US20050054792A1 - Olefin polymerization catalyst compositions and method of preparation - Google Patents
Olefin polymerization catalyst compositions and method of preparation Download PDFInfo
- Publication number
- US20050054792A1 US20050054792A1 US10/969,387 US96938704A US2005054792A1 US 20050054792 A1 US20050054792 A1 US 20050054792A1 US 96938704 A US96938704 A US 96938704A US 2005054792 A1 US2005054792 A1 US 2005054792A1
- Authority
- US
- United States
- Prior art keywords
- solid
- composition
- procatalyst composition
- solid procatalyst
- procatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims abstract description 44
- 150000001336 alkenes Chemical class 0.000 title claims abstract description 29
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 239000002685 polymerization catalyst Substances 0.000 title claims abstract description 14
- 238000002360 preparation method Methods 0.000 title description 10
- 239000007787 solid Substances 0.000 claims abstract description 66
- -1 titanium halide compound Chemical class 0.000 claims abstract description 62
- 239000010936 titanium Substances 0.000 claims abstract description 50
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 43
- 239000002243 precursor Substances 0.000 claims abstract description 33
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 22
- 239000011777 magnesium Substances 0.000 claims abstract description 19
- 150000004703 alkoxides Chemical group 0.000 claims abstract description 18
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 claims abstract description 18
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 15
- 239000012429 reaction media Substances 0.000 claims abstract description 8
- 238000005649 metathesis reaction Methods 0.000 claims abstract description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 5
- 230000003247 decreasing effect Effects 0.000 claims abstract description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 33
- 229920000642 polymer Polymers 0.000 claims description 18
- 239000004743 Polypropylene Substances 0.000 claims description 12
- 229920001155 polypropylene Polymers 0.000 claims description 12
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 11
- 239000000178 monomer Substances 0.000 claims description 9
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 6
- 239000005977 Ethylene Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims description 4
- 238000012685 gas phase polymerization Methods 0.000 claims description 3
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 230000002140 halogenating effect Effects 0.000 abstract description 6
- 239000003054 catalyst Substances 0.000 description 37
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 25
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 21
- 239000002245 particle Substances 0.000 description 17
- 229910003074 TiCl4 Inorganic materials 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 16
- 125000004432 carbon atom Chemical group C* 0.000 description 14
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 14
- 150000005826 halohydrocarbons Chemical class 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 11
- MGWAVDBGNNKXQV-UHFFFAOYSA-N diisobutyl phthalate Chemical compound CC(C)COC(=O)C1=CC=CC=C1C(=O)OCC(C)C MGWAVDBGNNKXQV-UHFFFAOYSA-N 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 10
- 229920000098 polyolefin Polymers 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 229930195733 hydrocarbon Natural products 0.000 description 9
- UBOXGVDOUJQMTN-UHFFFAOYSA-N 1,1,2-trichloroethane Chemical compound ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 8
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 8
- 238000000605 extraction Methods 0.000 description 8
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 8
- 239000004215 Carbon black (E152) Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- 239000008096 xylene Substances 0.000 description 7
- HRAQMGWTPNOILP-UHFFFAOYSA-N 4-Ethoxy ethylbenzoate Chemical compound CCOC(=O)C1=CC=C(OCC)C=C1 HRAQMGWTPNOILP-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 6
- 239000003085 diluting agent Substances 0.000 description 6
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 5
- 239000012320 chlorinating reagent Substances 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 230000026030 halogenation Effects 0.000 description 5
- 238000005658 halogenation reaction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 5
- 239000004711 α-olefin Substances 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- FHUODBDRWMIBQP-UHFFFAOYSA-N Ethyl p-anisate Chemical compound CCOC(=O)C1=CC=C(OC)C=C1 FHUODBDRWMIBQP-UHFFFAOYSA-N 0.000 description 4
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 4
- 238000005660 chlorination reaction Methods 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 3
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 239000012065 filter cake Substances 0.000 description 3
- 150000004820 halides Chemical group 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 150000003609 titanium compounds Chemical class 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- ITYXDCHVYRDZDC-UHFFFAOYSA-N 1,1,1,2-tetrachlorooctane Chemical compound CCCCCCC(Cl)C(Cl)(Cl)Cl ITYXDCHVYRDZDC-UHFFFAOYSA-N 0.000 description 2
- DAIRXERGRJFMSC-UHFFFAOYSA-N 1,1,2-trichlorocyclohexane Chemical compound ClC1CCCCC1(Cl)Cl DAIRXERGRJFMSC-UHFFFAOYSA-N 0.000 description 2
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 2
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical class ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910021552 Vanadium(IV) chloride Inorganic materials 0.000 description 2
- 229910007932 ZrCl4 Inorganic materials 0.000 description 2
- ADKPKEZZYOUGBZ-UHFFFAOYSA-N [C].[O].[Si] Chemical group [C].[O].[Si] ADKPKEZZYOUGBZ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- FYXKZNLBZKRYSS-UHFFFAOYSA-N benzene-1,2-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC=C1C(Cl)=O FYXKZNLBZKRYSS-UHFFFAOYSA-N 0.000 description 2
- 150000001555 benzenes Chemical class 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- FJBFPHVGVWTDIP-UHFFFAOYSA-N dibromomethane Chemical compound BrCBr FJBFPHVGVWTDIP-UHFFFAOYSA-N 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 229940117389 dichlorobenzene Drugs 0.000 description 2
- UMNKXPULIDJLSU-UHFFFAOYSA-N dichlorofluoromethane Chemical compound FC(Cl)Cl UMNKXPULIDJLSU-UHFFFAOYSA-N 0.000 description 2
- 229940099364 dichlorofluoromethane Drugs 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000005243 fluidization Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229910001502 inorganic halide Inorganic materials 0.000 description 2
- 229910052740 iodine Chemical group 0.000 description 2
- 239000011630 iodine Chemical group 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- XDKQUSKHRIUJEO-UHFFFAOYSA-N magnesium;ethanolate Chemical compound [Mg+2].CC[O-].CC[O-] XDKQUSKHRIUJEO-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 229940073584 methylene chloride Drugs 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 2
- 238000002459 porosimetry Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 239000012265 solid product Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 150000003613 toluenes Chemical class 0.000 description 2
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 2
- JTJFQBNJBPPZRI-UHFFFAOYSA-J vanadium tetrachloride Chemical compound Cl[V](Cl)(Cl)Cl JTJFQBNJBPPZRI-UHFFFAOYSA-J 0.000 description 2
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- QVIKHFRCGZNAAX-UHFFFAOYSA-N 2-methylpropyl 4-ethoxybenzoate Chemical compound CCOC1=CC=C(C(=O)OCC(C)C)C=C1 QVIKHFRCGZNAAX-UHFFFAOYSA-N 0.000 description 1
- DUAYDERMVQWIJD-UHFFFAOYSA-N 2-n,2-n,6-trimethyl-1,3,5-triazine-2,4-diamine Chemical compound CN(C)C1=NC(C)=NC(N)=N1 DUAYDERMVQWIJD-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- QWDBCIAVABMJPP-UHFFFAOYSA-N Diisopropyl phthalate Chemical compound CC(C)OC(=O)C1=CC=CC=C1C(=O)OC(C)C QWDBCIAVABMJPP-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FEXQDZTYJVXMOS-UHFFFAOYSA-N Isopropyl benzoate Chemical compound CC(C)OC(=O)C1=CC=CC=C1 FEXQDZTYJVXMOS-UHFFFAOYSA-N 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910003910 SiCl4 Inorganic materials 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- 229910003091 WCl6 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical class [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- KYZHGEFMXZOSJN-UHFFFAOYSA-N benzoic acid isobutyl ester Natural products CC(C)COC(=O)C1=CC=CC=C1 KYZHGEFMXZOSJN-UHFFFAOYSA-N 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical class ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- LQKWPGAPADIOSS-UHFFFAOYSA-N bis(2-methylpropyl) benzene-1,4-dicarboxylate Chemical compound CC(C)COC(=O)C1=CC=C(C(=O)OCC(C)C)C=C1 LQKWPGAPADIOSS-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001804 chlorine Chemical class 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- SJJCABYOVIHNPZ-UHFFFAOYSA-N cyclohexyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C1CCCCC1 SJJCABYOVIHNPZ-UHFFFAOYSA-N 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 150000004816 dichlorobenzenes Chemical class 0.000 description 1
- JWCYDYZLEAQGJJ-UHFFFAOYSA-N dicyclopentyl(dimethoxy)silane Chemical compound C1CCCC1[Si](OC)(OC)C1CCCC1 JWCYDYZLEAQGJJ-UHFFFAOYSA-N 0.000 description 1
- JGJWEXOAAXEJMW-UHFFFAOYSA-N dimethyl naphthalene-1,2-dicarboxylate Chemical compound C1=CC=CC2=C(C(=O)OC)C(C(=O)OC)=CC=C21 JGJWEXOAAXEJMW-UHFFFAOYSA-N 0.000 description 1
- HWUDSKSILZNHRX-UHFFFAOYSA-N dipropan-2-yl benzene-1,4-dicarboxylate Chemical compound CC(C)OC(=O)C1=CC=C(C(=O)OC(C)C)C=C1 HWUDSKSILZNHRX-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- DLAHAXOYRFRPFQ-UHFFFAOYSA-N dodecyl benzoate Chemical compound CCCCCCCCCCCCOC(=O)C1=CC=CC=C1 DLAHAXOYRFRPFQ-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 238000004442 gravimetric analysis Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052736 halogen Chemical group 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- MQHNKCZKNAJROC-UHFFFAOYSA-N phthalic acid dipropyl ester Natural products CCCOC(=O)C1=CC=CC=C1C(=O)OCCC MQHNKCZKNAJROC-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000037048 polymerization activity Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- UMONDPXKVSKCON-UHFFFAOYSA-N propan-2-yl 4-ethoxybenzoate Chemical compound CCOC1=CC=C(C(=O)OC(C)C)C=C1 UMONDPXKVSKCON-UHFFFAOYSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- OUULRIDHGPHMNQ-UHFFFAOYSA-N stibane Chemical class [SbH3] OUULRIDHGPHMNQ-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- AJSTXXYNEIHPMD-UHFFFAOYSA-N triethyl borate Chemical compound CCOB(OCC)OCC AJSTXXYNEIHPMD-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- KPGXUAIFQMJJFB-UHFFFAOYSA-H tungsten hexachloride Chemical compound Cl[W](Cl)(Cl)(Cl)(Cl)Cl KPGXUAIFQMJJFB-UHFFFAOYSA-H 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/04—Monomers containing three or four carbon atoms
- C08F10/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/04—Monomers containing three or four carbon atoms
- C08F110/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/04—Monomers containing three or four carbon atoms
- C08F210/06—Propene
Definitions
- the present invention relates to improved polymerization catalyst compositions of the Ziegler-Natta type, procatalysts for use in forming such catalyst compositions, methods of making such catalyst compositions and procatalysts, and to methods of using the catalyst compositions to make an olefin polymer.
- Ziegler-Natta olefin polymerization catalyst compositions typically comprise a solid component containing magnesium, titanium and halide moieties in combination with an internal electron donor (which combination is referred to as the “procatalyst”), a substance that is capable of converting the procatalyst to an active polymerization catalyst (referred to as a “cocatalyst”), and a selectivity control agent (SCA) or external donor.
- Suitable internal electron donors especially include aromatic mono- or di-alkylesters or ether derivatives thereof, such as alkylbenzoates, dialkylphthalates, and C 1-4 alkyl ether derivatives thereof.
- cocatalysts include aluminum trialkyls, such as triethylaluminum or triisobutylaluminum.
- the cocatalyst may be combined or complexed with some or all of the internal electron donor, selectivity control agent, or both, if desired. Although variations in any of these catalyst components will influence the performance of the resultant catalyst, the component that appears to offer the greatest opportunity for modification to produce greater catalyst activity is the procatalyst.
- One preferred method from among the foregoing disclosures is a method of forming a “procatalyst precursor” from a mixture of magnesium dialkoxides and titanium alkoxides and reacting the mixture with titanium tetrachloride in the presence of an alcohol, an aromatic hydroxide compound, and an aromatic solvent, especially chlorobenzene.
- a solid material is recovered by selective precipitation upon removal of alcohol from the solution.
- This precursor may thereafter by contacted with an internal electron donor and washed with TiCl 4 in a halohydrocarbon solvent to form the desired procatalyst.
- an acid chloride such as benzoyl chloride or phthaloyl chloride
- a halohydrocarbon in at least one such wash step to further facilitate the replacement of at least a portion of the alkoxide moieties.
- benzoyl chloride was contacted with a magnesium alkoxide precursor compound both during preparation of a procatalyst and in a subsequent step.
- the benzoyl chloride contacting step may occur either before or simultaneously with halogenation by means of a tetravalent titanium halide.
- a method of making a solid procatalyst composition for use in a Ziegler-Natta olefin polymerization catalyst composition comprising:
- solid procatalysts resulting from the foregoing methods of preparation; olefin polymerization catalysts comprising one or more of the foregoing procatalyst compositions, a cocatalyst, and optionally a selectivity control agent; an improved olefin polymerization process comprising contacting an olefin monomer under olefin polymerization conditions in the presence of the foregoing catalyst composition; as well as polyolefin polymers formed thereby.
- the catalyst compositions of the present invention are useful in preparing ⁇ -olefin polymers having relatively high bulk density. Moreover, they enable the preparation of polypropylene impact copolymers, especially polypropylene that is impact modified by ethylene/propylene copolymers prepared in situ, having increased rubber contents, at elevated polymerization temperatures, without disadvantageous formation of polymer particle agglomerates.
- the olefin polymerization procatalyst precursors employed in the invention comprise magnesium moieties.
- Sources for such magnesium moieties include anhydrous magnesium chloride, magnesium dialkoxides or aryloxides, or carboxylated magnesium dialkoxides or aryloxides.
- Preferred sources of magnesium moieties are magnesium di-(C 1-4 )alkoxides, especially diethoxymagnesium.
- the precursors comprise titanium moieties. Suitable sources of titanium moieties include titanium alkoxides, titanium aryloxides, and titanium halides.
- Preferred precursors comprise one or more magnesium di-(C 1-4 )-alkoxides and one or more titanium tetra-(C 1-4 )-alkoxides.
- the preparation involves chlorination of the foregoing mixed magnesium and titanium alkoxides, and may involve the use of one or more compounds, referred to as “clipping agents”, that aid in forming specific compositions.
- clipping agents include trialkylborates, especially triethylborate, phenolic compounds, especially cresol, and silanes.
- a preferred procatalyst precursor for use herein is a mixed magnesium/titanium compound of the formula Mg d Ti(OR e ) e X f wherein R e is an aliphatic or aromatic hydrocarbon radical having 1 to 14 carbon atoms or COR′ wherein R′ is an aliphatic or aromatic hydrocarbon radical having 1 to 14 carbon atoms; each OR e group is the same or different; X is independently chlorine, bromine or iodine; d is 0.5 to 5, preferably 2-4, most preferably 3; e is 2-12, preferably 6-10, most preferably 8; and f is 1-10, preferably 1-3, most preferably 2.
- the precursors are ideally prepared by controlled precipitation through removal of an alcohol from the reaction mixture used in their preparation.
- An especially desirable reaction medium comprises a mixture of an aromatic liquid, especially a chlorinated aromatic compound, most especially chlorobenzene, with an alkanol, especially ethanol, and an inorganic chlorinating agent.
- Suitable inorganic chlorinating agents include chlorine derivatives of silicon, aluminum and titanium, especially titanium tetrachloride or titanium trichloride, most especially titanium tetrachloride.
- Removal of the alkanol from the solution used in the chlorination results in precipitation of the solid precursor, having especially desirable morphology and surface area.
- the resulting precursors are particularly uniform particle sized and resistant to particle crumbling as well as degradation of the resulting procatalyst.
- the precursor is converted to a solid procatalyst by further reaction (halogenation) with an inorganic halide compound, preferably a titanium halide compound, and incorporation of an internal electron donor. If not already incorporated into the precursor in sufficient quantity, the electron donor may be added separately before, during or after halogenation. Any method of making, recovering and storing the solid precursor is suitable for use in the present invention.
- One suitable method for converting the solid procatalyst precursor into a polymerization procatalyst is by reacting the precursor with a tetravalent titanium halide, an optional hydrocarbon or halohydrocarbon, and an electron donor (if not already present).
- the preferred tetravalent titanium halide is titanium tetrachloride.
- the optional hydrocarbon or halohydrocarbon employed in the production of olefin polymerization procatalyst preferably contains up to 12 carbon atoms inclusive, more preferably up to 9 carbon atoms inclusive.
- exemplary hydrocarbons include pentane, octane, benzene, toluene, xylene, alkylbenzenes, and the like.
- Exemplary aliphatic halohydrocarbons include methylene chloride, methylene bromide, chloroform, carbon tetrachloride, 1,2-dibromoethane, 1,1,2-trichloroethane, trichlorocyclohexane, dichlorofluoromethane and tetrachlorooctane.
- Exemplary aromatic halohydrocarbons include chlorobenzene, bromobenzene, dichlorobenzenes and chlorotoluenes.
- compounds containing at least two chloride substituents are preferred, with carbon tetrachloride and 1,1,2-trichloroethane being most preferred.
- aromatic halohydrocarbons chlorobenzene is particularly preferred.
- Any electron donor can be used in the present invention so long as it is capable of converting the precursor into a procatalyst.
- Suitable electron donors are those electron donors free from active hydrogens that are conventionally employed in the formation of titanium-based procatalysts.
- Particularly preferred electron donors include ethers, esters, amines, imines, nitriles, phosphines, stibines, and arsines.
- the more preferred electron donors are carboxylic acid esters or ether derivatives thereof, particularly C 1-4 alkyl esters of aromatic monocarboxylic or dicarboxylic acids and C 1-4 alkyl ether derivatives thereof.
- electron donors examples include methylbenzoate, ethylbenzoate, isopropylbenzoate, isobutylbenzoate, ethyl p-ethoxybenzoate, ethyl-p-methoxybenzoate, isopropyl-p-ethoxybenzoate, isobutyl-p-ethoxybenzoate, diethylphthalate, dimethylnaphthalenedicarboxylate, diisopropylphthalate, diisobutylphthalate, diisopropylterephthalate, and diisobutylterephthalate.
- the electron donor can be a single compound or a mixture of compounds, but preferably the electron donor is a single compound.
- Particularly preferred internal electron donors are: ethylbenzoate, ethyl p-ethoxybenzoate, di(n-butyl)phthalate, and di(isobutyl)phthalate.
- the electron donor may be formed in situ, by contacting the procatalyst precursor with an organic halogenating agent, especially benzoyl chloride or phthalyl dichloride, simultaneously with the foregoing precursor forming step or halogenation step using an inorganic halide compound (procatalyst forming step).
- an organic halogenating agent especially benzoyl chloride or phthalyl dichloride
- Sufficient electron donor usually is provided or prepared in situ, so that the molar ratio of electron donor to the magnesium present in the solid procatalyst at this stage of the preparation is from about 0.01:1 to about 3:1, preferably from about 0.05:1 to about 2:1.
- the manner in which the procatalyst precursor, the optional hydrocarbon or halohydrocarbon, the electron donor, and the chlorinating agent are contacted may be varied within wide limits.
- the tetravalent titanium halide is added to a mixture of the electron donor and procatalyst precursor. More preferably however, the procatalyst precursor first is mixed with the tetravalent titanium halide and optional halohydrocarbon, and the electron donor is added last, after a period lasting from 10 to 30 minutes of precontact between the precursor and halogenating agent.
- the contact time and temperature are controlled in order to obtain a solid product having a desired particle morphology.
- Preferred contacting times of the precursor with the remaining ingredients in the procatalyst composition forming process are at least 10, preferably at least 15 and more preferably at least 20 minutes, up to 1 hour, preferably up to 45 minutes, most preferably up to 35 minutes, at a temperature from at least 25, preferably at least 50, most preferably at least 60° C., to a temperature up to 100, preferably up to 90, most preferably up to 80° C.
- particle morphology, especially particle size, size distribution and porosity of the resulting solid, procatalyst composition and the catalysts formed therefrom is adversely affected.
- a preferred procatalyst for use herein is a mixed magnesium/titanium compound of the formula: Mg d′ Ti(OR e ) e′ X f′ (ED) g′ wherein R e is an aliphatic or aromatic hydrocarbon radical having 1 to 14 carbon atoms or COR′ wherein R′ is an aliphatic or aromatic hydrocarbon radical having 1 to 14 carbon atoms; each OR e group is the same or different; X is independently chlorine, bromine or iodine; ED is an electron donor, especially ethylbenzoate; d′ is 1 to 36, preferably 6-18, most preferably 10-14; e′ is 0-3, preferably 0.01-2, most preferably 0.01-1; f′ is 20-40, preferably 25-35, most preferably 27-29; and g′ is 0.1-3, preferably 0.5-2.5, most preferably 1-2.
- the next step according to the invention involves a multi-step, metathesis or exchange reaction with benzoyl chloride as an organic chlorinating agent in order to convert residual alkoxide moieties in the solid procatalyst to chloride moieties.
- benzoyl chloride is the preferred metathesis reagent due to the fact that the alkyl benzoate which is formed as a by-product of the chlorination appears to be a more effective internal donor than are the alkyl phthalates, resulting in a more efficient polymerization catalyst.
- the residual alkoxide content of the resulting solid, exchanged, procatalyst composition is 5 weight percent or less, more preferably 3 weight percent or less, most preferably 1 weight percent or less.
- the foregoing metathesis procedure is repeated at least one time (2 contactings total), preferably two times (3 contactings total), as desired until a suitable procatalyst composition is attained.
- Contacting with benzoyl chloride in at least two steps is preferred in order to achieve maximum catalyst efficiency.
- One or more of the previously mentioned halogenating agents, preferably TiCl 4 can be present in combination with the benzoyl chloride metathesis reagent, and preferably is present during at least the first and second contactings for best results.
- the exchange process is desirably conducted at an elevated temperature from 45 to 120° C., preferably from 70 to 115° C., most preferably from 85 to 110° C., over a time period of from 10 minutes to 3 hours, preferably from 30 minutes to 90 minutes, most preferably from 40 to 80 minutes.
- the solid, exchanged procatalyst composition is separated from the exchange mixture, desirably by filtration, and may be rinsed with a hydrocarbon, halohydrocarbon or halocarbon solvent, if desired. Such filtration step may occur over a time period from 10 minutes to 2 hours, preferably from 30 minutes to 100 minutes. It is generally preferred that all of the foregoing chlorination and exchange steps, including intervening filtrations or other form of recovery, and optional washings, occur without substantial cooling of the procatalyst composition. By substantial cooling is meant cooling by more than 25° C.
- the resulting solid, exchanged, procatalyst composition is separated from the reaction medium employed in the final process, preferably by filtering to produce a moist filter cake.
- the resulting filter cake may again be halogenated one or more times according to the previously disclosed procedure, if desired.
- the moist filter cake desirably is then rinsed or washed with a liquid diluent, preferably an aliphatic hydrocarbon to remove unreacted TiCl 4 and may be dried to remove residual liquid, if desired.
- the solid, exchanged procatalyst composition is washed one or more times with an aliphatic hydrocarbon such as isopentane, isooctane, isohexane, hexane, pentane, or octane.
- an aliphatic hydrocarbon such as isopentane, isooctane, isohexane, hexane, pentane, or octane.
- the solid, exchanged, and optionally washed, procatalyst composition then can be separated and dried or slurried in a hydrocarbon, especially a relatively viscous, aliphatic hydrocarbon such as mineral oil for further storage or use.
- the resulting solid, exchanged procatalyst composition is desirably in the form of porous particles.
- the resulting composition desirably corresponds to the formula: Mg d′′ Ti(OR e ) e′′ X f′′ (ED) g′′ wherein R e is an aliphatic or aromatic hydrocarbon radical having 1 to 14 carbon atoms or COR′ wherein R′ is an aliphatic or aromatic hydrocarbon radical having 1 to 14 carbon atoms; each OR e group is the same or different; X is independently chlorine; ED is an electron donor, especially ethylbenzoate; d′′ is 1 to 36, preferably 6-18, most preferably 10-14; e′′ is 0-2, preferably 0-1, most preferably 0-0.5; f′′ is 20-40, preferably 25-35, most preferably 27-29; and g′′ is 0.1-3, preferably 0.5-2.5, most preferably 1-2.
- the resulting solid, exchanged, procatalyst composition has the following particle physical properties as measured by BET, nitrogen porosimetry, and laser particle analyzer: an average surface area of at least 100 m 2 /g, preferably at least 250 m 2 /g, an average pore volume of at least 0.18 cm 3 /g, preferably at least 0.20 cm 3 /g, mean particle size from 20 to 40 ⁇ m, preferably from 24 to 30 ⁇ m, and particle size distribution having D10 from 3 to 15 ⁇ m, D50 from 18 to 30 ⁇ m and D90 from 35 to 75 ⁇ m.
- This mean particle size is somewhat less than the mean particle size of a composition that has not been exchanged, and the distribution is somewhat narrower than a composition that is not subjected to the multi-step exchange process as disclosed herein.
- the procatalyst composition Before, in combination with, or after being exchanged according to the present invention, the procatalyst composition may be further treated according to one or more of the following procedures.
- the solid procatalyst composition may be contacted (halogenated) with a further quantity of titanium halide compound, if desired; it may be substituted with a different halide salt compound or a complex thereof; it may be contacted (extracted) with a solvent, especially a halohydrocarbon; it may be rinsed or washed, heat treated; or aged.
- a solvent especially a halohydrocarbon
- the exchange process is conducted in the presence of a titanium halide and a halohydrocarbon diluent, especially TiCl 4 and chlorobenzene.
- the exchange utilizes a mixture of inorganic halogenating agent/diluent/exchange agent on a molar basis from 1/20-10,000/0.0001-0.1.
- a mixture of TiCl 4 /monochlorobenzene/benzoylchloride is used in a molar ratio range from 1/100-2000/0.001-0.01.
- the quantity of the foregoing exchange reagent (organic chlorinating agent) used with respect to the solid procatalyst is from 1/1 to 1/100, preferably from 1/2 to 1/10.
- Substitution refers to a process by which the procatalyst may be further modified by incorporation of a halide salt compound therein.
- Suitable halide compounds include those compounds that are capable of removing titanium species from the solid procatalyst material or adjusting the type or quantity of titanium species in the procatalyst composition without detrimentally affecting the resulting catalyst properties. It is preferred that the halide salt compound be soluble in the medium that contains the procatalyst or the precursor components.
- the halide salt compound (if different from the titanium compound used to prepare the present solid, procatalyst composition) may be employed by itself, or it may be complexed with another compound, such as an internal electron donor.
- More than one halide salt compound may be used in the substitution process if desired.
- Suitable halide salt compounds for the foregoing substitution procedure include: TiCl 4 , ZrCl 4 , VCl 4 , WCl 6 , VOCl 3 , SnCl 4 , SiCl 4 and mixtures thereof.
- a preferred reagent is TiCl 4 . If a complex of a metal salt is employed, it is desirable that some quantity of TiCl 4 be included in the substitution mixture. The presence of a small quantity of TiCl 4 in the substitution medium has desirably been found to reduce adverse affects caused by release of electron donor from the procatalyst composition during the substitution.
- the substitution step may be combined with the
- the solid procatalyst composition is extracted to remove non-active titanium halide species by exposure to a suitable diluent optionally at elevated temperature.
- a suitable diluent optionally at elevated temperature.
- One such process involves contacting the solid procatalyst, optionally additional electron donor, and an halohydrocarbon at an elevated temperature, for example, a temperature of up to about 150° C., for a period of time following the foregoing exchange. It is particularly preferred to conduct the extraction at a temperature greater than 45° C., preferably greater than 85° C., more preferably greater than 115° C., and most preferably greater than 120° C., to a temperature up to about 300° C., more preferably up to about 200° C., and most preferably up to about 150° C.
- the materials are contacted initially at or about ambient temperature and then heated.
- Sufficient tetravalent titanium halide may be provided to further convert any residual alkoxide moieties of the procatalyst to halide groups at the same time as the extraction.
- the extraction process is conducted in one or more contacting operations, each of which is conducted over a period of time ranging from a few minutes to a few hours and it is preferred to have a halohydrocarbon present during each contacting.
- Suitable extractants include aliphatic, cycloaliphatic, or aromatic hydrocarbons, halogenated derivatives thereof, and mixtures thereof.
- Exemplary aliphatic hydrocarbons include pentane, octane and the like.
- Exemplary cycloaliphatic hydrocarbons include cyclopentane, cyclohexane, cyclooctane, and the like.
- Exemplary aromatic hydrocarbons include benzene, alkylbenzenes, dialkylbenzenes, and the like.
- halogenated derivatives of the foregoing include methylenechloride, methylenebromide, chloroform, carbon tetrachloride, 1,2-dibromoethane, 1,1,2-trichloroethane, trichlorocyclohexane, dichlorofluoromethane, tetrachlorooctane, chlorinated benzenes, bromobenzene, dichlorobenzene, chlorinated toluenes, and the like.
- Particularly preferred aliphatic hydrocarbons include pentane, isopentane, octane, and isooctane.
- Particularly preferred aromatic hydrocarbons include benzene, toluene, and xylene.
- Particularly preferred halohydrocarbons include carbon tetrachloride, 1,1,2-trichloroethane, chlorinated benzenes and chlorinated toluenes.
- Most highly preferred extractants are aromatic hydrocarbons and halohydrocarbons, especially toluene, xylene, ethylbenzene, chlorobenzene and dichlorobenzene. Desirably the extractant selected has a boiling point above the temperature used in the extraction so as to avoid the use of high pressure equipment.
- the amount of extractant employed can be any effective amount capable of removing titanium species from the solid procatalyst. It is preferred that the extractant be used in an amount ranging from 0.1 to about 1000 milliliters per gram of solid procatalyst material. More preferably, the amount of extractant used ranges from about 1 to about 500 mL/g of solid procatalyst, and most preferably from about 5 to about 50 mL/g of solid procatalyst.
- the amount of time the solid procatalyst material and the extractant are contacted is not critical so long as it is sufficient to remove undesired, soluble titanium species from the solid procatalyst material.
- the components are contacted from about 2 minutes to about 12 hours, more preferably from about 5 minutes to about 4 hours, and most preferably, from about 15 minutes to about 2 hours. Longer contact times and/or repeated extractions may be required if lower extraction temperatures or less efficient extractants are employed.
- the extraction may be conducted at any suitable pressure, but preferably atmospheric pressure or elevated pressures are employed.
- an extracted, solid procatalyst of the present invention has from 5 up to 80 weight percent less titanium content, more preferably from 7 up to 75 weight percent less titanium, and most preferably, anywhere from 10 to about 70 weight percent less titanium content than a similarly prepared but unextracted composition.
- the extraction may be repeated any number of times with the same or varied reagents, concentrations of reagents, temperatures of reaction and time of reaction in order to achieve the desired titanium content of the solid procatalyst.
- the solid, exchanged procatalyst composition serves as one component of a Ziegler-Natta catalyst composition, in combination with a cocatalyst and a selectivity control agent.
- the cocatalyst component employed in the Ziegler-Natta catalyst system may be chosen from any of the known activators of olefin polymerization catalyst systems employing a titanium halide, especially organoaluminum compounds. Examples include trialkylaluminum compounds and alkylaluminum halide compounds in which each alkyl group independently has from 1 to 6 carbon atoms.
- the preferred organoaluminum cocatalysts are triethylaluminum, triisopropylaluminum, and triisobutylaluminum.
- the cocatalyst is preferably employed in a molar ratio of aluminum to titanium of the procatalyst of from about 1:1 to about 150:1, but more preferably in a molar ratio of from about 10:1 to about 100
- the final component of the Ziegler-Natta catalyst composition (when used to polymerize C 3 and higher ⁇ -olefins) is the selectivity control agent (SCA), or external electron donor.
- SCA selectivity control agent
- Typical SCAs are those conventionally employed in conjunction with titanium-based Ziegler-Natta catalysts.
- suitable selectivity control agents are those classes of electron donors employed in procatalyst production as described above, as well as organosilane or polyorganosilane compounds containing at least one silicon-oxygen-carbon linkage.
- R 1 in at least one occurrence is not a primary alkyl group, and the non-primary carbon thereof is attached directly to the silicon atom.
- R 1 include cyclopentyl, t-butyl, isopropyl or cyclohexyl.
- R 2 include ethyl, butyl, isopropyl, phenyl, benzyl and t-butyl.
- X are Cl and H.
- Each R 1 and R 2 may be the same or different, and, if a polyatomic radical, substituted with any substituent which is inert under the reaction conditions employed during polymerization.
- R 2 contains from 1 to 10 carbon atoms when it is aliphatic and may be a sterically hindered aliphatic- or a cycloaliphatic- group. When R 2 is aromatic it may have from 6 to 10 carbon atoms. Silicon compounds in which two or more silicon atoms are linked to each other by an oxygen atom, such as, siloxanes or polysiloxanes, may also be employed, provided the requisite silicon-oxygen-carbon linkage is also present.
- the preferred selectivity control agents are alkyl esters of ring alkoxy-substituted aromatic carboxylic acids or dicarboxylic acids, especially ethyl p-methoxybenzoate or ethyl p-ethoxybenzoate (PEEB), or siloxane compounds, such as n-propyltrimethoxysilane, cyclohexylmethyldimethoxysilane, or dicyclopentyldimethoxysilane.
- the foregoing selectivity control agent may form at least a portion of the electron donor added during procatalyst production.
- the selectivity control agent is added only after formation of the procatalyst and may be added to a catalyst forming mixture or to an olefin polymerization mixture simultaneously or non-simultaneously with addition of the cocatalyst.
- the selectivity control agent preferably is provided in a quantity of from 0.01 mole to about 100 moles per mole of titanium in the procatalyst. Preferred quantities of selectivity control agent are from about 0.5 mole to about 50 mole per mole of titanium in the procatalyst.
- the olefin polymerization catalyst is produced by any suitable procedure of contacting the exchanged, solid procatalyst, the cocatalyst and the selectivity control agent.
- the method of contacting is not critical.
- the catalyst components or combinations thereof can be precontacted prior to polymerization to form a preactivated catalyst, or the components can be contacted simultaneously with contact with an olefin monomer.
- the catalyst components simply are mixed in a suitable vessel and the preformed catalyst thereby produced is introduced into the polymerization reactor when initiation of polymerization is desired.
- the catalyst components are separately introduced into the polymerization reactor and the catalyst is formed in situ.
- the catalyst components may be introduced into one polymerization reactor and prepolymerized with one or more olefin monomers and subsequently contacted with additional olefin monomers, which may be the same or different from the olefin monomers used in the prepolymerization.
- the subsequent polymerization may take place in the same or in a different polymerization reactor and may include separate addition of one or more of the catalyst components during said subsequent polymerization.
- the olefin polymerization catalyst may be used in slurry, liquid phase, gas phase or bulk, liquid monomer-type polymerization processes as are known in the art for polymerizing olefins, or in a combination of such processes.
- Polymerization preferably is conducted in a fluidized bed polymerization reactor, however, by continuously contacting an alpha-olefin having 3 to 8 carbon atoms with the three components of the catalyst system, that is, the solid procatalyst component, cocatalyst and SCAs.
- discrete portions of the catalyst components are continuously or semi-continuously fed to the reactor in catalytically effective amounts together with the alpha-olefin and any additional components, while the polymer product is continuously or semi-continuously removed therefrom.
- Fluidized bed reactors suitable for continuously polymerizing alpha-olefins have been previously described and are well known in the art. Suitable fluidized bed reactors useful for this purpose are described in U.S. Pat. Nos. 4,302,565, 4,302,566 and 4,303,771 and elsewhere.
- Such fluidized beds are operated using a recycle stream of unreacted monomer from the fluidized bed reactor.
- a liquid condensing agent may be included in the reaction mixture as well.
- condensing mode Operating a fluidized bed reactor in condensing mode generally is known in the art and described in, U.S. Pat. Nos. 4,543,399 and 4,588,790, and elsewhere. The use of condensing mode has been found to be especially useful to increase catalyst activity, lower the amount of xylene solubles in isotactic polypropylene, and to improve overall catalyst performance when using catalysts prepared according to the present invention.
- the olefin polymerization process by virtue of the use therein of the polymerization catalyst formed from exchanged, solid procatalysts of the invention, provides a polyolefin product and particularly a polypropylene product having a relatively high bulk density in quantities that reflect the relatively high productivity of the olefin polymerization catalyst.
- the bulk density of the resulting polymer ( ⁇ bd ) as determined by gravimetric analysis is at least 0.33 g/cm 3 , more preferably at least 0.35 g/cm 3 . Increase in bulk density allows higher reactor capacity utilization or efficiency of operation, and accordingly is desired.
- the polyolefin product of the invention desirably allows for incorporation of enhanced rubber content when compared to rubber modified polyolefins, (especially ethylene/propylene rubber (EPR) modified isotactic polypropylene) made by a catalyst made from an unexchanged, but otherwise similar procatalyst, due, it is believed, to better dispersion of the rubber within the polyolefin matrix.
- the rubber content of such polymers is capable of being increased 30 percent by weight, preferably at least 40 percent by weight over a similarly prepared catalyst composition that has not been exchanged as disclosed herein, at the same polymerization temperature, without significant increase in polymer agglomerate formation.
- rubber modified polymers according to the invention containing high rubber contents of at least 40, preferably at least 45, and most preferably at least 50 weight percent may retain acceptable flow properties in the reactor under gas phase polymerization conditions resulting in less plugging of reactor components, thereby resulting in reduced levels of production or even shutting down of the reactor.
- the xylene solubles content of the polyolefin products of the invention preferably are less than 5 weight percent, more preferably 2.5-4.5 weight percent.
- the polyolefin product preferably will contain reduced amounts of the catalyst residue.
- the polymer will have a titanium content of less than about 1 ⁇ 10 ⁇ 3 weight percent, more preferably less than 1 ⁇ 10 ⁇ 4 weight percent, most preferably less than 5 ⁇ 10 ⁇ 5 weight percent.
- the polymerization product of the present invention can be any product, including homopolymers, copolymers, terpolymers, and the like.
- the polymerization product is a homopolymer such as polyethylene or polypropylene, particularly polypropylene.
- the catalyst and process of the invention are useful in the production of copolymers including copolymers of ethylene and propylene such as EPR and polypropylene impact copolymers, such as EPR modified polypropylene, when two or more olefin monomers are supplied to the polymerization process.
- EPR and polypropylene impact copolymers such as EPR modified polypropylene
- the following testing methods were used to determine the values reported in the tables.
- a blank cell indicates that no data were taken for that particular portion of the experiment.
- the measurements of the mean diameters of the particles and the particle distribution were performed with a Malvern 1600TM laser granulometer, available from Malvern Corporation.
- the specific surface area (BET) was determined by the isothermal physical adsorption of nitrogen at the temperature of liquid nitrogen (S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309 (1938)).
- the pore volume was determined by nitrogen absorption porosimetry. The measurements were performed after treatment of the samples under vacuum for 2 hours at room temperature.
- Ti percent—percent titanium was determined by analyzing the catalysts using plasma emission spectroscopy.
- Productivity (kg of polymer per gram of procatalyst). Calculated by weighing the total amount of polymer produced and dividing by the total amount of procatalyst injected into the reactor.
- XS—xylene solubles unless indicated otherwise was measured by the 13 C NMR method as described in U.S. Pat. No. 5,539,309,or the gravimetric XS method of 21 CFR 177.1520. (Optionally the quantity of extracted polymer may be determined by measuring the refractive index of the extract, rather than weighing the residue after drying).
- a series of nine olefin polymerization procatalysts were prepared using a procatalyst precursor comprising magnesium, titanium, alkoxide and halide moieties.
- the precursor composition is prepared by reacting magnesium diethoxide, titanium tetraethoxide, and titanium tetrachloride, in a mixture of orthocresol, ethanol and chlorobenzene at a temperature of about 75° C. for about 2 hours.
- the solid reaction product is precipitated by removing ethanol from the solution (by heating to about 90° C.), washing with isopentane or isooctane and drying.
- the resulting dried, solid composition comprises primarily a compound of the empirical formula: Mg 3 Ti(OC 2 H 5 ) 8 Cl 2 .
- This precursor composition was next converted to procatalyst compositions by contacting with TiCl 4 and ethylbenzoate electron donor.
- TiCl 4 and ethylbenzoate electron donor approximately 3.6 grams of the precursor was added to a 150 ml flask.
- a 50/50 volume mixture of TiCl 4 and chlorobenzene (65 ml) was added to the flask, followed by 0.4 ml of ethylbenzoate.
- the flask was heated in approximately 5 to 7 minutes to 70° C., and maintained at that temperature under constant agitation for 30 minutes.
- the resulting slurry was filtered through a fritted disc at the bottom of the flask, while maintaining the temperature at 70° C.
- the resulting solid, procatalyst composition was next subjected to exchange and further halogenation by contacting with a mixture of TiCl 4 , chlorobenzene, and benzoylchloride at 95° C. Specifically, 65 ml of an equal volume mixture of TiCl 4 and chlorobenzene was added to the flask containing the recovered procatalyst followed by 0.5 ml of benzoylchloride, and the mixture was rapidly heated to 95° C. The contents were maintained at that temperature for 60 minutes, and then filtered as before while retaining the recovered solids at 95° C. This exchange procedure was repeated once more under substantially identical conditions (specifically the benzoylchloride content was reduced to 0.4 ml).
- the resulting catalyst compositions have average BET surface area of 270 m 2 /g, average pore diameter of 3.1 nm, and average pore volume 0.209 cm 3 /g.
- the resulting exchanged procatalyst compositions were tested for olefin polymerization activity by charging 0.70 mmoles of triethylaluminum cocatalyst, 0.35 mmoles ethyl p-ethoxybenzoate SCA, and 16.2 mg of the procatalyst composition into an autoclave reactor containing 1375 grams of liquid propylene and 13 mmole H 2 for one hour at 67° C. After venting and cooling of the polymerization reactor, the product was collected, dried in air, and weighed. Properties of the isotactic polypropylene product including loose bulk density and percent xylene solubles, along with activity of the catalyst, were measured and are displayed in Table 1.
- procatalyst composition In a large scale preparation of procatalyst composition according to the invention, 6.9 m 3 of an equal volume of mixed TiCl 4 and chlorobenzene at 13° C. were pumped into a stainless steel heated pressure vessel equipped with a stirrer. Approximately 483 kg of a precursor composition prepared substantially according to the procedure of Example 1 was added, followed by about 8.6 liters of ethylbenzoate electron donor. The reactor was heated to 70° C. with stirring and held at that temperature for 40 minutes. The reactor contents were filtered over a period of 1 hour while maintaining a temperature of approximately 70° C.
- the resulting solid, procatalyst composition (still at 93° C.) was rinsed with isopentane 10 m 3 ) for about 2 hours while gradually reducing the temperature to ambient conditions (20° C.). Dry nitrogen at a temperature of about 45° C. was used to dry the catalyst cake over a period of 2 hours. After drying, the solid procatalyst composition was blended with mineral oil and used in preparation of olefin polymers.
- Ethylene/propylene rubber modified polypropylene impact copolymers were prepared in twin, gas-phase olefin polymerization reactors operating in series.
- the reactors were each equipped with a distributor plate under which the fluidization gas was introduced.
- the gas exited the top of the fluidized bed and was conveyed through piping to a compressor and a cooler, which was used to control the temperature of the cycle gas, thereby controlling the temperature in the fluidized bed.
- the cycle gas was then reintroduced below the distributor plate at a rate to maintain fluidization of the reactor contents.
- the first reactor contained propylene as the only olefin, hydrogen in a H 2 /C 3 H 6 molar ratio of about 0.03 (run 10) or 0.027 (run 11), and operating temperature of 66° C.
- the fluidized-bed reactor was operated under 430 psi, (3.08 MPa) total pressure with a propylene partial pressure of 340 psi (2.3 MPa).
- a superficial gas velocity of 1.2 ft/sec (0.36 m/sec) was used to fluidize the polymer bed weighing about 75 lbs (34 Kg) of polymer.
- the catalyst slurry was metered with a syringe pump into a stream of 5 lbs/hr (2.3 kg/hr) of propylene, which conveyed the catalyst to the reactor.
- Solutions of triethylaluminum (TEAL) and ethyl p-ethoxybenzoate (SCA) were introduced separately into the reactor at locations on the recycle line to provide a molar ratio Al/Ti of 50:1 and Al/SCA of 2.1:1.
- Total SCA concentration in the reactor was maintained below about 250 ppm by weight.
- the polymeric product was passed to a second reactor operating under similar gas-phase polymerization conditions, excepting that additional catalyst and SCA were not added, the temperature was raised to 70° C., ethylene was added to the reactor to provide ethylene/propylene ratios of 0.79 (run 10) or 0.825 (run 11), an H 2 /C 3 H 6 ratio of 0.18 (run 10) or 0.09 (run 11), and a reactor pressure of 346 psi (2.4 MPa) with a propylene partial pressure of 140 psi (965 kPa) and an ethylene partial pressure of 111 psi (765 kPa) (run 10) or 115 psi (793 kPa) (run 11).
- Example 2 The reaction conditions of Example 2 were substantially repeated employing reduced residence time in the first reactor in order to produce polymers containing higher rubber contents. Products having 40, 45 and 53 weight percent rubber and Flow Quality Index values of 0.68, 0.62 and 0.58, respectively, were prepared.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
A method of making a solid procatalyst composition for use in a Ziegler-Natta olefin polymerization catalyst composition, said method comprising: contacting a solid precursor composition comprising magnesium, titanium, and alkoxide moieties with a titanium halide compound and an internal electron donor in any order, in a suitable reaction medium to prepare a solid procatalyst composition, separating the solid procatalyst from the reaction medium, further exchanging residual alkoxide functionality of the solid procatalyst composition for chloride functionality by contacting the same two or more times with benzoyl chloride halogenating agent under metathesis conditions for a period of time sufficient to prepare a solid procatalyst composition having a decreased alkoxide content compared to the alkoxide content of the solid procatalyst composition before said exchange, and recovering the solid procatalyst composition.
Description
- This application is a Divisional of U.S. Ser. No. 10/138,141, filed May 1, 2002, which in turn claims benefit of priority from U.S. Provisional Application No. 60/294,183, filed May 29, 2001, the teachings of which are incorporated herein by reference.
- The present invention relates to improved polymerization catalyst compositions of the Ziegler-Natta type, procatalysts for use in forming such catalyst compositions, methods of making such catalyst compositions and procatalysts, and to methods of using the catalyst compositions to make an olefin polymer.
- Ziegler-Natta olefin polymerization catalyst compositions typically comprise a solid component containing magnesium, titanium and halide moieties in combination with an internal electron donor (which combination is referred to as the “procatalyst”), a substance that is capable of converting the procatalyst to an active polymerization catalyst (referred to as a “cocatalyst”), and a selectivity control agent (SCA) or external donor. Suitable internal electron donors especially include aromatic mono- or di-alkylesters or ether derivatives thereof, such as alkylbenzoates, dialkylphthalates, and C1-4 alkyl ether derivatives thereof. Conventional cocatalysts include aluminum trialkyls, such as triethylaluminum or triisobutylaluminum. The cocatalyst may be combined or complexed with some or all of the internal electron donor, selectivity control agent, or both, if desired. Although variations in any of these catalyst components will influence the performance of the resultant catalyst, the component that appears to offer the greatest opportunity for modification to produce greater catalyst activity is the procatalyst.
- Various methods of preparing procatalysts are previously disclosed in the patent art. Examples include: U.S. Pat. Nos. 5,247,032, 5,247,031, 5,229,342, 5,153,158, 5,151,399, 5,146,028, 5,124,298, 5,106,806, 5,082,907, 5,077,357, 5,066,738, 5,066,737, 5,034,361, 5,028,671, 4,990,479, 4,927,797, 4,829,037, 4,816,433, 4,728,705, 4,548,915, 4,547,476, 4,540,679, 4,535,068, 4,472,521, 4,460,701, 4,442,276, and 4,330,649. One preferred method from among the foregoing disclosures is a method of forming a “procatalyst precursor” from a mixture of magnesium dialkoxides and titanium alkoxides and reacting the mixture with titanium tetrachloride in the presence of an alcohol, an aromatic hydroxide compound, and an aromatic solvent, especially chlorobenzene. In this manner, a solid material is recovered by selective precipitation upon removal of alcohol from the solution. This precursor may thereafter by contacted with an internal electron donor and washed with TiCl4 in a halohydrocarbon solvent to form the desired procatalyst. Among the foregoing disclosures, U.S. Pat. No. 5,124,298 and U.S. Pat. No. 5,082,907, disclose that an acid chloride, such as benzoyl chloride or phthaloyl chloride, may be used in combination with the TiCl4 and a halohydrocarbon in at least one such wash step to further facilitate the replacement of at least a portion of the alkoxide moieties. In U.S. Pat. No. 4,535,068 benzoyl chloride was contacted with a magnesium alkoxide precursor compound both during preparation of a procatalyst and in a subsequent step. The reference stated that the benzoyl chloride contacting step may occur either before or simultaneously with halogenation by means of a tetravalent titanium halide.
- According to the present invention, there is provided a method of making a solid procatalyst composition for use in a Ziegler-Natta olefin polymerization catalyst composition, said method comprising:
- contacting a solid precursor composition comprising magnesium, titanium, and alkoxide moieties with a titanium halide compound and an internal electron donor in any order, in a suitable reaction medium to prepare a solid procatalyst composition,
- separating the solid procatalyst composition from the reaction medium,
- further exchanging residual alkoxide functionality of the solid procatalyst composition for chloride functionality by contacting the same two or more times with benzoyl chloride under metathesis conditions for a period of time sufficient to prepare a solid procatalyst composition having a decreased alkoxide content compared to the alkoxide content of the solid procatalyst composition before said exchange, and
- recovering the solid procatalyst composition.
- Also included in the present invention are the solid procatalysts resulting from the foregoing methods of preparation; olefin polymerization catalysts comprising one or more of the foregoing procatalyst compositions, a cocatalyst, and optionally a selectivity control agent; an improved olefin polymerization process comprising contacting an olefin monomer under olefin polymerization conditions in the presence of the foregoing catalyst composition; as well as polyolefin polymers formed thereby.
- The catalyst compositions of the present invention are useful in preparing α-olefin polymers having relatively high bulk density. Moreover, they enable the preparation of polypropylene impact copolymers, especially polypropylene that is impact modified by ethylene/propylene copolymers prepared in situ, having increased rubber contents, at elevated polymerization temperatures, without disadvantageous formation of polymer particle agglomerates.
-
- All reference to the Periodic Table of the Elements herein shall refer to the Periodic Table of the Elements, published and copyrighted by CRC Press, Inc., 1999. Also, any reference to a Group or Groups shall be to the Group or Groups as reflected in this Periodic Table of the Elements using the IUPAC system for numbering groups. For purposes of United States patent practice, the contents of any patent, patent application or publication referenced herein are hereby incorporated by reference in their entirety herein, especially with respect to the disclosure of structures, synthetic techniques and general knowledge in the art. The term “comprising” when used herein with respect to a composition or mixture is not intended to exclude the additional presence of any other compound or component. The term “aromatic” or “aryl” refers to a polyatomic, cyclic, ring system containing (4δ+2) π-electrons, wherein δ is an integer greater than or equal to 1.
- As mentioned above, the olefin polymerization procatalyst precursors employed in the invention comprise magnesium moieties. Sources for such magnesium moieties include anhydrous magnesium chloride, magnesium dialkoxides or aryloxides, or carboxylated magnesium dialkoxides or aryloxides. Preferred sources of magnesium moieties are magnesium di-(C1-4)alkoxides, especially diethoxymagnesium. Additionally the precursors comprise titanium moieties. Suitable sources of titanium moieties include titanium alkoxides, titanium aryloxides, and titanium halides. Preferred precursors comprise one or more magnesium di-(C1-4)-alkoxides and one or more titanium tetra-(C1-4)-alkoxides.
- Various methods of making procatalyst precursor compounds are known in the art. These methods are described, inter alia, in U.S. Pat. Nos. 5,034,361; 5,082,907; 5,151,399; 5,229,342; 5,106,806; 5,146,028; 5,066,737; 5,077,357; 4,442,276; 4,540,679; 4,547,476; 4,460,701; 4,816,433; 4,829,037; 4,927,797; 4,990,479; 5,066,738; 5,028,671; 5,153,158; 5,247,031; 5,247,032, and elsewhere. In a preferred method, the preparation involves chlorination of the foregoing mixed magnesium and titanium alkoxides, and may involve the use of one or more compounds, referred to as “clipping agents”, that aid in forming specific compositions. Examples of suitable clipping agents include trialkylborates, especially triethylborate, phenolic compounds, especially cresol, and silanes.
- A preferred procatalyst precursor for use herein is a mixed magnesium/titanium compound of the formula MgdTi(ORe)eXf wherein Re is an aliphatic or aromatic hydrocarbon radical having 1 to 14 carbon atoms or COR′ wherein R′ is an aliphatic or aromatic hydrocarbon radical having 1 to 14 carbon atoms; each ORe group is the same or different; X is independently chlorine, bromine or iodine; d is 0.5 to 5, preferably 2-4, most preferably 3; e is 2-12, preferably 6-10, most preferably 8; and f is 1-10, preferably 1-3, most preferably 2. The precursors are ideally prepared by controlled precipitation through removal of an alcohol from the reaction mixture used in their preparation. An especially desirable reaction medium comprises a mixture of an aromatic liquid, especially a chlorinated aromatic compound, most especially chlorobenzene, with an alkanol, especially ethanol, and an inorganic chlorinating agent. Suitable inorganic chlorinating agents include chlorine derivatives of silicon, aluminum and titanium, especially titanium tetrachloride or titanium trichloride, most especially titanium tetrachloride. Removal of the alkanol from the solution used in the chlorination, results in precipitation of the solid precursor, having especially desirable morphology and surface area. Moreover, the resulting precursors are particularly uniform particle sized and resistant to particle crumbling as well as degradation of the resulting procatalyst.
- The precursor is converted to a solid procatalyst by further reaction (halogenation) with an inorganic halide compound, preferably a titanium halide compound, and incorporation of an internal electron donor. If not already incorporated into the precursor in sufficient quantity, the electron donor may be added separately before, during or after halogenation. Any method of making, recovering and storing the solid precursor is suitable for use in the present invention.
- One suitable method for converting the solid procatalyst precursor into a polymerization procatalyst is by reacting the precursor with a tetravalent titanium halide, an optional hydrocarbon or halohydrocarbon, and an electron donor (if not already present). The preferred tetravalent titanium halide is titanium tetrachloride.
- The optional hydrocarbon or halohydrocarbon employed in the production of olefin polymerization procatalyst preferably contains up to 12 carbon atoms inclusive, more preferably up to 9 carbon atoms inclusive. Exemplary hydrocarbons include pentane, octane, benzene, toluene, xylene, alkylbenzenes, and the like. Exemplary aliphatic halohydrocarbons include methylene chloride, methylene bromide, chloroform, carbon tetrachloride, 1,2-dibromoethane, 1,1,2-trichloroethane, trichlorocyclohexane, dichlorofluoromethane and tetrachlorooctane. Exemplary aromatic halohydrocarbons include chlorobenzene, bromobenzene, dichlorobenzenes and chlorotoluenes. Of the aliphatic halohydrocarbons, compounds containing at least two chloride substituents are preferred, with carbon tetrachloride and 1,1,2-trichloroethane being most preferred. Of the aromatic halohydrocarbons, chlorobenzene is particularly preferred.
- Any electron donor can be used in the present invention so long as it is capable of converting the precursor into a procatalyst. Suitable electron donors are those electron donors free from active hydrogens that are conventionally employed in the formation of titanium-based procatalysts. Particularly preferred electron donors include ethers, esters, amines, imines, nitriles, phosphines, stibines, and arsines. The more preferred electron donors, however are carboxylic acid esters or ether derivatives thereof, particularly C1-4 alkyl esters of aromatic monocarboxylic or dicarboxylic acids and C1-4 alkyl ether derivatives thereof. Examples of such electron donors are methylbenzoate, ethylbenzoate, isopropylbenzoate, isobutylbenzoate, ethyl p-ethoxybenzoate, ethyl-p-methoxybenzoate, isopropyl-p-ethoxybenzoate, isobutyl-p-ethoxybenzoate, diethylphthalate, dimethylnaphthalenedicarboxylate, diisopropylphthalate, diisobutylphthalate, diisopropylterephthalate, and diisobutylterephthalate. The electron donor can be a single compound or a mixture of compounds, but preferably the electron donor is a single compound. Particularly preferred internal electron donors are: ethylbenzoate, ethyl p-ethoxybenzoate, di(n-butyl)phthalate, and di(isobutyl)phthalate.
- In one embodiment of the invention, the electron donor may be formed in situ, by contacting the procatalyst precursor with an organic halogenating agent, especially benzoyl chloride or phthalyl dichloride, simultaneously with the foregoing precursor forming step or halogenation step using an inorganic halide compound (procatalyst forming step). Sufficient electron donor usually is provided or prepared in situ, so that the molar ratio of electron donor to the magnesium present in the solid procatalyst at this stage of the preparation is from about 0.01:1 to about 3:1, preferably from about 0.05:1 to about 2:1.
- The manner in which the procatalyst precursor, the optional hydrocarbon or halohydrocarbon, the electron donor, and the chlorinating agent are contacted may be varied within wide limits. In one embodiment, the tetravalent titanium halide is added to a mixture of the electron donor and procatalyst precursor. More preferably however, the procatalyst precursor first is mixed with the tetravalent titanium halide and optional halohydrocarbon, and the electron donor is added last, after a period lasting from 10 to 30 minutes of precontact between the precursor and halogenating agent. Ideally, the contact time and temperature are controlled in order to obtain a solid product having a desired particle morphology. Preferred contacting times of the precursor with the remaining ingredients in the procatalyst composition forming process are at least 10, preferably at least 15 and more preferably at least 20 minutes, up to 1 hour, preferably up to 45 minutes, most preferably up to 35 minutes, at a temperature from at least 25, preferably at least 50, most preferably at least 60° C., to a temperature up to 100, preferably up to 90, most preferably up to 80° C. At combinations of higher temperatures or longer contacting times, particle morphology, especially particle size, size distribution and porosity of the resulting solid, procatalyst composition and the catalysts formed therefrom is adversely affected.
- A preferred procatalyst for use herein is a mixed magnesium/titanium compound of the formula: Mgd′Ti(ORe)e′Xf′(ED)g′ wherein Re is an aliphatic or aromatic hydrocarbon radical having 1 to 14 carbon atoms or COR′ wherein R′ is an aliphatic or aromatic hydrocarbon radical having 1 to 14 carbon atoms; each ORe group is the same or different; X is independently chlorine, bromine or iodine; ED is an electron donor, especially ethylbenzoate; d′ is 1 to 36, preferably 6-18, most preferably 10-14; e′ is 0-3, preferably 0.01-2, most preferably 0.01-1; f′ is 20-40, preferably 25-35, most preferably 27-29; and g′ is 0.1-3, preferably 0.5-2.5, most preferably 1-2.
- The next step according to the invention involves a multi-step, metathesis or exchange reaction with benzoyl chloride as an organic chlorinating agent in order to convert residual alkoxide moieties in the solid procatalyst to chloride moieties. Benzoyl chloride is the preferred metathesis reagent due to the fact that the alkyl benzoate which is formed as a by-product of the chlorination appears to be a more effective internal donor than are the alkyl phthalates, resulting in a more efficient polymerization catalyst. Desirably, the residual alkoxide content of the resulting solid, exchanged, procatalyst composition is 5 weight percent or less, more preferably 3 weight percent or less, most preferably 1 weight percent or less. The foregoing metathesis procedure is repeated at least one time (2 contactings total), preferably two times (3 contactings total), as desired until a suitable procatalyst composition is attained. Contacting with benzoyl chloride in at least two steps is preferred in order to achieve maximum catalyst efficiency. One or more of the previously mentioned halogenating agents, preferably TiCl4, can be present in combination with the benzoyl chloride metathesis reagent, and preferably is present during at least the first and second contactings for best results.
- The exchange process is desirably conducted at an elevated temperature from 45 to 120° C., preferably from 70 to 115° C., most preferably from 85 to 110° C., over a time period of from 10 minutes to 3 hours, preferably from 30 minutes to 90 minutes, most preferably from 40 to 80 minutes. After each of the foregoing exchanges, the solid, exchanged procatalyst composition is separated from the exchange mixture, desirably by filtration, and may be rinsed with a hydrocarbon, halohydrocarbon or halocarbon solvent, if desired. Such filtration step may occur over a time period from 10 minutes to 2 hours, preferably from 30 minutes to 100 minutes. It is generally preferred that all of the foregoing chlorination and exchange steps, including intervening filtrations or other form of recovery, and optional washings, occur without substantial cooling of the procatalyst composition. By substantial cooling is meant cooling by more than 25° C.
- After the foregoing exchange procedure, the resulting solid, exchanged, procatalyst composition is separated from the reaction medium employed in the final process, preferably by filtering to produce a moist filter cake. The resulting filter cake may again be halogenated one or more times according to the previously disclosed procedure, if desired. The moist filter cake desirably is then rinsed or washed with a liquid diluent, preferably an aliphatic hydrocarbon to remove unreacted TiCl4 and may be dried to remove residual liquid, if desired. Typically the solid, exchanged procatalyst composition is washed one or more times with an aliphatic hydrocarbon such as isopentane, isooctane, isohexane, hexane, pentane, or octane. The solid, exchanged, and optionally washed, procatalyst composition then can be separated and dried or slurried in a hydrocarbon, especially a relatively viscous, aliphatic hydrocarbon such as mineral oil for further storage or use.
- The resulting solid, exchanged procatalyst composition is desirably in the form of porous particles. The resulting composition desirably corresponds to the formula: Mgd″Ti(ORe)e″Xf″(ED)g″ wherein Re is an aliphatic or aromatic hydrocarbon radical having 1 to 14 carbon atoms or COR′ wherein R′ is an aliphatic or aromatic hydrocarbon radical having 1 to 14 carbon atoms; each ORe group is the same or different; X is independently chlorine; ED is an electron donor, especially ethylbenzoate; d″ is 1 to 36, preferably 6-18, most preferably 10-14; e″ is 0-2, preferably 0-1, most preferably 0-0.5; f″ is 20-40, preferably 25-35, most preferably 27-29; and g″ is 0.1-3, preferably 0.5-2.5, most preferably 1-2.
- Desirably, the resulting solid, exchanged, procatalyst composition has the following particle physical properties as measured by BET, nitrogen porosimetry, and laser particle analyzer: an average surface area of at least 100 m2/g, preferably at least 250 m2/g, an average pore volume of at least 0.18 cm3/g, preferably at least 0.20 cm3/g, mean particle size from 20 to 40 μm, preferably from 24 to 30 μm, and particle size distribution having D10 from 3 to 15 μm, D50 from 18 to 30 μm and D90 from 35 to 75 μm. This mean particle size is somewhat less than the mean particle size of a composition that has not been exchanged, and the distribution is somewhat narrower than a composition that is not subjected to the multi-step exchange process as disclosed herein.
- Before, in combination with, or after being exchanged according to the present invention, the procatalyst composition may be further treated according to one or more of the following procedures. The solid procatalyst composition may be contacted (halogenated) with a further quantity of titanium halide compound, if desired; it may be substituted with a different halide salt compound or a complex thereof; it may be contacted (extracted) with a solvent, especially a halohydrocarbon; it may be rinsed or washed, heat treated; or aged. The foregoing techniques are previously known in the art with respect to different procatalyst compositions. The foregoing additional procedures may be combined in any order or employed separately, or not at all.
- It is believed, without wishing to be bound by such belief, that further halogenating by contacting the previously formed procatalyst composition with a titanium halide compound, especially a dilute solution thereof in a halohydrocarbon diluent, results in desirable modification of the procatalyst composition, possibly by removal of certain inactive metal compounds that are soluble in the foregoing diluent. Accordingly, in a highly preferred embodiment of the present invention the exchange process is conducted in the presence of a titanium halide and a halohydrocarbon diluent, especially TiCl4 and chlorobenzene. Highly desirably, the exchange utilizes a mixture of inorganic halogenating agent/diluent/exchange agent on a molar basis from 1/20-10,000/0.0001-0.1. Most preferably a mixture of TiCl4/monochlorobenzene/benzoylchloride is used in a molar ratio range from 1/100-2000/0.001-0.01. The quantity of the foregoing exchange reagent (organic chlorinating agent) used with respect to the solid procatalyst (based on moles of Ti species in the procatalyst/moles exchange reagent) is from 1/1 to 1/100, preferably from 1/2 to 1/10.
- Substitution refers to a process by which the procatalyst may be further modified by incorporation of a halide salt compound therein. Suitable halide compounds include those compounds that are capable of removing titanium species from the solid procatalyst material or adjusting the type or quantity of titanium species in the procatalyst composition without detrimentally affecting the resulting catalyst properties. It is preferred that the halide salt compound be soluble in the medium that contains the procatalyst or the precursor components. The halide salt compound (if different from the titanium compound used to prepare the present solid, procatalyst composition) may be employed by itself, or it may be complexed with another compound, such as an internal electron donor.
- More than one halide salt compound may be used in the substitution process if desired. Suitable halide salt compounds for the foregoing substitution procedure include: TiCl4, ZrCl4, VCl4, WCl6, VOCl3, SnCl4, SiCl4 and mixtures thereof. Soluble complexes of such metal halides complexed with the appropriate ligands, such as diisobutyl phthalate (DIBP), also may be used as well. Examples include ZrCl4(DIBP) and VCl4(DIBP). A preferred reagent is TiCl4. If a complex of a metal salt is employed, it is desirable that some quantity of TiCl4 be included in the substitution mixture. The presence of a small quantity of TiCl4 in the substitution medium has desirably been found to reduce adverse affects caused by release of electron donor from the procatalyst composition during the substitution. The substitution step may be combined with the present exchange procedure, if desired.
- In a further preferred embodiment, the solid procatalyst composition is extracted to remove non-active titanium halide species by exposure to a suitable diluent optionally at elevated temperature. One such process involves contacting the solid procatalyst, optionally additional electron donor, and an halohydrocarbon at an elevated temperature, for example, a temperature of up to about 150° C., for a period of time following the foregoing exchange. It is particularly preferred to conduct the extraction at a temperature greater than 45° C., preferably greater than 85° C., more preferably greater than 115° C., and most preferably greater than 120° C., to a temperature up to about 300° C., more preferably up to about 200° C., and most preferably up to about 150° C.
- Best results are obtained if the materials are contacted initially at or about ambient temperature and then heated. Sufficient tetravalent titanium halide may be provided to further convert any residual alkoxide moieties of the procatalyst to halide groups at the same time as the extraction. The extraction process is conducted in one or more contacting operations, each of which is conducted over a period of time ranging from a few minutes to a few hours and it is preferred to have a halohydrocarbon present during each contacting.
- Suitable extractants include aliphatic, cycloaliphatic, or aromatic hydrocarbons, halogenated derivatives thereof, and mixtures thereof. Exemplary aliphatic hydrocarbons include pentane, octane and the like. Exemplary cycloaliphatic hydrocarbons include cyclopentane, cyclohexane, cyclooctane, and the like. Exemplary aromatic hydrocarbons include benzene, alkylbenzenes, dialkylbenzenes, and the like. Exemplary halogenated derivatives of the foregoing include methylenechloride, methylenebromide, chloroform, carbon tetrachloride, 1,2-dibromoethane, 1,1,2-trichloroethane, trichlorocyclohexane, dichlorofluoromethane, tetrachlorooctane, chlorinated benzenes, bromobenzene, dichlorobenzene, chlorinated toluenes, and the like. Particularly preferred aliphatic hydrocarbons include pentane, isopentane, octane, and isooctane. Particularly preferred aromatic hydrocarbons include benzene, toluene, and xylene. Particularly preferred halohydrocarbons include carbon tetrachloride, 1,1,2-trichloroethane, chlorinated benzenes and chlorinated toluenes. Most highly preferred extractants are aromatic hydrocarbons and halohydrocarbons, especially toluene, xylene, ethylbenzene, chlorobenzene and dichlorobenzene. Desirably the extractant selected has a boiling point above the temperature used in the extraction so as to avoid the use of high pressure equipment.
- The amount of extractant employed can be any effective amount capable of removing titanium species from the solid procatalyst. It is preferred that the extractant be used in an amount ranging from 0.1 to about 1000 milliliters per gram of solid procatalyst material. More preferably, the amount of extractant used ranges from about 1 to about 500 mL/g of solid procatalyst, and most preferably from about 5 to about 50 mL/g of solid procatalyst.
- The amount of time the solid procatalyst material and the extractant are contacted is not critical so long as it is sufficient to remove undesired, soluble titanium species from the solid procatalyst material. There is no upper limit on the duration of contact from an efficacy standpoint, but economics typically play a role on the length of time the components will be contacted with one another. Preferably, the components are contacted from about 2 minutes to about 12 hours, more preferably from about 5 minutes to about 4 hours, and most preferably, from about 15 minutes to about 2 hours. Longer contact times and/or repeated extractions may be required if lower extraction temperatures or less efficient extractants are employed. The extraction may be conducted at any suitable pressure, but preferably atmospheric pressure or elevated pressures are employed.
- Typically unextracted, solid, procatalysts have a titanium content anywhere from about 2.5 wt percent to about 6 wt percent, as determined by plasma emission spectroscopy. In contrast, an extracted, solid procatalyst of the present invention has from 5 up to 80 weight percent less titanium content, more preferably from 7 up to 75 weight percent less titanium, and most preferably, anywhere from 10 to about 70 weight percent less titanium content than a similarly prepared but unextracted composition. The extraction may be repeated any number of times with the same or varied reagents, concentrations of reagents, temperatures of reaction and time of reaction in order to achieve the desired titanium content of the solid procatalyst.
- The solid, exchanged procatalyst composition serves as one component of a Ziegler-Natta catalyst composition, in combination with a cocatalyst and a selectivity control agent. The cocatalyst component employed in the Ziegler-Natta catalyst system may be chosen from any of the known activators of olefin polymerization catalyst systems employing a titanium halide, especially organoaluminum compounds. Examples include trialkylaluminum compounds and alkylaluminum halide compounds in which each alkyl group independently has from 1 to 6 carbon atoms. The preferred organoaluminum cocatalysts are triethylaluminum, triisopropylaluminum, and triisobutylaluminum. The cocatalyst is preferably employed in a molar ratio of aluminum to titanium of the procatalyst of from about 1:1 to about 150:1, but more preferably in a molar ratio of from about 10:1 to about 100:1.
- The final component of the Ziegler-Natta catalyst composition (when used to polymerize C3 and higher α-olefins) is the selectivity control agent (SCA), or external electron donor. Typical SCAs are those conventionally employed in conjunction with titanium-based Ziegler-Natta catalysts. Illustrative of suitable selectivity control agents are those classes of electron donors employed in procatalyst production as described above, as well as organosilane or polyorganosilane compounds containing at least one silicon-oxygen-carbon linkage. Suitable silicon compounds include those of the formula, R1 mSiYnXp, or oligomeric or polymeric derivatives thereof, wherein: R1 is a hydrocarbon radical containing from 4 to 20 carbon atoms, Y is —OR2 or —OCOR2 wherein R2 is a hydrocarbon radical containing from 1 to 20 carbon atoms, X is hydrogen or halogen, m is an integer having a value of from 0 to 3, n is an integer having a value of from 1 to 4, p is an integer having a value of from 0 to 1, and preferably 0, and m+n+p=4. Highly preferably, R1 in at least one occurrence is not a primary alkyl group, and the non-primary carbon thereof is attached directly to the silicon atom. Examples of R1 include cyclopentyl, t-butyl, isopropyl or cyclohexyl. Examples of R2 include ethyl, butyl, isopropyl, phenyl, benzyl and t-butyl. Examples of X are Cl and H. Each R1 and R2 may be the same or different, and, if a polyatomic radical, substituted with any substituent which is inert under the reaction conditions employed during polymerization. Preferably, R2 contains from 1 to 10 carbon atoms when it is aliphatic and may be a sterically hindered aliphatic- or a cycloaliphatic- group. When R2 is aromatic it may have from 6 to 10 carbon atoms. Silicon compounds in which two or more silicon atoms are linked to each other by an oxygen atom, such as, siloxanes or polysiloxanes, may also be employed, provided the requisite silicon-oxygen-carbon linkage is also present.
- The preferred selectivity control agents are alkyl esters of ring alkoxy-substituted aromatic carboxylic acids or dicarboxylic acids, especially ethyl p-methoxybenzoate or ethyl p-ethoxybenzoate (PEEB), or siloxane compounds, such as n-propyltrimethoxysilane, cyclohexylmethyldimethoxysilane, or dicyclopentyldimethoxysilane. In one embodiment of the invention the foregoing selectivity control agent may form at least a portion of the electron donor added during procatalyst production. In an alternate modification, the selectivity control agent is added only after formation of the procatalyst and may be added to a catalyst forming mixture or to an olefin polymerization mixture simultaneously or non-simultaneously with addition of the cocatalyst.
- The selectivity control agent preferably is provided in a quantity of from 0.01 mole to about 100 moles per mole of titanium in the procatalyst. Preferred quantities of selectivity control agent are from about 0.5 mole to about 50 mole per mole of titanium in the procatalyst.
- The olefin polymerization catalyst is produced by any suitable procedure of contacting the exchanged, solid procatalyst, the cocatalyst and the selectivity control agent. The method of contacting is not critical. The catalyst components or combinations thereof can be precontacted prior to polymerization to form a preactivated catalyst, or the components can be contacted simultaneously with contact with an olefin monomer. In one modification, the catalyst components simply are mixed in a suitable vessel and the preformed catalyst thereby produced is introduced into the polymerization reactor when initiation of polymerization is desired. In an alternate modification, the catalyst components are separately introduced into the polymerization reactor and the catalyst is formed in situ. In a final embodiment, the catalyst components may be introduced into one polymerization reactor and prepolymerized with one or more olefin monomers and subsequently contacted with additional olefin monomers, which may be the same or different from the olefin monomers used in the prepolymerization. The subsequent polymerization may take place in the same or in a different polymerization reactor and may include separate addition of one or more of the catalyst components during said subsequent polymerization.
- The olefin polymerization catalyst may be used in slurry, liquid phase, gas phase or bulk, liquid monomer-type polymerization processes as are known in the art for polymerizing olefins, or in a combination of such processes. Polymerization preferably is conducted in a fluidized bed polymerization reactor, however, by continuously contacting an alpha-olefin having 3 to 8 carbon atoms with the three components of the catalyst system, that is, the solid procatalyst component, cocatalyst and SCAs. In accordance with the process, discrete portions of the catalyst components are continuously or semi-continuously fed to the reactor in catalytically effective amounts together with the alpha-olefin and any additional components, while the polymer product is continuously or semi-continuously removed therefrom. Fluidized bed reactors suitable for continuously polymerizing alpha-olefins have been previously described and are well known in the art. Suitable fluidized bed reactors useful for this purpose are described in U.S. Pat. Nos. 4,302,565, 4,302,566 and 4,303,771 and elsewhere.
- It is preferred sometimes that such fluidized beds are operated using a recycle stream of unreacted monomer from the fluidized bed reactor. In this context, it is preferred to condense at least a portion of the recycle stream. Additionally, a liquid condensing agent may be included in the reaction mixture as well. The foregoing procedures are referred to as “condensing mode.” Operating a fluidized bed reactor in condensing mode generally is known in the art and described in, U.S. Pat. Nos. 4,543,399 and 4,588,790, and elsewhere. The use of condensing mode has been found to be especially useful to increase catalyst activity, lower the amount of xylene solubles in isotactic polypropylene, and to improve overall catalyst performance when using catalysts prepared according to the present invention.
- The precise procedures and conditions of the polymerization are broadly conventional but the olefin polymerization process, by virtue of the use therein of the polymerization catalyst formed from exchanged, solid procatalysts of the invention, provides a polyolefin product and particularly a polypropylene product having a relatively high bulk density in quantities that reflect the relatively high productivity of the olefin polymerization catalyst. Desirably, the bulk density of the resulting polymer (ρbd) as determined by gravimetric analysis is at least 0.33 g/cm3, more preferably at least 0.35 g/cm3. Increase in bulk density allows higher reactor capacity utilization or efficiency of operation, and accordingly is desired.
- Moreover, the polyolefin product of the invention desirably allows for incorporation of enhanced rubber content when compared to rubber modified polyolefins, (especially ethylene/propylene rubber (EPR) modified isotactic polypropylene) made by a catalyst made from an unexchanged, but otherwise similar procatalyst, due, it is believed, to better dispersion of the rubber within the polyolefin matrix. Preferably, the rubber content of such polymers is capable of being increased 30 percent by weight, preferably at least 40 percent by weight over a similarly prepared catalyst composition that has not been exchanged as disclosed herein, at the same polymerization temperature, without significant increase in polymer agglomerate formation. Surprisingly, rubber modified polymers according to the invention containing high rubber contents of at least 40, preferably at least 45, and most preferably at least 50 weight percent may retain acceptable flow properties in the reactor under gas phase polymerization conditions resulting in less plugging of reactor components, thereby resulting in reduced levels of production or even shutting down of the reactor.
- The xylene solubles content of the polyolefin products of the invention preferably are less than 5 weight percent, more preferably 2.5-4.5 weight percent. In addition, the polyolefin product preferably will contain reduced amounts of the catalyst residue. Preferably, the polymer will have a titanium content of less than about 1×10−3 weight percent, more preferably less than 1×10−4 weight percent, most preferably less than 5×10−5 weight percent.
- The polymerization product of the present invention can be any product, including homopolymers, copolymers, terpolymers, and the like. Usually, the polymerization product is a homopolymer such as polyethylene or polypropylene, particularly polypropylene. Alternatively and preferably for the reasons previously stated, the catalyst and process of the invention are useful in the production of copolymers including copolymers of ethylene and propylene such as EPR and polypropylene impact copolymers, such as EPR modified polypropylene, when two or more olefin monomers are supplied to the polymerization process. Those skilled in the art are capable of carrying out suitable polymerization of homopolymers, copolymers, terpolymers, or other product using liquid, slurry or gas phase reaction conditions, using the guidelines provided herein.
- The invention is further illustrated by the following examples that should not be regarded as limiting of the present invention.
- In the following examples, the following testing methods were used to determine the values reported in the tables. In the tables, a blank cell indicates that no data were taken for that particular portion of the experiment. The measurements of the mean diameters of the particles and the particle distribution were performed with a Malvern 1600™ laser granulometer, available from Malvern Corporation. The specific surface area (BET) was determined by the isothermal physical adsorption of nitrogen at the temperature of liquid nitrogen (S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309 (1938)). The pore volume was determined by nitrogen absorption porosimetry. The measurements were performed after treatment of the samples under vacuum for 2 hours at room temperature.
- Ti percent—percent titanium was determined by analyzing the catalysts using plasma emission spectroscopy.
- Melt Flow was determined according to ASTM 1238, Condition L;
- Bulk Density is apparent bulk density determined according to ASTM D1895-96;
- Productivity—(kg of polymer per gram of procatalyst). Calculated by weighing the total amount of polymer produced and dividing by the total amount of procatalyst injected into the reactor.
- XS—xylene solubles, unless indicated otherwise was measured by the 13C NMR method as described in U.S. Pat. No. 5,539,309,or the gravimetric XS method of 21 CFR 177.1520. (Optionally the quantity of extracted polymer may be determined by measuring the refractive index of the extract, rather than weighing the residue after drying).
- A series of nine olefin polymerization procatalysts were prepared using a procatalyst precursor comprising magnesium, titanium, alkoxide and halide moieties. The precursor composition is prepared by reacting magnesium diethoxide, titanium tetraethoxide, and titanium tetrachloride, in a mixture of orthocresol, ethanol and chlorobenzene at a temperature of about 75° C. for about 2 hours. The solid reaction product is precipitated by removing ethanol from the solution (by heating to about 90° C.), washing with isopentane or isooctane and drying. The resulting dried, solid composition comprises primarily a compound of the empirical formula: Mg3Ti(OC2H5)8Cl2.
- This precursor composition was next converted to procatalyst compositions by contacting with TiCl4 and ethylbenzoate electron donor. In each preparation, approximately 3.6 grams of the precursor was added to a 150 ml flask. A 50/50 volume mixture of TiCl4 and chlorobenzene (65 ml) was added to the flask, followed by 0.4 ml of ethylbenzoate. The flask was heated in approximately 5 to 7 minutes to 70° C., and maintained at that temperature under constant agitation for 30 minutes. The resulting slurry was filtered through a fritted disc at the bottom of the flask, while maintaining the temperature at 70° C.
- The resulting solid, procatalyst composition was next subjected to exchange and further halogenation by contacting with a mixture of TiCl4, chlorobenzene, and benzoylchloride at 95° C. Specifically, 65 ml of an equal volume mixture of TiCl4 and chlorobenzene was added to the flask containing the recovered procatalyst followed by 0.5 ml of benzoylchloride, and the mixture was rapidly heated to 95° C. The contents were maintained at that temperature for 60 minutes, and then filtered as before while retaining the recovered solids at 95° C. This exchange procedure was repeated once more under substantially identical conditions (specifically the benzoylchloride content was reduced to 0.4 ml). After filtering, the solids were cooled to about 25° C., washed three times with three 70 ml aliquots of isooctane, and dried in a stream of dry nitrogen for several hours. The resulting catalyst compositions have average BET surface area of 270 m2/g, average pore diameter of 3.1 nm, and average pore volume 0.209 cm3/g.
- The resulting exchanged procatalyst compositions were tested for olefin polymerization activity by charging 0.70 mmoles of triethylaluminum cocatalyst, 0.35 mmoles ethyl p-ethoxybenzoate SCA, and 16.2 mg of the procatalyst composition into an autoclave reactor containing 1375 grams of liquid propylene and 13 mmole H2 for one hour at 67° C. After venting and cooling of the polymerization reactor, the product was collected, dried in air, and weighed. Properties of the isotactic polypropylene product including loose bulk density and percent xylene solubles, along with activity of the catalyst, were measured and are displayed in Table 1.
TABLE 1 Polymer bulk density Productivity XS Run (g/cm3) (kg/g) (percent) 1 0.375 17.1 — 2 0.376 15.1 4.3 3 0.377 16.5 3.9 4 0.370 14.0 4.2 5 0.373 18.3 4.3 6 0.376 16.4 4.2 7 0.374 18.1 4.3 8 0.384 14.7 3.7 9 0.373 15.2 4.5 Avg. 0.375 16.2 4.2 - In a large scale preparation of procatalyst composition according to the invention, 6.9 m3 of an equal volume of mixed TiCl4 and chlorobenzene at 13° C. were pumped into a stainless steel heated pressure vessel equipped with a stirrer. Approximately 483 kg of a precursor composition prepared substantially according to the procedure of Example 1 was added, followed by about 8.6 liters of ethylbenzoate electron donor. The reactor was heated to 70° C. with stirring and held at that temperature for 40 minutes. The reactor contents were filtered over a period of 1 hour while maintaining a temperature of approximately 70° C.
- The solid product was recovered and returned to the empty reaction vessel. A preheated (70° C.) mixture (50/50 by volume) of TiCl4 and chlorobenzene (9 m3) was added followed by 10.7 liters of benzoylchloride. The mixture was stirred and allowed to heat to a final temperature of 93° C. over a period of 20 minutes, then filtered as before over a one hour period. The foregoing exchange with benzoylchloride was repeated a second time using slightly less benzoyl chloride (8.5 L).
- The resulting solid, procatalyst composition (still at 93° C.) was rinsed with isopentane 10 m3) for about 2 hours while gradually reducing the temperature to ambient conditions (20° C.). Dry nitrogen at a temperature of about 45° C. was used to dry the catalyst cake over a period of 2 hours. After drying, the solid procatalyst composition was blended with mineral oil and used in preparation of olefin polymers. The resulting solid catalyst composition had similar average BET surface area, average pore diameter and average pore volume properties to those prepared in runs 1-9. Average particle size distribution data were as follows:
D10=13.7 μm, D50=25.0 μm, D90=55.4 μm.
Polymerization Conditions: - Ethylene/propylene rubber modified polypropylene impact copolymers were prepared in twin, gas-phase olefin polymerization reactors operating in series. The reactors were each equipped with a distributor plate under which the fluidization gas was introduced. The gas exited the top of the fluidized bed and was conveyed through piping to a compressor and a cooler, which was used to control the temperature of the cycle gas, thereby controlling the temperature in the fluidized bed. After cooling, the cycle gas was then reintroduced below the distributor plate at a rate to maintain fluidization of the reactor contents. The first reactor contained propylene as the only olefin, hydrogen in a H2/C3H6 molar ratio of about 0.03 (run 10) or 0.027 (run 11), and operating temperature of 66° C. The fluidized-bed reactor was operated under 430 psi, (3.08 MPa) total pressure with a propylene partial pressure of 340 psi (2.3 MPa). A superficial gas velocity of 1.2 ft/sec (0.36 m/sec) was used to fluidize the polymer bed weighing about 75 lbs (34 Kg) of polymer.
- The catalyst slurry was metered with a syringe pump into a stream of 5 lbs/hr (2.3 kg/hr) of propylene, which conveyed the catalyst to the reactor. Solutions of triethylaluminum (TEAL) and ethyl p-ethoxybenzoate (SCA) were introduced separately into the reactor at locations on the recycle line to provide a molar ratio Al/Ti of 50:1 and Al/SCA of 2.1:1. Total SCA concentration in the reactor was maintained below about 250 ppm by weight.
- After polymerization in the first reactor the polymeric product was passed to a second reactor operating under similar gas-phase polymerization conditions, excepting that additional catalyst and SCA were not added, the temperature was raised to 70° C., ethylene was added to the reactor to provide ethylene/propylene ratios of 0.79 (run 10) or 0.825 (run 11), an H2/C3H6 ratio of 0.18 (run 10) or 0.09 (run 11), and a reactor pressure of 346 psi (2.4 MPa) with a propylene partial pressure of 140 psi (965 kPa) and an ethylene partial pressure of 111 psi (765 kPa) (run 10) or 115 psi (793 kPa) (run 11). Ethylene and propylene were added continuously during the polymerization. Results and polymer properties are contained in Table 2.
TABLE 2 Produc- Polymer bulk tivity Melt flow density Flow Quality Run (kg/g) (g/10 min) Fc1 Ec2 (g/cm3)3 Index4 10 9.3 3.7 16.5 62 0.341 0.87 11 10.0 1.75 28 62 0.328 0.78
1Weight percent rubber in the copolymer.
2Weight percent ethylene in the copolymer.
3Apparent bulk density, ASTM D1895-96.
4A measure of particle flowability determined by use of a Sotax ™ flow measuring instrument at 23° C., available from Sotax A.G., Basel, Switzerland. Qualitative flow ratings based on such values are: 0.9-1 = very good, 0.8-0.9 = good, 0.7-0.8 = satisfactory, 0.6-0.7 = marginal, 0.5-0.6 = unsatisfactory, 0.4-0.5 = poor, 0.3-0.4 = very poor.
- The reaction conditions of Example 2 were substantially repeated employing reduced residence time in the first reactor in order to produce polymers containing higher rubber contents. Products having 40, 45 and 53 weight percent rubber and Flow Quality Index values of 0.68, 0.62 and 0.58, respectively, were prepared.
Claims (3)
1. A process for polymerizing an olefin monomer comprising contacting the olefin monomer under polymerization conditions with a Ziegler-Natta olefin polymerization catalyst composition comprising a solid procatalyst composition,
a cocatalyst; and
a selectivity control agent,
wherein the solid procatalyst composition is prepared by
contacting a solid precursor composition comprising magnesium, titanium, and alkoxide moieties with a titanium halide compound and an internal electron donor in any order, in a suitable reaction medium to prepare a solid procatalyst composition,
separating the solid procatalyst composition from the reaction medium,
further exchanging residual alkoxide functionality of the solid procatalyst composition for chloride functionality by contacting the same two or more times with benzoyl chloride under metathesis conditions for a period of time sufficient to prepare a solid procatalyst composition having a decreased alkoxide content compared to the alkoxide content of the solid procatalyst composition before said exchange and without cooling of the procatalyst composition by greater than 25° C., and
recovering the solid procatalyst composition.
2. A process according to claim 1 wherein propylene or a mixture of propylene and ethylene is polymerized.
3 A process according to claim 1 conducted in two or more gas-phase polymerization reactors operating in series wherein the polymer in an ethylene/propylene rubber modified polypropylene containing at least 40 weight percent rubber.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/969,387 US20050054792A1 (en) | 2001-05-29 | 2004-10-20 | Olefin polymerization catalyst compositions and method of preparation |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US29418301P | 2001-05-29 | 2001-05-29 | |
| US10/138,141 US6825146B2 (en) | 2001-05-29 | 2002-05-01 | Olefin polymerization catalyst compositions and method of preparation |
| US10/969,387 US20050054792A1 (en) | 2001-05-29 | 2004-10-20 | Olefin polymerization catalyst compositions and method of preparation |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/138,141 Division US6825146B2 (en) | 2001-05-29 | 2002-05-01 | Olefin polymerization catalyst compositions and method of preparation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20050054792A1 true US20050054792A1 (en) | 2005-03-10 |
Family
ID=23132254
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/138,141 Expired - Fee Related US6825146B2 (en) | 2001-05-29 | 2002-05-01 | Olefin polymerization catalyst compositions and method of preparation |
| US10/969,387 Abandoned US20050054792A1 (en) | 2001-05-29 | 2004-10-20 | Olefin polymerization catalyst compositions and method of preparation |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/138,141 Expired - Fee Related US6825146B2 (en) | 2001-05-29 | 2002-05-01 | Olefin polymerization catalyst compositions and method of preparation |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US6825146B2 (en) |
| EP (1) | EP1395364A1 (en) |
| JP (1) | JP2004527635A (en) |
| CN (1) | CN1512915A (en) |
| WO (1) | WO2002096558A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2497834C2 (en) * | 2008-11-25 | 2013-11-10 | Юнион Карбайд Кемикалз Энд Пластикс Текнолоджи Ллс | Procatalyst composition with multi-component ester-containing internal donor and method |
| RU2505548C2 (en) * | 2008-11-25 | 2014-01-27 | ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи | Procatalyst composition containing silyl ester as internal donor |
| WO2015081254A1 (en) * | 2013-11-27 | 2015-06-04 | W. R. Grace & Co.-Conn | Procatalyst particles and polymerization process for impact copolymers |
| WO2016057634A1 (en) * | 2014-10-10 | 2016-04-14 | Basf Corporation | Process for preparing spherical polymerization catalyst components for use in olefin polymerizations |
| US11634520B2 (en) | 2017-11-13 | 2023-04-25 | W.R. Grace & Co.-Conn. | Catalyst components for propylene polymerization |
Families Citing this family (97)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1201711A1 (en) * | 2000-10-27 | 2002-05-02 | ATOFINA Research | Polyethylene pipe resins and production thereof |
| US20030087755A1 (en) * | 2001-05-29 | 2003-05-08 | Linfeng Chen | Olefin polymerization catalyst compositions and method of preparation |
| EP1364970B1 (en) * | 2002-05-23 | 2004-08-11 | Saudi Basic Industries Corporation | Process for preparing a catalyst composition for ethylene polymerization or copolymerization |
| US20050085601A1 (en) * | 2003-10-15 | 2005-04-21 | Kayo Vizzini | Process for forming Ziegler-Natta catalyst for use in polyolefin production |
| BR122014013907B1 (en) * | 2003-09-23 | 2020-11-10 | Dow Global Technologies Inc | process for gas polymerization of ethylene |
| JP2007505983A (en) * | 2003-09-23 | 2007-03-15 | ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション | Catalyst composition having mixed selectivity control agent and propylene polymerization method |
| RU2361885C2 (en) * | 2003-09-23 | 2009-07-20 | Дау Глобал Текнолоджиз Инк. | Catalytic composition, containing monocarboxylic ester as internal donor and method of polymerising propylene |
| CN1856512B (en) * | 2003-09-23 | 2010-06-02 | 陶氏环球技术公司 | Self limiting catalyst composition and propylene polymerization process |
| CN1856513A (en) * | 2003-09-23 | 2006-11-01 | 联合碳化化学及塑料技术公司 | Self limiting catalyst composition and propylene polymerization process |
| WO2005111090A1 (en) * | 2004-05-18 | 2005-11-24 | Toho Catalyst Co., Ltd. | Catalyst for polymerization of olefins and method for polymerization of olefins |
| EP1598377A1 (en) * | 2004-05-21 | 2005-11-23 | Borealis Polymers Oy | Process for producing heterophasic alpha-olefin polymers |
| WO2010021762A1 (en) | 2008-08-21 | 2010-02-25 | Dow Global Technologies Inc. | Catalyst composition with mixed selectivity control agent and polymerisation method using it |
| CN101835812B (en) | 2007-08-24 | 2013-10-02 | 陶氏环球技术有限责任公司 | Self-limiting catalyst system and method with controlled ratio of aluminum to selectivity control agent |
| CN101945897B (en) * | 2007-12-21 | 2014-08-20 | 陶氏环球技术有限责任公司 | Self-limiting catalyst compositions with bidentate internal donors |
| MY150510A (en) * | 2008-03-18 | 2014-01-30 | Reliance Ind Ltd | A process for the synthesis of alpha-olefin polymerization procatalysts |
| BRPI0912901A2 (en) * | 2008-08-19 | 2015-10-06 | Dow Global Technologies Llc | process for producing a graded catalyst composition, polymerization process, apparatus for producing a graded catalyst composition and method for determining the solids content in a paste |
| KR101676057B1 (en) | 2008-12-31 | 2016-11-14 | 더블유.알. 그레이스 앤드 캄파니-콘. | Propylene impact copolymer and method |
| MX2011007139A (en) * | 2008-12-31 | 2011-09-27 | Dow Global Technologies Llc | Procatalyst composition with substituted 1,2-phenylene aromatic diester internal donor and method. |
| US8247341B2 (en) * | 2009-04-17 | 2012-08-21 | Dow Global Technologies Llc | Procatalyst composition with silyl glutarate and method |
| RU2557057C2 (en) * | 2009-04-23 | 2015-07-20 | У.Р.Грейс Энд Ко.-Конн. | Adamantane-containing procatalyst composition and method |
| JP5753539B2 (en) | 2009-12-02 | 2015-07-22 | ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット | Tri- and 4-atom bridged dicarbonate compounds as internal donors for catalysts for the production of polypropylene |
| RU2576519C2 (en) | 2009-12-02 | 2016-03-10 | У.Р.Грейс Энд Ко.-Конн. | Dicarbonate compounds with two bridging atoms as internal donors in catalysts for polypropylene production |
| US8211819B2 (en) * | 2009-12-21 | 2012-07-03 | Basf Corporation | Internal and external donor compounds for olefin polymerization catalysts |
| EP2516489B1 (en) * | 2009-12-21 | 2014-07-02 | W.R. Grace & CO. - CONN. | Gas-phase polymerization process having multiple flow regimes |
| WO2011077447A2 (en) * | 2009-12-22 | 2011-06-30 | Reliance Industries Limited | A semi-continuous process for the synthesis of a catalyst for use in the manufacture of polyolefins |
| US8569195B2 (en) * | 2010-02-24 | 2013-10-29 | Basf Corporation | Internal and external donor compounds for olefin polymerization catalysts II |
| WO2011106500A1 (en) | 2010-02-26 | 2011-09-01 | Dow Global Technologies Llc | Amide ester internal electron and process |
| MY157180A (en) | 2010-02-26 | 2016-05-10 | Grace W R & Co | Procatalyst composition with substituted amide ester internal electron donor |
| US8466081B2 (en) | 2010-02-26 | 2013-06-18 | Dow Global Technologies Llc | Halogenated amide ester and internal electron donor with same |
| US8604146B2 (en) | 2010-12-21 | 2013-12-10 | Dow Global Technologies Llc | Catalyst composition with alkoxyalkyl ester internal electron donor and polymer from same |
| US8536290B2 (en) | 2010-12-21 | 2013-09-17 | Dow Global Technologies Llc | Procatalyst composition with alkoxyalkyl 2-propenoate internal electron donor and polymer from same |
| US9382343B2 (en) | 2010-12-21 | 2016-07-05 | W. R. Grace & Co.-Conn. | Procatalyst composition with alkoxypropyl ester internal electron donor and polymer from same |
| US20120157645A1 (en) | 2010-12-21 | 2012-06-21 | Linfeng Chen | Procatalyst Composition with Alkoxypropyl Ester Internal Electron Donor and Polymer From Same |
| US8383540B2 (en) | 2010-12-21 | 2013-02-26 | Dow Global Technologies Llc | Catalyst composition with halo-malonate internal electron donor and polymer from same |
| US9382342B2 (en) | 2010-12-21 | 2016-07-05 | W. R. Grace & Co.-Conn. | Procatalyst composition with alkoxyalkyl 2-propenoate internal electron donor and polymer from same |
| RU2606512C2 (en) | 2010-12-21 | 2017-01-10 | У.Р.Грейс Энд Ко.-Конн. | Method for production of high melt flow propylene-based polymer and products made therefrom |
| US20120157295A1 (en) | 2010-12-21 | 2012-06-21 | Linfeng Chen | Process for Producing Procatalyst Composition with Alkoxyalkyl Ester Internal Electron Donor and Product |
| MX2013010015A (en) * | 2011-03-01 | 2013-10-25 | Dow Global Technologies Llc | Process for improving bulk density with multi-contact procatalyst and product. |
| US8765626B2 (en) * | 2011-11-30 | 2014-07-01 | Basf Corporation | Internal donor structure for olefin polymerization catalysts and methods of making and using same |
| EP2607384A1 (en) | 2011-12-21 | 2013-06-26 | Basell Poliolefine Italia S.r.l. | Catalyst system for the polymerization of olefins |
| EA032503B1 (en) | 2013-08-12 | 2019-06-28 | Сауди Бейсик Индастриз Корпорейшн | Catalyst system for polymerisation of olefins |
| US9873753B2 (en) | 2013-12-20 | 2018-01-23 | Saudi Basic Industries Corporation | Catalyst system for polymerization of an olefin |
| US10000591B2 (en) | 2013-12-20 | 2018-06-19 | Saudi Basic Industries Corporation | Catalyst system for polymerization of an olefin |
| BR112016013169B1 (en) | 2013-12-20 | 2022-02-22 | Saudi Basic Industries Corporation | HETEROPHASE PROPYLENE COPOLYMERS, HETEROPHASE PROPYLENE COMPOSITIONS, THEIR USES AND ARTICLES |
| KR102365377B1 (en) | 2013-12-20 | 2022-02-21 | 사우디 베이식 인더스트리즈 코포레이션 | Catalyst system for polymerisation of an olefin |
| BR112016014175B1 (en) * | 2013-12-20 | 2021-06-22 | Saudi Basic Industries Corporation | CATALYST SYSTEM FOR POLYMERIZATION OF AN OLEFIN, ITS PREPARATION PROCESS, POLYOLEFIN AND PREPARATION PROCESS |
| BR112016013611B1 (en) | 2013-12-20 | 2021-01-05 | Saudi Basic Industries Corporation | polyolefin compound, composition and article, heterophasic propylene copolymer and their uses |
| US9944731B2 (en) | 2013-12-20 | 2018-04-17 | Saudi Basic Industries Corporation | Catalyst system for polymerization of an olefin |
| WO2015091980A1 (en) | 2013-12-20 | 2015-06-25 | Saudi Basic Industries Corporation | Catalyst system for polymerization of an olefin |
| US20170240665A1 (en) * | 2014-06-02 | 2017-08-24 | Sabic Global Technologies B.V. | Procatalyst for polymerization of olefins comprising a monoester and an amidobenzoate internal donor |
| CN104448066B (en) | 2014-12-16 | 2017-07-07 | 华东理工大学 | A kind of many metal olefin polymerization catalysts of support type and preparation method and application |
| EP3050906B1 (en) * | 2015-01-27 | 2020-07-22 | Indian Oil Corporation Limited | Catalyst process modification and polymerization thereof |
| JP6687632B2 (en) * | 2015-02-05 | 2020-04-22 | ストラウマン ホールディング アーゲー | Method for providing fluorescence to a dental ceramic body |
| BR112017026534B1 (en) | 2015-06-12 | 2021-12-07 | Sabic Global Technologies B.V. | HETEROPHASE PROPYLENE COPOLYMER, ITS PROCESS FOR MANUFACTURING AND USE, ARTICLE THAT COMPRISES IT |
| EP3331924B1 (en) | 2015-08-07 | 2019-08-21 | SABIC Global Technologies B.V. | Process for the polymerization of olefins |
| US10696756B2 (en) | 2015-08-07 | 2020-06-30 | Sabic Global Technologies B.V. | Process for the polymerization of olefins |
| US10745499B2 (en) | 2015-08-07 | 2020-08-18 | Sabic Global Technologies B.V. | Process for the polymerization of olefins |
| US10611864B2 (en) | 2015-09-22 | 2020-04-07 | Sabic Global Technologies B.V. | Synthesis of substituted amidobenzoate compounds, the compounds obtained and the use thereof as phthalate free internal electron donor for polymerization of olefins |
| EP3383925B1 (en) * | 2015-12-02 | 2023-10-18 | SABIC Global Technologies B.V. | A procatalyst for polymerization of olefins |
| US10836847B2 (en) * | 2015-12-02 | 2020-11-17 | Sabic Global Technologies B.V. | Procatalyst for polymerization of olefins |
| EP3181625A1 (en) | 2015-12-18 | 2017-06-21 | SABIC Global Technologies B.V. | Composition comprising heterophasic propylene copolymer |
| EP3510056B2 (en) | 2016-09-08 | 2023-07-19 | SABIC Global Technologies B.V. | Process of preparing polyolefin with the discontinuous addition of a thermal runaway reducing agent |
| WO2018046395A1 (en) | 2016-09-08 | 2018-03-15 | Sabic Global Technologies B.V. | Process of preparing polyolefin with the discontinuous addition of a thermal runaway reducing agent |
| WO2018108935A1 (en) | 2016-12-12 | 2018-06-21 | Sabic Global Technologies B.V. | Process for manufacture of low emission heterophasic polypropylene |
| CN110168011B (en) | 2016-12-12 | 2022-07-29 | Sabic环球技术有限责任公司 | Pellets with reduced emissions comprising a thermoplastic polymer jacket surrounding glass filaments |
| EP3333222A1 (en) | 2016-12-12 | 2018-06-13 | SABIC Global Technologies B.V. | Composition comprising heterophasic propylene copolymer |
| EP3551674A1 (en) | 2016-12-12 | 2019-10-16 | SABIC Global Technologies B.V. | Process for manufacture of low emission homopolymer or random polypropylene |
| CN110050028B (en) | 2016-12-12 | 2021-12-07 | Sabic环球技术有限责任公司 | Heterophasic propylene copolymer |
| CN108239191B (en) * | 2016-12-23 | 2019-10-01 | 北京利和知信科技有限公司 | A kind of alkoxyl magnesium carrier model catalyst component for olefin polymerization, catalyst and its application |
| WO2018167155A1 (en) * | 2017-03-17 | 2018-09-20 | Sabic Global Technologies B.V. | Process of making polyolefins |
| RU2692246C1 (en) * | 2017-06-15 | 2019-06-24 | Индийская Нефтяная Корпорация Лимитэд | External donor for olefin polymerization |
| CN109096425A (en) * | 2017-06-21 | 2018-12-28 | 中国石油化工股份有限公司 | A kind of catalyst and olefine polymerizing process for olefinic polymerization |
| WO2019046087A1 (en) | 2017-08-29 | 2019-03-07 | W.R. Grace & Co.-Conn. | Olefin polymerization catalyst |
| CN113056515A (en) | 2018-11-19 | 2021-06-29 | Sabic环球技术有限责任公司 | Food packaging comprising a polymer composition and use of said polymer composition for manufacturing food packaging |
| JP7283203B2 (en) | 2019-04-25 | 2023-05-30 | 住友化学株式会社 | Method for producing propylene polymer |
| CN114402024A (en) | 2019-08-27 | 2022-04-26 | Sabic环球技术有限责任公司 | Heterophasic propylene copolymer composition |
| US20220315746A1 (en) | 2019-09-06 | 2022-10-06 | Sabic Global Technologies B.V. | Healthcare article comprising a random propylene-ethylene copolymer |
| CN114929800B (en) | 2020-02-14 | 2024-09-03 | Sabic环球技术有限责任公司 | Film comprising heterophasic propylene copolymer composition |
| EP3650495A3 (en) | 2020-02-14 | 2020-05-27 | SABIC Global Technologies B.V. | Film comprising heterophasic propylene copolymer composition |
| EP3650494A3 (en) | 2020-02-14 | 2020-05-27 | SABIC Global Technologies B.V. | Matte film comprising heterophasic propylene copolymer composition |
| EP4127056A1 (en) | 2020-03-27 | 2023-02-08 | SABIC Global Technologies B.V. | Polymer composition having improved impact strength at low temperatures |
| JP7539785B2 (en) | 2020-03-31 | 2024-08-26 | 住友化学株式会社 | Solid catalyst components for olefin polymerization |
| CN117083123A (en) * | 2021-03-26 | 2023-11-17 | 旭化成株式会社 | Catalyst for producing carboxylic acid ester, method for producing carboxylic acid ester, and method for producing catalyst for producing carboxylic acid ester |
| EP4155324A3 (en) | 2021-09-22 | 2023-05-03 | Sumitomo Chemical Company, Limited | Method for producing solid catalyst component for olefin polymerization, method for producing catalyst for olefin polymerization, and method for producing olefin polymer |
| US20250101152A1 (en) | 2021-12-09 | 2025-03-27 | Sabic Global Technologies B.V. | Catalyst system for polymerization of an olefin |
| EP4453090A1 (en) | 2021-12-21 | 2024-10-30 | SABIC Global Technologies B.V. | High impact polypropylene composition |
| JP2023103559A (en) | 2022-01-14 | 2023-07-27 | 住友化学株式会社 | Heterophasic propylene polymerization material and olefin polymer |
| WO2023174732A1 (en) | 2022-03-14 | 2023-09-21 | Sabic Global Technologies B.V. | Heterophasic propylene copolymer composition |
| WO2023174731A1 (en) | 2022-03-14 | 2023-09-21 | Sabic Global Technologies B.V. | Injection molding process |
| CN119183458A (en) | 2022-05-13 | 2024-12-24 | Sabic环球技术有限责任公司 | Heterophasic polypropylene composition with low hexane extractables |
| US20250304729A1 (en) | 2022-05-13 | 2025-10-02 | Sabic Global Technologies B.V. | Heterophasic polypropylene composition with low emission |
| CN119173544A (en) | 2022-05-13 | 2024-12-20 | Sabic环球技术有限责任公司 | Heterophasic polypropylene composition with low shrinkage |
| WO2024008770A1 (en) | 2022-07-05 | 2024-01-11 | Sabic Global Technologies B.V. | Catalyst system for polymerization of an olefin |
| EP4474447A3 (en) | 2023-02-22 | 2025-03-12 | Sumitomo Chemical Company, Limited | Antioxidant mixture |
| JP2024119514A (en) | 2023-02-22 | 2024-09-03 | 住友化学株式会社 | Storage method for antioxidant mixture |
| EP4421101A1 (en) | 2023-02-22 | 2024-08-28 | Sumitomo Chemical Company, Limited | Method for producing heterophasic propylene polymerization material and method for producing olefin polymer |
| US20250109218A1 (en) | 2023-09-29 | 2025-04-03 | Formosa Plastics Corporation, U.S.A. | Method for preparing catalyst component for polymerization of polyolefin without the use of internal electron donors |
Citations (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US433649A (en) * | 1890-08-05 | Combined child s chair and chair | ||
| US4442276A (en) * | 1982-02-12 | 1984-04-10 | Mitsui Petrochemical Industries, Ltd. | Process for polymerizing or copolymerizing olefins |
| US4460701A (en) * | 1982-11-17 | 1984-07-17 | Toho Titanium Co., Ltd. | Process for the preparation of catalyst component for the polymerization of olefins |
| US4472521A (en) * | 1982-12-20 | 1984-09-18 | Stauffer Chemical Company | Supported catalyst for polymerization of olefins |
| US4535068A (en) * | 1983-09-20 | 1985-08-13 | Shell Oil Company | Olefin polymerization catalyst compositions and polymerization process |
| US4540679A (en) * | 1984-03-23 | 1985-09-10 | Amoco Corporation | Magnesium hydrocarbyl carbonate supports |
| US4547476A (en) * | 1983-07-20 | 1985-10-15 | Toho Titanium Co., Ltd. | Catalyst component for the polymerization of olefins and catalyst therefor |
| US4548915A (en) * | 1984-04-10 | 1985-10-22 | Shell Oil Company | Olefin polymerization catalyst composition |
| US4728705A (en) * | 1986-02-28 | 1988-03-01 | Shell Oil Company | Olefin polymerization catalyst composition |
| US4815433A (en) * | 1984-08-09 | 1989-03-28 | Robert Bosch Gmbh | Method of and device for controlling and/or regulating the idling speed of an internal combustion engine |
| US4829037A (en) * | 1986-05-06 | 1989-05-09 | Toho Titanium Co., Ltd. | Catalyst for polymerization of olefins |
| US4927797A (en) * | 1987-04-09 | 1990-05-22 | Fina Technology, Inc. | Catalyst system for the polymerization of olefins |
| US4990479A (en) * | 1988-06-17 | 1991-02-05 | Mitsui Petrochemical Industries, Ltd. | Process for polymerizing olefins and polymerization catalyst therefor |
| US5028671A (en) * | 1987-03-13 | 1991-07-02 | Mitsui Petrochemical Industries, Ltd. | Process for polymerization of olefins and polymerization catalyst |
| US5034361A (en) * | 1990-05-24 | 1991-07-23 | Shell Oil Company | Catalyst precursor production |
| US5066737A (en) * | 1990-10-22 | 1991-11-19 | Shell Oil Company | Olefin polymerization catalyst |
| US5066738A (en) * | 1987-04-09 | 1991-11-19 | Fina Technology, Inc. | Polymerization of olefins with an improved catalyst system using a new electron donor |
| US5077357A (en) * | 1990-10-22 | 1991-12-31 | Shell Oil Company | Olefin polymerization catalyst |
| US5082907A (en) * | 1990-10-18 | 1992-01-21 | Shell Oil Company | Olefin polymerization catalyst |
| US5093415A (en) * | 1987-05-19 | 1992-03-03 | Union Carbide Chemicals & Plastics Technology Corporation | Process for producing stereoregular polymers having a narrow molecular weight distribution |
| US5106806A (en) * | 1990-10-18 | 1992-04-21 | Shell Oil Company | Olefin polymerization catalyst |
| US5124298A (en) * | 1990-10-22 | 1992-06-23 | Shell Oil Company | Olefin polymerization catalyst |
| US5146028A (en) * | 1990-10-18 | 1992-09-08 | Shell Oil Company | Olefin polymerization catalyst and process of polymerization |
| US5151399A (en) * | 1990-10-18 | 1992-09-29 | Shell Oil Company | Olefin polymerization catalyst |
| US5153158A (en) * | 1989-12-29 | 1992-10-06 | Mitsui Petrochemical Industries, Ltd. | Solid catalyst components for olefin polymerization and processes for the polymerization of olefin using same |
| US5229342A (en) * | 1990-10-18 | 1993-07-20 | Shell Oil Company | Olefin polymerization catalyst |
| US5247032A (en) * | 1989-12-29 | 1993-09-21 | Mitsui Petrochemical Industries, Ltd. | Solid catalyst components for olefin polymerization and processes for the polymerization of olefin using same |
| US5247031A (en) * | 1988-09-13 | 1993-09-21 | Mitsui Petrochemical Industries, Ltd. | Olefin polymerization catalyst component, process for production thereof, olefin polymerization catalyst, and process for polymerizing olefins |
| US6429270B2 (en) * | 1998-09-14 | 2002-08-06 | Union Carbide Chemicals & Plastics Technology Corporation | Process for preparing olefin polymerization catalyst mixture |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4289037A (en) * | 1979-02-07 | 1981-09-15 | South African Inventions Development Corporation | Method of stress grading timber, and machine for stress grading timber |
| JPS56811A (en) | 1979-06-18 | 1981-01-07 | Mitsui Petrochem Ind Ltd | Preparation of olefin polymer or copolymer |
| JPH06104693B2 (en) | 1986-01-06 | 1994-12-21 | 東邦チタニウム株式会社 | Catalyst for olefin polymerization |
| US5082987A (en) | 1990-10-15 | 1992-01-21 | Phillips Petroleum Company | Treatment of hydrocarbons |
| WO1994010210A1 (en) * | 1992-10-30 | 1994-05-11 | Shell Oil Company | Olefin polymerization catalyst |
| ATE172208T1 (en) | 1992-12-31 | 1998-10-15 | Union Carbide Chem Plastic | OLEFIN POLYMERIZATION CATALYST |
-
2002
- 2002-05-01 US US10/138,141 patent/US6825146B2/en not_active Expired - Fee Related
- 2002-05-02 EP EP02731640A patent/EP1395364A1/en not_active Withdrawn
- 2002-05-02 CN CNA028109694A patent/CN1512915A/en active Pending
- 2002-05-02 WO PCT/US2002/013991 patent/WO2002096558A1/en active Application Filing
- 2002-05-02 JP JP2002593062A patent/JP2004527635A/en active Pending
-
2004
- 2004-10-20 US US10/969,387 patent/US20050054792A1/en not_active Abandoned
Patent Citations (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US433649A (en) * | 1890-08-05 | Combined child s chair and chair | ||
| US4442276A (en) * | 1982-02-12 | 1984-04-10 | Mitsui Petrochemical Industries, Ltd. | Process for polymerizing or copolymerizing olefins |
| US4460701A (en) * | 1982-11-17 | 1984-07-17 | Toho Titanium Co., Ltd. | Process for the preparation of catalyst component for the polymerization of olefins |
| US4472521A (en) * | 1982-12-20 | 1984-09-18 | Stauffer Chemical Company | Supported catalyst for polymerization of olefins |
| US4547476A (en) * | 1983-07-20 | 1985-10-15 | Toho Titanium Co., Ltd. | Catalyst component for the polymerization of olefins and catalyst therefor |
| US4535068A (en) * | 1983-09-20 | 1985-08-13 | Shell Oil Company | Olefin polymerization catalyst compositions and polymerization process |
| US4540679A (en) * | 1984-03-23 | 1985-09-10 | Amoco Corporation | Magnesium hydrocarbyl carbonate supports |
| US4548915A (en) * | 1984-04-10 | 1985-10-22 | Shell Oil Company | Olefin polymerization catalyst composition |
| US4815433A (en) * | 1984-08-09 | 1989-03-28 | Robert Bosch Gmbh | Method of and device for controlling and/or regulating the idling speed of an internal combustion engine |
| US4728705A (en) * | 1986-02-28 | 1988-03-01 | Shell Oil Company | Olefin polymerization catalyst composition |
| US4829037A (en) * | 1986-05-06 | 1989-05-09 | Toho Titanium Co., Ltd. | Catalyst for polymerization of olefins |
| US5028671A (en) * | 1987-03-13 | 1991-07-02 | Mitsui Petrochemical Industries, Ltd. | Process for polymerization of olefins and polymerization catalyst |
| US4927797A (en) * | 1987-04-09 | 1990-05-22 | Fina Technology, Inc. | Catalyst system for the polymerization of olefins |
| US5066738A (en) * | 1987-04-09 | 1991-11-19 | Fina Technology, Inc. | Polymerization of olefins with an improved catalyst system using a new electron donor |
| US5093415A (en) * | 1987-05-19 | 1992-03-03 | Union Carbide Chemicals & Plastics Technology Corporation | Process for producing stereoregular polymers having a narrow molecular weight distribution |
| US4990479A (en) * | 1988-06-17 | 1991-02-05 | Mitsui Petrochemical Industries, Ltd. | Process for polymerizing olefins and polymerization catalyst therefor |
| US5247031A (en) * | 1988-09-13 | 1993-09-21 | Mitsui Petrochemical Industries, Ltd. | Olefin polymerization catalyst component, process for production thereof, olefin polymerization catalyst, and process for polymerizing olefins |
| US5247032A (en) * | 1989-12-29 | 1993-09-21 | Mitsui Petrochemical Industries, Ltd. | Solid catalyst components for olefin polymerization and processes for the polymerization of olefin using same |
| US5153158A (en) * | 1989-12-29 | 1992-10-06 | Mitsui Petrochemical Industries, Ltd. | Solid catalyst components for olefin polymerization and processes for the polymerization of olefin using same |
| US5034361A (en) * | 1990-05-24 | 1991-07-23 | Shell Oil Company | Catalyst precursor production |
| US5106806A (en) * | 1990-10-18 | 1992-04-21 | Shell Oil Company | Olefin polymerization catalyst |
| US5146028A (en) * | 1990-10-18 | 1992-09-08 | Shell Oil Company | Olefin polymerization catalyst and process of polymerization |
| US5151399A (en) * | 1990-10-18 | 1992-09-29 | Shell Oil Company | Olefin polymerization catalyst |
| US5082907A (en) * | 1990-10-18 | 1992-01-21 | Shell Oil Company | Olefin polymerization catalyst |
| US5229342A (en) * | 1990-10-18 | 1993-07-20 | Shell Oil Company | Olefin polymerization catalyst |
| US5124298A (en) * | 1990-10-22 | 1992-06-23 | Shell Oil Company | Olefin polymerization catalyst |
| US5077357A (en) * | 1990-10-22 | 1991-12-31 | Shell Oil Company | Olefin polymerization catalyst |
| US5066737A (en) * | 1990-10-22 | 1991-11-19 | Shell Oil Company | Olefin polymerization catalyst |
| US6429270B2 (en) * | 1998-09-14 | 2002-08-06 | Union Carbide Chemicals & Plastics Technology Corporation | Process for preparing olefin polymerization catalyst mixture |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2505548C2 (en) * | 2008-11-25 | 2014-01-27 | ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи | Procatalyst composition containing silyl ester as internal donor |
| RU2497834C2 (en) * | 2008-11-25 | 2013-11-10 | Юнион Карбайд Кемикалз Энд Пластикс Текнолоджи Ллс | Procatalyst composition with multi-component ester-containing internal donor and method |
| US20180305479A1 (en) * | 2013-11-27 | 2018-10-25 | W. R. Grace & Co.-Conn. | Procatalyst Particles And Polymerization Process For Impact Copolymers |
| WO2015081254A1 (en) * | 2013-11-27 | 2015-06-04 | W. R. Grace & Co.-Conn | Procatalyst particles and polymerization process for impact copolymers |
| KR20160091952A (en) * | 2013-11-27 | 2016-08-03 | 더블유.알. 그레이스 앤드 캄파니-콘. | Procatalyst particles and polymerization process for impact copolymers |
| KR102205993B1 (en) | 2013-11-27 | 2021-01-21 | 더블유.알. 그레이스 앤드 캄파니-콘. | Procatalyst particles and polymerization process for impact copolymers |
| RU2709203C1 (en) * | 2013-11-27 | 2019-12-17 | У. Р. Грейс Энд Ко.-Конн | Procatalyst particles and polymerisation method for producing impact resistant copolymers |
| US10059784B2 (en) | 2013-11-27 | 2018-08-28 | W. R. Grace & Co.-Conn. | Procatalyst particles and polymerization process for impact copolymers |
| WO2016057634A1 (en) * | 2014-10-10 | 2016-04-14 | Basf Corporation | Process for preparing spherical polymerization catalyst components for use in olefin polymerizations |
| CN107207657A (en) * | 2014-10-10 | 2017-09-26 | 格雷斯公司 | The method for preparing the spherical polymerization catalyst component for olefinic polyreaction |
| US9714302B2 (en) | 2014-10-10 | 2017-07-25 | W. R. Grace & Co.—Conn. | Process for preparing spherical polymerization catalyst components for use in olefin polymerizations |
| US11634520B2 (en) | 2017-11-13 | 2023-04-25 | W.R. Grace & Co.-Conn. | Catalyst components for propylene polymerization |
| US12240925B2 (en) | 2017-11-13 | 2025-03-04 | W. R. Grace & Co.- Conn. | Process for preparing solid catalyst components for olefin polymerization |
Also Published As
| Publication number | Publication date |
|---|---|
| US20030064882A1 (en) | 2003-04-03 |
| CN1512915A (en) | 2004-07-14 |
| JP2004527635A (en) | 2004-09-09 |
| WO2002096558A1 (en) | 2002-12-05 |
| EP1395364A1 (en) | 2004-03-10 |
| US6825146B2 (en) | 2004-11-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6825146B2 (en) | Olefin polymerization catalyst compositions and method of preparation | |
| KR100528310B1 (en) | Prepolymerized catalyst components for the polymerization of olefins | |
| US7687426B2 (en) | Catalyst composition with monocarboxylic acid ester internal donor and propylene polymerization process | |
| US7601664B2 (en) | Olefin polymerization catalyst compositions and method of preparation | |
| EP3212705B1 (en) | Oxalic acid diamides as modifiers for polyolefin catalysts | |
| US6635734B2 (en) | Catalyst system to produce highly crystalline polypropylene | |
| AU9262498A (en) | Components and catalysts for the polymerization of olefins | |
| JP2007505984A (en) | Self-extinguishing catalyst composition having monocarboxylic ester internal donor and propylene polymerization method | |
| EP0376936A2 (en) | A ziegler-Natta catalyst component | |
| JP5594969B2 (en) | Catalyst components for olefin polymerization | |
| US20100240846A1 (en) | Catalyst component for the polymerization of olefins based on 1,3-diethers | |
| US20070191558A1 (en) | Olefin polymerization procatalyst compositions and method of preparation | |
| EP0677066B1 (en) | Olefin polymerization catalyst | |
| JP3392124B2 (en) | α-Olefin polymerization method | |
| EP4569008A1 (en) | Carbonate compounds as activity limiting agents in ziegler-natta catalyst compositions for olefin polymerization | |
| US6255247B1 (en) | Optimum external co-catalyst electron donor molar ratio in propylene polymerization | |
| US7166553B2 (en) | Mixed catalyst compositions for the production of polyolefins | |
| US20060247123A1 (en) | Method for making partially dried readily dispersible olefin polymerization procatalyst | |
| JPS6356885B2 (en) | ||
| JPH01213311A (en) | Production of alpha-olefin polymer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |