US20050033422A1 - Glare reducing rough surfaces - Google Patents

Glare reducing rough surfaces Download PDF

Info

Publication number
US20050033422A1
US20050033422A1 US10/638,036 US63803603A US2005033422A1 US 20050033422 A1 US20050033422 A1 US 20050033422A1 US 63803603 A US63803603 A US 63803603A US 2005033422 A1 US2005033422 A1 US 2005033422A1
Authority
US
United States
Prior art keywords
lens
ra
surrounding
lens portion
anterior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/638,036
Inventor
Huawei Zhao
Nguyen Nguyen
Duc Tran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Surgical Vision Inc
Original Assignee
Johnson and Johnson Surgical Vision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Surgical Vision Inc filed Critical Johnson and Johnson Surgical Vision Inc
Priority to US10/638,036 priority Critical patent/US20050033422A1/en
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: ADVANCED MEDICAL OPTICS, INC.
Publication of US20050033422A1 publication Critical patent/US20050033422A1/en
Assigned to ADVANCED MEDICAL OPTICS, INC. reassignment ADVANCED MEDICAL OPTICS, INC. RELEASE OF SECURITY INTEREST AT REEL/FRAME NO. 14914/0692 Assignors: BANK OF AMERICA, N.A.
Assigned to ADVANCED MEDICAL OPTICS, INC. reassignment ADVANCED MEDICAL OPTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NGUYEN, NGUYEN Q., ZHAO, HUAWEI, TRAN, DUC
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: ADVANCED MEDICAL OPTICS, INC.
Assigned to ADVANCED MEDICAL OPTICS, INC. reassignment ADVANCED MEDICAL OPTICS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2002/1696Having structure for blocking or reducing amount of light transmitted, e.g. glare reduction

Abstract

An intraocular lens for insertion into a capsular bag in order to focus incoming light toward a retina and process for manufacturing thereof along with concomitant reduced glare and improved vision provides for a center lens portion of a lens for focusing incoming light toward the retina and the surrounding lens portion for mounting the lens within the capsular bag. A surface roughness disposed on the surrounding lens portion is provided for reducing the glare due to non-focused light directed toward the retina from the intraocular lens with the roughness having a roughness level of between about Ra 45 and about Ra 350.

Description

  • The present invention generally relates to apparatus and methods for improving vision of an eye with a cataractic lens. More particularly, the present invention relates to an intraocular lens for insertion into a capsular bag in order to focus incoming light toward a retina and still more particularly relates to a process of fabricating an intraocular lens, which includes roughening portions of the lens in order to reduce glare due to non-focused light directed toward the retina from the intraocular lens.
  • A, typical intraocular lens (IOL) is formed from a suitable synthetic material, such as silicone, and shaped for insertion into an eye. The IOL may be utilized in place of, or, in addition to, the natural lens of the eye to correct vision. Often the IOL replaces the natural lens in the capsular bag after removal of the natural lens.
  • A number of different types of IOL's have been developed for correcting various types of vision disorders.
  • While most IOL's are suitable for correcting visual disorders, they also typically cause the recipient to experience undesirable side effects commonly referred to as “glare”.
  • This glare has been described as an arc, or pattern, with concentrated intensity and high local contrast. That is, the glare is a brightened pattern which is easily distinguished by the recipient over other images projected onto a retina by the lens. Accordingly, to reduce this glare perception, both the glare pattern intensity and the local contrast must be reduced below vision recognizable or perception thresholds.
  • Often, these glare effects which may be perceived as haloes, arcs of light, flashing of light, as well as shadows are often caused by peripheral edges of the implanted IOL.
  • Specifically designed IOL edges have proved to be very effective on reducing edge glare phenomenon. Rounded edges have proved to be able to reduce glare perception by breaking the glare light concentration of a specific pattern and thereby decreasing the glare pattern average intensity and local contrast.
  • Of particular importance in that regard is disclosed in U.S. Pat. No. 6,468,306 to Paul, Brady, and Deacon. This patent is incorporated in its entirety into the present application by this specific reference thereto. This design hereinafter may be referred to as OptiEDGE (Advanced Medical Optics, Santa Ana, Calif.) has been successfully designed to reduce edge glare. For instance, a rounded transition surface on the anterior side of the peripheral edge diffuses the intensity of reflected light, or a particular arrangement of straight edge surfaces refracts the light so as not to reflect, or does not reflect at all.
  • It has also been found and reported in U.S. Pat. No. 6,162,249 that the use of frosting, or roughening areas of the IOL can reduce glare. In this regard, the basic concept is the use of a roughened surface to avoid internally reflecting rays from causing the unwanted visual glare.
  • The present invention is directed to a process for fabricating a surface on an intraocular lens to provide optimum roughening thereof to produce a random scattering surface finish. In that regard, the present invention also encompasses an intraocular lens utilizing that the surface, a method for reducing glare from an intraocular lens onto a retina and ultimately a method for improving vision of an eye.
  • SUMMARY OF THE INVENTION
  • An intraocular, lens in accordance with the present invention for insertion into a capsular bag, is provided for focusing incoming light toward a retina. The lens generally includes a center lens portion for focusing incoming light toward the retina and a surrounding lens portion for mounting the lens within the capsular bag.
  • A surface roughness disposed on the surrounding lens portion is provided for reducing glare due to non-focused light directed toward the retina from the intraocular lens. The surface roughness has roughness level of between about Ra 45 and about Ra 350.
  • In accordance with an embodiment of the present invention, the surface roughness is produced by Electrical Discharge Machining and the surrounding lens portion comprises silicone.
  • More particularly, it has been found that a roughness level of about Ra 180 is particularly suitable for reducing glare. The surface roughness may be disposed on anterior and posterior surfaces of the surrounding lens portion and selected portions having the provided surface roughness may include at least one haptic for fixing a lens within the capsular bag.
  • Preferably, the surrounding lens portion includes a peripheral edge surface intersecting at least one of the anterior and a posterior surface to form a corner therebetween and a surface roughness, or frosting, is disposed on the anterior and posterior surfaces other than the corner.
  • Also in accordance with the present invention, a process for fabricating a surface on an intraocular lens is provided with the process comprising roughening a smooth lens surface by Electrical Discharge Machining to a roughness level of between about Ra 45 and about Ra 350.
  • In addition, the present invention provides for a process of fabricating an intraocular lens which includes providing a blank lens having a center lens portion and a surrounding lens portion and roughening the surrounding lens portion by electrical discharge machining to a roughness level of between about Ra 45 and about Ra 350.
  • Ultimately, the present invention provides a method for improving vision of an eye with a cataractic lens with the method including the steps of removing a cataractic lens from the lens capsule and inserting an intraocular lens into the capsule with the intraocular lens including a center lens portion for focusing incoming light toward the retina, a surrounding lens portion for mounting the lens within the capsular bag and a surface roughness disposed on the surrounding lens portion for reducing glare due to non-focused light directed toward the retina from the intraocular lens. The surface roughness has a roughness level of between about Ra 45 and about Ra 350.
  • Likewise, the present invention comprises using the method taught for phakic lenses and contemplates all of the disclosed steps with removal of the lens or during a “clear lens-ectomy” or procedure without removal of a cataractous or “cloudy” lens.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The advantages and features of the present invention will be better understood by the following description when considered in conjunction with the accompanying drawings in which:
  • FIGS. 1 a and 1 b are representations of intraocular lenses which may be produced in accordance with the present invention having a center lens portion for focusing incoming light toward a retina (not shown in FIG. 1) and a surrounding lens portion for mounting a lens within a capsular bag (not shown in FIG. 1);
  • FIG. 2 is an enlarged end view of the surrounding lens portion shown in FIG. 1 with a surface roughness disposed thereon;
  • FIG. 3 is a diagram of light at incident angles from 0 to 70° showing passage through a cornea/lens and corresponding edge glares produced;
  • FIG. 4 is a diagram illustrating the occurrence of reflected and transmitted edge glare and resulting images on a retina;
  • FIG. 5 is a diagram illustrating the surrounding the lens portion shown in FIG. 2 and resulting glare from incident light at 35° and 55° incident angle;
  • FIG. 6 is an illustration of surface scattering with different scattering probability models;
  • FIG. 7 is a schematic representation of Electrical Discharge Machine apparatus for producing the surface roughness;
  • FIG. 8 are microscopic views of surface roughness on the lens shown in FIGS. 1 and 2 with arithmetic mean roughness Ra varying from Ra 45 to Ra 490;
  • FIG. 9 are analyzed results from sample surfaces having the average roughness from Ra 45 to Ra 490 showing the scattering level as a function of roughness;
  • FIG. 10 is a plot of distribution width sigma as a function of surface roughness with the data fitted to a Gaussian distribution model; and
  • FIG. 11 is a comparison of glare at 55° incident angle for the intraocular lens made in accordance with the present invention with a roughened edge having average roughness of Ra 180 with an identical lens without edge roughening, i.e., a clear lens.
  • DETAILED DESCRIPTION
  • With reference to FIGS. 1 a and 1 b, there is illustrated intraocular lenses (IOLS) 10, 10 a having center portions 12, 12 a for focusing incoming light toward the retina of an eye (not shown in FIG. 1) and a surrounding lens portion 14, 14 a which may include fixation members, or haptics, 18, 18 a, 20, 20 a for fixing the lens 10, 10 a within a capsular bag (not shown in FIG. 1) in a conventional manner. The lenses 10, 10 a may be formed from any suitable material such as, for example, silicone, poly(methylmetharylate) or other solid elastically deformable materials formed from functional groups such as, but not limited to vinylic, acrylic, methacrylic groups, i.e. hybrid material.
  • As more clearly shown in FIG. 2, a surface roughness is disposed on the surrounding lens portion anterior surface 24 for reducing glare due to non-focused light directed toward the retina from the intraocular lens, as will be hereinafter discussed in greater detail. A posterior surface 26 may also be roughened. As illustrated surrounding lens portion 14 may include a corner 28 and no surface roughening is applied thereto.
  • The surface roughness has a roughness level of between about Ra 45 and about Ra 350 and preferably about Ra 180. Surface roughness is the arithmetic mean roughness value which is calculated from the integral of the absolute value of peak or valley with respect to a centerline, according to standard methods.
  • With reference to FIG. 3, there is illustrated an intraocular lens 10 for focusing incoming light through a cornea 32 toward a retina 36 as well as glare caused by non-focused light 40 directed toward the retina 36 from the intraocular lens 10 at various incident angles of the incoming light 30, namely 30°-70°.
  • FIG. 4 illustrates the glare patterns 44; 46 on the retina 36 at a 40° incident angle of incoming light. Reflected light, illustrated by the line 50, causes an arcuate pattern curved toward the source of light while incoming light at 42° incident angle produces non-focused light, indicated by the line 52, due to transmitted light which produces the glare pattern 46 which is curved away from the source.
  • FIG. 5 illustrates simulated glare from the lens 10 without the surface roughness at incident light angles of 35° and 55° on an S140e lens (Advanced Medical Optics, Santa Ana, Calif.).
  • The present invention provides for a roughened surface 24 on the lens-surrounding portion 14 as shown in FIG. 2 to provide a random scattering surface. With a random scattering surface, the glare patterns are effectively reduced or eliminated, that is, glare is not perceived due not only to reduction in glare intensity but also in a reduction of glare contrast. In other words, random light scattering provides a uniform contrast level on the retina which does not include contrasted glare patterns as hereinbefore discussed.
  • A discussion of random scattering is useful in understanding the present invention. A random scattering surface can be modeled at the surface with uniform scattering in all directions in an ideal case such as a Lambertian Scattering Surface shown in FIG. 6.
  • FIG. 6 shows an illustration of the probability distribution of such a scattering model. However, a practical surface usually is more accurately modeled as a surface that scatters light in Gaussian distribution relative to the spectacular ray which is either the reflective ray or transmitted ray.
  • FIG. 6 also gives the probability curve for Gaussian scattering distribution. When the distribution width sigma is very large (that is >1) the surface is close to a uniform scattering surface, whereas when the distribution width sigma is very narrow (<0.1) the surface is close to an optical surface.
  • The distribution amplitude represents a scattering level at a specific scattering direction. It is the ratio of all energy associated to the scattered rays to the total energy associated to all reflected or transmitted rays. The larger the scattering level the more energy associated with the scattering ray.
  • The intraocular lens 10 and the surface roughness, or frosting, 24 provided thereon is fabricated by providing a blank lens, preferably silicone, having the center lens portion 12 and surrounding lens portion 14 and thereafter roughening the surrounding lens portion 14 by Electrical Discharge Machining utilizing apparatus 60 diagramed in FIG. 7.
  • Generally, the Electronic Discharge Machining apparatus 60 includes an electrode tool 62, a slide table 64, and a work piece 66 for supporting the intraocular lens 10 (not shown in FIG. 7). A pulse generator 70 provides a voltage differential between the electrode tool 62 and work piece 66 which is driven by a programmable circuit 72.
  • In a simplistic description of one mode of operation, the lens 10, 10 a is disposed on the work piece and the pulsed generator and slide table manipulated to provide the roughness 24 on the lens 10, 10 a to a specified surface roughness Ra. As a specific example a program usable on an Electrical Discharge Machine available at Porex Medical Products in Ontario, Calif. is set forth in Table 1 for providing a Ra 180 surface on silicone lenses 10, 10 a as indicated by the surface 24 shown in FIG. 2.
  • FIG. 8 shows magnified photographs of surfaces having average surface roughness levels, or topographies, from Ra 45 to Ra 490 and programs similar to that shown in Table 1 may be utilized for the production of the surfaces.
  • EXAMPLE
  • Six IOL's having an edge roughness 26 from Ra 45 to Ra 490 were subjected to scattering measurements at 35° and 55° incident light angles with the light of 514 nm and 633 nm, respectively. TABLE 1 MACHINING PROGRAM FOR Ra 180 ROUGHENING ON SILICONE    “;” “     (******************************************************);” “      (AMO SPARE TIRE TO A 180.+−15 RA FINISH 1/22/2003);” “     (******************************************************);” “      (2003/01/23 VERSION 8.2 CLRFLXB Column with bottom);” “     (******************************************************);” “      (2003/01/24 VERSION 8.2 SPARETIR Column with bottom);” “;” “(      PL  ON  OFF  IP  SV  S UP  DN  JS  LNS  STEP  V  HP PP C  ALV OC  LF  JM LS LNM);” “C005 = + 0040 0065 004.4 055 02 008 040 010 0001 0.00000 02 000 00 0 0018 0015 0000 01 02 303;” “C006 = + 0020 0030 003.0 060 02 008 040 010 0001 0.00000 02 000 10 0 0018 0013 0000 01 03 303;” “C029 = + 0016 0025 002.4 060 02 008 040 010 0001 0.00000 02 000 10 0 0012 0013 0000 01 03 303;” “;” “H005 = + 00000.00013 (123:RGH.S-FIN.FIN,1:RGH,13:RGH.FIN, );” (12:RGH.S-FIN,2:S-FIN,23:S-FIN.FIN,3:FIN );” “H017 = + 00000.00000 (1:COMBINATION );” “H002 = − 00000.01830 (MACHINING DEPTH );” “H011 = + 00000.00555 (EL1 UNDER SIZE );” “H012 = + 00000.00555 (EL2 UNDER SIZE );” “H013 = + 00000.00555 (EL3 UNDER SIZE );” “H027 = + 00000.02500 (COLLISION AVOIDANCE POSITION );” “H010 = + 00000.00003 (EL PROCESS NO. );” “H028 = + 00000.00158 (SIDE OFFSET );” “H030 = + 00000.00252 (BOTTOM OFFSET );” “H048 = + 00000.00004 (CONDITION COUNT );” “H018 = + 00000.00303 (LNM );” “H019 = + 00000.00001 (LNS );” “H000 = + 00000.10000 (Projected area );” “H003 = + 00000.01250 (ACTUAL DEPTH );” “H008 = + 00000.50501 (CONDITION );” “H009 = + 00000.00030 (TIMER );” “H001 = + 00000.00000 (MACHINING DIRECTION );” “H007 = + 00000.00000 (ABS/INC );” “H006 = + 00000.01401 (SIDE MACHINING AREA );” “H025 = + 00000.00059 (SIDE ESCAPE );” “H026 = + 00000.00079 (BOTTOM ESCAPE );” “H032 = + 00000.00000 (LORAN ROTATION );” “;” “G90;” “H900 = H027 H940 = 0 H941 = 0 H942 = 3 H950 = 1 H951 = 0 H952 = 0 H910 = 0 H947 = 0 H960 = 0;” “G24;” “IFH005=3(1100);” “IFH005=23(1110);” “IFH005=2(1110);” “JUMP1120;” “N1100 H942=3;” “G83 Z920;” “JUMP2300;” “N1110 H942=2;” “G83 Z920;” “JUMP2200;” “N1120;” “G83 Z920;” “;” “N2200;” “N2300;” “QATP(54, 1, 0, 3, 1, 0.00000, 0.00000, 1.00000, 0.00000, H027, 030);” “CRT(- EL3-COND1-HOLE1 -);” “M98P2001;” “QATP(54, 1, 0, 3, 1, 0.00000, 0.00000, 1.00000, 0.00000, H027, 030);” “CRT(- EL3-COND2-HOLE1 -);” “M98P2002;” “QATP(54, 1, 0, 3, 1, 0.00000, 0.00000, 1.00000, 0.00000, H027, 030);” “CRT(- EL3-COND3-HOLE1 -);” “M98P2003;” “QATP(54, 3, 0, 3, 2, 0.00000, 0.00000, 1.00000, 0.00000, H027, 030);” “CRT(- EL3-COND1-HOLE2 -);” “M98P2001;” “QATP(54, 3, 0, 3, 2, 0.00000, 0.00000, 1.00000, 0.00000, H027, 030);” “CRT(- EL3-COND2-HOLE2 -);” “M98P2002;” “QATP(54, 3, 0, 3, 2, 0.00000, 0.00000, 1.00000, 0.00000, H027, 030);” “CRT(- EL3-COND3-HOLE2 -);” “M98P2003;” “QATP(54, 5, 0, 3, 3, 0.00000, 0.00000, 1.00000, 0.00000, H027, 030);” “CRT(- EL3-COND1-HOLE3 -);” “M98P2001;” “QATP(54, 5, 0, 3, 3, 0.00000, 0.00000, 1.00000, 0.00000, H027, 030);” “CRT(- EL3-COND2-HOLE3 -);” “M98P2002;” “QATP(54, 5, 0, 3, 3, 0.00000, 0.00000, 1.00000, 0.00000, H027, 030);” “CRT(- EL3-COND3-HOLE3 -);” “M98P2003;” “;” “N2400;” “G90 G00 M05 ZH920;” “IF H027=99999999(2401);” “G00 ZH027;” “JUMP2402;” “N2401;” “G81 Z+;” “N2402;” “IF H017=1(9999);” “IFH005=1(2410);” “IFH005=2(2410);” “IFH005=12(2410);” “JUMP9999;” “N2410;” “CRT(EL CHANGE);” “JUMP9999;” “;” “N2001;” “C005;” “H010=3 H030=0.00610 H028=0.00311 H048=2 H009=10;” “G85 TH009;” “M98 P3300;” “M99;” “N2002;” “C006;” “H010=3 H030=0.00402 H028=0.00173 H048=3 H009=20;” “G85 TH009;” “M98 P3300;” “M99;” “N2003;” “C029;” “H010=3 H030=0.00252 H028=0.00158 H048=4 H009=30;” “G85 TH009;” “M98 P3300;” “M99;” “;” “(01FEB2002 V3.00 111);” “N3100 (*************** PATTERN 1 ***************);” “G83R923;” “IF H923=2(,3110);” “M99   (***** DELETE M99 : FULL DRY RUN *****);” “N3110;” “IF H002<H920(3120);” “H030=0-H030;” “H026=0-H026;” “N3120;” “M98 P3500;” “;” “M98 P3600;” “JUMP 3900;” “;” “N3200 (*************  PATTERN 2 3  *************);” “N3300;” “G83R923;” “IF H923=2(,3210);” “M99 (***** DELETE M99 : FULL DRY RUN *****);” “N3210;” “IF H002<H920(3220);” “H030=0-H030;” “H026=0-H026;” “N3220;” “M98 P3500;” “M98 P3600;” “JUMP 3900;” “;” “N3500 (********   PARAMETER IS SET UP **********);” “G24;” “LNMH018 LNSH019 LP0000;” “G83UP918;” “QALEC(H000,H003,H008,H018,H019,1);” “N3530     ( **  WITH ROTATION  **);” “IF H960=0(3550);” “G83 U947;” “LAH032+H947;” “G326;” “M99;” “N3550;” “LAH032;” “G326;” “M99;” “;” “N3600(*************  MACHINING  **************);” “G90+H007;” “IF H048<>1(3610);” “STEP0         ( **  1ST MACH. ** );” “G01 Z+H002+H030 M04;” “N3610;” “IF H048>800(,3660);” “N3620       ( **  TIMER MACHINING **);” “IF H000<10./25.4*1./25.4*1.(3660);” “QTIMER(H000,H006,H009,0.254/1000.,0);” “N3630 G85 ZH909 (** FOR SIDE ** );” “STEP0+H[010+H010]-H028;” “G01 Z+H002+H030+H026 M04;” “N3640;” “QTIMER(H000,H006,H009,0.254/1000.,1);” “N3650 G85 ZH909 ( ** FOR BOTTOM **);” “STEP0+H[010+H010]-H028-H025;” “JUMP3670;” “N3660        ( ** FROM 2ND MACH ** );” “STEP0;” “IF H[010+H010]-H028<0.004/25.4*1.(3670);” “STEP0+H[010+H010]-H028;” “N3670; “G01 Z+H002+H030 M04;” “G90;” “M99;” “;” “N3900 (*************  READ TIME  *************);” “G327;” “UPH918;” “G83 T[300+H952];” “H[301+H952]=99999;” “IF H952>100(3999);” “H952=H952+1;” “M99;” “N3999;” “H952=0;” “M99;” “N9999;”
  • From the measured scattering results, it has been found that all surface scattering follow a Gaussian distribution by fitting the measured data to a Gaussian scattering model, as shown in FIG. 9, which is a plot of scattering level versus average roughness.
  • Measured scattering level is about 0.993, as shown, and, as shown in FIG. 10 the distribution width sigma ranges from 0.4 to 1.5 with Ra 180 having the maximum. A fitting correlation R2 values for all cases are above 0.95. Accordingly, the Ra 180 surface has found to have the best scattering ability, is closest to random scattering.
  • In view of variation of distribution width sigma shown in FIG. 10, this result could not be predicted on the basis of the roughness Ra value. That is, there is no predictable connection, or correlation, between Ra and scattering effectiveness.
  • FIG. 11 shows simulated comparison examples of the scattering analysis done on the lens 10 with and without (clear) a roughness of Ra 180 at 55° incident light angle. Defrosted (Lambertian) means the peripheral anterior area 24 and slope edge 28 are frosted with a uniform (Lambertian model) scattering surface finished with 0.9 scattering level and frosted (Gaussian) means the peripheral area of the IOL interior surface 24 and the IOL slope edge 28 are frosted with a non-uniform (Gaussian model) scattering surface with 0.9 scattering level at 1.4 half distribution sigma width.
  • The corresponding glare pattern average intensity and local contrast of the lenses is shown in Table 2
  • Table 2: The corresponding glare pattern average intensity and local contrast of cases in FIG. 11. Clariflex Clear Lambertian Gaussian Average Intensity 1.04 × 105 0.62 × 104 0.75 × 104 Local Contrast 0.88 0.02 0.08
  • It should be apparent that the results for the frosted lenses as shown in FIG. 11 illustrate an almost a uniform contrast with no discernment of glare patterns as is evidenced with the clear lens.
  • Although there has been hereinabove described a specific glare reducing rough surfaces in accordance with the present invention for the purpose of illustrating the manner in which the invention may be used to advantage, it should be appreciated that the invention is not limited thereto. That is, the present invention may suitably comprise, consist of, or consist essentially of the recited elements. Further, the invention illustratively disclosed herein suitably may be practiced in the absence of any element which is not specifically disclosed herein. Accordingly, any and all modifications, variations or equivalent arrangements which may occur to those skilled in the art, should be considered to be within the scope of the present invention as defined in the appended claims.

Claims (48)

1. An intraocular lens for insertion into a capsular bag in order to focus incoming light toward a retina, the lens comprising:
a center lens portion for focusing incoming light toward the retina;
a surrounding lens portion for mounting the lens within the capsular bag; and
a surface roughness disposed on said surrounding lens portion for reducing glare due to non-focused light directed toward the retina from said intraocular lens, said surface roughness having a roughness level of between about Ra 45 and about Ra 350.
2. The lens according to claim 1 wherein the surface roughness is produced by Electrical Discharge Machining.
3. The lens according to claim 2 wherein said surrounding lens portion comprises a solid elastically deformable material.
4. The lens according to claim 3 wherein said solid elastically deformable material is selected from a group consisting of silicone, acrylic and hybrid materials.
5. The lens according to claim 2 wherein the Electrical Discharge Machining is controlled by a program as set forth in Table 1.
6. The lens according to claim 1 wherein the roughness level is about Ra 180.
7. The lens according to claim 1 wherein the surface roughness is disposed on anterior and posterior surfaces of said surrounding lens portion.
8. The lens according to claim 7 wherein the surface roughness is disposed on selected portions of the anterior and posterior surfaces.
9. The lens according to claim 8 wherein said surrounding lens portion includes at least one haptic for fixing the lens within said capsular bag.
10. The lens according to claim 1 wherein said surrounding lens portion includes a peripheral edge surface intersecting at least one of an anterior and a posterior surface to form a corner therebetween and the surface roughness is disposed on the anterior and posterior surfaces other than said corner.
11. A process for fabricating a surface on an intraocular lens, said process comprising roughening a smooth lens surface by Electrical Discharge Machining to a roughness level of between about Ra 45 and about Ra 350.
12. The process according to claim 10 wherein the roughening of the lens surface by Electrical Discharge Machining is controlled by a program as set forth in Table 1.
13. The process according to claim 12 wherein the lens comprises a solid elastically deformable material.
14. The process according to claim 13 wherein said solid elastically deformable material is selected from a group consisting of silicone, acrylic and hybrid materials.
15. The process according to claim 11 wherein the lens is machined to a roughness level of about Ra 180.
16. A process of fabricating an intraocular lens comprising:
providing a blank lens having a center lens portion and a surrounding lens portion; and
roughening said surrounding lens portion by Electrical Discharge Machining to a roughness level of between about Ra 45 and about Ra 350.
17. The process according to claim 16 wherein providing a blank lens comprises providing a blank lens of a solid elastically deformable material.
18. The process according to claim 17 wherein the roughening of the surrounding lens portion further comprises controlling the Electrical Discharge Machining through a program as set forth in Table 1.
19. The process according to claim 16 wherein said surrounding lens portion is machined to a roughness level of about Ra 180.
20. The process according to claim 16 wherein anterior and posterior surfaces of said surrounding lens portion are roughened to a roughness level of between about Ra 45 and about Ra 350.
21. The process according to claim 20 wherein anterior and posterior surfaces of said surrounding lens portion are roughened to a roughness level of about Ra 180.
22. The process according to claim 20 where selected portions of the anterior and posterior surfaces are roughened.
23. The process according to claim 22 wherein providing a blank lens includes providing a blank lens with said surrounding lens portion including at least one haptic for fixing the intraocular lens within a capsular bag.
24. The process according to claim 23 wherein providing a blank lens includes providing a blank lens with said surrounding lens portion including a peripheral edge surface intersecting at least one of the anterior and posterior surfaces to form a corner therebetween and roughening includes roughening the anterior and posterior surface other than said corner.
25. A method for reducing glare from an intraocular lens onto a retina, said glare resulting from non focused light directed toward said retina from said intraocular lens, said method comprising roughening a selected area on said intraocular lens by Electrical Discharge Machining to a roughness level of between about Ra 45 and about Ra 350.
26. The method according to claim 25 wherein said roughness level is about Ra 180.
27. The method according to claim 25 wherein said Electrical Discharge Machining is controlled by a program as set forth in Table 1.
28. The method according to claim 25 wherein the selected area includes at least one of an anterior and a posterior surface of said intraocular lens.
29. The method according to claim 28 wherein the intraocular lens includes a peripheral edge surface including the anterior and posterior surfaces to form a corner therebetween and roughening a selected area excludes roughening of said corner.
30. A method for improving vision of an eye with a cataractic lens, said method comprising:
removing said cataractic lens from a lens capsule; and
inserting an intraocular lens into said capsule, said intraocular lens comprising:
a center lens portion for focusing incoming light toward the retina;
a surrounding lens portion for mounting the lens within the capsular bag; and
a surface roughness disposed on said surrounding lens portion for reducing glare due to non-focused light directed toward the retina from said intraocular lens, said surface roughness having a roughness level of between about Ra 45 and about Ra 350.
31. The method according to claim 30 wherein the surface roughness is produced by Electrical Discharge Machining.
32. The method according to claim 31 wherein said surrounding lens portion comprises a solid elastically deformable material.
33. The lens according to claim 32 wherein said solid elastically deformable material is selected from a group consisting of silicone, acrylic and hybrid materials.
34. The method according to claim 31 wherein the Electrical Discharge Machining is controlled by a program as set forth in Table 1.
35. The method according to claim 30 wherein the roughness level is about Ra 180.
36. The method according to claim 30 wherein the surface roughness is disposed on anterior and posterior surfaces of said surrounding lens portion.
37. The method according to claim 36 wherein the surface roughness is disposed on selected portions of the anterior and posterior surfaces.
38. The method according to claim 37 wherein said surrounding lens portion includes at least one haptic for fixing the lens within said capsular bag.
38. The method according to claim 30 wherein said surrounding lens portion includes a peripheral edge surface intersecting at least one of an anterior and a posterior surface to form a corner therebetween and the surface roughness is disposed on the anterior and posterior surfaces other than said corner.
39. An intraocular lens produced by:
providing a blank lens having a center lens portion and a surrounding lens portion; and
roughening said surrounding lens portion by Electrical Discharge Machining to a roughness level of between about Ra 45 and about Ra 350.
40. The intraocular lens according to claim 39 wherein providing a blank lens comprises providing a blank lens of a solid elastically deformable material.
41. The intraocular lens according to claim 40 wherein the roughening of the surrounding lens portion further comprises controlling the Electrical Discharge Machining through a program as set forth in Table 1.
42. The intraocular lens according to claim 39 wherein said surrounding lens portion is machined to a roughness level of about Ra 180.
43. The intraocular lens according to claim 39 wherein anterior and posterior surfaces of said surrounding lens portion are roughened to a roughness level of between about Ra 45 and about Ra 350.
44. The intraocular lens according to claim 43 wherein anterior and posterior surfaces of said surrounding lens portion are roughened to a roughness level of about Ra 180.
45. The intraocular lens according to claim 43 where selected portions of the anterior and posterior surfaces are roughened.
46. The process according to claim 44 wherein providing a blank lens includes providing a blank lens with said surrounding lens portion including at least one haptic for fixing the intraocular lens within a capsular bag.
47. The process according to claim 45 wherein providing a blank lens includes providing a blank lens with said surrounding lens portion including a peripheral edge surface intersecting at least one of the anterior and posterior surfaces to form a corner therebetween and roughening includes roughening the anterior and posterior surface other than said corner.
US10/638,036 2003-08-08 2003-08-08 Glare reducing rough surfaces Abandoned US20050033422A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/638,036 US20050033422A1 (en) 2003-08-08 2003-08-08 Glare reducing rough surfaces

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/638,036 US20050033422A1 (en) 2003-08-08 2003-08-08 Glare reducing rough surfaces
US12/163,912 US7811319B2 (en) 2003-08-08 2008-06-27 Glare reducing rough surfaces
US12/875,434 US8012203B2 (en) 2003-08-08 2010-09-03 Glare reducing rough surfaces
US13/224,822 US8349006B2 (en) 2003-08-08 2011-09-02 Glare reducing rough surfaces

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/163,912 Division US7811319B2 (en) 2003-08-08 2008-06-27 Glare reducing rough surfaces

Publications (1)

Publication Number Publication Date
US20050033422A1 true US20050033422A1 (en) 2005-02-10

Family

ID=34116707

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/638,036 Abandoned US20050033422A1 (en) 2003-08-08 2003-08-08 Glare reducing rough surfaces
US12/163,912 Active 2023-08-28 US7811319B2 (en) 2003-08-08 2008-06-27 Glare reducing rough surfaces
US12/875,434 Active US8012203B2 (en) 2003-08-08 2010-09-03 Glare reducing rough surfaces
US13/224,822 Active US8349006B2 (en) 2003-08-08 2011-09-02 Glare reducing rough surfaces

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/163,912 Active 2023-08-28 US7811319B2 (en) 2003-08-08 2008-06-27 Glare reducing rough surfaces
US12/875,434 Active US8012203B2 (en) 2003-08-08 2010-09-03 Glare reducing rough surfaces
US13/224,822 Active US8349006B2 (en) 2003-08-08 2011-09-02 Glare reducing rough surfaces

Country Status (1)

Country Link
US (4) US20050033422A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070067031A1 (en) * 2005-09-22 2007-03-22 Alcon, Inc. Intraocular lens
WO2008036674A1 (en) 2006-09-21 2008-03-27 Advanced Medical Optics, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
US20080077238A1 (en) * 2006-09-21 2008-03-27 Advanced Medical Optics, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
US20100094414A1 (en) * 2008-10-15 2010-04-15 Downer David A System and method to reduce surface contact between optic and haptic areas

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628810B2 (en) 2003-05-28 2009-12-08 Acufocus, Inc. Mask configured to maintain nutrient transport without producing visible diffraction patterns
US20050046794A1 (en) 2003-06-17 2005-03-03 Silvestrini Thomas A. Method and apparatus for aligning a mask with the visual axis of an eye
US20060113054A1 (en) * 2004-12-01 2006-06-01 Silvestrini Thomas A Method of making an ocular implant
CN102448404B (en) * 2009-08-13 2015-06-10 阿库福库斯公司 Masked intraocular implants and lenses
US10004593B2 (en) 2009-08-13 2018-06-26 Acufocus, Inc. Intraocular lens with elastic mask
JP6030448B2 (en) 2009-08-13 2016-11-24 アキュフォーカス・インコーポレーテッド Corneal inlay with nutrient transport structure
US9220590B2 (en) 2010-06-10 2015-12-29 Z Lens, Llc Accommodative intraocular lens and method of improving accommodation
US9364318B2 (en) 2012-05-10 2016-06-14 Z Lens, Llc Accommodative-disaccommodative intraocular lens
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
CA2904605C (en) 2013-03-14 2018-02-13 Gentex Corporation Delamination resistant coated substrates and methods of preparing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676791A (en) * 1985-08-01 1987-06-30 Surgidev Corporation Intraocular lens and method for making same
US5054905A (en) * 1987-11-12 1991-10-08 Cohen Allen L Progressive intensity phase bifocal
US5281294A (en) * 1990-04-17 1994-01-25 Pilkington Diffractive Lenses Limited Manufacture of visual lenses
US5405385A (en) * 1992-04-02 1995-04-11 Clemson University Intraocular lens with integrated means of fixation
US5549670A (en) * 1995-05-09 1996-08-27 Allergan, Inc. IOL for reducing secondary opacification
US6129759A (en) * 1997-12-10 2000-10-10 Staar Surgical Company, Inc. Frosted haptic intraocular lens
US6162249A (en) * 1998-05-29 2000-12-19 Allergan IOI for inhibiting cell growth and reducing glare
US6264693B1 (en) * 1998-12-11 2001-07-24 Bausch & Lomb Surgical, Inc. Air abrasive texturing process for intraocular implants
US6790873B2 (en) * 2001-06-25 2004-09-14 Menicon Co., Ltd. Ocular lens and process for its production
US6884262B2 (en) * 1998-05-29 2005-04-26 Advanced Medical Optics, Inc. Enhanced intraocular lens for reducing glare
US20050177230A1 (en) * 1996-08-27 2005-08-11 Craig Young IOL for reducing secondary opacification

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246754A1 (en) 1986-04-21 1987-11-25 Kelman, Charles D. Intraocular lens having glare-inhibiting means
US6283974B1 (en) 1997-11-14 2001-09-04 Aaron James Alexander Surgical tip for phacoemulsification
US6468306B1 (en) 1998-05-29 2002-10-22 Advanced Medical Optics, Inc IOL for inhibiting cell growth and reducing glare
US8512340B2 (en) 2004-07-02 2013-08-20 Stryker Corporation Torsional pineapple dissection tip
US20090137971A1 (en) 2006-10-26 2009-05-28 Takayuki Akahoshi Phacoemulsification Needle Tips for Torsional Motion

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676791A (en) * 1985-08-01 1987-06-30 Surgidev Corporation Intraocular lens and method for making same
US5054905A (en) * 1987-11-12 1991-10-08 Cohen Allen L Progressive intensity phase bifocal
US5281294A (en) * 1990-04-17 1994-01-25 Pilkington Diffractive Lenses Limited Manufacture of visual lenses
US5405385A (en) * 1992-04-02 1995-04-11 Clemson University Intraocular lens with integrated means of fixation
US5549670A (en) * 1995-05-09 1996-08-27 Allergan, Inc. IOL for reducing secondary opacification
US20050177230A1 (en) * 1996-08-27 2005-08-11 Craig Young IOL for reducing secondary opacification
US6129759A (en) * 1997-12-10 2000-10-10 Staar Surgical Company, Inc. Frosted haptic intraocular lens
US6162249A (en) * 1998-05-29 2000-12-19 Allergan IOI for inhibiting cell growth and reducing glare
US6884262B2 (en) * 1998-05-29 2005-04-26 Advanced Medical Optics, Inc. Enhanced intraocular lens for reducing glare
US6264693B1 (en) * 1998-12-11 2001-07-24 Bausch & Lomb Surgical, Inc. Air abrasive texturing process for intraocular implants
US6790873B2 (en) * 2001-06-25 2004-09-14 Menicon Co., Ltd. Ocular lens and process for its production

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070067031A1 (en) * 2005-09-22 2007-03-22 Alcon, Inc. Intraocular lens
WO2008036674A1 (en) 2006-09-21 2008-03-27 Advanced Medical Optics, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
US20080077238A1 (en) * 2006-09-21 2008-03-27 Advanced Medical Optics, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
WO2008036671A1 (en) 2006-09-21 2008-03-27 Advanced Medical Optics, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
US9603702B2 (en) * 2006-09-21 2017-03-28 Abbott Medical Optics Inc. Intraocular lenses for managing glare, adhesion, and cell migration
AU2007299916B2 (en) * 2006-09-21 2013-09-05 Johnson & Johnson Surgical Vision, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
AU2007299913B2 (en) * 2006-09-21 2014-02-13 Johnson & Johnson Surgical Vision, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
US20140052245A1 (en) * 2006-09-21 2014-02-20 Abbott Medical Optics Inc. Intraocular Lenses for Managing Glare, Adhesion, and Cell Migration
CN102186437A (en) * 2008-10-15 2011-09-14 爱尔康公司 System and method to reduce surface contact between optic and haptic areas
US9089419B2 (en) * 2008-10-15 2015-07-28 Novartis Ag System to reduce surface contact between optic and haptic areas
US20100094414A1 (en) * 2008-10-15 2010-04-15 Downer David A System and method to reduce surface contact between optic and haptic areas

Also Published As

Publication number Publication date
US8012203B2 (en) 2011-09-06
US20080288065A1 (en) 2008-11-20
US8349006B2 (en) 2013-01-08
US20110004303A1 (en) 2011-01-06
US20120032363A1 (en) 2012-02-09
US7811319B2 (en) 2010-10-12

Similar Documents

Publication Publication Date Title
US4946469A (en) Intraocular lens
US4842782A (en) Manufacture of ophthalmic lenses by excimer laser
US7481532B2 (en) Pseudo-accommodative IOL having multiple diffractive patterns
US6152958A (en) Foldable thin intraocular membrane
AU775462B2 (en) Intraocular lenses
AU2004262515B2 (en) Intraocular lens system
AU2010201719B2 (en) Multi-zonal monofocal intraocular lens for correcting optical aberrations
AU2005311949B2 (en) Apodized aspheric diffractive lenses
EP0073755B1 (en) Flexible intraocular lens
JP4652576B2 (en) Multifocal ophthalmic lens that reduces the size of Nijiwa vision
US4080709A (en) Method of making an intra-ocular lens
US7061693B2 (en) Optical method and system for extended depth of focus
US7441894B2 (en) Pseudo-accommodative IOL having diffractive zones with varying areas
EP0342895B1 (en) Ophthalmic lens
CA2284963C (en) Deformable intraocular corrective lens
US5769889A (en) High myopia anterior chamber lens with anti-glare mask
US20010051826A1 (en) Intraocular lenses
US20020161434A1 (en) Moveable intraocular lens
AU2009210351B2 (en) Correction of higher order aberrations in intraocular lenses
EP1639398B1 (en) Intra-ocular lens or contact lens exhibiting large depth of focus
US7859769B2 (en) Optical method and system for extended depth of focus
US7341599B1 (en) Intraocular lens for correcting presbyopia
US6277146B1 (en) Glare-free intraocular lens and method for using the same
US20020087210A1 (en) Intraocular
CN102448404B (en) Masked intraocular implants and lenses

Legal Events

Date Code Title Description
AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, CA

Free format text: SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:014914/0692

Effective date: 20040625

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT,CAL

Free format text: SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:014914/0692

Effective date: 20040625

AS Assignment

Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME NO. 14914/0692;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:019111/0815

Effective date: 20070402

Owner name: ADVANCED MEDICAL OPTICS, INC.,CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME NO. 14914/0692;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:019111/0815

Effective date: 20070402

AS Assignment

Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHAO, HUAWEI;NGUYEN, NGUYEN Q.;TRAN, DUC;REEL/FRAME:019478/0964;SIGNING DATES FROM 20070625 TO 20070626

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NO

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:019501/0069

Effective date: 20070402

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT,NOR

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:019501/0069

Effective date: 20070402

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT;REEL/FRAME:022320/0427

Effective date: 20090225

Owner name: ADVANCED MEDICAL OPTICS, INC.,CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT;REEL/FRAME:022320/0427

Effective date: 20090225