US20050067768A1 - System and method for de-skewing media when using an automatic media feeder - Google Patents

System and method for de-skewing media when using an automatic media feeder Download PDF

Info

Publication number
US20050067768A1
US20050067768A1 US10/658,713 US65871303A US2005067768A1 US 20050067768 A1 US20050067768 A1 US 20050067768A1 US 65871303 A US65871303 A US 65871303A US 2005067768 A1 US2005067768 A1 US 2005067768A1
Authority
US
United States
Prior art keywords
media
registration
tab
edge
registration tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/658,713
Inventor
Thomas Connor
David Hanson
Kenneth Long
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Priority to US10/658,713 priority Critical patent/US20050067768A1/en
Assigned to HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. reassignment HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CONNOR, THOMAS J., HANSON, DAVID B., LONG, KENNETH W.
Priority to TW093106994A priority patent/TW200511825A/en
Publication of US20050067768A1 publication Critical patent/US20050067768A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/02Feeding articles separated from piles; Feeding articles to machines by belts or chains, e.g. between belts or chains
    • B65H5/021Feeding articles separated from piles; Feeding articles to machines by belts or chains, e.g. between belts or chains by belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/36Article guides or smoothers, e.g. movable in operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H9/00Registering, e.g. orientating, articles; Devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/20Belts
    • B65H2404/26Particular arrangement of belt, or belts
    • B65H2404/268Arrangement of belts facing a transport surface, e.g. contact glass in copy machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/39Scanning

Definitions

  • ADFs automatic document feeders
  • printers and optical scanners for a number of years to facilitate the automated handling of a plurality of documents serially, such as for scanning or printing images.
  • Such ADFs typically provide a configuration in which an image surface of the media being imaged is never fully in view to the device (i.e., only a small portion of a medium is exposed to a print head or an optical array at any point in time with the remainder of the medium being engaged by the ADF mechanism).
  • ADFs in scanner implementations often implement a “C-shaped” feed path in which an optical array is disposed approximately at the middle of the outer edge of the “C-shaped” feed path. As a medium is moved through the “C-shaped” feed path, the optical array may be exposed to an image surface of the medium over time.
  • Such ADF configurations have been found to work adequately with respect to typical paper stock, such as 20# bond paper, but are typically unacceptable for use with other media, such as photo stock or photographic media.
  • Photographic media for example, is generally more rigid than typical paper stock.
  • photographic media is prone to surface scratching, which can seriously degrade the quality of the image thereon.
  • Photographic media has been discovered to suffer from less surface scratching when held with an image surface thereof fully or substantially fully exposed to a passing imaging mechanism, for example, by laying the image surface against a transparent platen for a traditional scan pass.
  • a passing imaging mechanism for example, by laying the image surface against a transparent platen for a traditional scan pass.
  • the aforementioned ADFs do not accommodate such a technique in an automated fashion.
  • ADFs that are well suited for use with respect to photographic media and similar stock have heretofore not been widely available.
  • a further requirement for suitable automated document handling with respect to photographic media is that, not only should the mechanism be adapted to accommodate the relatively rigid nature of the stock without introducing surface scratches on the media, the mechanism should ensure that the photographic media will be square to the optical carriage or other imaging apparatus.
  • a system for de-skewing media when using an automatic media feeder comprising, a registration guide, and a registration tab disposed to deflect an edge of the media toward the registration guide when the media passes over the registration tab.
  • a method for de-skewing media when using an automatic media feeder comprising disposing a registration tab to cooperate with a registration guide in providing de-skewing of media, translating the media in a first direction to pass a first edge of the media by the registration tab, deflecting with the registration tab the first edge toward the registration guide, and continuing to apply a translation force to the media after at least a portion of the first edge engages the registration guide, thereby de-skewing the media.
  • FIGS. 1A and 1B show one embodiment of an automatic photograph feeder configured according to the present invention
  • FIGS. 2A-2D show operation of an automatic photograph feeder according to an embodiment of the invention
  • FIG. 3 shows detail with respect to one embodiment of a tab utilized in media registration
  • FIGS. 4A-4C show detail with respect to an alternative embodiment of a tab utilized in media registration.
  • Embodiments of the present invention provide an automatic photograph feeder (APF) configuration that is adapted to draw one piece of photographic media at a time from a queue and to place the photographic media with an image surface thereof fully or substantially fully exposed to a passing imaging mechanism.
  • APF automatic photograph feeder
  • Registration of such media i.e., placing the media in correspondence or alignment with a reference
  • the registration guides comprise inexpensive to manufacture and install non-moving parts.
  • APFs configured according to the present invention provide automated media handling for imaging functions that are adapted both to handle the relatively thick and rigid attributes of photographic media and to avoid or minimize scratching or other degradation of the image surface.
  • embodiments are described herein with reference to photographic media and APF configurations, the concepts of the present invention are not limited to use with respect to photographic media. Accordingly, embodiments of the present invention may be utilized in providing automated handling of any of a number of media types, including common paper stock.
  • FIGS. 1A and 1B illustrates one embodiment of an APF configured according to the present invention.
  • scanner 100 includes lid 105 and transparent platen 104 , such that a document may be placed against platen 104 and optical carriage 101 moved past to allow optical array 103 to capture an image of the document illuminated by lamp 102 .
  • APF 150 facilitates automated handling of media into and out of the imaging area of scanner 100 .
  • APF 150 of the illustrated embodiment is disposed in lid 105 of scanner 100 .
  • APF 150 includes document singulator and take-up mechanism 151 , such as may comprise a rubberized take-up roller, to move documents 110 from input tray 152 through feed slot 153 into an imaging area associated with platen 104 .
  • Feed belts 154 are disposed to provide controlled movement of documents in the imaging area of scanner 100 .
  • vacuum orifices 156 FIG. 1B
  • Tabs 155 are disposed to provide registration of media handled by APF 150 .
  • tabs 155 of preferred embodiments cooperate with registration guide 106 formed along an edge of platen 104 to square (align or place in correspondence) media fed by APF 150 with an imaging mechanism, such as optical array 103 of scanner 100 .
  • Registration guide 106 may be present in the scanner configuration to provide assistance in manual registration of media, the use of which is leveraged according to embodiments of the present invention.
  • FIGS. 2A-2D illustrate the operation of APF 150 in providing automated handling of photographic media for scanning according to one embodiment.
  • singulator and take-up mechanism 151 draws a next document (here document 110 a ) of documents 110 from the queue of documents in input tray 152 into an imaging area of scanner 100 between lid 105 and platen 104 , as shown in FIG. 2A .
  • Input tray 152 is preferably disposed at a slight angle with respect to the plane of lid 105 and platen 104 , such as on the order of 5°. Accordingly, as a leading edge of document 110 a is brought into the imaging area of scanner 100 , the leading edge easily passes tabs 155 , without catching thereon.
  • tabs 155 may be provided in a configuration that retracts when pressure is applied from one direction, but remain extended from another direction, to accommodate a particular input feed angle.
  • tabs 155 may incorporate ramped or sloped surfaces, as shown in the embodiment of FIGS. 2A-2D , to assist the leading edge of the medium to pass the tabs without catching thereon.
  • document 110 a is fed sufficiently far into the imaging area of scanner 100 by singulator and take-up mechanism 151 for feed belts 154 to engage the document, as shown in FIG. 2B .
  • feed belts 154 are feeding in a same direction, and providing a similar rate of translation, as singulator and take-up mechanism 151 to facilitate a transition from document 110 a being propelled by singulator and take-up mechanism 151 to document 110 a being propelled by belts 154 .
  • a reduced pressure area between document 110 a and lid 105 is employed to assist feed belts 154 engagement of the surface of document 110 a .
  • a reduced pressure area between document 110 a and lid 105 such as may be created using vacuum orifices 156 ( FIG. 1B ) is employed to assist feed belts 154 engagement of the surface of document 110 a .
  • other techniques for assuring that feed belts 154 , or any other translation mechanism, reliably engage media may be employed.
  • the orientation of scanner 100 may be inverted from that illustrated in FIGS. 2A and 2B such that lid 105 is beneath document 110 a when in the imaging area of scanner 100 . In such a configuration, gravity may be relied upon to assist feed belts 154 engage a surface of document 110 a .
  • the space between feed belts 154 and platen 104 may be reduced such that a surface of document 110 a engages platen 104 while another surface of document 110 a engages feed belts 154 , thereby providing a configuration in which platen 104 assists feed belts 154 engagement of a surface of document 110 a .
  • document 110 a comprises photographic media.
  • photographic media has been found to experience undesirable levels of friction when a surface thereof is slid along another relatively smooth surface, such as the transparent surface of platen 104 , particularly in high humidity conditions.
  • the sliding of the image surface of photographic media over another surface is preferably minimized to reduce scratching on the image surface. Accordingly, preferred embodiments of the present invention are adapted to minimize sliding contact between an image surface of the media and other surfaces, such as platen 104 .
  • the direction of travel is preferably reversed, as shown in FIG. 2C . Accordingly, the now leading edge (formerly trailing edge) of document 110 a is again brought into the area of tabs 155 . However, the now leading edge of document 110 a this time engages a surface of tabs 155 and is deflected in the direction of platen 104 . As feed belts 154 continue to propel document 110 a in this reverse direction the now leading edge of document 110 a engages registration guide 106 , formed along an edge of platen 104 , to square document 110 a with optical array 103 , as shown in FIG. 2D .
  • Document 110 a may be held in place while an imaging function is performed.
  • optical carriage 101 may traverse the length of document 110 a to allow optical array 103 to capture an image thereof as illuminated by lamp 102 .
  • the tabs of the illustrated embodiment are obscured from view of the imaging function by the body of document 110 a . Accordingly, no image processing need be implemented with respect to the present invention's use of such tabs to prevent their impacting an imaging function. For example, in a scanning operation, no subsequent image cropping or alteration is required to address the automated media handling mechanism.
  • feed belts 154 preferably resume operation in their initial direction of travel to propel document 110 a away from registration guide 106 and out of the imaging area of scanner 100 . Thereafter, the above process may be repeated by singulator and take-up mechanism 151 feeding a next document of documents 110 into the imaging area of scanner 100 .
  • FIG. 2D shows an exaggerated rendition of the planar distortion of document 110 a when engaging tabs 155 and registration guide 106 to more readily convey the concepts herein.
  • Embodiments of the present invention are expected to employ relatively small distances, e.g., tabs 155 may be less than 5 millimeters, perhaps 2-3 millimeters, and the space between lid 105 and platen 104 on the order of 5 millimeters in a scanner implementation of the present invention. Accordingly, appreciably less surface distortion would be experienced in such an embodiment than is illustrated in the figures.
  • planar distortion there is expected to be some planar distortion with respect to media positioned for imaging functions according to embodiments of the present invention. It is expected that the focal depth of typical scanners will sufficiently accommodate any such planar distortion. In cases where such planar distortion is undesirable, embodiments of the present invention may be adapted to minimize planar distortion, such as by disengaging a reduced pressure which holds document 110 a against lid 105 and thereby allows the media to fall against platen 104 . The reduced pressure may again be applied after an imaging function to facilitate feed belts 154 again engaging the media for its removal from the imaging area.
  • Registration of automatically handled documents according to embodiments of the present invention employs inexpensive components, as well as aspects of the imaging system otherwise already available.
  • the embodiment of the figures described in detail above utilizes registration guide 106 formed by the interface of platen 104 and the case of scanner 100 .
  • tabs 155 may be manufactured very easily and with little added cost.
  • tabs 155 may be cast of the same material (e.g., plastics, resins, polymers, and/or the like) and in the same forming process (e.g., injection molding) as is lid 105 , thereby providing a monolithic member of the lid. Accordingly, non-movable tab configurations may be easily incorporated into a scanner design.
  • Tabs 155 of the embodiment illustrated in FIGS. 2A-2D comprise a triangular shape presenting relatively smooth surfaces where it is expected media will engage the tabs.
  • tabs 155 of the illustrated embodiment include a first smooth edge tapering away from the plane of lid 105 to facilitate media passing tabs 155 as the media is singulated and brought into an imaging area.
  • Tabs 155 of the illustrated embodiment further include a second smooth edge tapering away from the plane of lid 105 the plane of lid 105 to facilitate media being deflected by tabs 155 toward platen 104 as the media is moved toward a registration position.
  • the illustrated embodiment provides a relatively gentle slope with respect to the taper of the first smooth edge (document in-take edge) to minimize document input resistance associated with tabs 155 , and a relatively acute slope with respect to the taper of the second smooth edge (document registration deflection edge) to ensure that the media is sufficiently deflected to engage registration guide 106 .
  • tabs utilized according to the present invention may take shapes or otherwise be configured different than illustrated in FIGS. 2A-2D .
  • embodiments may present a gentler slope (slope of edge 301 ) to the forward feed direction (document in-take) and a more acute slope (slope of edge 302 ) to the reverse feed direction (document registration), as shown with respect to tab 355 in FIG. 3 .
  • embodiments may present a sloped surface only with respect to the reverse feed direction (document registration), and rely upon an input angle of the media to avoid interfacing with a forward feed direction (document in-take) edge, such as may be perpendicular to the plane of lid 104 .
  • embodiments of the invention may implement movable tabs, such as to facilitate a document passing over the tabs in the forward feed direction and/or to retract the tabs after registration to minimize planar distortion.
  • tab 455 is adapted to move about pivot 410 .
  • the placement of pivot 410 is intended to be exemplary and, therefore, a variety of pivoting configurations may be implemented according to embodiments of the invention.
  • tab 455 As document 110 a is fed past tab 455 in the forward feed direction, tab 455 is allowed to swing up and out of the path of document 110 a . After document 110 a has passed tab 455 , the tab again moves about pivot 410 to again descend below lid 105 .
  • latch 420 engages tab 455 to prevent its moving about pivot 410 . Accordingly, as document 110 a is reversed into tab 455 , the edge thereof deflects the document toward the platen, substantially as discussed above.
  • embodiments of the present invention provide a relatively inexpensive solution to registering a document, utilizing relatively few parts.
  • the tabs and associated components need not be precision manufactured or composed of particularly structurally stable parts.
  • mechanisms, such as the above mentioned latches may be readily manipulated using systems deployed for other uses, such as utilizing the reversing of feed belts 104 to engage/disengage latch 420 .
  • embodiments of the invention may implement tabs which are considerably thicker than those illustrated in FIG. 1B , such as may occupy substantially the entire space between adjacent ones of belts 154 .
  • a tab of the present invention may be provided in a configuration which runs substantially the length of a leading edge of media to interface therewith, such as where belts 154 are disposed to run under the tab or where belts 154 are not utilized.
  • thicker tab embodiments may present a tab configuration which is less likely to suffer from damage or removal from rough handling, thinner tab configurations may be more desirable with respect to many implementations due to their decreased cost of material and/or decreased surface area engaging the media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Facsimiles In General (AREA)
  • Registering Or Overturning Sheets (AREA)

Abstract

Disclosed are systems and methods for de-skewing media when using an automatic media feeder comprising a registration guide and a registration tab disposed to cooperate with the registration guide in providing de-skewing of media when an edge of the media passes over the registration tab and is deflected thereby toward the registration guide.

Description

    BACKGROUND
  • It is common today for imaging and printing devices to employ automated means for feeding media to be scanned or printed. For example, automatic document feeders (ADFs) have been used with respect to printers and optical scanners for a number of years to facilitate the automated handling of a plurality of documents serially, such as for scanning or printing images. Such ADFs typically provide a configuration in which an image surface of the media being imaged is never fully in view to the device (i.e., only a small portion of a medium is exposed to a print head or an optical array at any point in time with the remainder of the medium being engaged by the ADF mechanism).
  • For example, ADFs in scanner implementations often implement a “C-shaped” feed path in which an optical array is disposed approximately at the middle of the outer edge of the “C-shaped” feed path. As a medium is moved through the “C-shaped” feed path, the optical array may be exposed to an image surface of the medium over time. Such ADF configurations have been found to work adequately with respect to typical paper stock, such as 20# bond paper, but are typically unacceptable for use with other media, such as photo stock or photographic media. Photographic media, for example, is generally more rigid than typical paper stock. Moreover, photographic media is prone to surface scratching, which can seriously degrade the quality of the image thereon. Further, the thick and rigid nature of the photographic media results in jams and misfeeds, and the photographic image surface results in increased friction when in contact with surfaces (particularly in high humidity environments). Photographic media has been discovered to suffer from less surface scratching when held with an image surface thereof fully or substantially fully exposed to a passing imaging mechanism, for example, by laying the image surface against a transparent platen for a traditional scan pass. Unfortunately, the aforementioned ADFs do not accommodate such a technique in an automated fashion.
  • Accordingly, ADFs that are well suited for use with respect to photographic media and similar stock have heretofore not been widely available. A further requirement for suitable automated document handling with respect to photographic media is that, not only should the mechanism be adapted to accommodate the relatively rigid nature of the stock without introducing surface scratches on the media, the mechanism should ensure that the photographic media will be square to the optical carriage or other imaging apparatus.
  • SUMMARY
  • A system for de-skewing media when using an automatic media feeder, the system comprising, a registration guide, and a registration tab disposed to deflect an edge of the media toward the registration guide when the media passes over the registration tab.
  • A method for de-skewing media when using an automatic media feeder comprising disposing a registration tab to cooperate with a registration guide in providing de-skewing of media, translating the media in a first direction to pass a first edge of the media by the registration tab, deflecting with the registration tab the first edge toward the registration guide, and continuing to apply a translation force to the media after at least a portion of the first edge engages the registration guide, thereby de-skewing the media.
  • An automatic photograph feeder comprising, a photographic media input tray, a media singulator disposed to draw photographic media from the input tray and introduce the media in an imaging area of a host system, a registration tab, and a media translation mechanism disposed to accept the photographic media from the singulator and to cause an edge of the media to engage the registration tab, wherein engaging the registration tab by the edge causes the edge to deflect towards a registration guide.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A and 1B show one embodiment of an automatic photograph feeder configured according to the present invention;
  • FIGS. 2A-2D show operation of an automatic photograph feeder according to an embodiment of the invention;
  • FIG. 3 shows detail with respect to one embodiment of a tab utilized in media registration; and
  • FIGS. 4A-4C show detail with respect to an alternative embodiment of a tab utilized in media registration.
  • DETAILED DESCRIPTION
  • Embodiments of the present invention provide an automatic photograph feeder (APF) configuration that is adapted to draw one piece of photographic media at a time from a queue and to place the photographic media with an image surface thereof fully or substantially fully exposed to a passing imaging mechanism. Registration of such media (i.e., placing the media in correspondence or alignment with a reference) for imaging is addressed according to embodiments of the present invention using registration guides that require a minimum number of parts. In particular configurations, the registration guides comprise inexpensive to manufacture and install non-moving parts. Accordingly, APFs configured according to the present invention provide automated media handling for imaging functions that are adapted both to handle the relatively thick and rigid attributes of photographic media and to avoid or minimize scratching or other degradation of the image surface.
  • Although embodiments are described herein with reference to photographic media and APF configurations, the concepts of the present invention are not limited to use with respect to photographic media. Accordingly, embodiments of the present invention may be utilized in providing automated handling of any of a number of media types, including common paper stock.
  • FIGS. 1A and 1B illustrates one embodiment of an APF configured according to the present invention. As shown in FIG. 1A, scanner 100 includes lid 105 and transparent platen 104, such that a document may be placed against platen 104 and optical carriage 101 moved past to allow optical array 103 to capture an image of the document illuminated by lamp 102. APF 150 facilitates automated handling of media into and out of the imaging area of scanner 100.
  • APF 150 of the illustrated embodiment is disposed in lid 105 of scanner 100. APF 150 includes document singulator and take-up mechanism 151, such as may comprise a rubberized take-up roller, to move documents 110 from input tray 152 through feed slot 153 into an imaging area associated with platen 104. Feed belts 154 are disposed to provide controlled movement of documents in the imaging area of scanner 100. For example, vacuum orifices 156 (FIG. 1B) may provide a reduced pressure area next to lid 105 to draw media in the imaging area of scanner 100 towards lid 105, thereby cooperating with feed belts 154 to provide controlled movement of documents in the imaging area of scanner 100. Tabs 155 are disposed to provide registration of media handled by APF 150. Specifically, tabs 155 of preferred embodiments cooperate with registration guide 106 formed along an edge of platen 104 to square (align or place in correspondence) media fed by APF 150 with an imaging mechanism, such as optical array 103 of scanner 100. Registration guide 106 may be present in the scanner configuration to provide assistance in manual registration of media, the use of which is leveraged according to embodiments of the present invention.
  • FIGS. 2A-2D illustrate the operation of APF 150 in providing automated handling of photographic media for scanning according to one embodiment. In operation, singulator and take-up mechanism 151 draws a next document (here document 110 a) of documents 110 from the queue of documents in input tray 152 into an imaging area of scanner 100 between lid 105 and platen 104, as shown in FIG. 2A. Input tray 152 is preferably disposed at a slight angle with respect to the plane of lid 105 and platen 104, such as on the order of 5°. Accordingly, as a leading edge of document 110 a is brought into the imaging area of scanner 100, the leading edge easily passes tabs 155, without catching thereon. Of course, lesser input feed angles may be supported by embodiments of the present invention, even 0°, by properly adapting tabs 155. For example, tabs 155 may be provided in a configuration that retracts when pressure is applied from one direction, but remain extended from another direction, to accommodate a particular input feed angle. Additionally or alternatively, tabs 155 may incorporate ramped or sloped surfaces, as shown in the embodiment of FIGS. 2A-2D, to assist the leading edge of the medium to pass the tabs without catching thereon.
  • In the embodiment of FIGS. 2A-2D, document 110 a is fed sufficiently far into the imaging area of scanner 100 by singulator and take-up mechanism 151 for feed belts 154 to engage the document, as shown in FIG. 2B. Initially, feed belts 154 are feeding in a same direction, and providing a similar rate of translation, as singulator and take-up mechanism 151 to facilitate a transition from document 110 a being propelled by singulator and take-up mechanism 151 to document 110 a being propelled by belts 154.
  • In the illustrated embodiment, a reduced pressure area between document 110 a and lid 105, such as may be created using vacuum orifices 156 (FIG. 1B), is employed to assist feed belts 154 engagement of the surface of document 110 a. Of course, other techniques for assuring that feed belts 154, or any other translation mechanism, reliably engage media may be employed. For example, the orientation of scanner 100 may be inverted from that illustrated in FIGS. 2A and 2B such that lid 105 is beneath document 110 a when in the imaging area of scanner 100. In such a configuration, gravity may be relied upon to assist feed belts 154 engage a surface of document 110 a. Additionally or alternatively, the space between feed belts 154 and platen 104 may be reduced such that a surface of document 110 a engages platen 104 while another surface of document 110 a engages feed belts 154, thereby providing a configuration in which platen 104 assists feed belts 154 engagement of a surface of document 110 a. However, this latter technique may not be preferred where document 110 a comprises photographic media. Specifically, photographic media has been found to experience undesirable levels of friction when a surface thereof is slid along another relatively smooth surface, such as the transparent surface of platen 104, particularly in high humidity conditions. Moreover, the sliding of the image surface of photographic media over another surface is preferably minimized to reduce scratching on the image surface. Accordingly, preferred embodiments of the present invention are adapted to minimize sliding contact between an image surface of the media and other surfaces, such as platen 104.
  • After feed belts 154 have propelled a trailing edge of document 110 a past tabs 155, the direction of travel is preferably reversed, as shown in FIG. 2C. Accordingly, the now leading edge (formerly trailing edge) of document 110 a is again brought into the area of tabs 155. However, the now leading edge of document 110 a this time engages a surface of tabs 155 and is deflected in the direction of platen 104. As feed belts 154 continue to propel document 110 a in this reverse direction the now leading edge of document 110 a engages registration guide 106, formed along an edge of platen 104, to square document 110 a with optical array 103, as shown in FIG. 2D. Specifically, if the now leading edge of document 110 a was askew from the take-up and feed process, as this edge comes into contact with registration guide 106, the length of the edge of the document is flushed against the registration guide, thereby providing a document which is squared with the mechanisms of scanner 100.
  • Document 110 a may be held in place while an imaging function is performed. For example, optical carriage 101 may traverse the length of document 110 a to allow optical array 103 to capture an image thereof as illuminated by lamp 102. The tabs of the illustrated embodiment are obscured from view of the imaging function by the body of document 110 a. Accordingly, no image processing need be implemented with respect to the present invention's use of such tabs to prevent their impacting an imaging function. For example, in a scanning operation, no subsequent image cropping or alteration is required to address the automated media handling mechanism.
  • After such an imaging function, feed belts 154 preferably resume operation in their initial direction of travel to propel document 110 a away from registration guide 106 and out of the imaging area of scanner 100. Thereafter, the above process may be repeated by singulator and take-up mechanism 151 feeding a next document of documents 110 into the imaging area of scanner 100.
  • The illustration of FIG. 2D shows an exaggerated rendition of the planar distortion of document 110 a when engaging tabs 155 and registration guide 106 to more readily convey the concepts herein. Embodiments of the present invention are expected to employ relatively small distances, e.g., tabs 155 may be less than 5 millimeters, perhaps 2-3 millimeters, and the space between lid 105 and platen 104 on the order of 5 millimeters in a scanner implementation of the present invention. Accordingly, appreciably less surface distortion would be experienced in such an embodiment than is illustrated in the figures.
  • However, there is expected to be some planar distortion with respect to media positioned for imaging functions according to embodiments of the present invention. It is expected that the focal depth of typical scanners will sufficiently accommodate any such planar distortion. In cases where such planar distortion is undesirable, embodiments of the present invention may be adapted to minimize planar distortion, such as by disengaging a reduced pressure which holds document 110 a against lid 105 and thereby allows the media to fall against platen 104. The reduced pressure may again be applied after an imaging function to facilitate feed belts 154 again engaging the media for its removal from the imaging area.
  • Registration of automatically handled documents according to embodiments of the present invention employs inexpensive components, as well as aspects of the imaging system otherwise already available. For example, the embodiment of the figures described in detail above utilizes registration guide 106 formed by the interface of platen 104 and the case of scanner 100.
  • Moreover, embodiments of tabs 155 may be manufactured very easily and with little added cost. For example, tabs 155 may be cast of the same material (e.g., plastics, resins, polymers, and/or the like) and in the same forming process (e.g., injection molding) as is lid 105, thereby providing a monolithic member of the lid. Accordingly, non-movable tab configurations may be easily incorporated into a scanner design.
  • Tabs 155 of the embodiment illustrated in FIGS. 2A-2D comprise a triangular shape presenting relatively smooth surfaces where it is expected media will engage the tabs. Specifically, tabs 155 of the illustrated embodiment include a first smooth edge tapering away from the plane of lid 105 to facilitate media passing tabs 155 as the media is singulated and brought into an imaging area. Tabs 155 of the illustrated embodiment further include a second smooth edge tapering away from the plane of lid 105 the plane of lid 105 to facilitate media being deflected by tabs 155 toward platen 104 as the media is moved toward a registration position. The illustrated embodiment provides a relatively gentle slope with respect to the taper of the first smooth edge (document in-take edge) to minimize document input resistance associated with tabs 155, and a relatively acute slope with respect to the taper of the second smooth edge (document registration deflection edge) to ensure that the media is sufficiently deflected to engage registration guide 106.
  • Of course, configurations of tabs utilized according to the present invention may take shapes or otherwise be configured different than illustrated in FIGS. 2A-2D. For example, embodiments may present a gentler slope (slope of edge 301) to the forward feed direction (document in-take) and a more acute slope (slope of edge 302) to the reverse feed direction (document registration), as shown with respect to tab 355 in FIG. 3. Alternatively, embodiments may present a sloped surface only with respect to the reverse feed direction (document registration), and rely upon an input angle of the media to avoid interfacing with a forward feed direction (document in-take) edge, such as may be perpendicular to the plane of lid 104.
  • The surfaces of tabs utilized according to embodiments of the present invention are not limited to relatively straight or flat surfaces. Accordingly, a tab edge disposed to be presented in a document in-take direction according to embodiments can take any shape suitable for allowing media to pass easily. Likewise, a tab edge disposed to be presented in a document registration direction according to embodiments can take any shape suitable for sufficiently deflecting media for engaging a registration guide. Embodiments of the present invention may implement curvilinear surfaces, for example. According to one embodiment a hemispherical tab shape is implemented.
  • Additionally or alternatively, embodiments of the invention may implement movable tabs, such as to facilitate a document passing over the tabs in the forward feed direction and/or to retract the tabs after registration to minimize planar distortion. Directing attention to FIGS. 4A-4C, tab 455 is adapted to move about pivot 410. The placement of pivot 410 is intended to be exemplary and, therefore, a variety of pivoting configurations may be implemented according to embodiments of the invention. As document 110 a is fed past tab 455 in the forward feed direction, tab 455 is allowed to swing up and out of the path of document 110 a. After document 110 a has passed tab 455, the tab again moves about pivot 410 to again descend below lid 105. As the direction of document 110 a is reversed for registration, latch 420 engages tab 455 to prevent its moving about pivot 410. Accordingly, as document 110 a is reversed into tab 455, the edge thereof deflects the document toward the platen, substantially as discussed above.
  • Even when employing moving parts, as in the embodiment of FIGS. 4A-4C, embodiments of the present invention provide a relatively inexpensive solution to registering a document, utilizing relatively few parts. Specifically, as the registration guide of the device is relied upon by these embodiments, the tabs and associated components need not be precision manufactured or composed of particularly structurally stable parts. Moreover, mechanisms, such as the above mentioned latches, may be readily manipulated using systems deployed for other uses, such as utilizing the reversing of feed belts 104 to engage/disengage latch 420.
  • Although embodiments have been described herein with reference to tabs that present a relatively thin endwise profile, there is no limitation to such a configuration according to the present invention. For example, embodiments of the invention may implement tabs which are considerably thicker than those illustrated in FIG. 1B, such as may occupy substantially the entire space between adjacent ones of belts 154. Alternatively, a tab of the present invention may be provided in a configuration which runs substantially the length of a leading edge of media to interface therewith, such as where belts 154 are disposed to run under the tab or where belts 154 are not utilized. Although such thicker tab embodiments may present a tab configuration which is less likely to suffer from damage or removal from rough handling, thinner tab configurations may be more desirable with respect to many implementations due to their decreased cost of material and/or decreased surface area engaging the media.

Claims (25)

1. A system for de-skewing media when using an automatic media feeder, said system comprising:
a registration guide; and
a registration tab disposed to deflect an edge of said media toward said registration guide when the media passes over the registration tab.
2. The system of claim 1, wherein said registration guide comprises an edge of a platen.
3. The system of claim 1, wherein said registration guide comprises a registration guide utilized for manual registration of media.
4. The system of claim 1, wherein said registration tab comprises a member presenting a sloped surface to said edge of said media when the media moves by said registration tab toward said registration guide.
5. The system of claim 1, wherein said registration tab is movable to retract when said media is moved past said registration tab away from said registration guide and to remain extended when said media is moved past said registration tab toward said registration guide.
6. The system of claim 5, wherein said registration tab moves about a pivot when said media passes over the registration tab away from said registration guide.
7. The system of claim 1, wherein said registration tab deflects upward when said media moves in a first direction and locks in position to deflect said media when said media moves in a second direction.
8. The system of claim 1, wherein said registration tab is not movable independent of moving a component of a host system to which said registration tab is attached.
9. The system of claim 1, wherein said registration tab is disposed in a lid portion of a host system.
10. The system of claim 9, wherein said host system comprises an optical scanner.
11. The system of claim 1, wherein said media comprises photographic media.
12. The system of claim 1, wherein said registration tab has a smooth outer surface to slidingly direct said media.
13. The system of claim 12, wherein said registration tab has a triangular shape.
14. The system of claim 1, further comprising:
a feed belt to provide translation of said media and thereby move said media past said registration guide in a direction of said registration guide.
15. The system of claim 14, further comprising:
a vacuum orifice providing a reduced pressure area to cooperate with said feed belt in providing translation of said media.
16. A method for de-skewing media when using an automatic media feeder, said method comprising:
disposing a registration tab to cooperate with a registration guide in providing de-skewing of media;
translating said media in a first direction to pass a first edge of said media by said registration tab;
deflecting with said registration tab said first edge toward said registration guide; and
continuing to apply a translation force to said media after at least a portion of said first edge engages said registration guide, thereby de-skewing said media.
17. The method of claim 16, further comprising:
translating said media in a second direction to pass a second edge of said media and said first edge over said registration tab.
18. The method of claim 17, further comprising:
allowing said registration tab to retract when said media is translated in said second direction; and
locking said registration tab in an extended position when said media is translated in said first direction.
19. The method of claim 17, wherein said translating in said second direction is provided prior to said translation in said first direction, and wherein said second edge is not passed over said registration tab by said providing translation in said first direction.
20. The method of claim 16, wherein said registration guide comprises an edge for use in manually registering media.
21. An automatic photograph feeder comprising:
a photographic media input tray;
a media singulator disposed to draw photographic media from said input tray and introduce said media in an imaging area of a host system;
a registration tab; and
a media translation mechanism disposed to accept said photographic media from said singulator and to cause an edge of the media to engage said registration tab, wherein engaging said registration tab by said edge causes said edge to deflect towards a registration guide.
22 The automatic photograph feeder of claim 21, wherein said registration tab is disposed in a movable lid portion of said host system.
23. The automatic photograph feeder of claim 22, wherein said registration tab is cast as a monolithic member of said movable lid portion of said host system.
24. The automatic photograph feeder of claim 22, wherein said input tray, said singulator, and said translation mechanism are also disposed in said movable lid portion of said host system.
25. The automatic photograph feeder of claim 21, wherein said photographic media input tray disposes said media at an angle such that when translated by said singulator a leading edge of said media does not engage said registration tab.
US10/658,713 2003-09-09 2003-09-09 System and method for de-skewing media when using an automatic media feeder Abandoned US20050067768A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/658,713 US20050067768A1 (en) 2003-09-09 2003-09-09 System and method for de-skewing media when using an automatic media feeder
TW093106994A TW200511825A (en) 2003-09-09 2004-03-16 System and method for de-skewing media when using an automatic media feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/658,713 US20050067768A1 (en) 2003-09-09 2003-09-09 System and method for de-skewing media when using an automatic media feeder

Publications (1)

Publication Number Publication Date
US20050067768A1 true US20050067768A1 (en) 2005-03-31

Family

ID=34375772

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/658,713 Abandoned US20050067768A1 (en) 2003-09-09 2003-09-09 System and method for de-skewing media when using an automatic media feeder

Country Status (2)

Country Link
US (1) US20050067768A1 (en)
TW (1) TW200511825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070235921A1 (en) * 2006-03-28 2007-10-11 Schalk Wesley R Advancing a media sheet along a media path
US20150304514A1 (en) * 2014-04-16 2015-10-22 Avision Inc. Duplex peripheral capable of processing large-size and small-size documents

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634112A (en) * 1985-10-17 1987-01-06 Morton Silverberg Plural belt document feeder
US4864366A (en) * 1987-05-29 1989-09-05 Ricoh Company, Ltd. Automatic document feeder
US4952175A (en) * 1987-08-31 1990-08-28 Amp Incorporated Key retention system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634112A (en) * 1985-10-17 1987-01-06 Morton Silverberg Plural belt document feeder
US4864366A (en) * 1987-05-29 1989-09-05 Ricoh Company, Ltd. Automatic document feeder
US4952175A (en) * 1987-08-31 1990-08-28 Amp Incorporated Key retention system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070235921A1 (en) * 2006-03-28 2007-10-11 Schalk Wesley R Advancing a media sheet along a media path
US7637500B2 (en) 2006-03-28 2009-12-29 Hewlett-Packard Development Company, L.P. Advancing a media sheet along a media path
US20150304514A1 (en) * 2014-04-16 2015-10-22 Avision Inc. Duplex peripheral capable of processing large-size and small-size documents
US9712713B2 (en) * 2014-04-16 2017-07-18 Avision Inc. Duplex peripheral capable of processing large-size and small-size documents

Also Published As

Publication number Publication date
TW200511825A (en) 2005-03-16

Similar Documents

Publication Publication Date Title
US9694605B2 (en) Liquid ejecting apparatus
JP4379366B2 (en) Medium edge detection apparatus and image recording apparatus
US7533882B2 (en) Automatic document feeder
US7973985B2 (en) Scanning device
US7883085B2 (en) Guide devices and image processing apparatus
US7623277B2 (en) Duplex scanning apparatus
JP3641011B2 (en) Manuscript handler
US20100078881A1 (en) Automatic sheet transporting apparatus, and automatic document scanning apparatus with the automatic sheet transporting apparatus
US5878319A (en) Image scanner having a single contact glass and contact-type image sensor movable under automatic document feeder
US7556255B2 (en) Image processing apparatus
US7611145B2 (en) Automatic document feeder
US8730537B2 (en) Duplex scanning apparatus with elastic pressing member disposed between two scan positions
US20050067768A1 (en) System and method for de-skewing media when using an automatic media feeder
US20070052149A1 (en) Automatic document feeder
KR20170017380A (en) Image scanning apparatus and image forming apparatus having the same
JP3991796B2 (en) Document reading device, document feeding device, and document size recognition method
EP2670121B1 (en) Image reader
KR20050077890A (en) Image reading apparatus having auto doucument feeder
US20210352188A1 (en) Media scanning assemblies
US20050242491A1 (en) Plate feeding apparatus
JP2000313530A (en) Original feeding device
US10897550B2 (en) Medium transporting apparatus and image reading apparatus
JP2005101942A (en) Image reader
US20160142570A1 (en) Recording-medium transporting and reading apparatus
US20200238741A1 (en) Recording apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CONNOR, THOMAS J.;HANSON, DAVID B.;LONG, KENNETH W.;REEL/FRAME:014503/0519

Effective date: 20030820

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION