US20050069543A1 - Antibodies against T cells as therapeutics - Google Patents

Antibodies against T cells as therapeutics Download PDF

Info

Publication number
US20050069543A1
US20050069543A1 US09/764,076 US76407601A US2005069543A1 US 20050069543 A1 US20050069543 A1 US 20050069543A1 US 76407601 A US76407601 A US 76407601A US 2005069543 A1 US2005069543 A1 US 2005069543A1
Authority
US
United States
Prior art keywords
antibody
antibodies
cells
cell
antiantibodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/764,076
Inventor
Stefan Thierfelder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/764,076 priority Critical patent/US20050069543A1/en
Publication of US20050069543A1 publication Critical patent/US20050069543A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2815Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD8
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2812Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD4
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/868Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof involving autoimmunity, allergy, immediate hypersensitivity, delayed hypersensitivity, immunosuppression, or immunotolerance

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to antibodies to T cells as therapeutics. The object underlying the invention is to provide antibodies for a clinical therapy for prolonging the immunosuppressive antibody effect while avoiding the formation of antiantibodies. This object is achieved by providing antibodies consisting of at least two different groups which are applied at different times and in which at least one antibody of group B differs from one antibody of group A in the constant regions of its heavy chains and wherein group A, which is first applied once or several times, has a T-cell eliminating effect, while the other group B (which is applied at a different time) has a T-cell eliminating and/or T-cell antigen modulating effect.

Description

    FIELD OF THE INVENTION
  • The present invention relates to antibodies against T cells which are useful as therapeutic agents for prolonging immunosuppression and for tumor cell elimination.
  • BACKGROUND OF THE INVENTION
  • Heretofore, transplant rejection has been treated with immunosuppressant agents, e.g., monoclonal, immunosuppressive antibodies against human T lymphocytes which have been generated from mice, rats or golden hamsters. However, the effect of these antibodies is limited, since the patient develops an immunoreaction to antibodies which are derived from another animal species. This results in what are called antiantibodies, which inhibit the immunosuppressive effect of the injected monoclonal antibodies. Thus, at present, e.g., patients with kidney transplants that suffer from transplant rejection crises, are usually treated with only a single antibody therapy. If another rejection crisis occurs, this treatment is usually not repeated because of the possible formation of antiantibodies.
  • So far, there is no clinical therapy of choice for prolonging the immunosuppressive effect of antibodies while avoiding the formation of antiantibodies. A repeated treatment with another monoclonal antibody can lead to an accelerated formation of antiantibodies (Chatenoud, Transpl. Proc., 25. 2(Suppl. 1):68 (1993)). In addition, patients have developed antiantibodies even against immunosuppressive antibodies that had been humanized using genetic engineering methods, i.e., where the antibodies have been substantially adapted to the patient's species, i.e., “primate species” or “species-adapted” antibodies (Isaacs et al, Lancet., 340:748 (1992)).
  • Experimentally, a clear prolongation of the survival time of skin transplants has been found in a mouse model, which was considered a tolerance induction. Such prolongation was observed after the injection of high doses of a rat antibody directed to mouse T(L3T4+Lyt-2) cells, followed by injection of a second antibody of the same species and the same cell binding specificity, which, however, differed from the first antibody by its low elimination of T cells from the blood circulation of the mouse (a “non-depleting”, i.e., eliminating antibody). Unlike the present invention, the described principle of action therein was not based on a combined therapy of at least two antibodies with species-different Fc regions (Cobbold et al, Eur. J. Immunol., 20:2747 (1990)).
  • Prolonged survival time of skin transplants and lack of formation of antiantibodies, were also found after the injection of a rat anti-mouse T(L3T4=CD4+lymphocyte subpopulation)-cell antibody, followed by injection of (Fab′)2 fragments and unfragmented monoclonal hamster anti-mouse T(CD3) antibodies (Hirsch et al, Transplantation, 47:853 (1989)). Here, too, the described principle of action is not based on a combined therapy of two antibodies having species—different Fc regions that are directed to all T cells, as in the present invention, but, rather, on the suppression of the CD4+T lymphocyte subpopulation (Hirsch et al, J. Immunol., 140:3766 (1988)) achieved by means of the first antibody, which is, however, not sufficient.
  • Permanent tolerance of skin transplants can be achieved in irradiated mice after transplantation of bone marrow of the donor of the skin transplant, while protecting anti-T cell antibodies (Thierfelder et al, Blood, 68:818 (1986)). However, this technique involves risks.
  • So far, there is no therapy of choice for definitely preventing the formation of antiantibodies in a patient in the case of conventional poly- or monoclonal immunosuppressive antibodies. The first clinical experiences with antibodies that have recently been humanized by means of genetic engineering show that antiantibodies may be formed (Isaacs et al, supra) similarly to what was seen with murine immunosuppressive anti-mouse T cell antibodies (Kremmer et al, Eur. J. Immunol., 23:1017 (1993)).
  • Also, a combination of immunosuppressive antibody treatment with chemotherapy, e.g., cyclophosphamide or busulfan, involves the risk of side-effects, particularly on hematopoiesis, and, also, on the transplanted tissue, due to lack of cell specificity of the chemotherapeutic agents (Cobbold et al, supra; and Leong et al, Eur. J. Immunol., 22:2825 (1992)).
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide antibodies for clinical therapy for prolonging the immunosuppressive antibody effect, while avoiding the formation of antiantibodies.
  • The above-described object of the present invention has been met by the use of antibodies against T cells as a therapeutic for prolonged immunosuppression and tumor cell elimination, wherein the antibodies consist of at least two different groups A, B, which are administered at different times and in which at least one antibody type of group B differs from at least one antibody type of group A in the constant regions of their heavy chains, and wherein group A, which is first applied once or several times, has a T-cell eliminating effect, whereas the other group B (which is applied at a different time) has a T-cell eliminating and/or T-cell antigen modulating effect.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph showing prolonged immunosuppression due to sequential treatment with two anti-T cell antibodies, the Fc regions of which are species-different.
  • FIG. 2 is a graph showing immunosuppression using anti-T cell antibodies with mouse or rat Fc regions.
  • FIG. 3 is a table showing suppression of antiantibodies by Fc-region-incompatible monoclonal antibody therapy.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As discussed above, the above-described objects of the present invention have been met by the use of antibodies against T cells as a therapeutic for prolonged immunosuppression and tumor cell elimination, wherein the antibodies consist of at least two different groups A, B, which are administered at different times and in which at least one antibody type of group B differs from at least one antibody type of group A in the constant regions of their heavy chains, and wherein group A, which is first applied once or several times, has a T-cell eliminating effect, whereas the other group B (which is applied at a different time) has a T-cell eliminating and/or T-cell antigen modulating effect.
  • Preferably, antibody B is a bispecific antibody.
  • Also, preferably, antibody B has a different constant region in its heavy chains than antibody A, and antibody A or antibody B is obtained by genetic engineering of the region encoding the constant region of its heavy chain.
  • Also, preferably, antibody A or antibody B is a humanized antibody.
  • Also, preferably, antibody A or antibody B has a hapten covalently linked to the constant region of its heavy chain. The hapten is preferably DNP or TNP.
  • Each of the two groups of antibodies, i.e., antibodies A and antibodies B, may also consist of only one antibody type or several kinds of antibodies.
  • In addition, the two groups of antibodies, i.e., antibodies A and antibodies B, may also be monoclonal or polyclonal.
  • The sequential treatment with anti-T cell antibodies that are partially or fully humanized using molecular biological means, and non-humanized antibodies, or with at least two anti-T cell antibodies generated from different species, as described herein, leads to prolonged immunosuppression and tumor cell elimination. This treatment principle has been experimentally tested on animals, as shown below, and has not heretofore been described in the art.
  • The novel therapy principle of the present invention, which has not heretofore been described in the art, is not obvious at all in terms of immunology. Commonly, immunobiologists and experts in the field of medicine, search for a reduction of the immunogenicity of anti-T cell antibodies (which causes the formation of antiantibodies) by adaptation thereof, as much as possible, to the patient's antibody immunoglobulin structures so that the patient is more likely to tolerate the antibodies, e.g., by humanization by means of genetic engineering of monoclonal immunosuppressive antibodies derived from mice. However, principally this adaptation cannot possibly be complete, and is the cause for the formation of antiantibodies, because the T cell binding (V) region of the immunosuppressive antibody is so variable that the patient's immunoapparatus can still form antiantibodies thereto.
  • The present invention is based on a contrasting experience, i.e., on the suppression of antiantibodies by creating a high species difference between the anti-T cell antibodies, wherein one or both, applied alone, may be potentially immunogenic in the recipient of the antibodies.
  • It was found in the present invention that:
      • (a) the survival time of skin transplants was basically prolonged, not by applying two different mouse anti-mouse T cell antibodies (or two different rat anti-mouse T cell antibodies) one after the other, but by using two antibodies which are species-different to one another, but not necessarily to the recipient of the antibodies, and a clear prolonged immunosuppression was achieved; and
      • (b) two antibodies are effective even when they are as different from one another as human and mouse.
  • These thoughts, results and antibody combinations define a therapy model offering, inter alia, the advantage that it can immediately be tested clinically, and does not expose the patients to any additional treatment risks. A prolongation of immunosuppression should not only be a more successful therapy for rejection crises of organ transplants and immune complications with bone marrow transplantations, but should help prevent them altogether by prophylactic treatment. In addition, autoimmune diseases, chronic diseases of all kinds of rheumatism, and also individual tumor conditions might face new therapeutic perspectives. For instance, in the mouse model studies carried out by the inventors on the suppression of murine or human T cell leukemias transplanted into mice, a prolonged survival time due to antibody injection was observed. Upon T cell depletion, foreign immunocompetent cells can be introduced into chimeric mice, i.e., mice transplanted with bone marrow and suffering from leukemia, which foreign immunocompetent cells attack the neoplastic cells in the recipient. Furthermore, the tolerance induction, vis-à-vis heterologous serum proteins makes possible passive vaccination with antibodies of a different species that is free of hypersensitive reactions, e.g., for tetanus.
  • In the murine skin transplant model it could be shown that a monoclonal, immunosuppressive antibody, that was humanized by genetic engineering methods achieves a survival time of transplants against murine T lymphocytes, i.e., prolonged by a multitude, when its application was preceded by one or more injections of a monoclonal immunosuppressive mouse antibody. The preceding antibody injections as such did not have to be immunosuppressive in the sense of transplant prolongation. It turned out that this antibody therapy induced a complete tolerance towards heterologous, human serum protein, which still remained five months after the end of the immunosuppressive therapy. The unexpected prolongation of the immunosuppressive effect was thus, accompanied by a lack of a formation of antiantibodies in the treated mice due to their tolerance of the heterologous antibody immunoglobulin. The principle of action underlying this phenomenon is analyzed particularly with regard to species-related differences in the Fc region of the combined antibodies. It also proved effective when using anti-T cell antibodies that had not been modified by molecular biology, if they were species-different from one another.
  • Antibodies have what is called a variable region that includes the antibody binding site and what is called a constant Fc region that mediates antibody effector functions (e.g., elimination from the system of body cells occupied by antibodies), which is located on what are called the constant regions of the heavy chains of the antibody. In this way, two antibodies can be similar with regard to their specificity to bind, e.g., human T lymphocytes. Such antibodies with the same cell binding specificity, however, may differ in their Fc region due to the fact that they are derived from different normal or molecular biology-manipulated animal species. They can also be modified in vitro in the Fc region using methods of molecular biology on generating antibody-secretory cells (e.g., hybridomas or hybrid hybridomas) so that there is the degree of difference obtained as found between humans and rodents, and as described in the present invention.
  • In the following examples, the present invention is described in more detail.
  • EXAMPLE 1
  • Combination antibody treatment was carried out by first injecting a mouse IgG2, anti-mouse-Thy-1.2 antibody (MmT1 antibody; (Kremmer et al, supra)) on day 3, followed by injecting a chimeric antibody having a MmT1 idiotype (V region) and human Fc IgG1 region (T23 antibody) on day 0 and twice a week. The T23 antibody differs from the MmT1 antibody by an exchange of the murine IgG1 Fc region for a human IgG1 Fc region, which was achieved by means of genetic engineering. The results are shown in FIG. 1.
  • As shown in FIG. 1, a single dose of MmT1 did not prolong the (average) skin survival time. T23 alone, applied twice a week, did prolong it by nine days from 16 to 24. MmT1 (first dose) followed by T23 (applied twice a week) prolonged it to more than 90 days. Thus, FIG. 1 shows immunosuppression that was prolonged approximately ten-fold, as measured in a rodent skin transplantation model of maximum histoincompatibilty, by the combined FC-region incompatible antibody treatment of the present invention.
  • Also, as shown in FIG. 1, a similarly increased immunosuppression was achieved after replacement of antibody MmT1 with antibody MmT5 (Kremmer et al, supra), which does not differ from antibody MmT1 in its T-cell specificity, but, rather, differs in the microstructure of the antibody binding site (idiotype).
  • The results demonstrate that in the combined Fc-region incompatible antibody therapy of the present invention, the likeness or difference of the antibody binding site is not a prerequisite for the principle of action, but, rather, the species-dependent difference of its heavy chains incorporating the Fc regions is a prerequisite for the principle of action.
  • EXAMPLE 2
  • MmT1/RmCD4+CD8 combination therapy was carried out by injecting MmT1 on day 3, followed by injecting RmCD4+RmCD8 antibody (a rat anti-mouse CD4+CD8 lymphocyte antibody) on day 0 and twice a week, and vice versa. The results are shown in FIG. 2.
  • FIG. 2 shows that rat anti-mouse T cell antibodies having Thy-1 specificity (Kummer et al, J. Immunol., 138:4069 (1987)), and also particularly clinically-relevant antibody specificities, such as anti-CD4 and anti-CD8 (two T cell subpopulations, which together bind all T cells) also prolong the average survival time of skin transplants. Furthermore, as shown therein, the reversal of the combined antibody treatment in the RmCD4+CD8/MmT1 combination also leads to a prolonged immunosuppression since here, too, the prerequisite of the species-dependent difference of the Fc region is fulfilled. Since anti-CD4+CD8 antibodies are active as first antibodies, this excludes an effect of the preinjected first antibody restricted to MmT1. On the contrary, the prerequisite for the synergistic antibody action of their species-dependent Fc region differences (apart from the application of at least two antibodies at different times) applies again and again. Survival of skin transplants using a combination antibody therapy was permanent if further T cell depleting and/or T cell receptor modulating (anti-CD3) antibodies were added to the second antibody.
  • EXAMPLE 3
  • Groups of 4 to 6 C57BL/6 mice were injected with 400 μg of the first antibody (shown in FIG. 3) and 500 μg of the second antibody (shown in FIG. 3). Tail blood was drawn 6 to 10 days after the last injection in order to determine the antiantibody level. The results are shown in FIG. 3.
  • As shown in FIG. 3, the combined rat/mouse or mouse/rat Fc-region incompatible antibody treatment leads to a high suppression or complete lack of the formation of antiantibodies, i.e., antiantibody levels were extremely low or zero where there was a species difference (rat/mouse or mouse/rat) between the first and the second antibody. The same applies to treatment when carried out as per Example 1.
  • Antiantibodies also occur when treating with polyclonal antibodies that arise after immunization of, e.g., rabbit, rat or horse lymphocytes. Here, too, it can be seen that a species difference (e.g., rabbit/rat) of polyclonal antibodies leads to a prolonged immunosuppression in mice, as well as with what are called bispecific antibodies, i.e., antibodies having two different binding sites, or with anti-T cell antibodies that were chemically modified by introduction of a low-molecular compound (e.g., DNP, TNP haptenes) or by genetic engineering, e.g., antibodies and antibody fragments prepared in bacteria. Here, too, sequentially injected anti-T cell antibodies may neutralize the formation of antiantibodies to species-different polyclonal or bispecific or chemically or molecular biology-modified antibodies. A prerequisite is always a strong difference in the sequentially applied antibodies or antibody groups, which either results from species difference or from the introduction (conjugation) of chemical compounds.
  • Finally, undesired immunoreactions may also occur in the case of passive immunization with antibodies in protein-oversensitive or presensitized patients. A treatment using combined Fc-region incompatible antibody therapy would prevent the formation of antiantibodies.

Claims (2)

1-5. cancelled
6. A method for eliminating tumors comprising administering, to a tumor-bearing subject, a pharmaceutically effective amount of a first antibody, having binding specificity for T cells and which is capable of eliminating T cells in vivo, and
thereafter administering a pharmaceutically effective amount of a second antibody having binding specificity for T cells and which is capable of eliminating T cells in vivo, or is capable of modulating the antigen effect of T cells or is both capable of eliminating T cells in vivo and capable of modulating the antigen effect of T cells,
wherein said first antibody has a different constant region in its heavy chains than said second antibody, and thus belongs to a different animal species than said second antibody.
US09/764,076 1994-06-18 2001-01-19 Antibodies against T cells as therapeutics Abandoned US20050069543A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/764,076 US20050069543A1 (en) 1994-06-18 2001-01-19 Antibodies against T cells as therapeutics

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DEP4421391.3 1994-06-18
DE4421391A DE4421391C1 (en) 1994-06-18 1994-06-18 Use of antibodies against T cells for prolonged immunosuppression
US08/737,798 US5830473A (en) 1994-06-18 1995-05-19 Antibodies against T cells as therapeutics
US09/134,575 US6290955B1 (en) 1994-06-18 1998-08-14 Antibodies against T cells as therapeutics
US09/764,076 US20050069543A1 (en) 1994-06-18 2001-01-19 Antibodies against T cells as therapeutics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/134,575 Division US6290955B1 (en) 1994-06-18 1998-08-14 Antibodies against T cells as therapeutics

Publications (1)

Publication Number Publication Date
US20050069543A1 true US20050069543A1 (en) 2005-03-31

Family

ID=6520949

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/737,798 Expired - Fee Related US5830473A (en) 1994-06-18 1995-05-19 Antibodies against T cells as therapeutics
US09/134,575 Expired - Fee Related US6290955B1 (en) 1994-06-18 1998-08-14 Antibodies against T cells as therapeutics
US09/764,076 Abandoned US20050069543A1 (en) 1994-06-18 2001-01-19 Antibodies against T cells as therapeutics

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/737,798 Expired - Fee Related US5830473A (en) 1994-06-18 1995-05-19 Antibodies against T cells as therapeutics
US09/134,575 Expired - Fee Related US6290955B1 (en) 1994-06-18 1998-08-14 Antibodies against T cells as therapeutics

Country Status (10)

Country Link
US (3) US5830473A (en)
EP (1) EP0802924B1 (en)
JP (1) JPH10505325A (en)
AT (1) ATE175215T1 (en)
CA (1) CA2193092A1 (en)
DE (2) DE4421391C1 (en)
DK (1) DK0802924T3 (en)
ES (1) ES2127531T3 (en)
GR (1) GR3029483T3 (en)
WO (1) WO1995035321A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090311181A1 (en) * 2006-03-20 2009-12-17 The Regents Of The University Of California Engineered Anti-Prostate Stem Cell Antigen (PSCA) Antibodies for Cancer Targeting
US20100069616A1 (en) * 2008-08-06 2010-03-18 The Regents Of The University Of California Engineered antibody-nanoparticle conjugates
US20100297004A1 (en) * 2007-09-04 2010-11-25 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (psca) antibodies for cancer targeting and detection

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136311A (en) 1996-05-06 2000-10-24 Cornell Research Foundation, Inc. Treatment and diagnosis of cancer
AU2904199A (en) * 1998-04-03 1999-10-25 Osiris Therapeutics, Inc. Use of human mesenchymal stem cells to induce t-cell apoptosis
DE19953517C1 (en) * 1999-11-05 2001-08-09 Medac Klinische Spezialpraep Use of treosulfan to condition patients prior to bone marrow transplant or blood stem cell transplant
US7541184B2 (en) 2000-02-24 2009-06-02 Invitrogen Corporation Activation and expansion of cells
US7572631B2 (en) 2000-02-24 2009-08-11 Invitrogen Corporation Activation and expansion of T cells
US20040175373A1 (en) * 2002-06-28 2004-09-09 Xcyte Therapies, Inc. Compositions and methods for eliminating undesired subpopulations of T cells in patients with immunological defects related to autoimmunity and organ or hematopoietic stem cell transplantation
US20050084967A1 (en) * 2002-06-28 2005-04-21 Xcyte Therapies, Inc. Compositions and methods for eliminating undesired subpopulations of T cells in patients with immunological defects related to autoimmunity and organ or hematopoietic stem cell transplantation
CA2490401A1 (en) * 2002-06-28 2004-01-08 Xcyte Therapies, Inc. Compositions and methods for restoring immune repertoire in patients with immunological defects related to autoimmunity and organ or hematopoietic stem cell transplantation
US9701754B1 (en) 2002-10-23 2017-07-11 City Of Hope Covalent disulfide-linked diabodies and uses thereof
WO2010096486A1 (en) 2009-02-17 2010-08-26 Cornell Research Foundation, Inc. Methods and kits for diagnosis of cancer and prediction of therapeutic value
CA2782333C (en) 2009-12-02 2019-06-04 Imaginab, Inc. J591 minibodies and cys-diabodies for targeting human prostate specific membrane antigen (psma) and methods for their use
NZ739721A (en) 2015-08-07 2019-09-27 Imaginab Inc Antigen binding constructs to target molecules
WO2018147960A1 (en) 2017-02-08 2018-08-16 Imaginab, Inc. Extension sequences for diabodies

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI105320B (en) * 1988-04-04 2000-07-31 Oncogen Procedure for Preparation of Antibody Heteroconjugates for Use in Regulating Lymphocyte Activity and Diagnosis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090311181A1 (en) * 2006-03-20 2009-12-17 The Regents Of The University Of California Engineered Anti-Prostate Stem Cell Antigen (PSCA) Antibodies for Cancer Targeting
US8940871B2 (en) 2006-03-20 2015-01-27 The Regents Of The University Of California Engineered anti-prostate stem cell antigen (PSCA) antibodies for cancer targeting
US20100297004A1 (en) * 2007-09-04 2010-11-25 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (psca) antibodies for cancer targeting and detection
US8940298B2 (en) 2007-09-04 2015-01-27 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (PSCA) antibodies for cancer targeting and detection
US9527919B2 (en) 2007-09-04 2016-12-27 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (PSCA) antibodies for cancer targeting and detection
US20100069616A1 (en) * 2008-08-06 2010-03-18 The Regents Of The University Of California Engineered antibody-nanoparticle conjugates

Also Published As

Publication number Publication date
WO1995035321A1 (en) 1995-12-28
ATE175215T1 (en) 1999-01-15
ES2127531T3 (en) 1999-04-16
DK0802924T3 (en) 1999-08-30
DE4421391C1 (en) 1995-11-30
JPH10505325A (en) 1998-05-26
CA2193092A1 (en) 1995-12-28
EP0802924B1 (en) 1998-12-30
US6290955B1 (en) 2001-09-18
DE59504707D1 (en) 1999-02-11
US5830473A (en) 1998-11-03
EP0802924A1 (en) 1997-10-29
GR3029483T3 (en) 1999-05-28

Similar Documents

Publication Publication Date Title
US5830473A (en) Antibodies against T cells as therapeutics
DE69733960T2 (en) Use of antibodies against CD45RO leukocyte antigen for immunomodulation
US6113901A (en) Methods of stimulating or enhancing the immune system with anti-CD3 antibodies
US5690933A (en) Monoclonal antibodies for inducing tolerance
US6406696B1 (en) Methods of stimulating the immune system with anti-CD3 antibodies
CA1275951C (en) Lysing or blocking unwanted cells
Ghobrial et al. In vivo use of monoclonal antibodies against murine T cell antigens
EP0474691B1 (en) Monoclonal antibodies for inducing tolerance
AU748533B2 (en) Composition and method to prevent graft rejection and other counter-adaptive T lymphocyte mediated immune responses
EP0222617A2 (en) Monoclonal antibody therapy
CN105251004A (en) Pharmaceutical composition, comprising an anti-cd6 monoclonal antibody used in the diagnosis and treatment of rheumatoid arthritis
OSORIO et al. PROLONGATION OF IN VIVO MOUSE ISLET ALLOGRAFT SURVIVAL BY MODULATION OF MHC CLASS I ANTIGENs
WO1995013093A1 (en) Treatment of a patient prior to transplantation
JPS62205034A (en) Tumor therapy by biological antitumor antibody
AU784102B2 (en) Combination of compounds that inhibit the biological effects of TNF-alpha and CD95L in a medicament
Cobbold et al. Immunosuppression with monoclonal antibodies—rules for effective serotherapy
Cosimi Future of monoclonal antibodies in solid organ transplantation
Sakagami et al. The effect of anti-interleukin 2 monoclonal antibody treatment on the survival of rat cardiac allograft
Diamantstein et al. Current Stage of Interleukin 2 Receptor Targeted Therapy1
Han et al. Idarubicin-145-2C11-F (ab′) 2 promotes peripheral tolerance and reduces chronic vascular disease in mouse cardiac allografts
Soares et al. Use of Anti-μ Monoclonal Antibodies in Xenotransplantation: A Potential Approach To Overcome Vascular Rejection
Hale et al. Development and Clinical Experience with Humanised Monoclonal Antibodies
Burlingham Critical Analysis of Monoclonal Antibody Therapy in Transplantation
van Gelder et al. Potential of anti-interleukin-2 receptor monoclonal antibodies in solid organ transplantation
Chatenoud et al. Anti-T-Cell Monoclonal Antibodies as Immunosuppressive Agents

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION