US20050001389A1 - Horizontal balance control system of motor vehicle - Google Patents
Horizontal balance control system of motor vehicle Download PDFInfo
- Publication number
- US20050001389A1 US20050001389A1 US10/610,581 US61058103A US2005001389A1 US 20050001389 A1 US20050001389 A1 US 20050001389A1 US 61058103 A US61058103 A US 61058103A US 2005001389 A1 US2005001389 A1 US 2005001389A1
- Authority
- US
- United States
- Prior art keywords
- coupled
- hydraulic cylinder
- piston
- line
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G21/00—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G21/00—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
- B60G21/02—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G21/00—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
- B60G21/02—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
- B60G21/06—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid
- B60G21/067—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid between wheels on different axles on the same side of the vehicle, i.e. the left or the right side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G21/00—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
- B60G21/02—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
- B60G21/06—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid
- B60G21/073—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
Definitions
- the present invention relates to a suspension system of motor vehicle and more particularly to a horizontal balance control system of motor vehicle with improved characteristics.
- a car may shock strongly while running on a straight but rough road due to unevenness of road surface.
- An independent suspension system of wheels may lessen the effect of shocks and thus brings a degree of comfort to a driver and passenger(s). It is understood that the car body will incline slightly while a car is making a turn. The car will run forward a short distance after pressing the brake suddenly due to inertia. Further, driver and passenger(s) in the car will move backward suddenly while accelerating. At this time, the above undesirable effect can be substantially eliminated if there is a good restraint among wheels.
- the car can maintain a state of balance, the effect of shocks and jarring can be lessened to a minimum, the maneuverability of the car can be increased, driving safety can be greatly improved, and road conditions of straight roads and curve roads can be equally considered.
- shocks and jarring of a running car may bring a degree of discomfort to driver and passenger(s), cause one or more wheels to slightly suspend in the air, decrease maneuverability of the car, reduce output torque, and adversely affect driving safety.
- a good transmission system of a car can be compromised if a suspension system (including links, springs, shock absorbers, and anti-inclination bars) thereof is poor.
- a shock absorber is adapted to prevent a resonance from occurring on springs and increase a shock absorbing capability of a car.
- typical springs having a high degree of softness are preferred.
- strong springs in the car for accommodating the condition of making a turn. Otherwise, the car may incline significantly.
- an anti-inclination bar is adapted to decrease the inclination of a car while making a turn and increase the restraint of two axles in the same line.
- an increase of the restraint can adversely affect a degree of comfort of driver and passenger(s) while driving. In other words, they are contradictory.
- An object of the present invention is to provide a horizontal balance control system of motor vehicle comprising a pneumatic conveyor (or electromagnetic device) operable to actuate hydraulic devices, links, and other mechanical elements for generating a restraint force among wheels in the same line or not in the same line.
- a pneumatic conveyor or electromagnetic device
- opposite restraint forces of straight roads and curve roads can be equally considered.
- inclination, forward movement, and backward movement of the body of motor vehicle caused by making a turn, braking, and accelerating respectively are substantially eliminated.
- forces adapted to various road conditions can be generated, the restraint of wheels can be appropriately controlled, and poor maneuverability of an inclined motor vehicle due to centrifugal force when making a turn is greatly improved.
- a control means is operable to activate the pneumatic conveyor for outputting compressed gas to increase pressure of the third valve and enable wheels in the same line or not in the same line to rotate toward the same direction.
- FIG. 1 schematically depicts a first system configuration according to the invention
- FIG. 2 schematically depicts a portion of structure according to the invention
- FIG. 3 schematically depicts a second system configuration according to the invention
- FIG. 4 schematically depicts a first preferred embodiment according to the invention.
- FIG. 5 schematically depicts a second preferred embodiment according to the invention.
- the system comprises a pneumatic conveyor (or electromagnetic device) 10 which is operable to actuate hydraulic devices, links, and other mechanical elements for enabling wheels in the same line or wheels not in the same line to rotate toward the same direction and thus, overcoming irregularity of road surface.
- a pneumatic conveyor (or electromagnetic device) 10 which is operable to actuate hydraulic devices, links, and other mechanical elements for enabling wheels in the same line or wheels not in the same line to rotate toward the same direction and thus, overcoming irregularity of road surface.
- the pneumatic conveyor (or electromagnetic device) 10 is mounted in a suitable position of a car. At least one first valve 11 and a second valve 21 are provided at one end of the pneumatic conveyor (or electromagnetic device) 10 .
- a first line 111 is interconnected the first valve 11 and a first lower pneumatic cylinder 12 .
- One end of the first lower pneumatic cylinder 12 is coupled to a front right wheel suspension device (see FIG. 2 ).
- the first lower pneumatic cylinder 12 comprises an extended first piston 121 coupled to a first upper hydraulic cylinder 13 . Hydraulic fluid is stored in the first upper hydraulic cylinder 13 .
- the other end of the first upper hydraulic cylinder 13 is coupled to a front right portion of car body (not shown).
- a second line 112 is interconnected one end of the first upper hydraulic cylinder 13 and one end of a second upper hydraulic cylinder 14 .
- One end of the second upper hydraulic cylinder 14 is coupled to a front left portion of the car body (not shown). Hydraulic fluid is stored in the second upper hydraulic cylinder 14 .
- a third line 113 is interconnected the other end of the second upper hydraulic cylinder 14 and the other end of the first upper hydraulic cylinder 13 .
- the second upper hydraulic cylinder 14 comprises an extended second piston 141 coupled to one end of a second lower pneumatic cylinder 15 .
- the other end of the second lower pneumatic cylinder 15 is coupled to a front left wheel suspension device (see FIG. 2 ).
- a fourth line 114 is interconnected the other end of the second lower pneumatic cylinder 15 and the first valve 11 .
- a fifth line 115 is interconnected the second valve 21 and a third lower pneumatic cylinder 16 .
- One end of the third lower pneumatic cylinder 16 is coupled to a rear right wheel suspension device (see FIG. 2 ).
- the third lower pneumatic cylinder 16 comprises an extended third piston 161 coupled to a third upper hydraulic cylinder 17 . Hydraulic fluid is stored in the third upper hydraulic cylinder 17 .
- the other end of the third lower pneumatic cylinder 16 is coupled to a rear right portion of car body (not shown).
- a sixth line 116 is interconnected one end of the third upper hydraulic cylinder 17 and one end of a fourth upper hydraulic cylinder 18 .
- One end of the fourth upper hydraulic cylinder 18 is coupled to a rear left portion of the car body (not shown).
- Hydraulic fluid is stored in the fourth upper hydraulic cylinder 18 .
- a seventh line 117 is interconnected the other end of the fourth upper hydraulic cylinder 18 and the other end of the third upper hydraulic cylinder 17 .
- the fourth upper hydraulic cylinder 18 comprises an extended fourth piston 181 coupled to one end of a fourth lower pneumatic cylinder 19 .
- the other end of the fourth lower pneumatic cylinder 19 is coupled to a rear left wheel suspension device (see FIG. 2 ).
- An eighth line 118 is interconnected the other end of the fourth lower pneumatic cylinder 19 and the second valve 21 .
- one ends of the first, the second, the third, and the fourth lower pneumatic cylinders 12 , 15 , 16 , and 19 and all wheels are disposed in normal positions when a car is running on a straight road.
- a control device (not shown) is activated to cause the pneumatic conveyor (or electromagnetic device) 10 to activate.
- output compressed gas (in the case of pneumatic conveyor) flows from the first and the second valves 11 and 21 to the first and the second lower pneumatic cylinders 12 and 15 and the third and the fourth lower pneumatic cylinders 16 and 19 via the first and the fourth lines 111 and 114 and the fifth and eighth lines 115 and 118 respectively.
- pressure is built up in each of the first, the second, the third, and the fourth lower pneumatic cylinders 12 , 15 , 16 , and 19 .
- pressure of hydraulic fluid in each of the first, the second, the third, and the fourth upper hydraulic cylinders 13 , 14 , 17 , and 18 is increased by compressed gas in each of the first, the second, the third, and the fourth lower pneumatic cylinders 12 , 15 , 16 , and 19 respectively.
- the pressurized hydraulic fluid in each of the first, the second, the third, and the fourth upper hydraulic cylinders 13 , 14 , 17 , and 18 flows to the first, the second, the third, and the fourth pistons 121 , 141 , 161 , and 181 via the second, the third, the sixth, and the seventh lines 112 , 113 , 116 , and 117 respectively.
- a restraint force among the first, the second, the third, and the fourth pistons 121 , 141 , 161 , and 181 is generated.
- poor maneuverability of an inclined car due to centrifugal force when making a turn is greatly improved.
- FIG. 3 there is shown a horizontal balance control system of motor vehicle in accordance with a second configuration of the invention.
- one end of a fifth hydraulic cylinder 51 is coupled to the second line 112 .
- An eighth line 118 is interconnected the other end of the fifth hydraulic cylinder 51 and one end of the second upper hydraulic cylinder 14 .
- the third line 113 is interconnected the other end of the second upper hydraulic cylinder 14 and one end of a sixth hydraulic cylinder 52 .
- a ninth line 119 is interconnected the other end of the sixth hydraulic cylinder 52 and one end of the first upper hydraulic cylinder 13 .
- the fifth and the sixth hydraulic cylinders 51 and 52 are arranged side by side. Hydraulic fluid is stored in each of the fifth and the sixth hydraulic cylinders 51 and 52 .
- the fifth hydraulic cylinder 51 comprises an extended fifth piston 511 coupled to a seventh pneumatic cylinder 53 and the sixth hydraulic cylinder 52 comprises an extended sixth piston 521 coupled to the seventh pneumatic cylinder 53 respectively.
- a tenth line 311 is interconnected the seventh pneumatic cylinder 53 and a third valve 31 .
- the third valve 31 is in turn coupled to one end of the pneumatic conveyor (or electromagnetic device) 10 .
- the seventh pneumatic cylinder 53 comprises an extended seventh piston 531 coupled to an eighth hydraulic cylinder 54 . Hydraulic fluid is stored in the eighth hydraulic cylinder 54 .
- An eleventh line 541 is extended from one end of the eighth hydraulic cylinder 54 .
- a twelfth line 542 is extended from the other end of the eighth hydraulic cylinder 54 .
- the sixth line 116 is coupled to one end of a ninth hydraulic cylinder 55 .
- a thirteen line 551 is interconnected the other end of the ninth hydraulic cylinder 55 and one end of the fourth upper hydraulic cylinder 18 .
- the seventh line 117 is interconnected the other end of the fourth upper hydraulic cylinder 18 and one end of of a tenth hydraulic cylinder 56 .
- a fourteenth line 561 is interconnected the other end of the tenth hydraulic cylinder 56 and one end of the third upper hydraulic cylinder 17 .
- the ninth and the tenth hydraulic cylinders 55 and 56 are arranged side by side. Hydraulic fluid is stored in each of the ninth and the tenth hydraulic cylinders 55 and 56 .
- the ninth hydraulic cylinder 55 comprises an extended eighth piston 552 coupled to an eleventh pneumatic cylinder 57 and the tenth hydraulic cylinder 56 comprises an extended ninth piston 562 coupled to the eleventh pneumatic cylinder 57 respectively.
- a fifteenth line 571 is interconnected the eleventh pneumatic cylinder 57 and the other end of the third valve 31 .
- the eleventh pneumatic cylinder 57 comprises an extended tenth piston 572 coupled to a twelfth hydraulic cylinder 58 . Hydraulic fluid is stored in the twelfth hydraulic cylinder 58 .
- Two ends of the twelfth hydraulic cylinder 58 are coupled to the eleventh line 541 and the twelfth line 542 respectively.
- pressure of hydraulic fluid in each of the first, the second, the third, and the fourth upper hydraulic cylinders 13 , 14 , 17 , and 18 is increased by compressed gas in each of the first, the second, the third, and the fourth lower pneumatic cylinders 12 , 15 , 16 , and 19 respectively.
- the pressurized hydraulic fluid in each of the first, the second, the third, and the fourth upper hydraulic cylinders 13 , 14 , 17 , and 18 flows to the first, the second, the third, and the fourth pistons 121 , 141 , 161 , and 181 via the second, the third, the sixth, and the seventh lines 112 , 113 , 116 , and 117 respectively.
- the activated pneumatic conveyor (or electromagnetic device) 10 causes output compressed gas (in the case of pneumatic conveyor) to flow from the third valve 31 to the seventh and the eleventh pneumatic cylinders 53 and 57 via the tenth and the fifteenth lines 311 and 571 respectively.
- pressure is built up in each of the seventh and the eleventh pneumatic cylinders 53 and 57 .
- pressure of hydraulic fluid in each of the eighth and twelfth hydraulic cylinders 54 and 58 is increased by compressed gas in each of the seventh and the eleventh pneumatic cylinders 53 and 57 respectively.
- the pressurized hydraulic fluid in each of the eighth and twelfth hydraulic cylinders 54 and 58 flows to the seventh and the tenth pistons 531 and 572 via the eleventh and twelfth lines 541 and 542 respectively. As a result, a restraint force between the seventh and the tenth pistons 531 and 572 is generated. As an end, discomfort of driver and passenger(s) due to moving forward or backward while a car is braking or accelerating can be greatly improved.
- a gearbox 61 is interconnected two links 60 .
- Each link 60 is further coupled to either the first or the second piston 121 or 141 .
- the first and the second upper hydraulic cylinders 13 and 14 can be replaced by the above configuration.
- a restraint force between the first and the second pistons 121 and 141 is generated.
- the gearbox 61 is interconnected both links 60 .
- Each link 60 is further coupled to either the third or the fourth piston 161 or 181 (not shown).
- the third and the fourth upper hydraulic cylinders 17 and 18 can be replaced by the above configuration.
- a restraint force between the third and the fourth pistons 161 and 181 is generated.
- FIG. 5 there is shown a second preferred embodiment according to the invention.
- Two ends of one U-shaped link 70 are coupled to the first and the second pistons 121 and 141 respectively.
- Two ends of another U-shaped link 70 are coupled to the third and the fourth pistons 161 and 181 respectively.
- a bar 71 is perpendicularly coupled to each of the U-shaped links 70 .
- Another bar 72 is interconnected the other end of the bar 71 and a pair of aligned pneumatic cylinders 73 and 74 .
- the third valve 31 is interconnected the pneumatic cylinders 73 and 74 . As such, pressure is built up in each of the pneumatic cylinders 73 and 74 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
The present invention is to provide a horizontal balance control system of motor vehicle comprising a pneumatic conveyor (or electromagnetic device) operable to actuate hydraulic devices, links, and other mechanical elements for generating a restraint force among wheels in the same line or not in the same line, a control means is operable to activate the pneumatic conveyor for outputting compressed gas to increase pressure of a valve thereof and enable wheels in the same line or not in the same line to rotate toward the same direction. By utilizing this, discomfort of a driver and one or more passengers due to moving forward or backward while the motor vehicle is braking or accelerating is eliminated.
Description
- The present invention relates to a suspension system of motor vehicle and more particularly to a horizontal balance control system of motor vehicle with improved characteristics.
- Conventionally, a car may shock strongly while running on a straight but rough road due to unevenness of road surface. An independent suspension system of wheels may lessen the effect of shocks and thus brings a degree of comfort to a driver and passenger(s). It is understood that the car body will incline slightly while a car is making a turn. The car will run forward a short distance after pressing the brake suddenly due to inertia. Further, driver and passenger(s) in the car will move backward suddenly while accelerating. At this time, the above undesirable effect can be substantially eliminated if there is a good restraint among wheels. As an end, the car can maintain a state of balance, the effect of shocks and jarring can be lessened to a minimum, the maneuverability of the car can be increased, driving safety can be greatly improved, and road conditions of straight roads and curve roads can be equally considered. However, it is impossible of eliminating the above effect by the current suspension system. It is known that shocks and jarring of a running car may bring a degree of discomfort to driver and passenger(s), cause one or more wheels to slightly suspend in the air, decrease maneuverability of the car, reduce output torque, and adversely affect driving safety. Hence, a good transmission system of a car can be compromised if a suspension system (including links, springs, shock absorbers, and anti-inclination bars) thereof is poor.
- As designed, a shock absorber is adapted to prevent a resonance from occurring on springs and increase a shock absorbing capability of a car. For effectively absorbing shocks of road surface, typical springs having a high degree of softness are preferred. However, it is also desirable to employ strong springs in the car for accommodating the condition of making a turn. Otherwise, the car may incline significantly. Moreover, an anti-inclination bar is adapted to decrease the inclination of a car while making a turn and increase the restraint of two axles in the same line. However, an increase of the restraint can adversely affect a degree of comfort of driver and passenger(s) while driving. In other words, they are contradictory.
- Thus, it is desirable to provide a novel horizontal balance control system of motor vehicle in order to overcome the above drawbacks of the prior art.
- An object of the present invention is to provide a horizontal balance control system of motor vehicle comprising a pneumatic conveyor (or electromagnetic device) operable to actuate hydraulic devices, links, and other mechanical elements for generating a restraint force among wheels in the same line or not in the same line. By utilizing this, opposite restraint forces of straight roads and curve roads can be equally considered. Also, inclination, forward movement, and backward movement of the body of motor vehicle caused by making a turn, braking, and accelerating respectively are substantially eliminated. Moreover, forces adapted to various road conditions can be generated, the restraint of wheels can be appropriately controlled, and poor maneuverability of an inclined motor vehicle due to centrifugal force when making a turn is greatly improved. In a case that a motor vehicle is braking or accelerating pressure of first and second valves is increased for enabling wheels in the same line or not in the same line to rotate toward the same direction. At the same time, a control means is operable to activate the pneumatic conveyor for outputting compressed gas to increase pressure of the third valve and enable wheels in the same line or not in the same line to rotate toward the same direction. By utilizing this, discomfort of a driver and one or more passengers due to moving forward or backward while the motor vehicle is braking or accelerating is eliminated. Also, a horizontal balance of the body of the motor vehicle is well maintained. Moreover, various road conditions are considered for minimizing shocks and jarring generated while driving.
- The above and other objects, features and advantages of the present invention will become apparent from the following detailed description taken with the accompanying drawings.
-
FIG. 1 schematically depicts a first system configuration according to the invention; -
FIG. 2 schematically depicts a portion of structure according to the invention; -
FIG. 3 schematically depicts a second system configuration according to the invention; -
FIG. 4 schematically depicts a first preferred embodiment according to the invention; and -
FIG. 5 schematically depicts a second preferred embodiment according to the invention. - Referring to
FIGS. 1 and 2 , a horizontal balance control system of motor vehicle in accordance with a first configuration of the invention is shown. The system comprises a pneumatic conveyor (or electromagnetic device) 10 which is operable to actuate hydraulic devices, links, and other mechanical elements for enabling wheels in the same line or wheels not in the same line to rotate toward the same direction and thus, overcoming irregularity of road surface. As a result, forces adapted to various road conditions can be generated, the restraint of wheels can be appropriately controlled, and balance of the car can be obtained. - In the invention, the pneumatic conveyor (or electromagnetic device) 10 is mounted in a suitable position of a car. At least one
first valve 11 and asecond valve 21 are provided at one end of the pneumatic conveyor (or electromagnetic device) 10. Afirst line 111 is interconnected thefirst valve 11 and a first lowerpneumatic cylinder 12. One end of the first lowerpneumatic cylinder 12 is coupled to a front right wheel suspension device (seeFIG. 2 ). The first lowerpneumatic cylinder 12 comprises an extendedfirst piston 121 coupled to a first upperhydraulic cylinder 13. Hydraulic fluid is stored in the first upperhydraulic cylinder 13. The other end of the first upperhydraulic cylinder 13 is coupled to a front right portion of car body (not shown). Also, asecond line 112 is interconnected one end of the first upperhydraulic cylinder 13 and one end of a second upperhydraulic cylinder 14. One end of the second upperhydraulic cylinder 14 is coupled to a front left portion of the car body (not shown). Hydraulic fluid is stored in the second upperhydraulic cylinder 14. Athird line 113 is interconnected the other end of the second upperhydraulic cylinder 14 and the other end of the first upperhydraulic cylinder 13. The second upperhydraulic cylinder 14 comprises an extendedsecond piston 141 coupled to one end of a second lowerpneumatic cylinder 15. The other end of the second lowerpneumatic cylinder 15 is coupled to a front left wheel suspension device (seeFIG. 2 ). Afourth line 114 is interconnected the other end of the second lowerpneumatic cylinder 15 and thefirst valve 11. - In the invention, a
fifth line 115 is interconnected thesecond valve 21 and a third lowerpneumatic cylinder 16. One end of the third lowerpneumatic cylinder 16 is coupled to a rear right wheel suspension device (seeFIG. 2 ). The third lowerpneumatic cylinder 16 comprises an extendedthird piston 161 coupled to a third upperhydraulic cylinder 17. Hydraulic fluid is stored in the third upperhydraulic cylinder 17. The other end of the third lowerpneumatic cylinder 16 is coupled to a rear right portion of car body (not shown). Also, asixth line 116 is interconnected one end of the third upperhydraulic cylinder 17 and one end of a fourth upperhydraulic cylinder 18. One end of the fourth upperhydraulic cylinder 18 is coupled to a rear left portion of the car body (not shown). Hydraulic fluid is stored in the fourth upperhydraulic cylinder 18. Aseventh line 117 is interconnected the other end of the fourth upperhydraulic cylinder 18 and the other end of the third upperhydraulic cylinder 17. The fourth upperhydraulic cylinder 18 comprises an extendedfourth piston 181 coupled to one end of a fourth lowerpneumatic cylinder 19. The other end of the fourth lowerpneumatic cylinder 19 is coupled to a rear left wheel suspension device (seeFIG. 2 ). Aneighth line 118 is interconnected the other end of the fourth lowerpneumatic cylinder 19 and thesecond valve 21. - Configured as above, one ends of the first, the second, the third, and the fourth lower
pneumatic cylinders second valves pneumatic cylinders pneumatic cylinders fourth lines eighth lines pneumatic cylinders hydraulic cylinders pneumatic cylinders hydraulic cylinders fourth pistons seventh lines fourth pistons - Referring to
FIG. 3 , there is shown a horizontal balance control system of motor vehicle in accordance with a second configuration of the invention. In the system, one end of a fifthhydraulic cylinder 51 is coupled to thesecond line 112. Aneighth line 118 is interconnected the other end of the fifthhydraulic cylinder 51 and one end of the second upperhydraulic cylinder 14. Thethird line 113 is interconnected the other end of the second upperhydraulic cylinder 14 and one end of a sixthhydraulic cylinder 52. Aninth line 119 is interconnected the other end of the sixthhydraulic cylinder 52 and one end of the first upperhydraulic cylinder 13. The fifth and the sixthhydraulic cylinders hydraulic cylinders hydraulic cylinder 51 comprises an extendedfifth piston 511 coupled to a seventhpneumatic cylinder 53 and the sixthhydraulic cylinder 52 comprises an extendedsixth piston 521 coupled to the seventhpneumatic cylinder 53 respectively. Atenth line 311 is interconnected the seventhpneumatic cylinder 53 and athird valve 31. Thethird valve 31 is in turn coupled to one end of the pneumatic conveyor (or electromagnetic device) 10. Also, the seventhpneumatic cylinder 53 comprises an extendedseventh piston 531 coupled to an eighthhydraulic cylinder 54. Hydraulic fluid is stored in the eighthhydraulic cylinder 54. Aneleventh line 541 is extended from one end of the eighthhydraulic cylinder 54. Atwelfth line 542 is extended from the other end of the eighthhydraulic cylinder 54. - In the invention, the
sixth line 116 is coupled to one end of a ninthhydraulic cylinder 55. A thirteenline 551 is interconnected the other end of the ninthhydraulic cylinder 55 and one end of the fourth upperhydraulic cylinder 18. Theseventh line 117 is interconnected the other end of the fourth upperhydraulic cylinder 18 and one end of of a tenthhydraulic cylinder 56. Afourteenth line 561 is interconnected the other end of the tenthhydraulic cylinder 56 and one end of the third upperhydraulic cylinder 17. The ninth and the tenthhydraulic cylinders hydraulic cylinders hydraulic cylinder 55 comprises an extendedeighth piston 552 coupled to an eleventhpneumatic cylinder 57 and the tenthhydraulic cylinder 56 comprises an extendedninth piston 562 coupled to the eleventhpneumatic cylinder 57 respectively. Afifteenth line 571 is interconnected the eleventhpneumatic cylinder 57 and the other end of thethird valve 31. The eleventhpneumatic cylinder 57 comprises an extendedtenth piston 572 coupled to a twelfthhydraulic cylinder 58. Hydraulic fluid is stored in the twelfthhydraulic cylinder 58. Two ends of the twelfthhydraulic cylinder 58 are coupled to theeleventh line 541 and thetwelfth line 542 respectively. - Configured as above, in a case that a car is braking or accelerating the control device is activated to cause the pneumatic conveyor (or electromagnetic device) 10 to activate. Next, output compressed gas (in the case of pneumatic conveyor) flows from the first and the
second valves pneumatic cylinders pneumatic cylinders fourth lines eighth lines pneumatic cylinders hydraulic cylinders pneumatic cylinders hydraulic cylinders fourth pistons seventh lines fourth pistons third valve 31 to the seventh and the eleventhpneumatic cylinders fifteenth lines pneumatic cylinders hydraulic cylinders pneumatic cylinders hydraulic cylinders tenth pistons twelfth lines tenth pistons - Referring to
FIG. 4 , there is shown a first preferred embodiment according to the invention. Agearbox 61 is interconnected twolinks 60. Eachlink 60 is further coupled to either the first or thesecond piston hydraulic cylinders second pistons gearbox 61 is interconnected bothlinks 60. Eachlink 60 is further coupled to either the third or thefourth piston 161 or 181 (not shown). As such, the third and the fourth upperhydraulic cylinders fourth pistons - Referring to
FIG. 5 , there is shown a second preferred embodiment according to the invention. Two ends of oneU-shaped link 70 are coupled to the first and thesecond pistons U-shaped link 70 are coupled to the third and thefourth pistons bar 71 is perpendicularly coupled to each of theU-shaped links 70. Anotherbar 72 is interconnected the other end of thebar 71 and a pair of alignedpneumatic cylinders third valve 31 is interconnected thepneumatic cylinders pneumatic cylinders pneumatic cylinders bar 72. Hence, a restraint force between thebars 71 is generated. As an end, discomfort of driver and passenger(s) due to moving forward or backward while a car is braking or accelerating can be greatly improved. - While the invention has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of the invention set forth in the claims.
Claims (6)
1. A horizontal balance control system of a motor vehicle, comprising:
pneumatic conveyor means mounted in a predetermined position of the motor vehicle, the pneumatic conveyor means comprising:
at least one first valve and a second valve at one end thereof, a first line interconnected the first valve and a first lower pneumatic cylinder, one end of the first lower pneumatic cylinder being coupled to either front or rear right wheel suspension means, the first lower pneumatic cylinder including an extended first piston coupled to first conveying means, a fourth line interconnected the first valve and one end of the second lower pneumatic cylinder, the other end of the second lower pneumatic cylinder being coupled to either front or rear left wheel suspension means, and an extended second piston coupled to the conveying means; and
a fifth line interconnected the second valve and a third lower pneumatic cylinder, one end of the third lower pneumatic cylinder being coupled to either the rear or front right wheel suspension means, the third lower pneumatic cylinder including an extended third piston coupled to second conveying means, an eighth line interconnected the second valve and one end of a fourth lower pneumatic cylinder, the other end of the fourth lower pneumatic cylinder being coupled to either the rear or the front left wheel suspension means, and an extended fourth piston coupled to the second conveying means;
wherein the first conveying means comprises a first upper hydraulic cylinder coupled to the first piston, a second upper hydraulic cylinder coupled to the second piston, a second line interconnected one ends of the first and the second upper hydraulic cylinders, and a third line interconnected the other ends of the first and the second upper hydraulic cylinders;
the second conveying means comprises a third upper hydraulic cylinder coupled to the third piston, a fourth upper hydraulic cylinder coupled to the fourth piston, a sixth line interconnected one ends of the third and the fourth upper hydraulic cylinders, and a seventh line interconnected the other ends of the third and the fourth upper hydraulic cylinders; and
further comprising control means operable to activate the pneumatic conveyor means for outputting compressed gas, the compressed gas being adapted to flow from the first and the second valves to increase pressure in the first, the second, the third, and the fourth pistons respectively for generating a restraint force among the first, the second, the third, and the fourth pistons, and thereby increasing maneuverability of the inclined motor vehicle due to centrifugal force when making a turn.
2. The horizontal balance control system of claim 1 , wherein the pneumatic conveyor means is electromagnetic means.
3. The horizontal balance control system of claim 1 , wherein the first conveying means comprises two links and a gearbox is interconnected the links, each of the links being coupled to either the first or the second piston for generating a restraint force between the first and the second pistons.
4. The horizontal balance control system of claim 1 , wherein the second conveying means comprises two links and a gearbox is interconnected the links, each of the links being coupled to either the third or the fourth piston for generating a restraint force between the third and the fourth pistons.
5. The horizontal balance control system of claim 1 , further comprising a fifth hydraulic cylinder having one end coupled to the second line, an eighth line interconnected to the other end of the fifth hydraulic cylinder and one end of the second upper hydraulic cylinder, a sixth hydraulic cylinder, a third line interconnected the other end of the second upper hydraulic cylinder and one end of the sixth hydraulic cylinder, a ninth line interconnected the other end of the sixth hydraulic cylinder and one end of the first upper hydraulic cylinder, the fifth and the sixth hydraulic cylinders being arranged side by side, the fifth hydraulic cylinder including an extended fifth piston, a seventh pneumatic cylinder coupled to the fifth piston, the sixth hydraulic cylinder including an extended sixth piston coupled to the seventh pneumatic cylinder, a tenth line coupled to the seventh pneumatic cylinder, a third valve having one end coupled to the tenth line and the other end coupled to one end of the pneumatic conveyor means, the seventh pneumatic cylinder including an extended seventh piston, an eighth hydraulic cylinder coupled to the seventh piston, an eleventh line extended from one end of the eighth hydraulic cylinder, a twelfth line extended from the other end of the eighth hydraulic cylinder, a ninth hydraulic cylinder having one end coupled to the sixth line, a thirteen line interconnected the other end of the ninth hydraulic cylinder and one end of the fourth upper hydraulic cylinder, a tenth hydraulic cylinder having one end coupled to the seventh line, the other end of the seventh line being coupled to the other end of the fourth upper hydraulic cylinder, a fourteenth line interconnected the other end of the tenth hydraulic cylinder and one end of the third upper hydraulic cylinder, the ninth and the tenth hydraulic cylinders being arranged side by side, the ninth hydraulic cylinder including an extended eighth piston, an eleventh pneumatic cylinder coupled to the eighth piston, the tenth hydraulic cylinder including an extended ninth piston coupled to the eleventh pneumatic cylinder, a fifteenth line interconnected the eleventh pneumatic cylinder and the other end of the third valve, the eleventh hydraulic cylinder including an extended tenth piston, and a twelfth hydraulic cylinder coupled to the tenth piston, the twelfth hydraulic cylinder having two ends coupled to the eleventh line and the twelfth line respectively,
whereby discomfort of a driver and one or more passengers due to moving forward or backward while the motor vehicle is braking or accelerating is eliminated.
6. The horizontal balance control system of claim 5 , further comprising a first U-shaped link having two ends coupled to the first and the second pistons respectively, a second U-shaped link having two ends coupled to the third and the fourth pistons respectively, a first bar perpendicularly coupled to each of the first and the second U-shaped links, a second bar having one end coupled to the other end of the first bar, and a pair of aligned pneumatic cylinder means coupled to the other end of the second bar, the third valve being interconnected the pneumatic cylinders means wherein pressure is increased in each of the pneumatic cylinder means for activating the second bar and generating a restraint force between the first and the second bars, and thereby eliminating discomfort of the driver and the one or more passengers due to moving forward or backward while the motor vehicle is braking or accelerating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/610,581 US6834865B1 (en) | 2003-07-02 | 2003-07-02 | Horizontal balance control system of motor vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/610,581 US6834865B1 (en) | 2003-07-02 | 2003-07-02 | Horizontal balance control system of motor vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
US6834865B1 US6834865B1 (en) | 2004-12-28 |
US20050001389A1 true US20050001389A1 (en) | 2005-01-06 |
Family
ID=33518147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/610,581 Expired - Fee Related US6834865B1 (en) | 2003-07-02 | 2003-07-02 | Horizontal balance control system of motor vehicle |
Country Status (1)
Country | Link |
---|---|
US (1) | US6834865B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110084461A1 (en) * | 2008-05-21 | 2011-04-14 | Alan Bryn Bird | Vehicle suspension system |
CN103863045A (en) * | 2012-12-18 | 2014-06-18 | F·波尔希名誉工学博士公司 | Device for the compensation of body movements of a motor vehicle |
CN107089109A (en) * | 2017-03-29 | 2017-08-25 | 江苏大学 | A kind of hydraulic pressure interconnection suspension pipeline connection mode switching device and control method |
US20220203801A1 (en) * | 2019-05-22 | 2022-06-30 | Mario Rolando NAVARRETE | Land vehicle |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2268409T3 (en) * | 2002-06-04 | 2007-03-16 | Marthinus Wessel Rautenbach | SUSPENSION SYSTEM FOR A VEHICLE. |
US7665585B2 (en) | 2004-09-03 | 2010-02-23 | Alexandridis Alexander A | Vehicle suspension system and method for operating |
US8006988B1 (en) | 2008-02-06 | 2011-08-30 | Turner Roy A | Self-leveling air spring suspension system |
DE102008012704A1 (en) * | 2008-03-05 | 2009-09-10 | Deere & Company, Moline | Hydraulic suspension arrangement |
WO2009111826A1 (en) * | 2008-03-10 | 2009-09-17 | Kinetic Pty Ltd | Vehicle suspension arrangements & control |
US7946599B2 (en) * | 2009-03-11 | 2011-05-24 | Arvinmeritor Technology, Llc | Cross-linked variable piston air suspension |
US8789834B1 (en) * | 2011-08-29 | 2014-07-29 | Roy A. Turner | Self-leveling airbag suspension system |
CN113057072A (en) * | 2021-05-14 | 2021-07-02 | 重庆定凡农业开发有限公司 | Edible mushroom inoculation equipment |
US11738620B2 (en) * | 2022-01-13 | 2023-08-29 | Hoerbiger Automotive Komforsysteme Gmbh | Motor vehicle chassis |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2054765A (en) * | 1932-12-07 | 1936-09-15 | Seth Thomas Clock Company | Striking and chime clock |
US3475900A (en) * | 1967-08-23 | 1969-11-04 | Gen Electric | Alarm control mechanism |
US3520126A (en) * | 1968-10-15 | 1970-07-14 | Gen Time Corp | Striker movement for electrically driven clock |
US3702529A (en) * | 1970-05-11 | 1972-11-14 | Horlogerie La Vedette Soc Fab | Striking mechanisms for clocks |
US4036005A (en) * | 1976-03-29 | 1977-07-19 | Spartus Corporation | Clock with hour and quarter hour striking mechanism |
US4036004A (en) * | 1976-03-29 | 1977-07-19 | Spartus Corporation | Clock with striking mechanism |
US4358838A (en) * | 1979-08-22 | 1982-11-09 | Rhythm Watch Company Limited | Electronic timepiece with a time striking device |
US5480188A (en) * | 1991-07-02 | 1996-01-02 | Kinetic Limited | Vehicle suspension system |
US6318742B2 (en) * | 1997-07-25 | 2001-11-20 | Actuant Corporation | Hydro-pneumatic vehicle suspension system |
US6519517B1 (en) * | 1999-04-12 | 2003-02-11 | Kinetic Pty. Ltd. | Active ride control for a vehicle suspension system |
US6669216B1 (en) * | 1998-09-29 | 2003-12-30 | Zf Lenksysteme Gmbh | Hydropneumatic suspension system |
-
2003
- 2003-07-02 US US10/610,581 patent/US6834865B1/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2054765A (en) * | 1932-12-07 | 1936-09-15 | Seth Thomas Clock Company | Striking and chime clock |
US3475900A (en) * | 1967-08-23 | 1969-11-04 | Gen Electric | Alarm control mechanism |
US3520126A (en) * | 1968-10-15 | 1970-07-14 | Gen Time Corp | Striker movement for electrically driven clock |
US3702529A (en) * | 1970-05-11 | 1972-11-14 | Horlogerie La Vedette Soc Fab | Striking mechanisms for clocks |
US4036005A (en) * | 1976-03-29 | 1977-07-19 | Spartus Corporation | Clock with hour and quarter hour striking mechanism |
US4036004A (en) * | 1976-03-29 | 1977-07-19 | Spartus Corporation | Clock with striking mechanism |
US4358838A (en) * | 1979-08-22 | 1982-11-09 | Rhythm Watch Company Limited | Electronic timepiece with a time striking device |
US5480188A (en) * | 1991-07-02 | 1996-01-02 | Kinetic Limited | Vehicle suspension system |
US6318742B2 (en) * | 1997-07-25 | 2001-11-20 | Actuant Corporation | Hydro-pneumatic vehicle suspension system |
US6669216B1 (en) * | 1998-09-29 | 2003-12-30 | Zf Lenksysteme Gmbh | Hydropneumatic suspension system |
US6519517B1 (en) * | 1999-04-12 | 2003-02-11 | Kinetic Pty. Ltd. | Active ride control for a vehicle suspension system |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110084461A1 (en) * | 2008-05-21 | 2011-04-14 | Alan Bryn Bird | Vehicle suspension system |
US8317208B2 (en) * | 2008-05-21 | 2012-11-27 | Alan Bryn Bird | Vehicle suspension system |
CN103863045A (en) * | 2012-12-18 | 2014-06-18 | F·波尔希名誉工学博士公司 | Device for the compensation of body movements of a motor vehicle |
DE102012112466A1 (en) * | 2012-12-18 | 2014-07-03 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Device for compensating body movements |
US8950757B2 (en) | 2012-12-18 | 2015-02-10 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Device for the compensation of body movements of a motor vehicle |
DE102012112466B4 (en) | 2012-12-18 | 2023-07-06 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Device for compensating body movements |
CN107089109A (en) * | 2017-03-29 | 2017-08-25 | 江苏大学 | A kind of hydraulic pressure interconnection suspension pipeline connection mode switching device and control method |
US20220203801A1 (en) * | 2019-05-22 | 2022-06-30 | Mario Rolando NAVARRETE | Land vehicle |
Also Published As
Publication number | Publication date |
---|---|
US6834865B1 (en) | 2004-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6834865B1 (en) | Horizontal balance control system of motor vehicle | |
US6556907B1 (en) | Vehicle suspension system | |
GB2533477A (en) | Suspension systems for laterally tiltable multitrack vehicles | |
EP2669136B1 (en) | Rail vehicle unit | |
US7040631B2 (en) | Hydraulic suspension system for a vehicle | |
US7625000B2 (en) | Variable ratio floating suspension system | |
US6739608B2 (en) | Suspension system for a vehicle | |
US20110042908A1 (en) | Adjustable height suspension system | |
KR0185449B1 (en) | Suspension system for a car | |
CN105270124B (en) | Aluminum alloy rubber composite joint assembly | |
CN205468380U (en) | Passenger -cargo two fortune vehicles and suspension system thereof | |
CN201516795U (en) | Air suspension device | |
Liu | Recent innovations in vehicle suspension systems | |
KR20190002070A (en) | Rear damper for cargo vehicle | |
CN101665067A (en) | Air suspension balancing device | |
JPS6280111A (en) | Suspension controlling device | |
RU221512U1 (en) | Air suspension without shock absorbers | |
JP4483701B2 (en) | Hydraulic suspension system for multi-axis vehicles | |
KR200150272Y1 (en) | Suspension for vehicle | |
JPH09272320A (en) | Axle type suspension device | |
CN201484110U (en) | Air suspension balancing device | |
KR100264655B1 (en) | Front lower arm in suspension | |
KR20040006905A (en) | Suspension for vehicles | |
KR100267652B1 (en) | Shock absorbing device of tractor | |
KR100290384B1 (en) | Suspension of vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20161228 |