US20040266748A1 - Photosensitizing carbamate derivatives - Google Patents
Photosensitizing carbamate derivatives Download PDFInfo
- Publication number
- US20040266748A1 US20040266748A1 US10/491,528 US49152804A US2004266748A1 US 20040266748 A1 US20040266748 A1 US 20040266748A1 US 49152804 A US49152804 A US 49152804A US 2004266748 A1 US2004266748 A1 US 2004266748A1
- Authority
- US
- United States
- Prior art keywords
- residue
- mono
- alkyl
- ocon
- aryl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003504 photosensitizing agent Substances 0.000 title claims description 32
- 150000004657 carbamic acid derivatives Chemical class 0.000 title abstract description 42
- 230000002165 photosensitisation Effects 0.000 title 1
- 208000024172 Cardiovascular disease Diseases 0.000 claims abstract description 17
- 208000017520 skin disease Diseases 0.000 claims abstract 16
- -1 heterohaloalkyl Chemical group 0.000 claims description 326
- 150000001875 compounds Chemical class 0.000 claims description 241
- 125000003118 aryl group Chemical group 0.000 claims description 171
- 125000000623 heterocyclic group Chemical group 0.000 claims description 105
- 125000001188 haloalkyl group Chemical group 0.000 claims description 101
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 101
- 125000000524 functional group Chemical group 0.000 claims description 99
- 150000002500 ions Chemical class 0.000 claims description 98
- 125000001072 heteroaryl group Chemical group 0.000 claims description 97
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 89
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 84
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 claims description 80
- 150000001413 amino acids Chemical class 0.000 claims description 76
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 73
- 125000000217 alkyl group Chemical group 0.000 claims description 63
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 56
- 229910052736 halogen Inorganic materials 0.000 claims description 54
- 150000002367 halogens Chemical class 0.000 claims description 53
- 239000002253 acid Substances 0.000 claims description 45
- 150000002148 esters Chemical class 0.000 claims description 44
- 150000003839 salts Chemical class 0.000 claims description 39
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 38
- 150000001408 amides Chemical class 0.000 claims description 36
- 201000010099 disease Diseases 0.000 claims description 35
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 32
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical compound [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 claims description 30
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 30
- 125000001424 substituent group Chemical group 0.000 claims description 29
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 229910021645 metal ion Inorganic materials 0.000 claims description 25
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 claims description 25
- 239000002207 metabolite Substances 0.000 claims description 24
- 239000012453 solvate Substances 0.000 claims description 24
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 23
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 23
- 150000001768 cations Chemical class 0.000 claims description 22
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 claims description 22
- 230000001225 therapeutic effect Effects 0.000 claims description 22
- HRGDZIGMBDGFTC-UHFFFAOYSA-N platinum(2+) Chemical compound [Pt+2] HRGDZIGMBDGFTC-UHFFFAOYSA-N 0.000 claims description 21
- 229940002612 prodrug Drugs 0.000 claims description 21
- 239000000651 prodrug Substances 0.000 claims description 21
- 125000003107 substituted aryl group Chemical group 0.000 claims description 21
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims description 20
- 150000001356 alkyl thiols Chemical group 0.000 claims description 20
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 19
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 19
- CKHJYUSOUQDYEN-UHFFFAOYSA-N gallium(3+) Chemical compound [Ga+3] CKHJYUSOUQDYEN-UHFFFAOYSA-N 0.000 claims description 19
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 19
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 18
- 206010064930 age-related macular degeneration Diseases 0.000 claims description 17
- 208000002780 macular degeneration Diseases 0.000 claims description 17
- 206010055665 Corneal neovascularisation Diseases 0.000 claims description 16
- 201000000159 corneal neovascularization Diseases 0.000 claims description 16
- 239000003937 drug carrier Substances 0.000 claims description 16
- 238000001914 filtration Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 14
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 claims description 14
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 14
- 125000006239 protecting group Chemical group 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- 125000003545 alkoxy group Chemical group 0.000 claims description 12
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 12
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 12
- 125000000304 alkynyl group Chemical group 0.000 claims description 11
- 125000004104 aryloxy group Chemical group 0.000 claims description 11
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 10
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 claims description 10
- 125000003342 alkenyl group Chemical group 0.000 claims description 10
- 125000005194 alkoxycarbonyloxy group Chemical group 0.000 claims description 10
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 claims description 10
- 125000005199 aryl carbonyloxy group Chemical group 0.000 claims description 10
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 claims description 10
- 125000005200 aryloxy carbonyloxy group Chemical group 0.000 claims description 10
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 claims description 10
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 claims description 10
- 125000004438 haloalkoxy group Chemical group 0.000 claims description 10
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 claims description 10
- 239000012948 isocyanate Substances 0.000 claims description 10
- 150000002513 isocyanates Chemical class 0.000 claims description 10
- HHACNQLZWJFHIC-UHFFFAOYSA-N isocyano cyanate Chemical compound [C-]#[N+]OC#N HHACNQLZWJFHIC-UHFFFAOYSA-N 0.000 claims description 10
- 150000002540 isothiocyanates Chemical class 0.000 claims description 10
- 229920000570 polyether Polymers 0.000 claims description 10
- 125000005017 substituted alkenyl group Chemical group 0.000 claims description 10
- 125000004426 substituted alkynyl group Chemical group 0.000 claims description 10
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 claims description 10
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 10
- 238000001727 in vivo Methods 0.000 claims description 9
- 230000009467 reduction Effects 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 206010034972 Photosensitivity reaction Diseases 0.000 claims description 6
- 208000007578 phototoxic dermatitis Diseases 0.000 claims description 6
- 231100000018 phototoxicity Toxicity 0.000 claims description 6
- 239000008194 pharmaceutical composition Substances 0.000 claims 75
- 208000010412 Glaucoma Diseases 0.000 claims 15
- 208000001344 Macular Edema Diseases 0.000 claims 15
- 206010025415 Macular oedema Diseases 0.000 claims 15
- 206010029113 Neovascularisation Diseases 0.000 claims 15
- 206010036346 Posterior capsule opacification Diseases 0.000 claims 15
- 206010038915 Retinitis viral Diseases 0.000 claims 15
- 206010038934 Retinopathy proliferative Diseases 0.000 claims 15
- 208000024519 eye neoplasm Diseases 0.000 claims 15
- 201000010230 macular retinal edema Diseases 0.000 claims 15
- 201000008106 ocular cancer Diseases 0.000 claims 15
- 238000001356 surgical procedure Methods 0.000 claims 15
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 claims 4
- 230000004071 biological effect Effects 0.000 claims 2
- 238000003776 cleavage reaction Methods 0.000 claims 2
- 230000002255 enzymatic effect Effects 0.000 claims 2
- 230000007017 scission Effects 0.000 claims 2
- 238000002428 photodynamic therapy Methods 0.000 abstract description 27
- 239000000203 mixture Substances 0.000 abstract description 21
- 230000002526 effect on cardiovascular system Effects 0.000 abstract 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 348
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 180
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 120
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 106
- 239000000243 solution Substances 0.000 description 79
- 238000006243 chemical reaction Methods 0.000 description 68
- APTUSGMALOMQQL-UHFFFAOYSA-N chembl2029624 Chemical compound O=C1C(OC)=C2C(C(C)=O)=C(C)CC3=C(OC)C(=O)C4=C(O)C=C(OC)C5=C4C3=C2C2=C1C(O)=CC(OC)=C25 APTUSGMALOMQQL-UHFFFAOYSA-N 0.000 description 66
- 229940024606 amino acid Drugs 0.000 description 63
- 235000001014 amino acid Nutrition 0.000 description 63
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 61
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 59
- 150000004032 porphyrins Chemical class 0.000 description 57
- 239000000047 product Substances 0.000 description 50
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 48
- 238000004440 column chromatography Methods 0.000 description 47
- 239000000741 silica gel Substances 0.000 description 47
- 229910002027 silica gel Inorganic materials 0.000 description 47
- 239000011541 reaction mixture Substances 0.000 description 46
- KGHNSNSWRMJVND-UHFFFAOYSA-N Hypocrellin Natural products COC1=CC(=O)C2=C3C4C(C(C(=O)C)C(C)(O)Cc5c(OC)c(O)c6C(=O)C=C(OC)C(=C13)c6c45)C(=C2O)OC KGHNSNSWRMJVND-UHFFFAOYSA-N 0.000 description 37
- SBMXTMAIKRQSQE-UHFFFAOYSA-N Hypocrellin C Natural products O=C1C=C(OC)C2=C(C3=C45)C(OC)=CC(=O)C3=C(O)C(OC)=C4C(C(C)=O)=C(C)CC3=C5C2=C1C(O)=C3OC SBMXTMAIKRQSQE-UHFFFAOYSA-N 0.000 description 36
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 31
- 230000015572 biosynthetic process Effects 0.000 description 30
- 238000003786 synthesis reaction Methods 0.000 description 28
- 239000011701 zinc Substances 0.000 description 25
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 24
- 206010028980 Neoplasm Diseases 0.000 description 24
- 238000011282 treatment Methods 0.000 description 24
- 229910052725 zinc Inorganic materials 0.000 description 24
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 23
- 229930187593 rose bengal Natural products 0.000 description 23
- 229940081623 rose bengal Drugs 0.000 description 23
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 23
- BQJKVFXDDMQLBE-UHFFFAOYSA-N shiraiachrome A Natural products COC1=C2C3=C(OC)C=C(O)C4=C3C3=C5C(CC(C)(O)C(C(C)=O)C3=C(OC)C4=O)=C(OC)C(=O)C(C(O)=C1)=C25 BQJKVFXDDMQLBE-UHFFFAOYSA-N 0.000 description 23
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 22
- 229940079593 drug Drugs 0.000 description 20
- 239000003814 drug Substances 0.000 description 20
- OYINILBBZAQBEV-UWJYYQICSA-N (17s,18s)-18-(2-carboxyethyl)-20-(carboxymethyl)-12-ethenyl-7-ethyl-3,8,13,17-tetramethyl-17,18,22,23-tetrahydroporphyrin-2-carboxylic acid Chemical class N1C2=C(C)C(C=C)=C1C=C(N1)C(C)=C(CC)C1=CC(C(C)=C1C(O)=O)=NC1=C(CC(O)=O)C([C@@H](CCC(O)=O)[C@@H]1C)=NC1=C2 OYINILBBZAQBEV-UWJYYQICSA-N 0.000 description 18
- 150000002678 macrocyclic compounds Chemical class 0.000 description 18
- OYCCHIPXJIFIKN-VTFBQBCFSA-N purpurin 18 Chemical compound N1C(C=C2C(=C(CC)C(C=C3C(=C4C(=C5C(=O)OC4=O)N3)C)=N2)C=O)=C(C=C)C(C)=C1C=C1C(C)C(CCC(=O)OCC(/C)=C/CCC(C)CCCC(C)CCCC(C)CC)C5=N1 OYCCHIPXJIFIKN-VTFBQBCFSA-N 0.000 description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- 150000004035 chlorins Chemical class 0.000 description 15
- 150000004702 methyl esters Chemical class 0.000 description 15
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 14
- RFSUNEUAIZKAJO-VRPWFDPXSA-N D-fructofuranose Chemical compound OC[C@H]1OC(O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-VRPWFDPXSA-N 0.000 description 13
- YDLBDQPPRTYAIG-UHFFFAOYSA-N hypocrellin A Natural products COC1C2CC(C)(O)C(C(=O)C)C3=C(OC)C(=O)c4c(O)cc(OC)c5c6c(OC)cc(O)c(C1=O)c6c2c3c45 YDLBDQPPRTYAIG-UHFFFAOYSA-N 0.000 description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- KSFOVUSSGSKXFI-GAQDCDSVSA-N CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O Chemical compound CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O KSFOVUSSGSKXFI-GAQDCDSVSA-N 0.000 description 12
- 229910019142 PO4 Inorganic materials 0.000 description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 12
- ABCGFHPGHXSVKI-UHFFFAOYSA-O meso-tetrakis(n-methyl-4-pyridyl)porphine(4+) Chemical compound C1=C[N+](C)=CC=C1C(C1=CC=C(N1)C(C=1C=C[N+](C)=CC=1)=C1C=CC(=N1)C(C=1C=C[N+](C)=CC=1)=C1C=CC(N1)=C1C=2C=C[N+](C)=CC=2)=C2N=C1C=C2 ABCGFHPGHXSVKI-UHFFFAOYSA-O 0.000 description 12
- 235000021317 phosphate Nutrition 0.000 description 12
- 229950003776 protoporphyrin Drugs 0.000 description 12
- GIAFURWZWWWBQT-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanol Chemical compound NCCOCCO GIAFURWZWWWBQT-UHFFFAOYSA-N 0.000 description 11
- MHIITNFQDPFSES-UHFFFAOYSA-N 25,26,27,28-tetrazahexacyclo[16.6.1.13,6.18,11.113,16.019,24]octacosa-1(25),2,4,6,8(27),9,11,13,15,17,19,21,23-tridecaene Chemical class N1C(C=C2C3=CC=CC=C3C(C=C3NC(=C4)C=C3)=N2)=CC=C1C=C1C=CC4=N1 MHIITNFQDPFSES-UHFFFAOYSA-N 0.000 description 11
- 230000009102 absorption Effects 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 11
- 229910052733 gallium Inorganic materials 0.000 description 11
- 230000004060 metabolic process Effects 0.000 description 11
- OJURWUUOVGOHJZ-UHFFFAOYSA-N methyl 2-[(2-acetyloxyphenyl)methyl-[2-[(2-acetyloxyphenyl)methyl-(2-methoxy-2-oxoethyl)amino]ethyl]amino]acetate Chemical compound C=1C=CC=C(OC(C)=O)C=1CN(CC(=O)OC)CCN(CC(=O)OC)CC1=CC=CC=C1OC(C)=O OJURWUUOVGOHJZ-UHFFFAOYSA-N 0.000 description 11
- JZRYQZJSTWVBBD-UHFFFAOYSA-N pentaporphyrin i Chemical compound N1C(C=C2NC(=CC3=NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 JZRYQZJSTWVBBD-UHFFFAOYSA-N 0.000 description 11
- 108020003175 receptors Proteins 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 10
- 150000004036 bacteriochlorins Chemical class 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- MXLWQNCWIIZUQT-UHFFFAOYSA-N isocercosporin Natural products O=C1C=C2OCOC3=CC(=O)C4=C5C3=C2C2=C1C(O)=C(OC)C(CC(C)O)=C2C5=C(CC(C)O)C(OC)=C4O MXLWQNCWIIZUQT-UHFFFAOYSA-N 0.000 description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 10
- 239000010452 phosphate Substances 0.000 description 10
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 10
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 9
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 125000005554 pyridyloxy group Chemical group 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- YNHJECZULSZAQK-UHFFFAOYSA-N tetraphenylporphyrin Chemical compound C1=CC(C(=C2C=CC(N2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3N2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 YNHJECZULSZAQK-UHFFFAOYSA-N 0.000 description 9
- 229930192474 thiophene Natural products 0.000 description 9
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- UJKPHYRXOLRVJJ-MLSVHJFASA-N CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C Chemical compound CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C UJKPHYRXOLRVJJ-MLSVHJFASA-N 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 125000003282 alkyl amino group Chemical group 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- HUVXQFBFIFIDDU-UHFFFAOYSA-N aluminum phthalocyanine Chemical compound [Al+3].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 HUVXQFBFIFIDDU-UHFFFAOYSA-N 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- SURLGNKAQXKNSP-DBLYXWCISA-N chlorin Chemical compound C\1=C/2\N/C(=C\C3=N/C(=C\C=4NC(/C=C\5/C=CC/1=N/5)=CC=4)/C=C3)/CC\2 SURLGNKAQXKNSP-DBLYXWCISA-N 0.000 description 8
- 125000004122 cyclic group Chemical group 0.000 description 8
- 239000000975 dye Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 125000005843 halogen group Chemical group 0.000 description 8
- 125000005842 heteroatom Chemical group 0.000 description 8
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical compound N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 8
- AZJPTIGZZTZIDR-UHFFFAOYSA-L rose bengal Chemical compound [K+].[K+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 AZJPTIGZZTZIDR-UHFFFAOYSA-L 0.000 description 8
- HMSMOZAIMDNRBW-UHFFFAOYSA-N 100572-96-1 Chemical compound C1=CC2=NC1=CC=C(N1)C=CC1=C(N1)C=CC1=CC=C1C=CC2=N1 HMSMOZAIMDNRBW-UHFFFAOYSA-N 0.000 description 7
- YOSZEPWSVKKQOV-UHFFFAOYSA-N 12h-benzo[a]phenoxazine Chemical compound C1=CC=CC2=C3NC4=CC=CC=C4OC3=CC=C21 YOSZEPWSVKKQOV-UHFFFAOYSA-N 0.000 description 7
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 7
- UZVGSSNIUNSOFA-UHFFFAOYSA-N dibenzofuran-1-carboxylic acid Chemical compound O1C2=CC=CC=C2C2=C1C=CC=C2C(=O)O UZVGSSNIUNSOFA-UHFFFAOYSA-N 0.000 description 7
- 150000004037 isobacteriochlorins Chemical class 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 210000002381 plasma Anatomy 0.000 description 7
- BBNQQADTFFCFGB-UHFFFAOYSA-N purpurin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC(O)=C3C(=O)C2=C1 BBNQQADTFFCFGB-UHFFFAOYSA-N 0.000 description 7
- 231100000430 skin reaction Toxicity 0.000 description 7
- PNNNRSAQSRJVSB-UHFFFAOYSA-N 2,3,4,5-tetrahydroxyhexanal Chemical compound CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- QBPFLULOKWLNNW-UHFFFAOYSA-N chrysazin Chemical compound O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=CC=C2O QBPFLULOKWLNNW-UHFFFAOYSA-N 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 6
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 6
- MPGWGYQTRSNGDD-UHFFFAOYSA-N hypericin Chemical compound OC1=CC(O)=C(C2=O)C3=C1C1C(O)=CC(=O)C(C4=O)=C1C1=C3C3=C2C(O)=CC(C)=C3C2=C1C4=C(O)C=C2C MPGWGYQTRSNGDD-UHFFFAOYSA-N 0.000 description 6
- PHOKTTKFQUYZPI-UHFFFAOYSA-N hypericin Natural products Cc1cc(O)c2c3C(=O)C(=Cc4c(O)c5c(O)cc(O)c6c7C(=O)C(=Cc8c(C)c1c2c(c78)c(c34)c56)O)O PHOKTTKFQUYZPI-UHFFFAOYSA-N 0.000 description 6
- 229940005608 hypericin Drugs 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 125000002950 monocyclic group Chemical group 0.000 description 6
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 6
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 6
- SSKVDVBQSWQEGJ-UHFFFAOYSA-N pseudohypericin Natural products C12=C(O)C=C(O)C(C(C=3C(O)=CC(O)=C4C=33)=O)=C2C3=C2C3=C4C(C)=CC(O)=C3C(=O)C3=C(O)C=C(O)C1=C32 SSKVDVBQSWQEGJ-UHFFFAOYSA-N 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- ZYGZAHUNAGVTEC-YBTJCZCISA-N (3r,4s,5r,6r)-2,3,4,5-tetramethoxy-6-(methoxymethyl)oxane Chemical compound COC[C@H]1OC(OC)[C@H](OC)[C@@H](OC)[C@@H]1OC ZYGZAHUNAGVTEC-YBTJCZCISA-N 0.000 description 5
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 5
- 229920002307 Dextran Polymers 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical group C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 5
- APAJFZPFBHMFQR-UHFFFAOYSA-N anthraflavic acid Chemical compound OC1=CC=C2C(=O)C3=CC(O)=CC=C3C(=O)C2=C1 APAJFZPFBHMFQR-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 229930002875 chlorophyll Natural products 0.000 description 5
- 235000019804 chlorophyll Nutrition 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 229960003569 hematoporphyrin Drugs 0.000 description 5
- VANSZAOQCMTTPB-SETSBSEESA-N hypocrellin Chemical compound C1[C@@](C)(O)[C@@H](C(C)=O)C2=C(OC)C(O)=C3C(=O)C=C(OC)C4=C3C2=C2C3=C4C(OC)=CC(=O)C3=C(O)C(OC)=C21 VANSZAOQCMTTPB-SETSBSEESA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- HUXSMOZWPXDRTN-UHFFFAOYSA-N methyl 16-ethenyl-11-ethyl-4-hydroxy-22-(3-methoxy-3-oxopropyl)-12,17,21,26-tetramethyl-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,4,6,8(26),9,11,13(25),14,16,18(24),19-undecaene-3-carboxylate Chemical compound CCC1=C(C2=NC1=CC3=C(C4=C(C(C(=C5C(C(C(=CC6=NC(=C2)C(=C6C)C=C)N5)C)CCC(=O)OC)C4=N3)C(=O)OC)O)C)C HUXSMOZWPXDRTN-UHFFFAOYSA-N 0.000 description 5
- LOXJDOVVTYSVAS-UHFFFAOYSA-N methyl 3-[8,13-bis(1-hydroxyethyl)-18-(3-methoxy-3-oxopropyl)-3,7,12,17-tetramethyl-22,23-dihydroporphyrin-2-yl]propanoate Chemical compound N1C(C=C2C(=C(C(C)O)C(=CC=3C(=C(CCC(=O)OC)C(=C4)N=3)C)N2)C)=C(C(C)O)C(C)=C1C=C1C(C)=C(CCC(=O)OC)C4=N1 LOXJDOVVTYSVAS-UHFFFAOYSA-N 0.000 description 5
- 230000037311 normal skin Effects 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 5
- 238000001126 phototherapy Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- MLMVLVJMKDPYBM-UHFFFAOYSA-N pseudoisopsoralene Natural products C1=C2C=COC2=C2OC(=O)C=CC2=C1 MLMVLVJMKDPYBM-UHFFFAOYSA-N 0.000 description 5
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical group O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 125000000547 substituted alkyl group Chemical group 0.000 description 5
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 5
- 229940124530 sulfonamide Drugs 0.000 description 5
- BZVNQJMWJJOFFB-QMMISXSQSA-N (5e,6e)-5,6-bis(phenylhydrazinylidene)hexane-1,2,3,4-tetrol Chemical compound C=1C=CC=CC=1N/N=C(/C(O)C(O)C(O)CO)\C=N\NC1=CC=CC=C1 BZVNQJMWJJOFFB-QMMISXSQSA-N 0.000 description 4
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- VCKPUUFAIGNJHC-UHFFFAOYSA-N 3-hydroxykynurenine Chemical compound OC(=O)C(N)CC(=O)C1=CC=CC(O)=C1N VCKPUUFAIGNJHC-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- SBJKKFFYIZUCET-JLAZNSOCSA-N Dehydro-L-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(=O)C1=O SBJKKFFYIZUCET-JLAZNSOCSA-N 0.000 description 4
- 238000005698 Diels-Alder reaction Methods 0.000 description 4
- 229930091371 Fructose Natural products 0.000 description 4
- 239000005715 Fructose Substances 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical group C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 241000364051 Pima Species 0.000 description 4
- XQAXGZLFSSPBMK-UHFFFAOYSA-M [7-(dimethylamino)phenothiazin-3-ylidene]-dimethylazanium;chloride;trihydrate Chemical class O.O.O.[Cl-].C1=CC(=[N+](C)C)C=C2SC3=CC(N(C)C)=CC=C3N=C21 XQAXGZLFSSPBMK-UHFFFAOYSA-M 0.000 description 4
- LBGCRGLFTKVXDZ-UHFFFAOYSA-M ac1mc2aw Chemical compound [Al+3].[Cl-].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 LBGCRGLFTKVXDZ-UHFFFAOYSA-M 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 4
- RGCKGOZRHPZPFP-UHFFFAOYSA-N alizarin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 4
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- KWOZSBGNAHVCKG-WFDCHTCOSA-N bacteriopheophytin a Chemical compound N1C(C=C2[C@H]([C@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)C(=N2)C2=C3NC(=C4)C(C)=C3C(=O)[C@@H]2C(=O)OC)C)=C(C)C(C(C)=O)=C1C=C1[C@H](C)[C@@H](CC)C4=N1 KWOZSBGNAHVCKG-WFDCHTCOSA-N 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 125000005605 benzo group Chemical group 0.000 description 4
- 125000002619 bicyclic group Chemical group 0.000 description 4
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 4
- WLZRMCYVCSSEQC-UHFFFAOYSA-N cadmium(2+) Chemical compound [Cd+2] WLZRMCYVCSSEQC-UHFFFAOYSA-N 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- JWFLIMIGORGZMQ-UHFFFAOYSA-N cercosporin Natural products COC1=C(CC(C)O)c2c3c(CC(C)O)c(OC)c(O)c4C(=O)C=C5OCOc6cc(O)c(C1=O)c2c6c5c34 JWFLIMIGORGZMQ-UHFFFAOYSA-N 0.000 description 4
- 238000007385 chemical modification Methods 0.000 description 4
- 210000004087 cornea Anatomy 0.000 description 4
- 239000012458 free base Substances 0.000 description 4
- 229910003472 fullerene Inorganic materials 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- SLLLYKPHDYTLSL-RDPSFJRHSA-N methyl (17S,18S)-12-ethenyl-7-ethyl-20-(2-methoxy-2-oxoethyl)-18-(3-methoxy-3-oxopropyl)-3,8,13,17-tetramethyl-17,18,22,23-tetrahydroporphyrin-2-carboxylate Chemical compound N1C2=C(C)C(C=C)=C1C=C(N1)C(C)=C(CC)C1=CC(C(C)=C1C(=O)OC)=NC1=C(CC(=O)OC)C([C@@H](CCC(=O)OC)[C@@H]1C)=NC1=C2 SLLLYKPHDYTLSL-RDPSFJRHSA-N 0.000 description 4
- NYIODHFKZFKMSU-UHFFFAOYSA-N n,n-bis(methylamino)ethanamine Chemical compound CCN(NC)NC NYIODHFKZFKMSU-UHFFFAOYSA-N 0.000 description 4
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 4
- NYXANDABNMOLBL-UHFFFAOYSA-N nt2 purpurin Chemical compound CCC1C2(CC)C(C(=O)OCC)=CC(C3=NC(C(=C3CC)CC)=C3)=C2N=C1C=C(N1)C(CC)=C(CC)C1=CC1=C(CC)C(CC)=C3N1 NYXANDABNMOLBL-UHFFFAOYSA-N 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 4
- 150000004033 porphyrin derivatives Chemical class 0.000 description 4
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 4
- 125000000168 pyrrolyl group Chemical group 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- JACPFCQFVIAGDN-UHFFFAOYSA-M sipc iv Chemical class [OH-].[Si+4].CN(C)CCC[Si](C)(C)[O-].C=1C=CC=C(C(N=C2[N-]C(C3=CC=CC=C32)=N2)=N3)C=1C3=CC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 JACPFCQFVIAGDN-UHFFFAOYSA-M 0.000 description 4
- 229950005143 sitosterol Drugs 0.000 description 4
- 239000012279 sodium borohydride Substances 0.000 description 4
- 229910000033 sodium borohydride Inorganic materials 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 238000004809 thin layer chromatography Methods 0.000 description 4
- 150000003577 thiophenes Chemical class 0.000 description 4
- SYRHIZPPCHMRIT-UHFFFAOYSA-N tin(4+) Chemical compound [Sn+4] SYRHIZPPCHMRIT-UHFFFAOYSA-N 0.000 description 4
- YTZALCGQUPRCGW-ZSFNYQMMSA-N verteporfin Chemical compound N1C(C=C2C(=C(CCC(O)=O)C(C=C3C(CCC(=O)OC)=C(C)C(N3)=C3)=N2)C)=C(C=C)C(C)=C1C=C1C2=CC=C(C(=O)OC)[C@@H](C(=O)OC)[C@@]2(C)C3=N1 YTZALCGQUPRCGW-ZSFNYQMMSA-N 0.000 description 4
- 229940061392 visudyne Drugs 0.000 description 4
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 3
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 3
- BTLXPCBPYBNQNR-UHFFFAOYSA-N 1-hydroxyanthraquinone Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2O BTLXPCBPYBNQNR-UHFFFAOYSA-N 0.000 description 3
- PGIGZWJIJSINOD-UHFFFAOYSA-N 12h-benzo[a]phenothiazine Chemical compound C1=CC=CC2=C3NC4=CC=CC=C4SC3=CC=C21 PGIGZWJIJSINOD-UHFFFAOYSA-N 0.000 description 3
- VAJVGAQAYOAJQI-UHFFFAOYSA-N 3-[18-(2-carboxylatoethyl)-3,8,13,17-tetramethyl-22,23-dihydroporphyrin-21,24-diium-2-yl]propanoate Chemical compound N1C(C=C2C(C)=CC(N2)=CC=2C(=C(CCC(O)=O)C(=C3)N=2)C)=CC(C)=C1C=C1C(C)=C(CCC(O)=O)C3=N1 VAJVGAQAYOAJQI-UHFFFAOYSA-N 0.000 description 3
- MOTVYDVWODTRDF-UHFFFAOYSA-N 3-[7,12,17-tris(2-carboxyethyl)-3,8,13,18-tetrakis(carboxymethyl)-21,22-dihydroporphyrin-2-yl]propanoic acid Chemical compound N1C(C=C2C(=C(CC(O)=O)C(=CC=3C(=C(CC(O)=O)C(=C4)N=3)CCC(O)=O)N2)CCC(O)=O)=C(CC(O)=O)C(CCC(O)=O)=C1C=C1C(CC(O)=O)=C(CCC(=O)O)C4=N1 MOTVYDVWODTRDF-UHFFFAOYSA-N 0.000 description 3
- XNBNKCLBGTWWSD-UHFFFAOYSA-N 3-[8,13,18-tris(2-carboxyethyl)-3,7,12,17-tetramethyl-21,24-dihydroporphyrin-2-yl]propanoic acid Chemical compound N1C(C=C2C(=C(C)C(=CC=3C(=C(CCC(O)=O)C(=C4)N=3)C)N2)CCC(O)=O)=C(CCC(O)=O)C(C)=C1C=C1C(CCC(O)=O)=C(C)C4=N1 XNBNKCLBGTWWSD-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical class OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 3
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 3
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- IWKYEJKHXKRZIJ-UIYBDNSESA-N Methyl pheophorbide a Natural products CCC1=C(C)\C2=C\c3[nH]c(\C=C4/N=C([C@@H](CCC(=O)OC)[C@@H]4C)C4=c5[nH]c(=CC1=N2)c(C)c5C(=O)[C@@H]4C(=O)OC)c(C)c3C=C IWKYEJKHXKRZIJ-UIYBDNSESA-N 0.000 description 3
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Natural products C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 125000003158 alcohol group Chemical group 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 125000004414 alkyl thio group Chemical group 0.000 description 3
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical class C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 238000009739 binding Methods 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- DBZJJPROPLPMSN-UHFFFAOYSA-N bromoeosin Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C(O)C(Br)=C1OC1=C(Br)C(O)=C(Br)C=C21 DBZJJPROPLPMSN-UHFFFAOYSA-N 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- WJBDAIIDQLSIQT-UHFFFAOYSA-N carbamic acid 25,26,27,28-tetrazahexacyclo[16.6.1.13,6.18,11.113,16.019,24]octacosa-1(25),2,4,6,8(27),9,11,13,15,17,19,21,23-tridecaene Chemical class NC(O)=O.N1C(C=C2C3=CC=CC=C3C(C=C3NC(=C4)C=C3)=N2)=CC=C1C=C1C=CC4=N1 WJBDAIIDQLSIQT-UHFFFAOYSA-N 0.000 description 3
- IVUMCTKHWDRRMH-UHFFFAOYSA-N carprofen Chemical compound C1=CC(Cl)=C[C]2C3=CC=C(C(C(O)=O)C)C=C3N=C21 IVUMCTKHWDRRMH-UHFFFAOYSA-N 0.000 description 3
- 229960003184 carprofen Drugs 0.000 description 3
- 230000022534 cell killing Effects 0.000 description 3
- DGAZLNHJYDOWLG-QWRGUYRKSA-N cercosporin Chemical compound C[C@H](O)CC1=C(OC)C(=O)C2=C(O)C=C3OCOC4=CC(O)=C5C6=C4C3=C2C1=C6C(C[C@H](C)O)=C(OC)C5=O DGAZLNHJYDOWLG-QWRGUYRKSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 229960001577 dantron Drugs 0.000 description 3
- 229940015493 dihematoporphyrin ether Drugs 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- FNCGNFXGKHSMKJ-QMMMGPOBSA-N ditert-butyl (2s)-2-aminobutanedioate Chemical compound CC(C)(C)OC(=O)C[C@H](N)C(=O)OC(C)(C)C FNCGNFXGKHSMKJ-QMMMGPOBSA-N 0.000 description 3
- 229960002311 dithranol Drugs 0.000 description 3
- 238000004980 dosimetry Methods 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- XDROKJSWHURZGO-UHFFFAOYSA-N isopsoralen Natural products C1=C2OC=CC2=C2OC(=O)C=CC2=C1 XDROKJSWHURZGO-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- HUXSMOZWPXDRTN-SDHKEVEOSA-N methyl (3R,21S,22S)-16-ethenyl-11-ethyl-4-hydroxy-22-(3-methoxy-3-oxopropyl)-12,17,21,26-tetramethyl-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,4,6,8(26),9,11,13(25),14,16,18(24),19-undecaene-3-carboxylate Chemical compound CCC1=C(C2=NC1=CC3=C(C4=C([C@@H](C(=C5[C@H]([C@@H](C(=CC6=NC(=C2)C(=C6C)C=C)N5)C)CCC(=O)OC)C4=N3)C(=O)OC)O)C)C HUXSMOZWPXDRTN-SDHKEVEOSA-N 0.000 description 3
- 229960000907 methylthioninium chloride Drugs 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- 125000004076 pyridyl group Chemical group 0.000 description 3
- GUEIZVNYDFNHJU-UHFFFAOYSA-N quinizarin Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(O)=CC=C2O GUEIZVNYDFNHJU-UHFFFAOYSA-N 0.000 description 3
- 238000007363 ring formation reaction Methods 0.000 description 3
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical class OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 3
- COFLCBMDHTVQRA-UHFFFAOYSA-N sapphyrin Chemical compound N1C(C=2NC(C=C3N=C(C=C4NC(=C5)C=C4)C=C3)=CC=2)=CC=C1C=C1C=CC5=N1 COFLCBMDHTVQRA-UHFFFAOYSA-N 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- NCYCYZXNIZJOKI-UHFFFAOYSA-N vitamin A aldehyde Natural products O=CC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-UHFFFAOYSA-N 0.000 description 3
- KYVBNYUBXIEUFW-UHFFFAOYSA-N 1,1,3,3-tetramethylguanidine Chemical compound CN(C)C(=N)N(C)C KYVBNYUBXIEUFW-UHFFFAOYSA-N 0.000 description 2
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 2
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 2
- MEKOFIRRDATTAG-UHFFFAOYSA-N 2,2,5,8-tetramethyl-3,4-dihydrochromen-6-ol Chemical compound C1CC(C)(C)OC2=C1C(C)=C(O)C=C2C MEKOFIRRDATTAG-UHFFFAOYSA-N 0.000 description 2
- JQAUIBLIGPETHE-UHFFFAOYSA-N 2,7-diamino-1,8-dihydroxyanthracene-9,10-dione Chemical compound C1=C(N)C(O)=C2C(=O)C3=C(O)C(N)=CC=C3C(=O)C2=C1 JQAUIBLIGPETHE-UHFFFAOYSA-N 0.000 description 2
- GCDBEYOJCZLKMC-UHFFFAOYSA-N 2-hydroxyanthraquinone Chemical compound C1=CC=C2C(=O)C3=CC(O)=CC=C3C(=O)C2=C1 GCDBEYOJCZLKMC-UHFFFAOYSA-N 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- ASUDFOJKTJLAIK-UHFFFAOYSA-N 2-methoxyethanamine Chemical compound COCCN ASUDFOJKTJLAIK-UHFFFAOYSA-N 0.000 description 2
- FXEJOIFDICYSSO-UHFFFAOYSA-N 2-thiophen-2-yl-5-(5-thiophen-2-ylthiophen-2-yl)thiophene Chemical compound C1=CSC(C=2SC(=CC=2)C=2SC(=CC=2)C=2SC=CC=2)=C1 FXEJOIFDICYSSO-UHFFFAOYSA-N 0.000 description 2
- OALHHIHQOFIMEF-UHFFFAOYSA-N 3',6'-dihydroxy-2',4',5',7'-tetraiodo-3h-spiro[2-benzofuran-1,9'-xanthene]-3-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 OALHHIHQOFIMEF-UHFFFAOYSA-N 0.000 description 2
- XEGYKJKGKHQDDW-UHFFFAOYSA-N 3-[3,16,17,18,19,20-hexaethyl-1-(3-hydroxypropyl)-22,24-dihydro-20h-porphyrin-2-yl]propan-1-ol Chemical compound C1=C(N=2)C=CC=2C=C(N2)C=CC2=CC(C(=C2CCCO)CC)=NC2(CCCO)C(CC)C2(CC)C(CC)=C(CC)C1(CC)N2 XEGYKJKGKHQDDW-UHFFFAOYSA-N 0.000 description 2
- OLXZPDWKRNYJJZ-UHFFFAOYSA-N 5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-ol Chemical compound C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(CO)O1 OLXZPDWKRNYJJZ-UHFFFAOYSA-N 0.000 description 2
- BGEBZHIAGXMEMV-UHFFFAOYSA-N 5-methoxypsoralen Chemical compound O1C(=O)C=CC2=C1C=C1OC=CC1=C2OC BGEBZHIAGXMEMV-UHFFFAOYSA-N 0.000 description 2
- HAUGRYOERYOXHX-UHFFFAOYSA-N Alloxazine Chemical compound C1=CC=C2N=C(C(=O)NC(=O)N3)C3=NC2=C1 HAUGRYOERYOXHX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241001263178 Auriparus Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 2
- 208000005243 Chondrosarcoma Diseases 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 125000000570 L-alpha-aspartyl group Chemical group [H]OC(=O)C([H])([H])[C@]([H])(N([H])[H])C(*)=O 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- 238000005684 Liebig rearrangement reaction Methods 0.000 description 2
- 108090001030 Lipoproteins Proteins 0.000 description 2
- 102000004895 Lipoproteins Human genes 0.000 description 2
- PFYHAAAQPNMZHO-UHFFFAOYSA-N Methyl 2-methoxybenzoate Chemical compound COC(=O)C1=CC=CC=C1OC PFYHAAAQPNMZHO-UHFFFAOYSA-N 0.000 description 2
- NUQASTRTTSQPAJ-YRONQTJXSA-N Methyl pheophorbide b Natural products CCC1=C(C=O)\C2=C\c3[nH]c(\C=C4/N=C([C@@H](CCC(=O)OC)[C@@H]4C)C4=c5[nH]c(=CC1=N2)c(C)c5C(=O)[C@H]4C(=O)OC)c(C)c3C=C NUQASTRTTSQPAJ-YRONQTJXSA-N 0.000 description 2
- QECVIPBZOPUTRD-UHFFFAOYSA-N N=S(=O)=O Chemical class N=S(=O)=O QECVIPBZOPUTRD-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- MITFXPHMIHQXPI-UHFFFAOYSA-N Oraflex Chemical compound N=1C2=CC(C(C(O)=O)C)=CC=C2OC=1C1=CC=C(Cl)C=C1 MITFXPHMIHQXPI-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 108010060806 Photosystem II Protein Complex Proteins 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- INVGWHRKADIJHF-UHFFFAOYSA-N Sanguinarin Chemical compound C1=C2OCOC2=CC2=C3[N+](C)=CC4=C(OCO5)C5=CC=C4C3=CC=C21 INVGWHRKADIJHF-UHFFFAOYSA-N 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- LINDOXZENKYESA-UHFFFAOYSA-N TMG Natural products CNC(N)=NC LINDOXZENKYESA-UHFFFAOYSA-N 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- LPTITAGPBXDDGR-LJIZCISZSA-N [(2r,3r,4s,5r,6r)-3,4,5,6-tetraacetyloxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@H]1O[C@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)[C@@H]1OC(C)=O LPTITAGPBXDDGR-LJIZCISZSA-N 0.000 description 2
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 2
- 229960005305 adenosine Drugs 0.000 description 2
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 125000005115 alkyl carbamoyl group Chemical group 0.000 description 2
- RFSUNEUAIZKAJO-ZXXMMSQZSA-N alpha-D-fructofuranose Chemical compound OC[C@H]1O[C@@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ZXXMMSQZSA-N 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- WQZGKKKJIJFFOK-DVKNGEFBSA-N alpha-D-glucose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-DVKNGEFBSA-N 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- 150000008064 anhydrides Chemical group 0.000 description 2
- NUZWLKWWNNJHPT-UHFFFAOYSA-N anthralin Chemical compound C1C2=CC=CC(O)=C2C(=O)C2=C1C=CC=C2O NUZWLKWWNNJHPT-UHFFFAOYSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 229960003121 arginine Drugs 0.000 description 2
- 235000009697 arginine Nutrition 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005261 aspartic acid Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- BHPNXACHQYJJJS-UHFFFAOYSA-N bacteriochlorin Chemical compound N1C(C=C2N=C(C=C3NC(=C4)C=C3)CC2)=CC=C1C=C1CCC4=N1 BHPNXACHQYJJJS-UHFFFAOYSA-N 0.000 description 2
- 229960005430 benoxaprofen Drugs 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- BNQRPLGZFADFGA-UHFFFAOYSA-N benzyl(triphenyl)phosphanium Chemical compound C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)CC1=CC=CC=C1 BNQRPLGZFADFGA-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 230000008512 biological response Effects 0.000 description 2
- IMHDGJOMLMDPJN-UHFFFAOYSA-N biphenyl-2,2'-diol Chemical group OC1=CC=CC=C1C1=CC=CC=C1O IMHDGJOMLMDPJN-UHFFFAOYSA-N 0.000 description 2
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical group OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 2
- YXVFYQXJAXKLAK-UHFFFAOYSA-N biphenyl-4-ol Chemical group C1=CC(O)=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-N 0.000 description 2
- ACBQROXDOHKANW-UHFFFAOYSA-N bis(4-nitrophenyl) carbonate Chemical compound C1=CC([N+](=O)[O-])=CC=C1OC(=O)OC1=CC=C([N+]([O-])=O)C=C1 ACBQROXDOHKANW-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 229930183167 cerebroside Natural products 0.000 description 2
- 150000001784 cerebrosides Chemical class 0.000 description 2
- PBHVCRIXMXQXPD-UHFFFAOYSA-N chembl2369102 Chemical compound C1=CC(S(=O)(=O)O)=CC=C1C(C1=CC=C(N1)C(C=1C=CC(=CC=1)S(O)(=O)=O)=C1C=CC(=N1)C(C=1C=CC(=CC=1)S(O)(=O)=O)=C1C=CC(N1)=C1C=2C=CC(=CC=2)S(O)(=O)=O)=C2N=C1C=C2 PBHVCRIXMXQXPD-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 235000019693 cherries Nutrition 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 150000001860 citric acid derivatives Chemical class 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 235000001671 coumarin Nutrition 0.000 description 2
- 150000004775 coumarins Chemical class 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- OZLBDYMWFAHSOQ-UHFFFAOYSA-N diphenyliodanium Chemical compound C=1C=CC=CC=1[I+]C1=CC=CC=C1 OZLBDYMWFAHSOQ-UHFFFAOYSA-N 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- OOYIOIOOWUGAHD-UHFFFAOYSA-L disodium;2',4',5',7'-tetrabromo-4,5,6,7-tetrachloro-3-oxospiro[2-benzofuran-1,9'-xanthene]-3',6'-diolate Chemical compound [Na+].[Na+].O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(Br)=C([O-])C(Br)=C1OC1=C(Br)C([O-])=C(Br)C=C21 OOYIOIOOWUGAHD-UHFFFAOYSA-L 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 238000001647 drug administration Methods 0.000 description 2
- 238000002265 electronic spectrum Methods 0.000 description 2
- RHMXXJGYXNZAPX-UHFFFAOYSA-N emodin Chemical compound C1=C(O)C=C2C(=O)C3=CC(C)=CC(O)=C3C(=O)C2=C1O RHMXXJGYXNZAPX-UHFFFAOYSA-N 0.000 description 2
- ZBQZBWKNGDEDOA-UHFFFAOYSA-N eosin B Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC([N+]([O-])=O)=C(O)C(Br)=C1OC1=C2C=C([N+]([O-])=O)C(O)=C1Br ZBQZBWKNGDEDOA-UHFFFAOYSA-N 0.000 description 2
- SEACYXSIPDVVMV-UHFFFAOYSA-L eosin Y Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 SEACYXSIPDVVMV-UHFFFAOYSA-L 0.000 description 2
- IINNWAYUJNWZRM-UHFFFAOYSA-L erythrosin B Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 IINNWAYUJNWZRM-UHFFFAOYSA-L 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- ISVXIZFUEUVXPG-UHFFFAOYSA-N etiopurpurin Chemical compound CC1C2(CC)C(C(=O)OCC)=CC(C3=NC(C(=C3C)CC)=C3)=C2N=C1C=C(N1)C(CC)=C(C)C1=CC1=C(CC)C(C)=C3N1 ISVXIZFUEUVXPG-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- HVQAJTFOCKOKIN-UHFFFAOYSA-N flavonol Chemical compound O1C2=CC=CC=C2C(=O)C(O)=C1C1=CC=CC=C1 HVQAJTFOCKOKIN-UHFFFAOYSA-N 0.000 description 2
- 238000013534 fluorescein angiography Methods 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 238000007306 functionalization reaction Methods 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- CULSIAXQVSZNSV-UHFFFAOYSA-N germanium(4+) Chemical compound [Ge+4] CULSIAXQVSZNSV-UHFFFAOYSA-N 0.000 description 2
- 229940097043 glucuronic acid Drugs 0.000 description 2
- 229960002989 glutamic acid Drugs 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 229960002449 glycine Drugs 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- XLSMFKSTNGKWQX-UHFFFAOYSA-N hydroxyacetone Chemical compound CC(=O)CO XLSMFKSTNGKWQX-UHFFFAOYSA-N 0.000 description 2
- 150000002466 imines Chemical class 0.000 description 2
- 125000001786 isothiazolyl group Chemical group 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 150000002576 ketones Chemical group 0.000 description 2
- 229960000991 ketoprofen Drugs 0.000 description 2
- HCZHHEIFKROPDY-UHFFFAOYSA-N kynurenic acid Chemical compound C1=CC=C2NC(C(=O)O)=CC(=O)C2=C1 HCZHHEIFKROPDY-UHFFFAOYSA-N 0.000 description 2
- YGPSJZOEDVAXAB-UHFFFAOYSA-N kynurenine Chemical compound OC(=O)C(N)CC(=O)C1=CC=CC=C1N YGPSJZOEDVAXAB-UHFFFAOYSA-N 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- SQFDQLBYJKFDDO-UHFFFAOYSA-K merbromin Chemical compound [Na+].[Na+].C=12C=C(Br)C(=O)C=C2OC=2C([Hg]O)=C([O-])C(Br)=CC=2C=1C1=CC=CC=C1C([O-])=O SQFDQLBYJKFDDO-UHFFFAOYSA-K 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 229920003240 metallophthalocyanine polymer Polymers 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- SQBBOVROCFXYBN-UHFFFAOYSA-N methoxypsoralen Natural products C1=C2OC(=O)C(OC)=CC2=CC2=C1OC=C2 SQBBOVROCFXYBN-UHFFFAOYSA-N 0.000 description 2
- LQBPATQBTSBIIH-UHFFFAOYSA-N methyl 3-[8,13-bis(ethenyl)-18-(3-methoxy-3-oxopropyl)-3,7,12,17-tetramethyl-22,23-dihydroporphyrin-2-yl]propanoate Chemical compound N1C(C=C2C(=C(C=C)C(=CC=3C(=C(CCC(=O)OC)C(=C4)N=3)C)N2)C)=C(C=C)C(C)=C1C=C1C(C)=C(CCC(=O)OC)C4=N1 LQBPATQBTSBIIH-UHFFFAOYSA-N 0.000 description 2
- CQKDGYMHYLBWTQ-UHFFFAOYSA-N methyl 3-[8,13-diethyl-18-(3-methoxy-3-oxopropyl)-3,7,12,17-tetramethyl-22,23-dihydroporphyrin-2-yl]propanoate Chemical compound N1C2=C(C)C(CC)=C1C=C(N1)C(C)=C(CC)C1=CC(C(C)=C1CCC(=O)OC)=NC1=CC(C(CCC(=O)OC)=C1C)=NC1=C2 CQKDGYMHYLBWTQ-UHFFFAOYSA-N 0.000 description 2
- DILRJUIACXKSQE-UHFFFAOYSA-N n',n'-dimethylethane-1,2-diamine Chemical compound CN(C)CCN DILRJUIACXKSQE-UHFFFAOYSA-N 0.000 description 2
- SHXOKQKTZJXHHR-UHFFFAOYSA-N n,n-diethyl-5-iminobenzo[a]phenoxazin-9-amine;hydrochloride Chemical class [Cl-].C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=[NH2+])C2=C1 SHXOKQKTZJXHHR-UHFFFAOYSA-N 0.000 description 2
- XIDSNHBKBJPAAO-UHFFFAOYSA-N n,n-diethylethanamine;2,3,4,5-tetrachloro-6-(3-hydroxy-2,4,5,7-tetraiodo-6-oxoxanthen-9-yl)benzoic acid Chemical compound CCN(CC)CC.CCN(CC)CC.OC(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C(O)=C(I)C=C21 XIDSNHBKBJPAAO-UHFFFAOYSA-N 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- SBOJXQVPLKSXOG-UHFFFAOYSA-N o-amino-hydroxylamine Chemical class NON SBOJXQVPLKSXOG-UHFFFAOYSA-N 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 239000012285 osmium tetroxide Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 229950000688 phenothiazine Drugs 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- ZYIBVBKZZZDFOY-UHFFFAOYSA-N phloxine O Chemical compound O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(Br)=C(O)C(Br)=C1OC1=C(Br)C(O)=C(Br)C=C21 ZYIBVBKZZZDFOY-UHFFFAOYSA-N 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- DASFNRASQHZIIW-XOTKKQSBSA-M protochlorophyll a Chemical compound [Mg+2].N1=C2C3=C([N-]4)C(CCC(=O)OC\C=C(/C)CCCC(C)CCCC(C)CCCC(C)C)=C(C)C4=CC(C(=C4C=C)C)=NC4=CC(C(C)=C4CC)=NC4=CC1=C(C)C2=C([O-])C3C(=O)OC DASFNRASQHZIIW-XOTKKQSBSA-M 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VBHKTXLEJZIDJF-UHFFFAOYSA-N quinalizarin Chemical compound C1=CC(O)=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1O VBHKTXLEJZIDJF-UHFFFAOYSA-N 0.000 description 2
- 150000004053 quinones Chemical class 0.000 description 2
- 238000011555 rabbit model Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 230000002207 retinal effect Effects 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- 125000006413 ring segment Chemical group 0.000 description 2
- 238000002390 rotary evaporation Methods 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- KZJWDPNRJALLNS-VJSFXXLFSA-N sitosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]1(C)CC2 KZJWDPNRJALLNS-VJSFXXLFSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 238000012453 sprague-dawley rat model Methods 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- IUTCEZPPWBHGIX-UHFFFAOYSA-N tin(2+) Chemical compound [Sn+2] IUTCEZPPWBHGIX-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 210000003932 urinary bladder Anatomy 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- NZVQLVGOZRELTG-UHFFFAOYSA-N visnagin Chemical compound O1C(C)=CC(=O)C2=C1C=C1OC=CC1=C2OC NZVQLVGOZRELTG-UHFFFAOYSA-N 0.000 description 2
- 239000001018 xanthene dye Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- FUTVBRXUIKZACV-UHFFFAOYSA-J zinc;3-[18-(2-carboxylatoethyl)-8,13-bis(ethenyl)-3,7,12,17-tetramethylporphyrin-21,24-diid-2-yl]propanoate Chemical compound [Zn+2].[N-]1C2=C(C)C(CCC([O-])=O)=C1C=C([N-]1)C(CCC([O-])=O)=C(C)C1=CC(C(C)=C1C=C)=NC1=CC(C(C)=C1C=C)=NC1=C2 FUTVBRXUIKZACV-UHFFFAOYSA-J 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- RJMIEHBSYVWVIN-LLVKDONJSA-N (2r)-2-[4-(3-oxo-1h-isoindol-2-yl)phenyl]propanoic acid Chemical compound C1=CC([C@H](C(O)=O)C)=CC=C1N1C(=O)C2=CC=CC=C2C1 RJMIEHBSYVWVIN-LLVKDONJSA-N 0.000 description 1
- GUHPRPJDBZHYCJ-SECBINFHSA-N (2s)-2-(5-benzoylthiophen-2-yl)propanoic acid Chemical compound S1C([C@H](C(O)=O)C)=CC=C1C(=O)C1=CC=CC=C1 GUHPRPJDBZHYCJ-SECBINFHSA-N 0.000 description 1
- MDKGKXOCJGEUJW-VIFPVBQESA-N (2s)-2-[4-(thiophene-2-carbonyl)phenyl]propanoic acid Chemical compound C1=CC([C@@H](C(O)=O)C)=CC=C1C(=O)C1=CC=CS1 MDKGKXOCJGEUJW-VIFPVBQESA-N 0.000 description 1
- AKYHKWQPZHDOBW-UHFFFAOYSA-N (5-ethenyl-1-azabicyclo[2.2.2]octan-7-yl)-(6-methoxyquinolin-4-yl)methanol Chemical compound OS(O)(=O)=O.C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 AKYHKWQPZHDOBW-UHFFFAOYSA-N 0.000 description 1
- IOOQHEFLQLMYPZ-GNQFORKWSA-M (7R,8Z)-bacteriochlorophyll b Chemical compound O=C([C@@H](C1=C2N3[Mg]N45)C(=O)OC)C2=C(C)\C3=C\C(\C(\[C@H]/2C)=C/C)=N\C\2=C/C4=C(C(C)=O)C(C)=C5\C=C/2[C@@H](C)[C@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)C1=N\2 IOOQHEFLQLMYPZ-GNQFORKWSA-M 0.000 description 1
- YOFDHOWPGULAQF-MQJDWESPSA-N (7s,9s)-9-acetyl-6,7,9,11-tetrahydroxy-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione Chemical compound C1[C@@](O)(C(C)=O)C[C@H](O)C2=C1C(O)=C1C(=O)C(C=CC=C3OC)=C3C(=O)C1=C2O YOFDHOWPGULAQF-MQJDWESPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- AIGNCQCMONAWOL-UHFFFAOYSA-N 1,3-benzoselenazole Chemical compound C1=CC=C2[se]C=NC2=C1 AIGNCQCMONAWOL-UHFFFAOYSA-N 0.000 description 1
- IGERFAHWSHDDHX-UHFFFAOYSA-N 1,3-dioxanyl Chemical group [CH]1OCCCO1 IGERFAHWSHDDHX-UHFFFAOYSA-N 0.000 description 1
- JPRPJUMQRZTTED-UHFFFAOYSA-N 1,3-dioxolanyl Chemical group [CH]1OCCO1 JPRPJUMQRZTTED-UHFFFAOYSA-N 0.000 description 1
- ILWJAOPQHOZXAN-UHFFFAOYSA-N 1,3-dithianyl Chemical group [CH]1SCCCS1 ILWJAOPQHOZXAN-UHFFFAOYSA-N 0.000 description 1
- KFHQOZXAFUKFNB-UHFFFAOYSA-N 1,3-oxathiolanyl Chemical group [CH]1OCCS1 KFHQOZXAFUKFNB-UHFFFAOYSA-N 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- 125000005940 1,4-dioxanyl group Chemical group 0.000 description 1
- NBZUTLRPQMFBDM-UHFFFAOYSA-N 1,5-diamino-4,8-dimethoxyanthracene-9,10-dione Chemical compound O=C1C2=C(OC)C=CC(N)=C2C(=O)C2=C1C(N)=CC=C2OC NBZUTLRPQMFBDM-UHFFFAOYSA-N 0.000 description 1
- SJHHHHHQWQOCDQ-UHFFFAOYSA-N 1,8-diamino-4,5-dihydroxyanthracene-9,10-dione Chemical compound O=C1C2=C(O)C=CC(N)=C2C(=O)C2=C1C(O)=CC=C2N SJHHHHHQWQOCDQ-UHFFFAOYSA-N 0.000 description 1
- FKOHDHUCSAALQZ-UHFFFAOYSA-N 1,8-diamino-4,5-dimethoxyanthracene-9,10-dione Chemical compound O=C1C2=C(N)C=CC(OC)=C2C(=O)C2=C1C(N)=CC=C2OC FKOHDHUCSAALQZ-UHFFFAOYSA-N 0.000 description 1
- NRCZHMJIHJUBPY-UHFFFAOYSA-N 1-amino-4,5-dimethoxyanthracene-9,10-dione Chemical compound O=C1C2=C(N)C=CC(OC)=C2C(=O)C2=C1C=CC=C2OC NRCZHMJIHJUBPY-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- HNEGJTWNOOWEMH-UHFFFAOYSA-N 1-fluoropropane Chemical group [CH2]CCF HNEGJTWNOOWEMH-UHFFFAOYSA-N 0.000 description 1
- NLWCWEGVNJVLAX-UHFFFAOYSA-N 1-methoxy-2-phenylbenzene Chemical group COC1=CC=CC=C1C1=CC=CC=C1 NLWCWEGVNJVLAX-UHFFFAOYSA-N 0.000 description 1
- 125000004804 1-methylmethylene group Chemical group [H]C([H])([H])C([H])([*:2])[*:1] 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 description 1
- NCYCYZXNIZJOKI-HPNHMNAASA-N 11Z-retinal Natural products CC(=C/C=O)C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-HPNHMNAASA-N 0.000 description 1
- NCYCYZXNIZJOKI-HWCYFHEPSA-N 13-cis-retinal Chemical compound O=C/C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-HWCYFHEPSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- WBLLWHYYHNSTFH-UHFFFAOYSA-N 2',4',5',7'-tetrachloro-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Cl)=C(O)C(Cl)=C1OC1=C(Cl)C(O)=C(Cl)C=C21 WBLLWHYYHNSTFH-UHFFFAOYSA-N 0.000 description 1
- YNBZQSXWRWAXMV-UHFFFAOYSA-N 2',7'-dibromo-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C(O)C=C1OC1=C2C=C(Br)C(O)=C1 YNBZQSXWRWAXMV-UHFFFAOYSA-N 0.000 description 1
- VFNKZQNIXUFLBC-UHFFFAOYSA-N 2',7'-dichlorofluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Cl)=C(O)C=C1OC1=C2C=C(Cl)C(O)=C1 VFNKZQNIXUFLBC-UHFFFAOYSA-N 0.000 description 1
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 description 1
- YKBGVTZYEHREMT-UHFFFAOYSA-N 2'-deoxyguanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1CC(O)C(CO)O1 YKBGVTZYEHREMT-UHFFFAOYSA-N 0.000 description 1
- LTFMZDNNPPEQNG-KVQBGUIXSA-N 2'-deoxyguanosine 5'-monophosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@H]1C[C@H](O)[C@@H](COP(O)(O)=O)O1 LTFMZDNNPPEQNG-KVQBGUIXSA-N 0.000 description 1
- IQFYYKKMVGJFEH-BIIVOSGPSA-N 2'-deoxythymidine Natural products O=C1NC(=O)C(C)=CN1[C@@H]1O[C@@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-BIIVOSGPSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 1
- OHZAHWOAMVVGEL-UHFFFAOYSA-N 2,2'-bithiophene Chemical compound C1=CSC(C=2SC=CC=2)=C1 OHZAHWOAMVVGEL-UHFFFAOYSA-N 0.000 description 1
- KXSFECAJUBPPFE-UHFFFAOYSA-N 2,2':5',2''-terthiophene Chemical compound C1=CSC(C=2SC(=CC=2)C=2SC=CC=2)=C1 KXSFECAJUBPPFE-UHFFFAOYSA-N 0.000 description 1
- VZRIURIZWNJNKF-UHFFFAOYSA-N 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenyl-21,23-dihydroporphyrin Chemical compound CCc1c(CC)c2nc1c(-c1ccccc1)c1[nH]c(c(CC)c1CC)c(-c1ccccc1)c1nc(c(CC)c1CC)c(-c1ccccc1)c1[nH]c(c(CC)c1CC)c2-c1ccccc1 VZRIURIZWNJNKF-UHFFFAOYSA-N 0.000 description 1
- HCSBTDBGTNZOAB-UHFFFAOYSA-N 2,3-dinitrobenzoic acid Chemical class OC(=O)C1=CC=CC([N+]([O-])=O)=C1[N+]([O-])=O HCSBTDBGTNZOAB-UHFFFAOYSA-N 0.000 description 1
- IZLPACMKANNNGR-UHFFFAOYSA-N 2,4,9-trimethylfuro[2,3-f]chromen-7-one Chemical compound O1C(=O)C=C(C)C2=C(OC(C)=C3)C3=C(C)C=C21 IZLPACMKANNNGR-UHFFFAOYSA-N 0.000 description 1
- KMHSUNDEGHRBNV-UHFFFAOYSA-N 2,4-dichloropyrimidine-5-carbonitrile Chemical compound ClC1=NC=C(C#N)C(Cl)=N1 KMHSUNDEGHRBNV-UHFFFAOYSA-N 0.000 description 1
- WHYOCCAIRIMNPX-UHFFFAOYSA-N 2,5-bis(3-methylthiophen-2-yl)thiophene Chemical compound C1=CSC(C=2SC(=CC=2)C2=C(C=CS2)C)=C1C WHYOCCAIRIMNPX-UHFFFAOYSA-N 0.000 description 1
- KXFPYYJGYVYXIB-UHFFFAOYSA-N 2,5-bis(5-bromothiophen-2-yl)thiophene Chemical compound S1C(Br)=CC=C1C1=CC=C(C=2SC(Br)=CC=2)S1 KXFPYYJGYVYXIB-UHFFFAOYSA-N 0.000 description 1
- UCLXUPRIAJUZED-UHFFFAOYSA-N 2,5-bis(5-methylthiophen-2-yl)thiophene Chemical compound S1C(C)=CC=C1C1=CC=C(C=2SC(C)=CC=2)S1 UCLXUPRIAJUZED-UHFFFAOYSA-N 0.000 description 1
- KKIZIJGDUTUFQL-UHFFFAOYSA-N 2,5-diamino-1,8-dihydroxyanthracene-9,10-dione Chemical compound C1=CC(O)=C2C(=O)C3=C(O)C(N)=CC=C3C(=O)C2=C1N KKIZIJGDUTUFQL-UHFFFAOYSA-N 0.000 description 1
- HWKZNRABKQDKTC-UHFFFAOYSA-N 2,5-diphenylthiophene Chemical compound C=1C=C(C=2C=CC=CC=2)SC=1C1=CC=CC=C1 HWKZNRABKQDKTC-UHFFFAOYSA-N 0.000 description 1
- FEBXMKWMRKJKKW-UHFFFAOYSA-N 2,5-dithiophen-2-ylfuran Chemical compound C1=CSC(C=2OC(=CC=2)C=2SC=CC=2)=C1 FEBXMKWMRKJKKW-UHFFFAOYSA-N 0.000 description 1
- NNQWYGKROBKYQC-UHFFFAOYSA-N 2,9,16,23-tetra-tert-butyl-29h,31h-phthalocyanine Chemical compound C12=CC(C(C)(C)C)=CC=C2C(N=C2NC(C3=CC=C(C=C32)C(C)(C)C)=N2)=NC1=NC([C]1C=CC(=CC1=1)C(C)(C)C)=NC=1N=C1[C]3C=CC(C(C)(C)C)=CC3=C2N1 NNQWYGKROBKYQC-UHFFFAOYSA-N 0.000 description 1
- ZAVJTSLIGAGALR-UHFFFAOYSA-N 2-(2,2,2-trifluoroacetyl)cyclooctan-1-one Chemical compound FC(F)(F)C(=O)C1CCCCCCC1=O ZAVJTSLIGAGALR-UHFFFAOYSA-N 0.000 description 1
- QZLKQNRLPUGOTA-UHFFFAOYSA-N 2-(2-aminoethylamino)ethanol Chemical compound NCCNCCO.NCCNCCO QZLKQNRLPUGOTA-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical group CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- HXSZJXDUBVXIFL-UHFFFAOYSA-N 2-(4-ethoxybut-1-ynyl)-5-thiophen-2-ylthiophene Chemical class S1C(C#CCCOCC)=CC=C1C1=CC=CS1 HXSZJXDUBVXIFL-UHFFFAOYSA-N 0.000 description 1
- HSJIVJPREZQHFK-UHFFFAOYSA-N 2-(9h-carbazol-2-yl)propanoic acid Chemical compound C1=CC=C2C3=CC=C(C(C(O)=O)C)C=C3NC2=C1 HSJIVJPREZQHFK-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-GASJEMHNSA-N 2-amino-2-deoxy-D-galactopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O MSWZFWKMSRAUBD-GASJEMHNSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- MSFSPUZXLOGKHJ-PGYHGBPZSA-N 2-amino-3-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucopyranose Chemical compound OC(=O)[C@@H](C)O[C@@H]1[C@@H](N)C(O)O[C@H](CO)[C@H]1O MSFSPUZXLOGKHJ-PGYHGBPZSA-N 0.000 description 1
- CDMGNVWZXRKJNS-UHFFFAOYSA-N 2-benzylphenol Chemical compound OC1=CC=CC=C1CC1=CC=CC=C1 CDMGNVWZXRKJNS-UHFFFAOYSA-N 0.000 description 1
- HNMURGGRBMOMLO-UHFFFAOYSA-N 2-bromo-5-(5-thiophen-2-ylthiophen-2-yl)thiophene Chemical compound S1C(Br)=CC=C1C1=CC=C(C=2SC=CC=2)S1 HNMURGGRBMOMLO-UHFFFAOYSA-N 0.000 description 1
- 125000005999 2-bromoethyl group Chemical group 0.000 description 1
- IKCLCGXPQILATA-UHFFFAOYSA-N 2-chlorobenzoic acid Chemical class OC(=O)C1=CC=CC=C1Cl IKCLCGXPQILATA-UHFFFAOYSA-N 0.000 description 1
- QHOINBKBMJLHPY-UHFFFAOYSA-N 2-chloroethyl formate Chemical compound ClCCOC=O QHOINBKBMJLHPY-UHFFFAOYSA-N 0.000 description 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- KUTMQNDYUFXGQH-QOWOAITPSA-N 2-deuterio-3-ethenyl-23H-porphyrin-21-carbaldehyde Chemical compound C(=O)N1C2=C(C(=C1C=C1C=CC(C=C3C=CC(=CC=4C=CC(=C2)N=4)N3)=N1)[2H])C=C KUTMQNDYUFXGQH-QOWOAITPSA-N 0.000 description 1
- DIOYYQGYSZRBLA-UICOGKGYSA-N 2-deuterioporphyrin-21,23-dicarbaldehyde Chemical compound C(=O)N1C=2C=CC1=CC=1C=CC(=CC3=CC(=C(N3C=O)C=C3C=CC(C=2)=N3)[2H])N=1 DIOYYQGYSZRBLA-UICOGKGYSA-N 0.000 description 1
- DHYAZGMSKFWBKS-UHFFFAOYSA-N 2-hex-1-ynyl-5-thiophen-2-ylthiophene Chemical compound S1C(C#CCCCC)=CC=C1C1=CC=CS1 DHYAZGMSKFWBKS-UHFFFAOYSA-N 0.000 description 1
- AFENDNXGAFYKQO-UHFFFAOYSA-N 2-hydroxybutyric acid Chemical class CCC(O)C(O)=O AFENDNXGAFYKQO-UHFFFAOYSA-N 0.000 description 1
- KBYJKTZWPSXMFJ-UHFFFAOYSA-N 2-methoxy-5-(5-thiophen-2-ylthiophen-2-yl)thiophene Chemical compound S1C(OC)=CC=C1C1=CC=C(C=2SC=CC=2)S1 KBYJKTZWPSXMFJ-UHFFFAOYSA-N 0.000 description 1
- GGPCERYTJXDGOH-UHFFFAOYSA-N 2-methyl-1,1-dioxo-4h-1$l^{6},2-benzothiazin-3-one Chemical compound C1=CC=C2S(=O)(=O)N(C)C(=O)CC2=C1 GGPCERYTJXDGOH-UHFFFAOYSA-N 0.000 description 1
- IYAWBVSACPDZBW-UHFFFAOYSA-N 2-morpholin-2-ylethanamine Chemical compound NCCC1CNCCO1 IYAWBVSACPDZBW-UHFFFAOYSA-N 0.000 description 1
- OGLAAKXMVQPMTL-UHFFFAOYSA-N 2-oct-1-ynyl-5-thiophen-2-ylthiophene Chemical compound S1C(C#CCCCCCC)=CC=C1C1=CC=CS1 OGLAAKXMVQPMTL-UHFFFAOYSA-N 0.000 description 1
- FJDUBXOCPMPNNX-UHFFFAOYSA-N 2-phenyl-5-thiophen-2-ylthiophene Chemical compound C1=CSC(C=2SC(=CC=2)C=2C=CC=CC=2)=C1 FJDUBXOCPMPNNX-UHFFFAOYSA-N 0.000 description 1
- XCZKKZXWDBOGPA-UHFFFAOYSA-N 2-phenylbenzene-1,4-diol Chemical group OC1=CC=C(O)C(C=2C=CC=CC=2)=C1 XCZKKZXWDBOGPA-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- WCNXAUXOTFSBEV-UHFFFAOYSA-N 2-prop-1-ynyl-5-thiophen-2-ylthiophene Chemical compound S1C(C#CC)=CC=C1C1=CC=CS1 WCNXAUXOTFSBEV-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- YUOSDRMYPOJFCP-UHFFFAOYSA-N 3',6'-dihydroxy-2',7'-diiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(I)=C(O)C=C1OC1=C2C=C(I)C(O)=C1 YUOSDRMYPOJFCP-UHFFFAOYSA-N 0.000 description 1
- DSVUBXQDJGJGIC-UHFFFAOYSA-N 3',6'-dihydroxy-4',5'-diiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C(I)=C1OC1=C(I)C(O)=CC=C21 DSVUBXQDJGJGIC-UHFFFAOYSA-N 0.000 description 1
- YTECQPJHHAHABZ-UHFFFAOYSA-N 3,4,9-trimethylfuro[2,3-f]chromen-7-one Chemical compound O1C(=O)C=C(C)C2=C1C=C(C)C1=C2OC=C1C YTECQPJHHAHABZ-UHFFFAOYSA-N 0.000 description 1
- CFQAMEDTKHNQTP-UHFFFAOYSA-N 3-(ethoxycarbonyl)psoralen Chemical compound C1=C2OC(=O)C(C(=O)OCC)=CC2=CC2=C1OC=C2 CFQAMEDTKHNQTP-UHFFFAOYSA-N 0.000 description 1
- RKEBXTALJSALNU-LDCXZXNSSA-N 3-[(3R,21S,22S)-16-ethenyl-11-ethyl-4-hydroxy-3-methoxycarbonyl-12,17,21,26-tetramethyl-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,4,6,8(26),9,11,13(25),14,16,18(24),19-undecaen-22-yl]propanoic acid Chemical compound CCC1=C(C2=NC1=CC3=C(C4=C([C@@H](C(=C5[C@H]([C@@H](C(=CC6=NC(=C2)C(=C6C)C=C)N5)C)CCC(=O)O)C4=N3)C(=O)OC)O)C)C RKEBXTALJSALNU-LDCXZXNSSA-N 0.000 description 1
- NCAJWYASAWUEBY-UHFFFAOYSA-N 3-[20-(2-carboxyethyl)-9,14-diethyl-5,10,15,19-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(21),2,4,6(24),7,9,11,13,15,17,19-undecaen-4-yl]propanoic acid Chemical compound N1C2=C(C)C(CC)=C1C=C(N1)C(C)=C(CC)C1=CC(C(C)=C1CCC(O)=O)=NC1=CC(C(CCC(O)=O)=C1C)=NC1=C2 NCAJWYASAWUEBY-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- HYORIVUCOQKMOC-UHFFFAOYSA-N 3-benzoyl-7-methoxychromen-2-one Chemical compound O=C1OC2=CC(OC)=CC=C2C=C1C(=O)C1=CC=CC=C1 HYORIVUCOQKMOC-UHFFFAOYSA-N 0.000 description 1
- AKUVRZKNLXYTJX-UHFFFAOYSA-N 3-benzylazetidine Chemical compound C=1C=CC=CC=1CC1CNC1 AKUVRZKNLXYTJX-UHFFFAOYSA-N 0.000 description 1
- CABSFELLEWZIAK-UHFFFAOYSA-N 3-chloro-9h-carbazole Chemical compound C1=CC=C2C3=CC(Cl)=CC=C3NC2=C1 CABSFELLEWZIAK-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- YBJPZZBYEHNCSU-UHFFFAOYSA-N 3-methoxy-2,5-dithiophen-2-ylthiophene Chemical compound COC=1C=C(C=2SC=CC=2)SC=1C1=CC=CS1 YBJPZZBYEHNCSU-UHFFFAOYSA-N 0.000 description 1
- UZVMVUUAAXJDIL-UHFFFAOYSA-N 37,38,39,40-tetrazanonacyclo[28.6.1.13,10.112,19.121,28.04,9.013,18.022,27.031,36]tetraconta-1(37),2,4,6,8,10,12(39),13,15,17,19,21,23,25,27,29,31,33,35-nonadecaene zinc Chemical compound [Zn].N1C(C=C2C3=CC=CC=C3C(C=C3C4=CC=CC=C4C(=C4)N3)=N2)=C(C=CC=C2)C2=C1C=C1C2=CC=CC=C2C4=N1 UZVMVUUAAXJDIL-UHFFFAOYSA-N 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- ZDTNHRWWURISAA-UHFFFAOYSA-N 4',5'-dibromo-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C(Br)=C1OC1=C(Br)C(O)=CC=C21 ZDTNHRWWURISAA-UHFFFAOYSA-N 0.000 description 1
- WLHLYHWMNUCWEV-UHFFFAOYSA-N 4',5'-dichloro-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C(Cl)=C1OC1=C(Cl)C(O)=CC=C21 WLHLYHWMNUCWEV-UHFFFAOYSA-N 0.000 description 1
- ZARUKNQGJBWWBA-UHFFFAOYSA-N 4,4',6-Trimethylangelicin Chemical compound CC1=CC(=O)OC2=C3C(C)=COC3=C(C)C=C21 ZARUKNQGJBWWBA-UHFFFAOYSA-N 0.000 description 1
- ZUOUYRRXKPHFSV-UHFFFAOYSA-N 4,4'-Dimethylangelicin Chemical compound CC1=CC(=O)OC2=C3C(C)=COC3=CC=C21 ZUOUYRRXKPHFSV-UHFFFAOYSA-N 0.000 description 1
- ZHVFGMUMSLWNLA-UHFFFAOYSA-N 4,4-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione Chemical compound OC1=C(C=C(C=C1)C(C(C=C)=O)(C(C=C)=O)C1=CC(=C(C=C1)O)OC)OC ZHVFGMUMSLWNLA-UHFFFAOYSA-N 0.000 description 1
- WSZHMTCJRBHJMN-UHFFFAOYSA-N 4,8,9-trimethylfuro[2,3-h]chromen-2-one Chemical compound CC1=CC(=O)OC2=C(C(=C(C)O3)C)C3=CC=C21 WSZHMTCJRBHJMN-UHFFFAOYSA-N 0.000 description 1
- WJBHEYCJMSCKIP-RYUDHWBXSA-N 4,9-dihydroxy-6,7-bis[(2S)-2-hydroxypropyl]-1,5,8,12-tetramethoxyperylene-3,10-dione Chemical compound COC1=CC(=O)C=2C3=C1C(C(OC)=CC1=O)=C4C1=C(O)C(OC)=C(C[C@H](C)O)C4=C3C(C[C@H](C)O)=C(OC)C=2O WJBHEYCJMSCKIP-RYUDHWBXSA-N 0.000 description 1
- APBGHVVHKDULJA-UHFFFAOYSA-N 4,9-dimethylfuro[2,3-f]chromen-7-one Chemical compound O1C(=O)C=C(C)C2=C1C=C(C)C1=C2OC=C1 APBGHVVHKDULJA-UHFFFAOYSA-N 0.000 description 1
- ZLOIGESWDJYCTF-UHFFFAOYSA-N 4-Thiouridine Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=S)C=C1 ZLOIGESWDJYCTF-UHFFFAOYSA-N 0.000 description 1
- XCWHINLKQMCRON-UCDARZNSSA-N 4-[(2R,3R,4R,5S)-3,4-dihydroxy-5-[(1R)-1-hydroxyethyl]oxolan-2-yl]-8-ethenyl-1-hydroxy-10,12-dimethoxynaphtho[1,2-c]isochromen-6-one Chemical compound COC1=CC(C=C)=CC(C(OC2=C34)=O)=C1C2=CC(OC)=C3C(O)=CC=C4[C@H]1O[C@@H]([C@@H](C)O)[C@H](O)[C@H]1O XCWHINLKQMCRON-UCDARZNSSA-N 0.000 description 1
- ROEBJVHPINPMKL-UHFFFAOYSA-N 4-[(7-chloroquinolin-4-yl)amino]-2-(diethylaminomethyl)phenol;hydron;dichloride Chemical compound Cl.Cl.C1=C(O)C(CN(CC)CC)=CC(NC=2C3=CC=C(Cl)C=C3N=CC=2)=C1 ROEBJVHPINPMKL-UHFFFAOYSA-N 0.000 description 1
- QKICWELGRMTQCR-UHFFFAOYSA-N 4-[(7-chloroquinolin-4-yl)azaniumyl]pentyl-diethylazanium;dihydrogen phosphate Chemical compound OP(O)(O)=O.OP(O)(O)=O.ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 QKICWELGRMTQCR-UHFFFAOYSA-N 0.000 description 1
- BYFOTBZTKXSZHH-UHFFFAOYSA-N 4-[3,4-dihydroxy-5-(1-hydroxyethyl)oxolan-2-yl]-1-hydroxy-10,12-dimethoxy-8-methylnaphtho[1,2-c]isochromen-6-one Chemical compound C1=CC(O)=C2C(OC)=CC(C3=C(OC)C=C(C)C=C3C(=O)O3)=C3C2=C1C1OC(C(C)O)C(O)C1O BYFOTBZTKXSZHH-UHFFFAOYSA-N 0.000 description 1
- JQVAPEJNIZULEK-UHFFFAOYSA-N 4-chlorobenzene-1,3-diol Chemical compound OC1=CC=C(Cl)C(O)=C1 JQVAPEJNIZULEK-UHFFFAOYSA-N 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- ZLOIGESWDJYCTF-XVFCMESISA-N 4-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=S)C=C1 ZLOIGESWDJYCTF-XVFCMESISA-N 0.000 description 1
- 125000002596 5'-thymidylyl group Chemical group [H]C1=C(C([H])([H])[H])C(=O)N([H])C(=O)N1[C@@]1([H])C([H])([H])[C@@](O[H])([H])[C@](C(OP(=O)(O[H])[*])([H])[H])([H])O1 0.000 description 1
- QCZAJOVYBIIPDI-UHFFFAOYSA-O 5,10,15,20-tetrakis(1-methylpyridin-1-ium-2-yl)-21,22-dihydroporphyrin Chemical compound C[N+]1=CC=CC=C1C(C=1C=CC(N=1)=C(C=1[N+](=CC=CC=1)C)C1=CC=C(N1)C(C=1[N+](=CC=CC=1)C)=C1C=CC(N1)=C1C=2[N+](=CC=CC=2)C)=C2N=C1C=C2 QCZAJOVYBIIPDI-UHFFFAOYSA-O 0.000 description 1
- JPPCDPGSXNYZST-UHFFFAOYSA-N 5,10,15,20-tetrakis(1-methylpyridin-1-ium-3-yl)-21,23-dihydroporphyrin Chemical compound C[n+]1cccc(c1)-c1c2ccc(n2)c(-c2ccc[n+](C)c2)c2ccc([nH]2)c(-c2ccc[n+](C)c2)c2ccc(n2)c(-c2ccc[n+](C)c2)c2ccc1[nH]2 JPPCDPGSXNYZST-UHFFFAOYSA-N 0.000 description 1
- WVYQOJACJYPRCF-UHFFFAOYSA-N 5,10,15,20-tetrakis(3,4,5-trimethoxyphenyl)-21,23-dihydroporphyrin Chemical compound COc1cc(cc(OC)c1OC)-c1c2ccc(n2)c(-c2cc(OC)c(OC)c(OC)c2)c2ccc([nH]2)c(-c2cc(OC)c(OC)c(OC)c2)c2ccc(n2)c(-c2cc(OC)c(OC)c(OC)c2)c2ccc1[nH]2 WVYQOJACJYPRCF-UHFFFAOYSA-N 0.000 description 1
- YNXRFPUCCCJMPX-UHFFFAOYSA-N 5,10,15,20-tetrakis(3,5-dimethoxyphenyl)-21,23-dihydroporphyrin Chemical compound COc1cc(OC)cc(c1)-c1c2ccc(n2)c(-c2cc(OC)cc(OC)c2)c2ccc([nH]2)c(-c2cc(OC)cc(OC)c2)c2ccc(n2)c(-c2cc(OC)cc(OC)c2)c2ccc1[nH]2 YNXRFPUCCCJMPX-UHFFFAOYSA-N 0.000 description 1
- GTZCNONABJSHNM-UHFFFAOYSA-N 5,10,15,20-tetraphenyl-21,23-dihydroporphyrin zinc Chemical compound [Zn].c1cc2nc1c(-c1ccccc1)c1ccc([nH]1)c(-c1ccccc1)c1ccc(n1)c(-c1ccccc1)c1ccc([nH]1)c2-c1ccccc1 GTZCNONABJSHNM-UHFFFAOYSA-N 0.000 description 1
- ZMPZRDHZQFCUSJ-UHFFFAOYSA-N 5,7-dimethoxy-3-(naphthalene-1-carbonyl)chromen-2-one Chemical compound C1=CC=C2C(C(=O)C3=CC4=C(OC)C=C(C=C4OC3=O)OC)=CC=CC2=C1 ZMPZRDHZQFCUSJ-UHFFFAOYSA-N 0.000 description 1
- JFYYNELYFIGBFS-UHFFFAOYSA-N 5,8-dibromohypocrellin b Chemical compound C1C(C)=C(C(C)=O)C(C2=C34)=C(OC)C(=O)C3=C(O)C(Br)=C(OC)C4=C3C(OC)=C(Br)C(O)=C4C(=O)C(OC)=C1C2=C34 JFYYNELYFIGBFS-UHFFFAOYSA-N 0.000 description 1
- CGONEINYOMPEIT-UHFFFAOYSA-N 5-(2,2'-dithien-5-yl)-thiophene-2-methanol acetate Natural products S1C(COC(=O)C)=CC=C1C1=CC=C(C=2SC=CC=2)S1 CGONEINYOMPEIT-UHFFFAOYSA-N 0.000 description 1
- PMPDDPJYARBNGV-UHFFFAOYSA-N 5-(5-thiophen-2-ylthiophen-2-yl)thiophene-2-carbaldehyde Chemical compound S1C(C=O)=CC=C1C1=CC=C(C=2SC=CC=2)S1 PMPDDPJYARBNGV-UHFFFAOYSA-N 0.000 description 1
- LUORRMUDVBMZFF-UHFFFAOYSA-N 5-(5-thiophen-2-ylthiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C=2SC=CC=2)S1 LUORRMUDVBMZFF-UHFFFAOYSA-N 0.000 description 1
- YAEGPDBHSBKYRW-UHFFFAOYSA-N 5-[5-(5-formylthiophen-2-yl)thiophen-2-yl]thiophene-2-carbaldehyde Chemical compound S1C(C=O)=CC=C1C1=CC=C(C=2SC(C=O)=CC=2)S1 YAEGPDBHSBKYRW-UHFFFAOYSA-N 0.000 description 1
- GJOHLWZHWQUKAU-UHFFFAOYSA-N 5-azaniumylpentan-2-yl-(6-methoxyquinolin-8-yl)azanium;dihydrogen phosphate Chemical compound OP(O)(O)=O.OP(O)(O)=O.N1=CC=CC2=CC(OC)=CC(NC(C)CCCN)=C21 GJOHLWZHWQUKAU-UHFFFAOYSA-N 0.000 description 1
- FADCBRIDSNGUPA-UHFFFAOYSA-N 5-n,9-n,9-n-triethyl-12h-benzo[a]phenoselenazin-12-ium-5,9-diamine;chloride Chemical compound [Cl-].C12=CC=CC=C2C(NCC)=CC2=C1[NH2+]C1=CC=C(N(CC)CC)C=C1[Se]2 FADCBRIDSNGUPA-UHFFFAOYSA-N 0.000 description 1
- PPDRLQLKHRZIJC-UHFFFAOYSA-N 5-nitrosalicylic acid Chemical compound OC(=O)C1=CC([N+]([O-])=O)=CC=C1O PPDRLQLKHRZIJC-UHFFFAOYSA-N 0.000 description 1
- FYBWRAXKYXTOQC-UHFFFAOYSA-N 5-thiophen-2-ylthiophene-2-carbaldehyde Chemical compound S1C(C=O)=CC=C1C1=CC=CS1 FYBWRAXKYXTOQC-UHFFFAOYSA-N 0.000 description 1
- ANARYBGZNUMARH-UHFFFAOYSA-N 5-thiophen-2-ylthiophene-2-carbonitrile Chemical compound S1C(C#N)=CC=C1C1=CC=CS1 ANARYBGZNUMARH-UHFFFAOYSA-N 0.000 description 1
- QDAPMZLOJQVWSW-UHFFFAOYSA-N 6,8,9-trimethylfuro[2,3-h]chromen-2-one Chemical compound C1=CC(=O)OC2=C(C(=C(C)O3)C)C3=C(C)C=C21 QDAPMZLOJQVWSW-UHFFFAOYSA-N 0.000 description 1
- HFMBQTZRNSPHRY-UHFFFAOYSA-N 6,8-difluoro-1-(2-fluoroethyl)-4-oxo-7-piperazin-1-ylquinoline-3-carboxylic acid Chemical compound FC=1C=C2C(=O)C(C(=O)O)=CN(CCF)C2=C(F)C=1N1CCNCC1 HFMBQTZRNSPHRY-UHFFFAOYSA-N 0.000 description 1
- DMTYHDPHOWDSJJ-UHFFFAOYSA-N 6,8-difluoro-1-(2-fluoroethyl)-7-(4-methyl-4-oxidopiperazin-4-ium-1-yl)-4-oxoquinoline-3-carboxylic acid Chemical compound C1C[N+](C)([O-])CCN1C1=C(F)C=C2C(=O)C(C(O)=O)=CN(CCF)C2=C1F DMTYHDPHOWDSJJ-UHFFFAOYSA-N 0.000 description 1
- OWKHBZPPNMLKAD-UHFFFAOYSA-N 6-methyl-1h-benzo[g]pteridine-2,4-dione Chemical compound N1C(=O)NC(=O)C2=C1N=C1C=CC=C(C)C1=N2 OWKHBZPPNMLKAD-UHFFFAOYSA-N 0.000 description 1
- FXFYOPQLGGEACP-UHFFFAOYSA-N 6-methylcoumarin Chemical compound O1C(=O)C=CC2=CC(C)=CC=C21 FXFYOPQLGGEACP-UHFFFAOYSA-N 0.000 description 1
- GDRWYGWOZQAYRI-UHFFFAOYSA-N 7-(diethylamino)-3-(thiophene-3-carbonyl)chromen-2-one Chemical compound O=C1OC2=CC(N(CC)CC)=CC=C2C=C1C(=O)C=1C=CSC=1 GDRWYGWOZQAYRI-UHFFFAOYSA-N 0.000 description 1
- ALJHHTHBYJROOG-UHFFFAOYSA-N 7-(dimethylamino)phenothiazin-3-one Chemical compound C1=CC(=O)C=C2SC3=CC(N(C)C)=CC=C3N=C21 ALJHHTHBYJROOG-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- QNGUPQRODVPRDC-UHFFFAOYSA-N 7-chloroquinoline Chemical compound C1=CC=NC2=CC(Cl)=CC=C21 QNGUPQRODVPRDC-UHFFFAOYSA-N 0.000 description 1
- CGIVSENFCUVWGX-UHFFFAOYSA-N 7-methyl-1h-benzo[g]pteridine-2,4-dione Chemical compound N1C(=O)NC(=O)C2=NC3=CC(C)=CC=C3N=C21 CGIVSENFCUVWGX-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- BUNGCZLFHHXKBX-UHFFFAOYSA-N 8-methoxypsoralen Natural products C1=CC(=O)OC2=C1C=C1CCOC1=C2OC BUNGCZLFHHXKBX-UHFFFAOYSA-N 0.000 description 1
- RSXROKSZEWFWCR-UHFFFAOYSA-N 8-methyl-1h-benzo[g]pteridine-2,4-dione Chemical compound N1C2=CC(C)=CC=C2N=C2C1=NC(=O)NC2=O RSXROKSZEWFWCR-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 1
- DPSPPJIUMHPXMA-UHFFFAOYSA-N 9-fluoro-5-methyl-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid Chemical compound C1CC(C)N2C=C(C(O)=O)C(=O)C3=C2C1=CC(F)=C3 DPSPPJIUMHPXMA-UHFFFAOYSA-N 0.000 description 1
- CFMUZTVJQKVMAZ-UHFFFAOYSA-N 9-methoxy-4-nitrofuro[3,2-g]chromen-7-one Chemical compound C1=CC(=O)OC2=C1C([N+]([O-])=O)=C1C=COC1=C2OC CFMUZTVJQKVMAZ-UHFFFAOYSA-N 0.000 description 1
- PZGUOPTWYSOIDF-UHFFFAOYSA-N 9-methyl-1h-benzo[g]pteridine-2,4-dione Chemical compound N1C(=O)NC(=O)C2=C1N=C1C(C)=CC=CC1=N2 PZGUOPTWYSOIDF-UHFFFAOYSA-N 0.000 description 1
- VDOSWXIDETXFET-UHFFFAOYSA-N Afloqualone Chemical compound CC1=CC=CC=C1N1C(=O)C2=CC(N)=CC=C2N=C1CF VDOSWXIDETXFET-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 206010059313 Anogenital warts Diseases 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 241001263180 Auriparus flaviceps Species 0.000 description 1
- 108010070075 Bacteriochlorophyll A Proteins 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical class OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102400000967 Bradykinin Human genes 0.000 description 1
- 101800004538 Bradykinin Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- PLVAJLBZYYGQNL-UHFFFAOYSA-N C12CC=C(N1)C=C1C=CC(=N1)C=C1C=CC(N1)=CC=1C3=C(C(N=1)=C2)C=CC=C3 Chemical compound C12CC=C(N1)C=C1C=CC(=N1)C=C1C=CC(N1)=CC=1C3=C(C(N=1)=C2)C=CC=C3 PLVAJLBZYYGQNL-UHFFFAOYSA-N 0.000 description 1
- ULERISLJYQKABB-UHFFFAOYSA-N C1=CC(S(=O)(=O)O)=CC=C1C1=CC2=CC([N]3)=CC=C3C=C(C=C3)NC3=CC([N]3)=CC=C3C=C1N2 Chemical compound C1=CC(S(=O)(=O)O)=CC=C1C1=CC2=CC([N]3)=CC=C3C=C(C=C3)NC3=CC([N]3)=CC=C3C=C1N2 ULERISLJYQKABB-UHFFFAOYSA-N 0.000 description 1
- RQFRMKSBEBYSPP-UHFFFAOYSA-N C1=CC=CC=C1C(C=1N=C2C(=C3NC(C(=C3C=3C=CC=CC=3)C=3C=CC=CC=3)=C(C=3C=CC=CC=3)C3=NC(C(=C3C=3C=CC=CC=3)C=3C=CC=CC=3)=C(C=3C=CC=CC=3)C=3NC(=C(C=3C=3C=CC=CC=3)C=3C=CC=CC=3)C=1C=1C=CC=CC=1)C=1C=CC=CC=1)=C2C1=CC=CC=C1 Chemical compound C1=CC=CC=C1C(C=1N=C2C(=C3NC(C(=C3C=3C=CC=CC=3)C=3C=CC=CC=3)=C(C=3C=CC=CC=3)C3=NC(C(=C3C=3C=CC=CC=3)C=3C=CC=CC=3)=C(C=3C=CC=CC=3)C=3NC(=C(C=3C=3C=CC=CC=3)C=3C=CC=CC=3)C=1C=1C=CC=CC=1)C=1C=CC=CC=1)=C2C1=CC=CC=C1 RQFRMKSBEBYSPP-UHFFFAOYSA-N 0.000 description 1
- VZBILKJHDPEENF-UHFFFAOYSA-M C3-thiacarbocyanine Chemical compound [I-].S1C2=CC=CC=C2[N+](CC)=C1C=CC=C1N(CC)C2=CC=CC=C2S1 VZBILKJHDPEENF-UHFFFAOYSA-M 0.000 description 1
- SBDAURHXSONUCX-UHFFFAOYSA-N CNN(C(=O)CCC)NC Chemical compound CNN(C(=O)CCC)NC SBDAURHXSONUCX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- LNDBGVYRENMDEN-UHFFFAOYSA-N Calphostin D Natural products C=12C(OC)=CC(O)=C(C(C(OC)=C3CC(C)O)=O)C=1C3=C1C(CC(C)O)=C(OC)C(=O)C3=C1C2=C(OC)C=C3O LNDBGVYRENMDEN-UHFFFAOYSA-N 0.000 description 1
- VWDXGKUTGQJJHJ-UHFFFAOYSA-N Catenarin Natural products C1=C(O)C=C2C(=O)C3=C(O)C(C)=CC(O)=C3C(=O)C2=C1O VWDXGKUTGQJJHJ-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 208000005590 Choroidal Neovascularization Diseases 0.000 description 1
- 206010060823 Choroidal neovascularisation Diseases 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- YTBSYETUWUMLBZ-UHFFFAOYSA-N D-Erythrose Natural products OCC(O)C(O)C=O YTBSYETUWUMLBZ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- WQZGKKKJIJFFOK-CBPJZXOFSA-N D-Gulose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-CBPJZXOFSA-N 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- WQZGKKKJIJFFOK-WHZQZERISA-N D-aldose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-WHZQZERISA-N 0.000 description 1
- WQZGKKKJIJFFOK-IVMDWMLBSA-N D-allopyranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-IVMDWMLBSA-N 0.000 description 1
- LKDRXBCSQODPBY-JDJSBBGDSA-N D-allulose Chemical compound OCC1(O)OC[C@@H](O)[C@@H](O)[C@H]1O LKDRXBCSQODPBY-JDJSBBGDSA-N 0.000 description 1
- YTBSYETUWUMLBZ-IUYQGCFVSA-N D-erythrose Chemical compound OC[C@@H](O)[C@@H](O)C=O YTBSYETUWUMLBZ-IUYQGCFVSA-N 0.000 description 1
- DSLZVSRJTYRBFB-LLEIAEIESA-N D-glucaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O DSLZVSRJTYRBFB-LLEIAEIESA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 1
- MNQZXJOMYWMBOU-VKHMYHEASA-N D-glyceraldehyde Chemical compound OC[C@@H](O)C=O MNQZXJOMYWMBOU-VKHMYHEASA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- QWIZNVHXZXRPDR-UHFFFAOYSA-N D-melezitose Natural products O1C(CO)C(O)C(O)C(O)C1OC1C(O)C(CO)OC1(CO)OC1OC(CO)C(O)C(O)C1O QWIZNVHXZXRPDR-UHFFFAOYSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- YTBSYETUWUMLBZ-QWWZWVQMSA-N D-threose Chemical compound OC[C@@H](O)[C@H](O)C=O YTBSYETUWUMLBZ-QWWZWVQMSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- YOFDHOWPGULAQF-UHFFFAOYSA-N Daunomycin-Aglycone Natural products C1C(O)(C(C)=O)CC(O)C2=C1C(O)=C1C(=O)C(C=CC=C3OC)=C3C(=O)C1=C2O YOFDHOWPGULAQF-UHFFFAOYSA-N 0.000 description 1
- SBJKKFFYIZUCET-UHFFFAOYSA-N Dehydroascorbic acid Natural products OCC(O)C1OC(=O)C(=O)C1=O SBJKKFFYIZUCET-UHFFFAOYSA-N 0.000 description 1
- AFWKBSMFXWNGRE-ONEGZZNKSA-N Dehydrozingerone Chemical compound COC1=CC(\C=C\C(C)=O)=CC=C1O AFWKBSMFXWNGRE-ONEGZZNKSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 206010013908 Dysfunctional uterine bleeding Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 239000010282 Emodin Substances 0.000 description 1
- RBLJKYCRSCQLRP-UHFFFAOYSA-N Emodin-dianthron Natural products O=C1C2=CC(C)=CC(O)=C2C(=O)C2=C1CC(=O)C=C2O RBLJKYCRSCQLRP-UHFFFAOYSA-N 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 206010056474 Erythrosis Diseases 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- FCEXWTOTHXCQCQ-UHFFFAOYSA-N Ethoxydihydrosanguinarine Natural products C12=CC=C3OCOC3=C2C(OCC)N(C)C(C2=C3)=C1C=CC2=CC1=C3OCO1 FCEXWTOTHXCQCQ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 239000001576 FEMA 2977 Substances 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical group FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 208000012766 Growth delay Diseases 0.000 description 1
- QXZGBUJJYSLZLT-UHFFFAOYSA-N H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH Natural products NC(N)=NCCCC(N)C(=O)N1CCCC1C(=O)N1C(C(=O)NCC(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CO)C(=O)N2C(CCC2)C(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CCCN=C(N)N)C(O)=O)CCC1 QXZGBUJJYSLZLT-UHFFFAOYSA-N 0.000 description 1
- YOOXNSPYGCZLAX-UHFFFAOYSA-N Helminthosporin Natural products C1=CC(O)=C2C(=O)C3=CC(C)=CC(O)=C3C(=O)C2=C1O YOOXNSPYGCZLAX-UHFFFAOYSA-N 0.000 description 1
- 206010073069 Hepatic cancer Diseases 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 101001135770 Homo sapiens Parathyroid hormone Proteins 0.000 description 1
- 101001135995 Homo sapiens Probable peptidyl-tRNA hydrolase Proteins 0.000 description 1
- 101000904173 Homo sapiens Progonadoliberin-1 Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- SSZVJOJPPUPCBF-JARCNSDHSA-N Hydroxyspirilloxanthin Chemical class COC(C)(C)C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)\C=C\CC(C)(C)O SSZVJOJPPUPCBF-JARCNSDHSA-N 0.000 description 1
- CFFXZMGVMRTXFE-UHFFFAOYSA-N I.CCCNCCNC=O Chemical compound I.CCCNCCNC=O CFFXZMGVMRTXFE-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- RNKZFOIQKCQOAQ-UHFFFAOYSA-N Isopimpinellin Natural products COC1CC(=O)Oc2c(OC)c3occc3cc12 RNKZFOIQKCQOAQ-UHFFFAOYSA-N 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- 208000007976 Ketosis Diseases 0.000 description 1
- SXFPNMRWIWIAGS-UHFFFAOYSA-N Khellin Natural products COC1C2CCOC2C(OC)C3OC(C)CC(=O)C13 SXFPNMRWIWIAGS-UHFFFAOYSA-N 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VSOAQEOCSA-N L-altropyranose Chemical compound OC[C@@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-VSOAQEOCSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- SHZGCJCMOBCMKK-JFNONXLTSA-N L-rhamnopyranose Chemical compound C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O SHZGCJCMOBCMKK-JFNONXLTSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920000057 Mannan Polymers 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- WESWYMRNZNDGBX-YLCXCWDSSA-N Mefloquine hydrochloride Chemical compound Cl.C([C@@H]1[C@@H](O)C=2C3=CC=CC(=C3N=C(C=2)C(F)(F)F)C(F)(F)F)CCCN1 WESWYMRNZNDGBX-YLCXCWDSSA-N 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- HOKDBMAJZXIPGC-UHFFFAOYSA-N Mequitazine Chemical compound C12=CC=CC=C2SC2=CC=CC=C2N1CC1C(CC2)CCN2C1 HOKDBMAJZXIPGC-UHFFFAOYSA-N 0.000 description 1
- QXKHYNVANLEOEG-UHFFFAOYSA-N Methoxsalen Chemical compound C1=CC(=O)OC2=C1C=C1C=COC1=C2OC QXKHYNVANLEOEG-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical group CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 206010027514 Metrorrhagia Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- 241000238367 Mya arenaria Species 0.000 description 1
- BYHJHXPTQMMKCA-QMMMGPOBSA-N N-formyl-L-kynurenine Chemical compound [O-]C(=O)[C@@H]([NH3+])CC(=O)C1=CC=CC=C1NC=O BYHJHXPTQMMKCA-QMMMGPOBSA-N 0.000 description 1
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 206010029098 Neoplasm skin Diseases 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ILUJQPXNXACGAN-UHFFFAOYSA-N O-methylsalicylic acid Chemical class COC1=CC=CC=C1C(O)=O ILUJQPXNXACGAN-UHFFFAOYSA-N 0.000 description 1
- JEYCSJMVFUPKDE-WORMITQPSA-N OCCC=CC=1C(=C2NC=1C=C1C=CC(=N1)C=C1C=CC(N1)=CC=1C=CC(N=1)=C2)[2H] Chemical compound OCCC=CC=1C(=C2NC=1C=C1C=CC(=N1)C=C1C=CC(N1)=CC=1C=CC(N=1)=C2)[2H] JEYCSJMVFUPKDE-WORMITQPSA-N 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 102400000050 Oxytocin Human genes 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 102000003982 Parathyroid hormone Human genes 0.000 description 1
- 208000009565 Pharyngeal Neoplasms Diseases 0.000 description 1
- 206010034811 Pharyngeal cancer Diseases 0.000 description 1
- IGVPBCZDHMIOJH-UHFFFAOYSA-N Phenyl butyrate Chemical class CCCC(=O)OC1=CC=CC=C1 IGVPBCZDHMIOJH-UHFFFAOYSA-N 0.000 description 1
- MVZYQFDKEMBZPS-UHFFFAOYSA-N Phycocyanobilin dimethyl ester Natural products CCC1=C(C)C(=CC2=NC(=C/c3[nH]c(C=C/4C(C(C(N4)=O)C)=C/C)c(C)c3CCC(=O)OC)C(CCC(=O)OC)C2C)NC1=O MVZYQFDKEMBZPS-UHFFFAOYSA-N 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- WDVSHHCDHLJJJR-UHFFFAOYSA-N Proflavine Chemical compound C1=CC(N)=CC2=NC3=CC(N)=CC=C3C=C21 WDVSHHCDHLJJJR-UHFFFAOYSA-N 0.000 description 1
- 102100024028 Progonadoliberin-1 Human genes 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- NCYCYZXNIZJOKI-OVSJKPMPSA-N Retinaldehyde Chemical compound O=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-OVSJKPMPSA-N 0.000 description 1
- NTGIIKCGBNGQAR-UHFFFAOYSA-N Rheoemodin Natural products C1=C(O)C=C2C(=O)C3=CC(O)=CC(O)=C3C(=O)C2=C1O NTGIIKCGBNGQAR-UHFFFAOYSA-N 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- VLZJTXBZVPXQKI-UHFFFAOYSA-N Rubellin A Natural products Cc1cc(O)c2C(=O)OC3C(O)C=C4C(Cc5cc(O)c6C(=O)c7c(O)cccc7C(=O)c6c45)C3C(O)c2c1 VLZJTXBZVPXQKI-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 206010059516 Skin toxicity Diseases 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 101000996723 Sus scrofa Gonadotropin-releasing hormone receptor Proteins 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 206010062129 Tongue neoplasm Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 238000005874 Vilsmeier-Haack formylation reaction Methods 0.000 description 1
- 241001464837 Viridiplantae Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- YXCORZFYRFZUOV-UHFFFAOYSA-N Xanthotoxol Natural products COc1c2OC(O)C=Cc2cc3ccoc13 YXCORZFYRFZUOV-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- AKZWRTCWNXHHFR-PDIZUQLASA-N [(3S)-oxolan-3-yl] N-[(2S,3S)-4-[(5S)-5-benzyl-3-[(2R)-2-carbamoyloxy-2,3-dihydro-1H-inden-1-yl]-4-oxo-3H-pyrrol-5-yl]-3-hydroxy-1-phenylbutan-2-yl]carbamate Chemical compound NC(=O)O[C@@H]1Cc2ccccc2C1C1C=N[C@](C[C@H](O)[C@H](Cc2ccccc2)NC(=O)O[C@H]2CCOC2)(Cc2ccccc2)C1=O AKZWRTCWNXHHFR-PDIZUQLASA-N 0.000 description 1
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 1
- GMCVSEFMPYGLOB-UHFFFAOYSA-N [6-amino-2,4,5,7-tetrabromo-9-(2-methoxycarbonylphenyl)xanthen-3-ylidene]azanium;chloride Chemical compound [Cl-].COC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=[NH2+])C(Br)=C2OC2=C(Br)C(N)=C(Br)C=C21 GMCVSEFMPYGLOB-UHFFFAOYSA-N 0.000 description 1
- JRMSLDWZFJZLAS-UHFFFAOYSA-M [7-(dimethylamino)-1,9-dimethylphenothiazin-3-ylidene]-dimethylazanium;chloride Chemical compound [Cl-].CC1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC(C)=C3N=C21 JRMSLDWZFJZLAS-UHFFFAOYSA-M 0.000 description 1
- QYNCZLPRFXWLEN-UHFFFAOYSA-N [9-(diethylamino)benzo[a]phenothiazin-5-ylidene]-ethylazanium;chloride Chemical compound [Cl-].C12=CC=CC=C2C(=[NH+]CC)C=C2C1=NC1=CC=C(N(CC)CC)C=C1S2 QYNCZLPRFXWLEN-UHFFFAOYSA-N 0.000 description 1
- SXQRATTWLJENLK-UHFFFAOYSA-N [9-(diethylamino)benzo[a]phenoxazin-5-ylidene]-ethylazanium;chloride Chemical compound [Cl-].C12=CC=CC=C2C(=[NH+]CC)C=C2C1=NC1=CC=C(N(CC)CC)C=C1O2 SXQRATTWLJENLK-UHFFFAOYSA-N 0.000 description 1
- GIJIJRJVIBDATK-UHFFFAOYSA-M [Cl-].CC(=O)C1=CC=CC=[N+]1C(C)=O Chemical compound [Cl-].CC(=O)C1=CC=CC=[N+]1C(C)=O GIJIJRJVIBDATK-UHFFFAOYSA-M 0.000 description 1
- HKESYQYIAZTIFI-UHFFFAOYSA-N [Mg].N1C(C=C2C3=CC=CC=C3C(C=C3C4=CC=CC=C4C(=C4)N3)=N2)=C(C=CC=C2)C2=C1C=C1C2=CC=CC=C2C4=N1 Chemical compound [Mg].N1C(C=C2C3=CC=CC=C3C(C=C3C4=CC=CC=C4C(=C4)N3)=N2)=C(C=CC=C2)C2=C1C=C1C2=CC=CC=C2C4=N1 HKESYQYIAZTIFI-UHFFFAOYSA-N 0.000 description 1
- HJTAXGKRJGUCNN-UHFFFAOYSA-N [Mg].c1cc2nc1c(-c1ccccc1)c1ccc([nH]1)c(-c1ccccc1)c1ccc(n1)c(-c1ccccc1)c1ccc([nH]1)c2-c1ccccc1 Chemical compound [Mg].c1cc2nc1c(-c1ccccc1)c1ccc([nH]1)c(-c1ccccc1)c1ccc(n1)c(-c1ccccc1)c1ccc([nH]1)c2-c1ccccc1 HJTAXGKRJGUCNN-UHFFFAOYSA-N 0.000 description 1
- QFVPDEPJAALMKS-UHFFFAOYSA-N [N]1C(C=C2NC(=CC3=N4)C=C2)=CC=C1C=C(N1)C=C(C(=O)C)C1=CC4=C1[C]3C=CC=C1 Chemical class [N]1C(C=C2NC(=CC3=N4)C=C2)=CC=C1C=C(N1)C=C(C(=O)C)C1=CC4=C1[C]3C=CC=C1 QFVPDEPJAALMKS-UHFFFAOYSA-N 0.000 description 1
- ZPEGJOPUKUPHNU-UHFFFAOYSA-N [N]1C2=CC=C1C=C(N1)C=C(C=C)C1=CC([N]1)=CC=C1C=C(N1)C=CC1=C2 Chemical compound [N]1C2=CC=C1C=C(N1)C=C(C=C)C1=CC([N]1)=CC=C1C=C(N1)C=CC1=C2 ZPEGJOPUKUPHNU-UHFFFAOYSA-N 0.000 description 1
- WYBWNPQKTXMMRM-UHFFFAOYSA-N [N]1C2=CC=C1C=C(N1)C=C(NC(=O)C)C1=CC([N]1)=CC=C1C=C(N1)C=CC1=C2 Chemical class [N]1C2=CC=C1C=C(N1)C=C(NC(=O)C)C1=CC([N]1)=CC=C1C=C(N1)C=CC1=C2 WYBWNPQKTXMMRM-UHFFFAOYSA-N 0.000 description 1
- WACFZQASQMBSIF-UHFFFAOYSA-J [O-]S(C(C=C1)=CC=C1C(C1=CC=C(C(C(C=C2)=CC=C2S([O-])(=O)=O)=C2N=C3C=C2)N1)=C(C=C1)N=C1C(C(C=C1)=CC=C1S([O-])(=O)=O)=C(C=C1)NC1=C3C(C=C1)=CC=C1S([O-])(=O)=O)(=O)=O.Cl.Cl.[Sn+4] Chemical compound [O-]S(C(C=C1)=CC=C1C(C1=CC=C(C(C(C=C2)=CC=C2S([O-])(=O)=O)=C2N=C3C=C2)N1)=C(C=C1)N=C1C(C(C=C1)=CC=C1S([O-])(=O)=O)=C(C=C1)NC1=C3C(C=C1)=CC=C1S([O-])(=O)=O)(=O)=O.Cl.Cl.[Sn+4] WACFZQASQMBSIF-UHFFFAOYSA-J 0.000 description 1
- QCJQWJKKTGJDCM-UHFFFAOYSA-N [P].[S] Chemical compound [P].[S] QCJQWJKKTGJDCM-UHFFFAOYSA-N 0.000 description 1
- XWOQSMOSNCMPSH-UHFFFAOYSA-N [Sm+2] Chemical compound [Sm+2] XWOQSMOSNCMPSH-UHFFFAOYSA-N 0.000 description 1
- YIYFFLYGSHJWFF-UHFFFAOYSA-N [Zn].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 Chemical compound [Zn].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 YIYFFLYGSHJWFF-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 150000000475 acetylene derivatives Chemical class 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000003470 adrenal cortex hormone Substances 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229950009353 afloqualone Drugs 0.000 description 1
- 229960003767 alanine Drugs 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- IAJILQKETJEXLJ-RSJOWCBRSA-N aldehydo-D-galacturonic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-RSJOWCBRSA-N 0.000 description 1
- 150000001323 aldoses Chemical class 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- SRBFZHDQGSBBOR-STGXQOJASA-N alpha-D-lyxopyranose Chemical compound O[C@@H]1CO[C@H](O)[C@@H](O)[C@H]1O SRBFZHDQGSBBOR-STGXQOJASA-N 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 238000006470 amide elimination reaction Methods 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 125000003289 ascorbyl group Chemical class [H]O[C@@]([H])(C([H])([H])O*)[C@@]1([H])OC(=O)C(O*)=C1O* 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 125000002393 azetidinyl group Chemical group 0.000 description 1
- DSJXIQQMORJERS-AGGZHOMASA-M bacteriochlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC([C@H](CC)[C@H]3C)=[N+]4C3=CC3=C(C(C)=O)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 DSJXIQQMORJERS-AGGZHOMASA-M 0.000 description 1
- 108010010589 bacteriochlorophyll b Proteins 0.000 description 1
- 108010010609 bacteriochlorophyll c Proteins 0.000 description 1
- 108010010601 bacteriochlorophyll d Proteins 0.000 description 1
- 150000008331 benzenesulfonamides Chemical class 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- FXRDPPFLWGSMQT-UHFFFAOYSA-N benzo[f]chromen-3-one Chemical compound C1=CC=C2C(C=CC(O3)=O)=C3C=CC2=C1 FXRDPPFLWGSMQT-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- YBHILYKTIRIUTE-UHFFFAOYSA-N berberine Chemical compound C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2 YBHILYKTIRIUTE-UHFFFAOYSA-N 0.000 description 1
- QISXPYZVZJBNDM-UHFFFAOYSA-N berberine Natural products COc1ccc2C=C3N(Cc2c1OC)C=Cc4cc5OCOc5cc34 QISXPYZVZJBNDM-UHFFFAOYSA-N 0.000 description 1
- 229940093265 berberine Drugs 0.000 description 1
- 229960002045 bergapten Drugs 0.000 description 1
- KGZDKFWCIPZMRK-UHFFFAOYSA-N bergapten Natural products COC1C2=C(Cc3ccoc13)C=CC(=O)O2 KGZDKFWCIPZMRK-UHFFFAOYSA-N 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 208000026900 bile duct neoplasm Diseases 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- DIYFKPYLIZNQEX-UHFFFAOYSA-N bis(21,23-dihydroporphyrin-2-yl)diazene Chemical compound C12=C(C=C(N1)C=C1C=CC(=N1)C=C1C=CC(N1)=CC=1C=CC(N=1)=C2)N=NC1=C2NC(=C1)C=C1C=CC(=N1)C=C1C=CC(N1)=CC=1C=CC(N=1)=C2 DIYFKPYLIZNQEX-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M bisulphate group Chemical group S([O-])(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- QXZGBUJJYSLZLT-FDISYFBBSA-N bradykinin Chemical compound NC(=N)NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CO)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)CCC1 QXZGBUJJYSLZLT-FDISYFBBSA-N 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000006189 buccal tablet Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- LSUTUUOITDQYNO-UHFFFAOYSA-N calphostin C Chemical compound C=12C3=C4C(CC(C)OC(=O)C=5C=CC=CC=5)=C(OC)C(O)=C(C(C=C5OC)=O)C4=C5C=1C(OC)=CC(=O)C2=C(O)C(OC)=C3CC(C)OC(=O)OC1=CC=C(O)C=C1 LSUTUUOITDQYNO-UHFFFAOYSA-N 0.000 description 1
- LQCVXLAMNPNGDG-UHFFFAOYSA-N carbamic acid 1H-pyrrole Chemical class NC(O)=O.C=1C=CNC=1.C=1C=CNC=1.C=1C=CNC=1.C=1C=CNC=1 LQCVXLAMNPNGDG-UHFFFAOYSA-N 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000006355 carbonyl methylene group Chemical group [H]C([H])([*:2])C([*:1])=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- BLLIIPIJZPKUEG-HPTNQIKVSA-N chembl3304020 Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=N)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 BLLIIPIJZPKUEG-HPTNQIKVSA-N 0.000 description 1
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 1
- XMEVHPAGJVLHIG-FMZCEJRJSA-N chembl454950 Chemical compound [Cl-].C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H]([NH+](C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O XMEVHPAGJVLHIG-FMZCEJRJSA-N 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000012707 chemical precursor Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000007958 cherry flavor Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- AJPXTSMULZANCB-UHFFFAOYSA-N chlorohydroquinone Chemical compound OC1=CC=C(O)C(Cl)=C1 AJPXTSMULZANCB-UHFFFAOYSA-N 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 229930002868 chlorophyll a Natural products 0.000 description 1
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 1
- 229930002869 chlorophyll b Natural products 0.000 description 1
- 239000001752 chlorophylls and chlorophyllins Substances 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- 229960001657 chlorpromazine hydrochloride Drugs 0.000 description 1
- 125000004230 chromenyl group Chemical group O1C(C=CC2=CC=CC=C12)* 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- VDUWPHTZYNWKRN-UHFFFAOYSA-N cinoxacin Chemical compound C1=C2N(CC)N=C(C(O)=O)C(=O)C2=CC2=C1OCO2 VDUWPHTZYNWKRN-UHFFFAOYSA-N 0.000 description 1
- 229960004621 cinoxacin Drugs 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- JKNIRLKHOOMGOJ-UHFFFAOYSA-N cladochrome D Natural products COC1=C(CC(C)OC(=O)Oc2ccc(O)cc2)c3c4C(=C(OC)C(=O)c5c(O)cc(OC)c(c45)c6c(OC)cc(O)c(C1=O)c36)CC(C)OC(=O)c7ccc(O)cc7 JKNIRLKHOOMGOJ-UHFFFAOYSA-N 0.000 description 1
- SRJYZPCBWDVSGO-UHFFFAOYSA-N cladochrome E Natural products COC1=CC(O)=C(C(C(OC)=C(CC(C)OC(=O)OC=2C=CC(O)=CC=2)C2=3)=O)C2=C1C1=C(OC)C=C(O)C(C(C=2OC)=O)=C1C=3C=2CC(C)OC(=O)C1=CC=CC=C1 SRJYZPCBWDVSGO-UHFFFAOYSA-N 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- MPMSMUBQXQALQI-UHFFFAOYSA-N cobalt phthalocyanine Chemical compound [Co+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 MPMSMUBQXQALQI-UHFFFAOYSA-N 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- CEJANLKHJMMNQB-UHFFFAOYSA-M cryptocyanin Chemical compound [I-].C12=CC=CC=C2N(CC)C=CC1=CC=CC1=CC=[N+](CC)C2=CC=CC=C12 CEJANLKHJMMNQB-UHFFFAOYSA-M 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- CXRZTQSUFKVPHJ-BBZRCZKMSA-N dTpdA Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)C1 CXRZTQSUFKVPHJ-BBZRCZKMSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 125000005534 decanoate group Chemical class 0.000 description 1
- GODQIIKZEJTEPS-UHFFFAOYSA-N decarboxysuprofen Chemical compound C1=CC(CC)=CC=C1C(=O)C1=CC=CS1 GODQIIKZEJTEPS-UHFFFAOYSA-N 0.000 description 1
- KRUFIFKRFHMKHL-UHFFFAOYSA-N decarboxytiaprofenic acid Chemical compound S1C(CC)=CC=C1C(=O)C1=CC=CC=C1 KRUFIFKRFHMKHL-UHFFFAOYSA-N 0.000 description 1
- 238000007257 deesterification reaction Methods 0.000 description 1
- 235000020960 dehydroascorbic acid Nutrition 0.000 description 1
- 239000011615 dehydroascorbic acid Substances 0.000 description 1
- AFWKBSMFXWNGRE-UHFFFAOYSA-N dehydrozingerone Natural products COC1=CC(C=CC(C)=O)=CC=C1O AFWKBSMFXWNGRE-UHFFFAOYSA-N 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000006707 demethoxycarbonylation reaction Methods 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 150000008266 deoxy sugars Chemical class 0.000 description 1
- LTFMZDNNPPEQNG-UHFFFAOYSA-N deoxyguanylic acid Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1CC(O)C(COP(O)(O)=O)O1 LTFMZDNNPPEQNG-UHFFFAOYSA-N 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- VGONTNSXDCQUGY-UHFFFAOYSA-N desoxyinosine Natural products C1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 VGONTNSXDCQUGY-UHFFFAOYSA-N 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 1
- 229910000071 diazene Inorganic materials 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- WGLUMOCWFMKWIL-UHFFFAOYSA-N dichloromethane;methanol Chemical compound OC.ClCCl WGLUMOCWFMKWIL-UHFFFAOYSA-N 0.000 description 1
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 1
- 125000002897 diene group Chemical group 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004852 dihydrofuranyl group Chemical group O1C(CC=C1)* 0.000 description 1
- 125000005043 dihydropyranyl group Chemical group O1C(CCC=C1)* 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- VHILMKFSCRWWIJ-UHFFFAOYSA-N dimethyl acetylenedicarboxylate Chemical compound COC(=O)C#CC(=O)OC VHILMKFSCRWWIJ-UHFFFAOYSA-N 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- KCIDZIIHRGYJAE-YGFYJFDDSA-L dipotassium;[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] phosphate Chemical compound [K+].[K+].OC[C@H]1O[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@H]1O KCIDZIIHRGYJAE-YGFYJFDDSA-L 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- ZGSPNIOCEDOHGS-UHFFFAOYSA-L disodium [3-[2,3-di(octadeca-9,12-dienoyloxy)propoxy-oxidophosphoryl]oxy-2-hydroxypropyl] 2,3-di(octadeca-9,12-dienoyloxy)propyl phosphate Chemical compound [Na+].[Na+].CCCCCC=CCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COP([O-])(=O)OCC(O)COP([O-])(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COC(=O)CCCCCCCC=CCC=CCCCCC ZGSPNIOCEDOHGS-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- XQTWDDCIUJNLTR-CVHRZJFOSA-N doxycycline monohydrate Chemical compound O.O=C1C2=C(O)C=CC=C2[C@H](C)[C@@H]2C1=C(O)[C@]1(O)C(=O)C(C(N)=O)=C(O)[C@@H](N(C)C)[C@@H]1[C@H]2O XQTWDDCIUJNLTR-CVHRZJFOSA-N 0.000 description 1
- WAMKWBHYPYBEJY-UHFFFAOYSA-N duroquinone Chemical compound CC1=C(C)C(=O)C(C)=C(C)C1=O WAMKWBHYPYBEJY-UHFFFAOYSA-N 0.000 description 1
- 235000013345 egg yolk Nutrition 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- VASFLQKDXBAWEL-UHFFFAOYSA-N emodin Natural products OC1=C(OC2=C(C=CC(=C2C1=O)O)O)C1=CC=C(C=C1)O VASFLQKDXBAWEL-UHFFFAOYSA-N 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- IDYZIJYBMGIQMJ-UHFFFAOYSA-N enoxacin Chemical compound N1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 IDYZIJYBMGIQMJ-UHFFFAOYSA-N 0.000 description 1
- 229960002549 enoxacin Drugs 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 210000003560 epithelium corneal Anatomy 0.000 description 1
- DNVPQKQSNYMLRS-APGDWVJJSA-N ergosterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@H](C)/C=C/[C@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-APGDWVJJSA-N 0.000 description 1
- UQPHVQVXLPRNCX-UHFFFAOYSA-N erythrulose Chemical compound OCC(O)C(=O)CO UQPHVQVXLPRNCX-UHFFFAOYSA-N 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical group CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 1
- 125000006351 ethylthiomethyl group Chemical group [H]C([H])([H])C([H])([H])SC([H])([H])* 0.000 description 1
- LNBHUCHAFZUEGJ-UHFFFAOYSA-N europium(3+) Chemical compound [Eu+3] LNBHUCHAFZUEGJ-UHFFFAOYSA-N 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- FVTCRASFADXXNN-SCRDCRAPSA-N flavin mononucleotide Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-SCRDCRAPSA-N 0.000 description 1
- 229940013640 flavin mononucleotide Drugs 0.000 description 1
- FVTCRASFADXXNN-UHFFFAOYSA-N flavin mononucleotide Natural products OP(=O)(O)OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-UHFFFAOYSA-N 0.000 description 1
- 239000011768 flavin mononucleotide Substances 0.000 description 1
- 150000002211 flavins Chemical class 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- XBJBPGROQZJDOJ-UHFFFAOYSA-N fleroxacin Chemical compound C1CN(C)CCN1C1=C(F)C=C2C(=O)C(C(O)=O)=CN(CCF)C2=C1F XBJBPGROQZJDOJ-UHFFFAOYSA-N 0.000 description 1
- 229960003306 fleroxacin Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229960000702 flumequine Drugs 0.000 description 1
- 239000011737 fluorine Chemical group 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 150000002243 furanoses Chemical class 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 125000003838 furazanyl group Chemical group 0.000 description 1
- ZHXGWBPOSIDCII-UHFFFAOYSA-N furo[3,2-f]chromen-7-one Chemical compound C1=C2OC(=O)C=CC2=C2C=COC2=C1 ZHXGWBPOSIDCII-UHFFFAOYSA-N 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 229960003883 furosemide Drugs 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 210000005095 gastrointestinal system Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000021474 generally recognized As safe (food) Nutrition 0.000 description 1
- 235000021473 generally recognized as safe (food ingredients) Nutrition 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- BYFOTBZTKXSZHH-CPBNUGQZSA-N gilvocarcin M Natural products COc1cc(C)cc2C(=O)Oc3c(cc(OC)c4c(O)ccc([C@H]5O[C@@H]([C@H](C)O)[C@H](O)[C@H]5O)c34)c12 BYFOTBZTKXSZHH-CPBNUGQZSA-N 0.000 description 1
- XCWHINLKQMCRON-VHXPCKQRSA-N gilvocarcin V Natural products COc1cc(C=C)cc2C(=O)Oc3c(cc(OC)c4c(O)ccc([C@H]5O[C@@H]([C@H](C)O)[C@H](O)[C@H]5O)c34)c12 XCWHINLKQMCRON-VHXPCKQRSA-N 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229960003681 gluconolactone Drugs 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 229950002441 glucurolactone Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960002743 glutamine Drugs 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- 229960004275 glycolic acid Drugs 0.000 description 1
- 150000002337 glycosamines Chemical class 0.000 description 1
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical group O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 1
- XLXSAKCOAKORKW-UHFFFAOYSA-N gonadorelin Chemical compound C1CCC(C(=O)NCC(N)=O)N1C(=O)C(CCCN=C(N)N)NC(=O)C(CC(C)C)NC(=O)CNC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 XLXSAKCOAKORKW-UHFFFAOYSA-N 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 210000005096 hematological system Anatomy 0.000 description 1
- 229940025294 hemin Drugs 0.000 description 1
- BTIJJDXEELBZFS-QDUVMHSLSA-K hemin Chemical compound CC1=C(CCC(O)=O)C(C=C2C(CCC(O)=O)=C(C)\C(N2[Fe](Cl)N23)=C\4)=N\C1=C/C2=C(C)C(C=C)=C3\C=C/1C(C)=C(C=C)C/4=N\1 BTIJJDXEELBZFS-QDUVMHSLSA-K 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical class CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- KKLGDUSGQMHBPB-UHFFFAOYSA-N hex-2-ynedioic acid Chemical class OC(=O)CCC#CC(O)=O KKLGDUSGQMHBPB-UHFFFAOYSA-N 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- ROASJEHPZNKHOF-UHFFFAOYSA-N hexyl carbamate Chemical compound CCCCCCOC(N)=O ROASJEHPZNKHOF-UHFFFAOYSA-N 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 229930182851 human metabolite Natural products 0.000 description 1
- 238000006197 hydroboration reaction Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229960002927 hydroxychloroquine sulfate Drugs 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- KQSBZNJFKWOQQK-UHFFFAOYSA-N hystazarin Natural products O=C1C2=CC=CC=C2C(=O)C2=C1C=C(O)C(O)=C2 KQSBZNJFKWOQQK-UHFFFAOYSA-N 0.000 description 1
- 150000002454 idoses Chemical class 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 150000003949 imides Chemical group 0.000 description 1
- 150000007975 iminium salts Chemical class 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 229960004187 indoprofen Drugs 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 229910001412 inorganic anion Inorganic materials 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 229940030980 inova Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 239000011630 iodine Chemical group 0.000 description 1
- 229910052740 iodine Chemical group 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- FWBFDXIBOYYUPH-DBLYXWCISA-N isobacteriochlorin Chemical compound C1C\C2=C\C3=N\C(\C=C3)=C/C3=CC=C(N3)\C=C3\CCC(\C=C1/N2)=N3 FWBFDXIBOYYUPH-DBLYXWCISA-N 0.000 description 1
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical class CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- DFMAXQKDIGCMTL-UHFFFAOYSA-N isopimpinellin Chemical compound O1C(=O)C=CC2=C1C(OC)=C1OC=CC1=C2OC DFMAXQKDIGCMTL-UHFFFAOYSA-N 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- BJHIKXHVCXFQLS-PQLUHFTBSA-N keto-D-tagatose Chemical compound OC[C@@H](O)[C@H](O)[C@H](O)C(=O)CO BJHIKXHVCXFQLS-PQLUHFTBSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 150000002584 ketoses Chemical class 0.000 description 1
- HSMPDPBYAYSOBC-UHFFFAOYSA-N khellin Chemical compound O1C(C)=CC(=O)C2=C1C(OC)=C1OC=CC1=C2OC HSMPDPBYAYSOBC-UHFFFAOYSA-N 0.000 description 1
- 229960002801 khellin Drugs 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 150000003893 lactate salts Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- LUGIMPPYOKALOK-UHFFFAOYSA-K lutetium(3+) 5,10,15,20-tetrakis(1-methyl-2H-pyridin-3-yl)-21,23-dihydroporphyrin trichloride Chemical compound [Cl-].CN1CC(=CC=C1)C1=C2C=CC(C(=C3C=CC(=C(C=4C=CC(=C(C5=CC=C1N5)C=5CN(C=CC5)C)N4)C=4CN(C=CC4)C)N3)C=3CN(C=CC3)C)=N2.[Lu+3].[Cl-].[Cl-] LUGIMPPYOKALOK-UHFFFAOYSA-K 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- LUEWUZLMQUOBSB-GFVSVBBRSA-N mannan Chemical class O[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@H]3[C@H](O[C@@H](O)[C@@H](O)[C@H]3O)CO)[C@@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O LUEWUZLMQUOBSB-GFVSVBBRSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229960005329 mefloquine hydrochloride Drugs 0.000 description 1
- QWIZNVHXZXRPDR-WSCXOGSTSA-N melezitose Chemical compound O([C@@]1(O[C@@H]([C@H]([C@@H]1O[C@@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O)CO)CO)[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O QWIZNVHXZXRPDR-WSCXOGSTSA-N 0.000 description 1
- 229960000901 mepacrine Drugs 0.000 description 1
- 229960005042 mequitazine Drugs 0.000 description 1
- 229960002782 merbromin Drugs 0.000 description 1
- 229940008716 mercurochrome Drugs 0.000 description 1
- 238000006263 metalation reaction Methods 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960004452 methionine Drugs 0.000 description 1
- 229960004469 methoxsalen Drugs 0.000 description 1
- QDBPSMVYZMGGGG-UHFFFAOYSA-N methyl 2-(3-amino-4,5-dibromo-6-iminoxanthen-9-yl)benzoate Chemical compound COC(=O)C1=CC=CC=C1C1=C2C=CC(=N)C(Br)=C2OC2=C(Br)C(N)=CC=C21 QDBPSMVYZMGGGG-UHFFFAOYSA-N 0.000 description 1
- POPDQJMNXQQAII-UWJYYQICSA-N methyl 3-[(22S,23S)-17-ethenyl-12-ethyl-13,18,22,27-tetramethyl-3,5-dioxo-4-oxa-8,24,25,26-tetrazahexacyclo[19.2.1.16,9.111,14.116,19.02,7]heptacosa-1,6,9(27),10,12,14(26),15,17,19(25),20-decaen-23-yl]propanoate Chemical compound CCc1c(C)c2cc3nc(cc4[nH]c([C@@H](CCC(=O)OC)[C@@H]4C)c4c5[nH]c(cc1n2)c(C)c5c(=O)oc4=O)c(C)c3C=C POPDQJMNXQQAII-UWJYYQICSA-N 0.000 description 1
- CEPCOHFDZYMQHP-UHFFFAOYSA-N methyl 3-[18-(3-methoxy-3-oxopropyl)-3,8,13,17-tetramethyl-22,23-dihydroporphyrin-2-yl]propanoate Chemical compound N1C(C=C2NC(=CC=3C(=C(CCC(=O)OC)C(=C4)N=3)C)C(C)=C2)=C(C)C=C1C=C1C(C)=C(CCC(=O)OC)C4=N1 CEPCOHFDZYMQHP-UHFFFAOYSA-N 0.000 description 1
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical class COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 125000001442 methylidyne group Chemical group [H]C#[*] 0.000 description 1
- 125000004092 methylthiomethyl group Chemical group [H]C([H])([H])SC([H])([H])* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- WIQKYZYFTAEWBF-UHFFFAOYSA-L motexafin lutetium hydrate Chemical compound O.[Lu+3].CC([O-])=O.CC([O-])=O.C1=C([N-]2)C(CC)=C(CC)C2=CC(C(=C2C)CCCO)=NC2=CN=C2C=C(OCCOCCOCCOC)C(OCCOCCOCCOC)=CC2=NC=C2C(C)=C(CCCO)C1=N2 WIQKYZYFTAEWBF-UHFFFAOYSA-L 0.000 description 1
- RWIVICVCHVMHMU-UHFFFAOYSA-N n-aminoethylmorpholine Chemical compound NCCN1CCOCC1 RWIVICVCHVMHMU-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229960004270 nabumetone Drugs 0.000 description 1
- MHWLWQUZZRMNGJ-UHFFFAOYSA-N nalidixic acid Chemical compound C1=C(C)N=C2N(CC)C=C(C(O)=O)C(=O)C2=C1 MHWLWQUZZRMNGJ-UHFFFAOYSA-N 0.000 description 1
- 229960000210 nalidixic acid Drugs 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical class C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-M naproxen(1-) Chemical compound C1=C([C@H](C)C([O-])=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-M 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 208000018389 neoplasm of cerebral hemisphere Diseases 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical class CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 229960001699 ofloxacin Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007968 orange flavor Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 235000010292 orthophenyl phenol Nutrition 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 229940116315 oxalic acid Drugs 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- 238000005949 ozonolysis reaction Methods 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229960001319 parathyroid hormone Drugs 0.000 description 1
- 239000000199 parathyroid hormone Substances 0.000 description 1
- 201000001219 parotid gland cancer Diseases 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- FHFYDNQZQSQIAI-UHFFFAOYSA-N pefloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCN(C)CC1 FHFYDNQZQSQIAI-UHFFFAOYSA-N 0.000 description 1
- 229960004236 pefloxacin Drugs 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000005327 perimidinyl group Chemical group N1C(=NC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 1
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 1
- IDOWTHOLJBTAFI-UHFFFAOYSA-N phenmedipham Chemical class COC(=O)NC1=CC=CC(OC(=O)NC=2C=C(C)C=CC=2)=C1 IDOWTHOLJBTAFI-UHFFFAOYSA-N 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 description 1
- DYUMLJSJISTVPV-UHFFFAOYSA-N phenyl propanoate Chemical class CCC(=O)OC1=CC=CC=C1 DYUMLJSJISTVPV-UHFFFAOYSA-N 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical class OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- CQIKWXUXPNUNDV-AXRVZGOCSA-N pheophytin a Chemical compound N1C(C=C2[C@H]([C@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)C(=N2)C2=C3NC(=C4)C(C)=C3C(=O)[C@@H]2C(=O)OC)C)=C(C)C(C=C)=C1C=C1C(C)=C(CC)C4=N1 CQIKWXUXPNUNDV-AXRVZGOCSA-N 0.000 description 1
- GVKCHTBDSMQENH-UHFFFAOYSA-L phloxine B Chemical compound [Na+].[Na+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 GVKCHTBDSMQENH-UHFFFAOYSA-L 0.000 description 1
- 125000001095 phosphatidyl group Chemical group 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229940109328 photofrin Drugs 0.000 description 1
- 231100000760 phototoxic Toxicity 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- PKUBGLYEOAJPEG-UHFFFAOYSA-N physcion Natural products C1=C(C)C=C2C(=O)C3=CC(C)=CC(O)=C3C(=O)C2=C1O PKUBGLYEOAJPEG-UHFFFAOYSA-N 0.000 description 1
- JOHZPMXAZQZXHR-UHFFFAOYSA-N pipemidic acid Chemical compound N1=C2N(CC)C=C(C(O)=O)C(=O)C2=CN=C1N1CCNCC1 JOHZPMXAZQZXHR-UHFFFAOYSA-N 0.000 description 1
- 229960001732 pipemidic acid Drugs 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229960005179 primaquine Drugs 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 229960000286 proflavine Drugs 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical class CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical group CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- UORVCLMRJXCDCP-UHFFFAOYSA-N propynoic acid Chemical class OC(=O)C#C UORVCLMRJXCDCP-UHFFFAOYSA-N 0.000 description 1
- QBPCOMNNISRCTC-UHFFFAOYSA-L protochlorophyllide a Chemical compound [Mg+2].N1=C2C3=C([N-]4)C(CCC(O)=O)=C(C)C4=CC(C(=C4C=C)C)=NC4=CC(C(C)=C4CC)=NC4=CC1=C(C)C2=C([O-])C3C(=O)OC QBPCOMNNISRCTC-UHFFFAOYSA-L 0.000 description 1
- 125000002577 pseudohalo group Chemical group 0.000 description 1
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 150000003215 pyranoses Chemical class 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- GPKJTRJOBQGKQK-UHFFFAOYSA-N quinacrine Chemical compound C1=C(OC)C=C2C(NC(C)CCCN(CC)CC)=C(C=CC(Cl)=C3)C3=NC2=C1 GPKJTRJOBQGKQK-UHFFFAOYSA-N 0.000 description 1
- 229960003110 quinine sulfate Drugs 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 210000004994 reproductive system Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- MYFATKRONKHHQL-UHFFFAOYSA-N rhodamine 123 Chemical compound [Cl-].COC(=O)C1=CC=CC=C1C1=C2C=CC(=[NH2+])C=C2OC2=CC(N)=CC=C21 MYFATKRONKHHQL-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 235000019231 riboflavin-5'-phosphate Nutrition 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- VDNLFJGJEQUWRB-UHFFFAOYSA-L rose bengal(2-) Chemical compound [O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 VDNLFJGJEQUWRB-UHFFFAOYSA-L 0.000 description 1
- MIKZOUDYDHOEBX-LXRBGTOHSA-N rubellin-a Chemical compound C=1C(C)=CC(O)=C(C(O[C@@H]2[C@H](O)C=C3)=O)C=1[C@H](O)[C@@]12[C@H]3C2=C3C(=O)C4=CC=CC(O)=C4C(=O)C3=C(O)C=C2C1 MIKZOUDYDHOEBX-LXRBGTOHSA-N 0.000 description 1
- YAYGSLOSTXKUBW-UHFFFAOYSA-N ruthenium(2+) Chemical compound [Ru+2] YAYGSLOSTXKUBW-UHFFFAOYSA-N 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229940084560 sanguinarine Drugs 0.000 description 1
- YZRQUTZNTDAYPJ-UHFFFAOYSA-N sanguinarine pseudobase Natural products C1=C2OCOC2=CC2=C3N(C)C(O)C4=C(OCO5)C5=CC=C4C3=CC=C21 YZRQUTZNTDAYPJ-UHFFFAOYSA-N 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical class OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- JJWIRKBQIICLTH-UHFFFAOYSA-N selenopheno[3,2-g]chromen-2-one Chemical compound C1=C2OC(=O)C=CC2=CC2=C1[se]C=C2 JJWIRKBQIICLTH-UHFFFAOYSA-N 0.000 description 1
- BSFILUFPMPCEDF-UHFFFAOYSA-N selenopheno[3,2-g]selenochromen-7-one Chemical compound C1=C2[se]C(=O)C=CC2=CC2=C1[se]C=C2 BSFILUFPMPCEDF-UHFFFAOYSA-N 0.000 description 1
- WMQXBAYFXCMDEZ-UHFFFAOYSA-N selenopheno[3,2-g]thiochromen-2-one Chemical compound C1=C2SC(=O)C=CC2=CC2=C1[se]C=C2 WMQXBAYFXCMDEZ-UHFFFAOYSA-N 0.000 description 1
- RXRLLIAPOKEIIY-UHFFFAOYSA-N selenopyrano[3,2-f][1]benzofuran-7-one Chemical compound C1=C2[se]C(=O)C=CC2=CC2=C1OC=C2 RXRLLIAPOKEIIY-UHFFFAOYSA-N 0.000 description 1
- 229960001153 serine Drugs 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 231100000438 skin toxicity Toxicity 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- OSQUFVVXNRMSHL-LTHRDKTGSA-M sodium;3-[(2z)-2-[(e)-4-(1,3-dibutyl-4,6-dioxo-2-sulfanylidene-1,3-diazinan-5-ylidene)but-2-enylidene]-1,3-benzoxazol-3-yl]propane-1-sulfonate Chemical compound [Na+].O=C1N(CCCC)C(=S)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 OSQUFVVXNRMSHL-LTHRDKTGSA-M 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical class OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- FDDDEECHVMSUSB-UHFFFAOYSA-N sulfanilamide Chemical compound NC1=CC=C(S(N)(=O)=O)C=C1 FDDDEECHVMSUSB-UHFFFAOYSA-N 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229960004492 suprofen Drugs 0.000 description 1
- 239000000979 synthetic dye Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- SJMDMGHPMLKLHQ-UHFFFAOYSA-N tert-butyl 2-aminoacetate Chemical compound CC(C)(C)OC(=O)CN SJMDMGHPMLKLHQ-UHFFFAOYSA-N 0.000 description 1
- 229960004989 tetracycline hydrochloride Drugs 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229960002898 threonine Drugs 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 229960001312 tiaprofenic acid Drugs 0.000 description 1
- 125000005490 tosylate group Chemical group 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical class CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- 150000008648 triflates Chemical class 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- WRTMQOHKMFDUKX-UHFFFAOYSA-N triiodide Chemical compound I[I-]I WRTMQOHKMFDUKX-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- KBMBVTRWEAAZEY-UHFFFAOYSA-N trisulfane Chemical group SSS KBMBVTRWEAAZEY-UHFFFAOYSA-N 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229960004441 tyrosine Drugs 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 208000014001 urinary system disease Diseases 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- VZVFNUAIRVUCEW-UHFFFAOYSA-N uroporphyrin iii Chemical compound N1C(C=C2C(=C(CCC(O)=O)C(C=C3C(=C(CCC(O)=O)C(=C4)N3)CC(O)=O)=N2)CC(O)=O)=C(CCC(O)=O)C(CC(O)=O)=C1C=C1C(CC(O)=O)=C(CCC(=O)O)C4=N1 VZVFNUAIRVUCEW-UHFFFAOYSA-N 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 229960004295 valine Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- MECHNRXZTMCUDQ-RKHKHRCZSA-N vitamin D2 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)/C=C/[C@H](C)C(C)C)=C\C=C1\C[C@@H](O)CCC1=C MECHNRXZTMCUDQ-RKHKHRCZSA-N 0.000 description 1
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 1
- 235000005282 vitamin D3 Nutrition 0.000 description 1
- 239000011647 vitamin D3 Substances 0.000 description 1
- 229940021056 vitamin d3 Drugs 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 1
- JWVYQQGERKEAHW-UHFFFAOYSA-N xanthotoxol Chemical compound C1=CC(=O)OC2=C1C=C1C=COC1=C2O JWVYQQGERKEAHW-UHFFFAOYSA-N 0.000 description 1
- GDJZZWYLFXAGFH-UHFFFAOYSA-M xylenesulfonate group Chemical group C1(C(C=CC=C1)C)(C)S(=O)(=O)[O-] GDJZZWYLFXAGFH-UHFFFAOYSA-M 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- VPMDPIHXLRVYLN-UHFFFAOYSA-N zinc 3-hydroxypropylsulfonylazanide Chemical compound [Zn+2].[NH-]S(=O)(=O)CCCO.[NH-]S(=O)(=O)CCCO VPMDPIHXLRVYLN-UHFFFAOYSA-N 0.000 description 1
- ZAYDNBJEHDUZDJ-UHFFFAOYSA-N zinc 37,38,39,40-tetrazanonacyclo[28.6.1.13,10.112,19.121,28.04,9.013,18.022,27.031,36]tetraconta-1(37),2,4,6,8,10,12(39),13,15,17,19,21,23,25,27,29,31,33,35-nonadecaene Chemical compound [Zn+2].N1C(C=C2C3=CC=CC=C3C(C=C3C4=CC=CC=C4C(=C4)N3)=N2)=C(C=CC=C2)C2=C1C=C1C2=CC=CC=C2C4=N1 ZAYDNBJEHDUZDJ-UHFFFAOYSA-N 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- JRPGMCRJPQJYPE-UHFFFAOYSA-N zinc;carbanide Chemical group [CH3-].[CH3-].[Zn+2] JRPGMCRJPQJYPE-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- YRNBDJIIWYRJFX-UHFFFAOYSA-M zn(ii) aetiopurpurin Chemical compound [Zn+2].[N-]1C(C2=C/C(C3(C(C)C(=CC=4C(=C(C)C(=C5)N=4)CC)N=C32)CC)=C([O-])/OCC)=C(C)C(CC)=C1C=C1C(C)=C(CC)C5=N1 YRNBDJIIWYRJFX-UHFFFAOYSA-M 0.000 description 1
- 125000004933 β-carbolinyl group Chemical group C1(=NC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/22—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/0071—PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6561—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
Definitions
- the present invention is directed to carbamate derivatives useful as photoactive compounds in photodynamic therapy and processes for producing such compounds.
- Photodynamic therapy is a procedure that uses photoactive (light-activated) drugs to target and destroy diseased cells.
- Photoactive drugs transform light energy into chemical energy in a manner similar to the action of chlorophyll in green plants.
- the photoactive drugs are inactive until irradiated with light of a specific wavelength thereby enabling physicians to target specific groups of cells and control the timing and selectivity of treatment.
- the result of this process is that diseased cells or target cells and tissues are destroyed with minimal damage to surrounding normal tissues.
- Photodynamic therapy begins with the administration to a patient of a preferred amount of a photoactive compound that is selectively taken up and/or retained by the biologic target, i.e., tissue or cells.
- the biologic target i.e., tissue or cells.
- the photoactive compound is taken up by the target tissue, light of the appropriate wavelength to be absorbed by the photoactive compound is delivered to the targeted area. This activating light excites the photoactive compound to a higher energy state.
- the extra energy of the excited photoactive compound can then be used to generate a biological response in the target area by interaction with oxygen.
- the photoactive compound exhibits cytotoxic activity, i.e., it destroys cells.
- Photodiagnosis is a technique for detecting the existence, position, and/or size of a tumor.
- light of wavelength between 360 and 800 nm is suitable for activating tetrapyrrole compounds.
- each compound has a specific optimal wavelength of activation.
- a long wavelength ultraviolet lamp is particularly suitable for photodiagnosis.
- porphyrins typically have a low energy absorption, called band I (or Qy) absorption at ⁇ 620-650nm, with molar extinction coefficients on the order of 100-10,000M ⁇ 1 cm ⁇ 1 . Because of this fact, porphyrins have largely been criticized as having less than optimal wavelength and light absorption properties for use in photodynamic therapy of solid tumors. Compounds such as chlorins (dihydroporphyrins) and bacteriochlorins (tetrahydroporphyrins), where one or two pyrrole rings have been reduced, exhibit low energy band I absorptions that have high molar extinction co-efficients. Such compounds are useful in photodynamic therapy indications that require a large depth of light penetration through tissues.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , and R 14 are independently selected from the group consisting of:
- H halogen, methyl, ethyl, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)
- R 16 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- R1 7 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- R 23 , R 24 and R 25 are independently selected from H, OH, O-alkyl, NH 2 , acetyl, a straight or branched, chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids (provided —NH(R 23 ) or —N(R 23 )
- (CH 2 ) n NHCOR 27 or (CH 2 ) n NHNHCOR 27 , where R 27 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer ranging from between 0 to 4;
- SO 3 R 28 SO 2 NHR 28 , SO 2 N(R 28 ) 2 , SO 2 NHNHR 28 , SO 2 R 28 , SO 3 R 28 , (CH 2 ) n SO 2 NHR 28 , (CH 2 ) n SO 2 N(R 28 ) 2 , (CH 2 ) n SO 2 NHNHR 28 , or (CH 2 ) n SO 2 R 28 , where R 28 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 da
- aryl or substituted aryl which may optionally bear one or more substituents with a
- R 3 and R 4 may form a bond
- R 12 and R 13 may form a bond
- R 7 and R 8 may form a ⁇ O
- R 9 and R 10 may form a ⁇ O
- R 1 through R 28 is a functional group that possesses in part or whole of its structure, a carbamate functionality of the formulae —OCON(R 29 ) 2 , —OCON ⁇ C(R 29 ) 2 , —OCONR 29 R 30 , or —OCON ⁇ C(R 29 )(R 30 ), where R 29 and R 30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH 2 , N(CH 3 ) 2 , (CH 2 ) n OH, (CH 2 ) n O-alkyl, (CH 2 ) n OCOCH 3 , (CH 2 ) n O(CH 2 ) m OH, (CH 2 ) n O(CH 2 ) m OCOCH 3 , (CH 2 ) n O(CH 2 ) m O-alkyl, (CH 2 ) n N(((CH 3 ) 2 , —OCON ⁇
- M can be selected from 2H, a metal cation, and photoactive metal ions preferably selected from Ga 3+ , Pt 2+ , Pd 2+ , Sn 4+ , In 3+ , Ge 4+ , Si 4+ , Al 3+ , Zn 2+ , Mg 2+ , wherein optionally associated with the metal ion is the appropriate number of physiologically acceptable charge balancing counter ions.
- a pharmaceutically acceptable salt, prodrug, solvate, or metabolite of the compound of formula I is also within the scope of the invention.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , and R 16 are independently selected from the group consisting of:
- H halogen, methyl, ethyl, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)
- CO 2 R 18 where R 16 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH 2 ) n OH, or (CH 2 ) n OR 19 where R 19 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- (CH 2 ) n NHCOR 29 or (CH 2 ) n NHNHCOR 29 , where R 29 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- SO 3 R 30 SO 2 NHR 30 , SO 2 N(R 30 ) 2 , SO 2 NHNHR 30 , SO 2 R 30 , SO 3 R 30 , (CH 2 ) n SO 2 NHR 30 , (CH 2 ) n SO 2 N(R 30 ) 2 , (CH 2 ) n SO 2 NHNHR 30 , or (CH 2 ) n SO 2 R 30 , where R 30 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 da
- aryl or substituted aryl which may optionally bear one or more substituents with a molecular weight of less than or equal to about 1100,000 daltons;
- R 3 and R4 may form a bond
- R 10 and R 11 may form a bond
- R 1 through R 30 is a functional group that possesses in part or whole of its structure, a carbamate functionality of the formulae —OCON(R 29 ) 2 , —OCON ⁇ C(R 29 ) 2 , —OCONR 29 R 30 , or —OCON ⁇ C(R 29 )(R 30 ), where R 29 and R 30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH 2 , N(CH 3 ) 2 , (CH 2 ) n OH, (CH 2 ) n O-alkyl, (CH 2 ) n OCOCH 3 , (CH 2 ) n O(CH 2 ) m OH, (CH 2 ) n O(CH 2 ) m OCOCH 3 , (CH 2 ) n O(CH 2 ) m O-alkyl, (CH 2 ) n N(((CH 3 ) 2 , —OCON ⁇
- M can be selected from 2H, a metal cation, and photoactive metal ions preferably selected from Ga 3+ , Pt 2+ , Pd 2+ , Sn 4+ , In 3+ , Ge 4+ , Si 4+ , Al 3+ , Zn 2+ , Mg 2+ , wherein optionally associated with the metal ion is the appropriate number of physiologically acceptable charge balancing counter ions.
- a pharmaceutically acceptable salt, prodrug, solvate, or metabolite of the compounds of formula II is also within the scope of the invention.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , and R 19 are independently selected from the group consisting of:
- H halogen, methyl, ethyl, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)
- R 21 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH 2 ) n OH, or (CH 2 ) n OR 22 where R 22 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- R 28 , R 29 and R 30 are independently selected from H, OH, O-alkyl, NH 2 , acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids (provided —NH(R 28 ) or —N(R 28 )(
- (CH 2 ) n NHCOR 32 or (CH 2 ) n NHNHCOR 32 , where R 32 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- SO 3 R 34 SO 2 NHR 34 , SO 2 N(R 34 ) 2 , SO 2 NHNHR 34 , SO 2 R 34 , SO 3 R 34 , (CH 2 ) n SO 2 NHR 34 , (CH 2 ) n SO 2 N(R 34 ) 2 , (CH 2 ) n SO 2 NHNHR 34 , or (CH 2 ) n SO 2 R 34 , where R 34 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl,, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000
- aryl or substituted aryl which may optionally bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
- R 14 and R 15 may form a bond
- R 6 and R 7 may form a ⁇ O
- R 1 through R 34 is a functional group that possesses in part or whole of its structure, a carbamate functionality of the formulae —OCON(R 35 ) 2 , —OCON ⁇ C(R 35 ) 2 , —OCONR 35 R 36 , or —OCON ⁇ C(R 35 )(R 36 ), where R 35 and R 36 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH 2 , N(CH 3 ) 2 , (CH 2 ) n OH, (CH 2 ) n O-alkyl, (CH 2 ) n OCOCH 3 , (CH 2 ) n O(CH 2 ) m OH, (CH 2 ) n O(CH 2 ) m OCOCH 3 , (CH 2 ) n O(CH 2 ) m O-alkyl, (CH 2 ) n N(((CH 3 ) 2 , —OCON ⁇
- M can be selected from 2H, a metal cation, or photoactive metal ions preferably selected from Ga 3+ , Pt 2+ , Pd 2+ , Sn 4+ , In 3+ , Ge 4+ , Si 4+ , Al 3+ , Zn 2+ , Mg 2+ , wherein optionally associated with the metal ion is the appropriate number of physiologically acceptable charge balancing counter ions.
- a pharmaceutically acceptable salt, prodrug, solvate, or metabolite of the compounds of formulae IIA and IIB is within the scope of the invention.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , and R 18 are independently selected from the group consisting of:
- H halogen, methyl, ethyl, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)
- CO 2 R 20 where R 20 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH 2 ) n OH, or (CH 2 ) n OR 21 where R 21 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- R 27 , R 28 and R 29 are independently selected from H, OH, O-alkyl, NH 2 , acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids (provided —NH(R 27 ) or —N(R 27 )(
- (CH 2 ) n NHCOR 31 or (CH 2 ) n NHNHCOR 31 , where R 31 is selected from a straight or branched chain Cl-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- SO 3 R 32 SO 2 NHR 32 , SO 2 N(R 32 ) 2 , SO 2 NHNHR 33 , SO 2 R 33 , SO 3 R 33 , (CH 2 ) n SO 2 NHR 33 , (CH 2 ) n SO 2 N(R 33 ) 2 , (CH 2 ) n SO 2 NHNHR 33 , or (CH 2 ) n SO 2 R 33 , where R 33 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, A haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000
- aryl or substituted aryl which may optionally bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
- R 10 and R 13 may form a bond
- R 6 and R 7 may form a ⁇ O
- R 8 and R 9 may form a ⁇ O
- R 1 through R 33 is a functional group that possesses in part or whole of its structure, a carbamate functionality of the formulae —OCON(R 34 ) 2 , —OCON ⁇ C(R 34 ) 2 , —OCONR 34 R 35 or —OCON ⁇ C(R 34 )(R 35 ), where R 34 and R 35 are independently selected from H, C1-C20 alkyl, C1-C20 cyclioalkyl, aryl, NH 2 , N(CH 3 ) 2 , (CH 2 ) n OH, (CH 2 ) n O-alkyl, (CH 2 ) n OCOCH 3 , (CH 2 ) n O(CH 2 ) m OH, (CH 2 ) n O(CH 2 ) m OCOCH 3 , (CH 2 ) n O(CH 2 ) m O-alkyl, (CH 2 ) n N((CH 3 )
- M can be selected from 2H, a metal cation, or photoactive metal ions preferably selected from Ga 3+ , Pt 2+ , Pd 2+ , Sn 4+ , In 3+ , Ge 4+ , Si 4 +, Al 3+ , Zn 2 +, Mg 2+ , wherein optionally associated with the metal ion is the appropriate number of physiologically acceptable charge balancing counter ions.
- a pharmaceutically acceptable salt, prodrug, solvate, or metabolite of the compounds of formula IVA and IVB is also within the scope of the invention.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 are independently selected from the group consisting of:
- H halogen, methyl, ethyl, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)
- R 18 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH 2 ) n OH, or (CH 2 ) n OR 19 where R 19 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- (CH 2 ) n NHCOR 29 or (CH 2 ) n NHNHCOR 29 , where R 29 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- SO 3 R 30 SO 2 NHR 30 , SO 2 N(R 30 ) 2 , SO 2 NHNHR 30 , SO 2 R 30 , SO 3 R 30 , (CH 2 ) n SO 2 NHR 30 , (CH 2 ) n SO 2 N(R 30 ) 2 , (CH 2 ) n SO 2 NHNHR 30 , or (CH 2 ) n SO 2 R 30 , where R 30 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 da
- aryl or substituted aryl which may optionally bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
- R 15 and R 16 may form a bond
- R 9 and R 10 may form a bond
- R 2 and R 6 may independently be O or N(R 31 ), where R 31 is alkyl;
- X is O or N(R 32 ), where R 32 is selected from alkyl, an amino acid, an amino acid ester, an amino acid amide, (CH 2 ) n OH, (CH 2 )n O -alkyl, (CH 2 ) n OCOCH 3 , (CH 2 ) n O(CH 2 ) m OH, (CH 2 ) n O(CH 2 ) m OCOCH 3 , (CH 2 ) n O(CH 2 ) m O-alkyl, (CH 2 ) n N((CH 2 ) m OH) 2 , (CH 2 ) n N((CH 2 ) m O-alkyl) 2 , (CH 2 ) n N((CH 2 ) m O-alkylether) 2 , ((CH 2 ) n O) m (CH 2 ) Q OH, (CH 2 ) n O(CH 2 ) m NH 2 , (CH 2 ) n
- R 1 through R 30 is a functional group that possesses in part or whole of its structure, a carbamate functionality of the formulae —OCON(R 33 ) 2 , —OCON ⁇ C(R 33 ) 2 , —OCONR 33 R 34 and —OCON ⁇ C(R 33 )(R 34 ), where R 33 and R 34 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH 2 , N(CH 3 ) 2 , (CH 2 ) n OH, (CH 2 ) n O-alkyl, (CH 2 ) n OCOCH 3 , (CH 2 ) n O(CH 2 ) m OH, (CH 2 ) n O(CH 2 ) m OCOCH 3 , (CH 2 ) n O(CH 2 ) m O-alkyl, (CH 2 ) n N((CH 2 )
- M can be selected from 2H, a metal cation, or photoactive metal ions preferably selected from Ga 3+ , Pt 2+ , Pd 2+ , Sn 4+ , In 3+ , Ge 4+ , Si 4+ , Al 3+ , Zn 2+ , or Mg 2+ , wherein optionally associated with the metal ion is the appropriate number of physiologically acceptable charge balancing counter ions.
- a pharmaceutically acceptable salt, prodrug, solvate, or metabolite of the compounds of formula V is within the scope of the invention.
- the invention further provides processes for preparing photosensitizers comprising contacting a tetrapyrrolic precursor containing a hydroxyl group in a solvent with carbonyldiimidazole followed by an amine compound in the presence of solvent to form a compound of formulae I, II, IIIA and IIIB, IVA and IVB or V.
- the metal cation of formulae I, II, IIIA, IIIB, IVA, IVB and V may include one of the following: Ag, Al, Au, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Mg, Mo, Nd, Ni, Pb, Pd, Pr, Pt, Rh, Ru, Sb, Sc, Si, Sm, Tb, Tc, Th, Ti, Tm, U, V, Y, Yb, W, Zn, and Zr, and may be radioactive for scintillation imaging.
- the compound When the disease site is irradiated with light of a proper wavelength and intensity, the compound is activated to exert a cell killing effect against the tumor. This is called phototherapy.
- the instant compounds can be used for diagnosis and the therapeutic treatment of a broad range of disease indications including tumors.
- tumors include, but are not limited to, gastric cancer, enteric cancer, lung cancer, breast cancer, uterine cancer, esophageal cancer, ovarian cancer, pancreatic cancer, pharyngeal cancer, sarcomas, hepatic cancer, cancer of the urinary bladder, cancer of the upper jaw, cancer of the bile duct, cancer of the tongue, cerebral tumor, skin cancer, malignant goiter, prostatic cancer, cancer of the parotid gland, Hodgkin's disease, multiple myeloma, renal cancer, leukemia, and malignant lymphocytoma.
- the tumor For diagnosis, the sole requirement is that the tumor be capable of selectively fluorescing when exposed to proper light.
- the tumor For treatment, the tumor must be penetrable by the activation energy.
- light of shorter wavelength is typically used whereas for therapeutic purposes light of longer wavelength is generally used to permit ready penetration of the tumor tissue. It is necessary that the light rays have sufficient intensity to cause the compounds to fluoresce for diagnosis and to exert a cell killing effect for therapy.
- the compounds of the present invention are also useful for the treatment of ophthalmologic disorders such as age-related macular degeneration and choroidal neovascularization; dermatological disorders such as psoriasis; gynecological disorders such as dysfunctional uterine bleeding; urological disorders such as condyloma virus; cardiovascular disorders such as restenosis and atherosclerotic plaques; and for hair removal.
- ophthalmologic disorders such as age-related macular degeneration and choroidal neovascularization
- dermatological disorders such as psoriasis
- gynecological disorders such as dysfunctional uterine bleeding
- urological disorders such as condyloma virus
- cardiovascular disorders such as restenosis and atherosclerotic plaques
- hair removal One may envisage that normal or diseased tissue on any part of the body may be treated with photodynamic therapy.
- normal or abnormal conditions of the hematological system, the lymphatic reticuloendothelial system, the nervous system, the endocrine and exocrine system, the skeletomuscular system including bone, connective tissue, cartilage and skeletal muscle, the pulmonary system, the gastrointestinal system including the liver, the reproductive system, the skin, the immune system, the cardiovascular system, the urinary system, the ocular system and the auditory or olfactory system may be treated.
- the source of irradiation for photodiagnosis and phototherapy is not limited, but a laser beam is preferable because intensive light rays in a desired wavelength range can be selectively applied.
- a compound of the invention in photodiagnosis, can be administered to a human or animal body, and after a certain period of time, light rays can be applied to the part to be examined.
- an endoscope can be used for the affected part, such as lungs, gullet, stomach, womb, urinary bladder or rectum
- the compounds can be irradiated using the endoscope, and the tumor portion selectively fluoresces. This portion is observed visually, or observed through an adapted fiber scope by eye or on a CRT screen.
- the irradiation can be carried out, for example, by laser light from the tip of quartz fibers.
- the internal part of the tumor can be irradiated by inserting the tip of quartz fibers into the tumor. The irradiation can be visually observed or imaged on a CRT screen.
- tetrapyrrolic macrocycles containing hydroxyl groups could be converted into a new class of photodynamically active compounds. Not only are these compounds excellent photosensitizers when activated at their absorption wavelengths at early treatment timepoints, but surprisingly they are metabolized in a matter of hours in blood plasma to photoinactive tetrapyrroles. As a result, it has been possible to produce photodynamically active tetrapyrroles that display no normal skin toxicities in rats past 6 hrs, at drug doses up to 4 mg/Kg.
- the compounds of the invention are particularly valuable, as they potentially make it possible to inject a human patient with the drugs of the invention, treat within a 1 hr timeframe and have little or no skin phototoxicity or occular phototoxicity after a 6 hr time point or earlier (depending on the drug). This would be a distinct advantage clinically and also from a patient care perspective.
- the present invention relates to processes for producing tetrapyrroles of the formulae I, II, IIIA, IIIB, IVA, IVB, and V.
- the processes involve contacting the corresponding alcohol substituted tetrapyrrole in a suitable solvent with a coupling reagent like carbonyl diimidazole or p-nitrophenylcarbonate and 4-dimethylaminopyridine, then adding an amine, for a period of time and at a temperature sufficient to form compounds of the formulae I, II, IIIA, IIIB, IVA, IVB and V.
- tetrapyrrolic compound used is that it must possess at least one hydroxyl group with which to form the carbamate moiety.
- Particularly preferred compounds are those derived from chlorophyll or hemoglobin.
- Methyl pheophorbide a is an abundant starting material for the synthesis of derivatized pheophorbides as well as the synthesis of carbamate pheophorbide derivatives. Pheophorbides may be converted to pyrropheophorbides via demethoxycarbonylation of the 10′-ester group. Methyl pheophorbide b, like methyl pheophorbide a except it possesses a formyl group in the 3 position, may also be used according to the invention.
- FIG. 1 shows the positions for chemical reactivity of methyl pheophorbide a or b according to classical pheophorbide chemistry.
- Trimethyl ester chlorin e6 is an easily prepared tetrapyrrolic macrocycle derived from methyl pheophorbide. Similar chlorin e6 analog may be synthesized from functionalized pheophorbides. As with pheophorbides, chlorin e6 derivatives possess several functionalities that may be modified chemically to give hydroxy-bearing substituents.
- Purpurin 18 is an easily prepared tetrapyrrolic macrocycle derived from methyl pheophorbide. Peripheral groups around the macrocycle have been extensively modified. The synthesis of purpurin 18 imides follows the anhydride ring opening of purpurin 18 by amines, followed by base treatment to form the imide ring. As with pheophorbides, purpurin 18 and purpurin 18 imides possess several functionalities that may be modified chemically to give hydroxy-bearing substituents.
- Benzoporphyrins are commonly prepared from either protoporphyrin IX dimethyl esters or from chlorophyll analogs such as methyl pyrropheophorbide. As with pheophorbides, benzoporphyrin derivatives possess several functionalities that may be modified chemically to give hydroxy-bearing substituents.
- Benzochlorins are commonly prepared from chlorophyll analogs such as methyl pyrropheophorbide or chlorin e6 (M. Graca H. Vincente, K. M. Smith, J. Org. Chem., 1991, 56, 4407-4418), but are also synthesized from porphyrin analogs (U.S. Pat. Nos. 5,789,586, 5,552,134, and 5,512,559).
- Such derivatives can be made with functionality that either possesses hydroxyl groups or can be modified chemically to give hydroxy-bearing substituents.
- porphyrins The most ubiquitous tetrapyrrolic class found in nature is the porphyrins. Many analogs are derived from Hemin (a hemoglobin extract), for example, hematoporphyrin and protoporphyrin, and may be further functionalized accordingly to produce hydroxylated tetrapyrroles. Alternatively, they may be made synthetically to possess the desired functionality (for example see “Porphyrins and Metalloporphyrins” Ed. K. Smith, Elsevier, 1975, N.Y., “The Porphyrins”, Ed. D. Dolphin, Vol I-V, Academic Press, 1978, and “The Porphyrin Handbook”, Ed. K. Kadish, K. M. Smith, R. Guilard, Academic Press, 1999). In any case, porphyrin derivatives that possess hydroxyl groups are synthetically easy to prepare and abundant in the literature.
- Vinyl groups (—CH ⁇ CH 2 ) may be treated with 33% HBr/AcOH, which converts the vinyl group to a reactive 1′-bromo ethyl group.
- the bromine in this intermediate may be replaced via the addition of either water or dialcohols to give the 1-hydroxymethyl tetrapyrroles (—CH(OH)CH 3 ) or functionalized ether derivatives that may possess an alcohol group (—CH(O—R—OH)CH 3 , depending on the alcohol used).
- ketone moiety for example formyl, acetyl and esters
- Ester functionalities on tetrapyrroles may be modified to produce alcohol esters, for example, ethylene glycol esters, using standard esterification techniques well known to those skilled in the art.
- the formation of amides possessing an alcohol moiety is possible (—CONH—R—OH and the like) by reacting the acid moiety with coupling reagents like chloroethylformate, 1,3-dicyclohexylcarbodiimide or carbonyl diimidazole, followed by the aminoalcohol.
- methyl esters may be reacted with aminoalcohols directly to produce the amide alcohol derivatives.
- aminoalcohols directly to produce the amide alcohol derivatives.
- Schemes 1-6 highlight the types of peripheral modifications that are recognized in the art to produce tetrapyrroles possessing hydroxy groups.
- Schemes 1-6 only show mono or di-hydroxylated compounds. It should be recognized that poly-hydroxylated molecules can also be made.
- Schemes 1-7 represent chemical modifications that can be made on tetrapyrrolic compounds to produce hydroxylated tetrapyrroles. One or more of these modifications can be carried out on a single molecule if desired. These hydroxylated molecules may then be reacted to form carbamates.
- the invention thus provides carbamate photosensitizers that are particularly effective in photodynamic therapy.
- the invention also enables production of compounds that are rapidly metabolized in vivo. Specifically, the invention enables generation of carbamate photosensitizers that are photodynamically or diagnostically active.
- the carbamate photosensitizers of the invention are capable of inducing a therapeutically acceptable or diagnostic effect at the disease site following light administration, yet metabolize rapidly in blood plasma or cellular components to produce metabolites that are significantly less photodynamically active than the carbamate photosensitizer.
- the invention makes it possible to select molecules with hydroxyl groups that are poor photosensitizers in vivo and generate active compounds via functionalization through the carbamate moiety.
- any photosensitizer that possesses a hydroxyl group may be converted to a carbamate via the invention.
- Photosensitizers amenable to the modifications described in the specification or capable of being modified by chemistry well known to those skilled in the art include but are not limited to angelicins, some biological macromolecules such as lipofuscin, photosystem II reaction centers, and D1-D2-cyt b-559 photosystem II reaction centers, chalcogenapyrillium dyes, chlorins, chlorophylls, coumarins, cyanines, ceratin DNA and related compounds such as adenosine, cytosine, 2′-deoxyguanosine-5′-monophosphate, deoxyribonucleic acid, guanine, 4-thiouridine, 2′-thyrnidine 5′-monophosphate, thymidylyl(3′-5′)-2′-deoxya
- Exemplary angelicins include but are not limited to the following and derivatives thereof: 3-aceto-angelicin; angelicin; 3,4′-dimethyangelicin; 4,4′-dimethyl angelicin; 4,5-dimethyl angelicin; 6,4′-dimethyl angelicin, 6,4′-dimethyl angelicin; 4,4′,5′-trimethyl angelicin; 4,4′,5′-trimethyl-l′-thioangelicin; 4,6,4′-trimethyl-l′-thioangelicin; 4,6,4′-trimethyl angelicin; 4,6,5′-trimethyl-l′-thioangelicin; 6,4,4′-trimethyl angelicin; 6,4′,5′-trimethyl angelicin; 4,6,4′,5′-tetramethyl-l′-thloangelicin; and 4,6,4′,5′-tetramethyl angelicin.
- Exemplary chalcogenapyrillium dyes include but are not limited to the following and derivatives thereof: pyrilium perchlorate, 4,4′-(1,3-propenyl)-bis[2,6-di(l,1-dimethylethyl)]-; pyrilium perchlorate, 2,6-bis(l,1 dimethyl-ethyl)-4-[1-[2,6-bis(l,1-dimethyl-ethyl)selenopyran-4-ylidene]-3-propenyl-; pyrilium hexofluoro phosphate, 2,6-bis-(1,1-dimethyl-ethyl)-selenopyran-4-ylidene; 3-propenyl-; pyrilium hexofluoro phosphate, 2,6-bis(1,1-dimethyl-ethyl)-selenopyran-4-ylidene]-3-propenyl-; pyrilium
- Exemplary chlorin dyes include but are not limited to the following and derivatives thereof: 5-azachlorin dimethyl ester derivatives; 5,10,15,20-tetrakis-(m-hydroxyphenyl)bacteriochlorin; benzoporphyrin derivative monoacid ring A; benzoporphyrin derivative monoacid ring-A; porphine-2.18-dipropanoic acid, 7-[2-dimethyl-amino)-2-oxoethyl]-8-ethylidene-7,8-dihydro-3,7,12,17-tetramethyl, dimethylester; porphine-2,18-dipropanoic acid, 7-[2-dimethylamino)-2-oxoethyl]-8-ethylidene -7,8-dihydro-3,7,12,17-tetramethyl, dimethylester Z; porphine-2,18-dipropanoic acid, 7-[2-[2-d
- Exemplary chlorophyll derived photosensitizers include but are not limited to the following or derivatives thereof: chlorophyll a, chlorophyll b; oil soluble chlorophyll; bacteriochlorophyll a; bacteriochlorophyll b; bacteriochlorophyll c; bacteriochlorophyll d; protochlorophyll; protochlorophyll a; amphiphilic chlorophyll derivative 1; and amphiphilic chlorophyll derivative 2.
- Exemplary coumarins include but are not limited to the following or derivatives thereof: 3-benzoyl-7-methoxycoumarin; 7-diethylamino-3-thenoylcoumarin; 5,7-dimethoxy-3-(1-naphthoyl)coumarin; 6-methylcoumarin; 2H-selenolo[3,2-g][1]benzopyran-2-one; 2H-selenolo[3,2-g][1]benzothiopyran-2-one;7H-selenolo[3,2-g][1]benzoseleno-pyran-7-one; 7H-selenopyrano[3,2-f][1]benzofuran-7-one; 7H-selenopyrano[3,2-f][1]benzo-thiophene-7-one; 2H-thienol[3,2-g][1]benzopyran-2-one; 7H-thienol[3,2-g][1]
- Exemplary fullerenes include but are not limited to the following and derivatives thereof: C60; C70; C76; dihydro-fullerene; 1,9-(4-hydroxycyclohexano)-buckminster-fullerene; [1-methyl-succinate-4-methyl-cyclohexadiene-2,3]-buckminster-fullerene; and tetrahydro fullerene.
- Exemplary metalloporphyrins or texaphyrins include but are not limited to the following and derivatives thereof: cadmium (II) chlorotexaphyrin nitrate; LuTex; Antrin; cadmium (II) meso-diphenyl tetrabenzoporphyrin; cadmium meso-tetra-(4-N-methylpyridyl)-porphine; cadmium (II) texaphyrin; cadmium (II) texaphyrin nitrate; cobalt meso-tetra-(4-N-methylpyridyl)porphine; cobalt (II) meso(4-sulfonatophenyl)porphine; copper hematoporphyrin; copper meso-tetra-(4-N-methylpyridyl)-porphine; copper (II) meso(I) me
- Exemplary metallophthalocyanines include but are not limited to the following and derivatives thereof: aluminum mono-(6-carboxypentyl-amino-sulfonyl)-trisulfo-phthalocyanine; aluminum di-(6-carboxy-pentylamino-sulfonyl)-trisulfophthalocyanine; aluminum (III) octa-n-butoxy phthalocyanine; aluminum phthalocyanine; aluminum (III) phthalocyanine disulfonate; aluminum phthalocyanine disulfonate; aluminum phthalocyanine disulfonate (cis isomer); aluminum phthalocyanine disulfonate (clinical prep.); aluminum phthalocyanine phthalimido-methyl sulfonate; aluminum phthalocyanine sulfonate; aluminum phthalocyanine trisulfonate; aluminum (III) phthalocyanine trisulfonate; aluminum (III) phthalocyanine
- Exemplary methylene blue derivatives include but are not limited to the following and derivatives thereof: 1-methyl methylene blue; 1,9-dimethyl methylene blue; methylene blue; methylene violet; bromomethylene violet; 4-iodomethylene violet; 1,9-dimethyl-3-dimethyl-amino-7-diethyl-amino-phenothiazine; and 1,9-dimethyl-3-diethylamino-7-dibutyl-amino-phenothiazine.
- Exemplary naphthalimide blue derivatives include but are not limited to the following and derivatives thereof: NN′-bis-(hydroperoxy-2-methoxyethyl)-1,4,5,8-naphthaldiimide; N-(hydroperoxy-2-methoxyethyl)-l,8-naphthalimide; 1,8-naphthalimide; N,N′-bis(2,2-dimethoxyethyl)-1,4,5,8-naphthaldiimide; and N,N′-bis(2,2-dimethylpropyl)-1,4,5,8-naphthaldiimide.
- Exemplary naphthalocyanines include aluminum t-butyl-chloronaphthalocyanine; silicon bis(dimethyloctadecylsiloxy)-2,3-naphthalocyanine; silicon bis(dimethyloctadecylsiloxy)naphthalocyanine; silicon bis(dimethylhexylsiloxy)-2,3-naphthalocyanine; silicon bis(dimethylhexylsiloxy)naphthalocyanine; silicon bis(t-butyldimethylsiloxy)-2,3-naphthalocyanine; silicon bis(tert-butyldimethylsiloxy)naphthalocyanine; silicon bis(tri-n-hexylsiloxy)-2,3-naphthalocyanine; silicon bis(tri-n-hexylsiloxy) naphthalocyanine-, silicon naphthalocyanine; t-butylnaphthalocyanine; zinc (I
- Exemplary nile blue derivatives include but are not limited to the following and derivatives thereof: benzo[a]phenothiazinium; 5-amino-9-diethylamino-; benzo[a]phenothiazinium; 5-amino-9-diethylamino-6-iodo-; benzo[a]phenothiazinium; 5-benzylamino-9-diethylamino-; benzo[a]phenoxazinium; 5-amino-6,8-dibromo-9-ethylamino-; benzo[a]phenoxazinium; 5-amino-6,8-diiodo-9-ethylamino-; benzo[a]phenoxazinium; 5-amino-6,8-diiodo-9-ethylamino-; benzo[a]phenoxazinium; 5-amino-6-bromo-9-diethylamino-; benzo[a]phenoxa
- NSAIDs nonsteroidal anti-inflammatory drugs
- benoxaprofen include but are not limited to the following and derivatives thereof: benoxaprofen; carprofen; carprofen dechlorinated (2-(2-carbazolyl)propionic acid); carprofen (3-chlorocarbazole); chlorobenoxaprofen; 2,4-dichlorobenoxaprofen; cinoxacin; ciprofloxacin; decarboxy-ketoprofen; decarboxy-suprofen; decarboxy-benoxaprofen; decarboxy-tiaprofenic acid; enoxacin; fleroxacin; fleroxacin-N-oxide;flumequine; indoprofen; ketoprofen; lomelfloxacin; 2-methyl-4-oxo-2H-1,2-benzothiazine-1,1-dioxide; N-demethyl fleroxacin; nabumetone
- Exemplary perylenequinones include but are not limited to the following and derivatives thereof: hypericins such as hypericin; hypericin monobasic sodium salt; di-aluminum hypericin; di-copper hypericin; gadolinium hypericin; terbium hypericin, hypocrellins such as acetoxy hypocrellin A; acetoxy-hypocrellin B; acetoxy iso-hypocrellin A; acetoxy iso-hypocrellin B; 3,10-bis-[2-(2-aminoethylamino)ethanol]hypocrellin B; 3,10-bis-[2-(2-aminoethyl)morpholine]hypocrellin B; 3,10-bis[4-(2-aminoethyl)morpholine]hypocrellin B; n-butylaminated hypocrellin B; 3,10-bis(butylamine)hypocrellin B; 4,9-bis(butylamin
- Exemplary phenols include but are not limited to the following and deriavtives thereof: 2-benzylphenol; 2,2′-dihydroxybiphenyl; 2,5-dihydroxybiphenyl; 2-hydroxybiphenyl; 2-methoxybiphenyl; and 4-hydroxybiphenyl.
- Exemplary pheophorbides include but are not limited to the following and derivatives thereof: pheophorbide a; methyl -13′-deoxy-20-formyl-7,8-vic-dihydro-bacterio-meso-pheophorbide a; methyl-2-(1-dodecyloxyethyl)-2-devinyl-pyropheophorbide a; methyl-2-(1-heptyloxyethyl)-2-devinylpyropheophorbide a; methyl-2-( 1-hexyl-oxyethyl )-2-devinyl-pyropheophorbide a; methyl-2-(1-methoxy-ethyl)-2-devinyl-pyropheophorbide a; methyl-2-(1-pentyloxyethyl)-2-devinyl-pyropheophorbide a; magnesium methyl bacteriopheo
- Exemplary pheophytins include but are not limited to the following and derivatives thereof: bacteriopheophytin a; bacteriopheophytin b; bacteriopheophytin c; bacteriopheophytin d; 10-hydroxy pheophytin a; pheophytin; pheophytin a; and protopheophytin.
- Exemplary photosensitizer dimers and conjugates include but are not limited to the following and derivatives thereof: aluminum mono-(6-carboxy-pentyl-amino-sulfonyl)-trisulfophthalocyanine bovine serum albumin conjugate; dihematoporphyrin ether (ester); dihematoporphyrin ether; dihematoporphyrin ether (ester)-chlorin; hematoporphyrin-chlorin ester; hematoporphyrin-low-density lipoprotein conjugate; hematoporphyrin-high density lipoprotein conjugate; porphine-2,7,18-tripropanoic acid, -13,13′-(1,3-propanediyl)bis[3,8,12,17-tetramethyl]-; porphine-2,7,18-tripropanoic acid, 13,13′-(1,11-undecanediyl)bis[3,8,
- Exemplary phthalocyanines include but are not limited to the following and derivatives thereof: (diol)(t-butyl) 3 -phthalocyanine; (t-butyl)4-phthalocyanine; cis-octabutoxy-dibenzo-dinaphtho-porphyrazine; trans-octabutoxydibenzo-dinaphtho-porphyrazine; 2,3,9,10,16,17,23,24-octakis2-ethoxyethoxy)phthalocyanine; 2,3,9,10,16,17,23,24-octakis(3,6-dioxaheptyloxy)phthalocyanine; octa-n-butoxy phthalocyanine; phthalocyanine; phthalocyanine sulfonate; phthalocvanine tetrasulphonate; phthalocyanine tetrasulfonate; t-butyl
- Exemplary porphycenes include but are not limited to the following or derivatives thereof: 2,3-(2′-carboxy-2′-methoxycarbonylbenzo)-7,12,17-tris(2-methoxyethyl)porphycene; 2-(2-hydroxyethyl)-7,12,17-tri(2-methoxyethyl)porphycene; 2-(2-hydroxyethyl)-7,12,17-tri-n-propyl-porphycene; 2-(2-methoxyethyl)-7,12,17-tri-n-propyl-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-hydroxy-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-hydroxy-porphycen
- Exemplary porphyrins include but are not limited to the following and derivatives thereof: 5-azaprotoporphyrin dimethylester; bis-porphyrin; coproporphyrin III; coproporphyrin III tetramethylester; deuteroporphyrin; deuteroporphyrin IX dimethylester; diformyldeuteroporphyrin IX dimethyl ester, dodecaphenylporphyrin; hematoporphyrin; hematoporphyrin IX; hematoporphyrin monomer; hematoporphyrin dimer; hematoporphyrin derivative; hematoporphyrin IX dimethylester; haematoporphyrin IX dimethylester; mesoporphyrin dimethylester; mesoporphyrin IX dimethylester; monoformyl-monovinyl-deuteroporphyrin IX dimethylester
- Exemplary psoralens include but are not limited to the following and derivatives thereof: psoralen; 5-methoxypsoralen; 8-methoxypsoralen; 5,8-dimethoxypsoralen; 3-carbethoxypsoralen; 3-carbethoxy-pseudopsoralen; 8-hydroxypsoralen; pseudopsoralen; 4,5′,8-tn′methylpsoralen; allopsoralen; 3-aceto-allopsoralen; 4,7-dimethyl-allopsoralen; 4,7,4′-trimethyl-allopsoralen; 4,7,5′-trimethyl-allopsoralen; isopseudopsoralen; 3-acetoisopseudopsoralen; 4,5′-dimethyl-isopseudopsoralen; 5′,7-dimethylisopseudopsoralen; pseudoisopsoralen; 3-acetopseudoisopsoralen; 3,4′,5′-trimethylaza-p
- Exemplary purpurins include but are not limited to the following and derivatives thereof: octaethylpurpurin; octaethylpurpurinnzinc; oxidized octaethylpurpurin; reduced octaethylpurpurin; reduced octaethylpurpurin tin; purpurin 18; purpurin-18; purpurin18-methyl ester; purpurin; tin ethyl etiopurpurin 1; Zn(II) aetio-purpurin ethvl ester; and zinc etiopurpurin.
- Exemplary quinones include but are not limited to the following and derivatives thereof: 1-amino-4,5-dimethoxy anthraquinone; 1 ,5-diamino-4,8-dimethoxy anthraquinone; 1,8-diamino-4,5-dimethoxy anthraquinone; 2,5-diamino-1,8-dihydroxy anthraquinone; 2,7-diamino-1,8-dihydroxy anthraquinone; 4,5-diamino-1,8-dihydroxy anthraquinone; mono-methylated 4,5- or 2,7-diamino-1,8-dihydroxy anthraquinone; anthralin (keto form); anthralin; anthralin anion; 1,8-dihydroxy anthraquinone; 1,8-dihydroxy anthraquinone (Chrysazin); 1,2-dihydroxy anthraquinone;
- Exemplary retinoids include but are not limited to the following and derivatives thereof: all-trans retinal; C 17 aldehyde; C22 aldehyde; 11-cis-retinal; 13-cis retinal; retinal; and retinal palmitate.
- Exemplary rhodamines include but are not limited to the following and derivatives thereof: 4,5-dibromo-rhodamine methyl ester; 4,5-dibromo-rhodamine n-butyl ester; rhodamine 101 methyl ester; rhodamine 123; rhodamine 6G; rhodamine 6G hexyl ester; tetrabromo-rhodamine 123; and tetramethyl-rhodamine ethyl ester.
- Exemplary thiophenes include but are not limited to the following and derivatives thereof: terthiophenes such as 2,2′:5′,2′′-terthiophene; 2,2′:5′,2′′-terthiophene-5-carboxamide; 2,2′:5′,2′′-terthiophene-5-carboxylic acid; 2,2′:5′,2′′-terthiophene-5-L-serine ethyl ester; 2,2′:5′,2′′-terthiophene-5-N-isopropynyl-formamide; 5-acetoxymethyl-2,2′:5′,2′′-terthiophene; 5-benzyl-2,2′:5′,2′′-terthiophene-sulphide; 5-benzyl-2,2′:5′,2′′-terthiophene-sulfoxide; 5-benzyl-2,2′:5′,2′′-terthiophene-sulphone; 5-brom
- Exemplary verdins include but are not limited to the following and derivatives thereof: copro (II) verdin trimethyl ester; deuteroverdin methyl ester; mesoverdin methyl ester; and zinc methyl pyroverdin.
- Exemplary vitamins include but are not limited to the following and derivatives thereof: ergosterol (provitamin D2); ⁇ -dicyano-7-de(carboxymethyl)-7,8-didehydro-cobyrinate (Pyrocobester); pyrocobester; and vitamin D3.
- Exemplary xanthene dyes include but are not limited to the following and derivatives thereof: Eosin B (4′,5′-dibromo,2′,7′-dinitro-fluorescein, dianion); eosin Y; eosin Y (2′,4′,5′,7′-tetrabromo-fluorescein, dianion); eosin (2′,4′,5′,7′-tetrabromo-fluorescein, dianion); eosin (2′,4′,5′,7′-tetrabromofluorescein, dianion)methyl ester; eosin (2′,4′,5′,7′-tetrabromo-fluorcscein, monoanion)p-isopropylbenzyl ester; eosin derivative (2′,7′-dibromo-fluorescein, dianion);
- green porphyrins are also suitable in the practice of the invention.
- a “green porphyrin” is a porphyrin derivative obtained by reacting a porphyrin nucleus with an alkyne in a Diels-Alder type reaction to obtain a mono-hydrobenzoporphyrin.
- the resultant macropyrrolic compounds are called benzoporphyrin derivatives (BPDs), which are synthetic chlorin-like porphyrins with various structural analogs, as shown in U.S. Pat. Nos.
- green porphyrins are selected from a group of tetrapyrrolic porphyrin derivatives obtained by Diels-Alder reactions of acetylene derivatives with protoporphyrins under conditions that promote reaction at only one of the two available conjugated, nonaromatic diene structures present in the protoporphyrin-IX ring systems (rings A and B).
- Metallated forms of a Gp in which a metal cation replaces one or two hydrogens in the center of the ring system, may also be used in the practice of the invention.
- the preparation of the green porphyrin compounds useful in this invention is described in detail in U.S. Pat. No.
- the BPD is a benzoporphyrin derivative di-acid (BPD-DA), mono-acid ring A (BPD-MA), mono-acid ring B (BPD-MB), or mixtures thereof.
- BPD-DA benzoporphyrin derivative di-acid
- BPD-MA mono-acid ring A
- BPD-MB mono-acid ring B
- Examples of pyrrolic macrocycles directly applicable to the invention are shown below wherein A, B, C, D, and X can be hetero atoms or carbons.
- Dipyrromethenes have been used widely as intermediates in the synthesis of porphyrins (for example, see “The Porphyrins” Ed. D.Dolphin, Academic Press, 1978, Volume II, 215-223; Volume I, Chapter IV, 101-234). References within these volumes provide actual experimental details. These compounds can be coordinated with metal salts to produce metallo complexes (for example, see A. W. Johnson, I. T. Kay, R. Price, K. B. Shaw, J. Chem. Soc, Perkin Trans I, 3416-3424, 1959; U.S. Pat. No. 5,189,029; U.S. Pat. No. 5,446,157).
- these molecules can be synthesized such that a wide variety of functionalities can be directly attached to the basic diyrromethene ring structure. Such functionality can be used to increase water solubility or lipophilicity, to conjugate to biomolecules such as antibodies or proteins, or to increase the wavelength of absorption of the molecules by increasing the conjugation of the macrocycle. As such, these molecules can be used for light activated photochemistry or diagnosis.
- Such compounds can be widely functionalized as the aromatic rings may possess different substituents or have incorporated in them heteroatoms.
- Porphyrins also can be synthesized that possess annelated aromatic rings on the ⁇ -pyrrole positions (T. D. Lash, C. Wijesinghe, A. T. Osuma, J. R. Patel, Tetrahedron Letters, 38(12), 2031-2034.1997.), which can have the effect of extending conjugation and modifying the absorption and photophysical properties of the compounds.
- Porphyrin-type compounds have been synthesized from pyrroles and 5-membered ring heterocycles (such as thiophenes or furans for example), which incorporate one or more heteroatoms besides nitrogen within the central porphyrin “core” (“Porphyrins and Metalloporphyrins” Ed. K. M. Smith, Elsevier Publishing Company, New York, 1975, Chapter 18,729-732). Such compounds can be modified similarly to produce highly functionalized derivatives. In addition, porphyrin dimers, trimers or oligomers have been synthesized with great abandon. (See, H. Meier, Y. Kobuke, S. Kugimiya, J. Chem. Soc. Chem. Commun.
- Chlorins (Structures 4, 14, 15, 17, 18, 32-35, and 48-55)
- Chlorins or hydroporphyrins are porphyrins that have only 10 double bonds in their macrocyclic ring system (excluding peripheral substituents).
- the “reduction” of the porphyrin macrocycle has pronounced effects on both the absorption profile of the macrocycle and the photophysical properties of the compound.
- Many naturally occuring chlorins may be extracted from plants, seaweeds or algae (e.g., see “Porphyrins and Metalloporphyrins” Ed. K. M. Smith, Elsevier Publishing Company, New York, 1975, Section H, 774-778) and simple chemical modifications to pheophorbides can give pyrropheophorbides, chlorin e6, purpurin 18 and other chlorin ring systems.
- Bacteriochlorins and isobacteriochlorins are tetrahydroporphyrins. These derivatives have only nine double bonds in their macrocyclic ring system (excluding peripheral groups). The “double” reduction of the porphyrin nucleus at the pyrrole positions has a pronounced effect on the absorption properties and photophysical properties.
- bacteriochlorins absorb in the 720-850 nm range while isobacteriochlorins absorb in the 500-650 nm range (“The Porphyrins” Ed. D.Dolphin, Academic Press, 1978, Volume III, Chapter 1; references within these volumes provide actual experimental details).
- osmium tetroxide has proved useful in the synthesis of ⁇ , ⁇ -dihydroxy-bacteriochlorins and isobacteriochlorins from chlorins (U.S. Pat. No. 5,591,847) and the acid rearrangement of these derivatives has produced numerous bacteriochlorin derivatives.
- the treatment of porphyrins and chlorins with hydrogen peroxide has been used to produce bacteriochlorins and isobacteriochlorins (H. H. Inhoffen, W. Nolte, Justus Liebigs Ann. Chem. 725, 167, 1969).
- Phthalocyanines and Naphthalocyanines (Structures 7, 8, 19, 20-31)
- Phthalocyanines and phthalocyanine analogs are perhaps some of the most widely studied photosensitizers in the field of photodynamic therapy and are also widely used as optical recording media. As such, the number of structurally different phthalocyanine derivatives is enormous. Not only can the peripheral functionality of these compounds be widely varied, which changes their electronic spectra and photophysics, but metallation of the macrocycle also results in photophysical changes. In addition, carbons in the aromatic rings may be substituted with heteroatoms (such as nitrogen and sulphur phosphorus) that markedly change the photophysical properties of the compounds. Examples of references that disclose the formation of such compounds include: “Phthalocyanines, Properties and Applications, Eds. C. C. Leznoff, A. B. P.
- Porphyrins that possess at least one meso-nitrogen linking atom are called azaporphyrins.
- the number of meso-nitrogen linking atoms may be extended from one to four.
- Phthalocyanines and naphthalocyanine may be regarded as tetraazoporphyrins with extended conjugation due to annelated benzene and napthalene rings.
- the synthesis of mono, di, tri and tetraazoporphyrin analogs is discussed in “The Porphyrins” Ed. D.Dolphin, Academic Press, 1978, Volume I, Chapter 9, 365-388; “Phthalocyanine, Properties and Applications, Eds. C. C. Leznoff, A. B. P.
- Asymmetrical tetraazoporphyrins that have both a benzene and a naphthalene annelated unit in the macrocyclic ring system are loosely called benzonaphthoporphyrazines.
- the synthesis of these derivatives is carried out using classical phthalocyanine syntheses however, using mixed aromatic dinitriles (U. Michelsen, H. Kliesch, G. Schnurpfeil, A. K. Sobbi, D. Wohrle, Photochem. Photobiol, 64, 694, 1996; Canadian Patent No. 2,130,853.
- References to the synthesis of these macrocycles can also be found in “Phthalocyanine, Properties and Applications, Eds. C. C. Leznoff, A. B. P. Lever, VCH Publishers Inc., 1989; “The Phthalocyanines”, Eds. F. H. Moser, A. L. Thomas, CRC Press, Volumes I and II, 1983.
- Texaphyrins are tripyrrol dimethene derived “expanded porphyrin” macrocycles that have a central core larger than that of a porphyrin.
- the reaction of diformyl tripyrranes with functionalized aromatic diamines in the presence of a metal gives rise to functionalized metallated texaphyrins (U.S. Pat. Nos. 5,252,720, 4,935,498; and 5,567,687).
- Sapphyrins and pentaphyrins are fully conjugated macrocycles that possess five pyrrole units. Structural analogs of the sapphyrins and pentaphyrins are outlined in “Porphyrins and Metalloporphyrins”, Ed. K. M. Smith, Elsevier, Chapter 18, 750-751; “The Porphyrins Ed. D. Dolphin, Academic Press, NY, Chapter 10, 351-356; Broadherst et al, J. Chem. Soc. Perkin Trans. I, 2111, 1972; U.S. Pat. No. 5,543,514.
- Porphycenes are isomeric analogs of porphyrins that have eleven double bonds in their macrocyclic core and are derived by a mere reshuffling of the pyrrole and methine moieties. Routes to the synthesis of functionalized porphycenes are outlined in the following references: U.S. Pat. Nos. 5,409,900, 5,262,401, 5,244,671, 5,610,175, 5,637,608, and 5,179,120; D. Martire, N. Jux, P. F. Armendia, R. M. Negri, J. Lex, S. E. Braslavsky, K. Schaffner, E. Vogel. J. Am. Chem. Soc., 114, 1992; N. Jux, P. Koch, H. Schmickler, J.Lex, E.Vogel. Angew. Chem. Int. Ed. Engl. 29, 1385, 1990.
- the present invention provides for the synthesis of photodynamically active compounds and the resulting compounds may be used in phototherapy for diagnosis or treatment. Additionally, the compounds may be useful in the field of scintillation imaging if made radioactive.
- reaction Scheme 8 a tetrapyrrole (pyr) possessing a hydroxyl group is converted into the photodynamically active compound of formula I.
- the reaction can be achieved with the proper choice of solvent and reaction conditions.
- solvents may include methylene chloride, chloroform, toluene, pyrrolidine, 1,2-dichloroethane, and mixtures thereof.
- DMAP 4-dimethylaminopyridine
- Amines that can be used include, but are not limited to, alkylamines, aminoalcohols, aminoethers, diamines, and aminoacids.
- alkylamines aminoalcohols
- aminoethers aminoethers
- diamines aminoacids
- reaction Scheme 8 the compound of formula pyr is first treated with carbonyldiimidazole in the presence of DMAP in methylene chloride followed by an amine to give compounds (1), (2), (3), (4), (5), (6). This produces compounds that are functionalized with carbamates at the 2-position.
- Scheme 12 outlines the synthesis of pyrropheophorbide carbamates functionalized at the 3-position.
- pyrropheophorbide b is reduced with sodium borohydride to give the 3-methylalcohol derivative. This is then reacted according to the invention to give 3-functionalized pheophorbide carbamates.
- Reaction Scheme 14 outlines the synthesis of chlorin e6 carbamates derived from chlorin e6 6-amides.
- pheophorbides have been ring opened with a hydroxylated amine to produce chlorin e6 6-amides possessing hydroxyl groups.
- carbamate derivates such as (26) and the like.
- Benzoporphyrin derivatives derived from pyrropheoporphyrin or protoporphyrin IX have been modified according to the invention to produce benzoporphyrin carbamates.
- the benzoporphyrin derivative B (derived via the reaction of the ethylene glycol ketone protected methyl pyrropheoporphyrin, Pandey et al, Tetrahedron, 52:15, 5349-5362, 1998), with dimethyl acetylenedicarboxylate, base cyclization and subsequent ketone deprotection) is reduced with sodium borohydride to give the 9-desoxo-9-hydroxy derivative Bp.
- Treatment of Bp with CDI/DMAP followed by an amine gives the desired carbamate analogs (27) and (28). This produces benzoporphyrin derivatives functionalized at the 9-position.
- Purpurin 18 and purpurin 18 imides and their bacteriopurpurin analogs are relatively straightforward to make synthetically (Zheng, G., et al, Bioorganic & Med. Chem. Letters, 10,123-127,2000; Kosyrev, A. N., et al., Tet. Lett., 37(36), 6431-6434, 1996).
- Scheme 20 outlines the synthesis of carbamate derivatives from the 2-(1-hydroxyethyl) purpurin hexylimide Pim.
- other purpurin imide derivatives can be synthesized and modified according to the invention.
- Scheme 21 outlines the synthesis of a purpurin 18 imide propionic amide derivative that enables the formation of a carbamate on the propionic amide group.
- the ester on the propionic acid group of the purpurin imide is hydrolyzed to form the acid derivative. This is then converted to an amide that is hydroxylated.
- These hydroxylated purpurin imides may then be reacted in accordance with the invention to produce carbamate derivatives.
- Examples in Table (1) include compounds (26) and (Chl) and (37) and (35).
- the hydroxylated parent tetrapyrroles (Chl) and (35) at drug doses of 0.5 ⁇ mol/Kg, elicit maximal normal skin responses at 24 and 48 hrs, respectively.
- their carbamate analogs (26) and (37) at drug doses of 1.0 ⁇ mol/Kg and 1.5 ⁇ mol/Kg, respectively, elicit maximal skin responses at 6 hrs only.
- ester metabolism of the carbamate back to the parent hydroxylated macrocycle was rapid in blood plasma one would expect skin responses similar to parent hydroxylated macrocycle. This is not the case.
- any porphyrinic molecule possessing a hydroxyl group may be modified according to the invention to form the desired carbamate derivative.
- a large number of porphyrins with widely differing functionality are described in the literature (for example, see “Porphyrins and Metalloporphyrins,” Ed. K. Smith, Elsevier, 1975, New York; “The Porphyrins”, Ed. D. Dolphin, Vol I-V, Academic Press, 1978; “The Porphyrin Handbook”, Ed. K. Kadish, K. M. Smith, R.
- Examples include, but are not limited to: (1) hydrogen; (2) halogen, such as fluoro, chloro, iodo and bromo (3) lower alkyl, such as methyl, ethyl, n-propyl, butyl, hexyl, heptyl, octyl, isopropyl, t-butyl, n-pentyl and like groups; (4) lower alkoxy, such as methoxy, ethoxy, isopropoxy, n-butoxy, t-pentoxy and the like; (5) hydroxy; (6) carboxylic acid or acid salts, such as —CH 2 COOH, —CH 2 COONa, —CH 2 CH 2 COOH, —CH 2 CH 2 COONa, —CH 2 CH 2 CH(Br)COOH, —CH 2 CH 2 CH(CH 3 )COOH, —CH 2 CH(Br)COOH, —CH 2 CH(CH 3 )COOH, —CH
- biologically active group can be any group that selectively promotes the accumulation, elimination, binding rate, or tightness of binding in a particular biological environment.
- one category of biologically active groups is the substituents derived from sugars, specifically: (1) aldoses such as glyceraldehyde, erythrose, threose, ribose, arabinose, xylose, lyxose, allose, altrose, glucose, mannose, gulose, idose, galactose, and talose; (2) ketoses such as hydroxyacetone, erythrulose, rebulose, xylulose, psicose, fructose, sorbose, and tagatose; (3) pyranoses such as glucopyranose; (4) furanoses such as fructo-furanose; (5) O-acyl derivatives such as penta-O-acetyl- ⁇ -gluco
- Amino acid derivatives are also useful biologically active substituents, such as those derived from valine, leucine, isoleucine, threonine, methionine, phenylalanine, tryptophan, alanine, arginine, aspartic acid, cystine, cysteine, glutamic acid, glycine, histidine, proline, serine, tyrosine, asparagine and glutamine.
- peptides particularly those known to have affinity for specific receptors, for example, oxytocin, vasopressin, bradykinin, LHRH, thrombin and the like.
- nucleosides for example, ribonucleosides such as adenosine, guanosine, cytidine, and uridine, and 2′-deoxyribonucleosides such as 2′-deoxyadenosine, 2′-deoxyguanosine, 2′-deoxycytidine, and 2′-deoxythymidine.
- ribonucleosides such as adenosine, guanosine, cytidine, and uridine
- 2′-deoxyribonucleosides such as 2′-deoxyadenosine, 2′-deoxyguanosine, 2′-deoxycytidine, and 2′-deoxythymidine.
- ligand specific for a receptor refers to a moiety that binds a receptor at cell surfaces, and thus contains contours and charge patterns that are complementary to those of the biological receptor.
- the ligand is not the receptor itself, but a substance complementary to it. It is well understood that a wide variety of cell types have specific receptors designed to bind hormones, growth factors, or neurotransmitters. However, while these embodiments of ligands specific for receptors are known and understood, the phrase “ligand specific for a receptor” as used herein refers to any substance, natural or synthetic, that binds specifically to a receptor.
- Examples of such ligands include: (1) the steroid hormones, such as progesterone, estrogens, androgens, and the adrenal cortical hormones; (2) growth factors, such as epidermal growth factor, nerve growth factor, fibroblast growth factor, and the like; (3) other protein hormones, such as human growth hormone, parathyroid hormone, and the like; (4) neurotransmitters, such as acetylcholine, serotonin, dopamine, and the like; and (5) antibodies. Any analog of these substances that also succeeds in binding to a biological receptor is also included.
- the steroid hormones such as progesterone, estrogens, androgens, and the adrenal cortical hormones
- growth factors such as epidermal growth factor, nerve growth factor, fibroblast growth factor, and the like
- other protein hormones such as human growth hormone, parathyroid hormone, and the like
- neurotransmitters such as acetylcholine, serotonin, dopamine, and the like
- antibodies Any analog of these
- substituents tending to increase the amphiphilic nature of the compounds include: (1) short or long chain alcohols, for example, —C 12 H 24 —OH where —C 12 H 24 is hydrophobic; (2) fatty acids and their salts, such as the sodium salt of the long-chain fatty acid oleic acid; (3) phosphoglycerides, such as phosphatidic acid, phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl serine, phosphatidyl inositol, phosphatidyl glycerol, phosphatidyl 3′-O-alanyl glycerol, cardiolipin, or phosphatidyl choline; (4) sphingolipids, such as sphingomyelin; and (5) glycolipids, such as glycosyldiacylglycerols, cerebrosides, sulfate esters of cerebrosides or gan
- the compounds of the present invention can be administered to the host in a variety of forms adapted to the chosen route of administration, e.g., orally, intravenously, intramuscularly or subcutaneously.
- the active compound may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsules, or it may be compressed into tablets, or it may be incorporated directly with food.
- the active compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
- Such compositions and preparations should contain at least about 0.1% of active compound.
- the percentage of the compositions and preparations may, of course, be varied and may, for example, conveniently be between about 2 to about 60% of the weight of the administered product.
- the amount of active compound in such therapeutically useful compositions is such that a suitable dosage will be obtained.
- Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between about 50 and 300 mg of active compound.
- the tablets, troches, pills, capsules and the like may also contain the following: a binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; a sweetening agent such as sucrose, lactose or saccharin; or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring.
- a binder such as gum tragacanth, acacia, corn starch or gelatin
- excipients such as dicalcium phosphate
- a disintegrating agent such as corn starch, potato starch, alginic acid and the like
- a lubricant such as magnesium stearate
- a sweetening agent such as sucrose, lactose or saccharin
- a flavoring agent such as peppermint, oil of winter
- tablets, pills, or capsules may be coated with shellac, sugar or both.
- a syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye or flavoring such as cherry or orange flavor.
- any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed.
- the active compound may be incorporated into sustained-release preparations and formulations.
- the active compound may also be administered parenterally or intraperitoneally.
- Solutions of the active compound as a free base or pharmacologically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporanous preparation of sterile injectable solutions, dispersions, or liposomal or emulsion formulations.
- the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride.
- Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various other ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle that contains the basic dispersion medium and the required additional ingredients from those enumerated above.
- the preferred methods of preparation are vacuum drying and freeze-drying, which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solutions thereof.
- compositions include solutions of the inventive compounds in solvents, particularly aqueous solvents, most preferably water.
- solvents particularly aqueous solvents, most preferably water.
- the present new compounds may be dispersed in the usual cream or salve formulations commonly used for this purpose (such as liposomes, ointments, gels, hydrogels, and oils) or may be provided in the form of spray solutions or suspensions that may include a propellant usually employed in aerosol preparations.
- “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- Dosage unit form refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- the specifications for the novel dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active material for the treatment of tumors in living subjects.
- alkyl refers to substituted or unsubstituted, straight or branched chain groups, preferably having one to ten, more preferably having one to six, and most preferably having from one to four carbon atoms.
- C 1 -C 6 alkyl represents a straight or branched alkyl chain having from one to six carbon atoms.
- Exemplary C 1 -C 6 alkyl groups include methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, neo-pentyl, hexyl, isohexyl, and the like.
- C 1 -C 6 alkyl includes within its definition the term “C 1 -C 4 alkyl.”
- Such alkyl groups may themselves be ethers or thioethers, or aminoethers or dendrimers.
- cycloalkyl represents a substituted or unsubstituted, saturated or partially saturated, mono- or poly-carbocyclic ring, preferably having 5-14 ring carbon atoms.
- exemplary cycloalkyls include monocyclic rings having from 3-7, preferably 3-6, carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
- An exemplary cycloalkyl is a C 5 -C 7 cycloalkyl, which is a saturated hydrocarbon ring structure containing from five to seven carbon atoms.
- aryl refers to an aromatic, monovalent, monocyclic, bicyclic, or tricyclic radical containing 6, 10, 14, or 18 carbon ring atoms, which may be unsubstituted or substituted, and to which may be fused one or more cycloalkyl groups, heterocycloalkyl groups, or heteroaryl groups, which themselves may be unsubstituted or substituted by one or more suitable substituents.
- aryl groups include, but are not limited to, phenyl, napthyl, anthryl, phenanthryl, fluoren-2-yl, indan-5-yl, and the like.
- halogen represents chlorine, fluorine, bromine or iodine.
- halocarbon represents one or more halogens bonded to a carbon bearing group.
- carrier represents a substituted or unsubstituted aromatic or a saturated or a partially saturated 5-14 membered monocyclic or polycyclic ring, such as a 5- to 7-membered monocyclic or 7- to 10-membered bicyclic ring, wherein all the ring members are carbon atoms.
- electronegative withdrawing group is intended to mean a chemical group containing an electronegative element such as halogen, sulfur, nitrogen or oxygen.
- a “heterocycloalkyl group” is intended to mean a non-aromatic, monovalent, monocyclic, bicyclic, or tricyclic radical, which is saturated or unsaturated, containing 3 to 18 ring atoms, and which includes 1 to 5 heteroatoms selected from nitrogen, oxygen and sulfur, wherein the radical is unsubstituted or substituted, and to which may be fused one or more cycloalkyl groups, aryl groups, or heteroaryl groups, which themselves may be unsubstituted or substituted.
- heterocycloalkyl groups include, but are not limited to, azetidinyl, pyrrolidyl, piperidyl, piperazinyl, morpholinyl, tetrahydro-2H-1,4-thiazinyl, tetrahydrofuryl, dihydrofuryl, tetrahydropyranyl, dihydropyranyl, 1,3-dioxolanyl, 1,3-dioxanyl, 1,4-dioxanyl, 1,3-oxathiolanyl, 1,3-oxathianyl, 1,3-dithianyl, azabicylo[3.2.1]octyl, azabicylo[3.3.1 ]nonyl, azabicylo[4.3.0]nonyl, oxabicylo[2.2.1]heptyl, 1,5,9-triazacyclododecyl, and the like.
- a “heteroaryl group” is intended to mean an aromatic, monovalent, monocyclic, bicyclic, or tricyclic radical containing 5 to 18 ring atoms, including 1 to 5 heteroatoms selected from nitrogen, oxygen and sulfur, which may be unsubstituted or substituted, and to which may be fused one or more cycloalkyl groups, heterocycloalkyl groups, or aryl groups, which themselves may be unsubstituted or substituted.
- heteroaryl groups include, but are not limited to, thienyl, pyrrolyl, imidazolyl, pyrazolyl, furyl, isothiazolyl, furazanyl, isoxazolyl, thiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, benzo[b]thienyl, naphtho[2,3-b]thianthrenyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxathienyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxyalinyl, quinzolinyl, benzothiazolyl, benzimidazolyl, te
- leaving group refers to any group that departs from a molecule in a substitution reaction by breakage of a bond.
- Examples of leaving groups include, but are not limited to, halides, tosylates, arenesulfonates, alkylsulfonates, and triflates.
- Suitable protecting groups are known to those skilled in the art. Examples of suitable protecting groups can be found in T. Green & P. Wuts, Protective Groups in Organic Synthesis (2d ed. 1991), which is hereby incorporated by reference herein.
- Suitable salt anions include, but are not limited to, inorganics such as halogens, pseudohalogens, sulfates, hydrogen sulfates, nitrates, hydroxides, phosphates, hydrogen phosphates, dihydrogen phosphates, perchlorates, and related complex inorganic anions; and organics such as carboxylates, sulfonates, bicarbonates and carbonates.
- inorganics such as halogens, pseudohalogens, sulfates, hydrogen sulfates, nitrates, hydroxides, phosphates, hydrogen phosphates, dihydrogen phosphates, perchlorates, and related complex inorganic anions
- organics such as carboxylates, sulfonates, bicarbonates and carbonates.
- substituents for alkyl and aryl groups include mercapto, thioether, nitro (NO 2 ), amino, aryloxyl, halogen, hydroxyl, alkoxyl, and acyl, as well as aryl, cycloalkyl and saturated and partially saturated heterocycles.
- substituents for cycloalkyl groups include those listed above for alkyl and aryl, as well as aryl and alkyl groups themselves.
- Exemplary substituted aryls include a phenyl or naphthyl ring substituted with one or more substituents, preferably one to three substituents, independently selected from halo, hydroxy, morpholino(C 1 -C 4 )alkoxy carbonyl, pyridyl, (C 1 -C 4 )alkoxycarbonyl, halo (C 1 -C 4 )alkyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, carboxy, C 1 -C 4 alkocarbonyl, carbamoyl, N—(C 1 -C 4 )alkylcarbamoyl, amino, C 1 -C 4 alkylamino, di(C 1 -C 4 )alkylamino or a group of the formula —(CH 2 ) a —R 7 where a is 1, 2, 3 or 4; and R 7 is hydroxy, C 1 -C 4 alkoxy, carb
- halo(C 1 -C 4 )alkyl represents a straight or branched alkyl chain having from one to four carbon atoms with 1-3 halogen atoms attached to it.
- exemplary halo(C 1 -C 4 )alkyl groups include chloromethyl, 2-bromoethyl, 1-chloroisopropyl, 3-fluoropropyl, 2,3-dibromobutyl, 3-chloroisobutyl, iodo-t-butyl, trifluoromethyl, and the like.
- hydroxy (C 1 -C 4 )alkyl which represents a straight or branched alkyl chain having from one to four carbon atoms with a hydroxy group attached to it.
- exemplary hydroxy(C 1 -C 4 )alkyl groups include hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 2-hydroxyisopropyl, 4-hydroxybutyl, and the like.
- C 1 -C 4 alkylthio(C 1 -C 4 )alkyl is a straight or branched C 1 -C 4 alkyl group with a C 1 -C 4 alkylthio group attached to it.
- Exemplary C 1 -C 4 alkylthio(C 1 -C 4 )alkyl groups include methylthiomethyl, ethylthiomethyl, propylthiopropyl, sec-butylthiomethyl, and the like.
- heterocycle(C 1 -C 4 )alkyl is a straight or branched alkyl chain having from one to four carbon atoms with a heterocycle attached to it.
- exemplary heterocycle(C 1 -C 4 )alkyls include pyrrolylmethyl, quinolinylmethyl, 1-indolylethyl, 2-furylethyl, 3-thien-2-ylpropyl, 1-imidazolylisopropyl, 4-thiazolylbutyl and the like.
- aryl(C 1 -C 4 )alkyl which is a straight or branched alkyl chain having from one to four carbon atoms with an aryl group attached to it.
- exemplary aryl(C 1 -C 4 )alkyl groups include phenylmethyl, 2-phenylethyl, 3-naphthyl-propyl, 1-naphthylisopropyl, 4-phenylbutyl and the like.
- the heterocycloalkyls and the heteroaryls can, for example, be substituted with 1, 2 or 3 substituents independently selected from halo, halo(C 1 -C 4 )alkyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, carboxy, C 1 -C 4 alkoxycarbonyl, carbamoyl, —(C 1 -C 4 )alkylcarbamoyl, amino, C 1 -C 4 alkylamino, di(C 1 -C 4 )alkylamino or a group having the structure —(CH 2 ) a —R 7 where a is 1, 2, 3 or 4 and R 7 is hydroxy, C 1 -C 4 alkoxy, carboxy, C 1 -C 4 alkoxycarbonyl, amino, carbamoyl, C 1 -C 4 alkylamino or di(C 1 -C 4 )alkylamino.
- substituents independently selected from halo
- substituted heterocycloalkyls include, but are not limited to, 3-N-t-butyl carboxamide decahydroisoquinolinyl and 6-N-t-butyl carboxamide octahydro-thieno[3,2-c]pyridinyl.
- substituted heteroaryls include, but are not limited to, 3-methylimidazolyl, 3-methoxypyridyl, 4-chloroquinolinyl, 4-aminothiazolyl, 8-methylquinolinyl, 6-chloroquinoxalinyl, 3-ethylpyridyl, 6-methoxybenzimidazolyl, 4-hydroxyfuryl, 4-methylisoquinolinyl, 6,8-dibromoquinolinyl, 4,8-dimethylnaphthyl, 2-methyl-1,2,3,4-tetrahydroisoquinolinyl, N-methyl-quinolin-2-yl, 2-tibutoxycarbonyl-1,2,3,4-isoquinolin-7-yl and the like.
- a “pharmaceutically acceptable solvate” is intended to mean a solvate that retains the biological effectiveness and properties of the biologically active components of the inventive compounds.
- pharmaceutically acceptable solvates include, but are not limited to, compounds prepared using water, isopropanol, ethanol, DMSO, and other excipients generally referred to as GRAS ingredients.
- the compounds of the invention may exist in different polymorph forms, such as stable and metastable crystalline forms and isotropic and amorphous forms, all of which are intended to be within the scope of the present invention.
- a “pharmaceutically acceptable salt” is intended to mean those salts that retain the biological effectiveness and properties of the free acids and bases and that are not biologically or otherwise undesirable.
- pharmaceutically acceptable salts include, but are not limited to, sulfates, pyrosulfates, bisulfates, sulfites, bisulfites, phosphates, monohydrogen phosphates, dihydrogen phosphates, metaphosphates, pyrophosphates, chlorides, bromides, iodides, acetates, propionates, citrates, decanoates, caprylates, acrylates, formates, isobutyrates, caproates, heptanoates, propiolates, oxalates, malonates, succinates, suberates, sebacates, fumarates, maleates, butyne-1,4-dioates, hexyne-1,6-dioates, benzoates, chlorobenzoates,
- a compound of the present invention is a base
- the desired salt may be prepared by any suitable method known to the art, including treatment of the free base with an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, or with an organic acid, such as acetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, salicylic acid, pyranosidyl acids such as glucuronic acid and galacturonic acid, alpha-hyrodoxy acids such as citric acid and tartaric acid, amino acids such as aspartic acid and glutamic acid, aromatic acids such as benzoic acid and cinnamic acid, sulfonic acids such as p-toluenesulfonic acid or ethanesulfonic acid, or the like.
- an inorganic acid such as hydrochloric acid,
- a compound of the present invention is an acid
- the desired salt may be prepared by any suitable method known to the art, including treatment of the free acid with an inorganic or organic base, such as an amine (primary, secondary or tertiary), or an alkali metal or alkaline earth metal hydroxide or the like.
- suitable salts include organic salts derived from amino acids such as glycine and arginine; ammonia; primary, secondary and tertiary amines; cyclic amines such as piperidine, morpholine and piperazine; and inorganic salts derived from sodium, calcium, potassium, magnesium, manganese, iron, copper, zinc, aluminum, and lithium.
- silica gel 60 (230-400 mesh) was used for column chromatography. Analytical thin layer chromatography was performed on Merck 60 F254 silica gel (precoated on aluminum). All compounds were analyzed by 1 H NMR, UV and characterized by mass spectrometry (MS). 1 H spectra were recorded using a Unity Inova Varian 500 MHz spectrometer. Electronic spectra were recorded on a Beckman DU 640 spectrophotometer. High resolution mass spectra were obtained on a VG 70SE double focussing mass spectrometer equipped with an oversize data system.
- the crude zinc benzochlorin was rapidly chromatographed on silica, eluting with 2% methanol/dichloromethane and the major green fraction collected, evaporated and dried.
- the diethanolsulfonylamide zinc octaethylbenzochlorin (35) (204 mg) was stirred with CDl (400 mg) in CH 2 Cl 2 (50 ml) and in the presence of DMAP (70 mg) at room temperature until the reaction was complete. 1,1′,3,3′-tetramethylguanidine (0.5 g) was then added to the solution and stirred overnight at room temperature.
- the reaction mixture was washed with water (2 ⁇ 50 ml), dried and evaporated to dryness.
- the purpurin 18 hexylimide propionic acid (230 mg) was dissolved in dichloromethane (50 mL) and tetrahydrofuran (50 mL) and triethylamine was added (0.3 mL). The solution was cooled to O° C. in an ice bath. Ethyl chloroformate (0.3 mL) was added and the solution stirred for 1 hr at room temperature. 3-Aminopropanol (0.5 mL) was added and the reaction closely monitored by TLC (5% acetone/dichloromethane). When deemed complete the reaction was poured into water (100 mL) and the organic phase separated and rotoevaporated.
- the carbamate compounds were formulated in egg yolk phosphatidyl choline (EYP) and phosphate buffered saline (PBS) (pH 7.4). These were sterilized by filtration through a 0.2-micron nylon filter and determined to be stable for at least several weeks following formulation by HPLC.
- EYP egg yolk phosphatidyl choline
- PBS phosphate buffered saline
- Five Sprague-Dawley rats with subcutaneous chondrosarcoma tumors in the flank of a certain volume (150-250 mm 3 ) were injected intravenously with various drugs at various doses. Three hours after the injection the tumors were exposed to 664-nm light at light doses of 125 J/cm 2 or 200 J/cm 2 .
- the end point of the study was the observation of tumor regrowth (averaged over the animals) following the treatment.
- Table 2 illustrates the results for the best drug and light doses that were tested in the above system and are compared with the well known photosensitizer SnET2 under optimal conditions (24 hrs post drug administration). TABLE 2 Chondrosarcoma tumor growth delay for the carbamate macrocycles. Drug Dose Drug tested ( ⁇ mol/kg) Light Dose (J/cm2) Days (regrowth) (13) 1.5 125 14 (3) 1.5 125 10 (6) 0.75 125 11 (7) 1.0 125 23 (4) 1.0 125 4/5 cured SnET2 2.0 125 13
- Corneal neovessels were experimentally induced in Sprague Dawley rats with an N-heptanol chemical scrub.
- the chemical scrub was used to remove the corneal epithelium and stem cells, allowing the neovessels to grow across the entire cornea.
- PDT was performed at approximately 3 weeks after the chemical scrub when the neovessels formed a uniform network across the cornea.
- the PDT treatment was applied to the corneal surface with a laser wavelength that was optimized for the given absorption spectrum.
- the efficacy of neovessel closure was evaluated by measuring the area of treated cornea that remained neovessel-free out to 28 days following PDT. Accurate area measurements were taken using fluorescein angiography and measuring the area of neovessel-free cornea. Absence of fluorescein leakage in the treatment area demonstrated closure of the neovessels. The dosimetry and results of selected carbamate molecules in this model are summarized in Table 3.
- the selected photosensitizers were administered intravenously at varying drug doses, the light dose was set constant at 20 J/cm 2 , and the time interval was varied from 5-30 minutes between drug and light administration.
- Two PDT treatment areas were placed on the fundus of each eye in each rabbit. Fluorescein angiography was used to evaluate vessel closure following PDT out to 28 days. The dosimetry and efficacy results of these molecules are summarized in Table 4. TABLE 4 Optimal dosimetry and results summarizing the closure of the choriocapillaris at 28 days following PDT.
- the light dose for all treatments was 20 J/cm 2 .
- the data is an average for five rabbits.
- Fluorescein angiography and histopathology were used to evaluate the CNV closure.
- Initial flush of the fluorescein angiography showed that molecules (3) and (6) (2.0 ⁇ moles/kg, 10-20 minutes post injection) closed the CNV lesion at 7 days after PDT.
- Molecule (7) (1.5 & 3.0 ⁇ moles/kg, 10-20 minutes post injection) also demonstrated CNV closure at 7 days post PDT based on fluorescein angiography.
- Fluorescein angiography of (7) at 28 days following PDT showed closure of the CNV at 10-40 minute intervals for 3.0 ⁇ moles/kg.
- Visudyne also showed CNV closure at 7 days post treatment at a drug dose of 1.4 ⁇ moles/kg, with light treatment 10-20 minutes post injection.
- the pharmacological properties of the novel compounds according to the invention are substantially different from those of existing photosensitizers described to date in the literature.
- the compounds investigated possess the following properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Dermatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Carbamate compounds an compositions useful in photodynamic therapy for treating opthalmic, cardiovascular, and skin diseases.
Description
- The present invention is directed to carbamate derivatives useful as photoactive compounds in photodynamic therapy and processes for producing such compounds.
- Photodynamic therapy is a procedure that uses photoactive (light-activated) drugs to target and destroy diseased cells. Photoactive drugs transform light energy into chemical energy in a manner similar to the action of chlorophyll in green plants. The photoactive drugs are inactive until irradiated with light of a specific wavelength thereby enabling physicians to target specific groups of cells and control the timing and selectivity of treatment. The result of this process is that diseased cells or target cells and tissues are destroyed with minimal damage to surrounding normal tissues.
- Photodynamic therapy begins with the administration to a patient of a preferred amount of a photoactive compound that is selectively taken up and/or retained by the biologic target, i.e., tissue or cells. After the photoactive compound is taken up by the target tissue, light of the appropriate wavelength to be absorbed by the photoactive compound is delivered to the targeted area. This activating light excites the photoactive compound to a higher energy state. The extra energy of the excited photoactive compound can then be used to generate a biological response in the target area by interaction with oxygen. As a result of the irradiation, the photoactive compound exhibits cytotoxic activity, i.e., it destroys cells. Additionally, by localizing in the irradiated area, it is possible to contain the cytotoxicity to a specific target area. For a more detailed description of photodynamic therapy, see U.S. Pat. Nos. 5,225,433, 5,198,460, 5,171,749, 4,649,151, 5,399,583, 5,459,159, and 5,489,590, the disclosures of which are hereby incorporated herein by reference.
- One important factor in the effectiveness of photodynamic therapy for some disease indications is the depth of tissue penetration by the activating light. It would therefore be desirable to find photoactive compounds that absorb at wavelengths in which light penetration through the tissue is deep. Thus, there is a need for photoactive compounds useful for photodynamic therapy that possess long wavelength absorptions in the 600-800 nm range, a region where light penetration through tissues is optimal.
- There is also a need for compounds useful in photodiagnosis. Photodiagnosis is a technique for detecting the existence, position, and/or size of a tumor. For photodiagnosis, light of wavelength between 360 and 800 nm is suitable for activating tetrapyrrole compounds. Of course, each compound has a specific optimal wavelength of activation. A long wavelength ultraviolet lamp is particularly suitable for photodiagnosis.
- A large number of naturally occurring and synthetic dyes are currently being evaluated as potential photoactive compounds in the field of photodynamic therapy. Perhaps the most widely studied class of photoactive dyes in this field are the tetrapyrrolic macrocyclic compounds generally called porphyrins.
- In general, porphyrins typically have a low energy absorption, called band I (or Qy) absorption at ˜620-650nm, with molar extinction coefficients on the order of 100-10,000M−1cm−1. Because of this fact, porphyrins have largely been criticized as having less than optimal wavelength and light absorption properties for use in photodynamic therapy of solid tumors. Compounds such as chlorins (dihydroporphyrins) and bacteriochlorins (tetrahydroporphyrins), where one or two pyrrole rings have been reduced, exhibit low energy band I absorptions that have high molar extinction co-efficients. Such compounds are useful in photodynamic therapy indications that require a large depth of light penetration through tissues.
- Many examples of pheophorbides and bacteriopheophorbides are found in nature in plants, algae and bacteria. These sources enable large quantities of these compounds to be isolated and subsequently modified to produce compounds of interest to photodynamic therapy. Four useful intermediates derived from naturally occurring pheophorbides are shown below. These derivatives have been largely functionalized to produce new compounds with different photophysical, pharmacokinetic toxicity and distribution profiles.
-
- In formula I,
- R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, and R14 are independently selected from the group consisting of:
- H, halogen, methyl, ethyl, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, CH═CHCH2N+(CH3)3A, CH═N(alkyl)2 +A, or N(alkyl)3 +A, CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)O-aryl, CH(CH3)NH-alkyl, CH(CH3)NH-cycloalkyl, CH(CH3)NH-heteroalkyl, CH(CH3)NH-heteroalkoxy, CH(CH3)-(amino acid), CH(CH3)-(amino acid ester), CH(CH3)-(amino acid amide), C(X)2C(X)3, (where X is H or halogen), CH═NR15 (where R15 is OH, O-alkyl, O-ether, O-alkylamino, NHCOCH2N(CH3)2, NHCOCH2N(CH3)3 +A, NHCOCH2-(pyridinium)+A, (CH2)nO-alkoxy, or (CH2)nO-alkyl), where n is an integer ranging from 0 to 8 and A is a charge balancing ion;
- CO2R16, where R16 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH2)nOH, or (CH2)nOR17, where R17 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- (CH2)nCO2R18, (CHX)nCO2R18, or (CX2)nCO2R18, where X is selected from OH, OR19, or a halogen, and R18 and R19 are independently selected from H, a physiologically acceptable counter ion, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- CONH(R20), CONHNH(R20), CO(R20), CON(R20)2, CON(R20)(R21) (CH2)nCONH(R20), (CH2)nCON(R20)2, (CH2)nCOR20, (CH2)nCON(R20)(R21), (CX2)nCONH(R20), (CX2)nCON(R20)2, (CX2)nCON(R20)(R21), (CX2)nCOR20, (CH2)nCONHNH(R20), (CX2)nCONHNH(R20), (CHX)nCONH(R20), (CHX)nCONHNH(R20), (CHX)nCO(R20), (CHX)nCON(R20)2, or (CHX)nCON(R20)(R21), where X is selected from OH, OR22, SR22, or a halogen, and R20, R21 and R22 are independently selected from H, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 1 to 4;
- S(R23), CH(CH3)S(R23), (CH2)nS(R23), (CH2)nNH(R23), (CH2)nNHNH(R23), (CH2)nN(R23)2, (CH2)nN(R23)(R24), (CH2)nN(R23)(R24)(R25)+A, CH═N(R23), or CH═NN(R23)(R24), where R23, R24 and R25 are independently selected from H, OH, O-alkyl, NH2, acetyl, a straight or branched, chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids (provided —NH(R23) or —N(R23)(R24) is pat of the amino acid), a mono-, di-, or polyhydroxyalkyl residue, a mono-, di, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and where R23, R24 and R25 together may possess the atoms necessary to constitute an aromatic ring system, n is an integer ranging from 0 to 4, and A is a physiologically acceptable counter ion;
- (CH2)nOPO(OR26)2, or (CH2)nPO(OR26)2, where R26 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- (CH2)nNHCOR27, or (CH2)nNHNHCOR27, where R27 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer ranging from between 0 to 4;
- SO3R28, SO2NHR28, SO2N(R28)2, SO2NHNHR28, SO2R28, SO3R28, (CH2)nSO2NHR28, (CH2)nSO2N(R28)2, (CH2)nSO2NHNHR28, or (CH2)nSO2R28, where R28 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and NHR28 can also be an amino acid, an amino acid salt, an amino acid ester residue, or an amino acid amide residue, and n is an integer ranging from 0 to 4;
- aryl or substituted aryl, which may optionally bear one or more substituents with a
- molecular weight of less than or equal to about 100,000 daltons;
- wherein:
- R3 and R4 may form a bond;
- R12 and R13 may form a bond;
- R7 and R8 may form a ═O; and
- R9 and R10 may form a ═O;
- with the proviso that at least one of R1 through R28 is a functional group that possesses in part or whole of its structure, a carbamate functionality of the formulae —OCON(R29)2, —OCON═C(R29)2, —OCONR29R30, or —OCON═C(R29)(R30), where R29 and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m((CH2)Q)OH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, ( CH2)nN((CH2)mNH2(CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester residue, alkylsulfonic amide residue, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and Q, n and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion.
- In formula I, M can be selected from 2H, a metal cation, and photoactive metal ions preferably selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, Mg2+, wherein optionally associated with the metal ion is the appropriate number of physiologically acceptable charge balancing counter ions.
- In accordance with the invention, a pharmaceutically acceptable salt, prodrug, solvate, or metabolite of the compound of formula I is also within the scope of the invention.
-
- In formula II,
- R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, and R16 are independently selected from the group consisting of:
- H, halogen, methyl, ethyl, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, CH═CHCH2N+(CH3)3A, CH═N(alkyl)2 +A, or N(alkyl)3 +A, CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)O-aryl, CH(CH3)NH-alkyl, CH(CH3)NH-cycloalkyl, CH(CH3)NH-heteroalkyl, CH(CH3)NH-heteroalkoxy, CH(CH3)-(amino acid), CH(CH3)-(amino acid ester), CH(CH3)-(amino acid amide), C(X)2C(X)3, (where X is H or halogen), CH═NR17 (where R17 is OH, O-alkyl, O-ether, O-alkylamino, NHCOCH2N(CH3)2, NHCOCH2N(CH3)3 +A, NHCOCH2-(pyridinium)+A, (CH2)nO-alkoxy, or (CH2)nO-alkyl), where n is an integer ranging from 0 to 8 and A is a charge balancing ion;
- CO2R18, where R16 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH2)nOH, or (CH2)nOR19, where R19 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- (CH2)nCO2R20, (CHX)nCO2R20, or (CX2)nCO2R20, where X is selected from OH, OR21, or a halogen, and R20 and R21 are independently selected from H, a physiologically acceptable counter ion, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- CONH(R22), CONHNH(R22), CO(R22), CON(R22)2, CON(R22)(R23), (CH2)nCONH(R22), (CH2)nCON(R22)2, (CH2)nCOR22, (CH2)nCON(R22)(R23), (CX2)nCONH(R22), (CX2)nCON(R22)2, (CX2)nCON(R22)(R23), (CX2)nCOR22, (CH2)nCONHNH(R22), (CX2)nCONHNH(R22), (CHX)nCONH(R22), (CHX)nCONHNH(R22), (CHX)nCO(R22), (CHX)nCON(R22)2, or (CHX)nCON(R22)(R23), where X is selected from OH, OR24, SR24, or a halogen, and R22 , R23 and R24 are independently selected from H, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl,.theterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 1 to 4;
- S(R25), CH(CH3)S(R25), (CH2)nS(R25), (CH2)nNH(R25), (CH2)nNHNH(R25), (CH2)nN(R25)2, (CH2)nN(R25)(R26), (CH2)nN(R25)(R26)(R27)+A, CH═N(R25), or CH═NN(R25)(R26), where R24, R26 and R27 are independently selected from H, OH, O-alkyl, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids (provided —NH(R25) or —N(R25)(R26) is part of the amino acid), a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, where R25, R26 and R27 together may possess the atoms necessary to constitute an aromatic ring system, n is an integer ranging from 0 to 4, and A is a physiologically acceptable counter ion;
- (CH2)nOPO(OR28)2 or (CH2)nPO(OR28)2, where R28 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- (CH2)nNHCOR29, or (CH2)nNHNHCOR29, where R29 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- SO3R30, SO2NHR30, SO2N(R30)2, SO2NHNHR30, SO2R30, SO3R30, (CH2)nSO2NHR30, (CH2)nSO2N(R30)2, (CH2)nSO2NHNHR30, or (CH2)nSO2R30, where R30 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and NHR28 can also be an amino acid, an amino acid salt, an amino acid ester residue or an amino acid amide residue, and n is an integer ranging from 0 to 4;
- aryl or substituted aryl, which may optionally bear one or more substituents with a molecular weight of less than or equal to about 1100,000 daltons; and
- wherein:
- R3 and R4 may form a bond; and
- R10 and R11 may form a bond;
- with the proviso that at least one of R1 through R30 is a functional group that possesses in part or whole of its structure, a carbamate functionality of the formulae —OCON(R29)2, —OCON═C(R29)2, —OCONR29R30, or —OCON═C(R29)(R30), where R29 and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m(CH2)QOH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN((CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester or alkylsulfonic amide reside, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, Q, n and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion.
- In formula II, M can be selected from 2H, a metal cation, and photoactive metal ions preferably selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, Mg2+, wherein optionally associated with the metal ion is the appropriate number of physiologically acceptable charge balancing counter ions.
- In accordance with the invention, a pharmaceutically acceptable salt, prodrug, solvate, or metabolite of the compounds of formula II is also within the scope of the invention.
-
- wherein:
- R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, and R19, are independently selected from the group consisting of:
- H, halogen, methyl, ethyl, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, CH═CHCH2N+(CH3)3A, CH═N(alkyl)2 +A, N(alkyl)3 +A, CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)Q-aryl, CH(CH3)NH-alkyl, CH(CH3)NH-cycloalkyl, CH(CH3)NH-heteroalkyl, CH(CH3)NH-heteroalkoxy, CH(CH3)-(amino acid), CH(CH3)-(amino acid ester), CH(CH3)-(amino acid amide), C(X)2C(X)3, (where X is H or halogen), CH═NR20 (where R20 is OH, O-alkyl, O-ether, O-alkylamino, NHCOCH2N(CH3)2, NHCOCH2N(CH3)3 +A, NHCOCH2-(pyridinium)+A, (CH2)nO-alkoxy, or (CH2)nO-alkyl), where n is an integer ranging from 0 to 8 and A is a charge balancing ion;
- CO2R21, where R21 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH2)nOH, or (CH2)nOR22, where R22 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- (CH2)nCO2R23, (CHX)nCO2R23, or (CX2)nCO2R23, where X is selected from OH, OR24, or a halogen, and R23 and R24 are independently selected from H, a physiologically acceptable counter ion, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- CONH(R25), CONHNH(R25), CO(R25), CON(R25)2, CON(R25)(R26), (CH2)nCONH(R25), (CH2)nCON(R25)2, (CH2)nCOR25, (CH2)nCON(R25)(R26), (CX2)nCONH(R25), (CX2)nCON(R25)2, (CX2)nCON(R25)(R26), (CX2)nCOR25, (CH2)nCONHNH(R25), (CX2)nCONHNH(R25), (CHX)nCONH(R25), (CHX)nCONHNH(R25), (CHX)nCO(R25), (CHX)nCON(R25)2, or (CHX)nCON(R25)(R26), where X is selected from OH, OR27, SR27, or a halogen, and R25 , R26 and R27 are independently selected from H, NH2, acetyl, a straight or branched chain C1-C20 alkyl, halo alkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxylaryl residue, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 1 to 4;
- S(R28), CH(CH3)S(R28), (CH2)nS(R28), (CH2)nNH(R28), (CH2)nNHNH(R28), (CH2)nN(R28)2, (CH2)nN(R28)(R29), (CH2)nN(R28)(R29)(R30)+A, CH═N(R28), or CH═NN(R28)(R29), where R28, R29 and R30 are independently selected from H, OH, O-alkyl, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids (provided —NH(R28) or —N(R28)(R29) is part of the amino acid), a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, where R28, R29 and R30 together may possess the atoms necessary to constitute an aromatic ring system, n is an integer ranging from 0 to 4, and A is a physiologically acceptable counter ion;
- (CH2)nO PO(OR31)2, or (CH2)nPO(OR31)2, where R31 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- (CH2)nNHCOR32, or (CH2)nNHNHCOR32, where R32 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- SO3R34, SO2NHR34, SO2N(R34)2, SO2NHNHR34, SO2R34, SO3R34, (CH2)nSO2NHR34, (CH2)nSO2N(R34)2, (CH2)nSO2NHNHR34, or (CH2)nSO2R34, where R34 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl,, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, NHR34 can also be an amino acid, an amino acid salt, an amino acid ester residue, an amino acid amide residue, and n is an integer ranging from 1 to 4;
- aryl or substituted aryl, which may optionally bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
- wherein:
- R14 and R15 may form a bond; and
- R6 and R7 may form a ═O;
- with the proviso that at least one of R1 through R34 is a functional group that possesses in part or whole of its structure, a carbamate functionality of the formulae —OCON(R35)2, —OCON═C(R35)2, —OCONR35R36, or —OCON═C(R35)(R36), where R35 and R36 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m(CH2)QOH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN((CH2)mN(CH3)3 +A)2, ((CH2)nO)m,((CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester or alkylsulfonic amide reside, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, Q, n and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion;
- In Formulae IIIA and IIB, M can be selected from 2H, a metal cation, or photoactive metal ions preferably selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, Mg2+, wherein optionally associated with the metal ion is the appropriate number of physiologically acceptable charge balancing counter ions.
- In accordance with the invention, a pharmaceutically acceptable salt, prodrug, solvate, or metabolite of the compounds of formulae IIA and IIB is within the scope of the invention.
-
- wherein:
- R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, and R18, are independently selected from the group consisting of:
- H, halogen, methyl, ethyl, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, CH═CHCH2N+(CH3)3A, CH═N(alkyl)2 +A, N(alkyl)3 +A, CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)O-aryl, CH(CH3)NH-alkyl, CH(CH3)NH-cycloalkyl, CH(CH3)N H-heteroalkyl, CH(CH3)NH-heteroalkoxy, CH(CH3)-(amino acid ), CH(CH3)-(amino acid ester), CH(CH3)-(amino acid amide), C(X)2C(X)3, (where X is H or halogen), CH═NR19 (where R19 is OH, O-alkyl, O-ether, O-alkylamino, NHCOCH2N(CH3)2, NHCOCH2N(CH3)3 +A, NHCOCH2-(pyridinium)+A, (CH2)nO-alkoxy, or (CH2)nO-alkyl), where n is an integer ranging from 0 to 8, and A is a charge balancing ion;
- CO2R20, where R20 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH2)nOH, or (CH2)nOR21, where R21 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- (CH2)nCO2R22, (CHX)nCO2R22, or (CX2)nCO2R22, where X is selected from OH, OR23, or a halogen, and R22 and R23 are independently selected from H, a physiologically acceptable counter ion, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- CONH(R24), CONHNH(R24), CO(R24), CON(R24)2, CON(R24)(R25), (CH2)nCONH(R24), (CH2)nCON(R24)2, (CH2)nCOR24, (CH2)nCON(R24)(R25), (CX2)nCONH(R24), (CX2)nCON(R24)2, (CX2)nCON(R24)(R25), (CX2)nCOR24, (CH2)nCONHNH(R24), (CX2)nCONHNH(R24), (CHX)nCONH(R24), (CHX)nCONHNH(R24), (CHX)nCO(R24), (CHX)nCON(R24)2, or (CHX)nCON(R24)(R25), where X is selected from OH, OR26, SR26, or a halogen, and R24 , R25 and R26 are independently selected from H, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 1 to 4;
- S(R27), CH(CH3)S(R27), (CH2)nS(R27), (CH2)nNH(R27), (CH2)nNHNH(R27), (CH2)nN(R27)2, (CH2)nN(R27)(R28), (CH2)nN(R27)(R28)(R29)+A, CH═N(R27), or CH═NN(R27)(R28), where R27, R28 and R29 are independently selected from H, OH, O-alkyl, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids (provided —NH(R27) or —N(R27)(R28) is part of the amino acid), a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, where R27, R28 and R29 together may possess the atoms necessary to constitute an aromatic ring system, n is an integer ranging from 0 to 4, and A is a physiologically acceptable counter ion;
- (CH2)nOPO(OR30)2 or (CH2)nPO(OR30)2, where R30 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- (CH2)nNHCOR31, or (CH2)nNHNHCOR31, where R31 is selected from a straight or branched chain Cl-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- SO3R32, SO2NHR32, SO2N(R32)2, SO2NHNHR33, SO2R33, SO3R33, (CH2)nSO2NHR33, (CH2)nSO2N(R33)2, (CH2)nSO2NHNHR33, or (CH2)nSO2R33, where R33 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, A haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, NHR33 can also be an amino acid, an amino acid salt, an amino acid ester residue, an amino acid amide residue, and n is an integer ranging from 1 to 4;
- aryl or substituted aryl, which may optionally bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
- wherein:
- R10 and R13 may form a bond;
- R6 and R7 may form a ═O; and
- R8 and R9 may form a ═O;
- with the proviso that at least one of R1 through R33 is a functional group that possesses in part or whole of its structure, a carbamate functionality of the formulae —OCON(R34)2, —OCON═C(R34)2, —OCONR34R35 or —OCON═C(R34)(R35), where R34 and R35 are independently selected from H, C1-C20 alkyl, C1-C20 cyclioalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m(CH2)QOH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN((CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester or alkylsulfonic amide reside, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, Q, n and m are integers between 0 and 10,000, and A is physiologically acceptable counter ion.
- In formulae IVA and IVB, M can be selected from 2H, a metal cation, or photoactive metal ions preferably selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, Mg2+, wherein optionally associated with the metal ion is the appropriate number of physiologically acceptable charge balancing counter ions.
- In accordance with the invention, a pharmaceutically acceptable salt, prodrug, solvate, or metabolite of the compounds of formula IVA and IVB is also within the scope of the invention.
-
- wherein:
- R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, are independently selected from the group consisting of:
- H, halogen, methyl, ethyl, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, CH═CHCH2N+(CH3)3A, CH═N(alkyl)2 +A, N(alkyl)3 +A CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)O-aryl, CH(CH3)NH-alkyl, CH(CH3)NH-cycloalkyl, CH(CH3)NH-heteroalkyl, CH(CH3)NH-heteroalkoxy, CH(CH3)-(amino acid), CH(CH3)-(amino acid ester), CH(CH3)-(amino acid amide), C(X)2C(X)3, (where X is H or halogen), CH═NR17 (where R17 is OH, O-alkyl, O-ether, O-alkylamino, NHCOCH2N(CH3)2, NHCOCH2N(CH3)3 +A, NHCOCH2-(pyridinium)+A, (CH2)nO-alkoxy, or (CH2)nO-alkyl), where n is an integer ranging from 0 to 8, and A is a charge balancing ion;
- CO2R18, where R18 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH2)nOH, or (CH2)nOR19, where R19 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- (CH2)nCO2R20, (CHX)nCO2R20, or (CX2)nCO2R20, where X is selected from OH, OR21, or a halogen, and R20 and R21 are independently selected from H, a physiologically acceptable counter ion, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 1 to 4;
- CONH(R22), CONHNH(R22), CO(R22), CON(R22)2, CON(R22)(R23), (CH2)nCONH(R22), (CH2)nCON(R22)2, (CH2)nCOR22, (CH2)nCON(R22)(R23), (CX2)nCONH(R22), (CX2)nCON(R22)2, (CX2)nCON(R22)(R23), (CX2)nCOR22, (CH2)nCONHNH(R22), (CX2)nCONHNH(R22), (CHX)nCONH(R22), (CHX)nCONHNH(R22), (CHX)nCO(R22), (CHX)nCON(R22)2, or (CHX)nCON(R22)(R23), where X is selected from OH, OR24, SR24, or a halogen, and R22, R23 and R24 are independently selected from H, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 1 to 4;
- S(R25), CH(CH3)S(R25), (CH2)nS(R25), (CH2)nNH(R25), (CH2)nNHNH(R25), (CH2)nN(R25)2, (CH2)nN(R25)(R26), (CH2)nN(R25)(R26)(R27)+A, CH═N(R25), or CH═NN(R25)(R26), where R25, R26 and R27 are independently selected from H, OH, O-alkyl, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids (provided —NH(R25) or —N(R25)(R26) is part of the amino acid), a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, where R25, R26 and R27 may together possess the atoms necessary to constitute an aromatic ring system, n is an integer ranging from 0 to 4, and A is a physiologically acceptable counter ion;
- (CH2)nOPO(OR28)2, or (CH2)nPO(OR28)2, where R28 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- (CH2)nNHCOR29, or (CH2)nNHNHCOR29, where R29 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
- SO3R30, SO2NHR30, SO2N(R30)2, SO2NHNHR30, SO2R30, SO3R30, (CH2)nSO2NHR30, (CH2)nSO2N(R30)2, (CH2)nSO2NHNHR30, or (CH2)nSO2R30, where R30 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, NHR30 can also be an amino acid, an amino acid salt, an amino acid ester residue, or an amino acid amide residue, and n is an integer ranging from 0 to 4;
- aryl or substituted aryl, which may optionally bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
- wherein:
- R15 and R16 may form a bond;
- R9 and R10 may form a bond;
- R2 and R6 may independently be O or N(R31), where R31 is alkyl;
- X is O or N(R32), where R32 is selected from alkyl, an amino acid, an amino acid ester, an amino acid amide, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m(CH2)QOH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)mN(CH3)3 +A, ((CH2)nO)m(CH2O)QCOCH3, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and Q, n and m are integers ranging from 0 to 10,000; or a functional group that possesses a carbamate moiety functionality of the formulae —OCON(R33)2, —OCON═C(R33)2, —OCONR33R34 or —OCON═C(R33)(R34), where R33 and R34 are as described below, or a functional group having a molecular weight less than or equal to 100,000 daltons;
- with the proviso that at least one of R1 through R30 is a functional group that possesses in part or whole of its structure, a carbamate functionality of the formulae —OCON(R33)2, —OCON═C(R33)2, —OCONR33R34 and —OCON═C(R33)(R34), where R33 and R34 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m(CH2)QOH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN((CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester or alkylsulfonic amide reside, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and Q, n and m are integers ranging from 0 to 1 (10,000;
- In formula V, M can be selected from 2H, a metal cation, or photoactive metal ions preferably selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, or Mg2+, wherein optionally associated with the metal ion is the appropriate number of physiologically acceptable charge balancing counter ions.
- In accordance with the invention, a pharmaceutically acceptable salt, prodrug, solvate, or metabolite of the compounds of formula V is within the scope of the invention.
- The invention further provides processes for preparing photosensitizers comprising contacting a tetrapyrrolic precursor containing a hydroxyl group in a solvent with carbonyldiimidazole followed by an amine compound in the presence of solvent to form a compound of formulae I, II, IIIA and IIIB, IVA and IVB or V.
- The metal cation of formulae I, II, IIIA, IIIB, IVA, IVB and V may include one of the following: Ag, Al, Au, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Mg, Mo, Nd, Ni, Pb, Pd, Pr, Pt, Rh, Ru, Sb, Sc, Si, Sm, Tb, Tc, Th, Ti, Tm, U, V, Y, Yb, W, Zn, and Zr, and may be radioactive for scintillation imaging.
- Additional advantages of the invention will be set forth in the detailed description that follows, and in part will be obvious from the description or may be learned by practice of the invention. The advantages of the invention can be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
- In accordance with the invention, as embodied and broadly described herein, compounds are provided that are particularly useful as photoactive compounds in photodynamic therapy. The present invention is directed to compounds of formulae I, II, IIIA, IIIB, IVA, IVB and V as described above.
- When a human or animal with a disease site is treated with doses of a compound of the present invention and when appropriate light rays or electromagnetic waves are applied, the compound emits light (i.e., it fluoresces). Thereby, the existence, position and size of the tumor can be detected. This is called photodiagnosis.
- When the disease site is irradiated with light of a proper wavelength and intensity, the compound is activated to exert a cell killing effect against the tumor. This is called phototherapy.
- Compounds intended for photodiagnosis and phototherapy ideally should have the following properties:
- (a) non-toxic at normal therapeutic dosage unless and until activated by light;
- (b) selectively photoactive;
- (c) emit characteristic and detectable fluorescence when light rays or electromagnetic waves are applied;
- (d) activated to an extent sufficient to exert a cell killing effect against tumors when irradiated with light rays or when electromagnetic waves are applied; and
- (e) easily metabolized or excreted after treatment.
- The instant compounds can be used for diagnosis and the therapeutic treatment of a broad range of disease indications including tumors. Examples of tumors include, but are not limited to, gastric cancer, enteric cancer, lung cancer, breast cancer, uterine cancer, esophageal cancer, ovarian cancer, pancreatic cancer, pharyngeal cancer, sarcomas, hepatic cancer, cancer of the urinary bladder, cancer of the upper jaw, cancer of the bile duct, cancer of the tongue, cerebral tumor, skin cancer, malignant goiter, prostatic cancer, cancer of the parotid gland, Hodgkin's disease, multiple myeloma, renal cancer, leukemia, and malignant lymphocytoma. For diagnosis, the sole requirement is that the tumor be capable of selectively fluorescing when exposed to proper light. For treatment, the tumor must be penetrable by the activation energy. For diagnosis, light of shorter wavelength is typically used whereas for therapeutic purposes light of longer wavelength is generally used to permit ready penetration of the tumor tissue. It is necessary that the light rays have sufficient intensity to cause the compounds to fluoresce for diagnosis and to exert a cell killing effect for therapy.
- The compounds of the present invention are also useful for the treatment of ophthalmologic disorders such as age-related macular degeneration and choroidal neovascularization; dermatological disorders such as psoriasis; gynecological disorders such as dysfunctional uterine bleeding; urological disorders such as condyloma virus; cardiovascular disorders such as restenosis and atherosclerotic plaques; and for hair removal. One may envisage that normal or diseased tissue on any part of the body may be treated with photodynamic therapy. Thus, normal or abnormal conditions of the hematological system, the lymphatic reticuloendothelial system, the nervous system, the endocrine and exocrine system, the skeletomuscular system including bone, connective tissue, cartilage and skeletal muscle, the pulmonary system, the gastrointestinal system including the liver, the reproductive system, the skin, the immune system, the cardiovascular system, the urinary system, the ocular system and the auditory or olfactory system may be treated.
- The source of irradiation for photodiagnosis and phototherapy is not limited, but a laser beam is preferable because intensive light rays in a desired wavelength range can be selectively applied. For example, in photodiagnosis, a compound of the invention can be administered to a human or animal body, and after a certain period of time, light rays can be applied to the part to be examined. When an endoscope can be used for the affected part, such as lungs, gullet, stomach, womb, urinary bladder or rectum, the compounds can be irradiated using the endoscope, and the tumor portion selectively fluoresces. This portion is observed visually, or observed through an adapted fiber scope by eye or on a CRT screen.
- In phototherapy, after administration of the dosage, the irradiation can be carried out, for example, by laser light from the tip of quartz fibers. In addition to the irradiation of the surface of the tumor, the internal part of the tumor can be irradiated by inserting the tip of quartz fibers into the tumor. The irradiation can be visually observed or imaged on a CRT screen.
- In accordance with the invention, as embodied and broadly described herein, the present inventors discovered that tetrapyrrolic macrocycles containing hydroxyl groups could be converted into a new class of photodynamically active compounds. Not only are these compounds excellent photosensitizers when activated at their absorption wavelengths at early treatment timepoints, but surprisingly they are metabolized in a matter of hours in blood plasma to photoinactive tetrapyrroles. As a result, it has been possible to produce photodynamically active tetrapyrroles that display no normal skin toxicities in rats past 6 hrs, at drug doses up to 4 mg/Kg. Early time point treatments (within 30 min) produce excellent chorriocapillaris closure in the rabbit model (28 day shut down study) that is superior to the currently approved drug Visudyne® (QLT Inc). These results will be described in the experimental section. Thus, the compounds of the invention are particularly valuable, as they potentially make it possible to inject a human patient with the drugs of the invention, treat within a 1 hr timeframe and have little or no skin phototoxicity or occular phototoxicity after a 6 hr time point or earlier (depending on the drug). This would be a distinct advantage clinically and also from a patient care perspective.
- Accordingly, in the one embodiment the present invention relates to processes for producing tetrapyrroles of the formulae I, II, IIIA, IIIB, IVA, IVB, and V. The processes involve contacting the corresponding alcohol substituted tetrapyrrole in a suitable solvent with a coupling reagent like carbonyl diimidazole or p-nitrophenylcarbonate and 4-dimethylaminopyridine, then adding an amine, for a period of time and at a temperature sufficient to form compounds of the formulae I, II, IIIA, IIIB, IVA, IVB and V. The only limitation to the choice of tetrapyrrolic compound used is that it must possess at least one hydroxyl group with which to form the carbamate moiety. Particularly preferred compounds are those derived from chlorophyll or hemoglobin. The following describes the peripheral functional group modification of chemical precursors to compounds of formulae I-V, which may be modified to produce analogs possessing hydroxyl groups.
- Methyl pheophorbide a is an abundant starting material for the synthesis of derivatized pheophorbides as well as the synthesis of carbamate pheophorbide derivatives. Pheophorbides may be converted to pyrropheophorbides via demethoxycarbonylation of the 10′-ester group. Methyl pheophorbide b, like methyl pheophorbide a except it possesses a formyl group in the 3 position, may also be used according to the invention. FIG. 1 shows the positions for chemical reactivity of methyl pheophorbide a or b according to classical pheophorbide chemistry.
- Trimethyl ester chlorin e6 is an easily prepared tetrapyrrolic macrocycle derived from methyl pheophorbide. Similar chlorin e6 analog may be synthesized from functionalized pheophorbides. As with pheophorbides, chlorin e6 derivatives possess several functionalities that may be modified chemically to give hydroxy-bearing substituents.
- Purpurin 18 is an easily prepared tetrapyrrolic macrocycle derived from methyl pheophorbide. Peripheral groups around the macrocycle have been extensively modified. The synthesis of purpurin 18 imides follows the anhydride ring opening of purpurin 18 by amines, followed by base treatment to form the imide ring. As with pheophorbides, purpurin 18 and purpurin 18 imides possess several functionalities that may be modified chemically to give hydroxy-bearing substituents.
- Benzoporphyrins are commonly prepared from either protoporphyrin IX dimethyl esters or from chlorophyll analogs such as methyl pyrropheophorbide. As with pheophorbides, benzoporphyrin derivatives possess several functionalities that may be modified chemically to give hydroxy-bearing substituents.
- Benzochlorins are commonly prepared from chlorophyll analogs such as methyl pyrropheophorbide or chlorin e6 (M. Graca H. Vincente, K. M. Smith, J. Org. Chem., 1991, 56, 4407-4418), but are also synthesized from porphyrin analogs (U.S. Pat. Nos. 5,789,586, 5,552,134, and 5,512,559). Such derivatives can be made with functionality that either possesses hydroxyl groups or can be modified chemically to give hydroxy-bearing substituents.
- The most ubiquitous tetrapyrrolic class found in nature is the porphyrins. Many analogs are derived from Hemin (a hemoglobin extract), for example, hematoporphyrin and protoporphyrin, and may be further functionalized accordingly to produce hydroxylated tetrapyrroles. Alternatively, they may be made synthetically to possess the desired functionality (for example see “Porphyrins and Metalloporphyrins” Ed. K. Smith, Elsevier, 1975, N.Y., “The Porphyrins”, Ed. D. Dolphin, Vol I-V, Academic Press, 1978, and “The Porphyrin Handbook”, Ed. K. Kadish, K. M. Smith, R. Guilard, Academic Press, 1999). In any case, porphyrin derivatives that possess hydroxyl groups are synthetically easy to prepare and abundant in the literature.
- Clearly, it is well recognized in the art that synthetic tetrapyrroles may be produced that possess one or more hydroxyl groups. The following section outlines chemistries that have been used to modify functional groups on tetrapyrroles to produce alcohol-containing moieties.
- A large number of tetrapyrrolic macrocycles possess vinyl groups. Vinyl groups (—CH═CH2) may be treated with 33% HBr/AcOH, which converts the vinyl group to a reactive 1′-bromo ethyl group. The bromine in this intermediate may be replaced via the addition of either water or dialcohols to give the 1-hydroxymethyl tetrapyrroles (—CH(OH)CH3) or functionalized ether derivatives that may possess an alcohol group (—CH(O—R—OH)CH3, depending on the alcohol used). Reaction of vinyl groups with TI(NO2)3 in methanol, followed by acid hydrolysis yields —CH2CHO, which on reduction with sodium borohydride, for example, yields the 2-(2-hydroxyethyl) group (CH2CH2OH). Oxidation of 1-hydroxymethyl groups with, for example, acetic anhydride/dimethylsulfoxide produces acetyl groups. Vinyl groups may also be treated with either KMnO4 oxidation, OsO4/morpholine N-oxide/NalO4, or more simply by ozonolysis to produce formyl groups.
- Functional groups possessing a ketone moiety (for example formyl, acetyl and esters) may be reduced to give moieties possessing an hydroxyl group. Ester functionalities on tetrapyrroles may be modified to produce alcohol esters, for example, ethylene glycol esters, using standard esterification techniques well known to those skilled in the art. The formation of amides possessing an alcohol moiety is possible (—CONH—R—OH and the like) by reacting the acid moiety with coupling reagents like chloroethylformate, 1,3-dicyclohexylcarbodiimide or carbonyl diimidazole, followed by the aminoalcohol. Alternatively, methyl esters may be reacted with aminoalcohols directly to produce the amide alcohol derivatives. In this way a vast variety of carboxylic amide tetrapyrroles possessing hydroxyl groups may be generated. Schemes 1-6 highlight the types of peripheral modifications that are recognized in the art to produce tetrapyrroles possessing hydroxy groups. Schemes 1-6 only show mono or di-hydroxylated compounds. It should be recognized that poly-hydroxylated molecules can also be made.
- Schemes 1-7 represent chemical modifications that can be made on tetrapyrrolic compounds to produce hydroxylated tetrapyrroles. One or more of these modifications can be carried out on a single molecule if desired. These hydroxylated molecules may then be reacted to form carbamates. The invention thus provides carbamate photosensitizers that are particularly effective in photodynamic therapy. The invention also enables production of compounds that are rapidly metabolized in vivo. Specifically, the invention enables generation of carbamate photosensitizers that are photodynamically or diagnostically active. That is, the carbamate photosensitizers of the invention are capable of inducing a therapeutically acceptable or diagnostic effect at the disease site following light administration, yet metabolize rapidly in blood plasma or cellular components to produce metabolites that are significantly less photodynamically active than the carbamate photosensitizer. Thus, the invention makes it possible to select molecules with hydroxyl groups that are poor photosensitizers in vivo and generate active compounds via functionalization through the carbamate moiety.
- The scope of the invention is not limited to tetrapyrrolic molecules. Indeed, any photosensitizer that possesses a hydroxyl group may be converted to a carbamate via the invention. Photosensitizers amenable to the modifications described in the specification or capable of being modified by chemistry well known to those skilled in the art include but are not limited to angelicins, some biological macromolecules such as lipofuscin, photosystem II reaction centers, and D1-D2-cyt b-559 photosystem II reaction centers, chalcogenapyrillium dyes, chlorins, chlorophylls, coumarins, cyanines, ceratin DNA and related compounds such as adenosine, cytosine, 2′-deoxyguanosine-5′-monophosphate, deoxyribonucleic acid, guanine, 4-thiouridine, 2′-thyrnidine 5′-monophosphate, thymidylyl(3′-5′)-2′-deoxyadenosine, thymidylyl(3′-5′)-2′-deoxyguanosine, thymine, uracil, certain drugs such as adriamycin, afloqualone, amodiaquine dihydrochloride, chloroquine diphosphate, chlorpromazine hydrochloride, daunomycin, daunomycinone, 5-iminodaunomycin, doxycycline, furosemide, gilvocarcin M, gilvocarcin V, hydroxychloroquine sulfate, lumidoxycycline, mefloquine hydrochloride, mequitazine, merbromin (Mercurochrome), primaquine diphosphate, quinacrine dihydrochloride, quinine sulfate, tetracycline hydrochloride, certain flavins and related compounds such as alloxazine, flavin mononucleotide, 3-hydroxyflavone, limichrome, limiflavin, 6-methylalloxazine, 7-methylalloxazine, 8-methylalloxazine, 9-methylalloxazine, 1-methyl limichrome, methyl-2-methoxybenzoate, 5-nitrosalicyclic acid, proflavine, riboflavin, fullerenes, metalloporphyrins, phthalocyanines, metallophthalocyanines, texaphyrins, methylene blue derivatives, naphthalimides, naphthalocyanines, certain natural compounds such as bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, N-formylkynurenine, kynurenic acid, kynurenine, 3-hydroxykynurenine, DL-3-hydroxykynurenine, sanguinarine, berberine, carmane, 5,7,9(11 ),22-ergostatetraene-3 β-ol, nile blue derivatives, NSAIDs (nonsteroidal antiinflammatory drugs), perylenequinones, phenols, pheophorbides, pheophytins, photosensitizer dimers and conjugates, phthalocyanines, sapphyrins, pentaphyrins, porphycenes, porphyrins, psoralens, purpurins. quinones, retinoids, rhodamines, thiophenes, verdins, xanthene dyes (Redmond and Gamlin,Photochem Photobiol, 70(4):391-475 (1 999)).
- Exemplary angelicins include but are not limited to the following and derivatives thereof: 3-aceto-angelicin; angelicin; 3,4′-dimethyangelicin; 4,4′-dimethyl angelicin; 4,5-dimethyl angelicin; 6,4′-dimethyl angelicin, 6,4′-dimethyl angelicin; 4,4′,5′-trimethyl angelicin; 4,4′,5′-trimethyl-l′-thioangelicin; 4,6,4′-trimethyl-l′-thioangelicin; 4,6,4′-trimethyl angelicin; 4,6,5′-trimethyl-l′-thioangelicin; 6,4,4′-trimethyl angelicin; 6,4′,5′-trimethyl angelicin; 4,6,4′,5′-tetramethyl-l′-thloangelicin; and 4,6,4′,5′-tetramethyl angelicin.
- Exemplary chalcogenapyrillium dyes include but are not limited to the following and derivatives thereof: pyrilium perchlorate, 4,4′-(1,3-propenyl)-bis[2,6-di(l,1-dimethylethyl)]-; pyrilium perchlorate, 2,6-bis(l,1 dimethyl-ethyl)-4-[1-[2,6-bis(l,1-dimethyl-ethyl)selenopyran-4-ylidene]-3-propenyl-; pyrilium hexofluoro phosphate, 2,6-bis-(1,1-dimethyl-ethyl)-selenopyran-4-ylidene; 3-propenyl-; pyrilium hexofluoro phosphate, 2,6-bis(1,1-dimethyl-ethyl)-selenopyran-4-ylidene]-3-propenyl-; pyrilium perchlorate, 2,6-bis(1,1-dimethyl-ethyl)-4-[1-[2,6-bis(1,1-dimethyl-ethyl)telluropyran-4-ylidene]-3-propenyl-; pyrilium hexofluoro phosphate, 2,6-bis(l,1-dimethyl-ethyl)-4-[1-[2,6-bis(1,1-dimethyl-ethyl)telluropyran-4-ylidene]-3-propenyl-; pyrilium perchlorate, 2,6-bis(1,1-dimethyl-ethyl)-4-[1-[2,6-bis(1,1 -dimethyl-ethyl)thiapyran-4-ylidene]-3-propenyl]-; selenopyrilium hexofluoro phosphate, 2,6-bis(l,1-dimethyl-ethyl)-4-[1-[2,6-bis(1,1-dimethyl-ethyl)selenopyran-4-ylidene]-3-propenyl]-; selenopyrilium, 2,6-bis(l,1-dimethylethyl)-4-[1-[2,6-bis(l,1-dimethylethyl)selenopyran-4-ylidene]-3-propenyl]-; selenopyrilium percheorate, 2,6bis(l,l-dimethyl-ethyl)-4-[1-[2,6-bis(1,1-dimethyl-ethyl)4-[1-[2,6-bis(1,1-dimethylethyl)telluropyran4-ylidene]-3-propenyl]-; selenopyrilium hexofluoro phosphate, 2,6-bis(1,1-dimethyl-ethyl)4-[1-[2,6-bis(l,1-dimethyl-ethyl)telluropyran-4-ylidene]-3-propenyl];selenopyriliumhexofluorophosphate,2,6-bis(l,l-dimethyl-ethyl)-4-(2˜[2,6-bis(1,1-dimethyl-ethyl)selenopyran-4-ylidene]-4-(2-butenyl)]-; selenopynlium hexofluorophosphate;2,6-bis(l,1-dimethyl-ethyl)-4-[2-[2,6-bis)l,1-dimethyl-ethyl)selenopyran-4-ylidene]-4-(2-pentenyl)]-; telluropyrilium tetrafluoroborate; 2,6-bis(1,1-dimethylethyl)-4-[1-[2,6-bis(1,1-dimethyl-ethyl)-telluropyran-4-ylidene]-3-propenyl]-; telluropyrilium hexofluoro phosphate, 2,6-bis(1,1 -dimethyl-ethyl)-4-[1-[2,6-bis(1,1 -dimethyl-ethyl)telluropyran4-ylidene]-3-propenyl]-; telluropyrilium hexofluoro phosphate, 2,6-bis(1,1-dimethyl-ethyl)-4-[1-[2,6-bis(1,1-dimethyl-ethyl)telluropyran-4-ylidene]ethyl-; telluropyrilium hexofluoro phosphate, 2,6-bis(1,1-dimethyl-ethyl)-4-[1-[2,6-bis(1,1-dimethyl-ethyl)-telluropyran-4-ylidene]methyl-; thiopyrilium hexofluoro phosphate, 2,6-bis(1,1-dimethyl-ethyl)-4-[1-[2,6-bis(l,l-dimethyl-ethyl)thiopyran-4-ylidene]-3-propenyl]-; thiopyrilium hexofluorophosphate,2,6-bis(l,1-dimethyl-ethyl)-4-[1-[2,6-bis(l,1-dimethyl-ethyl)selenopyran-4-ylidene]3-propenyl]-; and thiopyrilium hexofluoro phosphate, 2,6-bis(1,1-dimethyl-ethyl)-4[1-[2,6-bis(l,1-dimethyl-ethyl)telluropyran-4-ylidene]-3-propenyl]-.
- Exemplary chlorin dyes include but are not limited to the following and derivatives thereof: 5-azachlorin dimethyl ester derivatives; 5,10,15,20-tetrakis-(m-hydroxyphenyl)bacteriochlorin; benzoporphyrin derivative monoacid ring A; benzoporphyrin derivative monoacid ring-A; porphine-2.18-dipropanoic acid, 7-[2-dimethyl-amino)-2-oxoethyl]-8-ethylidene-7,8-dihydro-3,7,12,17-tetramethyl, dimethylester; porphine-2,18-dipropanoic acid, 7-[2-dimethylamino)-2-oxoethyl]-8-ethylidene -7,8-dihydro-3,7,12,17-tetramethyl, dimethylester Z; porphine-2,18-dipropanoic acid, 7-[2-dimethyl-amino)-2-oxoethyl]-8-ethyl-7,8-dihydro-3,7,12,17-tetramethyl, dimethylester Z; porphine-2,18-dipropanoic acid, 7-[2-dimethylamino)-2-oxoethyl]-8-n-heptyl-7,8-dihydro-3,7,12,17-tetramethyl, dimethylester; tin (II) porphine-2,18-dipropanoic acid, 7-[2-(dimethylamino-2-oxoethyl]-8-n-heptyl-7,8-dihydro-3,7,12,17-tetramethyl, dimethylester; chlorin e6; chlorin e6 dimethyl ester; chlorin e6 Ka; chlorin e6 monomethyl ester; chlorin e6 Na; chlorin p6; chlorin p6-trimethylester; chlorin derivative zinc (II) porphine-2,18-dipropanoic acid, 7-[2-(dimethylamino)-2-oxoethyl]-8-n-heptyl-7,8-dihydro-3 7,12,17-tetramethyl, dimethylester; 13′-deoxy-20-formyl-vic-dihydroxy-bacteriochlorin di-tert-butyl aspartate; 13′-deoxy-20-formyl-4-keto-bacteriochlorin di-tert-butyl aspartate; di-L-aspartyl chlorin e6; mesochlorin; 5,10,15,20-tetrakis-(m-hydroxyphenyl)chlorin; meta-(tetrahydroxyphenyl)chlorin; methyl-13′-deoxy-20-formyl-4-keto-bacteriochlorin; mono-L-aspartyl chlorin e6; photoprotoporphyrin IX dimethyl ester; phycocyanobilin dimethyl ester; protochlorophyllide a; tin (II) chlorin e6; tin chlorin e6; tin L-aspartyl chlorin e6; tin octaethyl-benzochlorin; tin (IV) chlorin; zinc chlorin e6; and Zinc L-aspartyl chlorin e6.
- Exemplary chlorophyll derived photosensitizers include but are not limited to the following or derivatives thereof: chlorophyll a, chlorophyll b; oil soluble chlorophyll; bacteriochlorophyll a; bacteriochlorophyll b; bacteriochlorophyll c; bacteriochlorophyll d; protochlorophyll; protochlorophyll a; amphiphilic chlorophyll derivative 1; and amphiphilic chlorophyll derivative 2.
- Exemplary coumarins include but are not limited to the following or derivatives thereof: 3-benzoyl-7-methoxycoumarin; 7-diethylamino-3-thenoylcoumarin; 5,7-dimethoxy-3-(1-naphthoyl)coumarin; 6-methylcoumarin; 2H-selenolo[3,2-g][1]benzopyran-2-one; 2H-selenolo[3,2-g][1]benzothiopyran-2-one;7H-selenolo[3,2-g][1]benzoseleno-pyran-7-one; 7H-selenopyrano[3,2-f][1]benzofuran-7-one; 7H-selenopyrano[3,2-f][1]benzo-thiophene-7-one; 2H-thienol[3,2-g][1]benzopyran-2-one; 7H-thienol[3,2-g][1]benzothiopyran-7-one; 7H-thiopyrano[3,2-fl [1]benzofuran-7-one; coal tar mixture; khellin; RG 708; RG277; and visnagin.
- Exemplary cyanines include but are not limited to the following or derivatives thereof: benzoselenazole dye; benzoxazole dye; 1,1′-diethy˜toxacarbocyanine; 1,1′-diethyloxadicarbocyanine; 1,1′-diethylthiacarbocyanine; 3,3′-dialkylthiacarbocyanines (n=2-18); 3,3′-diethylthiacarbocyanine iodide; 3,3′-dihexylselenacarbocyanine; kryptocyanine; MC540 benzoxazole derivative; MC540 quinoline derivative; merocyanine 540; and meso-ethyl, 3,3′-dihexylselenacarbocyanine.
- Exemplary fullerenes include but are not limited to the following and derivatives thereof: C60; C70; C76; dihydro-fullerene; 1,9-(4-hydroxycyclohexano)-buckminster-fullerene; [1-methyl-succinate-4-methyl-cyclohexadiene-2,3]-buckminster-fullerene; and tetrahydro fullerene.
- Exemplary metalloporphyrins or texaphyrins include but are not limited to the following and derivatives thereof: cadmium (II) chlorotexaphyrin nitrate; LuTex; Antrin; cadmium (II) meso-diphenyl tetrabenzoporphyrin; cadmium meso-tetra-(4-N-methylpyridyl)-porphine; cadmium (II) texaphyrin; cadmium (II) texaphyrin nitrate; cobalt meso-tetra-(4-N-methylpyridyl)porphine; cobalt (II) meso(4-sulfonatophenyl)porphine; copper hematoporphyrin; copper meso-tetra-(4-N-methylpyridyl)-porphine; copper (II) meso(4-sulfonatophenyl)porphine; Europium (III) dimethyltexaphyrin dihydroxide; gallium tetraphenylporphyrin; iron meso-tetra(4-N-methylpyridyl)porphine; lutetium (III) tetra(N-methyl-3-pyridyl )-porphyrin chloride; magnesium (II) meso-diphenyl-tetrabenzoporphyrin; magnesium tetrabenzoporphyrin; magnesium tetraphenylporphyrin; magnesium (II) meso(4-sulfonatophenyl)-porphine; magnesium (II) texaphyrin hydroxide metalloporphyrin; magnesium meso-tetra-(4-N-methylpyridyl)porphine; manganese meso-tetra-(4-N-methyl pyridyl)porphine; nickel meso-tetra(4-N-methylpyridyl)porphine; nickel (II) meso-tetra(4-sulfonatophenyl)porphine; palladium (II) meso-tetra-(4-N-methylpyridyl)-porphine; palladium meso-tetra-(4-N-methylpyridyl)-porphine; palladium tetraphenylporphyrin; palladium (II) meso(4-sulfonatophenyl)-porphine; platinum (II) meso(4-sulfonatophenyl)-porphine; samarium (II) dimethyltexaphyrin dihydroxide; silver (II) meso(4-sulfonatophenyl)porphine; tin (IV) protoporphyrin; tin (IV) meso-tetra-(4-N-methylpyridyl)-porphine; tin meso-tetra(4-sulfonatophenyl)-porphine; tin (IV) tetrakis (4-sulfonatophenyl)porphyrin dichloride; zinc (II) 15-aza-3,7,12,18-tetramethyl-porphyrinato-1,3,17-diyl-dipropionic acid-dimethylester; zinc (II) chlorotexaphyrin chloride; zinc coproporphyrin III; zinc (II) 2,11,20,30-tetra-(1,1-dimethyl-ethyl)tetranaphtho(2,3b:2′,3′-g:2″3″-I:2′″3′″-q)porphyrazine; zinc (II) 2-(3-pyridyloxy)benzo[b]-10,19,28-tri(1,1-dimethylethyl)trinaphtho[2′,3′-g:2″3″1::2′″,3′″-q]porphyrazine; zinc (II) 2,18-bis-(3-pyridyloxy)dibenzo[b,l]-10,26-di(1,1-dimethyl-ethyl)dinaphtho[2′,3′-g:2′″,3′″-q]porphyrazine; zinc (II) 2,9-bis-(3-pyridyloxy)dibenzo[b,g]-17,26-di(1,1-dimethyl-ethyl)dinaphtho[2″,3″-1:2′″,3′″-q]porphyrazine; zinc (II) 2,9,16-tris-(3-pyridyloxy)tribenzo[b,g,l]-24-(1,1-dimethyl-ethyl)naphtho[2′″,3′″-q]porphyrazine; zinc (II) 2,3-bis-(3-pyridyloxy)benzo[b]-10,19,28-tri(1,1-dimethyl-ethyl)trinaphtho[2′,3′-g:2″,3″1:2′″,3′″-q]porphyrazine; zinc (II) 2,3,18,19-tetrakis-(3-pyridyloxy)dibenzo[b,l]-10.26-di(1,1-dimethyl-ethyl)trinaphtho[2′,3′-g:2′″,3′″-q]porphyrazine; zinc (II) 2,3,9,10-tetrakis-(3-pyridyloxy)dibenzo[b,g]-17,26-di(l,1-dimethyl-ethyl)dinaphtho[2″,3″-1:2′″,3′″-q]porphyrazine; zinc (II) 2,3,9,10,16,17-hexakis(3-pyridyloxy)-tribenzo(b,g,l]-24-(1,1-dimethyl-ethyl)naphtho[2′″,3′″-q]porphyrazine; zinc (II) 2-(3-N-methyl)pyridyloxy)benzo[b]-10,19,28-tri(1,1-dimethyl-ethyl)trinaphtho[2′,3′-g:2″,3″1:2′″,3′″-q]porphyrazine monoiodide; zinc (II) 2,18-bis-(3-(N-methyl)pyridyloxy)dibenzo[b,l]-10,26-di(1,1-dimethviethyl)dinaphtho[2′,3′-g:2′″,3′″-q]porphyrazine diiodide; zinc (II) 2,9-bis-(3-(N-methyl)pyridyloxy)dibenzo[b,g]-17,26-di(1,1-dimethylethyl)dinaphtho[2″,3″-1:2′″,3′″-q]porphyrazine diiodide; zinc (II) 2,9,16-tris-(3-(N-methylpyridyloxy)tribenzo[b,g,l]-24-(1,1-dimethylethyl)naphtho[2′″,3′″-q]porphyrazine triiodide; zinc (II) 2,3-bis-(3-(N-methyl)pyridyloxy)benzo[b]-10,19,28-tri(1,1-dimethylethyl)trinaphtho[2′,3′-g:2″,3″-l:2′″,3′″-q]porphyrazine diiodide; zinc (II) 2,3,18,19-tetrakis-(3-(N-methyl)pyridyloxy)dibenzo[b,l]-10,26-di(1,1-dimethyl)dinaphtho[2′,3′-g:2′″,3′″-q]porphyrazine tetraiodide; zinc (II) 2,3,9,10-tetrakis-(3-(N-methyl)pyridyloxy)dibenzo[g,g]-17,26-di(1,1-dimethylethyl)dinaphtho[2″,3″-l:2′″,3′″-q]porphyrazine tetraiodide; zinc (II) 2,3,9,10,16,17-hexakis-(3-(N-methy;)pyridyloxy)tribenzo(b,g,1]-24-(1,1-dimethylethyl)naphthol[2′″,3′″-q]porphyrazine hexaiodide; zinc (II) meso-diphenyl tetrabenzoporphyrin; zinc (II) meso-triphenyl tetrabenzoporphyrin; zinc (II) meso-tetrakis-(2,6-dichloro-3-sulfonatophenyl)porphyrin; zinc (H) meso-tetra-(4-Nmethylpyridyl)-porphine; zinc (II) 5,10,15,20-meso-tetra(4-octylphenylpropynyl)-porphine; zinc porphyrin c; zinc protoporphyrin; zinc protoporphyrin IX; zinc (II) meso-triphenyl-tetrabenzoporphyrin; zinc tetrabenzoporphyrin; zinc (II) tetrabenzoporphyrin; zinc tetranaphthaloporphyrin; zinc tetraphenylporphyrin; zinc (II) 5,10,15,20-tetraphenylporphyrin; zinc (II) meso-(4-sulfonatophenyl)-porphine; and zinc (II) texaphyrin chloride, gallium deuteroporphyrin, gallium deuteroporphyrin dimethyl ester.
- Exemplary metallophthalocyanines include but are not limited to the following and derivatives thereof: aluminum mono-(6-carboxypentyl-amino-sulfonyl)-trisulfo-phthalocyanine; aluminum di-(6-carboxy-pentylamino-sulfonyl)-trisulfophthalocyanine; aluminum (III) octa-n-butoxy phthalocyanine; aluminum phthalocyanine; aluminum (III) phthalocyanine disulfonate; aluminum phthalocyanine disulfonate; aluminum phthalocyanine disulfonate (cis isomer); aluminum phthalocyanine disulfonate (clinical prep.); aluminum phthalocyanine phthalimido-methyl sulfonate; aluminum phthalocyanine sulfonate; aluminum phthalocyanine trisulfonate; aluminum (III) phthalocyanine trisulfonate; aluminum (III) phthalocyanine tetrasulfonate; aluminum phthalocyanine tetrasulfonate; chloroaluminum phthalocyanine; chloroaluminum phthalocyanine sulfonate; chloroaluminum phthalocyanine disulfonate; chloroaluminum phthalocyanine tetrasulfonate; chloroaluminum-t-butyl-phthalocyanine; cobalt phthalocyanine sulfonate; copper phthalocyanine sulfonate; copper (II) tetra-carboxy-phthalocvanine; copper (II)-phthalocyanine; copper i-butyl-phthalocyanine; copper phthalocyanine sulfonate; copper (II) tetrakis-methylene-thio[(dimethylamino)methylidyne]lphthalocyanine tetrachloride; dichlorosilicon phthalocyanine; gallium (III) octa-n-butoxy phthalocyanine; gallium (II) phthalocyanine disulfonate; gallium phthalocyanine disulfonate; gallium phthalocyanine tetrasulfonate-chloride; gallium(II) phthalocyanine tetrasulfonate; gallium phthalocyanine trisulfonatechloride; gallium (II) phthalocyanine trisulfonate; GaPcS1tBu3; GaPcS2tBu2; GaPcS3tBu; germanium (IV) octa-n-butoxy phthalocyanine; germanium phthalocyanine derivative; silicon phthalocyanine derivative; germanium (IV) phthalocyanine octakis-alkoxy-derivatives; iron phthalocyanine sulfonate; lead (II) 2,3,9,10,16,17,23,24-octakis-(3,6-dioxaheptyloxy)phthalocyanine; magnesium t-butylphthalocyanine; nickel (II) 2,3,9,10,16,17,23,24-octakis(3,6-dioxaheptyloxy)phthalocyanine; palladium (II) octa-n-butoxy phthalocyanine; palladium (II) tetra(t-butyl)-phthalocyanine; (diol)(t-butyl)3-phthalocyanato palladium(II); ruthenium(II) dipotassium(bis(triphenyl-phosphine-monosulphonate)phthalocyanine; silicon phthalocyanine bis(tri-ii-hexyl-siloxy)-; silicon phthalocyanine bis(tri-phenyl-siloxy)-; HOSiPcOSi(CH3)2(CH2)3N(CH3)2; HOSiPcOSi(CH3)2(CH2)3N(CH2CH3)2; SiPc[OSi(CH3)2(CH2)3N(CH3)2]2; SiPc[OSi(CH3)2(CH2)3N(CH2CH3)(CH2)2N(CH3)2]2; tin (IV) octa-n-butoxy phthalocyanine; vanadium phthalocyanine sulfonate; zinc (II) octa-n-butoxy phthalocyanine; zinc (II) 2,3,9,10,16,17,23,24-octakis(2-ethoxy-ethoxy) phthalocyanine; zinc (II) 2,3,9,10,16,17,23,24-octakis-(3,6-dioxaheptyloxy) phthalocyanine; zinc (II) 1,4,8,11,15,18,22,25-octa-n-butoxy-phthalocyanine; Zn(II)phthalocyanine-octabutoxy; Zn(II)-phthalocyanine; zinc phthalocyanine; perdeuterated zinc phthalocyanine, zinc (II) phthalocyanine disulfonate; zinc phthalocyanine disulfonate; zinc phthalocyanine sulfonate; zinc phthalocyanine tetrabromo-; zinc (II) phthalocyanine tetra-t-butyl-; zinc (II) phthalocyanine tetra-(t-butyl)-; zinc phthalocyanine tetracarboxy-; zinc phthalocvanine tetrachloro-; zinc phthalocyanine tetrahydroxyl; zinc phthalocyanine tetraiodo-; zinc (II) tetrakis-(1,1-dimethyl-2-phthalimido)ethyl phthalocyanine: zinc (II) tetrakis-(1,1-dimethyl-2-amino)-ethyl-phthalocvanine: zinc (II) phthalocyanine tetrakis(1,1-dimethyl-2-trimethyl ammonium)ethyl tetraiodide; zinc phthalocyanine tetrasulphonate; zinc phthalocyanine tetrasulfonate; zinc (II) phthalocyanine tetrasulfonate; zinc (II) phthalocyanine trisulfonate; zinc phthalocyanine trisulfonate; zinc (II) (t-butyl)3-phthalocyanine diol; zinc tetradibenzobarreleno-octabutoxyphthalocyanine; zinc (II) 2,9,16,23,-tetrakis-(3-(N-methyl)pyridyloxy)phthalocyanine tetraiodide; and zinc (II) 2,3,9,10,16,17,23,24-octakis-(3-(N-methyl)pyridyloxy)phthalocyanine complex octaiodide; and zinc (II) 2.3,9,10,16,17,23,24-octakis-(3-pyridyloxy)phthalocyanine.
- Exemplary methylene blue derivatives include but are not limited to the following and derivatives thereof: 1-methyl methylene blue; 1,9-dimethyl methylene blue; methylene blue; methylene blue; methylene violet; bromomethylene violet; 4-iodomethylene violet; 1,9-dimethyl-3-dimethyl-amino-7-diethyl-amino-phenothiazine; and 1,9-dimethyl-3-diethylamino-7-dibutyl-amino-phenothiazine.
- Exemplary naphthalimide blue derivatives include but are not limited to the following and derivatives thereof: NN′-bis-(hydroperoxy-2-methoxyethyl)-1,4,5,8-naphthaldiimide; N-(hydroperoxy-2-methoxyethyl)-l,8-naphthalimide; 1,8-naphthalimide; N,N′-bis(2,2-dimethoxyethyl)-1,4,5,8-naphthaldiimide; and N,N′-bis(2,2-dimethylpropyl)-1,4,5,8-naphthaldiimide.
- Exemplary naphthalocyanines include aluminum t-butyl-chloronaphthalocyanine; silicon bis(dimethyloctadecylsiloxy)-2,3-naphthalocyanine; silicon bis(dimethyloctadecylsiloxy)naphthalocyanine; silicon bis(dimethylhexylsiloxy)-2,3-naphthalocyanine; silicon bis(dimethylhexylsiloxy)naphthalocyanine; silicon bis(t-butyldimethylsiloxy)-2,3-naphthalocyanine; silicon bis(tert-butyldimethylsiloxy)naphthalocyanine; silicon bis(tri-n-hexylsiloxy)-2,3-naphthalocyanine; silicon bis(tri-n-hexylsiloxy) naphthalocyanine-, silicon naphthalocyanine; t-butylnaphthalocyanine; zinc (II) naphthalocyanine; zinc (II) tetraacetyl-amidonaphthalocyanine; zinc (II) tetraaminonaphthalocyanine; zinc (II) tetrabenzamidonaphthalocyanine; zinc (II) tetrahexylamidonaphthalocyanine; zinc (II) tetramethoxy-benzamidonaphthalocyanine; zinc (II) tetramethoxynaphthalocyanine; zinc naphthalocyanine tetrasulfonate; and zinc (II) tetradodecylamidonaphthalocyanine.
- Exemplary nile blue derivatives include but are not limited to the following and derivatives thereof: benzo[a]phenothiazinium; 5-amino-9-diethylamino-; benzo[a]phenothiazinium; 5-amino-9-diethylamino-6-iodo-; benzo[a]phenothiazinium; 5-benzylamino-9-diethylamino-; benzo[a]phenoxazinium; 5-amino-6,8-dibromo-9-ethylamino-; benzo[a]phenoxazinium; 5-amino-6,8-diiodo-9-ethylamino-; benzo[a]phenoxazinium; 5-amino-6-bromo-9-diethylamino-; benzo[a]phenoxazinium; 5-amino-9-diethylamino-(nile blue A); benzo[a]phenoxazinium; 5-amino-9-diethylamino-2,6-diiodo-1-benzo[a]phenoxazinium; 5-amino-9-diethylamino-2,-iodo; benzo[a]phenoxazinium; 5-amino-9-diethylamino-6-iodo-; benzo[a]phenoxazinium; 5-benzylamino-9-diethylamino-(nile blue 2B); 5-ethylamino-9-diethylamino-benzo[a]-phenoselenazinium chloride; 5-ethylamino-9-diethyl-aminobenzo[a]-phenothiazinium chloride; and 5-ethylamino-9-diethyl-aminobenzo[a]-phenoxazinium chloride.
- Exemplary NSAIDs (nonsteroidal anti-inflammatory drugs) include but are not limited to the following and derivatives thereof: benoxaprofen; carprofen; carprofen dechlorinated (2-(2-carbazolyl)propionic acid); carprofen (3-chlorocarbazole); chlorobenoxaprofen; 2,4-dichlorobenoxaprofen; cinoxacin; ciprofloxacin; decarboxy-ketoprofen; decarboxy-suprofen; decarboxy-benoxaprofen; decarboxy-tiaprofenic acid; enoxacin; fleroxacin; fleroxacin-N-oxide;flumequine; indoprofen; ketoprofen; lomelfloxacin; 2-methyl-4-oxo-2H-1,2-benzothiazine-1,1-dioxide; N-demethyl fleroxacin; nabumetone; nalidixic acid; naproxen; norfloxacin; ofloxacin; pefloxacin; pipemidic acid; piroxicarn; suprofen; and tiaprofenic acid.
- Exemplary perylenequinones include but are not limited to the following and derivatives thereof: hypericins such as hypericin; hypericin monobasic sodium salt; di-aluminum hypericin; di-copper hypericin; gadolinium hypericin; terbium hypericin, hypocrellins such as acetoxy hypocrellin A; acetoxy-hypocrellin B; acetoxy iso-hypocrellin A; acetoxy iso-hypocrellin B; 3,10-bis-[2-(2-aminoethylamino)ethanol]hypocrellin B; 3,10-bis-[2-(2-aminoethyl)morpholine]hypocrellin B; 3,10-bis[4-(2-aminoethyl)morpholine]hypocrellin B; n-butylaminated hypocrellin B; 3,10-bis(butylamine)hypocrellin B; 4,9-bis(butylamine)hypocrellin B; carboxylic acid hypocrellin B; cystamine-hypocrellin B; 5-chloro hypocrellin A or 8-chloro hypocrellin A; 5-chloro hypocrellin B or 8-chloro hypocrellin B; 8-chloro hypocrellin B; 8-chloro hypocrellin A or 5-chloro hypocrellin A; 8-chloro hypocrellin B or 5-chloro hypocrellin B; deacetylated aldehyde hypocrellin B; deacetylated hypocrellin B; deacetylated hypocrellin A; deacylated, aldehyde hypocrellin B; demethylated hypocrellin B; 5,8-dibromo hypocrellin A; 5,8-dibromo hypocrellin B; 5,8-dibromoiso-hypocrellin B; 5,8-dibromo[1,12-CBr═CMeCBr(COMe)]hypocrellin B; 5,8-dibromo[1,12-CHBrC(═CH2)CBr(COMe))hypocrellin B; 5,8-dibromo[1-CH2COMe, 12-COCOCH2Br-]hypocrellin B; 5,8-dichloro hypocrellin A; 5,8 dichloro hypocrellin B; 5,8-dichlorodeacetylated hypocrellin B; 5,8-diiodo hypocrellin A; 5,8-diiodo hypocrellin B; 5,8-diiodo[1,12-CH═CMeCH(COCH2|2)-]hypocrellin B; 5,8-diiodo[1,12-CH2C(CH2I)═C(COMe)-]hypocrellin B; 2-(N.N-diethylamino)ethylaminated hypocrellin B; 3,10-bis[2-(NN-diethylamino)-ethylamine]hypocrellin B; 4,9-bis(2-(NN-diethyl-amino)-ethylamine]iso-hypocrellin B; dihydro-1,4-thiazine carboxylic acid hypocrellin B; dihydro-1,4-thiazine hypocrellin B; 2-(NN-dimethylamino)propylamine hypocrellin B; dimethyl-1,3,5,8,10,12-hexamethoxy-4,9-perylenequinone-6,7diacetate; dimethyl-5,8-dihydroxy-1,3,10,13-tetramethoxy-4,9-peryienequinone-6,7-diacetate; 2,11-dione hypocrellin A; ethanolamine hypocrellin B; ethanolamine iso-hypocrellin B; ethylenediamine hypocrellin B; 1,1-hydroxy hypocrellin B or 2-hydroxy hypocrellin B; hypocrellin A; hypocrellin B; 5-iodo-[1,12-CH2C(CH2I)═C(COMe)-]hypocrellin B; 8-iodo[1,12-CH2C(CH2I)═C(COMe)-]hypocrellin B; 9-methylamino iso-hypocrellin B; 3,10-bis[2-(N,N-methylamino)propylamine]hypocrellin B; 4,9-bis(methylamine iso-hypocrellin B; 14-methylamine iso-hypocrellin B; 4-methylamine iso-hypocrellin B; methoxy hypocrellin A; methoxy hypocrellin B; methoxy iso-hypocrellin A; methoxy iso-hypocrellin B; methylamine hypocrcllin B; 2-morpholino ethylaminated hypocrellin B; pentaacetoxy hypocrellin A; PQP derivative; tetraacetoxy hypocrellin B; 5,8,15-tribromo-hypocrellin B; calphostin C; cercosporins such as acetoxy cercosporin; acetoxy iso-cercosporin; aminocercosporin; cercosporin; cercosporin+iso-cercosporin (1/1 molar); diaminocercosporin; dimethylcercosporin; 5,8-dithiophenol cercosporin; iso-cercosporin; methoxycercosporin; methoxy iso-cercosporin; methylcercosporin; noranhydrocercosporin; cisinochrome A; cisinochrome B; phleichrome; and rubellin A.
- Exemplary phenols include but are not limited to the following and deriavtives thereof: 2-benzylphenol; 2,2′-dihydroxybiphenyl; 2,5-dihydroxybiphenyl; 2-hydroxybiphenyl; 2-methoxybiphenyl; and 4-hydroxybiphenyl.
- Exemplary pheophorbides include but are not limited to the following and derivatives thereof: pheophorbide a; methyl -13′-deoxy-20-formyl-7,8-vic-dihydro-bacterio-meso-pheophorbide a; methyl-2-(1-dodecyloxyethyl)-2-devinyl-pyropheophorbide a; methyl-2-(1-heptyloxyethyl)-2-devinylpyropheophorbide a; methyl-2-( 1-hexyl-oxyethyl )-2-devinyl-pyropheophorbide a; methyl-2-(1-methoxy-ethyl)-2-devinyl-pyropheophorbide a; methyl-2-(1-pentyloxyethyl)-2-devinyl-pyropheophorbide a; magnesium methyl bacteriopheophorbide d; methyl-bacteriopheophorbide d; and pheophorbide.
- Exemplary pheophytins include but are not limited to the following and derivatives thereof: bacteriopheophytin a; bacteriopheophytin b; bacteriopheophytin c; bacteriopheophytin d; 10-hydroxy pheophytin a; pheophytin; pheophytin a; and protopheophytin.
- Exemplary photosensitizer dimers and conjugates include but are not limited to the following and derivatives thereof: aluminum mono-(6-carboxy-pentyl-amino-sulfonyl)-trisulfophthalocyanine bovine serum albumin conjugate; dihematoporphyrin ether (ester); dihematoporphyrin ether; dihematoporphyrin ether (ester)-chlorin; hematoporphyrin-chlorin ester; hematoporphyrin-low-density lipoprotein conjugate; hematoporphyrin-high density lipoprotein conjugate; porphine-2,7,18-tripropanoic acid, -13,13′-(1,3-propanediyl)bis[3,8,12,17-tetramethyl]-; porphine-2,7,18-tripropanoic acid, 13,13′-(1,11-undecanediyl)bis[3,8,12,17-tetramethyl]-; porphine-2,7,18-tripropanoic acid, 13,13′-(1,6-hexanediyl)bis[3,8,12,17-tetramethylj-; SnCe6-MAb conjugate 1.7:1; SnCe6-MAb conjugate 1.7:1; SnCe6-MAb conjugate 6.8: 1; SnCe6-MAb conjugate 11.2:1; SnCe6-MAb conjugate 18.9:1; SnCe6-dextran conjugate 0.9:1; SnCe6-dextran conjugate 3.5:1; SnCe6-dextran conjugate 5.5:1; SnCe6-dextran conjugate 9.9:1; α-terthienyl-bovine serum albumin conjugate (12:1); α-terthienyl-bovine serum albumin conjugate (4:1); and tetraphenylporphine linked to 7-chloroquinoline.
- Exemplary phthalocyanines include but are not limited to the following and derivatives thereof: (diol)(t-butyl)3-phthalocyanine; (t-butyl)4-phthalocyanine; cis-octabutoxy-dibenzo-dinaphtho-porphyrazine; trans-octabutoxydibenzo-dinaphtho-porphyrazine; 2,3,9,10,16,17,23,24-octakis2-ethoxyethoxy)phthalocyanine; 2,3,9,10,16,17,23,24-octakis(3,6-dioxaheptyloxy)phthalocyanine; octa-n-butoxy phthalocyanine; phthalocyanine; phthalocyanine sulfonate; phthalocvanine tetrasulphonate; phthalocyanine tetrasulfonate; t-butyl-phthalocyanine; tetra-t-butyl phthalocyanine; and tetradibenzobarreleno-octabutoxy-phthalocyanine.
- Exemplary porphycenes include but are not limited to the following or derivatives thereof: 2,3-(2′-carboxy-2′-methoxycarbonylbenzo)-7,12,17-tris(2-methoxyethyl)porphycene; 2-(2-hydroxyethyl)-7,12,17-tri(2-methoxyethyl)porphycene; 2-(2-hydroxyethyl)-7,12,17-tri-n-propyl-porphycene; 2-(2-methoxyethyl)-7,12,17-tri-n-propyl-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-hydroxy-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-methoxy-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-n-hexyloxy-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-acetoxy-porphycene; 2,7,12.17-tetrakis(2-methoxyethyl)-9-caproyloxy-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-pelargonyloxy-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-stearoyloxy-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-(N-t-butoxycarbonylglycinoxyl porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-[4-((β-apo-7-carotenyl)benzoyloxyl-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-amino-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-acetamido-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-glutaramido-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-(methyl-glutaramido)-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-9-(glutarimido)-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-3-(N,N-dimethylaininomethyl)-porphycene; 2,7,12,17-tetrakis(2-methoxyethyl)-3-(N,N-dimethylaminomethyl)-porphycene hydrochloride; 2,7,12,17-tetrakis(2-ethoxyethyl)-porphycene; 2,7,12,17-tetra-n-propyl-porphycene; 2,7,12,17-tetra-n-propyl-9-hydroxy-porphycene; 2,7,12,17-tetra-n-propyl-9-methoxy-porphycene; 2,7,12,17-tetra-propyl-9-acetoxy porphycene; 2,7,12,17-tetra-n-propyl-9-(t-butyl glutaroxy)porphycene; 2,7,12,17-tetra-n-propyl-9-(N-ti-butoxycarbonylglycinoxy)-porphycene; 2,7,12,17-tetra-n-propyl-9-(4-N-t-butoxy-carbonyl-butyroxy)-porphycene; 2,7,12,17-tetra-n-propyl-9-amino-porphycene; 2,7,12,17-tetra-n-propyl-9-acetamidoporphycene; 2,7,12,17-tetra-n-propyl-9-glutaramido-porphycene; 2,7,12,17-tetra-n˜propyl-9-(methyl glutaramido)-porphycene; 2,7,12,17-tetra-n-propyl-3-(NN-dimethylaminomethyl)porphycene; 2,7,12,17-tetra-n-propyl-9,10-benzo porphycene; 2,7,12,17-tetra-n-propyl-9.-p-benzoyl carboxylporphycene; 2,7,12,17-tetra-n-propyl-porphycene; 2,7,12,17-tetra-t-butyl-3,6;13,16-dibenzo-porphycene; 2,7-bis-(2-hydroxyethyl)-12,17-di-n-propyl-porphycene; 2,7-bis(2-methoxyethyl)-12,17-di-n-propyl-porphycene; and porphycene.
- Exemplary porphyrins include but are not limited to the following and derivatives thereof: 5-azaprotoporphyrin dimethylester; bis-porphyrin; coproporphyrin III; coproporphyrin III tetramethylester; deuteroporphyrin; deuteroporphyrin IX dimethylester; diformyldeuteroporphyrin IX dimethyl ester, dodecaphenylporphyrin; hematoporphyrin; hematoporphyrin IX; hematoporphyrin monomer; hematoporphyrin dimer; hematoporphyrin derivative; hematoporphyrin IX dimethylester; haematoporphyrin IX dimethylester; mesoporphyrin dimethylester; mesoporphyrin IX dimethylester; monoformyl-monovinyl-deuteroporphyrin IX dimethylester; monohydroxyethylvinyl deuteroporphyrin; 5,10,15,20-tetra(o-hydroxyphenyl)porphyrin; 5,10,15,20-tetra(m-hydroxyphenyl)porphyrin; 5,10,15,20-tetrakis-(m-hydroxyphenyl)porphyrin; 5,10,15,20-tetra(p-hydroxyphenyl)porphyrin; 5,10,15,20-tetrakis-(3-methoxyphenyl)porphyrin; 5,10,15,20-tetrakis-(3,4-dimethoxyphenyl)porphyrin; 5,10,15,20-tetrakis (3,5-dimethoxyphenyl)porphyrin; 5,10,15,20-tetrakis-(3,4,5-trimethoxyphenyl)porphyrin; 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin; Photofrin; porphyrin c; protoporphyrin; protoporphyrin IX; protoporphyrin dimethylester; protoporphyrin IX dimethylester; protoporphyrin propylaminoethylformamide iodide; protoporphyrin N,N-dimethylaminopropylformamide; protoporphyrin propylaminopropylformainide iodide; protoporphyrin butylforinamide; protoporphyrin N˜-dimethylamino-formamide; protoporphyrin formamide; sapphyrin 13,12,13,22-tetraethyl-2,7,18,23 tetramethyl sapphyrin-8,17-dipropanol; sapphyrin 2 3,12,13,22-tetraethyl-2,7,18,23 tetramethyl sapphyrin-8-monoglycoside; sapphyrin 3; meso-tetra-(4-N-carboxyphenyl)-porphine; tetra-(3-methoxyphenyl)-porphine; tetra-(3-methoxy-2,4-difluorophenyl)-porphine; 5,10,15,20-tetrakis(4-N-methylpyridyl)porphine; meso-tetra-(4-N-methylpyridyl)porphine tetrachloride; meso-tetra(4-N-methylpyridyl)porphine; meso-tetra-(3-N-methylpyridyl)-porphine; meso-tetra-(2-N-methylpyridyl)porphine; tetra(4-NNN-trimethylanifinium)porphine; meso-tetra-(4-NNN″-trimethylamino-phenyl) porphine tetrachloride; tetranaphthaloporphyrin; 5,10,15,20-tetraphenylporphyrin; tetraphenylporphyrin; meso-tetra-(4-N-sulfonatophenyl)-porphine; tetraphenylporphine tetrasulfonate; meso-tetra-(4-sulfonatophenyl)porphine; tetra-(4-sulfonatophenyl)porphine; tetraphenylporphyrin sulfonate; meso-tetra-(4-sulfonatophenyl)porphine; tetrakis-(4-sulfonatophenyl)porphyrin; meso-tetra (4-sulfonatophenyl)porphine; meso-(4-sulfonatophenyl)porphine; meso-tetra-(4-sulfonatophenyl)porphine; tetrakis(4-sulfonatophenyl)porphyrin; meso-tetra-(4-N-trimethylanilinium)-porphine; uroporphyrin; uroporphyrin I; uroporphyrin IX; and uroporphyrin III.
- Exemplary psoralens include but are not limited to the following and derivatives thereof: psoralen; 5-methoxypsoralen; 8-methoxypsoralen; 5,8-dimethoxypsoralen; 3-carbethoxypsoralen; 3-carbethoxy-pseudopsoralen; 8-hydroxypsoralen; pseudopsoralen; 4,5′,8-tn′methylpsoralen; allopsoralen; 3-aceto-allopsoralen; 4,7-dimethyl-allopsoralen; 4,7,4′-trimethyl-allopsoralen; 4,7,5′-trimethyl-allopsoralen; isopseudopsoralen; 3-acetoisopseudopsoralen; 4,5′-dimethyl-isopseudopsoralen; 5′,7-dimethylisopseudopsoralen; pseudoisopsoralen; 3-acetopseudoisopsoralen; 3,4′,5′-trimethylaza-psoralen; 4,4′,8-trimethy]-S′-amino-methylpsoralen; 4,4′,8-trimethyl-phthalamyl-psoralen; 4,5′,8-trimethyl-4′-aminomethyl psoralen; 4,5′,8-trimethyl-bromopsoralen; 5-nitro-8-methoxy-psoralen; 5′-acetyl-4,8-dimethyl-psoralen; 5′-aceto-8-methyl-psoralen; and 5′-aceto4,8-dimethyl-psoralen.
- Exemplary purpurins include but are not limited to the following and derivatives thereof: octaethylpurpurin; octaethylpurpurinnzinc; oxidized octaethylpurpurin; reduced octaethylpurpurin; reduced octaethylpurpurin tin; purpurin 18; purpurin-18; purpurin18-methyl ester; purpurin; tin ethyl etiopurpurin 1; Zn(II) aetio-purpurin ethvl ester; and zinc etiopurpurin.
- Exemplary quinones include but are not limited to the following and derivatives thereof: 1-amino-4,5-dimethoxy anthraquinone; 1 ,5-diamino-4,8-dimethoxy anthraquinone; 1,8-diamino-4,5-dimethoxy anthraquinone; 2,5-diamino-1,8-dihydroxy anthraquinone; 2,7-diamino-1,8-dihydroxy anthraquinone; 4,5-diamino-1,8-dihydroxy anthraquinone; mono-methylated 4,5- or 2,7-diamino-1,8-dihydroxy anthraquinone; anthralin (keto form); anthralin; anthralin anion; 1,8-dihydroxy anthraquinone; 1,8-dihydroxy anthraquinone (Chrysazin); 1,2-dihydroxy anthraquinonc; 1,2-dihydroxy anthraquinone (Alizarin); 1,4-dihydroxy anthraquinone (Quinizarin); 2,6-dihydroxy anthraquinone; 2,6-dihydroxy anthraquinone (Anthraflavin); 1-hydroxy anthraquinone (Erythroxy-anthraquinone); 2-hydroxyanthraquinone; 1,2,5,8-tetra-hydroxy anthraquinone (Quinalizarin); 3-methyl-1,6,8-trihydroxy anthraquinone (Emodin); anthraquinone; anthraquinonc-2-sulfonic acid; benzoquinone; tetramethyl benzoquinone; hydroquinone; chlorohydroquinone; resorcinol; and 4-chlororesorcinol.
- Exemplary retinoids include but are not limited to the following and derivatives thereof: all-trans retinal; C17 aldehyde; C22 aldehyde; 11-cis-retinal; 13-cis retinal; retinal; and retinal palmitate.
- Exemplary rhodamines include but are not limited to the following and derivatives thereof: 4,5-dibromo-rhodamine methyl ester; 4,5-dibromo-rhodamine n-butyl ester; rhodamine 101 methyl ester; rhodamine 123; rhodamine 6G; rhodamine 6G hexyl ester; tetrabromo-rhodamine 123; and tetramethyl-rhodamine ethyl ester.
- Exemplary thiophenes include but are not limited to the following and derivatives thereof: terthiophenes such as 2,2′:5′,2″-terthiophene; 2,2′:5′,2″-terthiophene-5-carboxamide; 2,2′:5′,2″-terthiophene-5-carboxylic acid; 2,2′:5′,2″-terthiophene-5-L-serine ethyl ester; 2,2′:5′,2″-terthiophene-5-N-isopropynyl-formamide; 5-acetoxymethyl-2,2′:5′,2″-terthiophene; 5-benzyl-2,2′:5′,2″-terthiophene-sulphide; 5-benzyl-2,2′:5′,2″-terthiophene-sulfoxide; 5-benzyl-2,2′:5′,2″-terthiophene-sulphone; 5-bromo-2,2′:5′,2″-terthiophene; 5-(butynyl-3′″-hydroxy)-2,2′:5′,2″-terthiophene; 5-carboxyl-5″-trimethylsilyl-2,2′:5′,2″-terthiophene; 5-cyano-2,2′:5′,2″-terthiophene; 5,5″-dibromo-2,2′:5′,2″-terthiophene; 5-(1′″,1′″-dibromoethenyl)-2,2′:5′,2″-terthiophene; 5,5″-dicyano-2,2′:5′,2″-terthlophene; 5,5″-diformyl-2,2′:5′,2″-terthiophene; 5-difluoromethyl-2,2′:5′,2″-terthiophene; 5,5″-diiodo-2,2′:5′,2′″-terthiophene; 3,3″-dimethyl-2,2′:5′,2″-terthiophene; 5,5″-dimethyl-2,2′:5′,2″-terthiophene; 5-(3′″,3′″-dimethylacryloyloxymethyl)-2,2′:5′,2″-terthiophene; 5,5″-di-{t-butyl)-2,2′:5′,2″-terthiophene; 5,5″-dithiomethyl-2,2′:5′,2″-terthiophene; 3′-ethoxy-2,2′:5′,2″-terthiophene; ethyl 2,2′:5′,2″-terthiophene-5-carboxylic acid; 5-formyl-2,2′:5′,2″-terthiophene; 5-hydroxyethyl-2.2′:5′,2″-terthiophene; 5-hydroxymethyl-2,2′:5′,2″-terthiophene; 5-iodo-2,2′:5′,2″-terthlophene-, 5-methoxy-2,2′:5′,2″-terthiophene; 3′-methoxy-2,2′:5′,2″-terthiophene; 5-methyl-2,2′:5′,2″-terthlophene; 5-(3′″-methyl-2′″-butenyl)-2,2′:5′,2″-terthiophene; methyl 2.2′:5′,2″-terthiophene-5-[3′″-acrylate]; methyl 2,2′:5′,2″-terthiophene-5-(3′″-propionate); N-allyl-2,2′:5′,2″-terthiophene-5-sulphonamide; N-benzyl-2,2′:5′,2″-terthiophene-5-sulphonamide; N-butyl-2,2′:5′,2″-terthiophene-5-sulphonamide; N,N-diethyl-2,2′:5′,2″-terthiophene-5-sulphonamide; 3,3′,4′,3″-tciramethyl-2,2′:5′,2″-terthiophene; 5-t-butyl-5″-trimethylsilyl-2,2′:5′,2″-terthiophene; 3′-thiomethyl-2,2′:5′,2″-terthiophene; 5-thiomethyl-2 ,2′:5′,2″-terthiophene; 5-trimethylsilyl-2,2′:5′,2″-terthiophene, bithiophenes such as 2,2′-bithiophene; 5-cyano-2,2′-bithiophene; 5-formyl-2,2′-bithiophene; 5-phenyl-2,2′-bithiophene; 5-(propynyl)-2,2′-bithiophene; 5-(hexynyl)-2,2′-bithiophene; 5-(octynyl)-2,2′-bithiophene; 5-(butynyl-4″-hydroxy)-2,2′-bithiophene; 5-(pentynyl-5″-hydroxy)-2,2′-bithiophene; 5-(3″,4″-dihydroxybutynyl)-2,2′-bithiophene derivative; 5-(ethoxybutynyl)-2,2′-bithiophene derivative, and misclaneous thiophenes such as 2,5-diphenylthiophene; 2,5-di(2-thienyl)furan; pyridine,2,6-bis(2-thienyl)-; pyridine, 2,6-bis(thienyl)-; thiophene, 2-(1-naphthalenyl)-; thiophene, 2-(2-naphthalenyl)-; thiophene, 2,2′-(1,2-phenylene)bis-; thiophene, 2,2′-(l,3-phenylene)bis-; thiophene, 2,2′-(1,4-phenylene)bis-; 2,2′:5′,2″,5″,2′″-quaterthiophene; α-quaterthienyl; α-tetrathiophene-, α-pentathiophene; α-hexathiophene; and α-heptathiophene.
- Exemplary verdins include but are not limited to the following and derivatives thereof: copro (II) verdin trimethyl ester; deuteroverdin methyl ester; mesoverdin methyl ester; and zinc methyl pyroverdin.
- Exemplary vitamins include but are not limited to the following and derivatives thereof: ergosterol (provitamin D2);β-dicyano-7-de(carboxymethyl)-7,8-didehydro-cobyrinate (Pyrocobester); pyrocobester; and vitamin D3.
- Exemplary xanthene dyes include but are not limited to the following and derivatives thereof: Eosin B (4′,5′-dibromo,2′,7′-dinitro-fluorescein, dianion); eosin Y; eosin Y (2′,4′,5′,7′-tetrabromo-fluorescein, dianion); eosin (2′,4′,5′,7′-tetrabromo-fluorescein, dianion); eosin (2′,4′,5′,7′-tetrabromofluorescein, dianion)methyl ester; eosin (2′,4′,5′,7′-tetrabromo-fluorcscein, monoanion)p-isopropylbenzyl ester; eosin derivative (2′,7′-dibromo-fluorescein, dianion); eosin derivative (4′,5′-dibromo-fluorescein, dianion); eosin derivative (2′,7′-dichloro-fluorescein, dianion)-eosin derivative (4′,5′-dichloro-fluorescein, dianion);eosin derivative (2′,7′-diiodo-fluorescein, dianion); eosin derivative (4′,5′-diiodofluorescein, dianion); eosin derivative. (tribromo-fluorescein, dianion); eosin derivative (2′,4′,5′,7′-tetrachloro-fluorescein, dianion); eosin; eosin dicetylpyridinium chloride ion pair; erythrosin B (2′,4′,5′,7′-tetraiodo-fluorescein, dianion); erythrosin; erythrosin dianion; eosin B; fluorescein; fluorescein dianion; phloxin B (2′,4′,5′,7′-tetrabromo-3,4,5,6-tetrachloro-fluorescein, dianion); phloxin B (tetrachloro-tetrabromo-fluorescein); phloxine B; rose bengal (3,4,5,6-tetrachloro-21,41,51,71-tetraiodofluorescein, dianion); rose bengal; rose bengal dianion; rose bengal 0-methyl-methylester; rose bengal 6′-O-acetyl ethyl ester; rose bengal benzyl ester diphenyl-methyl-sulfonium salt; rose bengal benzyl ester triethylammonium salt; rose bengal benzyl ester 2,4,6,-triphenylpyrilium salt; rose bengal benzyl ester benzyltriphenylphosphonium salt; rose bengal benzyl ester benzyltriphenyl phosphonium salt; rose bengal benzyl ester diphenyl-iodonium salt; rose bengal benzyl ester diphenylmethylsulfonium salt; rose bengal benzyl ester diphenyl-methyl-sulfonium salt; rose bengal benzyl ester triethyl-ammonium salt; rose bengal benzyl ester triphenylpyrilium; rose bengal bis-(triethyl-ammonium)salt)(3,4,5,6-tetrachloro-2′,4′,5′,7′-tetraiodofluorescein bis(triethyl-ammonium salt); rose bengal bis(triethylammonium)salt rose bengal bis(benzyl-triphenyl-phosphonium)salt (3,4,5,6-tetrachloro-2′,4′,5′,7′-tetraiodofluorescein, bis(benzyl-triphenyl-phosphonium)salt); rose bengal bis(diphenyl-iodonium)salt(3,4,5,6-tetrachloro-2′,4′,5′,7′-tetraiodofluorescein bis(diphenyl-iodonium)salt); rose bengal di-acetyl-pyridinium chloride ion pair; rose bengal ethyl ester triethyl ammonium salt; rose bengal ethyl ester triethyl ammonium salt; rose bengal ethyl ester; rose bengal methyl ester; rose bengal octyl ester tri-n-butyl-ammonium salt RB; rose bengal, 6′-O-acetyl-, and ethyl ester.
- Also suitable in the practice of the invention are the class of photosensitizers referred to as “green porphyrins” and derivatives thereof. A “green porphyrin” (Gp) is a porphyrin derivative obtained by reacting a porphyrin nucleus with an alkyne in a Diels-Alder type reaction to obtain a mono-hydrobenzoporphyrin. The resultant macropyrrolic compounds are called benzoporphyrin derivatives (BPDs), which are synthetic chlorin-like porphyrins with various structural analogs, as shown in U.S. Pat. Nos. 5,283,255, 4,920,143,4,883,790, and 5,171,749, the disclosures of which are hereby incorporated by reference herein. Examples of green porphyrin derivatives are also disclosed in U.S. Pat. Nos. 5,880,145 and 6,153,639, and WO 9,850,387, the disclosures of which are hereby incorporated by reference herein.
- Typically, green porphyrins are selected from a group of tetrapyrrolic porphyrin derivatives obtained by Diels-Alder reactions of acetylene derivatives with protoporphyrins under conditions that promote reaction at only one of the two available conjugated, nonaromatic diene structures present in the protoporphyrin-IX ring systems (rings A and B). Metallated forms of a Gp, in which a metal cation replaces one or two hydrogens in the center of the ring system, may also be used in the practice of the invention. The preparation of the green porphyrin compounds useful in this invention is described in detail in U.S. Pat. No. 5,095,030, which is hereby incorporated by reference herein. Preferably, the BPD is a benzoporphyrin derivative di-acid (BPD-DA), mono-acid ring A (BPD-MA), mono-acid ring B (BPD-MB), or mixtures thereof. Examples of pyrrolic macrocycles directly applicable to the invention are shown below wherein A, B, C, D, and X can be hetero atoms or carbons.
- Examples and illustrations from the literature of types of photosensitizers disclosed in Structures 2 to 57 that may be used in photodynamic therapy or imaging and are applicable to the formation of carbamate analogs include:
- Dipyrromethenes: (Structure 2).
- Dipyrromethenes have been used widely as intermediates in the synthesis of porphyrins (for example, see “The Porphyrins” Ed. D.Dolphin, Academic Press, 1978, Volume II, 215-223; Volume I, Chapter IV, 101-234). References within these volumes provide actual experimental details. These compounds can be coordinated with metal salts to produce metallo complexes (for example, see A. W. Johnson, I. T. Kay, R. Price, K. B. Shaw,J. Chem. Soc, Perkin Trans I, 3416-3424, 1959; U.S. Pat. No. 5,189,029; U.S. Pat. No. 5,446,157). As shown in Structure 2, these molecules can be synthesized such that a wide variety of functionalities can be directly attached to the basic diyrromethene ring structure. Such functionality can be used to increase water solubility or lipophilicity, to conjugate to biomolecules such as antibodies or proteins, or to increase the wavelength of absorption of the molecules by increasing the conjugation of the macrocycle. As such, these molecules can be used for light activated photochemistry or diagnosis.
- Routes to the synthesis of the ubiquitous tetrapyrrolic macrocycles that contain in their macrocyclic ring system 11 double bonds (excluding peripheral substituents), is outlined in detail in several publications including “Porphyrins and Metalloporphyrins” Ed. K. M. Smith, Elsevier Publishing Company, New York, 1975, Chapter 2, 29.55 and chapter 19, 778-785; and “The Porphyrins” Ed. D.Dolphin, Academic Press, 1978, Volume I. References within these volumes provide actual experimental details. A very large number of porphyrinic compounds have been synthesized. Because they are prevalent in nature, a large number of studies on the chemical modification of these compounds have been undertaken (“The Porphyrins” Ed. D.Dolphin, Academic Press, 1978, Volume I, 289-339:). A great deal of work has been undertaken on the synthesis of porphyrins from mono-pyrroles (“The Porphyrins” Ed. D.Dolphin, Academic Press, 1978, Volume I, chapter 3, 85-100, chapter 4, 101-234, chapter 5, 235-264, and chapter 6, 265-288). Examples of such work include the synthesis of mono, di, tri and tetraphenyl porphyrins (“The Porphyrins” Ed. D.Dolphin, Academic Press, 1978, Volume I, chapter 3, 88-90; Gunter, M. J., Mander, L. N.,J. Org. Chem. 46, 4792-4795, 1981.). Such compounds can be widely functionalized as the aromatic rings may possess different substituents or have incorporated in them heteroatoms. Porphyrins also can be synthesized that possess annelated aromatic rings on the β-pyrrole positions (T. D. Lash, C. Wijesinghe, A. T. Osuma, J. R. Patel, Tetrahedron Letters, 38(12), 2031-2034.1997.), which can have the effect of extending conjugation and modifying the absorption and photophysical properties of the compounds. Porphyrin-type compounds have been synthesized from pyrroles and 5-membered ring heterocycles (such as thiophenes or furans for example), which incorporate one or more heteroatoms besides nitrogen within the central porphyrin “core” (“Porphyrins and Metalloporphyrins” Ed. K. M. Smith, Elsevier Publishing Company, New York, 1975, Chapter 18,729-732). Such compounds can be modified similarly to produce highly functionalized derivatives. In addition, porphyrin dimers, trimers or oligomers have been synthesized with great abandon. (See, H. Meier, Y. Kobuke, S. Kugimiya, J. Chem. Soc. Chem. Commun. 923,1989; G. M. Dubowchik, A. D. Hamilton, J. Chem. Soc. Chem. Commun, 904,,1985; R. K. Pandey, F-Y. Shaiu, C. J. Medforth, T. J. Dougherty, K. M. Smith, Tetrahedron Letters, 31,7399, 1990; D. R. Arnold, L. J. Nitschinsk, Tetrahedron Letters, 48, 8781,1992; J. L. Sessler, S. Piering, Tetrahedron Letters, 28, 6569,1987; A. Osaku, F. Kobayashi, K. Maruyama, Bull. Chem. Soc. Jpn, 64, 1213,1991).
- Chlorins or hydroporphyrins are porphyrins that have only 10 double bonds in their macrocyclic ring system (excluding peripheral substituents). The “reduction” of the porphyrin macrocycle has pronounced effects on both the absorption profile of the macrocycle and the photophysical properties of the compound. Many naturally occuring chlorins may be extracted from plants, seaweeds or algae (e.g., see “Porphyrins and Metalloporphyrins” Ed. K. M. Smith, Elsevier Publishing Company, New York, 1975, Section H, 774-778) and simple chemical modifications to pheophorbides can give pyrropheophorbides, chlorin e6, purpurin 18 and other chlorin ring systems. Routes to the synthesis of chlorin macrocycles are outlined in “Porphyrins and Metalloporphyrins” Ed. K. M. Smith, Elsevier Publishing Company, New York, 1975, Chapter 2, 61-116, and Chapter 19, 774-778; and “The Porphyrins” Ed. D.Dolphin, Academic Press, 1978, Volume II, 1-37 and 131-143. References within these volumes provide actual experimental details. Considerable research has been directed toward the synthesis of chlorin derivatives from porphyrins. Catalytic hydrogenation and hydroboration (H. H. Inhoffen, J. W. Buchler, R. Thomas, Tetrahedon Letters, 1145, 1969), diimide reductions (H. W. Whitlock Jr., R Hanauer, R., Oester, M. Y., B. K. Bower, J. Am. Chem. Soc. 91, 7585,1969), osmium tetroxide (R. Bonnett, A. N. Nizhnick, M. C. Berenbaum,J. Chem. Soc. Chem. Comm., 1822, 1989) and hydrogen peroxide (C. K. Chang, Biochemistry, 19, 1971, 1971), alkali metals and electrochemical reduction (N. S. Hush, J. R. Rowlands, J. Am. Chem. Soc., 89, 2976, 1967), aromatic radicals (G. L. Closs, L. E. Closs, J. Am. Chem. Soc, 85, 818, 1963) have all been used to produce chlorins from porphyrins. The use of light as a reductive tool has also been extensively studied by several researchers. The reaction of singlet oxygen on vinyl porphyrin has been used extensively to produce chlorins (H. H. Inhoffen, H. Brockman, K. M. Bleisnerv, Ann. Chem. 730, 173, 1969; D. Brault, C. Vever-Bizet, Mougee, C., Bensasson, R., Photochem. Photobiol. 47, 151, 1988). The reduction of free base and metalloporphyrins with light and reducing agents (such as amines or ascorbates) (Y. Harel, J. Manassen, J. Am. Chem. Soc., 100, 6228, 1977; J. H. Fuhrhop, T. Lumbantobing, Tetrahedron Letters, 2815, 1970; D. G. Whitten, J. C., Yau, F. A. Carol, J. Am. Chem. Soc., 93, 2291, 1971) also produces chlorins. Cyclization of meso-acrylate containing porphyrins has been used extensively to produce purpurin derivatives (Structures 17 and 18) (A. R. Morgan, N. C. Tertel., J. Org. Chem., 51, 1347, 1986) while acid cyclization of meso-acrolein porphyrins has been used extensively to produce benzochlorins (Structure 14) (M. G. H. Vincente, I. N. Rezzano, K. M. Smith, Tetrahedron Letters, 31, 1365, 1990; M. J. Gunter, B. C. Robinson, Tetrahedron., 47, 7853, 1991). Diels-alder addition of dienophiles with vinyl-containing porphyrins has been used extensively to produce chlorins (Structures 50-55) (R. Grigg, A. W. Johnson, A. Sweeney, Chem. Commun. 697, 1968; H. J. Callot, A. W. Johnson, A. Sweeney, J. Chem. Soc. Perkin Trans. I, 1424, 1973). Acetamidoporphyrins can be cyclized to produce chlorins via an intramolecular Vilsmeier reaction (G. L. Collier, A. H. Jackson, G. W., Kenner, J. Chem. Soc., C., 564, 1969). Recently, chlorin analogs of purpurin 18 based on purpurin 18 have been produced that possess nitrogens on the cyclic “anhydride” ring system (Structure 35, A or B=NR).
- Bacteriochlorins and isobacteriochlorins are tetrahydroporphyrins. These derivatives have only nine double bonds in their macrocyclic ring system (excluding peripheral groups). The “double” reduction of the porphyrin nucleus at the pyrrole positions has a pronounced effect on the absorption properties and photophysical properties. Typically, bacteriochlorins absorb in the 720-850 nm range while isobacteriochlorins absorb in the 500-650 nm range (“The Porphyrins” Ed. D.Dolphin, Academic Press, 1978, Volume III, Chapter 1; references within these volumes provide actual experimental details). Examples of-the synthesis of bacteriochlorins and isobacteriochlorins can be found in the following references: H. H. Inhoffen, P. Jager, R. Mahlhop and C. D. Mengler,Justus Liebigs Ann. Chem. 704, 188, 1967; H. Mittenzwei, S. Z. Hoppe-Seyler, Physiol. Chem. 275, 93, 1942; H. Brockmann Jr., G . Knobloch, Arch. Mikrobiol, 85, 123, 1972; J. J. Katz, H. H., Strain, A. L., Harkness, M. H. Studier, W. A., Svec, T. R. Janson, B. T. Cope, J. Am. Chem. Soc. 94, 7983, 1972; U.S. Pat. No. 5,648,485; U.S. Pat. No. 5,149,708; H. W. Whitlock, R. Hanauer, M. Y. Oester, B. K. Bower, J. Am. Chem Soc. 91, 7485, 1969; H. H. Inhoffen, H. Sheer, Tetrahedron Letters, 1115, 1972; H. H. Inhoffen, J. W. Buchler, R. Thomas, Tetrahedron Letters, 5145, 1969; and J. H. Fuhrhop, T. Lumbantobing, Tetrahedron Letters, 2815, 1970. In particular, osmium tetroxide has proved useful in the synthesis of β, β-dihydroxy-bacteriochlorins and isobacteriochlorins from chlorins (U.S. Pat. No. 5,591,847) and the acid rearrangement of these derivatives has produced numerous bacteriochlorin derivatives. The treatment of porphyrins and chlorins with hydrogen peroxide has been used to produce bacteriochlorins and isobacteriochlorins (H. H. Inhoffen, W. Nolte, Justus Liebigs Ann. Chem. 725, 167, 1969). Diels-alder addition of dienophiles with porphyrins containing two vinyl substituents has been used extensively to produce bacteriochlorins and isobacteriochlorins (R. Grigg, A. W. Johnson, A. Sweeney, Chem. Commun., 697, 1968; H. J. Callot, A. W. Johnson, A. Sweeney, J. Chem. Soc. Perkin Trans. I, 1424, 1973).
- Phthalocyanines and phthalocyanine analogs are perhaps some of the most widely studied photosensitizers in the field of photodynamic therapy and are also widely used as optical recording media. As such, the number of structurally different phthalocyanine derivatives is enormous. Not only can the peripheral functionality of these compounds be widely varied, which changes their electronic spectra and photophysics, but metallation of the macrocycle also results in photophysical changes. In addition, carbons in the aromatic rings may be substituted with heteroatoms (such as nitrogen and sulphur phosphorus) that markedly change the photophysical properties of the compounds. Examples of references that disclose the formation of such compounds include: “Phthalocyanines, Properties and Applications, Eds. C. C. Leznoff, A. B. P. Lever, VCH Publishers Inc., 1989; “The Phthalocyanines”, Eds. F. H. Moser, A. L. Thomas, CRC Press, Volumes I and II, 1983; “The Porphyrins” Ed. D.Dolphin, Academic Press, 1978, Volume I, Chapter 9, 374-380; A. K. Sobbi, D.Wohrle, D. Schlettwein,J. Chem. Soc. Perkin Trans. 2, 481-488, 1993; J. H. Weber, D. H. Busch, Inorg. Chem. 192, 713, 1988.; R. P. Linstead, F. T. Weiss, J. Chem. Soc., 2975, 1950; U.S. Pat. Nos. 5,166,197, 5,484,778, and 5,484,915. A great number of binuclear phthalocyanines/napthalocyanines have been synthesized that share a common benzene or naphthalene ring (J. Yang, M. R. Van De Mark, Tetrahedron Letters, 34, 5223, 1993; N. Kobayashi, H. Y. Higashi, T. Osa, Chemistry Letters, 1813, 1994).
- Porphyrins that possess at least one meso-nitrogen linking atom are called azaporphyrins. The number of meso-nitrogen linking atoms may be extended from one to four. Phthalocyanines and naphthalocyanine may be regarded as tetraazoporphyrins with extended conjugation due to annelated benzene and napthalene rings. The synthesis of mono, di, tri and tetraazoporphyrin analogs is discussed in “The Porphyrins” Ed. D.Dolphin, Academic Press, 1978, Volume I, Chapter 9, 365-388; “Phthalocyanine, Properties and Applications, Eds. C. C. Leznoff, A. B. P. Lever, VCH Publishers Inc., 1989; “The Phthalocyanines” , Eds. F. H. Moser, A. L. Thomas, CRC Press, Volumes I and II, 1983. References within these volumes provide actual experimental details. The synthesis of a series of tetrabenzotriazoporphyrins and tetranapthotriazoporphyrins has recently been published (Y-H Tse, A. Goel, M. Hue, A. B. P. Lever, C. C. Leznoff, Can. J. Chem. 71, 742, 1993). It can be envisaged that chemistry typical of phthalocyanine chemistry and porphyrin chemistry may be applied to these compounds, such that heteroatoms may be introduced into the annelated benzene or napthalene rings.
- Asymmetrical tetraazoporphyrins that have both a benzene and a naphthalene annelated unit in the macrocyclic ring system are loosely called benzonaphthoporphyrazines. The synthesis of these derivatives is carried out using classical phthalocyanine syntheses however, using mixed aromatic dinitriles (U. Michelsen, H. Kliesch, G. Schnurpfeil, A. K. Sobbi, D. Wohrle, Photochem. Photobiol, 64, 694, 1996; Canadian Patent No. 2,130,853. References to the synthesis of these macrocycles can also be found in “Phthalocyanine, Properties and Applications, Eds. C. C. Leznoff, A. B. P. Lever, VCH Publishers Inc., 1989; “The Phthalocyanines”, Eds. F. H. Moser, A. L. Thomas, CRC Press, Volumes I and II, 1983.
- Texaphyrins are tripyrrol dimethene derived “expanded porphyrin” macrocycles that have a central core larger than that of a porphyrin. The reaction of diformyl tripyrranes with functionalized aromatic diamines in the presence of a metal gives rise to functionalized metallated texaphyrins (U.S. Pat. Nos. 5,252,720, 4,935,498; and 5,567,687).
- Sapphyrins and pentaphyrins are fully conjugated macrocycles that possess five pyrrole units. Structural analogs of the sapphyrins and pentaphyrins are outlined in “Porphyrins and Metalloporphyrins”, Ed. K. M. Smith, Elsevier, Chapter 18, 750-751; “The Porphyrins Ed. D. Dolphin, Academic Press, NY, Chapter 10, 351-356; Broadherst et al,J. Chem. Soc. Perkin Trans. I, 2111, 1972; U.S. Pat. No. 5,543,514.
- Porphycenes are isomeric analogs of porphyrins that have eleven double bonds in their macrocyclic core and are derived by a mere reshuffling of the pyrrole and methine moieties. Routes to the synthesis of functionalized porphycenes are outlined in the following references: U.S. Pat. Nos. 5,409,900, 5,262,401, 5,244,671, 5,610,175, 5,637,608, and 5,179,120; D. Martire, N. Jux, P. F. Armendia, R. M. Negri, J. Lex, S. E. Braslavsky, K. Schaffner, E. Vogel.J. Am. Chem. Soc., 114, 1992; N. Jux, P. Koch, H. Schmickler, J.Lex, E.Vogel. Angew. Chem. Int. Ed. Engl. 29, 1385, 1990.
- The present invention provides for the synthesis of photodynamically active compounds and the resulting compounds may be used in phototherapy for diagnosis or treatment. Additionally, the compounds may be useful in the field of scintillation imaging if made radioactive.
- As an example of the invention, in reaction Scheme 8, a tetrapyrrole (pyr) possessing a hydroxyl group is converted into the photodynamically active compound of formula I. The reaction can be achieved with the proper choice of solvent and reaction conditions. Those solvents may include methylene chloride, chloroform, toluene, pyrrolidine, 1,2-dichloroethane, and mixtures thereof. Contacting the hydroxyl group with carbonyldiimidazole (or bis(p-nitrophenyl)carbonate) in the presence of a catalytic amount of 4-dimethylaminopyridine (DMAP) followed by an amine or imine at room temperature yields the compounds of the invention. Amines that can be used include, but are not limited to, alkylamines, aminoalcohols, aminoethers, diamines, and aminoacids. The following examples outline some of the photosensitizer classes and modifications that have been performed according to the invention.
- The following reaction schemes are given to highlight some of the types of compounds that are capable of being synthesized within the scope of the invention and are not intended to limit the invention. It would be obvious to those skilled in the art as to the chemical modifications to the tetrapyrrolic ring structures (or other photosensitizers) and peripheral groups that may be undertaken in accordance with the invention.
-
-
-
- In Scheme 11, the propionic acid side chain of pyrropheophorbide is functionalized with either an alcoholic ester or amide, to give compounds like (11) and (12) (and the like). These may then be reacted according to the invention to produce pyrropheoporpbide carbamates functionalized on the propionic acid side chain.
- Scheme 12 outlines the synthesis of pyrropheophorbide carbamates functionalized at the 3-position. In this instance, pyrropheophorbide b is reduced with sodium borohydride to give the 3-methylalcohol derivative. This is then reacted according to the invention to give 3-functionalized pheophorbide carbamates.
-
- Reaction Scheme 14 outlines the synthesis of chlorin e6 carbamates derived from chlorin e6 6-amides. In this instance, pheophorbides have been ring opened with a hydroxylated amine to produce chlorin e6 6-amides possessing hydroxyl groups. These in turn may be reacted according to the invention to produce carbamate derivates such as (26) and the like.
- Benzoporphyrin derivatives derived from pyrropheoporphyrin or protoporphyrin IX have been modified according to the invention to produce benzoporphyrin carbamates. In Scheme 15, the benzoporphyrin derivative B (derived via the reaction of the ethylene glycol ketone protected methyl pyrropheoporphyrin, Pandey et al,Tetrahedron, 52:15, 5349-5362, 1998), with dimethyl acetylenedicarboxylate, base cyclization and subsequent ketone deprotection) is reduced with sodium borohydride to give the 9-desoxo-9-hydroxy derivative Bp. Treatment of Bp with CDI/DMAP followed by an amine gives the desired carbamate analogs (27) and (28). This produces benzoporphyrin derivatives functionalized at the 9-position.
- Alternatively, reduction of the acetyl benzoporphyrin derivative shown in Scheme 16 produces the 4-(1-hydroxyethyl) benzoporphyrin derivative, which may be modified according to the invention to give benzoporphyrin carbamate derivatives, examples of which are (29) and (30). Clearly, carbamates may be made from either alcohol esters or alcohol amides of the propionic acid group.
-
-
- The chlorin e6 based benzochlorin BC was reduced with lithium aluminium hydride to give the benzochlorin triol, which was converted according to the invention to the benzochlorin tricarbamate.
-
-
- Scheme 20 outlines the synthesis of carbamate derivatives from the 2-(1-hydroxyethyl) purpurin hexylimide Pim. Clearly, other purpurin imide derivatives can be synthesized and modified according to the invention. Scheme 21 outlines the synthesis of a purpurin 18 imide propionic amide derivative that enables the formation of a carbamate on the propionic amide group. In this instance, the ester on the propionic acid group of the purpurin imide is hydrolyzed to form the acid derivative. This is then converted to an amide that is hydroxylated. These hydroxylated purpurin imides may then be reacted in accordance with the invention to produce carbamate derivatives.
- Schemes 22 and 23 outline the synthesis of carbamate derivatives from hematoporphyrin and the dipropylalcohol mesoporphyrin. Clearly, these porphyrinic ring systems allow other functionalization, which can be modified according to the invention.
-
- Ester and amide cleavage appear to be the major metabolic routes. As stated previously, one of the inventors' surprising and unexpected biological observations was that the carbamate analogs produce limited skin phototoxicity. Table 1 outlines the normal skin clearance of several carbamate photosensitizers as determined by irradiating hairless rats at the activation wavelength of the photosensitizer at 150 mW/cm2/125 J at different time points post injection. As can be clearly seen, carbamate analogs elicit skin responses at very early time points (1-6 hrs) and not past 6 hrs. Surprisingly, the skin responses observed for the carbamates do not correlate with the normal skin response of the parent hydroxylated tetrapyrrole (expected from ester metabolism). Examples in Table (1) include compounds (26) and (Chl) and (37) and (35). In these cases the hydroxylated parent tetrapyrroles (Chl) and (35), at drug doses of 0.5 μmol/Kg, elicit maximal normal skin responses at 24 and 48 hrs, respectively. By comparison, their carbamate analogs (26) and (37), at drug doses of 1.0 μmol/Kg and 1.5 μmol/Kg, respectively, elicit maximal skin responses at 6 hrs only. Clearly, if ester metabolism of the carbamate back to the parent hydroxylated macrocycle was rapid in blood plasma one would expect skin responses similar to parent hydroxylated macrocycle. This is not the case. It is known by the present inventors and others that metabolism of the propionic acid methyl ester functionality is generally slow in rat and human blood plasma (10-20% metabolism at 24 hrs).
TABLE 1 Normal skin clearance of carbamate photosensitizers Compound Drug dose Light dose Skin Response (7) 0.5 μmol/Kg 150 mW/cm2/125 J 1 hr 1.0 μmol/Kg 1 hr (2) 0.5 μmol/Kg 150 mW/cm2/125 J 6 hr 1.0 μmol/Kg 6 hr (26) 0.5 μmol/Kg 150 mW/cm2/125 J 6 hr 1.0 μmol/Kg 6 hr (Chl)* 0.5 μmol/Kg 150 mW/cm2/125 J 24 hrs (4) 0.5 μmol/Kg 150 mW/cm2/125 J 6 hr 1.0 μmol/Kg 6 hr (5) 1.0 μmol/Kg 150 mW/cm2/125 J 6 hr 2.0 μmol/Kg 6 hr (1) 1.0 μmol/Kg 150 mW/cm2/125 J 6 hr 2.0 μmol/Kg 6 hr (3) 1.0 μmol/Kg 150 mW/cm2/125 J 6 hr 2.0 μmol/Kg 6 hr 4.0 μmol/Kg 6 hr (6) 0.5 μmol/Kg 150 mW/cm2/125 J 6 hr 0.75 μmol/Kg 6 hr (37) 1.5 μmol/Kg 150 mW/cm2/125 J 6 hr (35)* 0.5 μmol/Kg 150 mW/cm2/125 J 48 hr Visudyne* 1.4 μmol/Kg 150 mW/cm2/125 J 24 hr 2.8 μmol/Kg 24 hr - In an attempt to determine what was happening, an HPLC evaluation of several carbamate analogs in rat whole blood plasma was performed. Surprisingly, at very short time points post administration (15 min), it was found that significant metabolism of the carbamate compounds occurred. In our HPLC evaluation of Scheme 25 (shown below), the major metabolite at early time points proved to be compound (52)—no trace of compound (51) could be detected. Over a period of 1-6 hrs, rapid metabolism of the parent carbamate macrocycle occurred in blood plasma. By 24 hrs, little or no parent carbamate macrocycle remained in the plasma.
- Clearly, the introduction of the carbamate moiety dramatically and unexpectedly enhanced the metabolism of the propionic ester functionality, thus producing (52) within minutes post injection. Compound (52) has been found to be a poor photodynamic agent. Thus, rapid metabolism in the body of carbamate derivatives effectively reduces skin phototoxicity by producing photodynamically less active compounds. Clearly, other compounds, such as (35) and (26) display a similar metabolism enhancement due to the carbamate moiety. Thus, we have found that the introduction of the carbamate moiety generates photoactive molecules (which can be used for therapy at short time points following drug administration), and enhances metabolism of the molecules to limit phototoxic side effects in the administered patient.
- The scope of the invention is not limited to the disclosure herein. As shown, any porphyrinic molecule possessing a hydroxyl group may be modified according to the invention to form the desired carbamate derivative. We have shown that distinctly different ring systems show metabolic enhancement when functionalized with carbamates. A large number of porphyrins with widely differing functionality are described in the literature (for example, see “Porphyrins and Metalloporphyrins,” Ed. K. Smith, Elsevier, 1975, New York; “The Porphyrins”, Ed. D. Dolphin, Vol I-V, Academic Press, 1978; “The Porphyrin Handbook”, Ed. K. Kadish, K. M. Smith, R. Guilard, Academic Press, 1999, the disclosures of which are hereby incorporated by reference herein), and are relevant to this invention. They contain various and ranging substituents on the β-pyrrole positions or meso-positions of the porphyrin ring, either symmetrically or asymmetrically substituted on the ring. Examples of such functionality include functional groups having a molecular weight less than about 100,000 daltons and can be a biologically active group or an organic group. Examples include, but are not limited to: (1) hydrogen; (2) halogen, such as fluoro, chloro, iodo and bromo (3) lower alkyl, such as methyl, ethyl, n-propyl, butyl, hexyl, heptyl, octyl, isopropyl, t-butyl, n-pentyl and like groups; (4) lower alkoxy, such as methoxy, ethoxy, isopropoxy, n-butoxy, t-pentoxy and the like; (5) hydroxy; (6) carboxylic acid or acid salts, such as —CH2COOH, —CH2COONa, —CH2CH2COOH, —CH2CH2COONa, —CH2CH2CH(Br)COOH, —CH2CH2CH(CH3)COOH, —CH2CH(Br)COOH, —CH2CH(CH3)COOH, —CH(CI)CH2CH(CH3)COOH, —CH2CH2C(CH3)2COOH, —CH2CH2C(CH3)2COOK, —CH2CH2CH2CH2COOH, C(CH3)2COOH, CH(Cl)2COOH and the like; (7) carboxylic acid esters, such as —CH2CH2COOCH3, —CH2CH2COOCH2CH3, —CH2CH(CH3)COOCH2CH3, —CH2CH2CH2COOCH2CH2CH3, —CH2CH(CH3)COOCH2CH3, —CH2CH2COOCH2CH2OH, —CH2CH2COOCH2CH2N(CH3)2 and the like; (8) sulfonic acid or acid salts, for example, group I and group II salts, ammonium salts, and organic cation salts such as alkyl and quaternary ammonium salts; (9) sulfonylamides such as —SO2NH(alkyl), —SO2N(alkyl)2, —SO2NH(alkyl-OH), —SO2N(alkyl-OH)2, —SO2NH(alkyl)-N(alkyl)2, —SO2N(alkyl-N(alkyl)2)2, SO2(NH(alkyl)-N(alkyl)3 +Z−) and the like, wherein Z− is a counterion, —SO2NHCH2CO2H, substituted and unsubstituted benzene sulfonamides, sulfonylamides of aminoacids and the like; (10) sulfonic acid esters, such as SO3(alkyl), SO3(alkyl-OH), SO3(alkyl-N(alkyl)2), SO3(alkyl-N(alkyl)3 +Z−) and the like, wherein Z− is a counterion, SO3CH2CO2H, and the like; (11) amino, such as unsubstituted or substituted primary amino, methylamino, ethylamino, n-propylamino, isopropylamino, butylamino, sec-butylamino, dimethylamino, trimethylamino, diethylamino, triethylamino, di-n-propylamino, methylethylamino, dimethyl-sec-butylamino, 2-aminoethoxy, ethylenediamino, cyclohexylamino, benzylamino, phenylethylamino, anilino, N-methylanilino, N,N-dimethylanilino, N-methyl-N-ethylanilino, 3,5-dibromo-4-anilino, p-toluidino, diphenylamino, 4,4′-dinitrodiphenylamino and the like; (12) cyano; (13) nitro; (14) a biologically active group; (15) amides, such as —CH2CH2CONHCH3, —CH2CH2CONHCH2CH3, —CH2CH2CON(CH3)2, —CH2CH2CON(CH2CH3)2, —CH2CONHCH3, —CH2CONHCH2CH3, —CH2CON(CH3)2, —CH2CON(CH2CH3)2, and amides of amino acids and the like; (16) iminium salts, for example CH═N(CH3)2 +Z− and the like, wherein Z− is a counterion), (17) boron containing complexes, (18) carbon cage complexes (e.g., C60 and the like); (19) metal cluster complexes, for example derivatives of EDTA, crown ethers, cyclams, and cyclens; (20) other porphyrin, chlorin, bacteriochlorin, isobacteriochlorin, azoporphyrin, tetraazoporphyrin, phthalocyanine, naphthalocyanine, texaphyrins, tetrapyrrolic macrocycles or dye molecules and the like; (21) alkynyl, including alkyl, aryl, acid and heteroatom substituted alkylnes; (22) leaving or protecting groups; and (23) any other substituent that increases the hydrophilic, amphiphilic or lipophilic nature or stability of the compounds.
- The term “biologically active group” can be any group that selectively promotes the accumulation, elimination, binding rate, or tightness of binding in a particular biological environment. For example, one category of biologically active groups is the substituents derived from sugars, specifically: (1) aldoses such as glyceraldehyde, erythrose, threose, ribose, arabinose, xylose, lyxose, allose, altrose, glucose, mannose, gulose, idose, galactose, and talose; (2) ketoses such as hydroxyacetone, erythrulose, rebulose, xylulose, psicose, fructose, sorbose, and tagatose; (3) pyranoses such as glucopyranose; (4) furanoses such as fructo-furanose; (5) O-acyl derivatives such as penta-O-acetyl-α-glucose; (6) O-methyl derivatives such as methyl α-glucoside, methyl β-glucoside, methyl α-glucopyranoside, and methyl-2,3,4,6-tetra-O-methyl-glucopyranoside; (7) phenylosazones such as glucose phenylosazone; (8) sugar alcohols such as sorbitol, mannitol, glycerol, and myo-inositol; (9) sugar acids such as gluconic acid, glucaric acid and glucuronic acid, δ-gluconolactone, δ-glucuronolactone, ascorbic acid, and dehydroascorbic acid; (10) phosphoric acid esters such as α-glucose 1-phosphoric acid, α-glucose 6-phosphoric acid, α-fructose 1,6-diphosphoric acid, and α-fructose 6-phosphoric acid; (11) deoxy sugars such as 2-deoxy-ribose, rhammose (deoxy-mannose), and fructose (6-deoxy-galactose); (12) amino sugars such as glucosamine, galactosamine, muramic acid, and neurarninic acid; (13) disaccharides such as maltose, sucrose and trehalose; (14) trisaccharides such as raffinose (fructose, glucose, galactose) and melezitose (glucose, fructose); (15) polysaccharides (glycans) such as glucans and mannans; and (16) storage polysaccharides such as α-amylose, amylopectin, dextrins, and dextrans.
- Amino acid derivatives are also useful biologically active substituents, such as those derived from valine, leucine, isoleucine, threonine, methionine, phenylalanine, tryptophan, alanine, arginine, aspartic acid, cystine, cysteine, glutamic acid, glycine, histidine, proline, serine, tyrosine, asparagine and glutamine. Also useful are peptides, particularly those known to have affinity for specific receptors, for example, oxytocin, vasopressin, bradykinin, LHRH, thrombin and the like.
- Another useful group of biologically active substituents are those derived from nucleosides, for example, ribonucleosides such as adenosine, guanosine, cytidine, and uridine, and 2′-deoxyribonucleosides such as 2′-deoxyadenosine, 2′-deoxyguanosine, 2′-deoxycytidine, and 2′-deoxythymidine.
- Another category of biologically active groups that is particularly useful is any ligand that is specific for a particular biological receptor. The term “ligand specific for a receptor” refers to a moiety that binds a receptor at cell surfaces, and thus contains contours and charge patterns that are complementary to those of the biological receptor. The ligand is not the receptor itself, but a substance complementary to it. It is well understood that a wide variety of cell types have specific receptors designed to bind hormones, growth factors, or neurotransmitters. However, while these embodiments of ligands specific for receptors are known and understood, the phrase “ligand specific for a receptor” as used herein refers to any substance, natural or synthetic, that binds specifically to a receptor.
- Examples of such ligands include: (1) the steroid hormones, such as progesterone, estrogens, androgens, and the adrenal cortical hormones; (2) growth factors, such as epidermal growth factor, nerve growth factor, fibroblast growth factor, and the like; (3) other protein hormones, such as human growth hormone, parathyroid hormone, and the like; (4) neurotransmitters, such as acetylcholine, serotonin, dopamine, and the like; and (5) antibodies. Any analog of these substances that also succeeds in binding to a biological receptor is also included.
- Particularly useful examples of substituents tending to increase the amphiphilic nature of the compounds include: (1) short or long chain alcohols, for example, —C12H24—OH where —C12H24 is hydrophobic; (2) fatty acids and their salts, such as the sodium salt of the long-chain fatty acid oleic acid; (3) phosphoglycerides, such as phosphatidic acid, phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl serine, phosphatidyl inositol, phosphatidyl glycerol, phosphatidyl 3′-O-alanyl glycerol, cardiolipin, or phosphatidyl choline; (4) sphingolipids, such as sphingomyelin; and (5) glycolipids, such as glycosyldiacylglycerols, cerebrosides, sulfate esters of cerebrosides or gangliosides. It would be obvious to one skilled in the art what other groups, or combinations of the groups described, would be suitable in the invention.
- The compounds of the present invention, or their pharmaceutically acceptable salts, solvates, prodrugs, or metabolites, can be administered to the host in a variety of forms adapted to the chosen route of administration, e.g., orally, intravenously, intramuscularly or subcutaneously.
- The active compound may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsules, or it may be compressed into tablets, or it may be incorporated directly with food. For oral therapeutic administration, the active compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least about 0.1% of active compound. The percentage of the compositions and preparations may, of course, be varied and may, for example, conveniently be between about 2 to about 60% of the weight of the administered product. The amount of active compound in such therapeutically useful compositions is such that a suitable dosage will be obtained. Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between about 50 and 300 mg of active compound.
- The tablets, troches, pills, capsules and the like may also contain the following: a binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; a sweetening agent such as sucrose, lactose or saccharin; or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye or flavoring such as cherry or orange flavor. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compound may be incorporated into sustained-release preparations and formulations.
- The active compound may also be administered parenterally or intraperitoneally. Solutions of the active compound as a free base or pharmacologically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporanous preparation of sterile injectable solutions, dispersions, or liposomal or emulsion formulations. In all cases the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle that contains the basic dispersion medium and the required additional ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying, which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solutions thereof.
- The compounds of the invention may also be applied directly to tumors in the host whether internal or external, in topical compositions. Exemplary compositions include solutions of the inventive compounds in solvents, particularly aqueous solvents, most preferably water. Alternatively, for topical application particularly to skin tumors, the present new compounds may be dispersed in the usual cream or salve formulations commonly used for this purpose (such as liposomes, ointments, gels, hydrogels, and oils) or may be provided in the form of spray solutions or suspensions that may include a propellant usually employed in aerosol preparations.
- As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specifications for the novel dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active material for the treatment of tumors in living subjects.
- As used in the present application, the following definitions apply.
- The term “alkyl” as used herein refers to substituted or unsubstituted, straight or branched chain groups, preferably having one to ten, more preferably having one to six, and most preferably having from one to four carbon atoms. The term “C1-C6 alkyl” represents a straight or branched alkyl chain having from one to six carbon atoms. Exemplary C1-C6 alkyl groups include methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, neo-pentyl, hexyl, isohexyl, and the like. The term “C1-C6 alkyl” includes within its definition the term “C1-C4 alkyl.” Such alkyl groups may themselves be ethers or thioethers, or aminoethers or dendrimers.
- The term “cycloalkyl” represents a substituted or unsubstituted, saturated or partially saturated, mono- or poly-carbocyclic ring, preferably having 5-14 ring carbon atoms. Exemplary cycloalkyls include monocyclic rings having from 3-7, preferably 3-6, carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like. An exemplary cycloalkyl is a C5-C7 cycloalkyl, which is a saturated hydrocarbon ring structure containing from five to seven carbon atoms.
- The term “aryl” as used herein refers to an aromatic, monovalent, monocyclic, bicyclic, or tricyclic radical containing 6, 10, 14, or 18 carbon ring atoms, which may be unsubstituted or substituted, and to which may be fused one or more cycloalkyl groups, heterocycloalkyl groups, or heteroaryl groups, which themselves may be unsubstituted or substituted by one or more suitable substituents. Illustrative examples of aryl groups include, but are not limited to, phenyl, napthyl, anthryl, phenanthryl, fluoren-2-yl, indan-5-yl, and the like.
- The term “halogen” represents chlorine, fluorine, bromine or iodine. The term “halocarbon” represents one or more halogens bonded to a carbon bearing group.
- The term “carbocycle” represents a substituted or unsubstituted aromatic or a saturated or a partially saturated 5-14 membered monocyclic or polycyclic ring, such as a 5- to 7-membered monocyclic or 7- to 10-membered bicyclic ring, wherein all the ring members are carbon atoms.
- The term “electron withdrawing group” is intended to mean a chemical group containing an electronegative element such as halogen, sulfur, nitrogen or oxygen.
- A “heterocycloalkyl group” is intended to mean a non-aromatic, monovalent, monocyclic, bicyclic, or tricyclic radical, which is saturated or unsaturated, containing 3 to 18 ring atoms, and which includes 1 to 5 heteroatoms selected from nitrogen, oxygen and sulfur, wherein the radical is unsubstituted or substituted, and to which may be fused one or more cycloalkyl groups, aryl groups, or heteroaryl groups, which themselves may be unsubstituted or substituted. Illustrative examples of heterocycloalkyl groups include, but are not limited to, azetidinyl, pyrrolidyl, piperidyl, piperazinyl, morpholinyl, tetrahydro-2H-1,4-thiazinyl, tetrahydrofuryl, dihydrofuryl, tetrahydropyranyl, dihydropyranyl, 1,3-dioxolanyl, 1,3-dioxanyl, 1,4-dioxanyl, 1,3-oxathiolanyl, 1,3-oxathianyl, 1,3-dithianyl, azabicylo[3.2.1]octyl, azabicylo[3.3.1 ]nonyl, azabicylo[4.3.0]nonyl, oxabicylo[2.2.1]heptyl, 1,5,9-triazacyclododecyl, and the like.
- A “heteroaryl group” is intended to mean an aromatic, monovalent, monocyclic, bicyclic, or tricyclic radical containing 5 to 18 ring atoms, including 1 to 5 heteroatoms selected from nitrogen, oxygen and sulfur, which may be unsubstituted or substituted, and to which may be fused one or more cycloalkyl groups, heterocycloalkyl groups, or aryl groups, which themselves may be unsubstituted or substituted. Illustrative examples of heteroaryl groups include, but are not limited to, thienyl, pyrrolyl, imidazolyl, pyrazolyl, furyl, isothiazolyl, furazanyl, isoxazolyl, thiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, benzo[b]thienyl, naphtho[2,3-b]thianthrenyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxathienyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxyalinyl, quinzolinyl, benzothiazolyl, benzimidazolyl, tetrahydroquinolinyl, cinnolinyl, pteridinyl, carbazolyl, beta-carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, and phenoxazinyl.
- The term “leaving group” as used herein refers to any group that departs from a molecule in a substitution reaction by breakage of a bond. Examples of leaving groups include, but are not limited to, halides, tosylates, arenesulfonates, alkylsulfonates, and triflates.
- Suitable protecting groups are known to those skilled in the art. Examples of suitable protecting groups can be found in T. Green & P. Wuts,Protective Groups in Organic Synthesis (2d ed. 1991), which is hereby incorporated by reference herein.
- Suitable salt anions include, but are not limited to, inorganics such as halogens, pseudohalogens, sulfates, hydrogen sulfates, nitrates, hydroxides, phosphates, hydrogen phosphates, dihydrogen phosphates, perchlorates, and related complex inorganic anions; and organics such as carboxylates, sulfonates, bicarbonates and carbonates.
- Examples of substituents for alkyl and aryl groups include mercapto, thioether, nitro (NO2), amino, aryloxyl, halogen, hydroxyl, alkoxyl, and acyl, as well as aryl, cycloalkyl and saturated and partially saturated heterocycles. Examples of substituents for cycloalkyl groups include those listed above for alkyl and aryl, as well as aryl and alkyl groups themselves.
- Exemplary substituted aryls include a phenyl or naphthyl ring substituted with one or more substituents, preferably one to three substituents, independently selected from halo, hydroxy, morpholino(C1-C4)alkoxy carbonyl, pyridyl, (C1-C4)alkoxycarbonyl, halo (C1-C4)alkyl, C1-C4 alkyl, C1-C4 alkoxy, carboxy, C1-C4 alkocarbonyl, carbamoyl, N—(C1-C4)alkylcarbamoyl, amino, C1-C4 alkylamino, di(C1-C4)alkylamino or a group of the formula —(CH2)a—R7 where a is 1, 2, 3 or 4; and R7 is hydroxy, C1-C4 alkoxy, carboxy, C1-C4 alkoxycarbonyl, amino, carbamoyl, C1-C4 alkylamino or di(C1-C4)alkylamino.
- Another substituted alkyl is halo(C1-C4)alkyl, which represents a straight or branched alkyl chain having from one to four carbon atoms with 1-3 halogen atoms attached to it. Exemplary halo(C1-C4)alkyl groups include chloromethyl, 2-bromoethyl, 1-chloroisopropyl, 3-fluoropropyl, 2,3-dibromobutyl, 3-chloroisobutyl, iodo-t-butyl, trifluoromethyl, and the like.
- Another substituted alkyl is hydroxy (C1-C4)alkyl, which represents a straight or branched alkyl chain having from one to four carbon atoms with a hydroxy group attached to it. Exemplary hydroxy(C1-C4)alkyl groups include hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 2-hydroxyisopropyl, 4-hydroxybutyl, and the like.
- Yet another substituted alkyl is C1-C4 alkylthio(C1-C4)alkyl, which is a straight or branched C1-C4 alkyl group with a C1-C4 alkylthio group attached to it. Exemplary C1-C4 alkylthio(C1-C4)alkyl groups include methylthiomethyl, ethylthiomethyl, propylthiopropyl, sec-butylthiomethyl, and the like.
- Yet another exemplary substituted alkyl is heterocycle(C1-C4)alkyl, which is a straight or branched alkyl chain having from one to four carbon atoms with a heterocycle attached to it. Exemplary heterocycle(C1-C4)alkyls include pyrrolylmethyl, quinolinylmethyl, 1-indolylethyl, 2-furylethyl, 3-thien-2-ylpropyl, 1-imidazolylisopropyl, 4-thiazolylbutyl and the like.
- Yet another substituted alkyl is aryl(C1-C4)alkyl, which is a straight or branched alkyl chain having from one to four carbon atoms with an aryl group attached to it. Exemplary aryl(C1-C4)alkyl groups include phenylmethyl, 2-phenylethyl, 3-naphthyl-propyl, 1-naphthylisopropyl, 4-phenylbutyl and the like.
- The heterocycloalkyls and the heteroaryls can, for example, be substituted with 1, 2 or 3 substituents independently selected from halo, halo(C1-C4)alkyl, C1-C4 alkyl, C1-C4 alkoxy, carboxy, C1-C4 alkoxycarbonyl, carbamoyl, —(C1-C4)alkylcarbamoyl, amino, C1-C4 alkylamino, di(C1-C4)alkylamino or a group having the structure —(CH2)a—R7 where a is 1, 2, 3 or 4 and R7 is hydroxy, C1-C4 alkoxy, carboxy, C1-C4 alkoxycarbonyl, amino, carbamoyl, C1-C4 alkylamino or di(C1-C4)alkylamino.
- Examples of substituted heterocycloalkyls include, but are not limited to, 3-N-t-butyl carboxamide decahydroisoquinolinyl and 6-N-t-butyl carboxamide octahydro-thieno[3,2-c]pyridinyl. Examples of substituted heteroaryls include, but are not limited to, 3-methylimidazolyl, 3-methoxypyridyl, 4-chloroquinolinyl, 4-aminothiazolyl, 8-methylquinolinyl, 6-chloroquinoxalinyl, 3-ethylpyridyl, 6-methoxybenzimidazolyl, 4-hydroxyfuryl, 4-methylisoquinolinyl, 6,8-dibromoquinolinyl, 4,8-dimethylnaphthyl, 2-methyl-1,2,3,4-tetrahydroisoquinolinyl, N-methyl-quinolin-2-yl, 2-tibutoxycarbonyl-1,2,3,4-isoquinolin-7-yl and the like.
- A “pharmaceutically acceptable solvate” is intended to mean a solvate that retains the biological effectiveness and properties of the biologically active components of the inventive compounds. Examples of pharmaceutically acceptable solvates include, but are not limited to, compounds prepared using water, isopropanol, ethanol, DMSO, and other excipients generally referred to as GRAS ingredients.
- In the case of solid formulations, it is understood that the compounds of the invention may exist in different polymorph forms, such as stable and metastable crystalline forms and isotropic and amorphous forms, all of which are intended to be within the scope of the present invention.
- A “pharmaceutically acceptable salt” is intended to mean those salts that retain the biological effectiveness and properties of the free acids and bases and that are not biologically or otherwise undesirable. Examples of pharmaceutically acceptable salts include, but are not limited to, sulfates, pyrosulfates, bisulfates, sulfites, bisulfites, phosphates, monohydrogen phosphates, dihydrogen phosphates, metaphosphates, pyrophosphates, chlorides, bromides, iodides, acetates, propionates, citrates, decanoates, caprylates, acrylates, formates, isobutyrates, caproates, heptanoates, propiolates, oxalates, malonates, succinates, suberates, sebacates, fumarates, maleates, butyne-1,4-dioates, hexyne-1,6-dioates, benzoates, chlorobenzoates, methylbenzoates, dinitrobenzoates, hydroxybenzoates, methoxybenzoates, phthalates, sulfonates, xylenesulfonates, phenylacetates, phenyl propionates, phenyl butyrates, citrates, lactates, hydroxybutyrates, glycolates, tartrates, methanesulfoantes, propanesulfonates, naphthalene-1-sulfonates, naphthalene-2-sulfonates, and mandelates.
- If a compound of the present invention is a base, the desired salt may be prepared by any suitable method known to the art, including treatment of the free base with an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, or with an organic acid, such as acetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, salicylic acid, pyranosidyl acids such as glucuronic acid and galacturonic acid, alpha-hyrodoxy acids such as citric acid and tartaric acid, amino acids such as aspartic acid and glutamic acid, aromatic acids such as benzoic acid and cinnamic acid, sulfonic acids such as p-toluenesulfonic acid or ethanesulfonic acid, or the like.
- If a compound of the present invention is an acid, the desired salt may be prepared by any suitable method known to the art, including treatment of the free acid with an inorganic or organic base, such as an amine (primary, secondary or tertiary), or an alkali metal or alkaline earth metal hydroxide or the like. Illustrative examples of suitable salts include organic salts derived from amino acids such as glycine and arginine; ammonia; primary, secondary and tertiary amines; cyclic amines such as piperidine, morpholine and piperazine; and inorganic salts derived from sodium, calcium, potassium, magnesium, manganese, iron, copper, zinc, aluminum, and lithium.
- In the following synthetic examples silica gel 60 (230-400 mesh) was used for column chromatography. Analytical thin layer chromatography was performed on Merck 60 F254 silica gel (precoated on aluminum). All compounds were analyzed by1H NMR, UV and characterized by mass spectrometry (MS). 1H spectra were recorded using a Unity Inova Varian 500 MHz spectrometer. Electronic spectra were recorded on a Beckman DU 640 spectrophotometer. High resolution mass spectra were obtained on a VG 70SE double focussing mass spectrometer equipped with an oversize data system.
- 2-Desvinyl-2-hydroxymethyl pyropheophorbide methyl ester (pyr, R═H) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (25 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). Hexyl amine (0.5 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was diluted with CH2Cl2 (25 ml) and washed with 1N HCl (1×50 ml) followed by 10% aq. NaHCO3 (1×50 ml) and water (1×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was eluted using 4% acetone/CH2Cl2 and then crystallized from CH2Cl2/Isopropyl ether/hexane. Yield of compound (1)=90 mg.
- 2-Desvinyl-2-hydroxymethyl pyropheophorbide methyl ester (pyr, R=H) (250 mg) was stirred with CDl (150 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 3-Amino-1-propanol (1.5 ml) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2/MeOH/Ether. Yield of compound (2)=250 mg.
- 2-Desvinyl-2-hydroxymethyl pyropheophorbide methyl ester (pyr, R═H) (150 mg) was stirred with CDl (100 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 2-(2-Aminoethoxy)ethanol (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 10% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (3)=143 mg.
- 2-Desvinyl-2-hydroxymethyl pyropheophorbide methyl ester (pyr, R=H) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (10 ml) and in the presence of DMAP (10 mg) at room temperature until the reaction was complete (3 h). 2-Methoxy-ethylamine (0.5 ml) was then added to the solution and stirred for 4 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 2% acetone/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (4)=108 mg.
- 2-Desvinyl-2-hydroxymethyl pyropheophorbide methyl ester (pyr, R═H) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (20 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). N,N-Dimethylethylenediamine (0.5 ml) was then added to the solution and stirred for 4 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (5)=110 mg.
- 2-Desvinyl-1-hydroxy-1-ethyl pyropheophorbide methyl ester (pyr, R═CH3) (125 mg) was stirred with CDl (125 mg) in CH2Cl2 (25 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 3-Amino-1-propanol (0.5 ml) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 7% MeOH/CH2Cl2 and crystallized from CH2Cl2/ether/hexane. Yield of compound (6)=90 mg.
- 2-Desvinyl-2-hydroxymethyl pyrropheophorbide methyl ester (pyr, R═H) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (20 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 1,1,3,3-Tetramethylguanidine (0.5 ml) was then added to the solution and stirred for 24 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2 /hexane. Yield of compound (7)=67 mg.
- 2-Desvinyl-2-(1-hydroxyethyl)pyrropheophorbide methyl ester (pyr, R═H) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (20 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 1,1,3,3-Tetramethylguanidine (0.5 ml) was then added to the solution and stirred for 24 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (8)=70 mg.
- 9-Desoxo-9-hydroxy pyrropheophorbide methyl ester (Rpheo, M=2H) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (20 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 3-Aminopropanol (0.5 ml) was then added to the solution and stirred for 24 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2 /hexane. Yield of compound (9)=72 mg.
- 9-Desoxo-9-hydroxy pyrropheophorbide methyl ester (Rpheo, M=2H) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (20 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). Hexylamine (0.5 ml) was then added to the solution and stirred for 24 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried, and evaporated to dryness. The residue was purified by column chromatography on silica gel. The major fraction was isolated using 5% MeOH/ CH2Cl2 and evaporated to dryness. The free base hexyl carbamate (72 mg) was dissolved in chloroform (20 mL) and a solution of zinc chloride (50 mg) in methanol (2.0 mL) was added. The solution was warmed at 65° C. for 1 hr and then cooled to room temperature. The organic layer was washed well with water and collected and dried over sodium sulfate. The solution was filtered and evaporated to dryness. The product was crystallized from CH2Cl2/hexane. Yield of compound (10)=70 mg.
- Pyrropheophorbide (300 mg) was dissolved in dichloromethane (50 mL) and tetrahydrofuran (50 mL) and triethylamine added (0.3 mL). The solution was cooled to O° C. in an ice bath. Ethyl chloroformate (0.3 mL) was added and the solution stirred for 1 hr at room temperature. 3-aminopropylalcohol (1 ml) was added and the reaction closely monitored by TLC (5% acetone/dichloromethane). When deemed complete the reaction was poured into water (100 mL) and the organic phase separated and rotoevaporated. The residue was chromatographed on silica using 2% methanol/dichloromethane as eluent and the major grey fraction collected. The organic layer was removed by rotoevaporation and the product precipitated from dichloromethane/methanol. Yield of compound (11)=289 mg.
- Pyrropheophorbide (300 mg) was dissolved in dichloromethane (50 mL) and tetrahydrofuran (50 mL) and triethylamine added (0.3 mL). The solution was cooled to O° C. in an ice bath. Ethyl chloroformate (0.3 mL) was added and the solution stirred for 1 hr at room temperature. 2-(2-Aminoethoxy)ethanol (1.0 ml) was added and the reaction closely monitored by TLC (5% acetone/dichloromethane). When deemed complete the reaction was poured into water (100 mL) and the organic phase separated and rotoevaporated. The residue was chromatographed on silica using 2% methanol/dichloromethane as eluent and the major grey fraction collected. The organic layer was removed by rotoevaporation and the product precipitated from dichloromethane/hexane. Yield of title compound (12)=292 mg.
- Compound (11) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (20 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete. Diethanolamine (0.5 ml) was then added to the solution and stirred for 24 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (13)=72 mg.
- Compound (11) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (20 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete. Aspartic acid di-t-Butyl ester (500 mg) was then added to the solution and stirred for 24 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (14)=92 mg.
- Compound (11) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (20 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete. Glycine t-butyl ester (500 mg) was then added to the solution and stirred for 24 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The required product was isolated using 5% MeOH/ CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (15)=90 mg.
- Compound (12) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (20 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete. 3-Aminopropanol (0.5 mL) was then added to the solution and stirred for 24 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (16)=90 mg.
- Methyl 3-hydroxymethyl pyrropheophorbide (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (20 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete. 3-Aminopropanol (0.5 mL) was then added to the solution and stirred for 24 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (17)=90 mg.
- Methyl 3-hydroxymethyl pyrropheophorbide (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (20 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete. 2-(2-Aminoethoxy)ethanol (0.5 mL) was then added to the solution and stirred for 24 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2 /hexane. Yield of compound (18)=92 mg.
- Methyl 3-hydroxymethyl pyrropheophorbide (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (20 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete. N,N-Dimethylaminoethylamine (0.5 mL) was then added to the solution and stirred for 24 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2 /hexane. Yield of compound (19)=92 mg.
- 2-Desvinyl-1-hydroxymethyl chlorin e6 tri-methyl ester (Ce6, R═H) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (25 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). Hexyl amine (0.5 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was diluted with CH2Cl2 (25 ml) and washed with 1N HCl (1×50 ml) followed by 10% aq. NaHCO3 (1×50 ml) and water (1×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was eluted using 4% acetone/ CH2Cl2 and was then crystallized from CH2Cl2/isopropyl ether/hexane. Yield of compound (20)=85 mg.
- 2-Desvinyl-2-hydroxymethyl chlorin e6 tri-methyl ester (Ce6, R═H) (150 mg) was stirred with CDl (150 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 3-Amino-1-propanol (1.5 ml) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/ CH2Cl2 and crystallized from CH2Cl2/MeOH/ether. Yield of compound (21)=150 mg.
- 2-Desvinyl-2-(1-hydroxymethyl) chlorin e6 tri-methyl ester (Ce6, R═H) (150 mg) was stirred with CDl (100 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 2-(2-Aminoethoxy)ethanol (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 10% MeOH/CH2CH 2 and crystallized from CH2Cl2/hexane. Yield of compound (22)=133 mg.
- 2-Desvinyl-2-(1-hydroxymethyl) chlorin e6 tri-methyl ester (Ce6, R═H) (100 mg) was stirred with CDl (50 mg) in CH2Cl2 (10 ml) and in the presence of DMAP (10 mg) at room temperature until the reaction was complete (3 h). 2-Methoxy-ethylamine (0.5 ml) was then added to the solution and stirred for 4 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 2% acetone/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (23)=110 mg.
- 2-Desvinyl-2-(1-hydroxymethyl) chlorin e6 tri-methyl ester (Ce6, R═H) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (20 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). N,N-Dimethylethylenediamine (0.5 ml) was then added to the solution and stirred for 4 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (24)=102 mg.
- 2-Desvinyl-2-(1-hydroxyethyl) chlorin e6 tri-methyl ester (Ce6, R═CH3) (125 mg) was stirred with CDl (125 mg) in CH2Cl2 (25 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 3-Amino-1-propanol (0.5 ml) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 7% MeOH/CH2Cl2 and crystallized from CH2Cl2/ether/hexane. Yield of compound (25)=84 mg.
- Compound Chl (150 mg) (derived from the ring opening reaction of methyl pheophorbide and 2-(2-aminoethoxy)ethanol) was stirred with CDl (100 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 2-(2-Aminoethoxy)ethanol (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 10% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (26)=133 mg.
- 9-Desoxo-9-hydroxy benzoporphyrin (Bp) (125 mg) was stirred with CDl (125 mg) in CH2Cl2 (25 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 3-Amino-1-propanol (0.5 ml) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 7% MeOH/CH2Cl2 and crystallized from CH2Cl2/ether/hexane. Yield of compound (27)=84 mg.
- 9-Desoxo-9-hydroxy benzoporphyrin (Bp) (125 mg) was stirred with CDl (125 mg) in CH2Cl2 (25 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 3-Amino-1-propanol (0.5 ml) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 7% MeOH/CH2Cl2 and crystallized from CH2Cl2/ether/hexane. Yield of compound (28)=84 mg.
- 4-(1-Hydroxyethyl)-benzoporphyrin tetramethyl ester (Ring A isomer) (Scheme 16) (125 mg) was stirred with CDl (125 mg) in CH2Cl2 (25 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 3-Amino-1-propanol (0.5 ml) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 7% MeOH/CH2Cl2 and crystallized from CH2Cl2/ether/hexane. Yield of compound (29)=90 mg.
- 4-(1-Hydroxyethyl)-benzoporphyrin tetramethyl ester (Ring A isomer) (Scheme 16) (125 mg) was stirred with CDl (125 mg) in CH2Cl2 (25 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 2-(2-aminoethoxy)ethanol (0.5 ml) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 7% MeOH/CH2Cl2 and crystallized from CH2Cl2/ether/hexane. Yield of compound (30)=100 mg.
- IBc (150 mg, M=2H, R1, R2═H (Scheme 17)) was stirred with CDl (400 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (70 mg) at room temperature until the reaction was complete. 3-Amino-1-propanol (1.5 ml) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2/MeOH/ether. Yield of compound (31)=127 mg.
- IBc (150 mg, M=2H, R1, R2=bond (Scheme 17)) was stirred with CDl (400 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (70 mg) at room temperature until the reaction was complete. 3-Amino-1-propanol (1.5 ml) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2/MeOH/ether. Yield of compound (32)=117 mg.
- The benzochlorin triol (Scheme 18,150 mg) was stirred with CDl (400 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (70 mg) at room temperature until the reaction was complete. 3-Amino-1-propanol (1.5 ml) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2/MeOH/ether. Yield of compound (33)=110 mg.
- Sulfonyl chloride octaethylbenzochlorin (150 mg) was dissolved in dichloromethane (20 mL) and 3-aminopropanol (0.3 mL) was added. The solution was stirred for 1 hr and methanol (20 mL) was added. The dichloromethane was removed by rotary evaporation and the precipitated benzochlorin filtered. The solid was dissolved in chloroform (20 mL) and a solution of zinc acatate (200 mg) in methanol (5 mL) was added. The solution was refluxed for 30 min and evaporated to dryness. The crude zinc benzochlorin was rapidly chromatographed on silica, eluting with 2% methanol/dichloromethane and the major green fraction collected, evaporated and dried. The hydroxypropylsulfonylamide zinc octaethylbenzochlorin (34) (200 mg) was stirred with CDl (400 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (70 mg) at room temperature until the reaction was complete. 3-Amino-1-propanol (1.5 ml) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2 /MeOH. Yield of compound (36)=220 mg.
- Sulfonyl chloride octaethylbenzochlorin (150 mg) was dissolved in dichloromethane (20 mL) and diethanolamine (0.3 mL) was added. The solution was stirred for 1 hr and methanol (20 mL) added. The dichloromethane was removed by rotary evaporation and the precipitated benzochlorin filtered. The solid was dissolved in chloroform (20 mL) and a solution of zinc acetate (200 mg) in methanol (5 mL) was added. The solution was refluxed for 30 min and evaporated to dryness. The crude zinc benzochlorin was rapidly chromatographed on silica, eluting with 2% methanol/dichloromethane and the major green fraction collected, evaporated and dried. The diethanolsulfonylamide zinc octaethylbenzochlorin (35) (204 mg) was stirred with CDl (400 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (70 mg) at room temperature until the reaction was complete. 1,1′,3,3′-tetramethylguanidine (0.5 g) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2/MeOH. Yield of compound (37)=218 mg.
- 2-Desvinyl-1-hydroxyethyl purpurin 18 hexylimide methyl ester (Pim, R═CH3) (100 mg) was stirred with CDl (100 mg) in CH2Cl2 (25 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). Hexylamine (0.5 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was diluted with CH2Cl2 (25 ml) and washed with 1N HCl (1×50 ml) followed by 10% aq. NaHCO3 (1×50 ml) and water (1×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was eluted using 5% acetone/CH2Cl2 and then crystallized from CH2Cl2/hexane. Yield of compound (38)=92 mg.
- 2-Desvinyl-2-(1-hydroxymethyl) purpurin 18 hexylimide methyl ester (Pim, R═CH3) (150 mg) was stirred with CDl (150 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 3-Amino-1-propanol (1.5 ml) was then added to the solution and stirred overnight at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 5% MeOH/CH2Cl2 and crystallized from CH2Cl2/MeOH/ether. Yield of compound (39)=147 mg.
- 2-Desvinyl-2-(1-hydroxymethyl) purpurin 18 hexylimide methyl ester (Pim, R═CH3) (150 mg) was stirred with CDl (150 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 2-(2-Aminoethoxy)ethanol (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 10% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (40)=143 mg.
- 2-Desvinyl-2-(1-hydroxymethyl) purpurin 18 hexylimide methyl ester (Pim, R═H) (150 mg) was stirred with CDl (150 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). 3-Aminopropanol (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 10% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (41)=139 mg.
- 2-Desvinyl-2-(1-hydroxymethyl) purpurin 18 hexylimide methyl ester (Pim, R═CH3) (150 mg) was stirred with CDl (150 mg) in CH2Cl2 (50 ml) and in the presence of DMAP (25 mg) at room temperature until the reaction was complete (3 h). N,N-Dimethylaminoethylamine (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 10% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (42)=147 mg.
- Purpurin 18 hexylimide methyl ester (300 mg) was dissolved in THF (100 mL) and a solution of KOH (500 mg) in water (10 mL) added dropwise. The solution was stirred for 3 hours at room temperature after which time the ester had hydrolysed. The solution was rotary evaporated to remove the THF and water (5 mL) was added. Acetic acid was added dropwise until a thick precipitate occurred. This was filtered and dried overnight in a vacuum oven at 60° C. The purpurin 18 hexylimide propionic acid (230 mg) was dissolved in dichloromethane (50 mL) and tetrahydrofuran (50 mL) and triethylamine was added (0.3 mL). The solution was cooled to O° C. in an ice bath. Ethyl chloroformate (0.3 mL) was added and the solution stirred for 1 hr at room temperature. 3-Aminopropanol (0.5 mL) was added and the reaction closely monitored by TLC (5% acetone/dichloromethane). When deemed complete the reaction was poured into water (100 mL) and the organic phase separated and rotoevaporated. The residue was chromatographed on silica using 2% methanol dichloromethane as eluent and the major brown fraction collected. The organic layer was removed by rotoevaporation and the product (PimA) was precipitated from dichloromethane/hexane. Yield=230 mg. PimA (230 mg) was dissolved in dichloromethane (50 mL) and CDl (150 mg) and DMAP (25 mg) added at room temperature. The solution was stirred until the reaction was complete (3 h). 2-(2-Aminoethoxy)ethanol (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 10% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (43)=180 mg.
- PimA (230 mg) produced as described in the synthesis of compound (43) was dissolved in dichloromethane (50 mL) and CDl (150 mg) and DMAP (25 mg) added at room temperature. The solution was stirred until the reaction was complete (3 h). 3-Aminopropanol (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 7% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (44)=190 mg.
- PimA (230 mg) produced as described in the synthesis of compound (43) was dissolved in dichloromethane (50 mL) and CDl (150 mg) and DMAP (25 mg) added at room temperature. The solution was stirred until the reaction was complete (3 h). N,N-dimethylaminoethylamine (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 11% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (45)=192 mg.
- Hematoporphyrin dimethyl ester (200 mg) was dissolved in dichloromethane (50 mL) and CDl (200 mg) and DMAP (25 mg) added at room temperature. The solution was stirred until the reaction was complete (3 h). 2-(2-Aminoethoxy)ethanol (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 7% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (46)=190 mg.
- Hematoporphyrin dimethyl ester (200 mg) was dissolved in dichloromethane (50 mL) and CDl (200 mg) and DMAP (25 mg) added at room temperature. The solution was stirred until the reaction was complete (3 h). 3-Aminopropanol (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 7% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (47)=199 mg.
- Hematoporphyrin dimethyl ester (200 mg) was dissolved in dichloromethane (50 mL) and CDl (200 mg) and DMAP (25 mg) added at room temperature. The solution was stirred until the reaction was complete (3 h). N,N-dimethylaminoethylamine (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 11% MeOH/CH2Cl2/0.5% triethylamine and crystallized from CH2Cl2/hexane. Yield of compound (48)=155 mg.
- 2,4-Diethyl-1,3,5,8-tetraethyl-6,7-bis(3-hydroxypropan-1-yl)porphine (100 mg) was dissolved in dichloromethane (50 mL) and CDl (200 mg) and DMAP (25 mg) added at room temperature. The solution was stirred until the reaction was complete (3 h). 2-(2-Aminoethoxy)ethanol (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The product was isolated using 7% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (49)=107 mg.
- 2,4-Diethyl-1,3,5,8-tetraethyl-6,7-bis(3-hydroxypropan-1-yl)porphine (100 mg) was dissolved in dichloromethane (50 mL) and CDl (200 mg) and DMAP (25 mg) added at room temperature. The solution was stirred until the reaction was complete (3 h). 3-Aminopropanol (1.0 ml) was then added to the solution and stirred for 6 h at room temperature. The reaction mixture was washed with water (2×50 ml), dried and evaporated to dryness. The residue was purified by column chromatography on silica gel. The required product was isolated using 7% MeOH/CH2Cl2 and crystallized from CH2Cl2/hexane. Yield of compound (50)=100 mg.
- The carbamate compounds were formulated in egg yolk phosphatidyl choline (EYP) and phosphate buffered saline (PBS) (pH 7.4). These were sterilized by filtration through a 0.2-micron nylon filter and determined to be stable for at least several weeks following formulation by HPLC. Five Sprague-Dawley rats with subcutaneous chondrosarcoma tumors in the flank of a certain volume (150-250 mm3) were injected intravenously with various drugs at various doses. Three hours after the injection the tumors were exposed to 664-nm light at light doses of 125 J/cm2 or 200 J/cm2. The end point of the study was the observation of tumor regrowth (averaged over the animals) following the treatment.
- Table 2 illustrates the results for the best drug and light doses that were tested in the above system and are compared with the well known photosensitizer SnET2 under optimal conditions (24 hrs post drug administration).
TABLE 2 Chondrosarcoma tumor growth delay for the carbamate macrocycles. Drug Dose Drug tested (μmol/kg) Light Dose (J/cm2) Days (regrowth) (13) 1.5 125 14 (3) 1.5 125 10 (6) 0.75 125 11 (7) 1.0 125 23 (4) 1.0 125 4/5 cured SnET2 2.0 125 13 - The data clearly demonstrates that in the above tumor model the compounds of the present invention at comparable drug doses are equivalent or more effective than SnET2 in delaying tumor growth in rats.
- Corneal neovessels were experimentally induced in Sprague Dawley rats with an N-heptanol chemical scrub. The chemical scrub was used to remove the corneal epithelium and stem cells, allowing the neovessels to grow across the entire cornea. PDT was performed at approximately 3 weeks after the chemical scrub when the neovessels formed a uniform network across the cornea. The PDT treatment was applied to the corneal surface with a laser wavelength that was optimized for the given absorption spectrum.
- The laser energy was coupled through a slit lamp biomicroscope with a slit lamp adapter. A 3.0 mm spot size was used (Area=7.07 mm2). The light dose delivered was varied from 5-25 J/cm2. The efficacy of neovessel closure was evaluated by measuring the area of treated cornea that remained neovessel-free out to 28 days following PDT. Accurate area measurements were taken using fluorescein angiography and measuring the area of neovessel-free cornea. Absence of fluorescein leakage in the treatment area demonstrated closure of the neovessels. The dosimetry and results of selected carbamate molecules in this model are summarized in Table 3.
TABLE 3 A summary of the optimal drug dose and time interval for PDT treatment of corneal neovessels induced by an n-heptanol scrub. The light dose was 20 J/cm2 at the corresponding wavelength for optimal excitation of each photosensitizer. Extent of Time neovessel Extent of Interval of closure at days neovessel Excitation treatment 1-21 after closure at 28 Wavelength Drug Dose post dose treatment days after Molecule (nm) (μmoles/kg) (min) 1 7 14 21 treatment Visudyne 689 1.4 15 4 1 0 0 0 (2) 664 1.0 10 5 5 2 1 0 (3) 664 1.5 15 5 4 3 2 2 (6) 664 1.0 10 5 4 4 4 4 (7) 664 1.0 10 5 3 2 2 1 (5) 664 0.5 10 5 3 2 2 2 (1) 664 1.0 10 4 1 1 1 0 - The data demonstrates that several of the compounds of the present invention are more effective at sustaining neovessel shut down in the eye of rats compared to Visudyne (Vertoporfin), which is the current treatment for age related macular degeneration in photodynamic therapy.
- Selected carbamate molecules were also evaluated in a normal choriocapillaris model in the pigmented rabbit. This model used the choriocapillaris as a surrogate for neovasculature to demonstrate PDT efficacy and longevity of vessel closure in the posterior segment of the eye (G. A. Peyman, D. M. Moshfeghi, A. M. Moshfeghi, B. Khoobehi, D. R. Doiron, G. B. Primbs, D. H. Crean, “Photodynamic Therapy for Choriocapillaris Using Tin Ethyletiopurpurin (SnET2)”, Ophthalmic Surg Lasers, 1997, 28:409417).
- The selected photosensitizers were administered intravenously at varying drug doses, the light dose was set constant at 20 J/cm2, and the time interval was varied from 5-30 minutes between drug and light administration. Two PDT treatment areas were placed on the fundus of each eye in each rabbit. Fluorescein angiography was used to evaluate vessel closure following PDT out to 28 days. The dosimetry and efficacy results of these molecules are summarized in Table 4.
TABLE 4 Optimal dosimetry and results summarizing the closure of the choriocapillaris at 28 days following PDT. The light dose for all treatments was 20 J/cm2. The data is an average for five rabbits. Drug Dose Time Interval Closure at 28 Molecule (μmoles/kg) (min) Days= Visudyne 1.4 5-10 4 (3) 2.5 5-30 4 (6) 1.0 5-30 4 (7) 1.5 5-30 3 (5) 0.75 5-30 3 - Three of the carbamate molecules, (3), (6), and (7), were evaluated in a laser-induced choroidal neovascularization model in rats. Laser photocoagulation was used to stimulate choroidal neovessel growth on the fundus of the rat (E. T. Dobi, C. Puliafito, M. A. Destro, “A new model of experimental choroidal neovascularization in the rat”, Arch. Ophthalmol. 1989; 107: 264-269). The PDT treatments were performed approximately 3 weeks after the laser photocoagulation, which was when the choroidal neovasculariztion lesioris were fully developed. The lesions were PDT treated using a 0.5 mm spot that covered the entire CNV lesion. Fluorescein angiography and histopathology were used to evaluate the CNV closure. Initial flush of the fluorescein angiography showed that molecules (3) and (6) (2.0 μmoles/kg, 10-20 minutes post injection) closed the CNV lesion at 7 days after PDT. Molecule (7) (1.5 & 3.0 μmoles/kg, 10-20 minutes post injection) also demonstrated CNV closure at 7 days post PDT based on fluorescein angiography. Fluorescein angiography of (7) at 28 days following PDT showed closure of the CNV at 10-40 minute intervals for 3.0 μmoles/kg. In comparison, Visudyne also showed CNV closure at 7 days post treatment at a drug dose of 1.4 μmoles/kg, with light treatment 10-20 minutes post injection.
- In summary, the pharmacological properties of the novel compounds according to the invention are substantially different from those of existing photosensitizers described to date in the literature. In particular, the compounds investigated possess the following properties.
- (I) They are distributed and localized in ophthalmic neovessels and other diseased tissues following injection.
- (II) They are activated at wavelengths of 300-900 nm to cause selective biological effects in the target tissue.
- (III) Following light activation, they cause significant sustained neovessel closure of occular neovessels.
- (IV) They demonstrate short periods of normal skin photosensitivity in rats (1-6 hrs)
- (V) They are metabolized rapidly in vivo to less photoactive compounds.
- (VI) Metabolism of peripheral ester groups is enhanced by the addition of the carbamate moiety.
- (VII) They are stable in formulations for at least several weeks, which lends itself well to lyophilization technology if required.
- (VIII) They are effective at causing therapeutically significant neovessel closure in advanced ophthalmic animal model systems with efficacy equal to or greater than the currently approved ophthalmic photosensitizer.
Claims (95)
1. Compounds of formula I:
wherein:
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, and R14 are independently selected from the group consisting of:
H, halogen, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, CH═CHCH2N+(CH3)3A, CH═N(alkyl)2 +A, N(alkyl)3 +A, CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)O-aryl, CH(CH3)NH-alkyl, CH(CH3)NH-cycloalkyl, CH(CH3)NH-heteroalkyl, CH(CH3)NH-heteroalkoxy, CH(CH3)-(amino acid), CH(CH3)-(amino acid ester), CH(CH3)-(amino acid amide), C(X)2C(X)3, and CH═NR15, where X is selected from H and halogen, R15 is selected from OH, O-alkyl, O-ether, O-alkylamino, NHCOCH2N(CH3)2, NHCOCH2N(CH3)3 +A, NHCOCH2-(pyridinium)+A, (CH2)nO-alkoxy, and
CO2R16, where R16 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons;
(CH2)nOH and (CH2)nOR17, where R17 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
(CH2)nCO2R18, (CHX)nCO2R18, and (CX2)nCO2R18, where X is selected from OH, OR19, and a halogen, and R18 and R19 are independently selected from H, a physiologically acceptable counter ion, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
CONH(R20), CONHNH(R20), CO(R20), CON(R20)2, CON(R20)(R21) (CH2)nCONH(R20), (CH2)nCON(R20)2, (CH2)nCOR20, (CH2)nCON(R20)(R21), (CX2)nCONH(R20), (CX2)nCON(R20)2, (CX2)nCON(R20)(R21), (CX2)nCOR20, (CH2)nCONHNH(R20), (CX2)nCONHNH(R20), (CHX)nCONH(R20), (CHX)nCONHNH(R20), (CHX)nCO(R2O), (CHX)nCON(R20)2, and (CHX)nCON(R20)(R21), where X is selected from OH, OR22, SR22, and a halogen, and R20, R21 and R22 are independently selected from H, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 1 to 4;
S(R23), CH(CH3)S(R23), (CH2)nS(R23), (CH2)nNH(R23), (CH2)nNHNH(R23), (CH2)nN(R23)2, (CH2)nN(R23)(R24), (CH2)nN(R23)(R24)(R25)+A, CH═N(R23), CH═NN(R23)(R24), and amino acids containing —NH(R23) or —N(R23)(R24), where R23, R24 and R25 are independently selected from H, OH, O-alkyl, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 109,000 daltons, where R23, R24 and R25 together may possess the atoms necessary to constitute an aromatic ring system, n is an integer ranging from 0 to 4, and A is a physiologically acceptable counter ion;
(CH2)nOPO(OR26)2 and (CH2)nPO(OR26)2, where R26 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
(CH2)nNHCOR27 and (CH2)nNHNHCOR27, where R27 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, and a functional group of less than about 100,000 daltons, and n is an integer ranging from between 0 to 4;
SO3R28, SO2NHR28, SO2N(R28)2, SO2NHNHR28, SO2R28, SO3R28, (CH2)nSO2NHR28, (CH2)nSO2N(R28)2, (CH2)nSO2NHNHR28, and (CH2)nSO2R28, where R28 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, where NHR28 can be an amino acid, an amino acid salt, an amino acid ester residue, or an amino acid amide residue, and n is an integer ranging from 0 to 4;
aryl and substituted aryl, which may bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
wherein:
R3 and R4 may form a bond;
R12 and R13 may form a bond;
R7 and R8 may form a ═O; and
R9 and R10 may form a ═O;
with the proviso that at least one of R1 through R28 is a functional group that comprises a carbamate of the formulae —OCON(R29)2, —OCON═C(R29)2, —OCONR29R30, or —OCON═C(R29)(R30), where R29 and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m((CH2)Q)OH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester residue, alkylsulfonic amide residue, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, where Q, n and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion; and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+;
or a pharmaceutically acceptable salt, prodrug, solvate, or metabolite thereof.
2. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 1 , together with at least one pharmaceutically acceptable carrier or excipient.
3. The pharmaceutical composition according to claim 2 used to treat ophthalmic diseases.
4. The pharmaceutical composition of claim 3 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
5. The pharmaceutical composition according to claim 2 used to treat cardiovascular diseases.
6. The pharmaceutical composition according to claim 2 used to treat skin diseases.
7. Compounds of formula II:
wherein:
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, and R16 are independently selected from the group consisting of:
H, halogen, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, CH═CHCH2N+(CH3)3A, CH═N(alkyl)2 +A, N(alkyl)3 +A, CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)O-aryl, CH(CH3)NH-alkyl, CH(CH3)NH-cycloalkyl, CH(CH3)NH-heteroalkyl, CH(CH3)NH-heteroalkoxy, CH(CH3)-(amino acid), CH(CH3)-(amino acid ester), CH(CH3)-(amino acid amide), C(X)2C(X)3, and CH═NR17, where X is selected from H and halogen, R17 is selected from OH, O-alkyl, O-ether, O-alkylamino, NHCOCH2N(CH3)2, NHCOCH2N(CH3)3 +A, NHCOCH2-(pyridinium)+A, (CH2)nO-alkoxy, and (CH2)nO-alkyl, n is an integer ranging from 0 to 8, and A is a physiologically acceptable charge balancing ion;
CO2R18, where R16 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons;
(CH2)nOH and (CH2)nOR19, where R19 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
(CH2)nCO2R20, (CHX)nCO2R20, and (CX2)nCO2R20, where X is selected from OH, OR21, and a halogen, and R20 and R21, are independently selected from H, a physiologically acceptable counter ion, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
CONH(R22), CONHNH(R22), CO(R22), CON(R22)2, CON(R22)(R23), (CH2)nCONH(R22), (CH2)nCON(R22)2, (CH2)nCOR22, (CH2)nCON(R22)(R23), (CX2)nCONH(R22), (CX2)nCON(R22)2, (CX2)nCO N(R22)(R23), (CX2)nCOR22, (CH2)nCONHNH(R22), (CX2)nCONHNH(R22), (CHX)nCONH(R22), (CHX)nCONHNH(R22), (CHX)nCO(R22), (CHX)nCON(R22)2, and (CHX)nCON(R22)(R23), where X is selected from OH, OR24, SR24, and a halogen, and R22, R23 and R24 are independently selected from H, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 1 to 4;
S(R25), CH(CH3)S(R25), (CH2)nS(R25), (CH2)nNH(R25), (CH2)nNHNH(R25), (CH2)nN(R25)2, (CH2)nN(R25)(R26), (CH2)nN(R25)(R26)(R27)+A, CH═N(R25), CH═NN(R25)(R26), and amino acids containing —NH(R25) or —N(R25)(R26), where R24, R26 and R27 are independently selected from H, OH, O-alkyl, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, where R25, R26 and R27 together may possess the atoms necessary to constitute an aromatic ring system, n is an integer ranging from 0 to 4, and A is a physiologically acceptable counter ion;
(CH2)nOPO(OR28)2 and (CH2)nPO(OR28)2, where R28 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
(CH2)nNHCOR29 and (CH2)nNHNHCOR29, where R29 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
SO3R30, SO2NHR30, SO2N(R30)2, SO2NHNHR30, SO2R30, SO3R30, (CH2)nSO2NHR30, (CH2)nSO2N(R30)2, (CH2)nSO2NHNHR30, and (CH2)nSO2R30, where R30 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, where NHR30 can be an amino acid, an amino acid salt, an amino acid ester residue or an amino acid amide residue, and n is an integer ranging from 0 to 4; and
aryl or substituted aryl, which may bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
wherein:
R3 and R4 may form a bond; and
R10and R11 may form a bond;
with the proviso that at least one of R1 through R30 is a functional group comprising a carbamate of the formulae —OCON(R29)2, —OCON═C(R29)2, —OCONR29R30, or —OCON═C(R29)(R30), where R29 and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m(CH2)QOH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN((CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester or alkylsulfonic amide reside, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, where Q, n, and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion; and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+;
or a pharmaceutically acceptable salt, prodrug, solvate, or metabolite thereof.
8. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 7 , together with at least one pharmaceutically acceptable carrier or excipient.
9. The pharmaceutical composition according to claim 8 used to treat ophthalmic diseases.
10. The pharmaceutical composition of claim 9 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
11. The pharmaceutical composition according to claim 8 used to treat cardiovascular diseases.
12. The pharmaceutical composition according to claim 8 used to treat skin diseases.
13. Compounds of formula IIIA and IIIB:
wherein:
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, and R19, are independently selected from the group consisting of:
H, halogen, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, CH═CHCH2N+(CH3)3A, CH═N(alkyl)2 +A, N(alkyl)3 +A, CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)O-aryl, CH(CH3)NH-alkyl, CH(CH3)NH-cycloalkyl, CH(CH3)NH-heteroalkyl, CH(CH3)NH-heteroalkoxy, CH(CH3)-(amino acid), CH(CH3)-(amino acid ester), CH(CH3)-(amino acid amide), C(X)2C(X)3, and CH═NR20, where X is selected from H and halogen, R20 is selected from OH, O-alkyl, O-ether, O-alkylamino, NHCOCH2N(CH3)2, NHCOCH2N(CH3)3 +A, NHCOCH2-(pyridinium)+A, (CH2)nO-alkoxy, and (CH2)nO-alkyl, n is an integer ranging from 0 to 8, and A is a physiologically acceptable charge balancing ion;
CO2R21, where R21 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons;
(CH2)nOH and (CH2)nOR22, where R22 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
(CH2)nCO2R23, (CHX)nCO2R23, and (CX2)nCO2R23, where X is selected from OH, OR24, and a halogen, and R23 and R24 are independently selected from H, a physiologically acceptable counter ion, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
CONH(R25), CONHNH(R25), CO(R25), CON(R25)2, CON(R25)(R26), (CH2)nCONH(R25), (CH2)nCON(R25)2, (CH2)nCOR25, (CH2)nCON(R25)(R26), (CX2)nCONH(R25), (CX2)nCON(R25)2, (CX2)nCON(R25)(R26), (CX2)nCOR25, (CH2)nCONHNH(R25), (CX2)nCONHNH(R25), (CHX)nCONH(R25), (CHX)nCONHNH(R25), (CHX)nCO(R25), (CHX)nCON(R25)2, and (CHX)nCON(R25)(R26), where X is selected from OH, OR27, SR27, and a halogen, and R25, R26 and R27 are independently selected from H, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 1 to 4; S(R 28), CH(CH3)S(R28), (CH2)nS(R28), (CH2)nNH(R28), (CH2)nNHNH(R28), (CH2)nN(R28)2, (CH2)nN(R28)(R29), (CH2)nN(R28)(R29)(R30)+A, CH═N(R28), CH═NN(R28)(R29), and amino acids containing-NH(R28) or —N(R28)(R29), where R28, R29 and R30 are independently selected from H, OH, O-alkyl, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 10,000 daltons, where R28, R29 and R30 together may possess the atoms necessary to constitute an aromatic ring system, n is an integer ranging from 0 to 4, and A is a physiologically acceptable counter ion;
(CH2)nOPO(OR31)2 and (CH2)nPO(OR31)2, where R31 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
(CH2)nNHCOR32 and (CH2)nNHNHCOR32, where R32 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
SO3R34, SO2NHR34, SO2N(R34)2, SO2NHNHR34, SO2R34, SO3R34, (CH2)nSO2NHR34, (CH2)nSO2N(R34)2, (CH2)nSO2NHNHR34, and (CH2)nSO2R34, where R34 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, where NHR34 can be an amino acid, an amino acid salt, an amino acid ester residue, or an amino acid amide residue, and n is an integer ranging from 1 to 4; and
aryl or substituted aryl, which may bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
wherein:
R14 and R15 may form a bond; and
R6 and R7 may form a ═O;
with the proviso that at least one of R1 through R34 is a functional group comprising a carbamate of the formulae —OCON(R35)2, —OCON═C(R35)2, —OCONR35R36, or —OCON═C(R35)(R36), where R35 and R36 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m(CH2)QOH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN((CH2)mN(CH3)3 +A)2, ((CH2)nO)m((CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester or alkylsulfonic amide reside, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, wherein Q, n and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion; and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+;
or a pharmaceutically acceptable salt, prodrug, solvate, or metabolite thereof.
14. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 13 , together with at least one pharmaceutically acceptable carrier or excipient.
15. The pharmaceutical composition according to claim 14 used to treat ophthalmic diseases.
16. The pharmaceutical composition of claim 15 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
17. The pharmaceutical composition according to claim 14 used to treat cardiovascular diseases.
18. The pharmaceutical composition according to claim 14 used to treat skin diseases.
19. Compounds of formulas IVA and IVB:
wherein:
R1, R2, R3, R4, R5 , R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, and R18, are independently selected from the group consisting of:
H, halogen, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, CH═CHCH2N+(CH3)3A, CH═N(alkyl)2+A, N(alkyl)3+A, CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)O-aryl, CH(CH3)NH-alkyl, CH(CH3)NH-cycloalkyl, CH(CH3)NH-heteroalkyl, CH(CH3)NH-heteroalkoxy, CH(CH3)-(amino acid), CH(CH3)-(amino acid ester), CH(CH3)-(amino acid amide), C(X)2C(X)3, and CH═NR19, where X is selected from H and halogen, R19 is selected from OH, O-alkyl, O-ether, O-alkylamino, NHCOCH2N(CH3)2, NHCOCH2N(CH3)3 +A, NHCOCH2-(pyridinium)+A, (CH2)nO-alkoxy, and (CH2)nO-alkyl, n is an integer ranging from 0 to 8, and A is a physiologically acceptable charge balancing ion;
CO2R20, where R20 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons;
(CH2)nOH and (CH2)nOR21, where R21 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
(CH2)nCO2R22, (CHX)nCO2R22, and (CX2)nCO2R22, where X is selected from OH, OR23, and a halogen, and R22 and R23 are independently selected from H, a physiologically acceptable counter ion, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
CONH(R24), CONHNH(R24), CO(R24), CON(R24)2, CON(R24)(R25), (CH2)nnCONH(R24), (CH2)nCON(R24)2, (CH2)nCOR24, (CH2)nCON(R24)(R25), (CX2)nCONH(R24), (CX2)nCON(R24)2, (CX2)nCON(R24)(R25), (CX2)nCOR24, (CH2)nCONHNH(R24), (CX2)nCONHNH(R24), (CHX)nCONH(R24), (CHX)nCONHNH(R24), (CHX)nCO(R24), (CHX)nCON(R24)2, and (CHX)nCON(R24)(R25), where X is selected from OH, OR26, SR26, and a halogen, and R24, R25 and R26 are independently selected from H, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 1 to 4;
S(R27), CH(CH3)S(R27), (CH2)nS(R27), (CH2)nNH(R27), (CH2)nNHNH(R27), (CH2)nN(R27)2, (CH2)nN(R27)(R28), (CH2)nN(R27)(R28)(R29)+A, CH═N(R27), CH═NN(R27)(R28), and amino acids containing —NH(R27) or —N(R27)(R28), where R27, R28 and R29 are independently selected from H, OH, O-alkyl, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, where R27, R28 and R29 together may possess the atoms necessary to constitute an aromatic ring system, n is an integer ranging from 0 to 4, and A is a physiologically acceptable counter ion;
(CH2)nOPO(OR30)2 and (CH2)nPO(OR30)2, where R30 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
(CH2)nNHCOR31 and (CH2)nNHNHCOR31, where R31 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
SO3R32, SO2NHR32, SO2N(R32)2, SO2NHNHR33, SO2R33, SO33R33, (CH2)nSO2NHR33, (CH2)nSO2N(R33)2, (CH2)nSO2NHNHR33, and (CH2)nSO2R33, where R33 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, where NHR33 can be an amino acid, an amino acid salt, an amino acid ester residue, or an amino acid amide residue, and n is an integer ranging from 1 to 4; and
aryl and substituted aryl, which may bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
wherein:
R10 and R13 may form a bond;
R6 and R7 may form a ═O; and
R8 and R9 may form a ═O;
with the proviso that at least one of R1 through R33 is a functional group that comprises a carbamate of the formulae —OCON(R34)2, —OCON═C(R34)2, —OCONR34R35 or —OCON═C(R34)(R35), where R34 and R35 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m(CH2)QOH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN((CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester or alkylsulfonic amide reside, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, where Q, n, and m are integers between 0 and 10,000, and A is physiologically acceptable counter ion; and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+;
or a pharmaceutically acceptable salt, prodrug, solvate, or metabolite thereof.
20. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 19 , together with at least one pharmaceutically acceptable carrier or excipient.
21. The pharmaceutical composition according to claim 20 used to treat ophthalmic diseases.
22. The pharmaceutical composition of claim 21 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
23. The pharmaceutical composition according to claim 20 used to treat cardiovascular diseases.
24. The pharmaceutical composition according to claim 20 used to treat skin diseases.
25. Compounds of formula V:
wherein:
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, and R16 are independently selected from the group consisting of:
H, halogen, substituted or unsubstituted C1-C20 alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cycloalkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy, aryloxy, haloalkoxy, amino, alkylcarbonyloxy, alkoxycarbonyl, aryloxycarbonyl, azo, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfonyl, silil, carbamoyl, heterocyclic, nitro, nitroso, formyloxy, isocyano, cyanate, isocyanate, thiocyanate, isothiocyanate, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, CH═CHCH2N+(CH3)3A, CH═N(alkyl)2 +A, N(alkyl)3 +A, CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)O-aryl, CH(CH3)NH-alkyl, CH(CH3)NH-cycloalkyl, CH(CH3)NH-heteroalkyl, CH(CH3)NH-heteroalkoxy, CH(CH3)-(amino acid), CH(CH3)-(amino acid ester), CH(CH3)-(amino acid amide), C(X)2C(X)3, and CH═NR17, where X is selected from H and halogen, R17 is selected from OH, O-alkyl, O-ether, O-alkylamino, NHCOCH2N(CH3)2, NHCOCH2N(CH3)3 +A, NHCOCH2-(pyridinium)+A, (CH2)nO-alkoxy, and (CH2)nO-alkyl, n is an integer ranging from 0 to 8, and A is a physiologically acceptable charge balancing ion;
CO2R18, where R18 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons;
(CH2)nOH and (CH2)nOR19, where R19 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
(CH2)nCO2R20, (CHX)nCO2R20, and (CX2)nCO2R20, where X is selected from OH, OR21, and a halogen, and R20 and R21 are independently selected from H, a physiologically acceptable counter ion, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 1 to 4;
CONH(R22), CONHNH(R22), CO(R22), CON(R22)2, CON(R22)(R23), (CH2)nCONH(R22), (CH2)nCON(R22)2, (CH2)nCOR22, (CH2)nCON(R22)(R23), (CX2)nCONH(R22), (CX2)nCON(R22)2, (CX2)nCON(R22)(R23), (CX2)nCOR22, (CH2)nCONHNH(R22), (CX2)nCONHNH(R22), (CHX)nCONH(R22), (CHX)nCONHNH(R22), (CHX)nCO(R22), (CHX)nCON(R22)2, and (CHX)nCON(R22)(R23), where X is selected from OH, OR24, SR24, and a halogen, and R22, R23 and R24 are independently selected from H, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 1 to 4;
S(R25), CH(CH3)S(R25), (CH2)nS(R25), (CH2)nNH(R25) (CH2)nNHNH(R25), (CH2)nN(R25)2, (CH2)nN(R25)(R26), (CH2)nN(R25)(R26)(R27)+A, CH═N(R25), CH═NN(R25)(R26), and amino acids containing —NH(R25) or —N(R25)(R26), where R25, R26 and R27 are independently selected from H, OH, O-alkyl, NH2, acetyl, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or pplyetheraryl residue, and a functional group of less than about 100,000 daltons, where R25, R26 and R27 may together possess the atoms necessary to constitute an aromatic ring system, n is an integer ranging from 0 to 4, and A is a physiologically acceptable counter ion;
(CH2)nOPO(OR28)2 and (CH2)nPO(OR28)2, where R28 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
(CH2)nNHCOR29 and (CH2)nNHNHCOR29, where R29 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, and a functional group of less than about 100,000 daltons, and n is an integer ranging from 0 to 4;
SO3R30, SO2NHR30, SO2N(R30)2, SO2NHNHR30, SO2R30, SO3R30,
(CH2)nSO2NHR30, (CH2)nSO2N(R30)2, (CH2)nSO2NHNHR30, and (CH2)nSO2R30, where R30 is selected from H, OH, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group of less than about 100,000 daltons, where NHR30 can be an amino acid, an amino acid salt, an amino acid ester residue, or an amino acid amide residue, and n is an integer ranging from 0 to 4;
aryl and substituted aryl, which may bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
wherein:
R15 and R16 may form a bond;
R9 and R10 may form a bond;
R2 and R6 may independently be O or N(R31), where R31 is an alkyl;
X is selected from O and N(R32), where R32 is selected from alkyl, an amino acid, an amino acid ester, an amino acid amide, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m(CH2)QOH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)mN(CH3)3 +A, ((CH2)nO)m(CH2O)QCOCH3, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group that possesses a carbamate moiety of the formulae —OCON(R33)2, —OCON═C(R33)2, —OCONR33R34 or —OCON═C(R33)(R34), and a functional group having a molecular weight less than or equal to 100,000 daltons, where R33 and R34 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m(CH2)QOH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN((CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester, an alkylsulfonic amide reside, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, where A is a physiologically acceptable counter ion, and Q, n, and m are integers ranging from 0 to 10,000;
with the proviso that at least one of R1 through R30 is a functional group that comprises a carbamate of the formulae —OCON(R33)2, —OCON═C(R33)2, —OCONR33R34 or —OCON═C(R33)(R34); and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga 3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+;
or a pharmaceutically acceptable salt, prodrug, solvate, or metabolite thereof.
26. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 25 , together with at least one pharmaceutically acceptable carrier or excipient.
27. The pharmaceutical composition according to claim 26 used to treat ophthalmic diseases.
28. The pharmaceutical composition of claim 27 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
29. The pharmaceutical composition according to claim 25 used to treat cardiovascular diseases.
30. The pharmaceutical composition according to claim 25 used to treat skin diseases.
31. Compounds of the following formula:
wherein:
R1 is selected from (CH2)nOCON(R29)2, (CH2)nOCON═C(R29)2, (CH2)nOCONR29R30, (CH2)nOCON═C(R29)(R30), CH(OCON(R29)2)CH3, CH(OCON═C(R29)2)CH3, CH(OCONR29R30)CH3, and CH(OCON═C(R29)(R30))CH3, where R29 and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)MOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m((CH2)Q)OH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)nN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester residue, alkylsulfonic amide residue, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, where Q, n, and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion;
R9 and R14 are selected from H, methyl, and a halogen;
R15 is selected from NH2, NH3 +A, N(alkyl)2, N(alkyl3)3 +A, CO2R16, CONR16R17, an amino acid containing NR16R17, an amino acid ester containing NR16R17, and an amino acid amide containing NR16R17, where R16 and R17 are independently selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, and a mono-, di-, or polyhydroxyaryl residue, and A is a physiologically acceptable counter ion; and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+;
or a pharmaceutically acceptable salt, prodrug, solvate, or metabolite thereof.
32. A pharmaceutical composition comprising an effective, diagnostic or therapeutic amount of the compound of claim 31 , together,with at least one pharmaceutically acceptable carrier or excipient.
33. The pharmaceutical composition according to claim 32 used to treat ophthalmic diseases.
34. The pharmaceutical composition of claim 33 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
35. The pharmaceutical composition according to claim 32 used to treat cardiovascular diseases.
36. The pharmaceutical composition according to claim 32 used to treat skin diseases.
37. Compounds of the following formula:
wherein:
R1 is selected from H, CH3, CH2CH3, CH═CH2, CH2OH, CH2OAc, CH2O-alkyl, CH2O-alkoxy, CH═CHCH2N(CH3)2, CH═CHCH2N(CH3)3 +A−, COCH3, CHO, CH(OH)CH3, CH(O-alkyl)CH3, CH(O-alkoxy)CH3, CH2CH2O-alkyl, CH2CH2O-alkoxy, and CH2CH2OAc;
R7 is selected from OCON(R29)2, OCON═C(R29)2, OCONR29R30, and OCON═C(R29)(R30), where R29and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m((CH2)Q)OH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)mN(CH3)3 A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester residue, alkylsulfonic amide residue, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, where Q, n, and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion;
R14 is selected from H, methyl, and a halogen;
R9 and R15 are independently selected from NH2, NH3 +A, N(alkyl)2, N(alkyl3)3 +A, CO2R16, CONR16R17, an amino acid containing NR16R17, an amino acid ester containing NR16R17, and an amino acid amide containing NR16R17, where R16 and R17 are independently selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, and a mono-, di-, or polyhydroxyaryl residue, and A is a physiologically acceptable counter ion; and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+;
or a pharmaceutically acceptable salt, prodrug, solvate, or metabolite thereof.
38. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 37 , together with at least one pharmaceutically acceptable carrier or excipient.
39. The pharmaceutical composition according to claim 38 used to treat ophthalmic diseases.
40. The pharmaceutical composition of claim 39 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
41. The pharmaceutical composition according to claim 38 used to treat cardiovascular diseases.
42. The pharmaceutical composition according to claim 38 used to treat skin diseases.
43. Compounds of the following formula:
wherein:
R1 is selected from H, CH3, CH2CH3, CH═CH2, CH2OH, CH2OAc, CH2O-alkyl, CH2O-alkoxy, CH═CHCH2N(CH3)2, CH═CHCH2N(CH3)3 +A−, COCH3, CHO, CH(OH)CH3, CH(O-alkyl)CH3, CH(O-alkoxy)CH3, CH2CH2O-alkyl, CH2CH2O-alkoxy, and CH2CH2OAc, and A is a physiologically acceptable counter ion;
R9 and R15 are independently selected from NH2, NH3 +A, N(alkyl)2, N(alkyl3)3 +A, CO2R16, CONR16R17, CO2(CH2)nOCON(R29)2, CO2(CH2)nOCON═C(R29)2, CO2(CH2)nOCONR29R30, CO2(CH2)nOCON═C(R29)(R30), CONH(CH2)nOCON(R29)2, CONH(CH2)nOCON═C(R29)2, CONH(CH2)nOCONR29R30, CONH(CH2)nOCON═C(R29)(R30), an amino acid containing NR16R17, an amino acid ester containing NR16R17, and an amino acid amide containing NR16R17, where R16 and R17 are independently selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, and a mono-, di-, or polyhydroxyaryl residue, and where R29 and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m((CH2)Q)OH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester residue, alkylsulfonic amide residue, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, where Q, n, and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion, wherein at least one of R9 and R15 comprises a carbamate group;
R14 is selected from H, methyl, and a halogen; and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+;
or a pharmaceutically acceptable salt, prodrug, solvate, or metabolite thereof.
44. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 43 , together with at least one pharmaceutically acceptable carrier or excipient.
45. The pharmaceutical composition according to claim 44 used to treat ophthalmic diseases.
46. The pharmaceutical composition of claim 45 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction posterior capsule opacification and age related macular degeneration.
47. The pharmaceutical composition according to claim 44 used to treat cardiovascular diseases.
48. The pharmaceutical composition according to claim 44 used to treat skin diseases.
49. Compounds of the following formula:
wherein:
R1 is selected from (CH2)nOCON(R29)2, (CH2)nOCON═C(R29)2, (CH2)nOCONR29R30, (CH2)nOCON═C(R29)(R30), CH(OCON(R29)2)CH3, CH(OCON═C(R29)2)CH3, CH(OCONR29R30)CH3, and CH(OCON═C(R29)(R30))CH3, where R29 and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m((CH2)Q)OH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester residue, alkylsulfonic amide residue, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, where Q, n, and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion;
R13 is selected from H, methyl, and a halogen;
R7, R8 and R9 are independently selected from NH2, NH3 A, N(alkyl)2, N(alkyl3)3 +A, CO2R16, CONR16R17, (CH2)nCO2R16, (CH2)nCONR16R17, an amino acid containing NR16R17, an amino acid ester containing NR16R17, and an amino acid amide containing NR16R17, where R16 and R17 are independently selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, and a mono-, di-, or polyhydroxyaryl residue, where A is a physiologically acceptable counter ion and n is an integer from 1 to 4; and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+;
or a pharmaceutically acceptable salt, prodrug, solvate, ometabolite thereof.
50. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 49 , together with at least one pharmaceutically acceptable carrier or excipient.
51. The pharmaceutical composition according to claim 50 used to treat ophthalmic diseases.
52. The pharmaceutical composition of claim 51 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
53. The pharmaceutical composition according to claim 50 used to treat cardiovascular diseases.
54. The pharmaceutical composition according to claim 51 used to treat skin diseases.
55. Compounds of the following formula:
wherein:
R1 is selected from H, CH3, CH2CH3, CH═CH2, CH2OH, CH2OAc, CH2O-alkyl, CH2O-alkoxy, CH═CHCH2N(CH3)2, CH═CHCH2N(CH3)3 +A−, COCH3, CHO, CH(OH)CH3, CH(O-alkyl)CH3, CH(O-alkoxy)CH3, CH2CH2O-alkyl, CH2CH2O-alkoxy, and CH2CH2OAc, where A is a physiologically acceptable counter ion;
R13 is selected from H, methyl, and halogen;
R7, R8, and R9 are independently selected from (CH2)nNH2, (CH2)nNH3 +A, (CH2)nN(alkyl)2, (CH2)nN(alkyl3)3 +A, (CH2)nCO2R16, (CH2)nCONR16R17, (CH2)nOCON(R29)2, (CH2)nOCON═C(R29)2, (CH2)nOCONR29R30, (CH2)nOCON═C(R29)(R30), (CH2)nCO2(CH2)nOCON(R29)2, (CH2)nCO2(CH2)nOCON═C(R29)2, (CH2)nCO2(CH2)nOCONR29R30, (CH2)nCO2(CH2)nOCON═C(R29)(R30), (CH2)nCONH(CH2)nOCON(R29)2, (CH2)nCONH(CH2)nOCON═C(R29)2, (CH2)nCONH(CH2)nOCONR29R30, (CH2)nCONH(CH2)nOCON═C(R29)(R30), an amino acid containing NR16R17, an amino acid ester containing NR16R17, and an amino acid amide containing NR16R17, where R16 and R17 are independently selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, and a mono-, di-, or polyhydroxyaryl residue, where R29 and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m((CH2)Q)OH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester residue, alkylsulfonic amide residue, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, where Q, n and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion, wherein at least one of R7, R8 or R9 possesses a carbamate moiety in its structure;
R13 is selected from H, methyl, and a halogen; and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+;
or a pharmaceutically acceptable salt, prodrug, solvate, or metabolite thereof.
56. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 55 , together with at least one pharrnaceutically acceptable carrier or excipient.
57. The pharmaceutical composition according to claim 56 used to treat ophthalmic diseases.
58. The pharmaceutical composition of claim 57 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
59. The pharmaceutical composition according to claim 56 used to treat cardiovascular diseases.
60. The pharmaceutical composition according to claim 56 used to treat skin diseases.
61. Compounds of the following formula:
wherein:
R6, R7, R10, R16, and R17 are independently selected from H, OH, (CH2)nNH2, (CH2)nNH3 +A, (CH2)nN(alkyl)2, (CH2)nN(alkyl3)3 +A, (CH2)nCO12R19, (CH2)nCONR19R20, (CH2)nOCON(R29)2, (CH2)nOCON═C(R29)2, (CH2)nOCONR29R30, (CH2)nOCON═C(R29)(R30), (CH2)nCO2(CH2)nOCON(R29)2, (CH2)nCO2(CH2)nOCON═C(R29)2, (CH2)nCO2(CH2)nOCONR29R30, (CH2)nCO2(CH2)nOCON═C(R29)(R30), (CH2)nCONH(CH2)nOCON(R29)2, (CH2)nCONH(CH2)nOCON═C(R29)2, (CH2)nCONH(CH2)nOCONR29R30, (CH2)nCONH(CH2)nOCON═C(R29)(R30), an amino acid containing NR16R17, an amino acid ester containing NR16R17, and an amino acid amide containing NR16R17, where R19 and R20 are independently selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, and a mono-, di-, or polyhydroxyaryl residue, and where R29 and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m((CH2)Q)OH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester residue, alkylsulfonic amide residue, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, where Q, n, and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion, wherein at least one of R6, R7, R10, R16, and R17 possesses a carbamate moiety in its structure, and R6 and R7 may form a ═O; and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+; or a pharmaceutically acceptable salt, prodrug, solvate, or metabolite thereof.
62. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 61 , together with at least one pharmaceutically acceptable carrier or excipient.
63. The pharmaceutical composition according to claim 62 used to treat ophthalmic diseases.
64. The pharmaceutical composition of claim 63 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
65. The pharmaceutical composition according to claim 62 used to treat cardiovascular diseases.
66. The pharmaceutical composition according to claim 62 used to treat skin diseases.
67. Compounds of the following formula:
wherein:
R3, R6, R10, R16, and R17 are independently selected from CH═CH2, (CH2)nCO2R19, (CH2)nCONR19R20, (CH2)nOCON(R29)2, (CH2)nOCON═C(R29)2, (CH2)nOCONR29R30, (CH2)nOCON═C(R29)(R30), (CH2)nCO2(CH2)nOCON(R29)2, (CH2)nCO2(CH2)nOCON═C(R29)2, (CH2)nCO2(CH2)nOCONR29R30, (CH2)nCO2(CH2)nOCON═C(R29)(R30), (CH2)nCONH(CH2)nOCON(R29)2, (CH2)nCONH(CH2)nOCON═C(R29)2, (CH2)nCONH(CH2)nOCONR29R30, (CH2)nCONH(CH2)nOCON═C(R29)(R30), CH(OCON(R29)2)CH3, CH(OCON═C(R29)2)CH3, CH(OCONR29R30)CH3, CH(OCON═C(R29)(R30))CH3, an amino acid containing NR19R20, an amino acid ester containing NR19R20, and an amino acid amide containing NR19R20, where R19 and R20 are independently selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, and a mono-, di-, or polyhydroxyaryl residue, where R29 and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((C H2)nO)m((CH2)Q)OH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3(CH2)nO-haloalkyl, (CH2)nN(CH2)mN(CH3)3 +A)2, ((CH2)nO)n(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester residue, alkylsulfonic amide residue, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, where Q, n, and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion, and wherein at least one of R6, R7, R10, R16, and R17 possesses a carbamate moiety in its structure; and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+; or a pharmaceutically acceptable salt, prodrug, solvate, or metabolite thereof.
68. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 67 , together with at least one pharmaceutically acceptable carrier or excipient.
69. The pharmaceutical composition according to claim 68 used to treat ophthalmic diseases.
70. The pharmaceutical composition of claim 69 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
71. The pharmaceutical composition according to claim 68 used to treat cardiovascular diseases.
72. The pharmaceutical composition according to claim 68 used to treat skin diseases.
73. Compounds of the following formula:
wherein:
R2, R3, R5, R6, R11, R12, R14, R15, R16, R17, and R18 are indepently selected from H, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, (CH2)nCO2R19, (CH2)nCONR19R20, (CH2)nOCON(R29)2, (CH2)nOCON═C(R29)2, (CH2)nOCONR29R30, (CH2)nOCON═C(R29)(R30), (CH2)nCO2(CH2)nOCON(R29)2, (CH2)nCO2(CH2)nOCON═C(R29)2, (CH2)nCO2(CH2)nOCONR29R30, (CH2)nCO2(CH2)nOCON═C(R29)(R30), (CH2)nCONH(CH2)nOCON(R29)2, (CH2)nCONH(CH2)nOCON═C(R29)2, (CH2)nCONH(CH2)nOCONR29R30, (CH2)nCONH(CH2)nOCON═C(R29)(R30), CH(OCON(R29)2)CH3, CH(OCON═C(R29)2)CH3, CH(OCONR29R30)CH3, CH(OCON═C(R29)(R30))CH3, SO2NH(CH2)nOCON(R29)2, SO2NH(CH2)nOCON═C(R29)2, SO2NH(CH2)nOCONR29R30, SO2NH(CH2)nOCON═C(R29)(R30), SO2N((CH2)nOCON(R29)2)2, SO2N((CH2)nOCON═C(R29)2)2, SO2N((CH2)nOCONR29R3)2, SO2N((CH2)nOCON═C(R29)(R30))2, an amino acid containing NR19R20, an amino acid ester containing NR19R20, and an amino acid amide containing NR19R20, where R19 and R20 are independently selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, and a mono-, di-, or polyhydroxyaryl residue, where R29 and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)nO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m((CH2)Q)OH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)nN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester residue, alkylsulfonic amide residue, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mo o-, di-, or polyetheraryl residue, where Q, n, and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion, wherein at least one of R2, R3, R5, R6, R11, R12, R14, R15, R16, R17, and R18 possesses a carbamate moiety in its structure;
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+;
or a pharmaceutically acceptable salt, prodrug, solvate, or: metabolite thereof.
74. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 73 , together with at least one pharmaceutically acceptable carrier or excipient.
75. The pharmaceutical composition according to claim 74 used to treat ophthalmic diseases.
76. The pharmaceutical composition of claim 75 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
77. The pharmaceutical composition according to claim 74 used to treat cardiovascular diseases.
78. The pharmaceutical composition according to claim 74 used to treat skin diseases.
79. Compounds of the following formula:
wherein:
R1, R6, R7, R8, R9, R11, R14, R15, and R16are independently selected from H, OH, O-alkyl, CHO, methyl, halogen, (CH2)nCO2R19, (CH2)nCONR19R20, —OCON(R29)2, —OCON═C(R29)2, —OCONR29R30, OCON═C(R29)(R30), (CH2)nOCON(R29)2, (CH2)nOCON═C(R29)2, (CH2)nOCONR29R30, (CH2)nOCON═C(R29)(R30), (CH2)nCO2(CH2)nOCON(R29)2, (CH2)nCO2(CH2)nOCON═C(R29)2, (CH2)nCO2(CH2)nOCONR29R30, (CH2)nCO2(CH2)nOCON═C(R29)(R30), (CH2)nCONH(CH2)nOCON(R29)2, (CH2)nCONH(CH2)nOCON═C(R29)2, (CH2)nCONH(CH2)nOCONR29R30, (CH2)nCONH(CH2)nOCON═C(R29)(R30), CH(OCON(R29)2)CH3, CH(OCON═C(R29)2)CH3, CH(OCONR29R30)CH3, CH(OCON═C(R29)(R30))CH3, SO2NH(CH2)nOCON(R29)2, SO2NH(CH2)nOCON═C(R29)2, SO2NH(CH2)nOCONR29R30, SO2NH(CH2)nOCON═C(R29)(R30), SO2N((CH2)nOCON(R29)2)2, SO2N((CH2)nOCON═C(R29)2)2, SO2N((CH2)nOCONR29R30)2, SO2N((CH2)nOCON═C(R29)(R30))2, an amino acid containing NR19R20, an amino acid ester containing NR19R20, and an amino acid amide containing NR19R20, where R19 and R20 can be independently selected from H, a physiologically acceptable counter ion, a Cl1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, and a mono-, di-, or polyhydroxyaryl residue, and where R29 and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m((CH2)Q)OH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester residue, alkylsulfonic amide residue, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, where Q, n, and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion, wherein at least one of R6, R7, R8, R9, R11, R14, R15, R16 possesses a carbamate moiety in its structure; and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+;
or a pharmaceutically acceptable salt, prodrug, solvate, or metabolite thereof.
80. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 79 , together with at least one pharmaceutically acceptable carrier or excipient.
81. The pharmaceutical composition according to claim 79 used to treat ophthalmic diseases.
82. The pharmaceutical composition of claim 81 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
83. The pharmaceutical composition according to claim 79 used to treat cardiovascular diseases.
84. The pharmaceutical composition according to claim 79 used to treat skin diseases.
85. Compounds of the following formula:
wherein:
R9, R12, and R14 are independently selected from H, halogen, CH3, CH2CH3, CH═CH2, CH2OH, CH2OAc, CH2O-alkyl, CH2O-alkoxy, CH═CHCH2N(CH3)2, CH═CHCH2N(CH3)3 +A−, COCH3, CHO, CH(OH)CH3, CH(O-alkyl)CH3, CH(O-alkoxy)CH3, CH2CH2O-alkyl, CH2CH2O-alkoxy, CH2CH2OAc, (CH2)nCO2R19, (CH2)nCONR19R20, (CH2)nOCON(R29)2, (CH2)nOCON═C(R29)2, (CH2)nOCONR29R30, (CH2)nOCON═C(R29)(R30), (CH2)nCO2(CH2)nOCON(R29)2, (CH2)nCO2(CH2)nOCON═C(R29)2, (CH2)nCO2(CH2)nOCONR29R30, (CH2)nCO2(CH2)nOCON═C(R29)(R30), (CH2)nCONH(CH2)nOCON(R29)2, (CH2)nCONH(CH2)nOCON═C(R29)2, (CH2)nCONH(CH2)nOCONR29R30, (CH2)nCONH(CH2)nOCON═C(R29)(R30), CH(OCON(R29)2)CH3, CH(OCON═C(R29)2)CH3, CH(OCONR29R30)CH3, CH(OCON═C(R29)(R30))CH3, an amino acid containing NR19R20, an amino acid ester containing NR19R20, and an amino acid amide containing NR19R20, where R19 and R20 can be independently selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, and a mono-, di-, or polyhydroxyaryl residue, and where R29 and R30 are independently selected from H, C1-C20 alkyl, C1-C20 cycloalkyl, aryl, NH2, N(CH3)2, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)mO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m((CH2)Q)OH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)mN(CH3)3 +A)2, ((CH2)nO)m(CH2O)QCOCH3, an alkylphosphate residue, an alkylsulfonic acid residue, an alkylsulfonic ester residue, alkylsulfonic amide residue, an alkylmorpholino residue, an alkylheterocyclic residue, an alkylthiol residue, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, and a mono-, di-, or polyetheraryl residue, where Q, n, and m are integers ranging from 0 to 10,000, and A is a physiologically acceptable counter ion;
X is selected from 0 and N(R32), where R32 is selected from alkyl, an amino acid, an amino acid ester, an amino acid amide, (CH2)nOH, (CH2)nO-alkyl, (CH2)nOCOCH3, (CH2)nO(CH2)mOH, (CH2)nO(CH2)mOCOCH3, (CH2)nO(CH2)nO-alkyl, (CH2)nN((CH2)mOH)2, (CH2)nN((CH2)mO-alkyl)2, (CH2)nN((CH2)mO-alkylether)2, ((CH2)nO)m(CH2)QOH, (CH2)nO(CH2)mNH2, (CH2)nO(CH2)mN(CH3)2, (CH2)nO(CH2)mN(CH3)3 +A, (CH2)nN((CH2)mNH2)2, (CH2)nN(CH2)mN(CH3)2, (CH2)nO-haloalkyl, (CH2)nN(CH2)mN(CH3)3 +A, ((CH2)nO)m(CH2O)QCOCH3, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and a functional group that possesses a carbamate moiety of the formulae —OCON(R29)2, —OCON═C(R29)2, —OCONR29R30 or —OCON═C(R29)(R30), where Q, n, and m are integers ranging from 0 to 10,000;
wherein at least one of R9, R12, R14, or X possesses a carbamate moiety in its structure; and
M is selected from 2H, a metal cation, and photoactive metal ions selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+;
or a pharmaceutically acceptable salt, prodrug, solvate, or metabolite thereof.
86. A pharmaceutical composition comprising an effective diagnostic or therapeutic amount of the compound of claim 85 , together with at least one pharmaceutically acceptable carrier or excipient.
87. The pharmaceutical composition according to claim 86 used to treat ophthalmic diseases.
88. The pharmaceutical composition of claim 87 wherein said ophthalmic diseases are selected from proliferative retinopathies, macular edema, corneal neovascularization, conjunctival neovascularization, ocular tumors, viral retinitis adjunct to glaucoma filtration surgery and cyclodestruction, posterior capsule opacification, and age related macular degeneration.
89. The pharmaceutical composition according to claim 86 used to treat cardiovascular diseases.
90. The pharmaceutical composition according to claim 86 used to treat skin diseases.
91. A method for reducing the biological activity in vivo ofia biologically active carbamate photosensitizer comprising: providing a biologically active carbamate photosensitizer; enzymatically cleaving the biologically active carbamate photosensitizer in vivo to produce metabolites that are less biologically active than the biologically active carbamate photosensitizer.
92. The method of claim 91 wherein the metabolites produced are biologically inactive.
93. The method of claim 91 wherein the biologically active carbamate photosensitizer is produced from a hydroxyl-containing photosensitizer that displays poor photodynamic biological activity in vivo.
94. The method of claim 91 wherein enzymatic cleavage of the carbamate photosensitizer in vivo results in a therapeutically useful reduction in skin phototoxicity.
95. The method according to claim 91 wherein enzymatic cleavage of the carbamate photosensitizer in vivo results in a therapeutically useful reduction in occular phototoxicity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/491,528 US20040266748A1 (en) | 2001-10-03 | 2002-10-02 | Photosensitizing carbamate derivatives |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32642701P | 2001-10-03 | 2001-10-03 | |
US10/491,528 US20040266748A1 (en) | 2001-10-03 | 2002-10-02 | Photosensitizing carbamate derivatives |
PCT/US2002/029832 WO2003028628A2 (en) | 2001-10-03 | 2002-10-02 | Photosensitizing carbamate derivatives |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040266748A1 true US20040266748A1 (en) | 2004-12-30 |
Family
ID=23272151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/491,528 Abandoned US20040266748A1 (en) | 2001-10-03 | 2002-10-02 | Photosensitizing carbamate derivatives |
Country Status (5)
Country | Link |
---|---|
US (1) | US20040266748A1 (en) |
EP (1) | EP1450790A4 (en) |
AU (1) | AU2002336636A1 (en) |
CA (1) | CA2462508A1 (en) |
WO (1) | WO2003028628A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100055074A1 (en) * | 2005-03-31 | 2010-03-04 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Light as a Replacement for Mitogenic Factors on Progenitor Cells |
US20160235708A1 (en) * | 2013-10-04 | 2016-08-18 | Sanjay Banerji | Topical pigmentory composition |
US11910795B2 (en) | 2013-03-15 | 2024-02-27 | Suncor Energy Inc. | Natural indole auxin and aminopolycarboxylic acid herbicidal compositions |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1401506A4 (en) * | 2001-05-31 | 2005-02-16 | Miravant Pharm Inc | Metallotetrapyrrolic photosensitizing agents for use in photodynamic therapy |
NZ551845A (en) | 2004-06-07 | 2010-08-27 | Yeda Res & Dev | Cationic bacteriochlorophyll derivatives and uses thereof |
WO2006015016A2 (en) * | 2004-07-30 | 2006-02-09 | Massachusetts Eye And Ear Infirmary | Photodynamic therapy and compositions for treating ocular glaucoma |
EP2100621A1 (en) | 2008-03-10 | 2009-09-16 | mivenion GmbH | Polyether polyol dendron conjugates with effector molecules for biological targeting |
NZ601550A (en) | 2010-02-03 | 2014-03-28 | Mivenion Gmbh | Polyanionic multivalent macromolecules for intracellular targeting of proliferation and protein synthesis |
EP2747763B1 (en) | 2011-08-23 | 2020-12-30 | Yeda Research and Development Co. Ltd. | (bacterio)chlorophyll photosensitizers for treatment of eye diseases and disorders |
CN103961323B (en) * | 2013-02-05 | 2017-10-17 | 浙江海正药业股份有限公司 | A kind of injection HPPH freeze-dried powders and preparation method thereof |
WO2024115524A1 (en) * | 2022-11-28 | 2024-06-06 | Rmw Cho Group Limited | Porphyrin and phosphonium-porphyrin based compounds for photodynamic therapy and diagnostics |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4709022A (en) * | 1984-06-22 | 1987-11-24 | Isao Sakata | Pheophorbide derivatives and alkaline salts thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0005855D0 (en) * | 2000-03-10 | 2000-05-03 | Scotia Holdings Plc | Compounds for pdt |
-
2002
- 2002-10-02 CA CA002462508A patent/CA2462508A1/en not_active Abandoned
- 2002-10-02 AU AU2002336636A patent/AU2002336636A1/en not_active Abandoned
- 2002-10-02 EP EP02773496A patent/EP1450790A4/en not_active Withdrawn
- 2002-10-02 US US10/491,528 patent/US20040266748A1/en not_active Abandoned
- 2002-10-02 WO PCT/US2002/029832 patent/WO2003028628A2/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4709022A (en) * | 1984-06-22 | 1987-11-24 | Isao Sakata | Pheophorbide derivatives and alkaline salts thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100055074A1 (en) * | 2005-03-31 | 2010-03-04 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Light as a Replacement for Mitogenic Factors on Progenitor Cells |
US9205276B2 (en) * | 2005-03-31 | 2015-12-08 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Light as a replacement for mitogenic factors on progenitor cells |
US11910795B2 (en) | 2013-03-15 | 2024-02-27 | Suncor Energy Inc. | Natural indole auxin and aminopolycarboxylic acid herbicidal compositions |
US20160235708A1 (en) * | 2013-10-04 | 2016-08-18 | Sanjay Banerji | Topical pigmentory composition |
Also Published As
Publication number | Publication date |
---|---|
WO2003028628A2 (en) | 2003-04-10 |
EP1450790A4 (en) | 2005-10-26 |
WO2003028628A3 (en) | 2004-01-08 |
EP1450790A2 (en) | 2004-09-01 |
CA2462508A1 (en) | 2003-04-10 |
AU2002336636A1 (en) | 2003-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2002344234B2 (en) | Metallotetrapyrrolic photosensitizing agents for use in photodynamic therapy | |
US6906050B2 (en) | Substituted porphyrin and azaporphyrin derivatives and their use in photodynamic therapy, radioimaging and MRI diagnosis | |
US20030083649A1 (en) | Method for reducing or preventing PDT related inflammation | |
US20080275017A1 (en) | Aromatic sulfenates for type i phototherapy | |
JP2007508385A (en) | Compounds for dual photodiagnosis and therapy | |
US6485704B1 (en) | Azo compound for type I pototherapy | |
WO2000061584A1 (en) | IMPROVED β,β,-DIHYDROXY MESO-SUBSTITUTED CHLORINS, ISOBACTERIOCHLORINS, AND BACTERIOCHLORINS | |
US20040266748A1 (en) | Photosensitizing carbamate derivatives | |
EP1567147B1 (en) | Water-soluble anionic bacteriochlorophyll derivatives and their uses | |
US20050020559A1 (en) | Chlorin photosensitizing agents for use in photodynamic therapy | |
US20020169107A1 (en) | Novel aromatic azides for type I phototherapy | |
US6444194B1 (en) | Indium photosensitizers for PDT | |
US6747151B2 (en) | Azo compounds for type I phototherapy | |
US6183727B1 (en) | Use of long-wavelength electromagnetic radiation and photoprotective tumor localizing agents for diagnosis | |
EP1781170B1 (en) | Adduct of fluorescent dye and tumor avid tetrapyrrole | |
AU2008200847A1 (en) | Metallotetrapyrrolic photosensitizing agents for use in photodynamic therapy | |
AU2002307394B2 (en) | Azo compounds for type I phototherapy | |
JP2002519327A (en) | Indium photosensitizer for PDT | |
AU2002307394A1 (en) | Azo compounds for type I phototherapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MIRAVANT PHARMACEUTICALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROBINSON, BYRON C.;PHADKE, AVINASH;REEL/FRAME:016211/0258;SIGNING DATES FROM 20040914 TO 20041224 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |