US20050070569A1 - Alkyne-aryl phosphodiesterase-4 inhibitors - Google Patents

Alkyne-aryl phosphodiesterase-4 inhibitors Download PDF

Info

Publication number
US20050070569A1
US20050070569A1 US10/487,047 US48704704A US2005070569A1 US 20050070569 A1 US20050070569 A1 US 20050070569A1 US 48704704 A US48704704 A US 48704704A US 2005070569 A1 US2005070569 A1 US 2005070569A1
Authority
US
United States
Prior art keywords
alkyl
phenyl
naphthyridin
dihydro
carboxamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/487,047
Inventor
Daniel Guay
Mario Girard
Pierre Hamel
Sebastien Laliberte
Richard Friesen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Canada Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/487,047 priority Critical patent/US20050070569A1/en
Publication of US20050070569A1 publication Critical patent/US20050070569A1/en
Assigned to MERCK FROSST CANADA LTD. reassignment MERCK FROSST CANADA LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MERCK FROSST CANADA AND COMPANY
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4375Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/14Antitussive agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/16Central respiratory analeptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the present invention is directed to compounds that are alkyne-aryl substituted 1,8-naphthyridin-4(1H)-ones.
  • this invention is directed to phenyl substituted 1,8-naphthyridin-4(1H)-ones which are phosphodiesterase-4 inhibitors wherein the phenyl group is at the 1-position and contains a 2-alkyne substituent group further optionally substituted.
  • Hormones are compounds that variously affect cellular activity. In many respects, hormones act as messengers to trigger specific cellular responses and activities. Many effects produced by hormones, however, are not caused by the singular effect of just the hormone. Instead, the hormone first binds to a receptor, thereby triggering the release of a second compound that goes on to affect the cellular activity. In this scenario, the hormone is known as the first messenger while the second compound is called the second messenger.
  • Cyclic adenosine monophosphate (adenosine 3′,5′-cyclic monophosphate, “cAMP” or “cyclic AMP”) is known as a second messenger for hormones including epinephrine, glucagon, calcitonin, corticotrophin, lipotropin, luteinizing hormone, norepinephrine, parathyroid hormone, thyroid-stimulating hormone, and vasopressin.
  • cAMP mediates cellular responses to hormones.
  • Cyclic AMP also mediates cellular responses to various neurotransmitters.
  • PDE Phosphodiesterases
  • PDE4 Phosphodiesterases
  • PDE-4 Phosphodiesterase-4
  • PDE-IV phosphodiesterase-4
  • PDE4 is known to exist as at lease four isoenzymes, each of which is encoded by a distinct gene.
  • Each of the four known PDE4 gene products is believed to play varying roles in allergic and/or inflammatory responses.
  • inhibition of PDE4, particularly the specific PDE4 isoforms that produce detrimental responses can beneficially affect allergy and inflammation symptoms. It would be desirable to provide novel compounds and compositions that inhibit PDE4 activity.
  • A. H. Cook, et al., J. Chem. Soc., 413-417(1943) describes gamma-pyridylquinolines.
  • Other quinoline compounds are described in Kei Manabe et al., J. Org. Chem., 58(24):6692-6700(1993); Kei Manabe et al., J. Am. Chem. Soc., 115(12):5324-5325(1993); and Kei Manabe et al., J. Am. Chem. Soc., 114(17):6940-6941(1992).
  • U.S. Pat. Nos. 5,491,147, 5,608,070, 5,622,977, 5,739,144, 5,776,958, 5,780,477, 5,786,354, 5,798,373, 5,849,770, 5,859,034, 5,866,593, 5,891,896, and International Patent Publication WO 95/35283 describe PDE4 inhibitors that are tri-substituted aryl or heteroaryl phenyl derivatives.
  • U.S. Pat. No. 5,580,888 describes PDE4 inhibitors that are styryl derivatives.
  • U.S. Pat. No. 5,550,137 describes PDE4 inhibitors that are phenylaminocarbonyl derivatives.
  • 5,340,827 describes PDE4 inhibitors that are phenylcarboxamide compounds.
  • U.S. Pat. No. 5,780,478 describes PDE4 inhibitors that are tetra-substituted phenyl derivatives.
  • International Patent Publication WO 96/00215 describes substituted oxime derivatives useful as PDE4 inhibitors.
  • U.S. Pat. No. 5,633,257 describes PDE4 inhibitors that are cyclo(alkyl and alkenyl)phenyl-alkenyl (aryl and heteroaryl) compounds.
  • the present invention is directed to alkyne-aryl substituted 1,8-naphthyridin-4(1H)-ones represented by Formula (I): or pharmaceutically acceptable salts thereof, which are phosphodiesterase-4 inhibitors.
  • This invention also provides a pharmaceutical composition which includes an effective amount of the novel alkyne-aryl substituted 1,8-naphthyridin-4(1H)-ones and a pharmaceutically acceptable carrier.
  • This invention further provides a method of treatment in mammals of, for example, i) Pulmonary disorders such as asthma, chronic bronchitis, chronic obstructive pulmonary disease (COPD), adult respiratory distress syndrome, infant respiratory distress syndrome, cough, chronic obstructive pulmonary disease in animals, adult respiratory distress syndrome, and infant respiratory distress syndrome, ii) Gastrointestinal disorders such as ulcerative colitis, Crohn's disease, and hypersecretion of gastric acid, iii) Infectious diseases such as bacterial, fungal or viral induced sepsis or septic shock, endotoxic shock (and associated conditions such as laminitis and colic in horses), and septic shock, iv) Neurological disorders such as spinal cord trauma, head injury, neurogenic inflammation, pain, and reperfusion injury of the brain
  • a compound of this invention is represented by Formula (I): or a pharmaceutically acceptable salt thereof, wherein
  • a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
  • a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
  • a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
  • a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
  • a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
  • a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
  • a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
  • a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
  • a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
  • alkyl as well as other groups having the prefix “alk” such as, for example, alkoxy, alkanoyl, alkenyl, alkynyl and the like, means carbon chains which may be linear or branched or combinations thereof. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, sec- and tert-butyl, pentyl, hexyl, heptyl and the like. “Alkenyl”, “alkynyl” and other like terms include carbon chains containing at least one unsaturated C—C bond.
  • cycloalkyl means carbocycles containing no heteroatoms, and includes mono-, bi- and tricyclic saturated carbocycles, as well as fused ring systems.
  • fused ring systems can include one ring that is partially or fully unsaturated such as a benzene ring to form fused ring systems such as benzofused carbocycles.
  • Cycloalkyl includes such fused ring systems as spirofused ring systems.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, decahydronaphthalenyl, adamantanyl, indanyl, indenyl, fluorenyl, 1,2,3,4-tetrahydronaphthalenyl and the like.
  • cycloalkenyl means carbocycles containing no heteroatoms and at least one non-aromatic C—C double bond, and include mono-, bi- and tricyclic partially saturated carbocycles, as well as benzofused cycloalkenes.
  • Examples of cycloalkenyl examples include cyclohexenyl, indenyl, and the like.
  • cycloalkyloxy unless specifically stated otherwise includes a cycloalkyl group connected to the oxy connecting atom.
  • alkoxy unless specifically stated otherwise includes an alkyl group connected to the oxy connecting atom.
  • aryl unless specifically stated otherwise includes multiple ring systems as well as single ring systems such as, for example, phenyl or naphthyl.
  • aryloxy unless specifically stated otherwise includes multiple ring systems as well as single ring systems such as, for example, phenyl or naphthyl, connected through the oxy connecting atom to the connecting site.
  • C 0 -C 6 alkyl includes alkyls containing 6, 5, 4, 3, 2, 1, or no carbon atoms.
  • An alkyl with no carbon atoms is a hydrogen atom substituent when the alkyl is a terminus moiety.
  • An alkyl with no carbon atoms is a direct bond when the alkyl is a bridging moiety.
  • hetero unless specifically stated otherwise includes one or more O, S, or N atoms.
  • heterocycloalkyl and heteroaryl include ring systems that contain one or more O, S, or N atoms in the ring, including mixtures of such atoms.
  • the heteroatoms replace ring carbon atoms.
  • a heterocycloC5alkyl is a five membered ring containing from 5 to no carbon atoms.
  • heteroaryl examples include, for example, pyridinyl, quinolinyl, isoquinolinyl, pyridazinyl, pyrimidinyl, pyrazinyl, quinoxalinyl, furyl, benzofuryl, dibenzofuryl, thienyl, benzothienyl, pyrrolyl, indolyl, pyrazolyl, indazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, benzimidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl.
  • heteroaryloxy unless specifically stated otherwise describes a heteroaryl group connected through an oxy connecting atom to the connecting site.
  • heteroaryl(C 1-6 )alkyl examples include, for example, furylmethyl, furylethyl, thienylmethyl, thienylethyl, pyrazolylmethyl, oxazolylmethyl, oxazolylethyl, isoxazolylmethyl, thiazolylmethyl, thiazolylethyl, imidazolylmethyl, imidazolylethyl, benzimidazolylmethyl, oxadiazolylmethyl, oxadiazolylethyl, thiadiazolylmethyl, thiadiazolylethyl, triazolylmethyl, triazolylethyl, tetrazolylmethyl, tetrazolylethyl, pyridinylmethyl, pyridinylethyl, pyridazinylmethyl, pyrimidinylmethyl, pyrazinylmethyl, quinolinylmethyl, isoquinolinylmethyl and quinoxal
  • heterocycloC 3-7 alkyl examples include, for example, azetidinyl, pyrrolidinyl, piperidinyl, perhydroazepinyl, piperazinyl, morpholinyl, tetrahydrofuranyl, imidazolinyl, pyrolidin-2-one, piperidin-2-one, and thiomorpholinyl.
  • N-heterocycloC 4-7 alkyl describes nonaryl heterocyclic compounds having 3-6 carbon atoms and one nitrogen atom forming the ring. Examples include azetidinyl, pyrrolidinyl, piperidinyl, and perhydroazepinyl.
  • aryl(C 1-6 )alkyl examples include, for example, phenyl(C 1-6 )alkyl, and naphthyl(C 1-6 )alkyl.
  • heterocycloC 3-7 alkylcarbonyl(C 1-6 )alkyl examples include, for example, azetidinyl carbonyl(C 1-6 )alkyl, pyrrolidinyl carbonyl(C 1-6 )alkyl, piperidinyl carbonyl(C 1-6 )alkyl, piperazinyl carbonyl(C 1-6 )alkyl, morpholinyl carbonyl(C 1-6 )alkyl, and thiomorpholinyl carbonyl(C 1-6 )alkyl.
  • amine unless specifically stated otherwise includes primary, secondary and tertiary amines.
  • carbamoyl is used to include —NHC(O)OC 1 -C 4 alkyl, and —OC(O)NHC 1 -C 4 alkyl.
  • halogen includes fluorine, chlorine, bromine and iodine atoms.
  • optionally substituted is intended to include both substituted and unsubstituted.
  • optionally substituted aryl could represent a pentafluorophenyl or a phenyl ring.
  • the substitution can be made at any of the groups.
  • substituted aryl(C 1-6 )alkyl includes substitution on the aryl group as well as substitution on the alkyl group.
  • oxide of heteroaryl groups is used in the ordinary well-known chemical sense and include, for example, N-oxides of nitrogen heteroatoms.
  • Compounds described herein can contain one or more asymmetric centers and may thus give rise to diastereomers and optical isomers.
  • the present invention includes all such possible diastereomers as well as their racemic mixtures, their substantially pure resolved enantiomers, all possible geometric isomers, and pharmaceutically acceptable salts thereof.
  • the above Formula I is shown without a definitive stereochemistry at certain positions.
  • the present invention includes all stereoisomers of Formula I and pharmaceutically acceptable salts thereof. Further, mixtures of stereoisomers as well as isolated specific stereoisomers are also included. During the course of the synthetic procedures used to prepare such compounds, or in using racemization or epimerization procedures known to those skilled in the art, the products of such procedures can be mixtures of stereoisomers.
  • salts refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids.
  • the compound of the present invention is acidic, its corresponding salt can be conveniently prepared from pharmaceutically acceptable non-toxic bases, including inorganic bases and organic bases.
  • Salts derived from such inorganic bases include aluminum, ammonium, calcium, copper (ic and ous), ferric, ferrous, lithium, magnesium, manganese (ic and ous), potassium, sodium, zinc and the like salts. Particularly preferred are the ammonium, calcium, magnesium, potassium and sodium salts.
  • Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, as well as cyclic amines and substituted amines such as naturally occurring and synthesized substituted amines.
  • Other pharmaceutically acceptable organic non-toxic bases from which salts can be formed include ion exchange resins such as, for example, arginine, betaine, caffeine, choline, N,N′-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine,
  • the compound of the present invention When the compound of the present invention is basic, its corresponding salt can be conveniently prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids.
  • Such acids include, for example, acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid and the like.
  • Particularly preferred are benzenesulfonic, citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids.
  • compositions of the present invention comprise a compound represented by Formula I (or pharmaceutically acceptable salts thereof) as an active ingredient, a pharmaceutically acceptable carrier and optionally other therapeutic ingredients or adjuvants.
  • additional therapeutic ingredients include, for example, i) Leukotriene receptor antagonists, ii) Leukotriene biosynthesis inhibitors, iii) corticosteroids, iv) H1 receptor antagonists, v) beta 2 adrenoceptor agonists, vi) COX-2 selective inhibitors, vii) statins, viii) non-steroidal anti-inflammatory drugs (“NSAID”), and ix) M2/M3 antagonists.
  • NSAID non-steroidal anti-inflammatory drugs
  • compositions include compositions suitable for oral, rectal, topical, and parenteral (including subcutaneous, intramuscular, and intravenous) administration, although the most suitable route in any given case will depend on the particular host, and nature and severity of the conditions for which the active ingredient is being administered.
  • the pharmaceutical compositions may be conveniently presented in unit dosage form and prepared by any of the methods well known in the art of pharmacy.
  • Creams, ointments, jellies, solutions, or suspensions containing the compound of Formula I can be employed for topical use. Mouth washes and gargles are included within the scope of topical use for the purposes of this invention.
  • Dosage levels from about 0.001 mg/kg to about 140 mg/kg of body weight per day are useful in the treatment of conditions such as i) Pulmonary disorders such as asthma, chronic bronchitis, chronic obstructive pulmonary disease (COPD), adult respiratory distress syndrome, infant respiratory distress syndrome, cough, chronic obstructive pulmonary disease in animals, adult respiratory distress syndrome, and infant respiratory distress syndrome, ii) Gastrointestinal disorders such as ulcerative colitis, Crohn's disease, and hypersecretion of gastric acid, iii) Infectious diseases such as bacterial, fungal or viral induced sepsis or septic shock, endotoxic shock (and associated conditions such as laminitis and colic in horses), and septic shock, iv) Neurological disorders such as spinal cord trauma, head injury, neurogenic inflammation, pain, and reperfusion injury of the brain, v) Inflammatory disorders such as psoriatic arthritis, rheumatoid arthritis, ankylosing spondylitis, osteo
  • inflammation may be effectively treated by the administration of from about 0.01 mg to 50 mg of the compound per kilogram of body weight per day, or alternatively about 0.5 mg to about 2.5 g per patient per day.
  • the PDE4 inhibiting compounds of this invention can be administered at prophylactically effective dosage levels to prevent the above-recited conditions.
  • the amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
  • a formulation intended for the oral administration to humans may conveniently contain from about 0.5 mg to about 5 g of active agent, compounded with an appropriate and convenient amount of carrier material which may vary from about 5 to about 95 percent of the total composition.
  • Unit dosage forms will generally contain between from about 0.01 mg to about 1000 mg of the active ingredient, typically 0.01 mg, 0.05 mg, 0.25 mg, 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 800 mg or 1000 mg.
  • the compounds represented by Formula I, or pharmaceutically acceptable salts thereof, of this invention can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques.
  • the carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous).
  • the pharmaceutical compositions of the present invention can be presented as discrete units suitable for oral administration such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient.
  • compositions can be presented as a powder, as granules, as a solution, as a suspension in an aqueous liquid, as a non-aqueous liquid, as an oil-in-water emulsion or as a water-in-oil liquid emulsion.
  • the compound represented by Formula I, or pharmaceutically acceptable salts thereof may also be administered by controlled release means and/or delivery devices.
  • the compositions may be prepared by any of the methods of pharmacy. In general, such methods include a step of bringing into association the active ingredient with the carrier that constitutes one or more necessary ingredients.
  • the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both. The product can then be conveniently shaped into the desired presentation.
  • compositions of this invention may include a pharmaceutically acceptable carrier and a compound or a pharmaceutically acceptable salt of Formula I.
  • the compounds of Formula I, or pharmaceutically acceptable salts thereof, can also be included in pharmaceutical compositions in combination with one or more other therapeutically active compounds.
  • the pharmaceutical carrier employed can be, for example, a solid, liquid, or gas.
  • solid carriers include lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, and stearic acid.
  • liquid carriers are sugar syrup, peanut oil, olive oil, and water.
  • gaseous carriers include carbon dioxide and nitrogen.
  • any convenient pharmaceutical media may be employed.
  • water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like may be used to form oral liquid preparations such as suspensions, elixirs and solutions; while carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents, and the like may be used to form oral solid preparations such as powders, capsules and tablets.
  • carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents, and the like may be used to form oral solid preparations such as powders, capsules and tablets.
  • tablets and capsules are the preferred oral dosage units whereby solid pharmaceutical carriers are employed.
  • tablets may be coated by standard aqueous or nonaqueous techniques.
  • a tablet containing the composition of this invention may be prepared by compression or molding, optionally with one or more accessory ingredients or adjuvants.
  • Compressed tablets may be prepared by compressing, in a suitable machine, the active ingredient in a free-flowing form such as powder or granules, optionally mixed with a binder, lubricant, inert diluent, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent.
  • Each tablet preferably contains from about 0.1 mg to about 500 mg of the active ingredient and each cachet or capsule preferably containing from about 0.1 mg to about 500 mg of the active ingredient.
  • compositions of the present invention suitable for parenteral administration may be prepared as solutions or suspensions of the active compounds in water.
  • a suitable surfactant can be included such as, for example, hydroxypropylcellulose.
  • Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof in oils. Further, a preservative can be included to prevent the detrimental growth of microorganisms.
  • compositions of the present invention suitable for injectable use include sterile aqueous solutions or dispersions.
  • the compositions can be in the form of sterile powders for the extemporaneous preparation of such sterile injectable solutions or dispersions.
  • the final injectable form must be sterile and must be effectively fluid for easy syringability.
  • the pharmaceutical compositions must be stable under the conditions of manufacture and storage; thus, preferably should be preserved against the contaminating action of microorganisms such as bacteria and fungi.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g. glycerol, propylene glycol and liquid polyethylene glycol), vegetable oils, and suitable mixtures thereof.
  • compositions of the present invention can be in a form suitable for topical use such as, for example, an aerosol, cream, ointment, lotion, dusting powder, or the like. Further, the compositions can be in a form suitable for use in transdermal devices. These formulations may be prepared, utilizing a compound represented by Formula I of this invention, or pharmaceutically acceptable salts thereof, via conventional processing methods. As an example, a cream or ointment is prepared by mixing hydrophilic material and water, together with about 5 wt % to about 10 wt % of the compound, to produce a cream or ointment having a desired consistency.
  • compositions of this invention can be in a form suitable for rectal administration wherein the carrier is a solid. It is preferable that the mixture forms unit dose suppositories. Suitable carriers include cocoa butter and other materials commonly used in the art. The suppositories may be conveniently formed by first admixing the composition with the softened or melted carrier(s) followed by chilling and shaping in moulds.
  • the pharmaceutical formulations described above may include, as appropriate, one or more additional carrier ingredients such as diluents, buffers, flavoring agents, binders, surface-active agents, thickeners, lubricants, preservatives (including anti-oxidants) and the like.
  • additional carrier ingredients such as diluents, buffers, flavoring agents, binders, surface-active agents, thickeners, lubricants, preservatives (including anti-oxidants) and the like.
  • additional carrier ingredients such as diluents, buffers, flavoring agents, binders, surface-active agents, thickeners, lubricants, preservatives (including anti-oxidants) and the like.
  • additional carrier ingredients such as diluents, buffers, flavoring agents, binders, surface-active agents, thickeners, lubricants, preservatives (including anti-oxidants) and the like.
  • other adjuvants can be included to render the formulation isotonic with the blood of the intended recipient
  • Another aspect of the invention is the treatment in mammals of, for example, i) Pulmonary disorders such as asthma, chronic bronchitis, chronic obstructive pulmonary disease (COPD), adult respiratory distress syndrome, infant respiratory distress syndrome, cough, chronic obstructive pulmonary disease in animals, adult respiratory distress syndrome, and infant respiratory distress syndrome, ii) Gastrointestinal disorders such as ulcerative colitis, Crohn's disease, and hypersecretion of gastric acid, iii) Infectious diseases such as bacterial, fungal or viral induced sepsis or septic shock, endotoxic shock (and associated conditions such as laminitis and colic in horses), and septic shock, iv) Neurological disorders such as spinal cord trauma, head injury, neurogenic inflammation, pain, and reperfusion injury of the brain, v) Inflammatory disorders such as psoriatic arthritis, rheumatoid arthritis, ankylos
  • mammals includes humans, as well as other animals such as, for example, dogs, cats, horses, pigs, and cattle. Accordingly, it is understood that the treatment of mammals other than humans is the treatment of clinical correlating afflictions to those above recited examples that are human afflictions.
  • the compound of this invention can be utilized in combination with other therapeutic compounds.
  • the combinations of the PDE4 inhibiting compound of this invention can be advantageously used in combination with i) Leukotriene receptor antagonists, ii) Leukotriene biosynthesis inhibitors, iii) COX-2 selective inhibitors, iv) statins, v) NSAIDs, vi) M2/M3 antagonists, vii) corticosteroids, viii) H1 (histamine) receptor antagonists and ix) beta 2 adrenoceptor agonist.
  • pulmonary disorders such as asthma, chronic bronchitis, chronic obstructive pulmonary disease (COPD), adult respiratory distress syndrome, infant respiratory distress syndrome, cough, chronic obstructive pulmonary disease in animals, adult respiratory distress syndrome, and infant respiratory distress syndrome can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • COPD chronic obstructive pulmonary disease
  • Gastrointestinal disorders such as ulcerative colitis, Crohn's disease, and hypersecretion of gastric acid can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Infectious diseases such as bacterial, fungal or viral induced sepsis or septic shock, endotoxic shock (and associated conditions such as laminitis and colic in horses), and septic shock can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Neurological disorders such as spinal cord trauma, head injury, neurogenic inflammation, pain, and reperfusion injury of the brain can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Inflammatory disorders such as psoriatic arthritis, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, inflammation and cytokine-mediated chronic tissue degeneration can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Allergic disorders such as allergic rhinitis, allergic conjunctivitis, and eosinophilic granuloma can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Psychiatric disorders such as depression, memory impairment, and monopolar depression can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Neurodegenerative disorders such as Parkinson disease, Alzheimer's disease, acute and chronic multiple sclerosis can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Dermatological disorders such as psoriasis and other benign or malignant proliferative skin diseases, atopic dermatitis, and urticaria can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Oncological diseases such as cancer, tumor growth and cancerous invasion of normal tissues can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Metabolic disorders such as diabetes insipidus can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Bone disorders such as osteoporosis, cardiovascular disorders such as arterial restenosis, atherosclerosis, reperfusion injury of the myocardium, and other disorders such as chronic glomerulonephritis, vernal conjunctivitis, transplant rejection and graft versus host disease, and cachexia can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Whole blood provides a protein and cell-rich milieu appropriate for the study of biochemical efficacy of anti-inflammatory compounds such as PDE4-selective inhibitors.
  • Normal non-stimulated human blood does not contain detectable levels of TNF- ⁇ and LTB 4 .
  • activated monocytes Upon stimulation with LPS, activated monocytes express and secrete TNF- ⁇ up to 8 hours and plasma levels remain stable for 24 hours.
  • LTB 4 synthesis is also sensitive to levels of intracellular cAMP and can be completely inhibited by PDE4-selective inhibitors.
  • DMSO vehicle
  • test compound 1 ⁇ g/mL final concentration, #L-2630 (Sigma Chemical Co., St. Louis, Mo.) from E. coli , serotype 0111:B4; diluted in 0.1% w/v BSA
  • IC 50 values should be less than about 5 ⁇ M, advantageously less than about 2.5 ⁇ M.
  • the IC 50 values of Examples 1 to 33 ranged from 0.01 ⁇ M to 2.41 ⁇ M.
  • BAL bronchial alveolar lavages
  • test compound was added (dissolved in 2 ⁇ L DMSO), 188 ⁇ L of substrate buffer containing [2,8- 3 H] adenosine 3′,5′-cyclic phosphate (cAMP, 100 nM to 50 ⁇ M), 10 mM MgCl 2 , 1 mM EDTA, 50 mM Tris, pH 7.5.
  • substrate buffer containing [2,8- 3 H] adenosine 3′,5′-cyclic phosphate (cAMP, 100 nM to 50 ⁇ M), 10 mM MgCl 2 , 1 mM EDTA, 50 mM Tris, pH 7.5.
  • PDE4 human recombinant PDE4 (the amount was controlled so that ⁇ 10% product was formed in 10 min.).
  • the reaction was stopped after 10 min. by the addition of 1 mg of PDE-SPA beads (Amersham Pharmacia Biotech, Inc., Piscataway, N.J.).
  • the product AMP generated was quantified on a Wallac Microbeta® 96-well plate counter (EG&G Wallac Co., Gaithersburg, Md.). The signal in the absence of enzyme was defined as the background. 100% activity was defined as the signal detected in the presence of enzyme and DMSO with the background subtracted. Percentage of inhibition was calculated accordingly. IC 50 value was approximated with a non-linear regression fit using the standard 4-parameter/multiple binding sites equation from a ten point titration.
  • IC 50 values of Examples 1 to 33 were determined with 100 nM cAMP using the purified GST fusion protein of the human recombinant phosphodiesterase IVa (met-248) produced from a baculovirus/Sf-9 expression system. IC 50 values should be less than about 1000 nM, advantageously less than about 250 nM, and even more advantageously less than about 100 nM. The IC 50 values of Examples 1 to 33 ranged from 0.1 nM to 90.0 nM.
  • NMR data is in the form of delta ( ⁇ ) values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS) as internal standard, determined at 300 MHz, 400 MHz or 500 MHz using the indicated solvent.
  • TMS tetramethylsilane
  • Conventional abbreviations used for signal shape are: s. singlet; d. doublet; t. triplet; m. multiplet; br. broad; etc.
  • “Ar” signifies an aromatic signal.
  • the resulting 3-arylamino acrylate of formula V is obtained by evaporation of the solvent and may be further purified by chromatography on silica gel or crystallization from an appropriate solvent.
  • the compound of formula V may alternatively be used without further purification in the following step. Cyclization of the compound of formula V to the 1-haloaryl-1,4-dihydro[1,8]naphthyridin-4-one carboxylate of formula VI is effected by treatment with a small excess of a strong base such as an alkali metal hydride, for example sodium hydride, in an appropriate solvent such as tetrahydrofuran at a starting temperature of 0° C.
  • a strong base such as an alkali metal hydride, for example sodium hydride
  • the product of formula VI is isolated in crude form by dilution with a large volume of water followed by filtration or by extraction into an appropriate organic solvent such as diethyl ether, ethyl acetate, or a halogenated hydrocarbon solvent such as chloroform or methylene chloride.
  • the product can be further purified by chromatography on silica gel, crystallization or prolonged stirring in an appropriate solvent followed by filtration.
  • the ester product of formula VI thus obtained can be hydrolyzed to the corresponding carboxylic acid derivative under basic conditions, using an aqueous solution of an alkali base such as an alkali carbonate or preferably sodium or potassium hydroxide, with an organic cosolvent such as tetrahydrofuran or a primary, secondary or tertiary alkanol, such as methanol or ethanol, or a combination thereof at temperatures ranging from room temperature to reflux temperature for the appropriate time.
  • an alkali base such as an alkali carbonate or preferably sodium or potassium hydroxide
  • organic cosolvent such as tetrahydrofuran or a primary, secondary or tertiary alkanol, such as methanol or ethanol, or a combination thereof at temperatures ranging from room temperature to reflux temperature for the appropriate time.
  • the resultant carboxylic acid is isolated in crude form following acidification using an aqueous solution of an inorganic acid such as hydrochloric, sulfuric or a similar acid, and filtration or extraction into an appropriate organic solvent such as diethyl ether, ethyl acetate, or a halogenated hydrocarbon solvent such as chloroform or methylene chloride.
  • an inorganic acid such as hydrochloric, sulfuric or a similar acid
  • an appropriate organic solvent such as diethyl ether, ethyl acetate, or a halogenated hydrocarbon solvent such as chloroform or methylene chloride.
  • the product can be further purified by chromatography on silica gel, crystallization or prolonged stirring in an appropriate solvent followed by filtration.
  • the carboxylic acid is then transformed into the appropriate primary, secondary or tertiary amide analog of formula VII by any general procedure well known to the organic chemist, preferably via initial transformation into a mixed anhydride by treatment with a small excess, usually 1.25 equivalents, of an appropriate alkyl chloroformate such as ethyl or isobutyl chloroformate, in the presence of a larger excess, usually 2.5 equivalents, of a tertiary organic amine such as triethylamine or N,N-diisopropylethylamine in an organic solvent such as tetrahydrofuran at low temperature, preferably 0° C. for a period of 30 minutes to 3 hours.
  • an appropriate alkyl chloroformate such as ethyl or isobutyl chloroformate
  • a tertiary organic amine such as triethylamine or N,N-diisopropylethylamine in an organic solvent such as tetrahydro
  • the acid may be transformed into an acid chloride through the action of, for instance, thionyl chloride.
  • An excess, usually 5 or more equivalents, of an appropriate primary or secondary amine or of an aqueous solution of ammonium hydroxide is then added and the reaction is allowed to proceed at a temperature ranging from 0° C. to room temperature for an appropriate length of time, usually 1-24 hours.
  • the desired amide of formula VII is then isolated in crude form by precipitation with water and filtration or extraction into an appropriate organic solvent such as diethyl ether, ethyl acetate, or a halogenated hydrocarbon solvent such as chloroform or methylene chloride.
  • an amide of formula VII can be obtained from an acid and an amine via an appropriate coupling reagent, such as carbonyldiimidazole (CDI).
  • CDI carbonyldiimidazole
  • an amide compound of formula VII is reacted with an appropriately substituted acetylene of formula VIII under the catalysis of a transition metal species such as bis(triphenylphosphine)palladium (II) chloride or [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(1) in an appropriate solvent such as THF or DMF in the presence of triethylamine and a cuprous salt such as cuprous iodide, at a temperature ranging from room temperature to reflux for an appropriate period of time.
  • a transition metal species such as bis(triphenylphosphine)palladium (II) chloride or [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(1)
  • an appropriate solvent such as THF or DMF
  • a cuprous salt such as cuprous iodide
  • an amide of formula VII is reacted with trimethylsilylacetylene under the catalysis of a transition metal species such as bis(triphenylphosphine)palladium (II) chloride or [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) in an appropriate solvent such as THF or DMF in the presence of triethylamine and a cuprous salt such as cuprous iodide, at a temperature ranging from room temperature to reflux for an appropriate period of time.
  • a transition metal species such as bis(triphenylphosphine)palladium (II) chloride or [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) in an appropriate solvent such as THF or DMF in the presence of triethylamine and a cuprous salt such as cuprous iodide, at a temperature ranging from room temperature to reflux for an appropriate period
  • the resulting compound is liberated from the TMS protecting group under the action of an aqueous solution of an alkali hydroxide such as sodium or potassium hydroxide in the presence of an organic cosolvent such as methanol, or alternatively by treatment with a source of fluoride such as tetrabutylammonium fluoride in THF solution to yield an acetylene derivative of formula X.
  • an alkali hydroxide such as sodium or potassium hydroxide
  • organic cosolvent such as methanol
  • Such a compound is reacted with an appropriate alkyl or aryl or heteroaryl halide of formula XI under the catalysis of a transition metal species such as bis(triphenylphosphine)palladium (II) chloride or [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) in an appropriate solvent such as THF or DMF in the presence of triethylamine and a cuprous salt such as cuprous iodide, at a temperature ranging from room temperature to reflux for an appropriate period of time, to yield a compound of formula I.
  • a transition metal species such as bis(triphenylphosphine)palladium (II) chloride or [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) in an appropriate solvent such as THF or DMF in the presence of triethylamine and a cuprous salt such as cuprous
  • acetylenic reagents of formula VIII used in this invention were of commercial sources.
  • appropriately substituted acetylenes of formula VIII were synthesized as outlined in Scheme 4, preferentially from corresponding halides (XI) by initial condensation with trimethylsilylacetylene under the catalysis of a transition metal species, followed by removal of the TMS group, as described above in Scheme 2 in the preparation of compounds of type X or XII.
  • the anion of trimethylsilylacetylene is generated at low temperature, using a an alkyllithium base such as n-butyllithium, and it can be reacted with an appropriately substituted aldehyde or ketone to afford the desired reagent of formula VIII.
  • aryl and heteroaryl halides corresponding to compounds of formula XI bearing a secondary or tertiary alcohol as substituent.
  • a halogen-substituted pyridyl carboxylate of formula XVI can be reacted with an organometallic species such as a Grignard reagent to afford a tertiary alcohol of formula XVII.
  • an organometallic species such as a Grignard reagent
  • a dibromopyridine substrate of formula XVIII may be monometallated using an alkyllithium species such as n-butyllithium, followed by addition of an aldehyde or ketone to yield a compound of formula XVII.
  • a thiophene derivative of formula XX results from the reaction of a halogen substituted thiophene aldehyde or ketone of formula XIX (Scheme 6) with an organometallic species such as a Grignard reagent.
  • pyridine derivatives can be oxidized to the corresponding N-oxides using well-known reagents such as m-chloroperoxybenzoic acid or magnesium monoperoxyphthalate.
  • Step 1 Ethyl 3-(3-bromoanilino)-2-(2-chloronicotinoyl) Acrylate.
  • Step 2 Ethyl 1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate.
  • the crude compound from Step 1 was dissolved in tetrahydrofuran (500 mL), the solution was cooled to 0° C., and sodium hydride (as a 60% dispersion in oil, 9.4 g, 235 mmol) was added in portions. After stirring at 0° for 1 hour, the resulting mixture was allowed to warn up to room temperature. After 2 hours, water (400 mL) was added to the resulting suspension and the insoluble solid was filtered and washed copiously with water.
  • sodium hydride as a 60% dispersion in oil, 9.4 g, 235 mmol
  • Step 3 1-(3-Bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylic Acid.
  • a suspension of ethyl 1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate from Step 2 (52.5 g, 140.7 mmol) in a mixture of tetrahydrofuran (400 mL), methanol (400 mL) and 1N aqueous sodium hydroxide (280 mL) was heated at ca 50° C. with stirring for 20 minutes. After cooling, the mixture was diluted with water (300 mL) and 1N aqueous HCl (325 mL) was added.
  • Step 4 N-Isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3 carboxamide
  • Step 5 N-Isopropyl-1-[(3-phenylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1 N-Isopropyl-1-[3-(trimethylsilylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 2 N-Isopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthbridin-4-one-3-carboxamide
  • the crude product from Step 1 was dissolved in methanol (12 mL/mmol) and 1N aqueous sodium hydroxide was added (3 eq), resulting in a suspension.
  • the suspension mixture was stirred at room temperature for 2 hours and the methanol was evaporated.
  • the resulting aqueous suspension was diluted with water and the product was extracted out with ethyl acetate.
  • the crude product was chromatographed on silica gel eluting with 10% ether in methylene chloride to afford the N-isopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound as a solid.
  • Step 1 N-Cyclopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Steps 2 and 3 N-Cyclopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4 one-3-carboxamide
  • Step 1 1-Ethynylcyclopropanol.
  • the 1-ethynylcyclopropanol was prepared following the procedure described in J. Org. Chem. 1976, 41, 1237 from [(1-ethoxycyclopropyl)oxy]trimethylsilane and ethynyl magnesium bromide and was obtained as a liquid.
  • Step 2 N-Isopropyl-1-[3-(1-hydroxycyclopropyl)ethynylphenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Step 1 1,1,1-trifluoro-2-(trifluoromethyl)-4-(trimethylsilyl)but-3-yn-2-ol.
  • Step 2 N-Isopropyl-1- ⁇ 3-[4,4,4-trifluoro-3-hydroxy-3-(trifluoromethyl)but-1-ynyl]phenyl ⁇ -1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Step 5 of EXAMPLE 1 The procedure of Step 5 of EXAMPLE 1 was then applied, but substituting this solution for phenylacetylene to afford the N-Isopropyl-1- ⁇ 3-[4,4,4-trifluoro-3-hydroxy-3-(trifluoromethyl)but-1-ynyl]phenyl ⁇ -1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound as a solid.
  • Step 1 3-Ethynylpyridine N-oxide.
  • Step 2 N-Cyclopropyl-1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Step 1 3-Bromo-5-(1-hydroxy-1-methylethyl)pyridine.
  • Step 2 3-Bromo-5-(1-hydroxy-1-methylethyl)pyridine-N-oxide.
  • Step 3 N-Isopropyl-1- ⁇ 3-[5-(1-hydroxy-1-methylethyl)-1-oxido-3-pyridinylethynyl]phenyl ⁇ -1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Step 1 5-Bromo-2-(1-hydroxy-1-methylethyl) Pyridine.
  • Step 2 5-Bromo-2-(1-methyl-1- ⁇ [2-(trimethylsilyl)ethoxy]methoxy ⁇ ethyl)pyridine.
  • Step 3 2-(1-Methyl-1- ⁇ [2-(trimethylsilyl)ethoxy]methoxy ⁇ ethyl)-5-[(trimethylsilyl)ethynyl]pyridine.
  • Step 4 5-Ethynyl-2-(1-methyl-1- ⁇ [2-(trimethylsilyl)ethoxy]methoxy ⁇ ethyl)pyridine.
  • Step 5 N-Isopropyl-1-(3- ⁇ [6-(1-methyl-1- ⁇ 2-trimethylsilyl)ethoxy]methoxy ⁇ ethyl)pyridin-3-yl]ethynyl ⁇ phenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Step 6 N-Isopropyl-1- ⁇ 3-[6-(1-hydroxy-1-methylethyl)-3-pyridinylethynyl]phenyl ⁇ -1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Step 1 Methyl 2-bromoisonicotinate.
  • Step 2 2-Bromo-4-(1-hydroxy-1-methylethyl)pyridine.
  • Step 3 N-Isopropyl-1- ⁇ 3-[4-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl ⁇ -1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Step 1 2-Bromo-5-(1-hydroxy-1-methylethyl)pyridine.
  • Step 2 5-(1-Hydroxy-1-methylethyl)-2-[(trimethylsilyl)ethynyl]pyridine.
  • Step 3 2-Ethynyl-5-(1-hydroxy-1-methylethyl)pyridine.
  • Step 4 N-Isopropyl-1- ⁇ 3-[5-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl ⁇ -1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1 2-Bromo-6-(1-hydroxy-1-methylethyl)pyridine.
  • Step 2 N-Isopropyl-1- ⁇ 3-[6-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl ⁇ -1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Step 1 5-Bromo-2-(1-hydroxy-1-methylethyl)pyridine N-oxide.
  • Step 2 N-Cyclopropyl-1- ⁇ 3-[6-(1-hydroxy-1-methylethyl)-1-oxido-3-pyridinylethynyl]phenyl ⁇ -1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Step 1 3-(4-Bromophenyl)pyridine.
  • Step 2 N-Isopropyl-1- ⁇ 3-[(4-pyridin-3-ylphenyl)ethynyl]phenyl ⁇ -1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Step 1 2-Bromo-5-(1-hydroxy-1-methylethyl)thiophene.
  • Step 2 2-(1-Hydroxy-1-methylethyl)-5-trimethylsilylethynyl Thiophene.
  • Step 3 2-Ethynyl-5-(1-hydroxy-1-methylethyl)thiophene.
  • Step 4 N-Isopropyl-1-(3- ⁇ [5-(1-hydroxy-1-methylethyl)thien-2-yl]ethynyl ⁇ phenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Step 1 2-(1-hydroxy-1-methylethyl)thiazole.
  • Step 2 2-(1-methyl-1- ⁇ [2-(trimethylsilyl)ethoxy]methoxy ⁇ ethyl)thiazole.
  • Step 3 5-Bromo-2-(1-hydroxy-1-methylethyl)thiazole.
  • Step 4 N-Isopropyl-1-(3- ⁇ [2-(1-hydroxy-1-methylethyl)-1,3-thiazol-5-yl]ethynyl ⁇ phenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Step 2 1-[3-(Trimethylsilylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Step 4 1-[3-(1-oxido-3-pyridinylethvnyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1 Ethyl 1-(3-Ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate.
  • Step 2 Ethyl 1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate.
  • Step 3 of EXAMPLE 1 substituting the ethyl 1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate ester from present Step 2 for ethyl 1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate, the 1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylic acid was obtained as a white solid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Psychiatry (AREA)
  • Urology & Nephrology (AREA)
  • Dermatology (AREA)
  • Psychology (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Toxicology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Hospice & Palliative Care (AREA)
  • Otolaryngology (AREA)
  • Heart & Thoracic Surgery (AREA)

Abstract

Compounds represented by Formula (I) or a pharmaceutically acceptable salt thereof, are phosphodiesterase 4 inhibitors useful in the treatment of asthma and inflammation.
Figure US20050070569A1-20050331-C00001

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention is directed to compounds that are alkyne-aryl substituted 1,8-naphthyridin-4(1H)-ones. In particular, this invention is directed to phenyl substituted 1,8-naphthyridin-4(1H)-ones which are phosphodiesterase-4 inhibitors wherein the phenyl group is at the 1-position and contains a 2-alkyne substituent group further optionally substituted.
  • 2. Related Background
  • Hormones are compounds that variously affect cellular activity. In many respects, hormones act as messengers to trigger specific cellular responses and activities. Many effects produced by hormones, however, are not caused by the singular effect of just the hormone. Instead, the hormone first binds to a receptor, thereby triggering the release of a second compound that goes on to affect the cellular activity. In this scenario, the hormone is known as the first messenger while the second compound is called the second messenger. Cyclic adenosine monophosphate (adenosine 3′,5′-cyclic monophosphate, “cAMP” or “cyclic AMP”) is known as a second messenger for hormones including epinephrine, glucagon, calcitonin, corticotrophin, lipotropin, luteinizing hormone, norepinephrine, parathyroid hormone, thyroid-stimulating hormone, and vasopressin. Thus, cAMP mediates cellular responses to hormones. Cyclic AMP also mediates cellular responses to various neurotransmitters.
  • Phosphodiesterases (“PDE”) are a family of enzymes that metabolize 3′, 5′ cyclic nucleotides to 5′ nucleoside monophosphates, thereby terminating cAMP second messenger activity. A particular phosphodiesterase, phosphodiesterase-4 (“PDE4”, also known as “PDE-IV”), which is a high affinity, cAMP specific, type IV PDE, has generated interest as potential targets for the development of novel anti-asthmatic and anti-inflammatory compounds. PDE4 is known to exist as at lease four isoenzymes, each of which is encoded by a distinct gene. Each of the four known PDE4 gene products is believed to play varying roles in allergic and/or inflammatory responses. Thus, it is believed that inhibition of PDE4, particularly the specific PDE4 isoforms that produce detrimental responses, can beneficially affect allergy and inflammation symptoms. It would be desirable to provide novel compounds and compositions that inhibit PDE4 activity.
  • A major concern with the use of PDE4 inhibitors is the side effect of emesis which has been observed for several candidate compounds as described in C. Burnouf et al., (“Burnouf”), Ann. Rep. In Med. Chem., 33:91-109(1998). B. Hughes et al., Br. J. Pharmacol., 118:1183-1191(1996); M. J. Perry et al., Cell Bioclhem. Biophys., 29:113-132(1998); S. B. Christensen et al., J. Med. Chem., 41:821-835(1998); and Burnouf describe the wide variation of the severity of the undesirable side effects exhibited by various compounds. As described in M. D. Houslay et al., Adv. In Pharmacol., 44:225-342(1998) and D. Spina et al., Adv. In Pharmacol., 44:33-89(1998), there is great interest and research of therapeutic PDE4 inhibitors.
  • International Patent Publication WO9422852 describes quinolines as PDE4 inhibitors. International Patent Publication WO9907704 describes 1-aryl-1,8-naphthylidin-4-one derivatives as PDE4 inhibitors.
  • A. H. Cook, et al., J. Chem. Soc., 413-417(1943) describes gamma-pyridylquinolines. Other quinoline compounds are described in Kei Manabe et al., J. Org. Chem., 58(24):6692-6700(1993); Kei Manabe et al., J. Am. Chem. Soc., 115(12):5324-5325(1993); and Kei Manabe et al., J. Am. Chem. Soc., 114(17):6940-6941(1992).
  • Compounds that include ringed systems are described by various investigators as effective for a variety of therapies and utilities. For example, International Patent Publication No. WO 98/25883 describes ketobenzamides as calpain inhibitors, European Patent Publication No. EP 811610 and U.S. Pat. Nos. 5,679,712, 5,693,672 and 5,747,541 describe substituted benzoylguanidine sodium channel blockers, U.S. Pat. No. 5,736,297 describes ring systems useful as a photosensitive composition.
  • U.S. Pat. Nos. 5,491,147, 5,608,070, 5,622,977, 5,739,144, 5,776,958, 5,780,477, 5,786,354, 5,798,373, 5,849,770, 5,859,034, 5,866,593, 5,891,896, and International Patent Publication WO 95/35283 describe PDE4 inhibitors that are tri-substituted aryl or heteroaryl phenyl derivatives. U.S. Pat. No. 5,580,888 describes PDE4 inhibitors that are styryl derivatives. U.S. Pat. No. 5,550,137 describes PDE4 inhibitors that are phenylaminocarbonyl derivatives. U.S. Pat. No. 5,340,827 describes PDE4 inhibitors that are phenylcarboxamide compounds. U.S. Pat. No. 5,780,478 describes PDE4 inhibitors that are tetra-substituted phenyl derivatives. International Patent Publication WO 96/00215 describes substituted oxime derivatives useful as PDE4 inhibitors. U.S. Pat. No. 5,633,257 describes PDE4 inhibitors that are cyclo(alkyl and alkenyl)phenyl-alkenyl (aryl and heteroaryl) compounds.
  • However, there remains a need for novel compounds and compositions that therapeutically inhibit PDE4 with minimal side effects.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to alkyne-aryl substituted 1,8-naphthyridin-4(1H)-ones represented by Formula (I):
    Figure US20050070569A1-20050331-C00002

    or pharmaceutically acceptable salts thereof, which are phosphodiesterase-4 inhibitors.
  • This invention also provides a pharmaceutical composition which includes an effective amount of the novel alkyne-aryl substituted 1,8-naphthyridin-4(1H)-ones and a pharmaceutically acceptable carrier. This invention further provides a method of treatment in mammals of, for example, i) Pulmonary disorders such as asthma, chronic bronchitis, chronic obstructive pulmonary disease (COPD), adult respiratory distress syndrome, infant respiratory distress syndrome, cough, chronic obstructive pulmonary disease in animals, adult respiratory distress syndrome, and infant respiratory distress syndrome, ii) Gastrointestinal disorders such as ulcerative colitis, Crohn's disease, and hypersecretion of gastric acid, iii) Infectious diseases such as bacterial, fungal or viral induced sepsis or septic shock, endotoxic shock (and associated conditions such as laminitis and colic in horses), and septic shock, iv) Neurological disorders such as spinal cord trauma, head injury, neurogenic inflammation, pain, and reperfusion injury of the brain, v) Inflammatory disorders such as psoriatic arthritis, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, inflammation and cytokine-mediated chronic tissue degeneration, vi) Allergic disorders such as allergic rhinitis, allergic conjunctivitis, and eosinophilic granuloma, vii) Psychiatric disorders such as depression, memory impairment, and monopolar depression, viii) Neurodegenerative disorders such as Parkinson disease, Alzheimer's disease, acute and chronic multiple sclerosis, ix) Dermatological disorders such as psoriasis and other benign or malignant proliferative skin diseases, atopic dermatitis, and urticaria, x) Oncological diseases such as cancer, tumor growth and cancerous invasion of normal tissues, xi) Metabolic disorders such as diabetes insipidus, xii) Bone disorders such as osteoporosis, xiii) Cardiovascular disorders such as arterial restenosis, atherosclerosis, reperfusion injury of the myocardium, and xiv) Other disorders such as chronic glomerulonephritis, vernal conjunctivitis, transplant rejection and graft versus host disease, and cachexia—maladies that are amenable to amelioration through inhibition of the PDE4 isoenzyme and the resulting elevated cAMP levels—by the administration of an effective amount of the novel alkyne-aryl substituted 1,8-naphthyridin-4(1H)-ones or a precursor compound which forms in vivo the novel alkyne-aryl substituted 1,8-naphthyridin-4(1H)-ones which are phosphodiesterase-4 inhibitors.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A compound of this invention is represented by Formula (I):
    Figure US20050070569A1-20050331-C00003

    or a pharmaceutically acceptable salt thereof, wherein
      • R is H, —C1-6alkyl or —C3-6cycloalkyl;
      • R1 is H, or a —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkoxy, —C2-6alkenyl, —C3-6alkynyl, —C(O)—C1-6alkyl, —C(O)-aryl, —(C0-6alkyl)SOn—(C1-6alkyl), —(C0-6alkyl)-SOn-(aryl), phenyl, heteroaryl, or heterocycloC3-7alkyl group, wherein any of the groups is optionally substituted with 1-3 independent —C1-6alkyl, —C1-6alkoxy, OH, —N(C0-6alkyl)(C0-6alkyl), —(C0-6alkyl)-SOn—(Cl1-6alkyl), nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, or halogen substituents;
      • R2 is absent, H, halogen, —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkyl(C3-6cycloalkyl)(C3-6cycloalkyl), —C1-6alkoxy, phenyl, heteroaryl, heterocycloC3-7alkyl, nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, —N(C0-6alkyl)(C0-6alkyl), —NHSOn—(C1-6alkyl), —NHC(O)—1-6alkyl, —NHC(O)-aryl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, —C1-6alkyl(═N—OH), —C(N═NOH)C1-6alkyl, —C0-6alkyl(oxy)C1-6alkyl-phenyl, —SOnNH(C0-6alkyl), or —(C0-6alkyl)-SOnC-1-6alkyl), wherein the phenyl, heteroaryl or heterocycloC3-7alkyl is optionally substituted with halogen, —C1-6alkyl, —C1-6alkoxy, hydroxy, —N(C0-6alkyl)(C0-6alkyl), or —C(O)—O—C1-6alkyl, and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents;
      • n is 0, 1, or 2;
      • R3 is absent, H, OH, —N(C0-6alkyl)(C0-6alkyl), halogen or C1-6alkyl, wherein any alkyl is optionally substituted with 1-6 independent halogen, OH, or —N(C0-6alkyl)(C0-6alkyl) substituents;
      • R4, R5, R6, and R7 each independently is H, halogen, —C1-6alkyl, —C1-6alkoxy, —SOn—(C1-6alkyl), nitro, CN, or —N(C0-6alkyl)(C0-6alkyl), and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents; and
      • R8 is phenyl, pyridyl, pyrimidyl, indolyl, quinolinyl, thienyl, pyridonyl, oxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, or imidazolyl; or oxides thereof when R8 is a heteroaryl; or H, —C1-6alkyl, or —C3-6cycloalkyl, and any alkyl is optionally substituted with 1-6 independent halogen, —N(C0-6alkyl)(C0-6alkyl), —N(C3-7cycloalkyl)(C0-6alkyl), —N(C3-7cycloalkyl)(C3-7cycloalkyl), N-heterocycloC4-7alkyl, —SOnC1-6alkyl), —SOn-(aryl), or —OH substituents.
  • In one aspect, a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
      • R is H, —C1-6alkyl or —C3-6cycloalkyl;
      • R1 is H, or a —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkoxy, —C2-6alkenyl, —C3-6alkynyl, —C(O)—C1-6alkyl, —C(O)-aryl, —(C0-6alkyl)-SOn—(C1-6alkyl), —(C0-6alkyl)-SOn-(aryl), phenyl, heteroaryl, or heterocycloC3-7alkyl group, wherein any of the groups is optionally substituted with 1-3 independent —C1-6alkyl, —C1-6alkoxy, OH, —N(C0-6alkyl)(C0-6alkyl), —(C0-6alkyl)-SOn—(C1-6alkyl), nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, or halogen substituents;
      • R2 is absent;
      • n is 0, 1, or 2;
      • R3 is absent;
      • R4, R5, R6, and R7 each independently is H, halogen, —C1-6alkyl, —C1-6alkoxy, —SOn—(C1-6alkyl), nitro, CN, or —N(C0-6alkyl)(C0-6alkyl), and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents; and
      • R8 is H.
  • In a second aspect, a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
      • R is H, —C1-6alkyl or —C3-6cycloalkyl;
      • R1 is H, or a —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkoxy, —C2-6alkenyl, —C3-6alkynyl, —C(O)—C1-6alkyl, —C(O)-aryl, —(C0-6alkyl)-SOn—(C1-6alkyl), —(C0-6alkyl)SOn-(aryl), phenyl, heteroaryl, or heterocycloC3-7alkyl group, wherein any of the groups is optionally substituted with 1-3 independent —C1-6alkyl, —C1-6alkoxy, OH, —N(C0-6alkyl)(C0-6alkyl), —(C0-6alkyl)-SOn—(C1-6alkyl), nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, or halogen substituents;
      • R2 is absent, H, halogen, —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkyl(C3-6cycloalkyl)(C3-6cycloalkyl), —C1-6alkoxy, phenyl, heteroaryl, heterocycloC3-7alkyl, nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, —N(C0-6alkyl)(C0-6alkyl), —NHSOn—(C1-6alkyl), —NHC(O)C1-6alkyl, —NHC(O)-aryl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, —C1-6alkyl(═N—OH), —C(N═NOH)C6alkyl, —C0-6alkyl(oxy)C1-6alkyl-phenyl, —SOnNH(C0-6alkyl), or —(C0-6alkyl)-SOn—(C1-6alkyl), wherein the phenyl, heteroaryl or heterocycloC3-7alkyl is optionally substituted with halogen, —C1-6alkyl, —C1-6alkoxy, hydroxy, —N(C0-6alkyl)(C0-6alkyl), or —C(O)—O—C1-6alkyl, and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents;
      • n is 0, 1, or 2;
      • R3 is absent, H, OH, —N(C0-6alkyl)(C0-6alkyl), halogen or C1-6alkyl, wherein any alkyl is optionally substituted with 1-6 independent halogen, OH, or —N(C0-6alkyl)(C0-6alkyl) substituents;
      • R4, R5, R6, and R7 each independently is H, halogen, —C1-6alkyl, —C1-6alkoxy, —SOn—(C1-6alkyl), nitro, CN, or —N(C0-6alkyl)(C0-6alkyl), and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents; and
      • R8 is phenyl, pyridyl, pyrimidyl, indolyl, quinolinyl, thienyl, pyridonyl, oxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, or imidazolyl; or oxides thereof when R8 is a heteroaryl.
  • In an embodiment of the second aspect, a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
      • R is H, —C1-6alkyl or —C3-6cycloalkyl;
      • R1 is H, or a —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkoxy, —C2-6alkenyl, —C3-6alkynyl, —C(O)C1-6alkyl, —C(O)-aryl, C0-6alkyl) SOn-(C1-6alkyl), —(C0-6alkyl)SOn-(aryl), phenyl, heteroaryl, or heterocycloC3-7alkyl group, wherein any of the groups is optionally substituted with 1-3 independent —C1-6alkyl, —C1-6alkoxy, OH, —N(C0-6alkyl)(C0-6alkyl), —(C0-6alkyl)SOn—(C1-6alkyl), nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, or halogen substituents;
      • R2 is absent, H, halogen, —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkyl(C3-6cycloalkyl)(C3-6cycloalkyl), —C1-6alkoxy, phenyl, heteroaryl, heterocycloC3-7alkyl, nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, —N(C0-6alkyl)(C0-6alkyl), —NHSOnC1-6alkyl), —NHC(O)C1-6alkyl, —NHC(O)-aryl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, —C1-6alkyl(═N—OH), —C(N═NOH)C1-6alkyl, —C0-6alkyl(oxy)C1-6alkyl-phenyl, —SOnNH(C0-6alkyl), or —(C0-6alkyl)SOn—(C1-6alkyl), wherein the phenyl, heteroaryl or heterocycloC3-7alkyl is optionally substituted with halogen, —C1-6alkyl, —C1-6alkoxy, hydroxy, —N(C0-6alkyl)(C0-6alkyl), or —C(O)—O—C1-6alkyl, and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents;
      • n is 0, 1, or 2;
      • R3 is absent, H, OH, —N(C0-6alkyl)(C0-6alkyl), halogen or C1-6alkyl, wherein any alkyl is optionally substituted with 1-6 independent halogen, OH, or —N(C0-6alkyl)(C0-6alkyl) substituents;
      • R4, R5, R6, and R7 each independently is H, halogen, —C1-6alkyl, —C1-6alkoxy, SOn—(C1-6alkyl), nitro, CN, or —N(C0-6alkyl)(C0-6alkyl), and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents; and
      • R8 is phenyl.
  • In another embodiment of the second aspect, a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
      • R is H, —C1-6alkyl or —C3-6cycloalkyl;
      • R1 is H, or a —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkoxy, —C2-6alkenyl, —C3-6alkynyl, —C(O)—C1-6alkyl, —C(O)-aryl, —(C0-6alkyl)SOn—(C1-6alkyl), —(C0-6alkyl)-SOn-(aryl), phenyl, heteroaryl, or heterocycloC3-7alkyl group, wherein any of the groups is optionally substituted with 1-3 independent —C1-6alkyl, —C1-6alkoxy, OH, —N(C0-6alkyl)(C0-6alkyl), —(C0-6alkyl)SOn—(C1-6alkyl), nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, or halogen substituents;
      • R2 is absent, H, halogen, —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkyl(C3-6cycloalkyl)(C3-6cycloalkyl), —C1-6alkoxy, phenyl, heteroaryl, heterocycloC3-7alkyl, nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, —N(C0-6alkyl)(C0-6alkyl), —NHSOn—(C1-6alkyl), —NHC(O)—C1-6alkyl, —NHC(O)-aryl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, —C1-6alkyl(═N—OH), —C(N═NOH)C1-6alkyl, —C0-6alkyl(oxy)C1-6alkyl-phenyl, —SOnNH(C0-6alkyl), or —(C0-6alkyl)-SOn—(C1-6alkyl), wherein the phenyl, heteroaryl or heterocycloC3-7alkyl is optionally substituted with halogen, —C1-6alkyl, —C1-6alkoxy, hydroxy, —N(C0-6alkyl)(C0-6alkyl), or —C(O)—O—C1-6alkyl, and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents;
      • n is 0, 1, or 2;
      • R3 is absent, H, OH, —N(C0-6alkyl)(C0-6alkyl), halogen or C1-6alkyl, wherein any alkyl is optionallysubstituted with 1-6 independent halogen, OH, or —N(C0-6alkyl)(C0-6alkyl) substituents;
      • R4, R5, R6, and R7 each independently is H, halogen, —C1-6alkyl, —C1-6alkoxy, —SOn—(C1-6alkyl), nitro, CN, or —N(C0-6alkyl)(C0-6alkyl), and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents; and
      • R8 is pyridyl, or oxides thereof.
  • In yet another embodiment of the second aspect, a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
      • R is H, —C1-6alkyl or —C3-6cycloalkyl;
      • R1 is H, or a —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkoxy, —C2-6alkenyl, —C3-6alkynyl, —C(O)—C1-6alkyl, —C(O)-aryl, —(C0-6alkyl)-SOn—(C1-6alkyl), —(C0-6alkyl)SOn-(aryl), phenyl, heteroaryl, or heterocycloC3-7alkyl group, wherein any of the groups is optionally substituted with 1-3 independent —C1-6alkyl, —C1-6alkoxy, OH, —N(C0-6alkyl)(C0-6alkyl), —(C0-6alkyl)-SOn—(C1-6alkyl), nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, or halogen substituents;
      • R2 is absent, H, halogen, —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkyl(C3-6cycloalkyl)(C3-6cycloalkyl), —C1-6alkoxy, phenyl, heteroaryl, heterocycloC3-7alkyl, nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, —N(C0-6alkyl)(C0-6alkyl), —NHSOn—(C1-6alkyl), —NHC(O)—C1-6alkyl, —NHC(O)-aryl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, —C1-6alkyl(═N—OH), —C(N═NOH)C1-6alkyl, —C0-6alkyl(oxy)C1-6alkyl-phenyl, —SOnNH(C0-6alkyl), or —(C0-6alkyl)-SOn—(C1-6alkyl), wherein the phenyl, heteroaryl or heterocycloC3-7alkyl is optionally substituted with halogen, —C1-6alkyl, —C1-6alkoxy, hydroxy, —N(C0-6alkyl)(C0-6alkyl), or —C(O)—O—C1-6alkyl, and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents;
      • n is 0, 1, or 2;
      • R3 is absent, H, OH, —N(C0-6alkyl)(C0-6alkyl), halogen or C1-6alkyl, wherein any alkyl is optionally substituted with 1-6 independent halogen, OH, or —N(C0-6alkyl)(C0-6alkyl) substituents;
      • R4, R5, R6, and R7 each independently is H, halogen, —C1-6alkyl, —C1-6alkoxy, —SOn—(C1-6alkyl), nitro, CN, or —N(C0-6alkyl)(C0-6alkyl), and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents; and
      • R8 is quinolinyl, or oxides thereof.
  • In still another embodiment of the second aspect, a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
      • R is H, —C1-6alkyl or —C3-6cycloalkyl;
      • R1 is H, or a —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkoxy, —C2-6alkenyl, —C3-6alkynyl, —C(O)C1-6alkyl, —C(O)-aryl, —(C0-6alkyl)-SOn-(C1-6alkyl), -(C0-6alkyl)-SOn-(aryl), phenyl, heteroaryl, or heterocycloC3-7alkyl group, wherein any of the groups is optionally substituted with 1-3 independent —C1-6alkyl, —C1-6alkoxy, OH, —N(C0-6alkyl)(C0-6alkyl), —(C0-6alkyl)-SOn—(C1-6alkyl), nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, or halogen substituents;
      • R2 is absent, H, halogen, —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkyl(C3-6cycloalkyl)(C3-6cycloalkyl), —C1-6alkoxy, phenyl, heteroaryl, heterocycloC3-7alkyl, nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, —N(C0-6alkyl)(C0-6alkyl), —NHSOn—(C1-6alkyl), —NHC(O)—C1-6alkyl, —NHC(O)-aryl, —C(O)C1-6alkyl, —C(O)—O—C1-6alkyl, —C1-6alkyl(═N—OH), —C(N═NOH)C1-6alkyl, —C0-6alkyl(oxy)C1-6alkyl-phenyl, —SOnNH(C0-6alkyl), or —(C0-6alkyl)SOn—(C1-6alkyl), wherein the phenyl, heteroaryl or heterocycloC3-7alkyl is optionally substituted with halogen, —C1-6alkyl, —C1-6alkoxy, hydroxy, —N(C0-6alkyl)(C0-6alkyl), or —C(O)—O—C1-6alkyl, and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents;
      • n is 0, 1, or 2;
      • R3 is absent, H, OH, —N(C0-6alkyl)(C0-6alkyl), halogen or C1-6alkyl, wherein any alkyl is optionally substituted with 1-6 independent halogen, OH, or —N(C0-6alkyl)(C0-6alkyl) substituents;
      • R4, R5, R6, and R7 each independently is H, halogen, —C1-6alkyl, —C1-6alkoxy, —SOn—(C1-6alkyl), nitro, CN, or —N(C0-6alkyl)(C0-6alkyl), and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents; and
      • R8 is thienyl, or oxides thereof.
  • In another embodiment of the second aspect, a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
      • R is H, —C1-6alkyl or —C3-6cycloalkyl;
      • R1 is H, or a —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkoxy, —C2-6alkenyl, —C3-6alkynyl, —C(O)—C1-6alkyl, —C(O)-aryl, —(C0-6alkyl)-SOn—(C1-6alkyl), —(C0-6alkyl)-SOn-(aryl), phenyl, heteroaryl, or heterocycloC3-7alkyl group, wherein any of the groups is optionally substituted with 1-3 independent —C1-6alkyl, —C1-6alkoxy, OH, —N(C0-6alkyl)(C0-6alkyl), —(C0-6alkyl)-SOn—(C1-6alkyl), nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, or halogen substituents;
      • R2 is absent, H, halogen, —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkyl(C3-6cycloalkyl)(C3-6cycloalkyl), —C1-6alkoxy, phenyl, heteroaryl, heterocycloC3-7alkyl, nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, —N(C0-6alkyl)(C0-6alkyl), —NHSOn—(C1-6alkyl), —NHC(O)—C1-6alkyl, —NHC(O)-aryl, —C(O)—C1-6alkyl, —C(O)—O—C6alkyl, —C1-6alkyl(═N—OH), —C(N═NOH)C1-6alkyl, —C0-6alkyl(oxy)C1-6alkyl-phenyl, —SOnNH(C0-6alkyl), or —(C0-6alkyl)-SOn—(C1-6alkyl), wherein the phenyl, heteroaryl or heterocycloC3-7alkyl is optionally substituted with halogen, —C1-6alkyl, —C1-6alkoxy, hydroxy, —N(C0-6alkyl)(C0-6alkyl), or —C(O)—O—C1-6alkyl, and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents;
      • n is 0, 1, or 2;
      • R3 is absent, H, OH, —N(C0-6alkyl)(C0-6alkyl), halogen or C1-6alkyl, wherein any alkyl is optionally substituted with 1-6 independent halogen, OH, or —N(C0-6alkyl)(C0-6alkyl) substituents;
      • R4, R5, R6, and R7 each independently is H, halogen, —C1-6alkyl, —C1-6alkoxy, —SOn—(C1-6alkyl), nitro, CN, or —N(C0-6alkyl)(C0-6alkyl), and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents; and
      • R8 is thiazolyl, or oxides thereof.
  • In a third aspect, a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
      • R is H, —C1-6alkyl or —C3-6cycloalkyl;
      • R1 is H, or a —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkoxy, —C2-6alkenyl, —C3-6alkynyl, —C(O)C1-6alkyl, —C(O)-aryl, C0-6alkyl)-SOn—(C1-6alkyl), —(C0-6alkyl)-SOn-(aryl), phenyl, heteroaryl, or heterocycloC3-7alkyl group, wherein any of the groups is optionally substituted with 1-3 independent —C1-6alkyl, —C1-6alkoxy, OH, —N(C0-6alkyl)(C0-6alkyl), —(C0-6alkyl)-SOn—(C1-6alkyl), nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, or halogen substituents;
      • R2 is absent, H, halogen, —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkyl(C3-6cycloalkyl)(C3-6cycloalkyl), —C1-6alkoxy, phenyl, heteroaryl, heterocycloC3-7alkyl, nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, —N(C0-6alkyl)(C0-6alkyl), —NHSOn—(C1-6alkyl), —NHC(O)—C1-6alkyl, —NHC(O)-aryl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, —C1-6alkyl(═N—OH), —C(N═NOH)C1-6alkyl, —C0-6alkyl(oxy)C1-6alkyl-phenyl, —SOnNH(C0-6alkyl), or —(C0-6alkyl)-SOn—(C1-6alkyl), wherein the phenyl, heteroaryl or heterocycloC3-7alkyl is optionally substituted with halogen, —C1-6alkyl, —C1-6alkoxy, hydroxy, —N(C0-6alkyl)(C0-6alkyl), or —C(O)—O—C1-6alkyl, and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents;
      • n is 0, 1, or 2;
      • R3 is absent, H, OH, —N(C0-6alkyl)(C0-6alkyl), halogen or C1-6alkyl, wherein any alkyl is optionally substituted with 1-6 independent halogen, OH, or —N(C0-6alkyl)(C0-6alkyl) substituents;
      • R4, R5, R6, and R7 each independently is H, halogen, —C1-6alkyl, —C1-6alkoxy, SOn—(C1-6alkyl), nitro, CN, or —N(C0-6alkyl)(C0-6alkyl), and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents; and
      • R8 is —C3-6cycloalkyl, optionally substituted with 1-6 independent halogen, —N(C0-6alkyl)(C0-6alkyl), —N(C3-7cycloalkyl)(C0-6alkyl), —N(C3-7cycloalkyl)(C3-7cycloalkyl), N-heterocycloC4-7alkyl, —SOn—(C1-6alkyl), —SOn-(aryl), or —OH substituents.
  • In a fourth aspect, a compound of this invention is represented by Formula (I) or a pharmaceutically acceptable salt thereof, wherein
      • R is H, —C1-6alkyl or —C3-6cycloalkyl;
      • R1 is H, or a —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkoxy, —C2-6alkenyl, —C3-6alkynyl, —C(O)C1-6alkyl, —C(O)-aryl, C0-6alkyl)-SOn—(C1-6alkyl), —(C0-6alkyl)SOn-(aryl), phenyl, heteroaryl, or heterocycloC3-7alkyl group, wherein any of the groups is optionally substituted with 1-3 independent —C1-6alkyl, —C1-6alkoxy, OH, —N(C0-6alkyl)(C0-6alkyl), —(C0-6alkyl)-SOn—(C1-6alkyl), nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, or halogen substituents;
      • R2 is absent, H, halogen, —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkyl(C3-6cycloalkyl)(C3-6cycloalkyl), —C1-6alkoxy, phenyl, heteroaryl, heterocycloC3-7alkyl, nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, —N(C0-6alkyl)(C0-6alkyl), —NHSOn—(C1-6alkyl), —NHC(O)C1-6alkyl, —NHC(O)-aryl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, —C1-6alkyl(═N—OH), —C(N═NOH)C1-6alkyl, —C0-6alkyl(oxy)C1-6alkyl-phenyl, —SOnNH(C0-6alkyl), or —(C0-6alkyl)-SOn—(C1-6alkyl), wherein the phenyl, heteroaryl or heterocycloC3-7alkyl is optionally substituted with halogen, —C1-6alkyl, —C1-6alkoxy, hydroxy, —N(C0-6alkyl)(C0-6alkyl), or —C(O)—O—C1-6alkyl, and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents;
      • n is 0, 1, or 2;
      • R3 is absent, H, OH, —N(C0-6alkyl)(C0-6alkyl), halogen or C1-6alkyl, wherein any alkyl is optionally substituted with 1-6 independent halogen, OH, or —N(C0-6alkyl)(C0-6alkyl) substituents;
      • R4, R5, R6, and R7 each independently is H, halogen, —C1-6alkyl, —C1-6alkoxy, —SOn—(C1-6alkyl), nitro, CN, or —N(C0-6alkyl)(C0-6alkyl), and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents; and
      • R8 is —C1-6alkyl, optionally substituted with 1-6 independent halogen, —N(C0-6alkyl)(C0-6alkyl), —N(C3-7cycloalkyl)(C0-6alkyl), —N(C3-7cycloalkyl)(C3-7cycloalkyl), N-heterocycloC4-7alkyl, —SOn—(C1-6alkyl), —SOn-(aryl), or —OH substituents.
  • As used herein, “alkyl” as well as other groups having the prefix “alk” such as, for example, alkoxy, alkanoyl, alkenyl, alkynyl and the like, means carbon chains which may be linear or branched or combinations thereof. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, sec- and tert-butyl, pentyl, hexyl, heptyl and the like. “Alkenyl”, “alkynyl” and other like terms include carbon chains containing at least one unsaturated C—C bond.
  • The term “cycloalkyl” means carbocycles containing no heteroatoms, and includes mono-, bi- and tricyclic saturated carbocycles, as well as fused ring systems. Such fused ring systems can include one ring that is partially or fully unsaturated such as a benzene ring to form fused ring systems such as benzofused carbocycles. Cycloalkyl includes such fused ring systems as spirofused ring systems. Examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, decahydronaphthalenyl, adamantanyl, indanyl, indenyl, fluorenyl, 1,2,3,4-tetrahydronaphthalenyl and the like. Similarly, “cycloalkenyl” means carbocycles containing no heteroatoms and at least one non-aromatic C—C double bond, and include mono-, bi- and tricyclic partially saturated carbocycles, as well as benzofused cycloalkenes. Examples of cycloalkenyl include cyclohexenyl, indenyl, and the like.
  • The term “cycloalkyloxy” unless specifically stated otherwise includes a cycloalkyl group connected to the oxy connecting atom.
  • The term “alkoxy” unless specifically stated otherwise includes an alkyl group connected to the oxy connecting atom.
  • The term “aryl” unless specifically stated otherwise includes multiple ring systems as well as single ring systems such as, for example, phenyl or naphthyl.
  • The term “aryloxy” unless specifically stated otherwise includes multiple ring systems as well as single ring systems such as, for example, phenyl or naphthyl, connected through the oxy connecting atom to the connecting site.
  • The term “C0-C6alkyl” includes alkyls containing 6, 5, 4, 3, 2, 1, or no carbon atoms. An alkyl with no carbon atoms is a hydrogen atom substituent when the alkyl is a terminus moiety. An alkyl with no carbon atoms is a direct bond when the alkyl is a bridging moiety.
  • The term “hetero” unless specifically stated otherwise includes one or more O, S, or N atoms. For example, heterocycloalkyl and heteroaryl include ring systems that contain one or more O, S, or N atoms in the ring, including mixtures of such atoms. The heteroatoms replace ring carbon atoms. Thus, for example, a heterocycloC5alkyl is a five membered ring containing from 5 to no carbon atoms.
  • Examples of heteroaryl include, for example, pyridinyl, quinolinyl, isoquinolinyl, pyridazinyl, pyrimidinyl, pyrazinyl, quinoxalinyl, furyl, benzofuryl, dibenzofuryl, thienyl, benzothienyl, pyrrolyl, indolyl, pyrazolyl, indazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, benzimidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl.
  • The term “heteroaryloxy” unless specifically stated otherwise describes a heteroaryl group connected through an oxy connecting atom to the connecting site.
  • Examples of heteroaryl(C1-6)alkyl include, for example, furylmethyl, furylethyl, thienylmethyl, thienylethyl, pyrazolylmethyl, oxazolylmethyl, oxazolylethyl, isoxazolylmethyl, thiazolylmethyl, thiazolylethyl, imidazolylmethyl, imidazolylethyl, benzimidazolylmethyl, oxadiazolylmethyl, oxadiazolylethyl, thiadiazolylmethyl, thiadiazolylethyl, triazolylmethyl, triazolylethyl, tetrazolylmethyl, tetrazolylethyl, pyridinylmethyl, pyridinylethyl, pyridazinylmethyl, pyrimidinylmethyl, pyrazinylmethyl, quinolinylmethyl, isoquinolinylmethyl and quinoxalinylmethyl.
  • Examples of heterocycloC3-7alkyl include, for example, azetidinyl, pyrrolidinyl, piperidinyl, perhydroazepinyl, piperazinyl, morpholinyl, tetrahydrofuranyl, imidazolinyl, pyrolidin-2-one, piperidin-2-one, and thiomorpholinyl.
  • The term “N-heterocycloC4-7alkyl” describes nonaryl heterocyclic compounds having 3-6 carbon atoms and one nitrogen atom forming the ring. Examples include azetidinyl, pyrrolidinyl, piperidinyl, and perhydroazepinyl.
  • Examples of aryl(C1-6)alkyl include, for example, phenyl(C1-6)alkyl, and naphthyl(C1-6)alkyl.
  • Examples of heterocycloC3-7alkylcarbonyl(C1-6)alkyl include, for example, azetidinyl carbonyl(C1-6)alkyl, pyrrolidinyl carbonyl(C1-6)alkyl, piperidinyl carbonyl(C1-6)alkyl, piperazinyl carbonyl(C1-6)alkyl, morpholinyl carbonyl(C1-6)alkyl, and thiomorpholinyl carbonyl(C1-6)alkyl.
  • The term “amine” unless specifically stated otherwise includes primary, secondary and tertiary amines.
  • Unless otherwise stated, the term “carbamoyl” is used to include —NHC(O)OC1-C4alkyl, and —OC(O)NHC1-C4alkyl.
  • The term “halogen” includes fluorine, chlorine, bromine and iodine atoms.
  • The term “optionally substituted” is intended to include both substituted and unsubstituted. Thus, for example, optionally substituted aryl could represent a pentafluorophenyl or a phenyl ring. Further, the substitution can be made at any of the groups. For example, substituted aryl(C1-6)alkyl includes substitution on the aryl group as well as substitution on the alkyl group.
  • The term “oxide” of heteroaryl groups is used in the ordinary well-known chemical sense and include, for example, N-oxides of nitrogen heteroatoms.
  • Compounds described herein contain one or more double bonds and may thus give rise to cis/trans isomers as well as other conformational isomers. The present invention includes all such possible isomers as well as mixtures of such isomers.
  • Compounds described herein can contain one or more asymmetric centers and may thus give rise to diastereomers and optical isomers. The present invention includes all such possible diastereomers as well as their racemic mixtures, their substantially pure resolved enantiomers, all possible geometric isomers, and pharmaceutically acceptable salts thereof. The above Formula I is shown without a definitive stereochemistry at certain positions. The present invention includes all stereoisomers of Formula I and pharmaceutically acceptable salts thereof. Further, mixtures of stereoisomers as well as isolated specific stereoisomers are also included. During the course of the synthetic procedures used to prepare such compounds, or in using racemization or epimerization procedures known to those skilled in the art, the products of such procedures can be mixtures of stereoisomers.
  • The term “pharmaceutically acceptable salts” refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids. When the compound of the present invention is acidic, its corresponding salt can be conveniently prepared from pharmaceutically acceptable non-toxic bases, including inorganic bases and organic bases. Salts derived from such inorganic bases include aluminum, ammonium, calcium, copper (ic and ous), ferric, ferrous, lithium, magnesium, manganese (ic and ous), potassium, sodium, zinc and the like salts. Particularly preferred are the ammonium, calcium, magnesium, potassium and sodium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, as well as cyclic amines and substituted amines such as naturally occurring and synthesized substituted amines. Other pharmaceutically acceptable organic non-toxic bases from which salts can be formed include ion exchange resins such as, for example, arginine, betaine, caffeine, choline, N,N′-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine and the like.
  • When the compound of the present invention is basic, its corresponding salt can be conveniently prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids. Such acids include, for example, acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid and the like. Particularly preferred are benzenesulfonic, citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids.
  • The pharmaceutical compositions of the present invention comprise a compound represented by Formula I (or pharmaceutically acceptable salts thereof) as an active ingredient, a pharmaceutically acceptable carrier and optionally other therapeutic ingredients or adjuvants. Such additional therapeutic ingredients include, for example, i) Leukotriene receptor antagonists, ii) Leukotriene biosynthesis inhibitors, iii) corticosteroids, iv) H1 receptor antagonists, v) beta 2 adrenoceptor agonists, vi) COX-2 selective inhibitors, vii) statins, viii) non-steroidal anti-inflammatory drugs (“NSAID”), and ix) M2/M3 antagonists. The compositions include compositions suitable for oral, rectal, topical, and parenteral (including subcutaneous, intramuscular, and intravenous) administration, although the most suitable route in any given case will depend on the particular host, and nature and severity of the conditions for which the active ingredient is being administered. The pharmaceutical compositions may be conveniently presented in unit dosage form and prepared by any of the methods well known in the art of pharmacy.
  • Creams, ointments, jellies, solutions, or suspensions containing the compound of Formula I can be employed for topical use. Mouth washes and gargles are included within the scope of topical use for the purposes of this invention.
  • Dosage levels from about 0.001 mg/kg to about 140 mg/kg of body weight per day are useful in the treatment of conditions such as i) Pulmonary disorders such as asthma, chronic bronchitis, chronic obstructive pulmonary disease (COPD), adult respiratory distress syndrome, infant respiratory distress syndrome, cough, chronic obstructive pulmonary disease in animals, adult respiratory distress syndrome, and infant respiratory distress syndrome, ii) Gastrointestinal disorders such as ulcerative colitis, Crohn's disease, and hypersecretion of gastric acid, iii) Infectious diseases such as bacterial, fungal or viral induced sepsis or septic shock, endotoxic shock (and associated conditions such as laminitis and colic in horses), and septic shock, iv) Neurological disorders such as spinal cord trauma, head injury, neurogenic inflammation, pain, and reperfusion injury of the brain, v) Inflammatory disorders such as psoriatic arthritis, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, inflammation and cytokine-mediated chronic tissue degeneration, vi) Allergic disorders such as allergic rhinitis, allergic conjunctivitis, and eosinophilic granuloma, vii) Psychiatric disorders such as depression, memory impairment, and monopolar depression, viii) Neurodegenerative disorders such as Parkinson disease, Alzheimer's disease, acute and chronic multiple sclerosis, ix) Dermatological disorders such as psoriasis and other benign or malignant proliferative skin diseases, atopic dermatitis, and urticaria, x) Oncological diseases such as cancer, tumor growth and cancerous invasion of normal tissues, xi) Metabolic disorders such as diabetes insipidus, xii) Bone disorders such as osteoporosis, xiii) Cardiovascular disorders such as arterial restenosis, atherosclerosis, reperfusion injury of the myocardium, and xiv) Other disorders such as chronic glomerulonephritis, vernal conjunctivitis, transplant rejection and graft versus host disease, and cachexia—which are responsive to PDE4 inhibition, or alternatively about 0.05 mg to about 7 g per patient per day. For example, inflammation may be effectively treated by the administration of from about 0.01 mg to 50 mg of the compound per kilogram of body weight per day, or alternatively about 0.5 mg to about 2.5 g per patient per day. Further, it is understood that the PDE4 inhibiting compounds of this invention can be administered at prophylactically effective dosage levels to prevent the above-recited conditions.
  • The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a formulation intended for the oral administration to humans may conveniently contain from about 0.5 mg to about 5 g of active agent, compounded with an appropriate and convenient amount of carrier material which may vary from about 5 to about 95 percent of the total composition. Unit dosage forms will generally contain between from about 0.01 mg to about 1000 mg of the active ingredient, typically 0.01 mg, 0.05 mg, 0.25 mg, 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 800 mg or 1000 mg.
  • It is understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, drug combination and the severity of the particular disease undergoing therapy.
  • In practice, the compounds represented by Formula I, or pharmaceutically acceptable salts thereof, of this invention can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous). Thus, the pharmaceutical compositions of the present invention can be presented as discrete units suitable for oral administration such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient. Further, the compositions can be presented as a powder, as granules, as a solution, as a suspension in an aqueous liquid, as a non-aqueous liquid, as an oil-in-water emulsion or as a water-in-oil liquid emulsion. In addition to the common dosage forms set out above, the compound represented by Formula I, or pharmaceutically acceptable salts thereof, may also be administered by controlled release means and/or delivery devices. The compositions may be prepared by any of the methods of pharmacy. In general, such methods include a step of bringing into association the active ingredient with the carrier that constitutes one or more necessary ingredients. In general, the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both. The product can then be conveniently shaped into the desired presentation.
  • Thus, the pharmaceutical compositions of this invention may include a pharmaceutically acceptable carrier and a compound or a pharmaceutically acceptable salt of Formula I. The compounds of Formula I, or pharmaceutically acceptable salts thereof, can also be included in pharmaceutical compositions in combination with one or more other therapeutically active compounds.
  • The pharmaceutical carrier employed can be, for example, a solid, liquid, or gas. Examples of solid carriers include lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, and stearic acid. Examples of liquid carriers are sugar syrup, peanut oil, olive oil, and water. Examples of gaseous carriers include carbon dioxide and nitrogen.
  • In preparing the compositions for oral dosage form, any convenient pharmaceutical media may be employed. For example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like may be used to form oral liquid preparations such as suspensions, elixirs and solutions; while carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents, and the like may be used to form oral solid preparations such as powders, capsules and tablets. Because of their ease of administration, tablets and capsules are the preferred oral dosage units whereby solid pharmaceutical carriers are employed. Optionally, tablets may be coated by standard aqueous or nonaqueous techniques.
  • A tablet containing the composition of this invention may be prepared by compression or molding, optionally with one or more accessory ingredients or adjuvants. Compressed tablets may be prepared by compressing, in a suitable machine, the active ingredient in a free-flowing form such as powder or granules, optionally mixed with a binder, lubricant, inert diluent, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent. Each tablet preferably contains from about 0.1 mg to about 500 mg of the active ingredient and each cachet or capsule preferably containing from about 0.1 mg to about 500 mg of the active ingredient.
  • Pharmaceutical compositions of the present invention suitable for parenteral administration may be prepared as solutions or suspensions of the active compounds in water. A suitable surfactant can be included such as, for example, hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof in oils. Further, a preservative can be included to prevent the detrimental growth of microorganisms.
  • Pharmaceutical compositions of the present invention suitable for injectable use include sterile aqueous solutions or dispersions. Furthermore, the compositions can be in the form of sterile powders for the extemporaneous preparation of such sterile injectable solutions or dispersions. In all cases, the final injectable form must be sterile and must be effectively fluid for easy syringability. The pharmaceutical compositions must be stable under the conditions of manufacture and storage; thus, preferably should be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g. glycerol, propylene glycol and liquid polyethylene glycol), vegetable oils, and suitable mixtures thereof.
  • Pharmaceutical compositions of the present invention can be in a form suitable for topical use such as, for example, an aerosol, cream, ointment, lotion, dusting powder, or the like. Further, the compositions can be in a form suitable for use in transdermal devices. These formulations may be prepared, utilizing a compound represented by Formula I of this invention, or pharmaceutically acceptable salts thereof, via conventional processing methods. As an example, a cream or ointment is prepared by mixing hydrophilic material and water, together with about 5 wt % to about 10 wt % of the compound, to produce a cream or ointment having a desired consistency.
  • Pharmaceutical compositions of this invention can be in a form suitable for rectal administration wherein the carrier is a solid. It is preferable that the mixture forms unit dose suppositories. Suitable carriers include cocoa butter and other materials commonly used in the art. The suppositories may be conveniently formed by first admixing the composition with the softened or melted carrier(s) followed by chilling and shaping in moulds.
  • In addition to the aforementioned carrier ingredients, the pharmaceutical formulations described above may include, as appropriate, one or more additional carrier ingredients such as diluents, buffers, flavoring agents, binders, surface-active agents, thickeners, lubricants, preservatives (including anti-oxidants) and the like. Furthermore, other adjuvants can be included to render the formulation isotonic with the blood of the intended recipient. Compositions containing a compound described by Formula I, or pharmaceutically acceptable salts thereof, may also be prepared in powder or liquid concentrate form.
  • The compounds and pharmaceutical compositions of this invention have been found to exhibit biological activity as PDE4 inhibitors. Accordingly, another aspect of the invention is the treatment in mammals of, for example, i) Pulmonary disorders such as asthma, chronic bronchitis, chronic obstructive pulmonary disease (COPD), adult respiratory distress syndrome, infant respiratory distress syndrome, cough, chronic obstructive pulmonary disease in animals, adult respiratory distress syndrome, and infant respiratory distress syndrome, ii) Gastrointestinal disorders such as ulcerative colitis, Crohn's disease, and hypersecretion of gastric acid, iii) Infectious diseases such as bacterial, fungal or viral induced sepsis or septic shock, endotoxic shock (and associated conditions such as laminitis and colic in horses), and septic shock, iv) Neurological disorders such as spinal cord trauma, head injury, neurogenic inflammation, pain, and reperfusion injury of the brain, v) Inflammatory disorders such as psoriatic arthritis, rheumatoid arthritis, ankylosing spondylitis; osteoarthritis, inflammation and cytokine-mediated chronic tissue degeneration, vi) Allergic disorders such as allergic rhinitis, allergic conjunctivitis, and eosinophilic granuloma, vii) Psychiatric disorders such as depression, memory impairment, and monopolar depression, viii) Neurodegenerative disorders such as Parkinson disease, Alzheimer's disease, acute and chronic multiple sclerosis, ix) Dermatological disorders such as psoriasis and other benign or malignant proliferative skin diseases, atopic dermatitis, and urticaria, x) Oncological diseases such as cancer, tumor growth and cancerous invasion of normal tissues, xi) Metabolic disorders such as diabetes insipidus, xii) Bone disorders such as osteoporosis, xiii) Cardiovascular disorders such as arterial restenosis, atherosclerosis, reperfusion injury of the myocardium, and xiv) Other disorders such as chronic glomerulonephritis, vernal conjunctivitis, transplant rejection and graft versus host disease, and cachexia—maladies that are amenable to amelioration through inhibition of the PDE4 isoenzyme and the resulting elevated cAMP levels—by the administration of an effective amount of the compounds of this invention. The term “mammals” includes humans, as well as other animals such as, for example, dogs, cats, horses, pigs, and cattle. Accordingly, it is understood that the treatment of mammals other than humans is the treatment of clinical correlating afflictions to those above recited examples that are human afflictions.
  • Further, as described above, the compound of this invention can be utilized in combination with other therapeutic compounds. In particular, the combinations of the PDE4 inhibiting compound of this invention can be advantageously used in combination with i) Leukotriene receptor antagonists, ii) Leukotriene biosynthesis inhibitors, iii) COX-2 selective inhibitors, iv) statins, v) NSAIDs, vi) M2/M3 antagonists, vii) corticosteroids, viii) H1 (histamine) receptor antagonists and ix) beta 2 adrenoceptor agonist.
  • Thus, for example, pulmonary disorders such as asthma, chronic bronchitis, chronic obstructive pulmonary disease (COPD), adult respiratory distress syndrome, infant respiratory distress syndrome, cough, chronic obstructive pulmonary disease in animals, adult respiratory distress syndrome, and infant respiratory distress syndrome can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Gastrointestinal disorders such as ulcerative colitis, Crohn's disease, and hypersecretion of gastric acid can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Infectious diseases such as bacterial, fungal or viral induced sepsis or septic shock, endotoxic shock (and associated conditions such as laminitis and colic in horses), and septic shock can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Neurological disorders such as spinal cord trauma, head injury, neurogenic inflammation, pain, and reperfusion injury of the brain can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Inflammatory disorders such as psoriatic arthritis, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, inflammation and cytokine-mediated chronic tissue degeneration can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Allergic disorders such as allergic rhinitis, allergic conjunctivitis, and eosinophilic granuloma can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Psychiatric disorders such as depression, memory impairment, and monopolar depression can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Neurodegenerative disorders such as Parkinson disease, Alzheimer's disease, acute and chronic multiple sclerosis can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Dermatological disorders such as psoriasis and other benign or malignant proliferative skin diseases, atopic dermatitis, and urticaria can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Oncological diseases such as cancer, tumor growth and cancerous invasion of normal tissues can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Metabolic disorders such as diabetes insipidus can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • Bone disorders such as osteoporosis, cardiovascular disorders such as arterial restenosis, atherosclerosis, reperfusion injury of the myocardium, and other disorders such as chronic glomerulonephritis, vernal conjunctivitis, transplant rejection and graft versus host disease, and cachexia can be conveniently treated with capsules, cachets or tablets each containing 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, or 500 mg of the active ingredient of the compound of the present application, or a pharmaceutically acceptable salt thereof, administered once, twice, or three times daily.
  • The abbreviations used herein have the following tabulated meanings. Abbreviations not tabulated below have their meanings as commonly used unless specifically stated otherwise.
    Ac = acetyl
    Bn = benzyl
    CAMP cyclic adenosine-3′,5′-monophosphate
    DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene
    DIBAL = diisobutylaluminum hydride
    DMAP = 4-(dimethylamino)pyridine
    DMF = N,N-dimethylformamide
    Et3N = triethylamine
    GST glutathione transferase
    HMDS hexamethyldisilazide
    LDA = lithium diisopropylamide
    m-CPBA = metachloroperbenzoic acid
    MMPP = monoperoxyphthalic acid
    MPPM = monoperoxyphthalic acid,
    magnesium salt 6H2O
    Ms = methanesulfonyl = mesyl = SO2Me
    Ms0 = methanesulfonate = mesylate
    NSAID = non-steroidal anti-inflammatory drug
    o-Tol = ortho-tolyl
    OXONE ® = 2KHSO5.KHSO4.K2SO4
    PCC = pyridinium chlorochromate
    PDC = pyridinium dichromate
    PDE phosphodiesterase
    Ph = phenyl
    Phe = benzenediyl
    PMB = para-methoxybenzyl
    Pye = pyridinediyl
    r.t. = room temperature
    Rac. = racemic
    SAM = aminosulfonyl or sulfonamide or SO2NH2
    SEM = 2-(trimethylsilyl)ethoxymethoxy
    SPA = scintillation proximity assay
    TBAF = tetra-n-butylammonium fluoride
    Th = 2- or 3-thienyl
    TFA = trifluoroacetic acid
    TFAA = trifluoroacetic acid anhydride
    THF = tetrahydrofuran
    Thi = thiophenediyl
    TLC = thin layer chromatography
    TMS-CN = trimethylsilyl cyanide
    TMSI trimethylsilyl iodide
    Tz = 1H (or 2H)-tetrazol-5-yl
    CAN ceric ammonium nitrate
    C3H5 = allyl
  • Me = Methyl
    Et = ethyl
    n-Pr = normal propyl
    i-Pr = isopropyl
    n-Bu = normal butyl
    i-Bu = isobutyl
    s-Bu = secondary butyl
    t-Bu = tertiary butyl
    c-Pr = cyclopropyl
    c-Bu = Cyclobutyl
    c-Pen = cyclopentyl
    c-Hex = cyclohexyl
  • Assays Demonstrating Biological Activity LPS and FMLP-Induced TNF-α and LTB4 Assays in Human Whole Blood
  • Whole blood provides a protein and cell-rich milieu appropriate for the study of biochemical efficacy of anti-inflammatory compounds such as PDE4-selective inhibitors. Normal non-stimulated human blood does not contain detectable levels of TNF-α and LTB4. Upon stimulation with LPS, activated monocytes express and secrete TNF-α up to 8 hours and plasma levels remain stable for 24 hours. Published studies have shown that inhibition of TNF-α by increasing intracellular cAMP via PDE4 inhibition and/or enhanced adenylyl cyclase activity occurs at the transcriptional level. LTB4 synthesis is also sensitive to levels of intracellular cAMP and can be completely inhibited by PDE4-selective inhibitors. As there is little LTB4 produced during a 24 hour LPS stimulation of whole blood, an additional LPS stimulation followed by fMLP challenge of human whole blood is necessary for LTB4 synthesis by activated neutrophils. Thus, by using the same blood sample, it is possible to evaluate the potency of a compound on two surrogate markers of PDE4 activity in the whole blood by the following procedure.
  • Fresh blood was collected in heparinized tubes by venipuncture from healthy human volunteers (male and female). These subjects had no apparent inflammatory conditions and had not taken any NSAIDs for at least 4 days prior to blood collection. 500 μL aliquots of blood were pre-incubated with either 2 μL of vehicle (DMSO) or 2 μL of test compound at varying concentrations for 15 minutes at 37° C. This was followed by the addition of either 10 μL vehicle (PBS) as blanks or 10 μL LPS (1 μg/mL final concentration, #L-2630 (Sigma Chemical Co., St. Louis, Mo.) from E. coli, serotype 0111:B4; diluted in 0.1% w/v BSA (in PBS)). After24 hours of incubation at 37° C., another 10 μL of PBS (blank) or 10 μL of LPS (1 μg/mL final concentration) was added to blood and incubated for 30 minutes at 37° C. The blood was then challenged with either 10 μL of PBS (blank) or 10 μL of fMLP (1 μM final concentration, #F-3506 (Sigma); diluted in 1% w/v BSA (in PBS)) for 15 minutes at 37° C. The blood samples were centrifuged at 1500 xg for 10 minutes at 4° C. to obtain plasma. A 50 μL aliquot of plasma was mixed with 200 μL methanol for protein precipitation and centrifuged as above. The supernatant was assayed for LTB4 using an enzyme immunoassay kit (#520111 from Cayman Chemical Co., Ann Arbor, Mich.) according to the manufacturer's procedure. TNF-α was assayed in diluted plasma (in PBS) using an ELISA kit (Cistron Biotechnology, Pine Brook, N.J.) according to manufacturer's procedure. IC50 values should be less than about 5 μM, advantageously less than about 2.5 μM. The IC50 values of Examples 1 to 33 ranged from 0.01 μM to 2.41 μM.
  • Anti-Allergic Activity in Vivo
  • Compounds of the invention have been tested for effects on an IgE-mediated allergic pulmonary inflammation induced by inhalation of antigen by sensitized guinea pigs. Guinea pigs were initially sensitized to ovalbumin under mild cyclophosphamide-induced immunosuppression, by intraperitoneal injection of antigen in combinations with aluminum hydroxide and pertussis vaccine. Booster doses of antigen were given two and four weeks later. At six weeks, animals were challenged with aerosolized ovalbumin while under cover of an intraperitoneally administered anti-histamine agent (mepyramine). After a further 48 h, bronchial alveolar lavages (BAL) were performed and the numbers of eosinophils and other leukocytes in the BAL fluids were counted. The lungs were also removed for histological examination for inflammatory damage. Administration of compounds of the Examples (0.001-10 mg/kg i.p. or p.o.), up to three times during the 48 h following antigen challenge, lead to a significant reduction in the eosinophilia and the accumulation of other inflammatory leukocytes.
  • Spa Based PDE Activity Assay Protocol
  • Compounds which inhibit the hydrolysis of cAMP to AMP by the type-IV cAMP-specific phosphodiesterases were screened in a 96-well plate format as follows:
  • In a 96 well-plate at 30° C. the test compound was added (dissolved in 2 μL DMSO), 188 μL of substrate buffer containing [2,8-3H] adenosine 3′,5′-cyclic phosphate (cAMP, 100 nM to 50 μM), 10 mM MgCl2, 1 mM EDTA, 50 mM Tris, pH 7.5. The reaction was initiated by the addition of human recombinant PDE4 (the amount was controlled so that ˜10% product was formed in 10 min.). The reaction was stopped after 10 min. by the addition of 1 mg of PDE-SPA beads (Amersham Pharmacia Biotech, Inc., Piscataway, N.J.). The product AMP generated was quantified on a Wallac Microbeta® 96-well plate counter (EG&G Wallac Co., Gaithersburg, Md.). The signal in the absence of enzyme was defined as the background. 100% activity was defined as the signal detected in the presence of enzyme and DMSO with the background subtracted. Percentage of inhibition was calculated accordingly. IC50 value was approximated with a non-linear regression fit using the standard 4-parameter/multiple binding sites equation from a ten point titration.
  • The IC50 values of Examples 1 to 33 were determined with 100 nM cAMP using the purified GST fusion protein of the human recombinant phosphodiesterase IVa (met-248) produced from a baculovirus/Sf-9 expression system. IC50 values should be less than about 1000 nM, advantageously less than about 250 nM, and even more advantageously less than about 100 nM. The IC50 values of Examples 1 to 33 ranged from 0.1 nM to 90.0 nM.
  • The Examples that follow are intended as an illustration of certain preferred embodiments of the invention and no limitation of the invention is implied.
  • Unless specifically stated otherwise, the experimental procedures were performed under the following conditions. All operations were carried out at room or ambient temperature—that is, at a temperature in the range of 18-25° C. Evaporation of solvent was carried out using a rotary evaporator under reduced pressure (600-4000 pascals: 4.5-30 mm Hg) with a bath temperature of up to 60° C. The course of reactions was followed by thin layer chromatography (TLC) and reaction times are given for illustration only. Melting points are uncorrected and “d” indicates decomposition. The melting points given are those obtained for the materials prepared as described. Polymorphism may result in isolation of materials with different melting points in some preparations. The structure and purity of all final products were assured by at least one of the following techniques: TLC, mass spectrometry, nuclear magnetic resonance (NMR) spectrometry or microanalytical data. When given, yields are for illustration only. When given, NMR data is in the form of delta (δ) values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS) as internal standard, determined at 300 MHz, 400 MHz or 500 MHz using the indicated solvent. Conventional abbreviations used for signal shape are: s. singlet; d. doublet; t. triplet; m. multiplet; br. broad; etc. In addition, “Ar” signifies an aromatic signal. Chemical symbols have their usual meanings; the following abbreviations have also been used: v (volume), w (weight), b.p. (boiling point), m.p. (melting point), L (liter(s)),mL (milliliters), g (gram(s)), mg (milligrams(s)), mol (moles),mmol (millimoles), eq (equivalent(s)).
  • Methods of Synthesis
  • Compounds of the present invention can be prepared according to the following methods. The substituents are the same as in Formula I except where defined otherwise.
  • In a first method outlined below in Scheme 1, an appropriately substituted derivative of ethyl 2-chloronicotinoyl acetate of formula II is reacted with 1.5 equivalents of triethyl orthoformate and 5 equivalents of acetic anhydride at 130° C., and after removal of the volatile components the crude 2-chloronicotinoyl acrylate of formula III is immediately reacted with 1.2 equivalents of an appropriately substituted haloaryl amine of formula IV, such as, for example 3-bromoaniline, in a halogenated hydrocarbon solvent such as methylene chloride at a temperature of 0° C. to room temperature. After an appropriate reaction time ranging from 2 to 24 hours the resulting 3-arylamino acrylate of formula V is obtained by evaporation of the solvent and may be further purified by chromatography on silica gel or crystallization from an appropriate solvent. The compound of formula V may alternatively be used without further purification in the following step. Cyclization of the compound of formula V to the 1-haloaryl-1,4-dihydro[1,8]naphthyridin-4-one carboxylate of formula VI is effected by treatment with a small excess of a strong base such as an alkali metal hydride, for example sodium hydride, in an appropriate solvent such as tetrahydrofuran at a starting temperature of 0° C. with warming to room temperature if required to complete the process. The product of formula VI is isolated in crude form by dilution with a large volume of water followed by filtration or by extraction into an appropriate organic solvent such as diethyl ether, ethyl acetate, or a halogenated hydrocarbon solvent such as chloroform or methylene chloride. The product can be further purified by chromatography on silica gel, crystallization or prolonged stirring in an appropriate solvent followed by filtration.
  • The ester product of formula VI thus obtained can be hydrolyzed to the corresponding carboxylic acid derivative under basic conditions, using an aqueous solution of an alkali base such as an alkali carbonate or preferably sodium or potassium hydroxide, with an organic cosolvent such as tetrahydrofuran or a primary, secondary or tertiary alkanol, such as methanol or ethanol, or a combination thereof at temperatures ranging from room temperature to reflux temperature for the appropriate time. The resultant carboxylic acid is isolated in crude form following acidification using an aqueous solution of an inorganic acid such as hydrochloric, sulfuric or a similar acid, and filtration or extraction into an appropriate organic solvent such as diethyl ether, ethyl acetate, or a halogenated hydrocarbon solvent such as chloroform or methylene chloride. The product can be further purified by chromatography on silica gel, crystallization or prolonged stirring in an appropriate solvent followed by filtration. The carboxylic acid is then transformed into the appropriate primary, secondary or tertiary amide analog of formula VII by any general procedure well known to the organic chemist, preferably via initial transformation into a mixed anhydride by treatment with a small excess, usually 1.25 equivalents, of an appropriate alkyl chloroformate such as ethyl or isobutyl chloroformate, in the presence of a larger excess, usually 2.5 equivalents, of a tertiary organic amine such as triethylamine or N,N-diisopropylethylamine in an organic solvent such as tetrahydrofuran at low temperature, preferably 0° C. for a period of 30 minutes to 3 hours. Alternatively, the acid may be transformed into an acid chloride through the action of, for instance, thionyl chloride. An excess, usually 5 or more equivalents, of an appropriate primary or secondary amine or of an aqueous solution of ammonium hydroxide is then added and the reaction is allowed to proceed at a temperature ranging from 0° C. to room temperature for an appropriate length of time, usually 1-24 hours. The desired amide of formula VII is then isolated in crude form by precipitation with water and filtration or extraction into an appropriate organic solvent such as diethyl ether, ethyl acetate, or a halogenated hydrocarbon solvent such as chloroform or methylene chloride. The product can be further purified by chromatography on silica gel, crystallization or prolonged stirring in an appropriate solvent followed by filtration. Alternatively, an amide of formula VII can be obtained from an acid and an amine via an appropriate coupling reagent, such as carbonyldiimidazole (CDI). In cases where the amide moiety is 2,6-dichloropyridin-4-yl a different procedure is used in which the anion of 4-amino-3,5-dichloropyridine is generated at low temperature, preferably at 0° C. using a strong alkali hydride such as sodium hydride in a solvent such as tetrahydrofuran, and reacted with the acid chloride of a carboxylic acid (from hydrolysis of an ester of formula VI) generated by an appropriate known procedure, usually by the action of oxalyl chloride activated by a catalytic amount of N,N-dimethylformamide in a solvent such as tetrahydrofuran.
  • For the synthesis of compounds of formula I, an amide compound of formula VII is reacted with an appropriately substituted acetylene of formula VIII under the catalysis of a transition metal species such as bis(triphenylphosphine)palladium (II) chloride or [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(1) in an appropriate solvent such as THF or DMF in the presence of triethylamine and a cuprous salt such as cuprous iodide, at a temperature ranging from room temperature to reflux for an appropriate period of time. Alternatively, an ester compound of formula VI can be reacted in the same manner to afford an ester compound of formula IX, which is submitted to the hydrolysis and amidation processes described above leading to a compound of formula I.
    Figure US20050070569A1-20050331-C00004
  • In a second approach to the synthesis of compounds of formula I, outlined below in Scheme 2, an amide of formula VII is reacted with trimethylsilylacetylene under the catalysis of a transition metal species such as bis(triphenylphosphine)palladium (II) chloride or [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) in an appropriate solvent such as THF or DMF in the presence of triethylamine and a cuprous salt such as cuprous iodide, at a temperature ranging from room temperature to reflux for an appropriate period of time. The resulting compound is liberated from the TMS protecting group under the action of an aqueous solution of an alkali hydroxide such as sodium or potassium hydroxide in the presence of an organic cosolvent such as methanol, or alternatively by treatment with a source of fluoride such as tetrabutylammonium fluoride in THF solution to yield an acetylene derivative of formula X.
  • Such a compound is reacted with an appropriate alkyl or aryl or heteroaryl halide of formula XI under the catalysis of a transition metal species such as bis(triphenylphosphine)palladium (II) chloride or [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) in an appropriate solvent such as THF or DMF in the presence of triethylamine and a cuprous salt such as cuprous iodide, at a temperature ranging from room temperature to reflux for an appropriate period of time, to yield a compound of formula I. Alternatively, an ester compound of formula VI can be processed in the same manner to afford an ester compound of formula IX, which is submitted to the hydrolysis and amidation processes described above leading to a compound of formula I.
    Figure US20050070569A1-20050331-C00005
  • In an alternative approach to acetylenic esters of formula IX or XII (where R8=H), outlined in Scheme 3, an appropriately substituted 2-chloronicotinoyl chloride of formula XIII is reacted with a 3-dialkylaminoacrylate, for example ethyl 3-dimethylaminoacrylate, in the presence of a tertiary amine such as triethylamine, in a solvent such as toluene at an appropriate temperature to afford a 3-dialkylamino acrylate of formula XIV. Such a substance is reacted with an appropriately substituted 3-aminophenylacetylene derivative of formula XV in a solvent such as DMF or acetonitrile in the presence of an inorganic base such as potassium carbonate at an appropriate temperature to yield an acetylenic ester of formula IX or XII (where R8=H).
    Figure US20050070569A1-20050331-C00006
  • The majority of the acetylenic reagents of formula VIII used in this invention were of commercial sources. Where required, appropriately substituted acetylenes of formula VIII were synthesized as outlined in Scheme 4, preferentially from corresponding halides (XI) by initial condensation with trimethylsilylacetylene under the catalysis of a transition metal species, followed by removal of the TMS group, as described above in Scheme 2 in the preparation of compounds of type X or XII. Where the substituent R8 on the acetylene is a secondary or tertiary alcohol, the anion of trimethylsilylacetylene is generated at low temperature, using a an alkyllithium base such as n-butyllithium, and it can be reacted with an appropriately substituted aldehyde or ketone to afford the desired reagent of formula VIII.
    Figure US20050070569A1-20050331-C00007
  • The following are examples of syntheses of aryl and heteroaryl halides corresponding to compounds of formula XI bearing a secondary or tertiary alcohol as substituent. For pyridine derivatives (Scheme 5), a halogen-substituted pyridyl carboxylate of formula XVI can be reacted with an organometallic species such as a Grignard reagent to afford a tertiary alcohol of formula XVII. Alternatively, a dibromopyridine substrate of formula XVIII may be monometallated using an alkyllithium species such as n-butyllithium, followed by addition of an aldehyde or ketone to yield a compound of formula XVII.
    Figure US20050070569A1-20050331-C00008
  • A thiophene derivative of formula XX results from the reaction of a halogen substituted thiophene aldehyde or ketone of formula XIX (Scheme 6) with an organometallic species such as a Grignard reagent.
    Figure US20050070569A1-20050331-C00009
  • For the synthesis of the thiazole derivatives of formula XXII, described in Scheme 7, initial metallation of thiazole using an alkyllithium species such as n-butyllithium, followed by addition of an aldehyde or ketone yields a 2-thiazolyl secondary or tertiary alcohol which is suitably protected, for example as a SEM ether of formula XXI. Subsequent bromination leads to introduction of a bromo atom at the 5-position with concomitant removal of the protective group, resulting in a compound of formula XXII.
    Figure US20050070569A1-20050331-C00010
  • Where required, pyridine derivatives can be oxidized to the corresponding N-oxides using well-known reagents such as m-chloroperoxybenzoic acid or magnesium monoperoxyphthalate.
  • EXAMPLES
  • Referring to the formula below, Examples 1-33 are summarized in TABLE 1 below.
    TABLE 1
    Figure US20050070569A1-20050331-C00011
    Ex. R1 R8R2R3 R4 R6
    1 i-pr Ph H H
    2 i-pr 2-Pyr H H
    3 i-pr 4-Pyr H H
    4 i-pr 4-Pyr NO H H
    5 i-pr H H H
    6 c-pr H H H
    7 i-pr 3-Pyr H H
    8 i-pr 3-Pyr NO H H
    9 c-pr 3-Pyr H H
    10 i-pr
    Figure US20050070569A1-20050331-C00012
    H H
    11 c-pr
    Figure US20050070569A1-20050331-C00013
    H H
    12 i-pr
    Figure US20050070569A1-20050331-C00014
    H H
    13 i-pr
    Figure US20050070569A1-20050331-C00015
    H H
    14 i-pr
    Figure US20050070569A1-20050331-C00016
    H H
    15 i-pr
    Figure US20050070569A1-20050331-C00017
    H H
    16 c-pr 3-Pyr NO H H
    17 i-pr
    Figure US20050070569A1-20050331-C00018
    H H
    18 c-pr
    Figure US20050070569A1-20050331-C00019
    H H
    19 i-pr
    Figure US20050070569A1-20050331-C00020
    H H
    20 i-pr
    Figure US20050070569A1-20050331-C00021
    H H
    21 i-pr
    Figure US20050070569A1-20050331-C00022
    H H
    22 i-pr
    Figure US20050070569A1-20050331-C00023
    H H
    23 i-pr
    Figure US20050070569A1-20050331-C00024
    H H
    24 i-pr
    Figure US20050070569A1-20050331-C00025
    H H
    25 i-pr
    Figure US20050070569A1-20050331-C00026
    H H
    26 i-pr
    Figure US20050070569A1-20050331-C00027
    H H
    27 i-pr
    Figure US20050070569A1-20050331-C00028
    H H
    28 i-pr
    Figure US20050070569A1-20050331-C00029
    H H
    29 c-pr
    Figure US20050070569A1-20050331-C00030
    H H
    30 i-pr
    Figure US20050070569A1-20050331-C00031
    H H
    31 i-pr
    Figure US20050070569A1-20050331-C00032
    H H
    32 i-pr
    Figure US20050070569A1-20050331-C00033
    H H
    33 H 3-Pyr NO H H
  • Referring to the formula below, Examples 1-33 are summarized in TABLE 2 below.
    TABLE 2
    Figure US20050070569A1-20050331-C00034
    Ex. R1 R8R2R3 R4 R6
    35
    Figure US20050070569A1-20050331-C00035
    3-Pyr-NO H H
    36 c-Bu 3-(OH)Ph 6-Me H
    37 3-Pyr Ph H 5-Me
    38 CH2Ph
    Figure US20050070569A1-20050331-C00036
    H H
    39
    Figure US20050070569A1-20050331-C00037
    Figure US20050070569A1-20050331-C00038
    H H
    40
    Figure US20050070569A1-20050331-C00039
    Figure US20050070569A1-20050331-C00040
    7-Me H
    41 Ph
    Figure US20050070569A1-20050331-C00041
    6-Cl H
    42
    Figure US20050070569A1-20050331-C00042
    Figure US20050070569A1-20050331-C00043
    H 4-Cl
    43
    Figure US20050070569A1-20050331-C00044
    Figure US20050070569A1-20050331-C00045
    H H
    44
    Figure US20050070569A1-20050331-C00046
    Figure US20050070569A1-20050331-C00047
    H 5-OH
    45
    Figure US20050070569A1-20050331-C00048
    Figure US20050070569A1-20050331-C00049
    H H
    46
    Figure US20050070569A1-20050331-C00050
    3-Pyr-NO H H
    47
    Figure US20050070569A1-20050331-C00051
    3-Pyr-NO H H
    48
    Figure US20050070569A1-20050331-C00052
    Figure US20050070569A1-20050331-C00053
    H H
    49 SO2Ph
    Figure US20050070569A1-20050331-C00054
    H H
    50
    Figure US20050070569A1-20050331-C00055
    Figure US20050070569A1-20050331-C00056
    H 5-F
    51
    Figure US20050070569A1-20050331-C00057
    Figure US20050070569A1-20050331-C00058
    5-OH H
    52 Me
    Figure US20050070569A1-20050331-C00059
    H H
    53 Et
    Figure US20050070569A1-20050331-C00060
    H H
  • Example 1 N-Isopropyl-1-[3-(phenylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: Ethyl 3-(3-bromoanilino)-2-(2-chloronicotinoyl) Acrylate.
  • A mixture of ethyl 2-chloronicotinoyl acetate (41.1g, 180.5 mmol), triethyl orthoformate (40.12 g, 271 mmol) and acetic anhydride (92.05 g, 902.5 mmol) was heated at 130° C. for 2.5 hours. The volatile components were distilled off and the resulting residue was co-evaporated twice with xylene. The oily residue was dissolved in methylene chloride (250 mL) and 3-bromoaniline (37.25 g, 216.6 mmol) was added slowly. The resulting solution was stirred at room temperature for 18 hours, and the solvent evaporated away. The resulting crude compound was used as such in the next step.
  • Step 2: Ethyl 1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate.
  • The crude compound from Step 1 was dissolved in tetrahydrofuran (500 mL), the solution was cooled to 0° C., and sodium hydride (as a 60% dispersion in oil, 9.4 g, 235 mmol) was added in portions. After stirring at 0° for 1 hour, the resulting mixture was allowed to warn up to room temperature. After 2 hours, water (400 mL) was added to the resulting suspension and the insoluble solid was filtered and washed copiously with water. When dry, the solid was stirred in ether (150 mL) at room temperature for 24 hours and filtered to afford the ethyl 1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate compound as a cream-colored solid.
  • 1H NMR (Acetone-d6) δ 1.32 (t, 3H), 4.29 (q, 2H), 7.54-7.63 (m, 2H), 7.69 (dd, 1H), 7.78 (dd, 1H), 7.93 (s, 1H), 8.66-8.71 (m, 3H).
  • Step 3: 1-(3-Bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylic Acid.
  • A suspension of ethyl 1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate from Step 2 (52.5 g, 140.7 mmol) in a mixture of tetrahydrofuran (400 mL), methanol (400 mL) and 1N aqueous sodium hydroxide (280 mL) was heated at ca 50° C. with stirring for 20 minutes. After cooling, the mixture was diluted with water (300 mL) and 1N aqueous HCl (325 mL) was added. After stirring for 45 minutes, the precipitate was filtered, washed well with water and dried to afford the 1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylic acid as a cream-colored solid.
  • 1H NMR (Acetone-d6) δ 7.65 (t, 1H), 7.76 (m, 2H), 7.84 (d, 1H), 7.99 (s, 1H), 8.87 (m, 2H), 9.01 (s, 1H).
  • Step 4: N-Isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3 carboxamide
  • To a suspension of 1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylic acid from Step 3 (26.3 g, 76 mmol) and triethylamine (23.2 g, 230 mmol) in tetrahydrofuran (1000 mL) at 0° C. was added isobutyl chloroformate (18.85 g, 138 mmol). After stirring at 0° C. for 2 hours, isopropylamine (23 g, 390 mmol) was added and the mixture was allowed to warm up to room temperature and stirred overnight. The mixture was then partitioned between ethyl acetate and water, the organic phase was dried and evaporated to a solid which was stirred in ether at room temperature for 3 hours and filtered to afford the N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide as a white solid.
  • 1H NMR (Acetone-d 6) δ 1.25 (d, 6H), 4.17 (m, 111, 7.59-7.63 (m, 2H), 7.70 (d, 1H), 7.80 (d, 1H), 7.94 (s, 1H), 8.73 (m, 1H), 8.78 (d, 1H), 8.85 (s, 1H), 9.61 (br, NH).
  • Step 5: N-Isopropyl-1-[(3-phenylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • A mixture of amide from Step 4, phenylacetylene (1.9 eq), triethylamine (1.6 eq), triphenylphosphine (0.06 eq) and bis(triphenylphosphine)palladium (II) chloride (0.05 eq) in THF (16 mL/mmol) was stirred at room temperature for 20 minutes. Copper (I) iodide (5 mg/mmol) was added and the mixture was stirred at reflux for 18 hours. After cooling, the mixture was quenched with saturated aqueous ammonium chloride solution and partitioned between ethyl acetate and water. The organic phase was dried over magnesium sulfate and the crude product was chromatographed on silica gel eluting with a 1:9 mixture of ether and methylene chloride to afford a solid which was stirred in ether at room temperature and filtered to yield the N-Isopropyl-1-[(3-phenylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound as a solid.
  • 1H NMR (Acetone-d6) δ 1.24 (d, 6H), 4.18 (m, 1H), 7.42 (m, 3H), 7.56-7.61 (m, 3H), 7.69 (m, 2H), 7.76 (m, 1H), 7.85 (s, 1H), 8.73 (m, 1H), 8.77 (dd, 1H), 8.88 (s, 1H), 9.62 (br, NH).
  • Example 2 N-Isopropyl-1-[3-(2-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of Step 5 of EXAMPLE 1, but substituting 2-ethynylpyridine for phenylacetylene, the title compound was obtained as a brown solid.
  • 1H NMR (Acetone-d6) δ 1.25 (d, 6H), 4.18 (m, 1H), 7.38 (m, 1H), 7.59-7.64 (m, 2H), 7.71-7.76 (m, 2H), 7.81-7.85 (m, 2H), 7.92 (s, 1H), 8.61 (m, 1H), 8.74 (m, 1H), 8.78 (dd, 1H), 8.89 (s, 1H), 9.62 (br, NH).
  • Example 3 N-Isopropyl-1-[3-(4-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of Step 5 of EXAMPLE 1, but substituting 4-ethynylpyridine (J. Org. Chem. 1996, 61, 6535) for phenylacetylene, the title compound was obtained as a solid.
  • 1H NMR (Acetone-d6) δ 1.24 (d, 6H), 4.18 (m, 1H), 7.49 (m, 2H), 7.61 (m, 1H), 7.71-7.78 (m, 2H), 7.81 (m, 1H), 7.92 (s, 1H), 8.62 (m, 2H), 8.73 (m, 1H), 8.78 (dd, 1H), 8.87 (s, 1H), 9.62 (br, NH).
  • Example 4 N-Isopropyl-1-[3-(1-oxido-4-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • To a solution of N-Isopropyl-1-[3-(4-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from EXAMPLE 3 in methylene chloride (36 mL/mmol) and methanol (3 mL/mmol) was added magnesium monoperoxyphthalate hexahydrate (MMPP, 3.6 eq) and the mixture was stirred at room temperature overnight. A further amount of MMPP (2 eq) was added and stirring was continued for 24 hours. The resulting mixture was filtered through a bed of celite, the filtrate was diluted with methylene chloride and washed with aqueous sodium bicarbonate and water. After drying, the organic phase was evaporated and the crude product was purified by chromatography on silica gel eluting with 10% methanol in methylene chloride to afford the title compound as a solid.
  • 1H NMR (CDCl3) δ 1.28 (d, 6H), 4.28 (m, 1H), 7.35 (d, 2H), 7.46 (m, 2H), 7.58 (m, 2H), 7.67 (m, 1H), 8.14 (d, 2H), 8.69 (m, 1H), 8.81 (dd, 1H), 8.99 (s, 1H), 9.62 (br, NH).
  • Example 5 N-Isopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: N-Isopropyl-1-[3-(trimethylsilylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of Step 5 of EXAMPLE 1, but substituting trimethylsilylacetylene for phenylacetylene, the N-isopropyl-1-[3-(trimethylsilylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide product was obtained and used in the next step without further purification.
  • Step 2: N-Isopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthbridin-4-one-3-carboxamide
  • The crude product from Step 1 was dissolved in methanol (12 mL/mmol) and 1N aqueous sodium hydroxide was added (3 eq), resulting in a suspension. The suspension mixture was stirred at room temperature for 2 hours and the methanol was evaporated. The resulting aqueous suspension was diluted with water and the product was extracted out with ethyl acetate. The crude product was chromatographed on silica gel eluting with 10% ether in methylene chloride to afford the N-isopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound as a solid.
  • 1H NMR (Acetone-d6)□ 1.24 (d, 6H), 3.81 (s, 1H), 4.17 (m, 1H), 7.59 (m, 1H), 7.64-7.71 (m, 3H), 7.81 (s, 1H), 8.72 (m, 1H), 8.76 (dd, 1H), 8.84 (s, 1H), 9.61 (br, NH).
  • Example 6 N-Cyclopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: N-Cyclopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of Step 4 of EXAMPLE 1, but substituting cyclopropylamine for isopropylamine, the N-cyclopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide was obtained as a fluffy white solid.
  • 1H NMR (Acetone-d6) δ 0.59 (m, 2H), 0.80 (m, 2h), 2.96 (m, 1H), 7.59-7.68 (m, 2H), 7.72 (dd, 1H), 7.82 (dd, 1H), 7.97 (s, 1H), 8.72-8.81 (m, 2H), 8.89 (s, 1H), 9.70 (br, NH).
  • Steps 2 and 3: N-Cyclopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4 one-3-carboxamide
  • Following the procedures of Steps 1 and 2 of EXAMPLE 5, but substituting the product from step 1 for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, the N-Cyclopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound was obtained as a solid.
  • 1HNMR (CDCl3)δ 0.66 (m, 2H), 0.85 (m, 2H), 2.97 (m, 1H), 3.18 (s, 1H), 7.42 (d, 1H), 7.47 (m, 1H), 7.52-7.58 (m, 2H), 7.65 (d, 1H), 8.70 (m, 1H), 8.80 (dd, 1H), 8.98 (s, 1H), 9.74 (br, NH).
  • Example 7 N-Isopropyl-1-[3-(3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of Step 5 of EXAMPLE 1, but substituting N-isopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from EXAMPLE 5 for phenylacetylene and 3-bromopyridine for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, the title compound was obtained as a light brown solid.
  • 1H NMR (Acetone-d6) δ 1.24 (d, 6H), 4.18 (m, 1H), 7.43 (m, 1H), 7.61 (m, 1H), 7.70-7.75 (m, 2H), 7.80 (d, 1H), 7.90 (s, 1H), 7.94 (d, 1H), 8.58 (m, 1H), 8.74-8.79 (m, 3H), 8.88 (s, 1H), 9.62 (br, NH).
  • Example 8 N-Isopropyl-1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of EXAMPLE 4, but substituting N-isopropyl-1-[3-(3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from EXAMPLE 7 for N-isopropyl-1-[3-(4-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, the title compound was obtained as a solid.
  • 1H NMR (CDCl3) δ 1.28 (d, 6H), 4.28 (m, 1H), 7.26(m, 1H), 7.36 (d, 1H), 7.45-7.49 (m, 2H), 7.57-7.62 (m, 2H), 7.69 (d, 1H), 8.16 (d, 1H), 8.31 (s, 1H), 8.69 (m, 1H), 8.81 (dd, 1H), 8.99 (s, 1H), 9.63 (br, NH).
  • EXAMPLE 9 N-Cyclopropyl-1-[3-(3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of Step 5 of EXAMPLE 1, but substituting N-cyclopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from EXAMPLE 6 for phenylacetylene and 3-bromopyridine for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, the title compound was obtained as a solid.
  • 1H NMR (CDCl3) δ 0.66 (m, 2H), 0.85 (m, 2H), 2.97 (m, 1H), 7.28 (m, 1H), 7.43-7.48 (m, 2H), 7.57 (t, 1H), 7.62 (s, 1H), 7.70 (d, 1H), 7.79 (d, 1H), 8.55 (m, 1H), 8.70 (m, 1H), 8.75 (s, 1H), 8.79 (dd, 1H), 9.01 (s, 1H), 9.74 (br, NH).
  • Example 10 N-Isopropyl-1-[3-(3-hydroxy-3-methylbut-1-ynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of Step 5 of EXAMPLE 1, but substituting 2-methyl-3-butyn-2-ol for phenylacetylene, the title compound was obtained as a white solid.
  • 1H NMR (Acetone-d6) δ 1.24 (d, 6H), 1.53 (s, 6H), 4.17 (m, 1H), 4.52 (s, 1H, OH), 7.58-7.65 (m, 4H), 7.68 (s, 1H), 8.72 (m, 1H), 8.77 (dd, 1H), 8.84 (s, 1H), 9.62 (br, NH).
  • Example 11 N-Cyclopropyl-1-[3-(3-hydroxy-3-methylbut-1-ynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of EXAMPLE 10, but substituting N-cyclopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from EXAMPLE 6 for N-isopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, the title compound was obtained as a white solid.
  • 1H NMR (Acetone-d6) δ 0.57 (m, 2H), 0.78 (m, 2H), 1.53 (s, 6H), 2.93 (m, 1H), 4.53 (s, 1H, OH), 7.58-7.65 (m, 4H), 7.67 (s, 1H), 8.72 (m, 1H), 8.76 (dd, 1H), 8.85 (s, 1H), 9.69 (br, NH).
  • Example 12 N-Isopropyl-1-[3-(1-hydroxycyclopentyl)ethynylphenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of Step 5 of EXAMPLE 1, but substituting 1-ethynylcyclopentanol for phenylacetylene, the title compound was obtained as a white solid.
  • 1H NMR (CDCl3) δ 1.28 (d, 6H), 1.76-1.80 (m, 2H), 1.84-1.88 (m, 3H), 1.98-2.06 (m, 4H), 4.27 (m, 1H), 7.36 (d, 1H), 7.44-7.50 (m, 3H), 7.56 (d, 1H), 8.68 (m, 1H), 8.79 (dd, 1H), 8.97 (s, 1H), 9.63 (br, NH).
  • Example 13 N-Isopropyl-1-[3-(1-hydroxycyclopropyl)ethynylphenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: 1-Ethynylcyclopropanol.
  • The 1-ethynylcyclopropanol was prepared following the procedure described in J. Org. Chem. 1976, 41, 1237 from [(1-ethoxycyclopropyl)oxy]trimethylsilane and ethynyl magnesium bromide and was obtained as a liquid.
  • Step 2: N-Isopropyl-1-[3-(1-hydroxycyclopropyl)ethynylphenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Following the procedure of Step 5 of EXAMPLE 1, but substituting the product from present Step 1 for phenylacetylene, the N-isopropyl-1-[3-(1-hydroxycyclopropyl)ethynylphenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound was obtained as a solid.
  • 1H NMR (CDCl3) δ 1.09 (m, 2H), 1.17 (m, 2H), 1.28 (d, 6H), 2.57 (s, 1H, OH), 4.28 (m, 1H), 7.35 (d, 1H), 7.44-7.50 (m, 3H), 7.54 (d, 1H), 8.68 (m, 1H), 8.79 (dd, 1H), 8.96 (s, 1H), 9.63 (br, NH).
  • Example 14 N-Isopropyl-1-{3-[4,4,4-trifluoro-3-hydroxy-3-(trifluoromethyl)but-1-ynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: 1,1,1-trifluoro-2-(trifluoromethyl)-4-(trimethylsilyl)but-3-yn-2-ol.
  • To a solution of trimethylsilylacetylene (4 mL) in THF (30 mL) at −78° C. was added 2.5M n-butyllithium in hexanes (14 mL) and the resulting mixture was stirred for 1 hour. An excess of hexafluoroacetone was bubbled into the cold mixture and stirring was continued for 4 hours. After warming to room temperature, the mixture was quenched with saturated aqueous ammonium chloride solution and partitioned between ether and water. The organic phase was dried and evaporated to afford the 1,1,1-trifluoro-2-(trifluoromethyl)-4-(trimethylsilyl)but-3-yn-2-ol as a liquid.
  • Step 2: N-Isopropyl-1-{3-[4,4,4-trifluoro-3-hydroxy-3-(trifluoromethyl)but-1-ynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • To a solution of 1,1,1-trifluoro-2-(trifluoromethyl)-4-(trimethylsilyl)but-3-yn-2-ol from present Step 1 (6.8 mmol) in 10 mL of THF was added 1M tetrabutylammonium fluoride (8.5 mL) and the resulting mixture was refluxed for 30 minutes to remove the TMS protecting group. The procedure of Step 5 of EXAMPLE 1 was then applied, but substituting this solution for phenylacetylene to afford the N-Isopropyl-1-{3-[4,4,4-trifluoro-3-hydroxy-3-(trifluoromethyl)but-1-ynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound as a solid.
  • 1H NMR (Acetone-d6) δ 1.24 (d, 6H), 4.17 (m, 1H), 7.60 (m, 1H), 7.72-7.79 (m, 2H), 7.83 (d, 1H), 7.90 (s, 1H), 8.14 (s, 1H, OH), 8.72 (m, 1H), 8.77 (dd, 1H), 8.85 (s, 1H), 9.62 (br, NH).
  • Example 15 N-Isopropyl-1-[3-(3-hydroxy-3-phenylbut-1-ynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • A mixture of N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from Step 4 of EXAMPLE 1, 2-phenyl-3-butyn-2-ol (2 eq), triethylamine (1.66 eq), bis(diphenylphosphino)ferrocene]dichloropalladium(II) (0.05 eq), and copper (I) iodide (5 mg/mmol) in DMF (20 mL/mmol) was heated at 85° C. for 18 hours. After cooling to room temperature, the resulting mixture was quenched with saturated aqueous ammonium chloride solution and partitioned between ethyl acetate and water. The crude product from the organic phase was chromatographed on silica gel eluting with 20% ether in methylene chloride. The purified product was stirred in ether at room temperature for 3 hours and filtered to afford the title compound as a white solid.
  • 1H NMR (Acetone-d6) δ 1.24 (d, 6H), 1.79 (s, 3H), 4.18 (m, 1H), 5.22 (s, 1H, OH), 7.26 (t, 1H), 7.35 (t, 2H), 7.59 (m, 1H), 7.66 (m, 31), 7.73 (d, 21), 7.76 (s, 1H), 8.72 (m, 1H), 8.77 (dd, 1H), 8.84 (s, 1H), 9.62 (br, NH).
  • Example 16 N-Cyclopropyl-1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: 3-Ethynylpyridine N-oxide.
  • To a solution of 3-ethynylpyridine in methylene chloride (5 mL/mmol) at room temperature was added m-chloroperoxybenzoic acid (m-CPBA, 70% purity, 1.2 eq) and the resulting mixture was stirred for 2 hours. A further amount of m-CPBA was added (0.25 eq) and stirring was continued for 1 hour. Calcium hydroxide was added (2 eq) and after 15 minutes the mixture was filtered through celite and the filtrate was evaporated. The solid residue was stirred in ether for 3 hours and filtered to afford the 3-ethynylpyridine N-oxide compound as a white solid.
  • Step 2: N-Cyclopropyl-1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Following the procedure of EXAMPLE 15, but substituting N-cyclopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from Step 1 of EXAMPLE 6 for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, and 3-ethynylpyridine N-oxide from Step 1 for 2-phenyl-3-butyn-2-ol, the N-cyclopropyl-1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound was obtained as a white solid.
  • 1H NMR (CDCl3) δ 0.66 (m, 2H), 0.84 (m, 2H), 2.96 (m, 1H), 7.26 (m, 1H), 7.37 (d, 1H), 7.45-7.48 (m, 2H), 7.58-7.62 (m, 2H), 7.69 (d, 1H), 8.16 (d, 1H), 8.31 (s, 1H), 8.69 (m, 1H), 8.79 (dd, 1H), 8.99 (s, 1H), 9.73 (br, NH).
  • Example 17 N-Isopropyl-1-[3-(3-amino-3-ethylpent-1-ynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of EXAMPLE 15, but substituting 1,1-diethylpropargylamine for 2-phenyl-3-butyn-2-ol, the title compound was obtained as a solid.
  • 1H NMR (CDCl3) δ 1.05 (t, 6H), 1.28 (d, 6H), 1.57 (m, 2H), 1.69 (m, 2H), 4.27 (m, 1H), 7.33 (d, 1H), 7.44-7.49 (m, 3H), 7.53 (d, 1H), 8.69 (m, 1H), 8.79 (dd, 1H), 8.97 (s, 1H), 9.63 (br, NH). (NH2 not observed).
  • Example 18 N-Cyclopropyl-1-[3-(3-amino-3-ethylpent-1-ynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of EXAMPLE 17, but substituting N-cyclopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from Step 1 of EXAMPLE 6 for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, the title compound was obtained as a solid.
  • 1H NMR (CDCl3) δ 0.66 (m, 2H), 0.84 (m, 2H), 1.05 (t, 6H), 1.57 (m, 2H), 1.70 (m, 2H), 2.96 (m, 1H), 7.33 (d, 1H), 7.44-7.49 (m, 3H), 7.54 (d, 1H), 8.69 (m, 1H), 8.77 (dd, 1H), 8.97 (s, 1H), 9.75 (br, NH). (NH2 not observed).
  • Example 19 N-Isopropyl-1-[3-(3-quinolinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of EXAMPLE 15, but substituting N-isopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from Step 2 of EXAMPLE 5 for 2-phenyl-3-butyn-2-ol, and 3-bromoquinoline for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, the title compound was obtained as a solid.
  • 1H NMR (CDCl3) δ 1.32(d, 6H), 4.32 (m, 1H), 7.48-7.51 (m, 2H), 7.58-7.65 (m, 2H), 7.71 (s, 1H), 7.73-7.80 (m, 2H), 7.83 (d, 1H), 8.12 (d, 1H), 8.35 (s, 1H), 8.75 (m, 1H), 8.85 (dd, 1H), 9.02 (s, 1H), 9.06 (s, 1H), 9.65 (br, NH).
  • Example 20 N-Isopropyl-1-[3-(1-oxido-3-quinolinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of EXAMPLE 19, but substituting 3-bromoquinoline N-oxide for 3-bromoquinoline, the title compound was obtained as a solid.
  • 1H NMR (CDCl3) δ 1.33 (d, 6H), 4.32 (m, 1H), 7.49-7.53 (m, 2H), 7.63 (t, 1H), 7.68-7.73 (m, 2H), 7.75-7.83 (m, 2H), 7.88-7.92 (m, 2H), 8.63 (s, 1H), 8.73-8.78 (m, 2H), 8.86 (dd, 1H), 9.05 (s, 1H), 9.67 (br, NH).
  • Example 21 N-Isopropyl-1-[3-(cyclopropylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of EXAMPLE 15, but substituting cyclopropylacetylene (Tetrahedron letters 2000, 41, 4007) for 2-phenyl-3-butyn-2-ol, the title compound was obtained as a gray solid.
  • 1H NMR (CDCl3) δ 0.83 (m, 2H), 0.90 (m, 2H), 1.31 (d, 6H), 1.48 (m, 1H), 4.31 (m, 1H), 7.33 (m, 1H), 7.45-7.51 (m, 3H), 7.55 (d, 1H), 8.72 (m, 1H), 8.83 (dd, 1H), 9.01 (s, 1H), 9.68 (br, NH).
  • Example 22 N-Isopropyl-1-[3-(6-amino-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of EXAMPLE 19, but substituting but substituting 5-bromo-2-aminopyridine for 3-bromoquinoline, the title compound was obtained as a solid.
  • 1HNMR (CDCl3) δ 1.33 (d, 6H), 4.31 (m, 1H), 4.71 (br, NH2), 6.49 (d, 1H), 7.40 (m, 1H), 7.48 (m, 1H), 7.54-7.60 (m, 3H), 7.68 (d, 1H), 8.28 (s, 1H), 8.72 (m, 1H), 8.83 (dd, 1H), 9.04 (s, 1H), 9.67 (br, NH).
  • Example 23 N-Isopropyl-1-{3-[5-(1-hydroxy-1-methylethyl)-1-oxido-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: 3-Bromo-5-(1-hydroxy-1-methylethyl)pyridine.
  • To a solution of ethyl 5-bromonicotinate (1.02 g, 4.4 mmol) in diethyl ether (15 mL) at −30° C. was added a 3M solution of methyl magnesium bromide in ether (4 mL, 12 mmol). The resulting slurry was refluxed for 2 hours then cooled and quenched with an excess of 0.5M aqueous monobasic sodium phosphate and partitioned between ether and water. The product from the organic phase was chromatographed on silica gel eluting with a 2:1:2 mixture of ether, pentane and ammonia-saturated methylene chloride to afford the 3-bromo-5-(1-hydroxy-1-methylethyl)pyridine compound as a yellow oil.
  • Step 2: 3-Bromo-5-(1-hydroxy-1-methylethyl)pyridine-N-oxide.
  • To a solution of 3-bromo-5-(1-hydroxy-1-methylethyl)pyridine from Step 1 (3.1 mmol) in chloroform (10 mL) was added m-chloroperoxybenzoic acid 70% (1.5 eq) and the resulting mixture was stirred at room temperature for 18 hours. An excess of calcium hydroxide was added and after stirring for 5 minutes, the mixture was filtered through celite and the filtrate was evaporated. The crude material was chromatographed on silica gel eluting with 10% ethanol in methylene chloride (saturated with ammonia) to afford the 3-bromo-5-(1-hydroxy-1-methylethyl)pyridine-N-oxide compound as a solid.
  • Step 3: N-Isopropyl-1-{3-[5-(1-hydroxy-1-methylethyl)-1-oxido-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Following the procedure of EXAMPLE 15, but substituting N-isopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from EXAMPLE 5 for 2-phenyl-3-butyn-2-ol, and 3-bromo-5-(1-hydroxy-1-methylethyl)pyridine-N-oxide from Step 2 for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, the N-isopropyl-1-{3-[5-(1-hydroxy-1-methylethyl)-1-oxido-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound was obtained as a solid.
  • 1H NMR (CDCl3) δ 1.32 (d, 6H), 1.64 (s, 6H), 2.22 (br, 1H, OH), 4.30 (m, 1H), 7.45-7.52 (m, 2H), 7.60 (t, 1H), 7.66 (s, 1H), 7.72 (d, 1H), 7.98 (s, 1H), 8.70 (br, 2H), 8.73 (m, 1H), 8.84 (dd, 1H), 9.03 (s, 1H), 9.68 (br, NH).
  • Example 24 N-Isopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: 5-Bromo-2-(1-hydroxy-1-methylethyl) Pyridine.
  • To a suspension of 2,5-dibromopyridine in toluene (12 mL/mmol) cooled to −78° C. was added n-butyllithium 2.5M in hexanes (1.05 eq) and the resulting mixture was stirred in the cold for 2.5 hours. Acetone (2 eq) was added and stirring was continued for 1.5 h. After quenching with saturated aqueous ammonium chloride solution, the mixture was warmed to room temperature and partitioned between ethyl acetate and water. The product from the organic phase was chromatographed on silica gel eluting with 20% ethyl acetate in hexane to afford the 5-bromo-2-(1-hydroxy-1-methylethyl) pyridine compound as a syrup.
  • Step 2: 5-Bromo-2-(1-methyl-1-{[2-(trimethylsilyl)ethoxy]methoxy} ethyl)pyridine.
  • To a solution of 5-bromo-2-(1-hydroxy-1-methylethyl) pyridine from Step 1 (14 mmol) in methylene chloride (50 mL) at 0° C. was added N,N-diisopropylethylamine (37.3 mmol) and 2-(trimethylsilyl)ethoxymethyl chloride (15.3 mmol). The resulting mixture was stirred at room temperature for 18 hours, then refluxed for 24 hours. After cooling to room temperature the mixture was quenched with saturated aqueous ammonium chloride solution and partitioned between methylene chloride and water. The crude product from the organic phase was chromatographed on silica gel eluting with 6% ethyl acetate in hexane to afford the 5-bromo-2-(1-methyl-1-{[2-(trimethylsilyl)ethoxy]methoxy}ethyl)pyridine compound.
  • Step 3: 2-(1-Methyl-1-{[2-(trimethylsilyl)ethoxy]methoxy}ethyl)-5-[(trimethylsilyl)ethynyl]pyridine.
  • Following the procedure of Step 5 of EXAMPLE 1, but substituting the product from present Step 2 for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide and trimethylsilylacetylene for phenylacetylene, the 2-(1-methyl-1-{[2-(trimethylsilyl)ethoxy]methoxy}ethyl)-5-[(trimethylsilyl)ethynyl]pyridine compound was obtained.
  • Step 4: 5-Ethynyl-2-(1-methyl-1-{[2-(trimethylsilyl)ethoxy]methoxy}ethyl)pyridine.
  • Following the procedure of Step 2 of EXAMPLE 5, but substituting the product from present Step 3 for N-isopropyl-1-[3-(trimethylsilylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, the 5-ethynyl-2-(1-methyl-1-{[2-(trimethylsilyl)ethoxy]methoxy}ethyl)pyridine compound was obtained.
  • Step 5: N-Isopropyl-1-(3-{[6-(1-methyl-1-{{2-trimethylsilyl)ethoxy]methoxy}ethyl)pyridin-3-yl]ethynyl}phenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Following the procedure of Step 5 of EXAMPLE 1, but substituting the product from present Step 4 for phenylacetylene, the N-isopropyl-1-(3-{[6-(1-methyl-1-{{2-trimethylsilyl)ethoxy]methoxy}ethyl)pyridin-3-yl]ethynyl}phenyl)-1,4 dihydro[1,8]naphthyridin-4-one-3-carboxamide compound was obtained.
  • Step 6: N-Isopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • To a solution of N-isopropyl-1-(3-{[6-(1-methyl-1-{{2-trimethylsilyl)ethoxy]methoxy}ethyl)pyridin-3-yl]ethynyl}phenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide product from present Step 5 in methylene chloride (32 mL/mmol) at 0° C. was added trifluoroacetic acid (3.2 mL/mmol). The resulting mixture was stirred at 0° C. for 2 hours then at room temperature for 2 hours. The mixture was neutralized slowly with saturated aqueous sodium bicarbonate and partitioned between methylene chloride and water. The crude material from the organic phase was chromatographed on silica gel eluting with 40% ether in methylene chloride and the purified product was stirred in ether at room temperature for 2 hours and filtered to afford the N-isopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound as solid.
  • 1H NMR (Acetone-d6)δ1.24 (d, 6H), 1.50 (s, 6H), 4.18 (m, 1H), 4.57 (s, 1H, OH), 7.61 (m, 1H), 7.69-7.74 (m, 3H), 7.78 (m, 1H), 7.88 (s, 1H), 7.93 (dd, 1H), 8.68 (s, 1H), 8.74 (m, 1H), 8.78 (dd, 1H), 8.88 (s, 1H), 9.63 (br, NH).
  • Example 25 N-Isopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-1-oxido-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of Step 2 of EXAMPLE 23, but substituting N-isopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from example 24 for 3-bromo-5-(1-hydroxy-1-methylethyl)pyridine, the title compound was obtained as a solid.
  • 1H NMR (Acetone-d6) δ 1.25 (d, 6H), 1.60 (s, 6H), 4.18 (m, 1H), 7.24 (s, 1H, OH), 7.60-7.63 (m, 3H), 7.72-7.78 (m, 2H), 7.82 (d, 1H), 7.91 (s, 1H), 8.46 (s, 1H), 8.74 (m, 1H), 8.78 (dd, 1H), 8.87 (s, 1H), 9.62 (br, NH).
  • Example 26 N-Isopropyl-1-{3-[4-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: Methyl 2-bromoisonicotinate.
  • To a solution of 2-bromoisonicotinic acid (Chem. Pharm. Bull. 1990, 38, 2446) (2.0 g) in tetrahydrofuran (100 mL) was added excess ethereal diazomethane and the resulting mixture was stirred at room temperature for 1 hour. The mixture was evaporated and the product chromatographed on silica gel eluting with a 1:3 mixture of ethyl acetate and hexane to afford the methyl 2-bromoisonicotinate ester as a colorless liquid.
  • Step 2: 2-Bromo-4-(1-hydroxy-1-methylethyl)pyridine.
  • Following the procedure of Step 1 of EXAMPLE 23, but substituting methyl 2-bromoisonicotinate from present Step 1 for ethyl 5-bromonicotinate, the 2-bromo-4-(1-hydroxy-1-methylethyl)pyridine compound was obtained as a white solid.
  • Step 3: N-Isopropyl-1-{3-[4-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Following the procedure of EXAMPLE 19, but substituting the 2-bromo-4-(1-hydroxy-1-methylethyl)pyridine from present Step 2 for 3-bromoquinoline, the N-isopropyl-1-{3-[4-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound was obtained as a yellow foam.
  • 1H NMR (Acetone-d6) δ 1.27 (d, 6H), 1.55 (s, 6H), 4.20 (m, 1H), 4.42 (s, 1H, OH), 7.52 (m, 1H), 7.63 (m, 1H), 7.72-7.79 (m, 3H), 7.84 (d, 1H), 7.95 (s, 1H), 8.55 (d, 1H), 8.77 (m, 1H), 8.80 (dd, 1H), 8.92 (s, 1H), 9.65 (br, NH).
  • Example 27 N-Isopropyl-1-{3-[5-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: 2-Bromo-5-(1-hydroxy-1-methylethyl)pyridine.
  • A solution of 2,5-dibromopyridine in diethyl ether (5mL/mmol) was cooled to −78° C., and n-butyllithium 2.5M in hexanes (1.05 eq) was added slowly. After 2 hrs in the cold, acetone (1.3 eq) was added and stirring was continued for 1 hour. The resulting mixture was quenched with saturated aqueous ammonium chloride solution, warmed to room temperature, and partitioned between ether and water. The crude product from the organic phase was triturated with 1:1 ether-hexane and filtered to afford the 2-bromo-5-(1-hydroxy-1-methylethyl)pyridine compound as a solid.
  • Step 2: 5-(1-Hydroxy-1-methylethyl)-2-[(trimethylsilyl)ethynyl]pyridine.
  • Following the procedure of EXAMPLE 15, but substituting the product 2-bromo-5-(1-hydroxy-1-methylethyl)pyridine from present Step 1 for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide and trimethylsilylacetylene for 2-phenyl-3-butyn-2-ol, the 5-(1-hydroxy-1-methylethyl)-2-[(trimethylsilyl)ethynyl]pyridine compound was obtained.
  • Step 3: 2-Ethynyl-5-(1-hydroxy-1-methylethyl)pyridine.
  • Following the procedure of Step 2 of EXAMPLE 5, but substituting the product 5-(1-hydroxy-1-methylethyl)-2-[(trimethylsilyl)ethynyl]pyridine from present Step 2 for N-isopropyl-1-[3-(trimethylsilylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, the 2-ethynyl-5-(1-hydroxy-1-methylethyl)pyridine compound was obtained.
  • Step 4: N-Isopropyl-1-{3-[5-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of EXAMPLE 15 but substituting the product 2-ethynyl-5-(1-hydroxy-1-methylethyl)pyridine from present Step 3 for 2-phenyl-3-butyn-2-ol, the N-Isopropyl-1-{3-[5-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound was obtained.
  • 1H NMR (CDCl3) δ 1.32 (d, 6H), 1.66 (s, 6H), 2.08 (s, 1H, OH), 4.31 (m, 1H), 7.46-7.55 (m, 3H), 7.61 (t, 1H), 7.71 (s, 1H), 7.78 (d, 1H), 7.86 (dd, 1H), 8.73 (m, 1H), 8.77 (m, 1H), 8.83 (dd, 1H), 9.04 (s, 1H), 9.67 (br, NH).
  • Example 28 N-Isopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: 2-Bromo-6-(1-hydroxy-1-methylethyl)pyridine.
  • Following the procedure of Step 1 of EXAMPLE 27, but substituting 2,6-dibromopyridine for 2,5-dibromopyridine, the 2-Bromo-6-(1-hydroxy-1-methylethyl)pyridine compound was obtained as a solid.
  • Step 2: N-Isopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Following the procedure of EXAMPLE 19, but substituting the product 2-Bromo-6-(1-hydroxy-1-methylethyl)pyridine from present Step 1 for 3-bromoquinoline, the N-Isopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound was obtained.
  • 1H NMR (CDCl3) δ 1.31 (d, 6H), 1.58 (s, 6H), 4.32 (m, 1H), 4.83 (s, 1H, OH), 7.38 (d, 1H), 7.43-7.52 (m, 3H), 7.60 (t, 1H), 7.70-7.75 (m, 2H), 7.79 (d, 1H), 8.74 (m, 1H), 8.84 (dd, 1H), 9.03 (s, 1H), 9.66 (br, NH).
  • Example 29 N-Cyclopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-1-oxido-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: 5-Bromo-2-(1-hydroxy-1-methylethyl)pyridine N-oxide.
  • Following the procedure of Step 2 of EXAMPLE 23, but substituting 5-bromo-2-(1-hydroxy-1-methylethyl)pyridine from Step 1 of EXAMPLE 24 for 3-bromo-5-(1-hydroxy-1-methylethyl)pyridine, the 5-Bromo-2-(1-hydroxy-1-methylethyl)pyridine N-oxide compound was obtained.
  • Step 2: N-Cyclopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-1-oxido-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Following the procedure of EXAMPLE 15, but substituting N-cyclopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from EXAMPLE 6 for 2-phenyl-3-butyn-2-ol and 5-bromo-2-(1-hydroxy-1-methylethyl)pyridine-N-oxide from present Step 1 for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, the N-cyclopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-1-oxido-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound was obtained as a solid.
  • 1H NMR (CDCl3) δ 0.66 (m, 2H), 0.84 (m, 2H), 1.66 (s, 6H), 2.96 (m, 1H), 7.34 (d, 1H), 7.43-7.50 (m, 4H), 7.58-7.62 (m, 2H), 7.69 (d, 1H), 8.33 (s, 1H, OH), 8.69 (m, 1H), 8.79 (dd, 1H), 8.99 (s, 1H), 9.73 (br, NH).
  • Example 30 N-Isopropyl-1-{3-[(4-pyridin-3-ylphenyl)ethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: 3-(4-Bromophenyl)pyridine.
  • A mixture of pyridine-3-boronic acid 1,3-propanediol cyclic ester, 4-bromoiodobenzene (1.1 eq), [1,1′-bis (diphenylphosphino)ferrocene]dichloropalladium(II) (0.05 eq) and 2M aqueous sodium carbonate (5 eq) in N,N-dimethylformamide (2 mL/mmol) was stirred at 85° C. for 4 hours. After quenching with saturated aqueous ammonium chloride solution the mixture was partitioned between ethyl acetate and water and the crude product from the organic phase was chromatographed on silica gel eluting with a 1:9 mixture of ethyl acetate and hexane to afford the 3-(4-bromophenyl)pyridine compound as a solid.
  • Step 2: N-Isopropyl-1-{3-[(4-pyridin-3-ylphenyl)ethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Following the procedure of EXAMPLE 19, but substituting the product from present Step 1 for 3-bromoquinoline, the N-isopropyl-1-{3-[(4-pyridin-3-ylphenyl)ethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound was obtained.
  • 1H NMR (CDCl3) δ 1.28 (d, 6H), 4.28 (m, 1H), 7.38 (m, 1H), 7.42 (d, 1H), 7.48 (m, 1H), 7.53-7.64 (m, 6H), 7.70 (d, 1H), 7.88 (d, 1H), 8.60 (m, 1H), 8.71 (m, 1H), 8.82 (dd, 1H), 8.86 (s, 1H), 9.02 (s, 1H), 9.63 (br, NH).
  • Example 31 N-Isopropyl-1-(3-{[5-(1-hydroxy-1-methylethyl)thien-2-yl]ethynyl} phenyl)-1,4-dihydro [1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: 2-Bromo-5-(1-hydroxy-1-methylethyl)thiophene.
  • To a solution of 2-acetyl-5-bromothiophene in THF (2.5 mL/mmol) at −30° C. was added 1.4M methylmagnesium bromide in 3:1 toluene-THF (1.5 eq) and the resulting mixture was warmed to −10° C. and stirred for 1.5 hours. After quenching with saturated aqueous ammonium chloride solution, the mixture was partitioned between ether and water. The organic fraction was dried and evaporated, and the crude material was chromatographed on silica gel eluting with a 1:4 mixture of ether and hexane to afford the 2-bromo-5-(1-hydroxy-1-methylethyl)thiophene compound.
  • Step 2: 2-(1-Hydroxy-1-methylethyl)-5-trimethylsilylethynyl Thiophene.
  • Following the procedure of EXAMPLE 15, but substituting the product from present Step 1 for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide and trimethylsilylacetylene for 2-phenyl-3-butyn-2-ol, the 2-(1-hydroxy-1-methylethyl)-5-trimethylsilylethynyl thiophene compound was obtained.
  • Step 3: 2-Ethynyl-5-(1-hydroxy-1-methylethyl)thiophene.
  • Following the procedure of Step 2 of EXAMPLE 5, but substituting the product from present Step a for N-isopropyl-1-[3-(trimethylsilylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, the 2-ethynyl-5-(1-hydroxy-1-methylethyl)thiophene compound was obtained.
  • Step 4: N-Isopropyl-1-(3-{[5-(1-hydroxy-1-methylethyl)thien-2-yl]ethynyl} phenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Following the procedure of EXAMPLE 15, but substituting the 2-ethynyl-5-(1-hydroxy-1-methylethyl)thiophene product from present Step-3 for 2-phenyl-3-butyn-2-ol, the N-isopropyl-1-(3-{[5-(1-hydroxy-1-methylethyl)thien-2-yl]ethynyl}phenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound was obtained as a solid.
  • 1H NMR (CDCl3) δ 1.31 (d, 6H), 1.70 (s, 6H), 2.42 (s, 1H, OH), 4.31 (m, 1H), 6.87 (d, 1H), 7.16 (d, 1H), 7.42 (d, 1H), 7.48 (m, 1H), 7.59 (t, 1H), 7.63 (s, 1H), 7.68 (d, 1H), 8.73 (m, 1H), 8.84 (dd, 1H), 9.02 (s, 1H), 9.68 (br, NH).
  • Example 32 N-Isopropyl-1-(3-{[2-(1-hydroxy-1-methylethyl)-1,3-thiazol-5-yl]ethynyl}phenyl)-1,4-dihydro [1,8]naphthyridin-4-one-3-carboxamide
  • Step 1: 2-(1-hydroxy-1-methylethyl)thiazole.
  • To a solution of thiazole in ether (1 mL/mmol) at −78° C. was added 2.2M n-butyllithium in hexanes (1.1 eq) and the resulting mixture was stirred for 30 minutes. Acetone (1.2 eq) was added and the mixture was stirred at −78° C. for a further 30 minutes. The mixture was quenched in the cold with saturated aqueous ammonium chloride solution and warmed to room temperature, then partitioned between ether and water. The organic phase was dried and evaporated to yield the crude product as an orange-brown oil which was used as such in the next step.
  • Step 2: 2-(1-methyl-1-{[2-(trimethylsilyl)ethoxy]methoxy}ethyl)thiazole.
  • Following the procedure of Step 2 of EXAMPLE 24, but substituting the product from present Step 1 for 5-bromo-2-(1-hydroxy-1-methylethyl) pyridine, the 2-(1-methyl-1-{[2-(trimethylsilyl)ethoxy]methoxy}ethyl)thiazole compound was obtained as an oil.
  • Step 3: 5-Bromo-2-(1-hydroxy-1-methylethyl)thiazole.
  • To a solution of 2-(1-methyl-1-{[2-(trimethylsilyl)ethoxy]methoxy}ethyl)thiazole from Step 2 in chloroform (2 mL/mmol) at room temperature was added bromine (2 molar eq) and the resulting mixture was stirred for 1 hour. Solid sodium bicarbonate (0.55 eq) was added and the mixture was stirred for 5 hours. More sodium bicarbonate was added (0.55 eq) and stirring was continued for 18 hours. After a final addition of sodium bicarbonate (0.55 eq) the mixture was stirred for a further 5 hours, diluted with chloroform and the organic phase was washed with saturated aqueous sodium bicarbonate, then with water, dried and evaporated. The crude material was chromatographed, eluting with a 3:7 mixture of ethyl acetate and hexane to afford the desired product.
  • Step 4: N-Isopropyl-1-(3-{[2-(1-hydroxy-1-methylethyl)-1,3-thiazol-5-yl]ethynyl}phenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Following the procedure of EXAMPLE 19, but substituting the product from present Step 3 for 3-bromoquinoline, the N-isopropyl-1-(3-{[2-(1-hydroxy-1-methylethyl)-1,3-thiazol-5-yl]ethynyl}phenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound was obtained as a solid.
  • 1H NMR (CDCl3) δ 1.29 (d, 6H), 1.68 (s, 6H), 2.90 (s, 1H, OH), 4.28 (m, 1H), 7.42 (d, 1H), 7.46 (m, 1H), 7.54-7.60 (m, 2H), 7.66 (d, 1H), 7.82 (s, 1H), 8.70 (m, 1H), 8.80 (dd, 1H), 8.99 (s, 1H), 9.63 (br, NH).
  • Example 33 1-[3-(1-Oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Step 1:1-(3-Bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Following the procedure of Step 4 of EXAMPLE 1, but substituting 28% aqueous ammonium hydroxide for isopropylamine, the 1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide compound was obtained as a solid.
  • Step 2: 1-[3-(Trimethylsilylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • Following the procedure of Step 5 of EXAMPLE 1, but substituting the 1-(3-Bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from present Step 1 for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide and trimethylsilylacetylene for phenylacetylene, the 1-[3-(trimethylsilylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide product was obtained as a solid.
  • Step 3:1-(3-Ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide.
  • To a solution of 1-[3-(trimethylsilylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from Step 2 in THF (30 mL/mmol) at 0° C. was added 1M tetrabutylammonium fluoride in TBF (1.5 eq) and the resulting mixture was stirred at 0° C. for 30 minutes. The mixture was partitioned between methylene chloride and water and the organic phase was dried and evaporated. The crude 1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide product was used as such in the next step.
  • Step 4: 1-[3-(1-oxido-3-pyridinylethvnyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide
  • Following the procedure of example 19, but substituting the 1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide from Step 3 for N-Isopropyl-1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide and 3-bromopyridine N-oxide for 3-bromoquinoline, the 1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide was obtained as a white solid.
  • 1H NMR (CDCl3)δ 5.84(br, 1H, NH), 7.30 (m, 1H), 7.41 (d, 1H), 7.53 (m, 2H), 7.64 (t, 1H), 7.67 (s, 1H), 7.74 (d, 1H), 8.21 (d, 1H), 8.35 (s, 1H), 8.75 (m, 1H), 8.88 (dd, 1H), 9.05 (s, 1H), 9.52 (br, 1H, NH).
  • Example 34 1-[3-(1-Oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylic Acid
  • Step 1: Ethyl 1-(3-Ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate.
  • Following the procedures of Steps 1 and 2 of EXAMPLE 5, but substituting ethyl 1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate from Step 2 of EXAMPLE 1 for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide as the starting material, the Ethyl 1-(3-Ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate compound was obtained as a solid.
  • Step 2: Ethyl 1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate.
  • Following the procedure of EXAMPLE 15, but substituting the ethyl 1-(3-ethynylphenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate from present Step 1 for 2-phenyl-3-butyn-2-ol and 3-bromopyridine N-oxide for N-isopropyl-1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide, the ethyl 1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate was obtained as a solid.
  • Step 3:1-[3-(1-Oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylic Acid.
  • Following the procedure of Step 3 of EXAMPLE 1, but substituting the ethyl 1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate ester from present Step 2 for ethyl 1-(3-bromophenyl)-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylate, the 1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylic acid was obtained as a white solid.
  • 1H NMR (DMSO-d6) δ 7.46 (t, 1H), 7.51 (d, 1H), 7.70 (t, 1H), 7.75 (m, 2H), 7.80 (d, 1H), 7.92 (s, 1H), 8.26 (d, 1H), 8.47 (s, 1H), 8.81 (dd, 1H), 8.89 (m, 1H), 8.97 (s, 1H).
  • Other variations or modifications, which will be obvious to those skilled in the art, are within the scope and teachings of this invention. This invention is not to be limited except as set forth in the following claims.

Claims (14)

1-28. (canceled).
29. A method of treatment or prevention of asthma; chronic bronchitis; chronic obstructive pulmonary disease; adult respiratory distress syndrome; infant respiratory distress syndrome; cough; chronic obstructive pulmonary disease in animals; adult respiratory distress syndrome; ulcerative colitis; Crohn's disease; hypersecretion of gastric acid; bacterial, fungal or viral induced sepsis or septic shock; endotoxic shock; laminitis or colic in horses; spinal cord trauma; head injury; neurogenic inflammation; pain; reperfusion injury of the brain; psoriatic arthritis; rheumatoid arthritis; ankylosing spondylitis; osteoarthritis; inflammation; or cytokine-mediated chronic tissue degeneration;
allergic rhinitis, allergic conjunctivitis, eosinophilic granuloma, osteoporosis, arterial restenosis, atherosclerosis, reperfiision injury of the myocardium chronic glomerulonephritis, vernal conjunctivitis, cachexia, transplant rejection, or graft versus host disease; or
memory impairment, monopolar depression, Parkinson disease, Alzheimer's disease, acute and chronic multiple sclerosis, psoriasis, benign or malignant proliferative skin diseases, atopic dermatitis, urticaria, cancer, tumor growth or cancerous invasion of normal tissues:
comprising the step of administering a therapeutically effective amount, or a prophylactically effective amount, of the compound for Formula (I)
Figure US20050070569A1-20050331-C00061
or a pharmaceutically acceptable salt thereof,
wherein:
R is H, —C1-6alkyl or —C3-6cycloalkyl;
R1 is H, or a —C1-6alkyl, —C3-6cycloalkyl, —C1-6 alkoxy, —C2-6alkenyl, —C3-6alkynyl, —C(O)—C1-6alkyl, C(O)-aryl, C0-6alkyl)SOn—(C1-6alkyl), —(C0-6alkyl)SOn-(aryl), phenyl, wherein aryl is selected from phenyl or naphthyl and wherein any of the groups is optionally substituted with 1-3 independent —C1-6alkyl, —C1-6alkoxy, OH, —N(C0-6alkyl)(C0-6alkyl), —(C0-6alkyl)SOnC1-6alkyl), nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, or halogen substituents;
R2 is absent, H, halogen, —C1-6alkyl, —C3-6cycloalkyl, —C1-6alkyl(C3-6cycloalkyl)(C3-6cycloalkyl), —C1-6alkoxy, phenyl, nitro, CN, ═N—O—C1-6alkyl, —O—N═C1-6alkyl, —N(C0-6alkyl)(C0-6alkyl), —NHSOn—(C1-6alkyl), —NHC(O)C1-6alkyl, —C(O)C1-6alkyl, —C(O)—O—C1-6alkyl, —C1-6alkyl(═N—OH), —C(N═NOH)C1-6alkyl, —C0-6alkyl(oxy)C1-6alkyl-phenyl, —SOnNH(C0-6alkyl), or —(C0-6alkyl)SOn—(C1-6alkyl), wherein the phenyl, is optionally substituted with halogen, —C1-6alkyl, —C1-6alkoxy, hydroxy, —N(C0-6alkyl)(C0-6alkyl), or —C(O)—O—C1-6 alkyl, and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents;
n is 0, 1, or 2;
R3 is absent, H, OH, —N(C0-6alkyl)(C0-6alkyl), halogen or C1-6alkyl, wherein any alkyl is optionally substituted with 1-6 independent halogen, OH, or —N(C0-6alkyl)(C0-6alkyl) substituents;
R4, R5, R6, and R7 each independently is H, halogen, —C1-6alkyl, —C1-6alkoxy, —SOn—(C1-6alkyl), nitro, CN, or —N(C0-6alkyl)(C0-6alkyl), and any alkyl is optionally substituted with 1-6 independent halogen or —OH substituents; and
R8 is pyridyl or pyridonyl, or pyridyl N-oxide.
30. A method according to claim 29 wherein:
R8 is pyridyl, or pyridyl N-oxide.
31. A method according to claim 29 wherein:
R is Hydrogen.
32. A method according to claim 29 wherein R4, R5, R6 and R7 are each hydrogen.
33. A method according to claim 29 wherein R1 is —C3-6cycloalkyl.
34. A method according to claim 29 wherein R is Hydrogen; and
R4, R5, R6 and R7 are each hydrogen.
35. A method according to claim 34 wherein R8 is pyridyl or pyridyl N-oxide.
36. A method according to claim 34 wherein R1 is 3 cycloalkyl.
37. A method according to claim 29 wherein the compound is selected from
N-Isopropyl-1-[3-(2-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Isopropyl-1-[3-(4-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Isopropyl-1-[3-(1-oxido-4-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Isopropyl-1-[3-(3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Isopropyl-1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Cyclopropyl-1-[3-(3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Cyclopropyl-1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Isopropyl-1-[3-(6-amino-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Isopropyl-1-{3-[5-(1-hydroxy-1-methylethyl)-1-oxido-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Isopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Isopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-1-oxido-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Isopropyl-1-{3-[4-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Isopropyl-1-{3-[5-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Isopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-2-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
N-Cyclopropyl-1-{3-[6-(1-hydroxy-1-methylethyl)-1-oxido-3-pyridinylethynyl]phenyl}-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
1-[3-(1-Oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide; or
1-[3-(1-Oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxylic acid;
or a pharmaceutically acceptable salt thereof.
38. A method according to claim 29 wherein the compound is N-Cyclopropyl-1-[3-(3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
or a pharmaceutically acceptable salt thereof.
39. A method according to claim 29 wherein the compound is N-Cyclopropyl-1-[3-(1-oxido-3-pyridinylethynyl)phenyl]-1,4-dihydro[1,8]naphthyridin-4-one-3-carboxamide;
or a pharmaceutically acceptable salt thereof.
40. A method according to claim 29 selected from asthma; chronic bronchitis; chronic obstructive pulmonary disease; adult respiratory distress syndrome; infant respiratory distress syndrome; cough and adult respiratory distress syndrome; arthritis; rheumatoid arthritis; osteoarthritis and inflammation.
41. A method according to claim 29 selected from
memory impairment, monopolar depression, Parkinson disease and Alzheimer's disease.
US10/487,047 2001-08-29 2002-08-27 Alkyne-aryl phosphodiesterase-4 inhibitors Abandoned US20050070569A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/487,047 US20050070569A1 (en) 2001-08-29 2002-08-27 Alkyne-aryl phosphodiesterase-4 inhibitors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US31609301P 2001-08-29 2001-08-29
PCT/CA2002/001324 WO2003018579A1 (en) 2001-08-29 2002-08-27 Alkyne-aryl phosphodiesterase-4 inhibitors
US10/487,047 US20050070569A1 (en) 2001-08-29 2002-08-27 Alkyne-aryl phosphodiesterase-4 inhibitors

Publications (1)

Publication Number Publication Date
US20050070569A1 true US20050070569A1 (en) 2005-03-31

Family

ID=23227432

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/226,980 Expired - Lifetime US6743802B2 (en) 2001-08-29 2002-08-23 Alkyne-aryl phosphodiesterase-4 inhibitors
US10/487,047 Abandoned US20050070569A1 (en) 2001-08-29 2002-08-27 Alkyne-aryl phosphodiesterase-4 inhibitors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/226,980 Expired - Lifetime US6743802B2 (en) 2001-08-29 2002-08-23 Alkyne-aryl phosphodiesterase-4 inhibitors

Country Status (28)

Country Link
US (2) US6743802B2 (en)
EP (2) EP2305677A1 (en)
JP (1) JP4157035B2 (en)
KR (1) KR100928849B1 (en)
CN (1) CN100338061C (en)
AR (1) AR036365A1 (en)
AU (1) AU2002322940B2 (en)
BR (1) BR0212042A (en)
CA (1) CA2456817C (en)
DO (1) DOP2002000456A (en)
EA (1) EA006800B1 (en)
EC (1) ECSP044992A (en)
GE (1) GEP20063805B (en)
HK (1) HK1080073B (en)
HR (1) HRP20040151A2 (en)
HU (1) HUP0401729A3 (en)
IL (1) IL160213A0 (en)
IS (1) IS7138A (en)
JO (1) JO2311B1 (en)
MX (1) MXPA04001889A (en)
NO (1) NO330521B1 (en)
NZ (1) NZ530931A (en)
PE (1) PE20030416A1 (en)
PL (1) PL367716A1 (en)
RS (1) RS17004A (en)
UA (1) UA75957C2 (en)
WO (1) WO2003018579A1 (en)
ZA (1) ZA200400952B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080254029A1 (en) * 2007-04-11 2008-10-16 Alcon Research, Ltd. Use of an Inhibitor of TNFa Plus an Antihistamine to Treat Allergic Rhinitis and Allergic Conjunctivitis
US20110082145A1 (en) * 2009-10-01 2011-04-07 Alcon Research, Ltd. Olopatadine compositions and uses thereof
US9120788B2 (en) 2013-02-19 2015-09-01 Pfizer Inc. Azabenzimidazole compounds
US9598421B2 (en) 2014-08-06 2017-03-21 Pfizer Inc. Imidazopyridazine compounds
US10131669B2 (en) 2014-07-24 2018-11-20 Pfizer Inc. Pyrazolopyrimidine compounds
WO2020139830A2 (en) 2018-12-28 2020-07-02 Regeneron Pharmaceuticals, Inc. Treatment of respiratory disorders with arachidonate15-lipoxygenase (alox15) inhibitors

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JO2311B1 (en) * 2001-08-29 2005-09-12 ميرك فروست كندا ليمتد Alkyne-aryl phosphodiesterase-4 inhibitors
US7351719B2 (en) 2002-10-31 2008-04-01 Boehringer Ingelheim Pharma Gmbh & Co. Kg Amide compounds having MCH-antagonistic activity and medicaments comprising these compounds
DE10250708A1 (en) * 2002-10-31 2004-05-19 Boehringer Ingelheim Pharma Gmbh & Co. Kg New alkyne compounds having MCH antagonist activity and medicaments containing these compounds
US7452911B2 (en) 2002-10-31 2008-11-18 Boehringer Ingelheim Pharma Gmbh & Co. Kg Alkyne compounds with MCH antagonistic activity and medicaments comprising these compounds
US20060069115A1 (en) * 2002-11-15 2006-03-30 Scolnick Edward M Use of pde4 inhibitors as adjunct therapy for psychiatric disorders
WO2004047836A1 (en) * 2002-11-22 2004-06-10 Merck Frosst Canada & Co. Use of phosphodiesterase-4 inhibitors as enhancers of cognition
AR042194A1 (en) * 2002-11-22 2005-06-15 Merck & Co Inc METHOD FOR PREPARING PHOSPHODESTERASE INHIBITORS - 4
GB0307863D0 (en) * 2003-04-04 2003-05-14 Merck Sharp & Dohme Therapeutic treatment
GB0322722D0 (en) * 2003-09-27 2003-10-29 Glaxo Group Ltd Compounds
GB0322726D0 (en) * 2003-09-27 2003-10-29 Glaxo Group Ltd Compounds
US7592373B2 (en) 2003-12-23 2009-09-22 Boehringer Ingelheim International Gmbh Amide compounds with MCH antagonistic activity and medicaments comprising these compounds
US7524862B2 (en) 2004-04-14 2009-04-28 Boehringer Ingelheim International Gmbh Alkyne compounds with MCH antagonistic activity and medicaments comprising these compounds
DE102004017934A1 (en) 2004-04-14 2005-11-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg New alkyne compounds having MCH antagonist activity and medicaments containing these compounds
DE102004017930A1 (en) * 2004-04-14 2005-11-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg New alkyne compounds having MCH antagonist activity and medicaments containing these compounds
EP1742628A4 (en) * 2004-04-26 2009-06-03 Merck Frosst Canada Ltd Alternative forms of the phosphodiesterase-4 inhibitor n-cyclopropyl-1-{3-¬(1-oxidopryidin-3-yl)ethynyl phenyl}-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxyamide
JP4264388B2 (en) * 2004-07-01 2009-05-13 富士通株式会社 Semiconductor chip bonding method and bonding apparatus
WO2006004191A1 (en) * 2004-07-05 2006-01-12 Astellas Pharma Inc. Pyrrolopyridazine derivatives which inhibit pde iv and tnf alfa
US7687490B2 (en) * 2005-04-12 2010-03-30 Meiji Seika Kaisha, Ltd. 2-thioethenyl substituted carbapenem derivatives
JP2006016407A (en) * 2005-06-15 2006-01-19 Yamaha Motor Co Ltd Phosphodiesterase inhibitor
EP2258358A3 (en) 2005-08-26 2011-09-07 Braincells, Inc. Neurogenesis with acetylcholinesterase inhibitor
CA2620333A1 (en) 2005-08-26 2007-03-01 Braincells, Inc. Neurogenesis by muscarinic receptor modulation
EP1931338A4 (en) * 2005-09-28 2009-05-27 Merck Frosst Canada Inc Aerosol powder formulation comprising sieved lactose
EP1940389A2 (en) 2005-10-21 2008-07-09 Braincells, Inc. Modulation of neurogenesis by pde inhibition
WO2007053596A1 (en) 2005-10-31 2007-05-10 Braincells, Inc. Gaba receptor mediated modulation of neurogenesis
WO2007070319A2 (en) * 2005-12-13 2007-06-21 Wyeth Dibenzonaphthyridine derivatives and methods of use thereof
US20100216734A1 (en) 2006-03-08 2010-08-26 Braincells, Inc. Modulation of neurogenesis by nootropic agents
EP2026813A2 (en) 2006-05-09 2009-02-25 Braincells, Inc. 5 ht receptor mediated neurogenesis
CA2651813A1 (en) 2006-05-09 2007-11-22 Braincells, Inc. Neurogenesis by modulating angiotensin
EP2068872A1 (en) 2006-09-08 2009-06-17 Braincells, Inc. Combinations containing a 4-acylaminopyridine derivative
US20100184806A1 (en) 2006-09-19 2010-07-22 Braincells, Inc. Modulation of neurogenesis by ppar agents
US20100204230A1 (en) 2007-02-12 2010-08-12 Peter Blurton Piperazine derivatives for treatment of ad and related conditions
US20090182035A1 (en) * 2007-04-11 2009-07-16 Alcon Research, Ltd. Use of a combination of olopatadine and cilomilast to treat non-infectious rhinitis and allergic conjunctivitis
WO2008156721A1 (en) 2007-06-20 2008-12-24 Merck & Co., Inc. Diphenyl substituted alkanes
RU2470639C2 (en) * 2007-10-25 2012-12-27 Мерк Фросст Кэнада Лтд. Inhalation compositions containing monteleukast acid and pde-4 inhibitor or inhalation corticosteroid
EP2291181B9 (en) 2008-04-18 2013-09-11 University College Dublin National University Of Ireland, Dublin Captodiamine for the treatment of depression symptoms
US20100216805A1 (en) 2009-02-25 2010-08-26 Braincells, Inc. Modulation of neurogenesis using d-cycloserine combinations
FR2952934B1 (en) * 2009-11-23 2012-06-22 Sanofi Aventis PYRIDINO-PYRIDINONE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION
MX343165B (en) 2010-02-12 2016-10-26 Raqualia Pharma Inc 5-ht4 receptor agonists for the treatment of dementia.
WO2012116410A1 (en) * 2011-03-02 2012-09-07 Bionomics Limited Methods of treating a disease or condition of the central nervous system
CN103183675A (en) * 2011-12-27 2013-07-03 山东轩竹医药科技有限公司 Phosphodiesterase-4 inhibitor
CN102643268B (en) * 2011-12-30 2014-05-21 沈阳药科大学 Quinoline and cinnoline compound and application thereof
WO2013106547A1 (en) 2012-01-10 2013-07-18 President And Fellows Of Harvard College Beta-cell replication promoting compounds and methods of their use
CN103214478B (en) * 2012-01-19 2015-07-15 山东轩竹医药科技有限公司 Pyridineoxopyridazine derivatives

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297248B1 (en) * 1997-04-06 2001-10-02 Suntory Limited 1-aryl-1,8-naphthylidin-4-one derivative as type IV phosphodiesterase inhibitor
US6743802B2 (en) * 2001-08-29 2004-06-01 Merck Frosst Canada & Co. Alkyne-aryl phosphodiesterase-4 inhibitors
US20060058316A1 (en) * 2002-11-22 2006-03-16 Daniel Dube 4-Oxo-1-3-substituted phenyl-1,4-dihydro-1,8-naphthyridine-3-carboxamide phosphodiesterase-4 inhibitors

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9212673D0 (en) 1992-06-15 1992-07-29 Celltech Ltd Chemical compounds
GB9212693D0 (en) 1992-06-15 1992-07-29 Celltech Ltd Chemical compounds
DE59304166D1 (en) 1992-07-01 1996-11-21 Hoechst Ag 3,4,5-Substituted benzoylguanidines, processes for their preparation, their use as medicaments or diagnostic agents and medicaments containing them
GB9222253D0 (en) 1992-10-23 1992-12-09 Celltech Ltd Chemical compounds
US5622977A (en) 1992-12-23 1997-04-22 Celltech Therapeutics Limited Tri-substituted (aryl or heteroaryl) derivatives and pharmaceutical compositions containing the same
GB9226830D0 (en) 1992-12-23 1993-02-17 Celltech Ltd Chemical compounds
DE4306152A1 (en) 1993-02-27 1994-09-01 Hoechst Ag Positive-working radiation-sensitive mixture, and recording material produced therewith
GB9304919D0 (en) 1993-03-10 1993-04-28 Celltech Ltd Chemical compounds
GB9304920D0 (en) 1993-03-10 1993-04-28 Celltech Ltd Chemical compounds
US5455252A (en) 1993-03-31 1995-10-03 Syntex (U.S.A.) Inc. Optionally substituted 6,8-quinolines
DE4318756A1 (en) 1993-06-05 1994-12-08 Hoechst Ag Substituted benzoylguanidines, process for their preparation, their use as medicament or diagnostic agent, and medicament containing them
JP3806144B2 (en) 1993-12-22 2006-08-09 セルテック セラピューティックス リミテッド Trisubstituted phenyl derivatives, their preparation and their use as phosphodiesterase (type IV) inhibitors
GB9326600D0 (en) 1993-12-22 1994-03-02 Celltech Ltd Chemical compounds
GB9326173D0 (en) 1993-12-22 1994-02-23 Celltech Ltd Chemical compounds and process
US5786354A (en) 1994-06-21 1998-07-28 Celltech Therapeutics, Limited Tri-substituted phenyl derivatives and processes for their preparation
US6245774B1 (en) 1994-06-21 2001-06-12 Celltech Therapeutics Limited Tri-substituted phenyl or pyridine derivatives
GB9412573D0 (en) 1994-06-22 1994-08-10 Celltech Ltd Chemical compounds
GB9412571D0 (en) 1994-06-22 1994-08-10 Celltech Ltd Chemical compounds
GB9412672D0 (en) 1994-06-23 1994-08-10 Celltech Ltd Chemical compounds
EP0765867A1 (en) 1995-09-27 1997-04-02 Hoechst Aktiengesellschaft Substituted benzoyl guanidines, process for their preparation, their use as antiarrhythmics or diagnostic agent as well as pharmaceuticals containing them
GB9526243D0 (en) 1995-12-21 1996-02-21 Celltech Therapeutics Ltd Chemical compounds
GB9526245D0 (en) 1995-12-21 1996-02-21 Celltech Therapeutics Ltd Chemical compounds
GB9526246D0 (en) 1995-12-21 1996-02-21 Celltech Therapeutics Ltd Chemical compounds
DE19622370A1 (en) 1996-06-04 1997-12-11 Hoechst Ag Ortho-substituted benzoylguanidines, processes for their preparation, their use as medicaments or diagnostic agents and medicaments containing them
GB9625184D0 (en) 1996-12-04 1997-01-22 Celltech Therapeutics Ltd Chemical compounds
CN1245486A (en) 1996-12-11 2000-02-23 Basf公司 Ketobenzamides as calpain inhibitors
AU8780898A (en) 1997-08-20 1999-03-08 First Data Corporation Interactive tax payment system
CN1156476C (en) * 1998-01-29 2004-07-07 第一三得利制药株式会社 1-cycloalkyl-1,8-naphthyridin-4-one derivatives with phosphodiesterase IV inhibitory activity
ID27843A (en) * 1998-08-11 2001-04-26 Pfizer Prod Inc SUBSTITUTION 1, 8-NAFTIRIDIN-4 (IH) -ON AS A HOSPITALER OF PHOSPHODIESTERASE 4

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297248B1 (en) * 1997-04-06 2001-10-02 Suntory Limited 1-aryl-1,8-naphthylidin-4-one derivative as type IV phosphodiesterase inhibitor
US6743802B2 (en) * 2001-08-29 2004-06-01 Merck Frosst Canada & Co. Alkyne-aryl phosphodiesterase-4 inhibitors
US20060058316A1 (en) * 2002-11-22 2006-03-16 Daniel Dube 4-Oxo-1-3-substituted phenyl-1,4-dihydro-1,8-naphthyridine-3-carboxamide phosphodiesterase-4 inhibitors

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080254029A1 (en) * 2007-04-11 2008-10-16 Alcon Research, Ltd. Use of an Inhibitor of TNFa Plus an Antihistamine to Treat Allergic Rhinitis and Allergic Conjunctivitis
US20110082145A1 (en) * 2009-10-01 2011-04-07 Alcon Research, Ltd. Olopatadine compositions and uses thereof
US9120788B2 (en) 2013-02-19 2015-09-01 Pfizer Inc. Azabenzimidazole compounds
US9815832B2 (en) 2013-02-19 2017-11-14 Pfizer Inc. Azabenzimidazole compounds
US10131669B2 (en) 2014-07-24 2018-11-20 Pfizer Inc. Pyrazolopyrimidine compounds
US9598421B2 (en) 2014-08-06 2017-03-21 Pfizer Inc. Imidazopyridazine compounds
US10077269B2 (en) 2014-08-06 2018-09-18 Pfizer Inc. Imidazopyridazine compounds
US10669279B2 (en) 2014-08-06 2020-06-02 Pfizer Inc. Imidazopyridazine compounds
WO2020139830A2 (en) 2018-12-28 2020-07-02 Regeneron Pharmaceuticals, Inc. Treatment of respiratory disorders with arachidonate15-lipoxygenase (alox15) inhibitors

Also Published As

Publication number Publication date
CN1639161A (en) 2005-07-13
AU2002322940B2 (en) 2007-03-01
JO2311B1 (en) 2005-09-12
IL160213A0 (en) 2004-07-25
RS17004A (en) 2007-02-05
EP1436290B8 (en) 2013-12-04
ZA200400952B (en) 2004-10-22
CA2456817A1 (en) 2003-03-06
KR20040034672A (en) 2004-04-28
HUP0401729A2 (en) 2004-12-28
EP1436290A1 (en) 2004-07-14
EP1436290B1 (en) 2013-09-18
CN100338061C (en) 2007-09-19
GEP20063805B (en) 2006-04-25
JP2005508313A (en) 2005-03-31
EP2305677A1 (en) 2011-04-06
PL367716A1 (en) 2005-03-07
UA75957C2 (en) 2006-06-15
KR100928849B1 (en) 2009-11-30
NO20041293D0 (en) 2004-03-26
MXPA04001889A (en) 2004-06-15
ECSP044992A (en) 2004-04-28
HK1080073A1 (en) 2006-04-21
US20030114478A1 (en) 2003-06-19
PE20030416A1 (en) 2003-05-15
EA200400361A1 (en) 2004-08-26
IS7138A (en) 2004-01-30
NZ530931A (en) 2005-12-23
US6743802B2 (en) 2004-06-01
HUP0401729A3 (en) 2012-09-28
NO20041293L (en) 2004-05-27
HRP20040151A2 (en) 2006-05-31
DOP2002000456A (en) 2003-02-28
JP4157035B2 (en) 2008-09-24
EA006800B1 (en) 2006-04-28
CA2456817C (en) 2010-11-30
HK1080073B (en) 2008-08-08
BR0212042A (en) 2004-08-17
AR036365A1 (en) 2004-09-01
NO330521B1 (en) 2011-05-09
WO2003018579A1 (en) 2003-03-06

Similar Documents

Publication Publication Date Title
US6743802B2 (en) Alkyne-aryl phosphodiesterase-4 inhibitors
AU2002322940A1 (en) Alkyne-aryl phosphodiesterase-4 inhibitors
US20060004056A1 (en) Di-aryl-substituted-ethan pyridone pde4 inhibitors
US6677351B2 (en) 1-biaryl-1,8-naphthyridin-4-one phosphodiesterase-4 inhibitors
US20050234238A1 (en) 8-(Biaryl)quinoline pde4 inhibitors
US6410563B1 (en) Substituted 8-arylquinoline phosphodiesterase-4 inhibitors
AU2002257459A1 (en) 1-biaryl-1,8-napthyridin-4-one phosphodiesterase-4 inhibitors
US6740666B2 (en) Substituted 8-arylquinoline phosphodiesterase-4 inhibitors
US7482456B2 (en) 8-(3-Biaryl)phenylquinoline phosphodiesterase-4 inhibitors
JP2003531112A (en) Substituted 8-arylquinoline phosphodiesterase-4 inhibitors
US20060040981A1 (en) Use of phosphodiesterase-4 inhibitors as enhancers of cognition
US20060069115A1 (en) Use of pde4 inhibitors as adjunct therapy for psychiatric disorders

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERCK FROSST CANADA LTD., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MERCK FROSST CANADA AND COMPANY;REEL/FRAME:017996/0135

Effective date: 20060706

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION