual bool ReadFile(FILE *fp);
    ACRES_EDGEOBJ_TYPES objType;
    // object type, needed by some application to distinguash
    // between different classes (RTTI)
    ACRES_EDGE_TYPE eType;
    ACRES_EDGE_STATUS eStatus; // this is not used for pure route edges
    ACRES_ROUTE_STATUS route; // this is not used for dependency edges
    int eCondition; // should be const after been created;
    };
    class cACRESNode : public TcNode<cACRESEdge>
    {
    public:
    cACRESNode( );
    cACRESNode(int hostID);
    virtual ˜cACRESNode( );
    virtual int CheckCondition( );
    // Check if the node can be put into activable one
    // return
    // > 0 active
    // = 0 inactive
    // < 0 permenent inactive because of cold_forever edge and
    condition,
    // thus should be put into SKIPPED ASAP
    virtual int UpdateOutEdgeStatus(bool includeRoute);
    virtual int ResetOutEdgeStatus(bool includeRoute);
    // return the number of changes made
    // dump my self to a file
    virtual bool WriteFile(FILE *fp);
    // reinit my self from a file
    virtual bool ReadFile(FILE *fp);
    ACRES_NODEOBJ_TYPES objType;
    // node type, needed by some application to distinguash between
    // different classes (RTTI)
    ACRES_NODE_STATUS nStatus;
    ACRES_NODE_CONDITION nCondition;
    ACRES_NODE_BEHAVIOR behavior;
    int nLayer; // required by ACRES validator
    int nHostID; // which host object is responsible to this
    one
    };
    class cACRES : public TcGraph<cACRESNode, cACRESEdge>
    {
    public:
    cACRES( );
    virtual ˜cACRES( );
    virtual int AddNode(int nNodeIDPrefered, bool bPreferSmall=true)
    {return −1;}
    // because host ID is always required, this one is not valid for me,
    // so overload by return null
    virtual int AddNode(int nNodeIDPrefered, int hostID, bool
     bPreferSmall=true);
    virtual int AddNode(cACRESNode *pNode, int nNodeIDPrefered,
    bool bPreferSmall=true);
    virtual int Validate(bool reset_status, bool clean_nodes);
    // Check if the current ACRES data structure is valid.
    // This routine will check for the hierarchies and update all node
    // layer info
    virtual int Reset(int nIDfrom);
    // reset all node and edge status that are affected by status of nIDfrom
    // if nIDfrom = −1, then reset all
    virtual int AddHost(cACRESHost * pHost, int nPreferedHostID,
    bool bPreferSmall=true);
    // Add a content host and allocate HostID for it.
    virtual int RemoveHost(int hostID);
    // Remove a content host
    virtual cACRESHost * GetHost(int hostID);
    // Gt the pointer to the host from its ID
    virtual cACRESHost * SetHost(cACRESHost *pHost, int hostID);
    // Set the host pointer
    // Enumerate the content host table
    virtual bool StartHostEnumeration( );
    virtual int EnumerateHost( );
    // dump my self to a file
    virtual bool WriteFile(FILE *fp);
    // reinit my self from a file
    virtual bool ReadFile(FILE *fp);
    ACRES_OBJ_TYPES objType; // my RTTI
    protected:
    virtual bool AdjustHostBuffer(int nMaxNodeID);
    // adjust the node pointer buffer to hold new IDs
    // return true if succeeded
    // return false if failed or input parameter is not ok
    // throw cGraphError with fatal errors
    virtual int AllocHostID(int nPreferedNodeID, bool
    bPreferSmall=true);
    virtual int FreeHostID(int nNodeID);
    virtual void MoveMinFreeHostIDPointer( );
    virtual void MoveMaxFreeHostIDPointer( );
    };
    class cACRESHost
    {
    friend cACRESHost * cACRES::SetHost(cACRESHost *pHost, int hostID);
    // this function will assign the pACRES and nHostID for this host object
    public:
    cACRESHost( ) : pACRES(NULL), nHostID(−1),
    ObjType(_ACRES_HOSTOBJ_BASIC)
     { };
    ˜cACRESHost( ){ };
    virtual bool Reset(void) {return false;};
    virtual cACRESNode * CreateNode( )=0;
    // The user application call this to create the content node
    virtual bool GetNodeContent(int nNodeID, ACRESContent *pCont)
    {return false;};
    // Get the content represented by the Node
    virtual bool NotifyDeliveredNodeContent(int nNodeID) {return
    false;};
    // The Decision engine call this if the node is delivered.
    virtual double GetNodeValue(int nNodeID, double nTime) {return 0;}
    virtual double GetNodeCost(int nNodeID, ACRES_NODE_STATUS
    tostatus,
     double nTime) {return 0;}
    virtual double GetNodeResource(int nNodeID, ACRES_RESOURCE_TYPE
    nResource)
     {return 0;}
    virtual double CheckPreferece(int nNodeID, void *pPref) {return
    0;}
     // check compatibility, preference, profile, ...
    virtual bool GetTimePreference(int nNodeID, double *pTimePref)
     {return false;}
    // time base of hosted contents, may only be useful for dynamic
    contents
    virtual double SetTimeBase(double timebase){return 0;};
    virtual double GetTimeBase( ) {return 0;};
    // dump my self to a file
    virtual bool WriteFile(FILE *fp) {return true;};
    // reinit my self from a file
    virtual bool ReadFile(FILE *fp) {return true;};
    // Add more common Host API here
    /////////// OBJ TYPE ///////////////
    ACRES_HOSTOBJ_TYPES objType; // my RTTI
    protected:
    cACRES *pACRES; // On which ACRES I am
    int nHostID; // My ID
    };
    /////////////////////////////////////////////////////////////////////////
    //////
    class cDecision
    {
    public:
    cDecision(cTimeTicker *pTicker);
    // the decision engine gets it's system clocks
    ˜cDecision( );
    virtual bool AssignContent(cACRES *pACRES);
    // Give it our content
    virtual bool AssignOutput(cOUTPUT *pOUT);
    // Setup the output API
    virtual bool setResource(ACRES_RESOURCE_TYPE restype,
    cResourceModel *pRes);
    // Setup the resource model
    virtual bool SetLookForward(unsigned int nlookres,
    unsigned int nlookdecision);
    // Set the search parameter
    virtual unsigned int GetSystemClock( ) {return sysclock−
    >GetTick( );};
    virtual bool Startup( );
    virtual int RunEngine(int *delivered);
    // call it every clock tick
    // return the number of delivered nodes in int *delivered
    // and the number of status changes during the run
    virtual bool ContentPending( );
    // check if there are still deliverable contents left
    protected:
    virtual bool Cleanup(bool all);
    virtual int Qualificator( );
    // Update node statuses and prepare the candidate set
    virtual int Planner( );
    // Run the decision procedure
    virtual int Deliverer( );
    // Call the output API
    virtual double CostEffective(double value, double cost,
    double timenow, double timepref);
    // calculating the value of content
    // Implementation of optimized searching algorithm
    //
    virtual bool InitFuturePlanner(unsigned int maxPredicts);
    virtual double FuturePlannerCheckDelay(double res);
    virtual bool FuturePlannerAllocateResource(int nID, cACRESHost
    *pHost,
    double &delay);
    virtual bool FuturePlannerFreeResource(int nID, cACRESHost *pHost,
    double &delay);
    virtual int FuturePlannerExpand(int level, int maxlevel,
    int nTryNodeID, cACRESNode *pTryNode,
    cDENodeList *pFire, cACRESEdge *pEdge,
    double &totalbenifit, double &totalvalue, double
    &totalcost);
    virtual int FuturePlanner(int level, int maxlevel,
    double &totalbenifit, double &totalvalue, double &totalcost,
    int &idFrom);
    virtual bool DeInitFuturePlanner( );
    // used for resource management during the decision process
    virtual double ResourceManager(bool init);
    virtual double CheckResource(ACRES_RESOURCE_TYPE restype);
    virtual double LookForwardResource(ACRES_RESOURCE_TYPE restype,
    unsigned int systick);
    virtual bool ReserveResource(int nID, cACRESNode *pNode, double
    *delay);
    // These two routines are used to maintain the candidate sets
    which
    // are implemented as link lists
    virtual cDENodeList* AddTo(cDENodeList* &rpList, int nid,
    cACRESNode *pNode, int fromid);
    virtual cDENodeList* DeleteFrom(cDENodeList* &rpList,
    cDENodeList *pElem, bool drop=true);
    virtual int UpdateRelatedNodeStatus(int nid, cACRESNode *pNode,
    bool updateEdge, int fromid);
    // update the status of related nodes if my status is changed
    virtual int UpdateRouteToWarmLine(int nid, cACRESNode *pNode);
    // Update WarmLine nodes from a FireLine Node
    // return the possible usable routes of the FireLineNode;
    // return −1 for errors
    virtual int CheckRouteToWarmLine(int nid, cACRESNode *pNode);
    // check if this node can goto warmline or potentially goto
    warmline
    // return −1 for errors
    // return 0 for not be able to reach any inactive or activable
    nodes
    // return 1 for yes
    virtual cDENodeList * FindInList (int nid, cDENodeList *pList);
    // find the node in a list sorted increasely by Layer and NodeID
    int SkipValuelessRouteNodes (int nid, cACRESNode *pNode, int
    &numskip);
    // return the number of valuable/branchable route nodes
    };
  • Conclusion
  • Methods and systems that provide a framework for generic adaptive multimedia content delivery have been described. The framework features an abstract content model and an abstract adaptation decision engine that can make adaptive delivery plans without knowing much of the physical details of actual content. The capabilities of the framework have been demonstrated with an application of adaptive video streaming. Experimental results further show that the proposed framework is effective and efficient in adaptive delivery of contents under variable network conditions. The described architecture can be easily extended to have much stronger capabilities.
  • Although the invention has been described in language specific to structural features and/or methodological steps, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or steps described. Rather, the specific features and steps are disclosed as preferred forms of implementing the claimed invention.

Claims (16)

1. A system comprising:
a content host configured to receive multimedia contents for delivery to a content requester over a network, and to process the multimedia contents to provide an abstract content model that represents the multimedia contents; and
a decision engine communicatively linked with the content host and configured to receive the abstract content model and process the abstract content model to find an optimized sub-graph, and to select a delivery plan for the multimedia contents based at least in part on the optimized sub-graph.
2. The system of claim 1, wherein the content host is configured to process the multimedia contents to provide the abstract content model responsive to receiving a request for content from the content requester.
3. The system of claim 1, wherein the abstract content model is configured to hide physical details of the multimedia contents.
4. The system of claim 1 further comprising a resource model module configured to model network characteristics and to be used by the decision engine to select a delivery plan.
5. The system of claim 1 further comprising a preference model module configured to model client capabilities and to be used by the decision engine to select a delivery plan.
6. The system of claim 1 further comprising:
a resource model module configured to model network characteristics and to be used by the decision engine to select a delivery plan; and
a preference model module configured to model client capabilities and to be used by the decision engine to select a delivery plan.
7. The system of claim 1, wherein the content host defines a set of application programming interfaces for retrieving extended properties of the abstract content model.
8. The system of claim 1, wherein the decision engine is content independent.
9. The system of claim 1 further comprising a content mapper module that is configured to process the abstract content model to provide multimedia content for delivery in accordance with the delivery plan.
10. The system of claim 1, wherein the decision engine is configured to find the optimized sub-graph in a manner that maximizes one or more quality of service (QoS) values.
11. The system of claim 1, wherein the decision engine is configured to find the optimized sub-graph in a manner that maximizes one or more quality of service (QoS) values at least some of which being associated with resource constraints.
12. The system of claim 1, wherein the decision engine is configured to find the optimized sub-graph in a manner that maximizes one or more quality of service (QoS) values at least some of which being associated with client preference factors.
13. The system of claim 1, wherein the decision engine is configured to find the optimized sub-graph in a manner that maximizes one or more quality of service (QoS) values at least some of which being associated with resource constraints and others of which being associated with client preference factors.
14. The system of claim 1 further comprising a cache model configured to save at least portions of one or more selected delivery plans for reuse in other content request situations.
15. One or more computer-readable media embodying the system of claim 1.
16. One or more server computers embodying the system of claim 1.
US11/025,262 2001-11-26 2004-12-29 Methods and systems for adaptive delivery of multimedia contents Abandoned US20050154788A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/025,262 US20050154788A1 (en) 2001-11-26 2004-12-29 Methods and systems for adaptive delivery of multimedia contents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/995,499 US7093001B2 (en) 2001-11-26 2001-11-26 Methods and systems for adaptive delivery of multimedia contents
US11/025,262 US20050154788A1 (en) 2001-11-26 2004-12-29 Methods and systems for adaptive delivery of multimedia contents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/995,499 Division US7093001B2 (en) 2001-11-26 2001-11-26 Methods and systems for adaptive delivery of multimedia contents

Publications (1)

Publication Number Publication Date
US20050154788A1 true US20050154788A1 (en) 2005-07-14

Family

ID=25541894

Family Applications (6)

Application Number Title Priority Date Filing Date
US09/995,499 Expired - Fee Related US7093001B2 (en) 2001-11-26 2001-11-26 Methods and systems for adaptive delivery of multimedia contents
US11/025,728 Expired - Fee Related US7747701B2 (en) 2001-11-26 2004-12-29 Methods and systems for adaptive delivery of multimedia contents
US11/025,255 Expired - Fee Related US7636768B2 (en) 2001-11-26 2004-12-29 Methods and systems for adaptive delivery of multimedia contents
US11/025,262 Abandoned US20050154788A1 (en) 2001-11-26 2004-12-29 Methods and systems for adaptive delivery of multimedia contents
US11/275,676 Abandoned US20060129671A1 (en) 2001-11-26 2006-01-24 Methods and Systems for Adaptive Delivery of Multimedia Contents
US11/275,677 Expired - Fee Related US7836152B2 (en) 2001-11-26 2006-01-24 Methods and systems for adaptive delivery of multimedia contents

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/995,499 Expired - Fee Related US7093001B2 (en) 2001-11-26 2001-11-26 Methods and systems for adaptive delivery of multimedia contents
US11/025,728 Expired - Fee Related US7747701B2 (en) 2001-11-26 2004-12-29 Methods and systems for adaptive delivery of multimedia contents
US11/025,255 Expired - Fee Related US7636768B2 (en) 2001-11-26 2004-12-29 Methods and systems for adaptive delivery of multimedia contents

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/275,676 Abandoned US20060129671A1 (en) 2001-11-26 2006-01-24 Methods and Systems for Adaptive Delivery of Multimedia Contents
US11/275,677 Expired - Fee Related US7836152B2 (en) 2001-11-26 2006-01-24 Methods and systems for adaptive delivery of multimedia contents

Country Status (1)

Country Link
US (6) US7093001B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040139232A1 (en) * 2002-09-05 2004-07-15 Fabio Giannetti Method and system for content authoring
US20080130845A1 (en) * 2006-11-30 2008-06-05 Motorola, Inc. System and method for adaptive contextual communications
WO2011162746A1 (en) * 2010-06-22 2011-12-29 Hewlett-Packard Development Company, L.P. A method and system for determining a deployment of applications
US20140136727A1 (en) * 2012-11-14 2014-05-15 Samsung Electronics Co., Ltd Method and system for complexity adaptive streaming
US9858068B2 (en) 2010-06-22 2018-01-02 Hewlett Packard Enterprise Development Lp Methods and systems for planning application deployment

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7062445B2 (en) * 2001-01-26 2006-06-13 Microsoft Corporation Quantization loop with heuristic approach
GB0105994D0 (en) * 2001-03-10 2001-05-02 Pace Micro Tech Plc Video display resizing
US7458017B2 (en) * 2001-06-26 2008-11-25 Microsoft Corporation Function-based object model for use in website adaptation
US7093001B2 (en) * 2001-11-26 2006-08-15 Microsoft Corporation Methods and systems for adaptive delivery of multimedia contents
US7027982B2 (en) * 2001-12-14 2006-04-11 Microsoft Corporation Quality and rate control strategy for digital audio
US9122808B2 (en) * 2002-02-25 2015-09-01 Csr Technology Inc. Network interface to a video device
US7209874B2 (en) * 2002-02-25 2007-04-24 Zoran Corporation Emulator-enabled network connectivity to a device
US7269543B2 (en) * 2002-02-25 2007-09-11 Zoran Corporation System and method for providing network connectivity to a common embedded interface by stimulating the embedded interface
US7353464B1 (en) * 2002-04-01 2008-04-01 Microsoft Corporation Hierarchical data navigation tool populated by a web service
US7065707B2 (en) * 2002-06-24 2006-06-20 Microsoft Corporation Segmenting and indexing web pages using function-based object models
US6980695B2 (en) * 2002-06-28 2005-12-27 Microsoft Corporation Rate allocation for mixed content video
US7966374B2 (en) 2002-07-01 2011-06-21 Profiliq Software Inc. Adaptive media messaging, such as for rich media messages incorporating digital content
US7707317B2 (en) * 2002-07-01 2010-04-27 Prolifiq Software Inc. Adaptive electronic messaging
US7203901B2 (en) * 2002-11-27 2007-04-10 Microsoft Corporation Small form factor web browsing
JP3982454B2 (en) * 2003-05-27 2007-09-26 ソニー株式会社 Portable electronic device, web page processing method and program
US7668888B2 (en) * 2003-06-05 2010-02-23 Sap Ag Converting object structures for search engines
US7383180B2 (en) * 2003-07-18 2008-06-03 Microsoft Corporation Constant bitrate media encoding techniques
US7343291B2 (en) * 2003-07-18 2008-03-11 Microsoft Corporation Multi-pass variable bitrate media encoding
US20050144305A1 (en) * 2003-10-21 2005-06-30 The Board Of Trustees Operating Michigan State University Systems and methods for identifying, segmenting, collecting, annotating, and publishing multimedia materials
US7069014B1 (en) 2003-12-22 2006-06-27 Sprint Spectrum L.P. Bandwidth-determined selection of interaction medium for wireless devices
US7478158B1 (en) * 2004-03-01 2009-01-13 Adobe Systems Incorporated Bandwidth management system
US7706782B1 (en) 2004-03-01 2010-04-27 Adobe Systems Incorporated System and method for developing information for a wireless information system
US7822428B1 (en) 2004-03-01 2010-10-26 Adobe Systems Incorporated Mobile rich media information system
US8868772B2 (en) 2004-04-30 2014-10-21 Echostar Technologies L.L.C. Apparatus, system, and method for adaptive-rate shifting of streaming content
US7818444B2 (en) 2004-04-30 2010-10-19 Move Networks, Inc. Apparatus, system, and method for multi-bitrate content streaming
US7649937B2 (en) * 2004-06-22 2010-01-19 Auction Management Solutions, Inc. Real-time and bandwidth efficient capture and delivery of live video to multiple destinations
US9053754B2 (en) 2004-07-28 2015-06-09 Microsoft Technology Licensing, Llc Thumbnail generation and presentation for recorded TV programs
KR20060059782A (en) * 2004-11-29 2006-06-02 엘지전자 주식회사 Method for supporting scalable progressive downloading of video signal
US20060195464A1 (en) * 2005-02-28 2006-08-31 Microsoft Corporation Dynamic data delivery
AU2010201379B2 (en) * 2010-04-07 2012-02-23 Limelight Networks, Inc. System and method for delivery of content objects
US8683066B2 (en) 2007-08-06 2014-03-25 DISH Digital L.L.C. Apparatus, system, and method for multi-bitrate content streaming
US8370514B2 (en) 2005-04-28 2013-02-05 DISH Digital L.L.C. System and method of minimizing network bandwidth retrieved from an external network
US7873102B2 (en) 2005-07-27 2011-01-18 At&T Intellectual Property I, Lp Video quality testing by encoding aggregated clips
US20070033522A1 (en) * 2005-08-02 2007-02-08 Lin Frank L System and method for dynamic resizing of web-based GUIs
JP4992715B2 (en) * 2005-08-04 2012-08-08 日本電気株式会社 Data processing apparatus, data processing method, and data processing program
US8010621B2 (en) * 2005-10-11 2011-08-30 Nokia Corporation Offline webpage activated by reading a tag
US8095599B2 (en) 2005-10-20 2012-01-10 International Business Machines Corporation Mail-based web application and document delivery
US8326775B2 (en) * 2005-10-26 2012-12-04 Cortica Ltd. Signature generation for multimedia deep-content-classification by a large-scale matching system and method thereof
US8196032B2 (en) * 2005-11-01 2012-06-05 Microsoft Corporation Template-based multimedia authoring and sharing
US8407585B2 (en) * 2006-04-19 2013-03-26 Apple Inc. Context-aware content conversion and interpretation-specific views
US9128596B2 (en) * 2006-09-22 2015-09-08 Opera Software Asa Method and device for selecting and displaying a region of interest in an electronic document
US8254455B2 (en) 2007-06-30 2012-08-28 Microsoft Corporation Computing collocated macroblock information for direct mode macroblocks
US7979449B2 (en) * 2007-08-07 2011-07-12 Atasa Ltd. System and method for representing, organizing, storing and retrieving information
US8386630B1 (en) 2007-09-09 2013-02-26 Arris Solutions, Inc. Video-aware P2P streaming and download with support for real-time content alteration
US8169916B1 (en) * 2007-11-23 2012-05-01 Media Melon, Inc. Multi-platform video delivery configuration
US20090192981A1 (en) * 2008-01-29 2009-07-30 Olga Papaemmanouil Query Deployment Plan For A Distributed Shared Stream Processing System
US8325800B2 (en) 2008-05-07 2012-12-04 Microsoft Corporation Encoding streaming media as a high bit rate layer, a low bit rate layer, and one or more intermediate bit rate layers
US8379851B2 (en) 2008-05-12 2013-02-19 Microsoft Corporation Optimized client side rate control and indexed file layout for streaming media
US7860996B2 (en) 2008-05-30 2010-12-28 Microsoft Corporation Media streaming with seamless ad insertion
US8265140B2 (en) 2008-09-30 2012-09-11 Microsoft Corporation Fine-grained client-side control of scalable media delivery
US8189666B2 (en) 2009-02-02 2012-05-29 Microsoft Corporation Local picture identifier and computation of co-located information
US9510029B2 (en) 2010-02-11 2016-11-29 Echostar Advanced Technologies L.L.C. Systems and methods to provide trick play during streaming playback
US9183543B2 (en) * 2010-02-19 2015-11-10 Prolifiq Software Inc. Tracking digital content objects
US8745239B2 (en) 2010-04-07 2014-06-03 Limelight Networks, Inc. Edge-based resource spin-up for cloud computing
US8244874B1 (en) 2011-09-26 2012-08-14 Limelight Networks, Inc. Edge-based resource spin-up for cloud computing
US8589583B2 (en) 2010-09-08 2013-11-19 Hulu, Inc. Method and apparatus for adaptive bit rate switching
US9258231B2 (en) 2010-09-08 2016-02-09 International Business Machines Corporation Bandwidth allocation management
US8156239B1 (en) 2011-03-09 2012-04-10 Metropcs Wireless, Inc. Adaptive multimedia renderer
FR2974474B1 (en) * 2011-04-19 2017-11-17 Prologue METHODS AND APPARATUSES FOR GENERATING AND PROCESSING REPRESENTATIONS OF MULTIMEDIA SCENES
US9682315B1 (en) * 2011-09-07 2017-06-20 Zynga Inc. Social surfacing and messaging interactions
US20130138829A1 (en) * 2011-11-30 2013-05-30 Rovi Technologies Corporation Scalable video coding over real-time transport protocol
US9069543B2 (en) * 2011-12-22 2015-06-30 International Business Machines Corporation Predictive operator graph element processing
US9122702B2 (en) * 2012-10-16 2015-09-01 Nokia Technologies Oy Method and apparatus for providing location trajectory compression based on map structure
US10135732B2 (en) * 2012-12-31 2018-11-20 Juniper Networks, Inc. Remotely updating routing tables
US9749321B2 (en) 2013-01-22 2017-08-29 Prolifiq Software Inc. System for multi-point publication syndication
CA2881206A1 (en) 2014-02-07 2015-08-07 Andrew WARFIELD Methods, systems and devices relating to data storage interfaces for managing address spaces in data storage devices
US9298786B1 (en) * 2014-04-29 2016-03-29 Google Inc. Deferred content presentation
WO2019008581A1 (en) 2017-07-05 2019-01-10 Cortica Ltd. Driving policies determination
WO2019012527A1 (en) 2017-07-09 2019-01-17 Cortica Ltd. Deep learning networks orchestration
US11126870B2 (en) 2018-10-18 2021-09-21 Cartica Ai Ltd. Method and system for obstacle detection
US11181911B2 (en) 2018-10-18 2021-11-23 Cartica Ai Ltd Control transfer of a vehicle
US20200133308A1 (en) 2018-10-18 2020-04-30 Cartica Ai Ltd Vehicle to vehicle (v2v) communication less truck platooning
US10839694B2 (en) 2018-10-18 2020-11-17 Cartica Ai Ltd Blind spot alert
US11270132B2 (en) 2018-10-26 2022-03-08 Cartica Ai Ltd Vehicle to vehicle communication and signatures
US10748038B1 (en) 2019-03-31 2020-08-18 Cortica Ltd. Efficient calculation of a robust signature of a media unit
US10789535B2 (en) 2018-11-26 2020-09-29 Cartica Ai Ltd Detection of road elements
US10623275B1 (en) * 2019-02-27 2020-04-14 Bank Of America Corporation Network operational decision engine
US11643005B2 (en) 2019-02-27 2023-05-09 Autobrains Technologies Ltd Adjusting adjustable headlights of a vehicle
US11285963B2 (en) 2019-03-10 2022-03-29 Cartica Ai Ltd. Driver-based prediction of dangerous events
US11694088B2 (en) 2019-03-13 2023-07-04 Cortica Ltd. Method for object detection using knowledge distillation
US11132548B2 (en) 2019-03-20 2021-09-28 Cortica Ltd. Determining object information that does not explicitly appear in a media unit signature
US12055408B2 (en) 2019-03-28 2024-08-06 Autobrains Technologies Ltd Estimating a movement of a hybrid-behavior vehicle
US11222069B2 (en) 2019-03-31 2022-01-11 Cortica Ltd. Low-power calculation of a signature of a media unit
US10789527B1 (en) 2019-03-31 2020-09-29 Cortica Ltd. Method for object detection using shallow neural networks
US10796444B1 (en) 2019-03-31 2020-10-06 Cortica Ltd Configuring spanning elements of a signature generator
US10776669B1 (en) 2019-03-31 2020-09-15 Cortica Ltd. Signature generation and object detection that refer to rare scenes
US10748022B1 (en) 2019-12-12 2020-08-18 Cartica Ai Ltd Crowd separation
US11593662B2 (en) 2019-12-12 2023-02-28 Autobrains Technologies Ltd Unsupervised cluster generation
US11590988B2 (en) 2020-03-19 2023-02-28 Autobrains Technologies Ltd Predictive turning assistant
US11159628B1 (en) * 2020-03-30 2021-10-26 Amazon Technologies, Inc. Edge intelligence-based resource modification for transmitting data streams to a provider network
US11827215B2 (en) 2020-03-31 2023-11-28 AutoBrains Technologies Ltd. Method for training a driving related object detector
US11317154B1 (en) * 2020-05-29 2022-04-26 Apple Inc. Adaptive content delivery
US11756424B2 (en) 2020-07-24 2023-09-12 AutoBrains Technologies Ltd. Parking assist
US12049116B2 (en) 2020-09-30 2024-07-30 Autobrains Technologies Ltd Configuring an active suspension
US12110075B2 (en) 2021-08-05 2024-10-08 AutoBrains Technologies Ltd. Providing a prediction of a radius of a motorcycle turn

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537526A (en) * 1993-11-12 1996-07-16 Taugent, Inc. Method and apparatus for processing a display document utilizing a system level document framework
US5704029A (en) * 1994-05-23 1997-12-30 Wright Strategies, Inc. System and method for completing an electronic form
US6023714A (en) * 1997-04-24 2000-02-08 Microsoft Corporation Method and system for dynamically adapting the layout of a document to an output device
US6230174B1 (en) * 1998-09-11 2001-05-08 Adobe Systems Incorporated Method of generating a markup language document containing image slices
US6300947B1 (en) * 1998-07-06 2001-10-09 International Business Machines Corporation Display screen and window size related web page adaptation system
US20010054049A1 (en) * 1999-12-21 2001-12-20 Junji Maeda Information processing system, proxy server, web page display method, storage medium, and program transmission apparatus
US20020099829A1 (en) * 2000-11-27 2002-07-25 Richards Kenneth W. Filter proxy system and method
US20020166807A1 (en) * 2000-11-02 2002-11-14 Haggard Gary D. Underdrain filtration system with stamped perforations
US20030005159A1 (en) * 2001-06-07 2003-01-02 International Business Machines Corporation Method and system for generating and serving multilingual web pages
US20030037076A1 (en) * 2001-03-08 2003-02-20 International Business Machines Corporation Method, computer program and system for style sheet generation
US6556217B1 (en) * 2000-06-01 2003-04-29 Nokia Corporation System and method for content adaptation and pagination based on terminal capabilities
US6564263B1 (en) * 1998-12-04 2003-05-13 International Business Machines Corporation Multimedia content description framework
US20030095135A1 (en) * 2001-05-02 2003-05-22 Kaasila Sampo J. Methods, systems, and programming for computer display of images, text, and/or digital content
US20030101203A1 (en) * 2001-06-26 2003-05-29 Jin-Lin Chen Function-based object model for use in website adaptation
US6573907B1 (en) * 1997-07-03 2003-06-03 Obvious Technology Network distribution and management of interactive video and multi-media containers
US20040085341A1 (en) * 2002-11-01 2004-05-06 Xian-Sheng Hua Systems and methods for automatically editing a video
US20040086046A1 (en) * 2002-11-01 2004-05-06 Yu-Fei Ma Systems and methods for generating a motion attention model
US20040088726A1 (en) * 2002-11-01 2004-05-06 Yu-Fei Ma Systems and methods for generating a comprehensive user attention model
US6785676B2 (en) * 2001-02-07 2004-08-31 International Business Machines Corporation Customer self service subsystem for response set ordering and annotation
US20040187080A1 (en) * 1999-09-20 2004-09-23 Dell Products L.P. XML server pages language
US20050108637A1 (en) * 2000-04-24 2005-05-19 Ranjit Sahota Method and system for transforming content for execution on multiple platforms

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542925B2 (en) * 1995-05-30 2003-04-01 Roy-G-Biv Corporation Generation and distribution of motion commands over a distributed network
US6546406B1 (en) 1995-11-03 2003-04-08 Enigma Information Systems Ltd. Client-server computer system for large document retrieval on networked computer system
US6167409A (en) 1996-03-01 2000-12-26 Enigma Information Systems Ltd. Computer system and method for customizing context information sent with document fragments across a computer network
JPH09271002A (en) * 1996-03-29 1997-10-14 Mitsubishi Electric Corp Video data distribution system
US5893127A (en) 1996-11-18 1999-04-06 Canon Information Systems, Inc. Generator for document with HTML tagged table having data elements which preserve layout relationships of information in bitmap image of original document
US7278098B1 (en) 1997-04-09 2007-10-02 Adobe Systems Incorporated Method and apparatus for implementing web pages having smart tables
US6680976B1 (en) * 1997-07-28 2004-01-20 The Board Of Trustees Of The University Of Illinois Robust, reliable compression and packetization scheme for transmitting video
US6898800B2 (en) * 1999-03-31 2005-05-24 Sedna Patent Services, Llc Method and apparatus providing process independence within a heterogeneous information distribution system
US6345279B1 (en) * 1999-04-23 2002-02-05 International Business Machines Corporation Methods and apparatus for adapting multimedia content for client devices
US7181438B1 (en) 1999-07-21 2007-02-20 Alberti Anemometer, Llc Database access system
US20040172484A1 (en) 2000-04-04 2004-09-02 Gudmundur Hafsteinsson Device-specific communicating between a transmitting device and a receving device
US20020016801A1 (en) 2000-08-01 2002-02-07 Steven Reiley Adaptive profile-based mobile document integration
US6876625B1 (en) * 2000-09-18 2005-04-05 Alcatel Canada Inc. Method and apparatus for topology database re-synchronization in communications networks having topology state routing protocols
US7051276B1 (en) 2000-09-27 2006-05-23 Microsoft Corporation View templates for HTML source documents
US20020143821A1 (en) 2000-12-15 2002-10-03 Douglas Jakubowski Site mining stylesheet generator
JP3664475B2 (en) 2001-02-09 2005-06-29 インターナショナル・ビジネス・マシーンズ・コーポレーション Information processing method, information processing system, program, and recording medium
US6834373B2 (en) * 2001-04-24 2004-12-21 International Business Machines Corporation System and method for non-visually presenting multi-part information pages using a combination of sonifications and tactile feedback
WO2003009177A1 (en) 2001-07-16 2003-01-30 Dh Labs, Inc. Web site application development method using object model for managing web-based content
US7093001B2 (en) * 2001-11-26 2006-08-15 Microsoft Corporation Methods and systems for adaptive delivery of multimedia contents
US7246306B2 (en) 2002-06-21 2007-07-17 Microsoft Corporation Web information presentation structure for web page authoring
JP3996010B2 (en) * 2002-08-01 2007-10-24 株式会社日立製作所 Storage network system, management apparatus, management method and program
US6876628B2 (en) * 2002-08-28 2005-04-05 Emware, Inc. Optimization of subnetwork bandwidth based on desired subscription rates

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537526A (en) * 1993-11-12 1996-07-16 Taugent, Inc. Method and apparatus for processing a display document utilizing a system level document framework
US5704029A (en) * 1994-05-23 1997-12-30 Wright Strategies, Inc. System and method for completing an electronic form
US6023714A (en) * 1997-04-24 2000-02-08 Microsoft Corporation Method and system for dynamically adapting the layout of a document to an output device
US6573907B1 (en) * 1997-07-03 2003-06-03 Obvious Technology Network distribution and management of interactive video and multi-media containers
US6300947B1 (en) * 1998-07-06 2001-10-09 International Business Machines Corporation Display screen and window size related web page adaptation system
US6230174B1 (en) * 1998-09-11 2001-05-08 Adobe Systems Incorporated Method of generating a markup language document containing image slices
US6564263B1 (en) * 1998-12-04 2003-05-13 International Business Machines Corporation Multimedia content description framework
US20040187080A1 (en) * 1999-09-20 2004-09-23 Dell Products L.P. XML server pages language
US20010054049A1 (en) * 1999-12-21 2001-12-20 Junji Maeda Information processing system, proxy server, web page display method, storage medium, and program transmission apparatus
US20050108637A1 (en) * 2000-04-24 2005-05-19 Ranjit Sahota Method and system for transforming content for execution on multiple platforms
US6556217B1 (en) * 2000-06-01 2003-04-29 Nokia Corporation System and method for content adaptation and pagination based on terminal capabilities
US20020166807A1 (en) * 2000-11-02 2002-11-14 Haggard Gary D. Underdrain filtration system with stamped perforations
US20020099829A1 (en) * 2000-11-27 2002-07-25 Richards Kenneth W. Filter proxy system and method
US6785676B2 (en) * 2001-02-07 2004-08-31 International Business Machines Corporation Customer self service subsystem for response set ordering and annotation
US20030037076A1 (en) * 2001-03-08 2003-02-20 International Business Machines Corporation Method, computer program and system for style sheet generation
US20030095135A1 (en) * 2001-05-02 2003-05-22 Kaasila Sampo J. Methods, systems, and programming for computer display of images, text, and/or digital content
US20030005159A1 (en) * 2001-06-07 2003-01-02 International Business Machines Corporation Method and system for generating and serving multilingual web pages
US20030101203A1 (en) * 2001-06-26 2003-05-29 Jin-Lin Chen Function-based object model for use in website adaptation
US20040085341A1 (en) * 2002-11-01 2004-05-06 Xian-Sheng Hua Systems and methods for automatically editing a video
US20040086046A1 (en) * 2002-11-01 2004-05-06 Yu-Fei Ma Systems and methods for generating a motion attention model
US20040088726A1 (en) * 2002-11-01 2004-05-06 Yu-Fei Ma Systems and methods for generating a comprehensive user attention model

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040139232A1 (en) * 2002-09-05 2004-07-15 Fabio Giannetti Method and system for content authoring
US20080130845A1 (en) * 2006-11-30 2008-06-05 Motorola, Inc. System and method for adaptive contextual communications
US8019326B2 (en) 2006-11-30 2011-09-13 Motorola Mobility, Inc. System and method for adaptive contextual communications
WO2011162746A1 (en) * 2010-06-22 2011-12-29 Hewlett-Packard Development Company, L.P. A method and system for determining a deployment of applications
US9858068B2 (en) 2010-06-22 2018-01-02 Hewlett Packard Enterprise Development Lp Methods and systems for planning application deployment
US10003514B2 (en) 2010-06-22 2018-06-19 Hewlett Packard Enteprrise Development LP Method and system for determining a deployment of applications
US20140136727A1 (en) * 2012-11-14 2014-05-15 Samsung Electronics Co., Ltd Method and system for complexity adaptive streaming
US9967302B2 (en) * 2012-11-14 2018-05-08 Samsung Electronics Co., Ltd. Method and system for complexity adaptive streaming

Also Published As

Publication number Publication date
US7836152B2 (en) 2010-11-16
US7747701B2 (en) 2010-06-29
US20060129671A1 (en) 2006-06-15
US7636768B2 (en) 2009-12-22
US20050154743A1 (en) 2005-07-14
US7093001B2 (en) 2006-08-15
US20050114434A1 (en) 2005-05-26
US20060168082A1 (en) 2006-07-27
US20030110236A1 (en) 2003-06-12

Similar Documents

Publication Publication Date Title
US7747701B2 (en) Methods and systems for adaptive delivery of multimedia contents
CN102577272B (en) Low latency cacheable media streaming
CN102439578B (en) Dynamic variable rate media delivery system
TWI483597B (en) Video conference rate matching
US7783773B2 (en) Glitch-free media streaming
US7558760B2 (en) Real-time key frame generation
US7644172B2 (en) Communicating via a connection between a streaming server and a client without breaking the connection
US8560729B2 (en) Method and apparatus for the adaptation of multimedia content in telecommunications networks
US6961754B2 (en) Interactive access, manipulation, sharing and exchange of multimedia data
US20090070414A1 (en) System and method for distributing media content using transfer file that eliminates negotiati0n between server and client in point-to-multipoint distribution
CN102740159A (en) Media file storage format and adaptive delivery system
CN102356605A (en) Smooth, stateless client-side media streaming
CN104396263A (en) Methods and systems for real-time transmuxing of streaming media content
KR20070007698A (en) Fast startup for streaming media
US8000578B2 (en) Method, system, and medium for providing broadcasting service using home server and mobile phone
JP2011066916A (en) Information processing method, storage device and recording medium
US20040225744A1 (en) Methods and apparatus for multimedia stream scheduling in resource-constrained environment
WO2022187397A1 (en) Dynamic real-time audio-visual search result assembly
KR101136713B1 (en) Multi-transcoding web service method
Althun et al. Multimedia streaming services: specification, implementation, and retrieval
Hellwagner et al. MuMiVA: a multimedia delivery platform using format-agnostic, XML-driven content adaptation
Poon et al. Performance of buffer-based request-reply scheme for VoD streams over IP networks
Bouras et al. A Framework for a Distributed Information Service Using Hypermedia/Multimedia Pre-Orchestrated Scenarios
WO2007089085A1 (en) Method and apparatus for streaming service using chosen-image
Lei Video Transcoding techniques for wireless video communications

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034766/0001

Effective date: 20141014