US20050087341A1 - Liquid gelling agent concentrates and methods of treating wells therewith - Google Patents

Liquid gelling agent concentrates and methods of treating wells therewith Download PDF

Info

Publication number
US20050087341A1
US20050087341A1 US10/691,321 US69132103A US2005087341A1 US 20050087341 A1 US20050087341 A1 US 20050087341A1 US 69132103 A US69132103 A US 69132103A US 2005087341 A1 US2005087341 A1 US 2005087341A1
Authority
US
United States
Prior art keywords
gelling agent
concentrate
carrier liquid
range
quaternary ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/691,321
Inventor
Michael McCabe
Billy Slabaugh
Matthew Blauch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Priority to US10/691,321 priority Critical patent/US20050087341A1/en
Assigned to HALLIBURTON ENERGY SERVICES, INC. reassignment HALLIBURTON ENERGY SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCCABE, MICHAEL A., BLAUCH, MATTHEW, SLABAUGH, BILLY
Publication of US20050087341A1 publication Critical patent/US20050087341A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/64Oil-based compositions

Definitions

  • the present invention relates to liquid gelling agent concentrates and methods of treating wells using the concentrates.
  • Viscous gelled aqueous treating fluids are used in a variety of treatments in oil and gas wells including well completions and production stimulation treatments.
  • An example of a well completion treatment which utilizes a viscous gelled aqueous fluid is known in the art as gravel packing.
  • gravel packing treatments solid gravel particles such as sand are carried by way of the well bore to a subterranean zone in which a gravel pack is to be placed by a viscous gelled aqueous carrier fluid. That is, particulate solids (referred to in the art as gravel) are suspended in the viscous gelled aqueous carrier fluid at the surface and are carried to the subterranean zone in which the gravel pack is to be placed.
  • the viscous gelled aqueous carrier fluid is broken (the viscosity is reduced) and recovered (returned to the surface) by a delayed viscosity breaker in the carrier fluid.
  • the gravel pack produced functions as a filter to separate formation solids from produced fluids while permitting the produced fluids to flow into and through the well bore.
  • An example of a production stimulation treatment utilizing a viscous gelled aqueous fluid is hydraulic fracturing.
  • a viscous gelled aqueous fluid referred to in the art as a fracturing fluid
  • the fracturing fluid also carries particulate solids, referred to in the art as proppant particles into the fractures.
  • the proppant particles are suspended in the viscous gelled aqueous fracturing fluid so that the proppant particles are carried into the fractures.
  • the viscous fracturing fluid is then broken by a delayed viscosity breaker in the fracturing fluid so that the proppant particles are deposited in the fractures and the fracturing fluid is removed from the subterranean zone.
  • the proppant particles function to prevent the fractures from closing whereby conductive channels are formed through which produced fluids can flow to the well bore.
  • the viscous gelled aqueous treating fluids used in gravel packing, fracturing and other well procedures have heretofore been prepared by dissolving a dry powdered gelling agent into the vortex of a vigorously stirred aqueous fluid. This procedure has very often resulted in undesirable agglomerations of the gelling agent in the polymer which are called “fish eyes.” Fish eyes are polymer masses wetted on the outside but with dry, unhydrated material inside. While mechanical gelling agent feeders and adductors have been utilized to more efficiently wet the gelling agent, the feeders and adductors often fail to prevent the formation of fish eyes.
  • liquid gelling agent concentrates More recently, storable liquid gelling agent concentrates have been developed and used.
  • One such liquid gelling agent concentrate which has been used successfully comprised of particulate gelling agent which is suspended in a diesel oil carrier liquid.
  • the particulate gelling agent is rendered suspendible in the hydrocarbon carrier liquid by a coating of a suspending agent and a surfactant on the particulate gelling agent.
  • the particulate gelling agent is then dispersed in diesel oil or other hydrocarbon liquid to form the liquid gel concentrate.
  • the liquid gel concentrate can be stored at the well site, and when a gelled aqueous treating fluid is required, the liquid gelled concentrate is readily combined with an aqueous fluid without the formation of fish eyes or other similar problems.
  • liquid gelling agent concentrates utilized heretofore which include a hydrocarbon carrier fluid such as diesel oil which include a hydrocarbon carrier fluid such as diesel oil is that the hydrocarbon carrier fluid contains compounds such as benzene, ethylbenzene, toluene, xylene and/or other compounds which are prohibited by the Environmental Protection Agency primary drinking water standards, i.e, Section 1429 of the Safe Drinking Water Act.
  • Another problem with such gelling agent concentrates is that they can not be stored for long periods of time and they often do not have good pour abilities or non-settling properties.
  • there are needs for improved storable liquid gel concentrates which are environmentally safe and meet the standards of the Safe Drinking Water Act and have long term storage, good pour abilities and non-settling properties.
  • a liquid gelling agent concentrate of this invention basically comprises an environmentally safe hydrocarbon carrier liquid, an organophillic clay suspending agent, a surfactant for dispersing the organophillic clay suspending agent in the hydrocarbon carrier liquid, and a particulate aqueous fluid gelling agent suspended in the carrier liquid.
  • a method of this invention for treating a subterranean zone penetrated by a well bore using a viscous aqueous treating fluid is comprised of the following steps.
  • a liquid gelling agent concentrate is mixed with an aqueous fluid to thereby form a viscous aqueous treating fluid.
  • the liquid gelling agent concentrate comprises an environmentally safe hydrocarbon carrier liquid, an organophillic clay suspending agent, a surfactant for dispersing the organophillic clay suspending agent in the carrier liquid, and a particulate aqueous fluid gelling agent suspended in the carrier liquid.
  • the viscous aqueous treating fluid is introduced into a subterranean zone to be treated.
  • the liquid gelling agent concentrate of this invention can be utilized in a variety of subterranean zone treatments such as fracturing subterranean zones, placing gravel packs in subterranean zones, and the like.
  • the hydrocarbon carrier of the liquid gelling agent concentrate is an environmentally safe hydrocarbon liquid that meets the standards set forth in the Safe Drinking Water Act and does not include hazardous chemicals such as benzene, ethylbenzene, toluene or xylene.
  • the hydrocarbon carrier liquid utilized in the liquid gelling agent concentrate can carry up to five pounds of gelling agent per gallon of the concentrate.
  • the liquid gelling agent concentrate has a high flash point and a low pour point.
  • the liquid gelling agent concentrate can be stored for long periods of time, has good pour abilities and settling properties and is easily combined with water to form a viscous gelled aqueous treating fluid.
  • the present invention provides improved liquid gelling agent concentrates and methods of treating wells using the concentrates.
  • the liquid gelling agent concentrates comprise an environmentally safe hydrocarbon carrier liquid, an organophillic clay suspending agent, a surfactant for dispersing the organophillic clay suspending agent in the carrier liquid, and a particulate aqueous fluid gelling agent suspended in the carrier liquid.
  • the liquid gelling agent concentrates can be stored for long periods of time and they have good pour abilities and non-settling properties.
  • the methods of this invention for treating a subterranean zone penetrated by a well bore using a viscous aqueous treating fluid comprises the following steps.
  • a liquid gelling agent concentrate of this invention is mixed with an aqueous fluid to thereby form a viscous aqueous treating fluid. Thereafter, the viscous aqueous treating fluid is introduced into the subterranean zone.
  • An example of an environmentally safe hydrocarbon carrier liquid that can be utilized in accordance with this invention is a mixture of hydrocarbons having in the range of from about 6 to about 13 carbon atoms obtained by treating a petroleum fraction with hydrogen in the presence of a catalyst.
  • This mixture of hydrocarbons is commercially available under the trade designation “ENVIRONDRILLTM” from Wells Cargo Oilfield Services of Calgary, Alberta, Canada.
  • Another example is a mixture of hydrocarbons having in the range of from about 10 to about 25 carbon atoms obtained by catalytic hydrogenation of vacuum gas oils followed with dewaxing by hydroisomerization and stabilization by hydrotreating at high pressures.
  • This mixture of hydrocarbons is commercially available under the trade name “PURE DRILL IA-35TM” which is commercially available from Petro-Canada of Mississauga, Ontario, Canada. Yet another example is a mixture of severely hydrocracked low toxicity mineral oils and synthetic isoalkanes. This hydrocarbon mixture is commercially available under the trade designation “PURE DRILL HT-40” from Petro-Canada of Mississauga, Ontario, Canada.
  • Other environmentally safe hydrocarbons that can be utilized as carrier liquids in accordance with this invention include, but are not limited to, mixtures of linear alpha and internal olefins; polyalpha olefins; mixtures of C 10 -C 1-4 alkanes and C 8 and higher alkenes; mixtures of linear alpha and internal olefins; hydrocarbon blends containing 93% linear paraffins; blends of isoalkanes, isoalkenes and alcohols; blends of linear internal olefins having from about 16 to about 18 carbon atoms; blends of linear alpha-olefins having 10 or more carbon atoms; vegetable oils; and vegetable esters.
  • This carrier liquid has a flash point above about 175° F. and a pour point below about ⁇ 49° F.
  • the hydrocarbon carrier liquid utilized is generally present in the liquid gelling agent concentrate in an amount in the range of from about 25% to about 55% by weight of the concentrate.
  • organophillic clay suspending agents can be utilized in the liquid gelling agent concentrate.
  • organophillic clays which are formed by reacting quaternary ammonium salts with water swellable clays are preferred.
  • the quaternary ammonium salts utilized are preferably those wherein the quaternary ammonium substituents are alkyl radicals, two of which have in the range of from 1 to 10 carbon atoms and the other two having in the range of from 10 to 30 carbon atoms.
  • the most preferred organophillic clays for use in accordance with the present invention include, but are not limited to, quaternary ammonium bentonite clay, quaternary ammonium montmorillinite clay and quaternary ammonium hectorite clay. Of these, quaternary ammonium bentonite clay is the most preferred.
  • the organophillic clay utilized is included in the liquid gelling agent concentrate in an amount in the range of from about 0.2% to about 4% by weight of the concentrate.
  • specific such surfactants include, but are not limited to, nonionic esters, polyethylene glycol esters, ethoxylated acids, ethoxylated oils, sorbitol esters, ethoxylated sorbitol esters, ethoxylated alcohols, alcohol alkoxylates, alkanolamides, quaternary ammonium compounds, dialkyl quaternary ammonium compounds, benzyl quaternary ammonium compounds, amine oxides, ethoxylated amines, fatty imidazolines, ether carboxylates, sulfonates, sulfosuccinates, fatty acid taurates, ether carboxylates, alkyl betaines, and alkyl amidopropyl betaine
  • the gelling agents generally include a water dispersable or water soluable hydrophilic colloid such as cellulose derivatives, starch derivatives, gums including ghatti, Arabic, tragacanth, locust bean, karaya, carrageenan, algin, and derivatives of such gums, biopolymers and mixtures thereof.
  • a water dispersable or water soluable hydrophilic colloid such as cellulose derivatives, starch derivatives, gums including ghatti, Arabic, tragacanth, locust bean, karaya, carrageenan, algin, and derivatives of such gums, biopolymers and mixtures thereof.
  • Examples of preferred particulate aqueous fluid gelling agents for use in accordance with the present invention include, but are not limited to, guar, hydroxypropylguar, carboxymethylhydroxyproplyguar, hydroxyethylcellulose, carboxymethylhydroxyethylcellulose, carboxymethylceullose, xanthan and succinoglycan. Of these, guar is the most preferred.
  • the particulate aqueous fluid gelling agent utilized is generally present in the liquid gelling agent concentrate in an amount in the range of from about 25% to about 55% by weight of the concentrate, i.e., up to and including 5 pounds of gelling agent per gallon of the concentrate.
  • the liquid gelling agent concentrates of this invention preferably include environmentally safe hydrocarbon carrier liquids that meet the standards set forth in the Environmental Protection Agency Safe Drinking Water Act.
  • the liquid gelling agent concentrates can contain particulate aqueous fluid gelling agents in amounts up to five pounds of particulate aqueous fluid gelling agent per gallon of the concentrates and higher.
  • the preferred liquid gelling agent concentrates of this invention have higher flash points than the heretofore utilized liquid gel concentrates, i.e., flash points as high as 175° F. and pour points that are lower than the heretofore used concentrates, i.e., ⁇ 49° F. and lower.
  • liquid gelling agent concentrates of this invention have long term storage, good pour abilities and non-settling properties.
  • the preferred liquid gelling agent concentrates of this invention can be stored for seven days at 80° F. without significant settling of the particulate gelling agent therein and less than 2% free liquid.
  • a preferred liquid gelling agent concentrate of this invention comprises: an environmentally safe hydrocarbon carrier liquid; an organophillic clay suspending agent; a surfactant for dispersing the organophillic clay suspending agent in the carrier liquid; and a particulate aqueous fluid gelling agent suspended in the carrier liquid.
  • Another preferred liquid gelling agent concentrate comprises: an environmentally safe hydrocarbon carrier liquid comprising a mixture of hydrocarbons having in the range of from about 6 to about 13 carbon atoms obtained by treating a petroleum fraction with hydrogen in the presence of a catalyst present in an amount in the range of from about 25% to about 55% by weight of the concentrate; a quaternary ammonium bentonite clay suspending agent present in an amount in the range of from about 0.2% to about 4% by weight of the concentrate; an ethoxylated alcohol surfactant present in an amount in the range of from 0.1% to about 2% by weight of the concentrate; and a guar particulate aqueous fluid gelling agent present in an amount in the range of from about 25% to about 55% by weight of the concentrate.
  • a preferred method of this invention for treating a subterranean zone penetrated by a well bore using a viscous aqueous treating fluid comprises the steps of: (a) mixing a liquid gelling agent concentrate with an aqueous fluid to thereby form a viscous aqueous gelled treating fluid, the liquid gelling agent concentrate comprising an environmentally safe hydrocarbon carrier liquid, an organophillic clay suspending agent, a surfactant for dispersing the organophillic clay suspending agent in the carrier liquid, and a particulate aqueous fluid gelling agent suspended in the carrier liquid; and (b) introducing the viscous aqueous gelled treating fluid into the subterranean zone.
  • Another preferred method of treating a subterranean zone penetrated by a well bore using a viscous aqueous treating fluid comprises the steps of: (a) mixing a liquid gelling agent concentrate with an aqueous fluid to thereby form a viscous gelled aqueous treating fluid, the liquid gelling agent concentrate comprising an environmentally safe hydrocarbon carrier liquid that comprises a mixture of hydrocarbons having in the range of from about 6 to about 13 carbon atoms obtained by treating a petroleum fraction with hydrogen in the presence of a catalyst present in an amount in the range of from about 25% to about 55% by weight of the concentrate, a quaternary ammonium bentonite clay suspending agent present in an amount in the range of from about 0.2% to about 4% by weight of the concentrate, an ethoxylated alcohol surfactant present in an amount in the range of from about 0.1% to about 2% by weight of the concentrate, and a guar particulate aqueous fluid gelling agent present in an amount in the range of from about 25% to about 55% by
  • a liquid gelling agent concentrate of this invention (referred to herein as “Inventive Concentrate”) was prepared in the laboratory comprising 43% by weight of diesel oil, 1% by weight of a quaternary ammonium bentonite clay suspending agent, 1% by weight of an ethoxylated alcohol surfactant for dispersing the suspending agent, and a 55% by weight of a guar particulate gelling agent.
  • a prior art gelling agent concentrate (referred to herein as “Concentrate A”) published by Union Carbide Corporation was also prepared comprising 53.83% by weight diesel oil, 1.39% by weight organophillic clay, 0.28% by weight methanol, 42.5% by weight hydroxyethylcellulose and 2.0% nonylphenol surfactant.
  • Concentrate B was prepared comprising 49% by weight of diesel oil, 5% by weight of an aqueous emulsion of a suspending agent comprising water insoluble polymer particles that swell when contacted with diesel oil and 46% by weight of polysaccharide water soluble gelling agent.
  • This concentrate is described in detail in U.S. Pat. No. 4,772,646 issued to Harms, et al. on Sep. 20, 1988 which is incorporated herein by reference thereto.
  • Concentrate C published by Hercules, Inc. was prepared comprising 37% by weight of hydroxyethylcellulose, 40.1% by weight of an ethyl hexanol premix containing 1% hydroxypropylcellulose, 21.1% by weight of mineral oil and 1.8% by weight of an ethoxylated alcohol surfactant.

Abstract

The present invention provides liquid gelling agent concentrates and methods of treating wells therewith. A liquid gelling agent concentrate of this invention comprises an environmentally safe hydrocarbon carrier liquid, an organophillic clay suspending agent, a surfactant for dispersing the organophillic clay suspending agent in the carrier liquid and a particulate aqueous fluid gelling agent suspended in the carrier liquid.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to liquid gelling agent concentrates and methods of treating wells using the concentrates.
  • 2. Description of the Prior Art
  • Viscous gelled aqueous treating fluids are used in a variety of treatments in oil and gas wells including well completions and production stimulation treatments. An example of a well completion treatment which utilizes a viscous gelled aqueous fluid is known in the art as gravel packing. In gravel packing treatments, solid gravel particles such as sand are carried by way of the well bore to a subterranean zone in which a gravel pack is to be placed by a viscous gelled aqueous carrier fluid. That is, particulate solids (referred to in the art as gravel) are suspended in the viscous gelled aqueous carrier fluid at the surface and are carried to the subterranean zone in which the gravel pack is to be placed. Once the gravel is placed in the zone, the viscous gelled aqueous carrier fluid is broken (the viscosity is reduced) and recovered (returned to the surface) by a delayed viscosity breaker in the carrier fluid. The gravel pack produced functions as a filter to separate formation solids from produced fluids while permitting the produced fluids to flow into and through the well bore.
  • An example of a production stimulation treatment utilizing a viscous gelled aqueous fluid is hydraulic fracturing. In hydraulic fracturing, a viscous gelled aqueous fluid, referred to in the art as a fracturing fluid, is pumped through the well bore into a subterranean zone to be stimulated at a rate and pressure such that fractures are formed and extended into the subterranean zone. The fracturing fluid also carries particulate solids, referred to in the art as proppant particles into the fractures. The proppant particles are suspended in the viscous gelled aqueous fracturing fluid so that the proppant particles are carried into the fractures. The viscous fracturing fluid is then broken by a delayed viscosity breaker in the fracturing fluid so that the proppant particles are deposited in the fractures and the fracturing fluid is removed from the subterranean zone. The proppant particles function to prevent the fractures from closing whereby conductive channels are formed through which produced fluids can flow to the well bore.
  • The viscous gelled aqueous treating fluids used in gravel packing, fracturing and other well procedures have heretofore been prepared by dissolving a dry powdered gelling agent into the vortex of a vigorously stirred aqueous fluid. This procedure has very often resulted in undesirable agglomerations of the gelling agent in the polymer which are called “fish eyes.” Fish eyes are polymer masses wetted on the outside but with dry, unhydrated material inside. While mechanical gelling agent feeders and adductors have been utilized to more efficiently wet the gelling agent, the feeders and adductors often fail to prevent the formation of fish eyes.
  • More recently, storable liquid gelling agent concentrates have been developed and used. One such liquid gelling agent concentrate which has been used successfully comprised of particulate gelling agent which is suspended in a diesel oil carrier liquid. The particulate gelling agent is rendered suspendible in the hydrocarbon carrier liquid by a coating of a suspending agent and a surfactant on the particulate gelling agent. The particulate gelling agent is then dispersed in diesel oil or other hydrocarbon liquid to form the liquid gel concentrate. The liquid gel concentrate can be stored at the well site, and when a gelled aqueous treating fluid is required, the liquid gelled concentrate is readily combined with an aqueous fluid without the formation of fish eyes or other similar problems.
  • A problem with the liquid gelling agent concentrates utilized heretofore which include a hydrocarbon carrier fluid such as diesel oil is that the hydrocarbon carrier fluid contains compounds such as benzene, ethylbenzene, toluene, xylene and/or other compounds which are prohibited by the Environmental Protection Agency primary drinking water standards, i.e, Section 1429 of the Safe Drinking Water Act. Another problem with such gelling agent concentrates is that they can not be stored for long periods of time and they often do not have good pour abilities or non-settling properties. Thus, there are needs for improved storable liquid gel concentrates which are environmentally safe and meet the standards of the Safe Drinking Water Act and have long term storage, good pour abilities and non-settling properties.
  • SUMMARY OF THE INVENTION
  • The present invention provides storable liquid gelling agent concentrates that have improved storage, pour abilities and settling properties and methods of treating wells using the concentrates. A liquid gelling agent concentrate of this invention basically comprises an environmentally safe hydrocarbon carrier liquid, an organophillic clay suspending agent, a surfactant for dispersing the organophillic clay suspending agent in the hydrocarbon carrier liquid, and a particulate aqueous fluid gelling agent suspended in the carrier liquid.
  • A method of this invention for treating a subterranean zone penetrated by a well bore using a viscous aqueous treating fluid is comprised of the following steps. A liquid gelling agent concentrate is mixed with an aqueous fluid to thereby form a viscous aqueous treating fluid. The liquid gelling agent concentrate comprises an environmentally safe hydrocarbon carrier liquid, an organophillic clay suspending agent, a surfactant for dispersing the organophillic clay suspending agent in the carrier liquid, and a particulate aqueous fluid gelling agent suspended in the carrier liquid. The viscous aqueous treating fluid is introduced into a subterranean zone to be treated.
  • The liquid gelling agent concentrate of this invention can be utilized in a variety of subterranean zone treatments such as fracturing subterranean zones, placing gravel packs in subterranean zones, and the like. The hydrocarbon carrier of the liquid gelling agent concentrate is an environmentally safe hydrocarbon liquid that meets the standards set forth in the Safe Drinking Water Act and does not include hazardous chemicals such as benzene, ethylbenzene, toluene or xylene. The hydrocarbon carrier liquid utilized in the liquid gelling agent concentrate can carry up to five pounds of gelling agent per gallon of the concentrate. The liquid gelling agent concentrate has a high flash point and a low pour point. In addition, the liquid gelling agent concentrate can be stored for long periods of time, has good pour abilities and settling properties and is easily combined with water to form a viscous gelled aqueous treating fluid.
  • The objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments which follows.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present invention provides improved liquid gelling agent concentrates and methods of treating wells using the concentrates. The liquid gelling agent concentrates comprise an environmentally safe hydrocarbon carrier liquid, an organophillic clay suspending agent, a surfactant for dispersing the organophillic clay suspending agent in the carrier liquid, and a particulate aqueous fluid gelling agent suspended in the carrier liquid. The liquid gelling agent concentrates can be stored for long periods of time and they have good pour abilities and non-settling properties.
  • The methods of this invention for treating a subterranean zone penetrated by a well bore using a viscous aqueous treating fluid comprises the following steps. A liquid gelling agent concentrate of this invention is mixed with an aqueous fluid to thereby form a viscous aqueous treating fluid. Thereafter, the viscous aqueous treating fluid is introduced into the subterranean zone.
  • An example of an environmentally safe hydrocarbon carrier liquid that can be utilized in accordance with this invention is a mixture of hydrocarbons having in the range of from about 6 to about 13 carbon atoms obtained by treating a petroleum fraction with hydrogen in the presence of a catalyst. This mixture of hydrocarbons is commercially available under the trade designation “ENVIRONDRILL™” from Wells Cargo Oilfield Services of Calgary, Alberta, Canada. Another example is a mixture of hydrocarbons having in the range of from about 10 to about 25 carbon atoms obtained by catalytic hydrogenation of vacuum gas oils followed with dewaxing by hydroisomerization and stabilization by hydrotreating at high pressures. This mixture of hydrocarbons is commercially available under the trade name “PURE DRILL IA-35™” which is commercially available from Petro-Canada of Mississauga, Ontario, Canada. Yet another example is a mixture of severely hydrocracked low toxicity mineral oils and synthetic isoalkanes. This hydrocarbon mixture is commercially available under the trade designation “PURE DRILL HT-40” from Petro-Canada of Mississauga, Ontario, Canada.
  • Other environmentally safe hydrocarbons that can be utilized as carrier liquids in accordance with this invention include, but are not limited to, mixtures of linear alpha and internal olefins; polyalpha olefins; mixtures of C10-C1-4 alkanes and C8 and higher alkenes; mixtures of linear alpha and internal olefins; hydrocarbon blends containing 93% linear paraffins; blends of isoalkanes, isoalkenes and alcohols; blends of linear internal olefins having from about 16 to about 18 carbon atoms; blends of linear alpha-olefins having 10 or more carbon atoms; vegetable oils; and vegetable esters.
  • Of the foregoing environmentally safe hydrocarbon carrier liquids, a mixture of hydrocarbons having in the range of from about 6 to about 13 carbon atoms obtained by treating a petroleum fraction with hydrogen in the presence of a catalyst is preferred. This carrier liquid has a flash point above about 175° F. and a pour point below about −49° F.
  • The hydrocarbon carrier liquid utilized is generally present in the liquid gelling agent concentrate in an amount in the range of from about 25% to about 55% by weight of the concentrate.
  • A variety of organophillic clay suspending agents can be utilized in the liquid gelling agent concentrate. Generally, organophillic clays which are formed by reacting quaternary ammonium salts with water swellable clays are preferred. The quaternary ammonium salts utilized are preferably those wherein the quaternary ammonium substituents are alkyl radicals, two of which have in the range of from 1 to 10 carbon atoms and the other two having in the range of from 10 to 30 carbon atoms. The most preferred organophillic clays for use in accordance with the present invention include, but are not limited to, quaternary ammonium bentonite clay, quaternary ammonium montmorillinite clay and quaternary ammonium hectorite clay. Of these, quaternary ammonium bentonite clay is the most preferred. The organophillic clay utilized is included in the liquid gelling agent concentrate in an amount in the range of from about 0.2% to about 4% by weight of the concentrate.
  • Examples of surfactants that can be used for dispersing the organophillic clay suspending agent in the carrier liquid include amphoteric surfactants, anionic surfactants, cationic surfactants and nonionic surfactants. Examples of specific such surfactants include, but are not limited to, nonionic esters, polyethylene glycol esters, ethoxylated acids, ethoxylated oils, sorbitol esters, ethoxylated sorbitol esters, ethoxylated alcohols, alcohol alkoxylates, alkanolamides, quaternary ammonium compounds, dialkyl quaternary ammonium compounds, benzyl quaternary ammonium compounds, amine oxides, ethoxylated amines, fatty imidazolines, ether carboxylates, sulfonates, sulfosuccinates, fatty acid taurates, ether carboxylates, alkyl betaines, and alkyl amidopropyl betaines. Of the foregoing surfactants, ethoxylated alcohol is generally preferred. The surfactant utilized is included in the liquid gelling agent concentrate in an amount in the range of from about 0.1% to about 2% by weight of the concentrate.
  • Any of a variety of particulate gelling agents can be utilized in accordance with the present invention. The gelling agents generally include a water dispersable or water soluable hydrophilic colloid such as cellulose derivatives, starch derivatives, gums including ghatti, Arabic, tragacanth, locust bean, karaya, carrageenan, algin, and derivatives of such gums, biopolymers and mixtures thereof. Examples of preferred particulate aqueous fluid gelling agents for use in accordance with the present invention include, but are not limited to, guar, hydroxypropylguar, carboxymethylhydroxyproplyguar, hydroxyethylcellulose, carboxymethylhydroxyethylcellulose, carboxymethylceullose, xanthan and succinoglycan. Of these, guar is the most preferred. The particulate aqueous fluid gelling agent utilized is generally present in the liquid gelling agent concentrate in an amount in the range of from about 25% to about 55% by weight of the concentrate, i.e., up to and including 5 pounds of gelling agent per gallon of the concentrate.
  • As mentioned, the liquid gelling agent concentrates of this invention preferably include environmentally safe hydrocarbon carrier liquids that meet the standards set forth in the Environmental Protection Agency Safe Drinking Water Act. As also mentioned, the liquid gelling agent concentrates can contain particulate aqueous fluid gelling agents in amounts up to five pounds of particulate aqueous fluid gelling agent per gallon of the concentrates and higher. Also, the preferred liquid gelling agent concentrates of this invention have higher flash points than the heretofore utilized liquid gel concentrates, i.e., flash points as high as 175° F. and pour points that are lower than the heretofore used concentrates, i.e., −49° F. and lower.
  • The liquid gelling agent concentrates of this invention have long term storage, good pour abilities and non-settling properties. For example, the preferred liquid gelling agent concentrates of this invention can be stored for seven days at 80° F. without significant settling of the particulate gelling agent therein and less than 2% free liquid.
  • A preferred liquid gelling agent concentrate of this invention comprises: an environmentally safe hydrocarbon carrier liquid; an organophillic clay suspending agent; a surfactant for dispersing the organophillic clay suspending agent in the carrier liquid; and a particulate aqueous fluid gelling agent suspended in the carrier liquid.
  • Another preferred liquid gelling agent concentrate comprises: an environmentally safe hydrocarbon carrier liquid comprising a mixture of hydrocarbons having in the range of from about 6 to about 13 carbon atoms obtained by treating a petroleum fraction with hydrogen in the presence of a catalyst present in an amount in the range of from about 25% to about 55% by weight of the concentrate; a quaternary ammonium bentonite clay suspending agent present in an amount in the range of from about 0.2% to about 4% by weight of the concentrate; an ethoxylated alcohol surfactant present in an amount in the range of from 0.1% to about 2% by weight of the concentrate; and a guar particulate aqueous fluid gelling agent present in an amount in the range of from about 25% to about 55% by weight of the concentrate.
  • A preferred method of this invention for treating a subterranean zone penetrated by a well bore using a viscous aqueous treating fluid comprises the steps of: (a) mixing a liquid gelling agent concentrate with an aqueous fluid to thereby form a viscous aqueous gelled treating fluid, the liquid gelling agent concentrate comprising an environmentally safe hydrocarbon carrier liquid, an organophillic clay suspending agent, a surfactant for dispersing the organophillic clay suspending agent in the carrier liquid, and a particulate aqueous fluid gelling agent suspended in the carrier liquid; and (b) introducing the viscous aqueous gelled treating fluid into the subterranean zone.
  • Another preferred method of treating a subterranean zone penetrated by a well bore using a viscous aqueous treating fluid comprises the steps of: (a) mixing a liquid gelling agent concentrate with an aqueous fluid to thereby form a viscous gelled aqueous treating fluid, the liquid gelling agent concentrate comprising an environmentally safe hydrocarbon carrier liquid that comprises a mixture of hydrocarbons having in the range of from about 6 to about 13 carbon atoms obtained by treating a petroleum fraction with hydrogen in the presence of a catalyst present in an amount in the range of from about 25% to about 55% by weight of the concentrate, a quaternary ammonium bentonite clay suspending agent present in an amount in the range of from about 0.2% to about 4% by weight of the concentrate, an ethoxylated alcohol surfactant present in an amount in the range of from about 0.1% to about 2% by weight of the concentrate, and a guar particulate aqueous fluid gelling agent present in an amount in the range of from about 25% to about 55% by weight of the concentrate; and (b) introducing the viscous aqueous treating fluid into the subterranean zone.
  • In order to further illustrate the liquid gelling agent concentrate and methods of this invention, the following examples are given.
  • EXAMPLE 1
  • A liquid gelling agent concentrate of this invention (referred to herein as “Inventive Concentrate”) was prepared in the laboratory comprising 43% by weight of diesel oil, 1% by weight of a quaternary ammonium bentonite clay suspending agent, 1% by weight of an ethoxylated alcohol surfactant for dispersing the suspending agent, and a 55% by weight of a guar particulate gelling agent.
  • A prior art gelling agent concentrate (referred to herein as “Concentrate A”) published by Union Carbide Corporation was also prepared comprising 53.83% by weight diesel oil, 1.39% by weight organophillic clay, 0.28% by weight methanol, 42.5% by weight hydroxyethylcellulose and 2.0% nonylphenol surfactant.
  • Each of the above described liquid gelling agent concentrates was placed in an 80° F. water bath and after time intervals of 24 hours, 48 hours, 72 hours and 168 hours, the percent of free liquid separation and the settling of solids in the concentrates were observed.
  • The results of these tests are given in Tables I and II below.
    TABLE I
    % Free Liquid Separation
    168 hours
    24 hours 48 hours 72 hours (7 days)
    Concentrate at 80° F. at 80° F. at 80° F. at 80° F.
    Inventive 0 0 0 1.4
    Concentrate
    Concentrate A 2.1 2.3 2.4 2.4
  • TABLE II
    Settling of Solids
    168 hours
    24 hours 48 hours 72 hours (7 days)
    Concentrate at 80° F. at 80° F. at 80° F. at 80° F.
    Inventive 0 0 0 0
    Concentrate
    Concentrate A 0 trace Ring1 Ring1

    1Ring means the presence of solids in the bottom of the container forming a ring.
  • From Tables I and II, it can be seen that the Inventive Concentrate can be stored for at least seven days at 80° F. without settling and with less than 2% free liquid.
  • EXAMPLE 2
  • Samples of the Inventive Concentrate and Concentrate A described in Example 1 as well as two other prior art concentrates designated “Concentrate B” and “Concentrate C” were tested for viscosity using a Brookfield viscometer equipped with a number 3 spindle at 20 rpm and at a temperature of 80° F.
  • Concentrate B was prepared comprising 49% by weight of diesel oil, 5% by weight of an aqueous emulsion of a suspending agent comprising water insoluble polymer particles that swell when contacted with diesel oil and 46% by weight of polysaccharide water soluble gelling agent. This concentrate is described in detail in U.S. Pat. No. 4,772,646 issued to Harms, et al. on Sep. 20, 1988 which is incorporated herein by reference thereto.
  • Concentrate C published by Hercules, Inc. was prepared comprising 37% by weight of hydroxyethylcellulose, 40.1% by weight of an ethyl hexanol premix containing 1% hydroxypropylcellulose, 21.1% by weight of mineral oil and 1.8% by weight of an ethoxylated alcohol surfactant.
  • The results of these tests are given in Table III below.
    TABLE III
    Viscosity, cP
    Samples Inventive
    Tested Concentrate A Concentrate B Concentrate C Concentrate
    1 960 3008 3904 650
    2 512 4736 4352 780
    3 1088  4608 4928 850
    4 5632 860
    5 4736 852
  • From Table III, it can be seen that the Inventive Concentrate has the lowest viscosity which provides excellent pour ability.
  • Thus, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those which are inheritant therein. While numerous changes can be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims.

Claims (33)

1. A liquid gelling agent concentrate comprising:
an environmentally safe hydrocarbon carrier liquid;
an organophillic clay suspending agent;
a surfactant for dispersing said organophillic clay suspending agent in said carrier liquid; and
a particulate aqueous fluid gelling agent suspended in said carrier liquid.
2. The gelling agent concentrate of claim 1 wherein said environmentally safe hydrocarbon carrier liquid is selected from the group consisting of a mixture of hydrocarbons having in the range of from about 6 to about 13 carbon atoms obtained by treating a petroleum fraction with hydrogen in the presence of a catalyst, a mixture of hydrocarbons having in the range of from about 10 to about 25 carbon atoms obtained by catalytic hydrogenation of vacuum gas oils followed with dewaxing by hydroisomerization and stabilization by hydrotreating at high pressures, a mixture of severely hydrocracked low toxicity mineral oils and synthetic isoalkanes, polyalpha olefins, mixtures of C10-C1-4 alkanes and C8 and higher alkenes, mixtures of linear alpha and internal olefins, hydrocarbon blends containing 93% linear paraffins, blends of isoalkanes and isoalkenes and alcohols, blends of linear internal olefins having from about 16 to about 18 carbon atoms, blends of linear alpha-olefins having 10 or more carbon atoms, vegetable oils, and vegetable esters.
3. The gelling agent concentrate of claim 1 wherein said environmentally safe hydrocarbon carrier liquid is a mixture of hydrocarbons having in the range of from about 6 to about 13 carbon atoms obtained by treating a petroleum fraction with hydrogen in the presence of a catalyst.
4. The gelling agent concentrate of claim 1 wherein said environmentally safe hydrocarbon carrier liquid has a flash point above about 175° F. and a pour point below about −49° F.
5. The gelling agent concentrate of claim 1 wherein said environmentally safe hydrocarbon carrier liquid is present in said concentrate in an amount in the range of from about 25% to about 55% by weight thereof.
6. The gelling agent concentrate of claim 1 wherein said organophillic clay suspending agent is selected from the group consisting of quaternary ammonium bentonite clay, quaternary ammonium montmorillinite clay and quaternary ammonium hectorite clay.
7. The gelling agent concentrate of claim 6 wherein two of the quaternary ammonium substituents of the organophillic clay suspending agent are alkyl radicals having in the range of from 1 to 10 carbon atoms and two of the substituents are alkyl radicals having in the range of from 10 to 30 carbon atoms.
8. The gelling agent concentrate of claim 1 wherein said organophillic clay suspending agent is quaternary ammonium bentonite clay.
9. The gelling agent concentrate of claim 1 wherein said organophillic clay suspending agent is present in said concentrate in an amount in the range of from about 0.2% to about 4% by weight thereof.
10. The gelling agent concentrate of claim 1 wherein said surfactant for dispersing said organophillic clay suspending agent in said carrier liquid is selected from the group consisting of amphoteric surfactants, anionic surfactants, cationic surfactants and nonionic surfactants.
11. The gelling agent concentrate of claim 1 wherein said surfactant for dispersing said organophillic clay suspending agent in said carrier liquid is selected from the group consisting of nonionic esters, polyethylene glycol esters, ethoxylated acids, ethoxylated oils, sorbitol esters, ethoxylated sorbitol esters, ethoxylated alcohols, alcohol alkoxylates, alkanolamides, quaternary ammonium compounds, dialkyl quaternary ammonium compounds, benzyl quaternary ammonium compounds, amine oxides, ethoxylated amines, fatty imidazolines, ether carboxylates, sulfonates, sulfosuccinates, fatty acid taurates, ether carboxylates, alkyl betaines, and alkyl amidopropyl betaines.
12. The gelling agent concentrate of claim 1 wherein said surfactant for dispersing said organophillic clay suspending agent in said carrier liquid is an ethoxylated alcohol.
13. The gelling agent concentrate of claim 1 wherein said surfactant for dispersing said organophillic clay suspending agent in said carrier liquid is present in said concentrate in an amount in the range of from about 0.1% to about 2% by weight thereof.
14. The gelling agent concentrate of claim 1 wherein said particulate aqueous fluid gelling agent is selected from the group consisting of guar, hydroxypropylguar, carboxymethylhydroxypropylguar, hydroxyethylcellulose, carboxymethylhydroxyethylcellulose, carboxymethylcellulose, xanthan and succinoglycan.
15. The gelling agent concentrate of claim 1 wherein said particulate aqueous fluid gelling agent is guar.
16. The gelling agent concentrate of claim 1 wherein said particulate aqueous fluid gelling agent is present in said concentrate in an amount in the range of from about 25% to about 55% by weight thereof.
17. A method of treating a subterranean zone penetrated by a well bore using a viscous aqueous treating fluid comprising the steps of:
(a) mixing a liquid gelling agent concentrate with an aqueous fluid to thereby form a viscous aqueous treating fluid, said liquid gelling agent concentrate comprising an environmentally safe hydrocarbon carrier liquid, an organophillic clay suspending agent, a surfactant for dispersing said organophillic clay suspending agent in said carrier liquid and a particulate aqueous fluid gelling agent suspended in said carrier liquid; and
(b) introducing said viscous aqueous treating fluid into said subterranean zone.
18. The method of claim 17 wherein said formed viscous aqueous treating fluid is a fracturing fluid or a gravel packing carrier fluid.
19. The method of claim 17 wherein said environmentally safe hydrocarbon carrier liquid is selected from the group consisting of a mixture of hydrocarbons having in the range of from about 6 to about 13 carbon atoms obtained by treating a petroleum fraction with hydrogen in the presence of a catalyst, a mixture of hydrocarbons having in the range of from about 10 to about 25 carbon atoms obtained by catalytic hydrogenation of vacuum gas oils followed with dewaxing by hydroisomerization and stabilization by hydrotreating at high pressures, a mixture of severely hydrocracked low toxicity mineral oils and synthetic isoalkanes, polyalpha olefins, mixtures of C10-C14 alkanes and C8 and higher alkenes, mixtures of linear alpha and internal olefins, hydrocarbon blends containing 93% linear paraffins, blends of isoalkanes, isoalkenes and alcohols, blends of linear internal olefins having from about 16 to about 18 carbon atoms, blends of linear alpha-olefins having 10 or more carbon atoms, vegetable oils, and vegetable esters.
20. The method of claim 17 wherein said environmentally safe hydrocarbon carrier liquid is a mixture of hydrocarbons having in the range of from about 6 to 13 carbon atoms obtained by treating a petroleum fraction with hydrogen in the presence of a catalyst.
21. The method of claim 17 wherein said environmentally safe hydrocarbon carrier liquid has a flash point above about 175° F. and a pour point below about −49° F.
22. The method of claim 17 wherein said environmentally safe hydrocarbon carrier liquid is present in said concentrate in an amount in the range of from about 25% to about 55% by weight thereof.
23. The method of claim 17 wherein said organophillic clay suspending agent is selected from the group consisting of quaternary ammonium bentonite clay, quaternary ammonium montmorillonite clay and quaternary ammonium hectorite clay.
24. The method of claim 23 wherein two of the quaternary ammonium substituents of the organophillic clay are alkyl radicals having in the range of from 1 to 10 carbon atoms and two of the organic substituents are alkyl radicals having in the range of from 10 to 30 carbon atoms.
25. The method of claim 17 wherein said organophillic clay suspending agent is quaternary ammonium bentonite clay.
26. The method of claim 17 wherein said organophillic clay suspending agent is present in said concentrate in an amount in the range of from about 0.2% to about 4% by weight thereof.
27. The method of claim 17 wherein said surfactant for dispersing said organophillic clay suspending agent in said carrier liquid is selected from the group consisting of amphoteric surfactants, anionic surfactants, cationic surfactants and nonionic surfactants.
28. The method of claim 17 wherein said surfactant for dispersing said organophillic clay suspending agent in said carrier liquid is selected from the group consisting of nonionic esters, polyethylene glycol esters, ethoxylated acids, ethoxylated oils, sorbitol esters, ethoxylated sorbitol esters, ethoxylated alcohols, alcohol alkoxylates, alkanolamides, quaternary ammonium compounds, dialkyl quaternary ammonium compounds, benzyl quaternary ammonium compounds, amine oxides, ethoxylated amines, fatty imidazolines, ether carboxylates, sulfonates, sulfosuccinates, fatty acid taurates, ether carboxylates, alkyl betaines, and alkyl amidopropyl betaines.
29. The method of claim 17 wherein said surfactant for dispersing said organophillic clay suspending agent in said carrier liquid is an ethoxylated alcohol.
30. The method of claim 17 wherein said surfactant for dispersing said organophillic clay suspending agent in said carrier liquid is present in said concentrate in an amount in the range of from about 0.1% to about 2% by weight thereof.
31. The method of claim 17 wherein said particulate aqueous fluid gelling agent is selected from the group consisting of guar, hydroxypropylguar, carboxymethylhydroxypropylguar, hydroxyethylcellulose, carboxymethylhydroxyethylcellulose, carboxymethylcellulose, xanthan and succinoglycan.
32. The method of claim 17 wherein said particulate aqueous fluid gelling agent is guar.
33. The method of claim 20 wherein said particulate aqueous fluid gelling agent is present in said concentrate in an amount in the range of from about 25% to about 55% by weight thereof.
US10/691,321 2003-10-22 2003-10-22 Liquid gelling agent concentrates and methods of treating wells therewith Abandoned US20050087341A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/691,321 US20050087341A1 (en) 2003-10-22 2003-10-22 Liquid gelling agent concentrates and methods of treating wells therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/691,321 US20050087341A1 (en) 2003-10-22 2003-10-22 Liquid gelling agent concentrates and methods of treating wells therewith

Publications (1)

Publication Number Publication Date
US20050087341A1 true US20050087341A1 (en) 2005-04-28

Family

ID=34521850

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/691,321 Abandoned US20050087341A1 (en) 2003-10-22 2003-10-22 Liquid gelling agent concentrates and methods of treating wells therewith

Country Status (1)

Country Link
US (1) US20050087341A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050164891A1 (en) * 2004-01-26 2005-07-28 Falana Olusegun M. Methods of reducing sag in non-aqueous fluids
US20060264334A1 (en) * 2005-05-18 2006-11-23 Bj Services Company Non-damaging fracturing fluids and methods for their use
US20060264776A1 (en) * 2005-05-18 2006-11-23 Cardiac Pacemakers, Inc. Detection of pleural effusion using transthoracic impedance
US20080108522A1 (en) * 2006-11-07 2008-05-08 Bj Services Company Use of anionic surfactants as hydration aid for fracturing fluids
US20080264641A1 (en) * 2007-04-30 2008-10-30 Slabaugh Billy F Blending Fracturing Gel
US20090286699A1 (en) * 2008-05-15 2009-11-19 Halliburton Energy Services, Inc. Reversible surfactants and methods of use in subterranean formations
US20120283148A1 (en) * 2011-05-04 2012-11-08 Texas United Chemical Company, Llc Methods and Compositions for Hydrocarbon-Based Crosslinking Additives with Non-Detectable BTEX Levels
US20130206416A1 (en) * 2012-02-05 2013-08-15 Texas United Chemical Company, Llc Earth Metal Peroxide Fluidized Compositions
EP2912135A4 (en) * 2012-10-29 2016-07-13 Sasol Performance Chemicals Gmbh Activators for the viscosification of non-aqueous fluids
CN110038624A (en) * 2018-01-16 2019-07-23 中国石油化工股份有限公司 The preparation method of hydrocracking catalyst
CN110593816A (en) * 2018-06-12 2019-12-20 中国石油天然气股份有限公司 Method for preventing condensate gas well from waxing by using solid wax inhibitor
CN111440606A (en) * 2020-04-28 2020-07-24 中国石油集团渤海钻探工程有限公司 Oil-free phase liquid drag reducer and whole-course slickwater fracturing fluid containing same
CN111592869A (en) * 2020-04-20 2020-08-28 成都劳恩普斯科技有限公司 Water-based resistance reducing agent and preparation method thereof
US11466202B2 (en) * 2016-11-10 2022-10-11 Halliburton Energy Services, Inc. Storable liquid suspension of hollow particles

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466890A (en) * 1979-07-12 1984-08-21 Halliburton Company Liquid gel concentrates and methods of using the same
US5096883A (en) * 1989-09-29 1992-03-17 Union Oil Company Of California Oil-base drilling fluid comprising branched chain paraffins such as the dimer of 1-decene
US5106516A (en) * 1989-02-09 1992-04-21 Henkel Kommanditgesellschaft Auf Aktien Monocarboxylic acid methylesters in invert drilling muds
US5189012A (en) * 1990-03-30 1993-02-23 M-I Drilling Fluids Company Oil based synthetic hydrocarbon drilling fluid
US5252554A (en) * 1988-12-19 1993-10-12 Henkel Kommanditgesellschaft Auf Aktien Drilling fluids and muds containing selected ester oils
US5569642A (en) * 1995-02-16 1996-10-29 Albemarle Corporation Synthetic paraffinic hydrocarbon drilling fluid
US6302209B1 (en) * 1997-09-10 2001-10-16 Bj Services Company Surfactant compositions and uses therefor
US6323157B1 (en) * 1997-08-08 2001-11-27 Bp Corporation North America Inc. Base oil for well fluids having low pour point temperature
US6620769B1 (en) * 2000-11-21 2003-09-16 Hercules Incorporated Environmentally acceptable fluid polymer suspension for oil field services
US6800593B2 (en) * 2002-06-19 2004-10-05 Texas United Chemical Company, Llc. Hydrophilic polymer concentrates

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466890A (en) * 1979-07-12 1984-08-21 Halliburton Company Liquid gel concentrates and methods of using the same
US5252554A (en) * 1988-12-19 1993-10-12 Henkel Kommanditgesellschaft Auf Aktien Drilling fluids and muds containing selected ester oils
US5106516A (en) * 1989-02-09 1992-04-21 Henkel Kommanditgesellschaft Auf Aktien Monocarboxylic acid methylesters in invert drilling muds
US5096883A (en) * 1989-09-29 1992-03-17 Union Oil Company Of California Oil-base drilling fluid comprising branched chain paraffins such as the dimer of 1-decene
US5189012A (en) * 1990-03-30 1993-02-23 M-I Drilling Fluids Company Oil based synthetic hydrocarbon drilling fluid
US5569642A (en) * 1995-02-16 1996-10-29 Albemarle Corporation Synthetic paraffinic hydrocarbon drilling fluid
US6323157B1 (en) * 1997-08-08 2001-11-27 Bp Corporation North America Inc. Base oil for well fluids having low pour point temperature
US6302209B1 (en) * 1997-09-10 2001-10-16 Bj Services Company Surfactant compositions and uses therefor
US6620769B1 (en) * 2000-11-21 2003-09-16 Hercules Incorporated Environmentally acceptable fluid polymer suspension for oil field services
US6800593B2 (en) * 2002-06-19 2004-10-05 Texas United Chemical Company, Llc. Hydrophilic polymer concentrates

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169739B2 (en) * 2004-01-26 2007-01-30 Chevron Phillips Chemical Company Lp Methods of reducing sag in non-aqueous fluids
US20050164891A1 (en) * 2004-01-26 2005-07-28 Falana Olusegun M. Methods of reducing sag in non-aqueous fluids
US20060264334A1 (en) * 2005-05-18 2006-11-23 Bj Services Company Non-damaging fracturing fluids and methods for their use
US20060264776A1 (en) * 2005-05-18 2006-11-23 Cardiac Pacemakers, Inc. Detection of pleural effusion using transthoracic impedance
US20080108522A1 (en) * 2006-11-07 2008-05-08 Bj Services Company Use of anionic surfactants as hydration aid for fracturing fluids
US20080264641A1 (en) * 2007-04-30 2008-10-30 Slabaugh Billy F Blending Fracturing Gel
US20090286699A1 (en) * 2008-05-15 2009-11-19 Halliburton Energy Services, Inc. Reversible surfactants and methods of use in subterranean formations
US7816305B2 (en) * 2008-05-15 2010-10-19 Halliburton Energy Services, Inc. Reversible surfactants and methods of use in subterranean formations
US20120283148A1 (en) * 2011-05-04 2012-11-08 Texas United Chemical Company, Llc Methods and Compositions for Hydrocarbon-Based Crosslinking Additives with Non-Detectable BTEX Levels
US10160897B2 (en) * 2012-02-05 2018-12-25 Tucc Technology, Llc Earth metal peroxide fluidized compositions
US20130206416A1 (en) * 2012-02-05 2013-08-15 Texas United Chemical Company, Llc Earth Metal Peroxide Fluidized Compositions
US9725637B2 (en) * 2012-02-05 2017-08-08 Tucc Technology, Llc Earth metal peroxide fluidized compositions
EP2912135A4 (en) * 2012-10-29 2016-07-13 Sasol Performance Chemicals Gmbh Activators for the viscosification of non-aqueous fluids
US10836948B2 (en) * 2012-10-29 2020-11-17 Sasoi Performance Chemicals GmbH Activators for use in the viscosification of non-aqueous fluids
US11466202B2 (en) * 2016-11-10 2022-10-11 Halliburton Energy Services, Inc. Storable liquid suspension of hollow particles
US11795383B2 (en) 2016-11-10 2023-10-24 Halliburton Energy Services, Inc. Storable liquid suspension of hollow particles
CN110038624A (en) * 2018-01-16 2019-07-23 中国石油化工股份有限公司 The preparation method of hydrocracking catalyst
CN110593816A (en) * 2018-06-12 2019-12-20 中国石油天然气股份有限公司 Method for preventing condensate gas well from waxing by using solid wax inhibitor
CN111592869A (en) * 2020-04-20 2020-08-28 成都劳恩普斯科技有限公司 Water-based resistance reducing agent and preparation method thereof
CN111440606A (en) * 2020-04-28 2020-07-24 中国石油集团渤海钻探工程有限公司 Oil-free phase liquid drag reducer and whole-course slickwater fracturing fluid containing same

Similar Documents

Publication Publication Date Title
Fink Petroleum engineer's guide to oil field chemicals and fluids
US10590324B2 (en) Fiber suspending agent for lost-circulation materials
US6435277B1 (en) Compositions containing aqueous viscosifying surfactants and methods for applying such compositions in subterranean formations
EP2809742B1 (en) Cellulose nanowhiskers in well services
US6306800B1 (en) Methods of fracturing subterranean formations
AU2006230665B2 (en) Well Drilling Fluids Having Clay Control Properties
US20050087341A1 (en) Liquid gelling agent concentrates and methods of treating wells therewith
EP1212385A1 (en) Quaternary ammonium salts as thickening agents for aqueous systems
US10563111B2 (en) Solubilized polymer concentrates, methods of preparation thereof, and well drilling and servicing fluids containing the same
CA2917622C (en) Composition for use in conducting downhole operations in oil and gas wells
AU2014214891B2 (en) Invert emulsion gravel pack fluid and method
US6562764B1 (en) Invert well service fluid and method
US8544546B2 (en) Delivering water-soluble polysaccharides for well treatments
WO2019209312A1 (en) Polyamine polyethers as nonemulsifier components
AU2004202105A1 (en) Methods of using invertible oil external-water internal fluids in subterranean applications
EP3186332B1 (en) Method for hydraulic fracturing
US10836948B2 (en) Activators for use in the viscosification of non-aqueous fluids
RU2664987C2 (en) Utilization of boron as crosslinking agent in emulsion system
US3865190A (en) Hydraulic fracturing method
AU2017210060A1 (en) Spacer fluid having sized particulates and methods of using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCCABE, MICHAEL A.;SLABAUGH, BILLY;BLAUCH, MATTHEW;REEL/FRAME:014636/0836;SIGNING DATES FROM 20031020 TO 20031021

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION