US20050112229A1 - Pipe having a socket and an apparatus for making same - Google Patents

Pipe having a socket and an apparatus for making same Download PDF

Info

Publication number
US20050112229A1
US20050112229A1 US11/025,176 US2517604A US2005112229A1 US 20050112229 A1 US20050112229 A1 US 20050112229A1 US 2517604 A US2517604 A US 2517604A US 2005112229 A1 US2005112229 A1 US 2005112229A1
Authority
US
United States
Prior art keywords
pipe
plastic feedstock
expansion
socket
mould
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/025,176
Inventor
Per Holtstrand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uponor AB
Original Assignee
Uponor AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uponor AB filed Critical Uponor AB
Priority to US11/025,176 priority Critical patent/US20050112229A1/en
Publication of US20050112229A1 publication Critical patent/US20050112229A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C57/00Shaping of tube ends, e.g. flanging, belling or closing; Apparatus therefor, e.g. collapsible mandrels
    • B29C57/02Belling or enlarging, e.g. combined with forming a groove
    • B29C57/08Belling or enlarging, e.g. combined with forming a groove using pressure difference

Definitions

  • the invention relates to a method of making a pipe having a socket.
  • the invention further relates to an apparatus for making a pipe having a socket, the apparatus comprising a mould and means for expanding a plastic feedstock pipe against the mould.
  • the invention still further relates to a pipe having a socket and made from a plastic feedstock pipe by expanding it against a mould so that a portion of the pipe has a larger diameter than the rest of the pipe.
  • GB 1,432,539 discloses a solution for making pipes with molecular orientation from e.g. polyvinyl chloride by blowing in a mould.
  • a blank is inserted into the mould, heated and expanded against the mould by blowing from the inside.
  • the internal, i.e. significant, dimensions remain inaccurate.
  • the blank expands last. This causes an axial compression at the socket, which, together with a strong circumferential orientation, weakens the mechanical properties of the socket. Since the blank expands more at the socket than in other portions, the socket portion also becomes thinner than the other portions. For this reason the portion to constitute the socket is often arranged thicker than the rest of the blank, which further contributes to the socket being finished later than the rest of the plastic pipe.
  • WO 98/13190 discloses a solution in which compressive tension at the socket portion is reduced by axial drawing. According to the publication, at a first phase a tube blank is partly expanded along its entire length and at a second phase a casing is withdrawn to subject the tube blank to a longitudinal drawing during final expansion. Said solution is extremely complex and cumbersome to implement.
  • the method of the invention is characterized by expanding a plastic feedstock pipe partly in the portion intended to have a greater diameter than the rest of the pipe and not expanding the plastic feedstock pipe against a mould until after said pre-expansion.
  • the apparatus of the invention is characterized by comprising means arranged to expand the plastic feedstock pipe partly in the portion intended to have a greater diameter than the rest of the pipe, so that a pre-expansion is formed at said portion, the means for expanding the plastic feedstock pipe against the mould being arranged to expand the plastic feedstock pipe against the mould after the pre-expansion.
  • the pipe of the invention is characterized by the plastic feedstock pipe being expanded partly in the portion having a greater diameter than the rest of the pipe, and by the plastic feedstock pipe being expanded against the mould after said pre-expansion.
  • a plastic pipe is made from plastic feedstock pipes by expanding it against a mould such that pre-expansion is carried out, whereby the plastic feedstock pipe is expanded partly in the portion intended to have a greater diameter than the rest of the pipe, and thereupon the entire plastic feedstock pipe is expanded against the mould in a second step.
  • the first step i.e. when the socket portion is being pre-expanded, the temperature of the portion to be expanded is raised higher than the orientation temperature of the material.
  • the socket is pre-expanded by a mechanical expanding device arranged within the plastic feedstock pipe.
  • pre-expansion of the socket portion results in the socket portion expanding during final expansion simultaneously with or before the rest of the tube, whereby undesired axial compression in the socket portion can be reduced or eliminated.
  • the blow up ratio i.e. circumferential orientation degree
  • the blow up ratio in the socket portion is higher as compared with the rest of the pipe, and the method of the invention allows a pipe to be provided whose blow up ratio is substantially equal along the entire length of the pipe.
  • Pre-expanding the socket portion of a plastic feedstock pipe allows the blowing of the socket portion and its dimensions to be controlled better than previously, i.e. the desired internal dimensions for the socket portion can be provided more accurately.
  • a mechanical device allows final expansion to be arranged substantially without an intermediate step after pre-expansion, whereby the pipe can be made by a simple method and the time taken by making the pipe remains relatively short.
  • a mechanical pre-expanding device allows the internal dimensions of the socket portion to be expanded accurately, and in addition the rest of the pipe and the socket portion can be expanded substantially simultaneously.
  • FIGS. 1, 2 , 3 , and 4 are schematic side views of the different steps of a pipe making method of the invention showing the apparatus in cross-section, and
  • FIGS. 5, 6 , and 7 are schematic side views of the different steps of a second pipe making method of the invention showing the apparatus in cross-section.
  • FIG. 1 is a sectional side view of an apparatus of the invention. Remotest in the apparatus is a mould 1 , within which is arranged a casing 2 and a socket support 3 . Within these is arranged a plastic feedstock pipe 4 , whose ends are sealed by means of chucks 5 and 6 .
  • the plastic feedstock pipe 4 is arranged within the apparatus, at least that portion whose diameter in the final product is to be greater than the rest of the pipe is heated e.g. by electric resistors 7 disposed in the socket support 3 or by some other suitable heating means. It is possible to heat the plastic feedstock pipe 4 e.g. by a suitable medium, arranged to circulate either outside or inside the plastic feedstock pipe 4 . Medium, e.g. air, is then fed via a first inlet duct 8 or a second inlet duct 9 to the inside of the plastic feedstock pipe 4 to raise the pressure within the plastic feedstock pipe 4 such that the plastic feedstock pipe 4 is pressed against the socket support 3 as is shown in FIG. 2 .
  • a suitable medium e.g. air
  • medium can be fed either along the first inlet duct 8 or the second inlet duct 9 or along both of them. If medium is fed only along one of the inlet ducts, then the second inlet duct is closed at that time. To keep the pressure at a suitable level or to adjust the rise in pressure, medium may be fed e.g. along the first inlet duct 8 and let it flow out from within the plastic feedstock pipe 4 along the second inlet duct 9 . By arranging the flow difference suitably, the pressure level can be easily adjusted. For the sake of clarity, the attached figures do not show valves for adjusting the flows.
  • the temperature of the material is raised to at least 140° C.
  • the temperature typically used is about 170 to 180° C. The temperature required also depends on how fast the plastic feedstock pipe is expanded against the socket support 3 .
  • the socket support 3 and the casing 2 are withdrawn as is shown in FIG. 3 .
  • the pressure within the plastic feedstock pipe 4 is then raised such that the plastic feedstock pipe 4 is pressed against the mould 1 in the manner shown in FIG. 4 .
  • the attached figures do now show e.g. channels in communication with the mould 1 and the socket support 3 , via which air is discharged from between the plastic feedstock pipe 4 and the mould 1 , ensuring that the pipe to be made settles substantially tightly first against the socket support 3 and finally against the mould 1 .
  • a plastic pipe having a body 4 a and a socket 4 b is formed from the plastic feedstock pipe 4 , the diameter of the socket 4 b being greater than that of the body 4 a .
  • the actual expansion can be carried out at a temperature causing orientation in the material, i.e. when e.g. polyvinyl chloride PVC is used, the temperature of the material is about 90° C. Because of pre-expansion, the actual expansion takes place in such a way that the socket 4 b portion expands first or simultaneously with the expansion of the body 4 a . This way the ratio between the thickness of the wall of the plastic feedstock pipe 4 and the diameter of the plastic feedstock pipe 4 at the socket portion 4 b provided by pre-expansion is smaller than or equal to the corresponding ratio at the body 4 a to be formed.
  • FIG. 1 further shows a control device 11 that controls for example means for moving the casing 2 and the socket support 3 , heating elements, and valves for controlling the flows in the inlet ducts 8 and 9 .
  • the control device 11 may be a computer or a microprocessor or another device suitable for the purpose and able to transmit the necessary control commands.
  • FIGS. 2 to 7 do not show the control device 11 .
  • the end of the plastic feedstock pipe 4 on the side of the socket 4 b to be formed may be arranged movable such that during pre-expansion of the socket 4 b portion, the wall of the plastic feedstock pipe 4 at said portion does not become substantially thinner, or it in fact thickens.
  • the plastic feedstock pipe 4 is typically expanded to such a degree that the diameter of the finished pipe is 1.5 to 2.5 times that of the diameter of the plastic feedstock pipe 4 .
  • the body portion is preferably expanded twofold.
  • the socket portion 4 b then typically expands 2.3-fold.
  • Pre-expansion can be used to make both the body portion 4 a and the socket portion 4 b expand twofold in the final expansion. A sufficient increase caused by pre-expansion in the diameter is an addition of about 10 percent.
  • Pre-expansion may be used to expand the socket portion 4 b outwards by e.g. the thickness of the wall of the plastic feedstock pipe 4 .
  • FIG. 5 shows an apparatus with a plastic feedstock pipe 4 arranged within a mould 1 and an expansion mandrel 10 arranged within the plastic feedstock pipe 4 .
  • An expansion mandrel 10 is a device for mechanically expanding the plastic feedstock pipe 4 .
  • the expansion mandrel 10 may be e.g. of rubber, whereby it expands when air is pumped inside thereof, whereby it simultaneously expands the plastic feedstock pipe 4 .
  • the expansion mandrel 10 is used to expand that portion of the plastic feedstock pipe 4 , in which the socket 4 b is formed.
  • the temperature of the plastic feedstock pipe 4 may be raised e.g. to such a temperature as to cause orientation in the plastic material. As mentioned above, said temperature is e.g. about 90° C. for polyvinyl chloride PVC.
  • the expansion mandrel 10 After pre-expansion, pressure medium is supplied along the inlet duct 9 to the inside of the plastic feedstock pipe 4 , whereby the plastic feedstock pipe 4 starts to be pressed against the mould 1 even at the body portion 4 a .
  • the expansion mandrel 10 is simultaneously expanded, thereby causing substantially the entire plastic feedstock pipe 4 to be pressed against the mould 1 in the manner shown in FIG. 7 .
  • the expansion mandrel 10 may keep on expanding substantially the whole time, and provided that the expansion of the body portion 4 a is initiated at the right moment, no intermediate steps are required between pre-expansion of the socket portion and the actual expansion.
  • the expansion mandrel 10 serves to determine the interior dimensions of the socket portion 4 b extremely accurately.
  • pre-expansion of the socket portion may be carried out outside the mould, whereby a plastic feedstock pipe 4 pre-expanded at the socket portion 4 b is introduced into the mould 1 and final expansion is then carried out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

A method and an apparatus for making a pipe, and a pipe, wherein the pipe is made from a plastic feedstock pipe by expanding it against a mould. In the first step, that portion of the plastic feedstock pipe (4) which is to have a greater diameter than the rest of the pipe is partly expanded. Only after this is the entire plastic feedstock pipe (4) expanded against the mould (1).

Description

  • The invention relates to a method of making a pipe having a socket.
  • The invention further relates to an apparatus for making a pipe having a socket, the apparatus comprising a mould and means for expanding a plastic feedstock pipe against the mould.
  • The invention still further relates to a pipe having a socket and made from a plastic feedstock pipe by expanding it against a mould so that a portion of the pipe has a larger diameter than the rest of the pipe.
  • GB 1,432,539, for example, discloses a solution for making pipes with molecular orientation from e.g. polyvinyl chloride by blowing in a mould. In said solution, a blank is inserted into the mould, heated and expanded against the mould by blowing from the inside. By simultaneously providing the pipe with a pipe socket, accurate external dimensions are obtained for the socket, but the internal, i.e. significant, dimensions remain inaccurate. At a socket to be formed at the end of a pipe, for example, the blank expands last. This causes an axial compression at the socket, which, together with a strong circumferential orientation, weakens the mechanical properties of the socket. Since the blank expands more at the socket than in other portions, the socket portion also becomes thinner than the other portions. For this reason the portion to constitute the socket is often arranged thicker than the rest of the blank, which further contributes to the socket being finished later than the rest of the plastic pipe.
  • WO 98/13190 discloses a solution in which compressive tension at the socket portion is reduced by axial drawing. According to the publication, at a first phase a tube blank is partly expanded along its entire length and at a second phase a casing is withdrawn to subject the tube blank to a longitudinal drawing during final expansion. Said solution is extremely complex and cumbersome to implement.
  • It is the object of the present invention to provide a method, apparatus and pipe, which alleviate at least some of the above drawbacks.
  • The method of the invention is characterized by expanding a plastic feedstock pipe partly in the portion intended to have a greater diameter than the rest of the pipe and not expanding the plastic feedstock pipe against a mould until after said pre-expansion.
  • The apparatus of the invention is characterized by comprising means arranged to expand the plastic feedstock pipe partly in the portion intended to have a greater diameter than the rest of the pipe, so that a pre-expansion is formed at said portion, the means for expanding the plastic feedstock pipe against the mould being arranged to expand the plastic feedstock pipe against the mould after the pre-expansion.
  • The pipe of the invention is characterized by the plastic feedstock pipe being expanded partly in the portion having a greater diameter than the rest of the pipe, and by the plastic feedstock pipe being expanded against the mould after said pre-expansion.
  • It is an essential idea of the invention that a plastic pipe is made from plastic feedstock pipes by expanding it against a mould such that pre-expansion is carried out, whereby the plastic feedstock pipe is expanded partly in the portion intended to have a greater diameter than the rest of the pipe, and thereupon the entire plastic feedstock pipe is expanded against the mould in a second step. It is the idea of a preferred embodiment that in the first step, i.e. when the socket portion is being pre-expanded, the temperature of the portion to be expanded is raised higher than the orientation temperature of the material. It is the idea of a second preferred embodiment that the socket is pre-expanded by a mechanical expanding device arranged within the plastic feedstock pipe.
  • It is an advantage of the invention that pre-expansion of the socket portion results in the socket portion expanding during final expansion simultaneously with or before the rest of the tube, whereby undesired axial compression in the socket portion can be reduced or eliminated. If pre-expansion is carried out at such a high temperature that it does not cause molecular orientation, the blow up ratio, i.e. circumferential orientation degree, of the socket portion can be reduced as compared with prior art solutions. In prior art solutions, the blow up ratio in the socket portion is higher as compared with the rest of the pipe, and the method of the invention allows a pipe to be provided whose blow up ratio is substantially equal along the entire length of the pipe. Pre-expanding the socket portion of a plastic feedstock pipe allows the blowing of the socket portion and its dimensions to be controlled better than previously, i.e. the desired internal dimensions for the socket portion can be provided more accurately. By implementing the pre-expansion of the socket portion by a mechanical device allows final expansion to be arranged substantially without an intermediate step after pre-expansion, whereby the pipe can be made by a simple method and the time taken by making the pipe remains relatively short. Furthermore, a mechanical pre-expanding device allows the internal dimensions of the socket portion to be expanded accurately, and in addition the rest of the pipe and the socket portion can be expanded substantially simultaneously.
  • The invention will be described in greater detail in the attached drawings, in which
  • FIGS. 1, 2, 3, and 4 are schematic side views of the different steps of a pipe making method of the invention showing the apparatus in cross-section, and
  • FIGS. 5, 6, and 7 are schematic side views of the different steps of a second pipe making method of the invention showing the apparatus in cross-section.
  • FIG. 1 is a sectional side view of an apparatus of the invention. Remotest in the apparatus is a mould 1, within which is arranged a casing 2 and a socket support 3. Within these is arranged a plastic feedstock pipe 4, whose ends are sealed by means of chucks 5 and 6.
  • Once the plastic feedstock pipe 4 is arranged within the apparatus, at least that portion whose diameter in the final product is to be greater than the rest of the pipe is heated e.g. by electric resistors 7 disposed in the socket support 3 or by some other suitable heating means. It is possible to heat the plastic feedstock pipe 4 e.g. by a suitable medium, arranged to circulate either outside or inside the plastic feedstock pipe 4. Medium, e.g. air, is then fed via a first inlet duct 8 or a second inlet duct 9 to the inside of the plastic feedstock pipe 4 to raise the pressure within the plastic feedstock pipe 4 such that the plastic feedstock pipe 4 is pressed against the socket support 3 as is shown in FIG. 2. When the pressure within the plastic feedstock pipe 4 is being raised, medium can be fed either along the first inlet duct 8 or the second inlet duct 9 or along both of them. If medium is fed only along one of the inlet ducts, then the second inlet duct is closed at that time. To keep the pressure at a suitable level or to adjust the rise in pressure, medium may be fed e.g. along the first inlet duct 8 and let it flow out from within the plastic feedstock pipe 4 along the second inlet duct 9. By arranging the flow difference suitably, the pressure level can be easily adjusted. For the sake of clarity, the attached figures do not show valves for adjusting the flows. Before the plastic feedstock pipe 4 is expanded against the socket support 3, its temperature is preferably raised so high that the expansion does not cause orientation in the material of the plastic feedstock pipe 4. This way the blow up ratio of the socket portion in the final product will be equal to that of the rest of the pipe. In the use of e.g. polyvinyl chloride PVC, the temperature of the material is raised to at least 140° C. The temperature typically used is about 170 to 180° C. The temperature required also depends on how fast the plastic feedstock pipe is expanded against the socket support 3.
  • After the pre-expansion shown in FIG. 2, the socket support 3 and the casing 2 are withdrawn as is shown in FIG. 3. The pressure within the plastic feedstock pipe 4 is then raised such that the plastic feedstock pipe 4 is pressed against the mould 1 in the manner shown in FIG. 4. For the sake of clarity, the attached figures do now show e.g. channels in communication with the mould 1 and the socket support 3, via which air is discharged from between the plastic feedstock pipe 4 and the mould 1, ensuring that the pipe to be made settles substantially tightly first against the socket support 3 and finally against the mould 1. This way a plastic pipe having a body 4 a and a socket 4 b is formed from the plastic feedstock pipe 4, the diameter of the socket 4 b being greater than that of the body 4 a. The actual expansion can be carried out at a temperature causing orientation in the material, i.e. when e.g. polyvinyl chloride PVC is used, the temperature of the material is about 90° C. Because of pre-expansion, the actual expansion takes place in such a way that the socket 4 b portion expands first or simultaneously with the expansion of the body 4 a. This way the ratio between the thickness of the wall of the plastic feedstock pipe 4 and the diameter of the plastic feedstock pipe 4 at the socket portion 4 b provided by pre-expansion is smaller than or equal to the corresponding ratio at the body 4 a to be formed.
  • FIG. 1 further shows a control device 11 that controls for example means for moving the casing 2 and the socket support 3, heating elements, and valves for controlling the flows in the inlet ducts 8 and 9. The control device 11 may be a computer or a microprocessor or another device suitable for the purpose and able to transmit the necessary control commands. For the sake of clarity, FIGS. 2 to 7 do not show the control device 11.
  • During pre-expansion, the end of the plastic feedstock pipe 4 on the side of the socket 4 b to be formed may be arranged movable such that during pre-expansion of the socket 4 b portion, the wall of the plastic feedstock pipe 4 at said portion does not become substantially thinner, or it in fact thickens. The plastic feedstock pipe 4 is typically expanded to such a degree that the diameter of the finished pipe is 1.5 to 2.5 times that of the diameter of the plastic feedstock pipe 4. The body portion is preferably expanded twofold. The socket portion 4 b then typically expands 2.3-fold. Pre-expansion can be used to make both the body portion 4 a and the socket portion 4 b expand twofold in the final expansion. A sufficient increase caused by pre-expansion in the diameter is an addition of about 10 percent. Pre-expansion may be used to expand the socket portion 4 b outwards by e.g. the thickness of the wall of the plastic feedstock pipe 4.
  • FIG. 5 shows an apparatus with a plastic feedstock pipe 4 arranged within a mould 1 and an expansion mandrel 10 arranged within the plastic feedstock pipe 4. An expansion mandrel 10 is a device for mechanically expanding the plastic feedstock pipe 4. The expansion mandrel 10 may be e.g. of rubber, whereby it expands when air is pumped inside thereof, whereby it simultaneously expands the plastic feedstock pipe 4. In the manner shown in FIG. 6, the expansion mandrel 10 is used to expand that portion of the plastic feedstock pipe 4, in which the socket 4 b is formed. Before said pre-expansion of the socket portion 4 b, the temperature of the plastic feedstock pipe 4 may be raised e.g. to such a temperature as to cause orientation in the plastic material. As mentioned above, said temperature is e.g. about 90° C. for polyvinyl chloride PVC.
  • After pre-expansion, pressure medium is supplied along the inlet duct 9 to the inside of the plastic feedstock pipe 4, whereby the plastic feedstock pipe 4 starts to be pressed against the mould 1 even at the body portion 4 a. The expansion mandrel 10 is simultaneously expanded, thereby causing substantially the entire plastic feedstock pipe 4 to be pressed against the mould 1 in the manner shown in FIG. 7. The expansion mandrel 10 may keep on expanding substantially the whole time, and provided that the expansion of the body portion 4 a is initiated at the right moment, no intermediate steps are required between pre-expansion of the socket portion and the actual expansion. The expansion mandrel 10 serves to determine the interior dimensions of the socket portion 4 b extremely accurately.
  • The drawings and the related description are only intended to illustrate the idea of the invention. The details of the invention may vary within the scope of the claims. Accordingly, pre-expansion of the socket portion may be carried out outside the mould, whereby a plastic feedstock pipe 4 pre-expanded at the socket portion 4 b is introduced into the mould 1 and final expansion is then carried out.

Claims (7)

1-6. (canceled)
7. An apparatus for making a pipe having a socket, the apparatus comprising a mould, means for expanding a plastic feedstock pipe against the mould and means arranged to expand the plastic feedstock pipe partly in the portion intended to have a greater diameter than the rest of the pipe, so that a pre-expansion is formed at said portion, the means for expanding the plastic feedstock pipe against the mould being arranged to expand the plastic feedstock pipe against the mould after the pre-expansion.
8. An apparatus as claimed in claim 7, further comprising means for raising the temperature of the material of the plastic feedstock pipe during pre-expansion higher than the orientation temperature of the material.
9. An apparatus as claimed in claim 7, wherein the means arranged to expand the plastic feedstock pipe partly in the portion intended to have a greater diameter than the rest of the pipe is a mechanical expanding device for pre-expanding the plastic feedstock pipe.
10. An apparatus as claimed in claim 9, wherein the mechanical expanding device is arranged, after pre-expansion, to expand against the mould that portion of the plastic feedstock pipe which is intended to have a greater diameter than the rest of the pipe.
11. A pipe having a socket and made from a plastic feedstock pipe by expanding it against a mould so that a portion of the pipe has a larger diameter than the rest of the pipe, wherein the plastic feedstock pipe is expanded partly in the portion intended to have a greater diameter than the rest of the pipe, and the plastic feedstock pipe is expanded against the mould after said pre-expansion.
12. A pipe as claimed in claim 11, wherein the temperature of the material of the plastic feedstock pipe is arranged to be higher during pre-expansion than the orientation temperature of the material, the blow up ratio of the entire pipe being substantially equal.
US11/025,176 2000-01-28 2004-12-29 Pipe having a socket and an apparatus for making same Abandoned US20050112229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/025,176 US20050112229A1 (en) 2000-01-28 2004-12-29 Pipe having a socket and an apparatus for making same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FI20000180 2000-01-28
FI20000180A FI111347B (en) 2000-01-28 2000-01-28 Process and apparatus for forming a tube with a sleeve, and a tube with a sleeve
PCT/IB2001/000083 WO2001054887A1 (en) 2000-01-28 2001-01-25 Method and apparatus for making a pipe having a socket, and a pipe having a socket
US10/200,603 US6861026B2 (en) 2000-01-28 2002-07-22 Method of making a pipe having a socket
US11/025,176 US20050112229A1 (en) 2000-01-28 2004-12-29 Pipe having a socket and an apparatus for making same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/200,603 Division US6861026B2 (en) 2000-01-28 2002-07-22 Method of making a pipe having a socket

Publications (1)

Publication Number Publication Date
US20050112229A1 true US20050112229A1 (en) 2005-05-26

Family

ID=8557244

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/200,603 Expired - Fee Related US6861026B2 (en) 2000-01-28 2002-07-22 Method of making a pipe having a socket
US11/025,176 Abandoned US20050112229A1 (en) 2000-01-28 2004-12-29 Pipe having a socket and an apparatus for making same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/200,603 Expired - Fee Related US6861026B2 (en) 2000-01-28 2002-07-22 Method of making a pipe having a socket

Country Status (11)

Country Link
US (2) US6861026B2 (en)
EP (1) EP1254016B1 (en)
CN (1) CN1404438A (en)
AT (1) ATE284304T1 (en)
AU (1) AU774024B2 (en)
CA (1) CA2398519A1 (en)
DE (1) DE60107655D1 (en)
FI (1) FI111347B (en)
RU (1) RU2002123052A (en)
WO (1) WO2001054887A1 (en)
ZA (1) ZA200204879B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128558B2 (en) * 2002-08-09 2006-10-31 The Boeing Company Post-forming of thermoplastic ducts
US11415257B2 (en) 2017-12-22 2022-08-16 S & B Technical Products, Inc. Apparatus and method for joining molecularly oriented pipe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL182019C (en) 1972-05-16 Yorkshire Imperial Plastics PROCESS FOR MANUFACTURE OF A SLEEVE TUBE FROM AN OUTPUT TUBE OF A THERMOPLASTIC POLYMER MATERIAL.
JPS6033837A (en) * 1983-08-05 1985-02-21 Nippon Denso Co Ltd Method and jig for expanding tube
EP0404557B1 (en) * 1989-06-21 1994-08-10 Vinidex Tubemakers Pty. Ltd. Pipes with integral sockets
FR2753648B1 (en) * 1996-09-26 1998-11-27 Alphacan Sa METHOD AND INSTALLATION FOR MANUFACTURING PLASTIC TUBES WITH BI-AXIAL DRAWING, AND PLASTIC TUBE THUS OBTAINED
FR2758381B1 (en) * 1997-01-28 1999-02-26 Alphacan Sa BI-ORIENTED PLASTIC TUBE
DE10042465C2 (en) * 2000-08-29 2002-08-01 Vaw Ver Aluminium Werke Ag Process for deforming tubular hollow bodies made of metal

Also Published As

Publication number Publication date
ZA200204879B (en) 2003-01-07
EP1254016B1 (en) 2004-12-08
DE60107655D1 (en) 2005-01-13
RU2002123052A (en) 2004-02-20
CN1404438A (en) 2003-03-19
US6861026B2 (en) 2005-03-01
AU774024B2 (en) 2004-06-10
WO2001054887A1 (en) 2001-08-02
FI111347B (en) 2003-07-15
EP1254016A1 (en) 2002-11-06
FI20000180A (en) 2001-07-29
AU2699101A (en) 2001-08-07
US20030030182A1 (en) 2003-02-13
FI20000180A0 (en) 2000-01-28
CA2398519A1 (en) 2001-08-02
ATE284304T1 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
US4803033A (en) Method of forming a flange or bellows in a plastic tub
NO20030512L (en) Method and apparatus for producing a tube of biaxially oriented thermoplastic material with integrated tube socket
US8211347B2 (en) Method for socket-forming an end of a thermoplastic material tube, in particular of a polyolefinic material, tube for pressurized fluids
US6861026B2 (en) Method of making a pipe having a socket
EP2977172B1 (en) Methods for making a balloon catheter and for producing an inventory of balloon catheters
AU569316B2 (en) Tubular articles of biaxially oriented polymers
JPH11314272A (en) Method and device for forming joint of pipe
US7214051B2 (en) Device for manufacturing a double-walled thermoplastic pipe with a connecting sleeve
JP2008023270A (en) Balloon for catheter and its manufacturing method
JP2000506455A (en) Method for molding sockets in biaxially stretched polyvinyl chloride tubes
JP2000301605A (en) Apparatus having multistep operation stage for forming stable and internally normal bell-shaped mouth shape in end joining portion of thermoplastic resin pipe
EP1465763B1 (en) Method of forming a hose
RU2000107568A (en) DEVICE PERFORMING SEVERAL WORKING PHASES FOR THE FORMATION OF SUSPENSIONS WITH A STABLE FORM WITH AN EQUAL INTERNAL SURFACE AT THE END OF THE TUBER
JP2000006236A (en) Thermoplastic resin stretched pipe with socket
JP2006510500A (en) Apparatus and method for molding a semi-processed product made from an open pore material
JPS6344526B2 (en)
KR100844896B1 (en) Pressure proof hose having a multidiameter and manufacturing method thereof
JPH079539A (en) Manufacture of synthetic resin pipe
JPS5855892B2 (en) Manufacturing method for heat-shrinkable plastic molded products
JPH05338024A (en) Method and apparatus for producing heat-resistant tubular film
JPS58185212A (en) Preparation of thermally shrinkable tube

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION