US20040261921A1 - Method of developing a nickel-base superalloy - Google Patents

Method of developing a nickel-base superalloy Download PDF

Info

Publication number
US20040261921A1
US20040261921A1 US10/838,353 US83835304A US2004261921A1 US 20040261921 A1 US20040261921 A1 US 20040261921A1 US 83835304 A US83835304 A US 83835304A US 2004261921 A1 US2004261921 A1 US 2004261921A1
Authority
US
United States
Prior art keywords
phase
nickel
room temperature
lattice
degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/838,353
Inventor
Mohamed Nazmy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to ALSTOM TECHNOLOGY LTD reassignment ALSTOM TECHNOLOGY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAZMY, MOHAMED
Publication of US20040261921A1 publication Critical patent/US20040261921A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Definitions

  • the invention relates to a method of developing a nickel-base superalloy which is used for the production of a single-crystal or directionally solidified body of material.
  • a whole series of nickel-base superalloys are known from the prior art, and are used for the production of single-crystal or directionally solidified bodies of material. Such bodies of material are used, for example, in power station construction with high temperature loading. Material strength at high temperature can, for example, be maximized by means of these single crystal components, whereby in its turn the inlet temperature of gas turbines can be increased, which leads to an increase of efficiency of the gas turbine.
  • Known nickel-base superalloys are, for example, the alloys CMSX-2, CMSX-4, CMSX-10, Rene N5, Rene N6, PWA 1484 and PWA 1483, and their combination, for example, can be gathered from G. L. Erickson: Corrosion Resistant Single Crystal Superalloys for Industrial Gas Turbine Application, International Gas & Turbine Aeroengine Congress & Exhibition, Orlando, Fla., Jun. 2-Jun. 5, 1997.
  • Such alloys are subjected after the casting process to a heat treatment in which in a first solution annealing step the ⁇ ′-phase unevenly precipitated during the casting process is completely or partially dissolved. In a second heat treatment step this phase is precipitated again in a controlled manner. To attain optimum properties, this precipitation heat treatment is carried out such that fine uniformly distributed particles of the ⁇ ′-phase arise in the ⁇ -phase.
  • the invention seeks to avoid the disadvantages of the known prior art, and has as its object to provide a method for developing nickel-base superalloys which depends on a new, simple concept.
  • the advantages of the invention consist in that it is relatively easy to develop nickel-base superalloys having optimized degradation behavior with this method.
  • the degradation of the properties is then less strongly marked, i.e., the loss of yield strength in the degraded state, compared with the undegraded state, is only small.
  • a ⁇ ⁇ [ ⁇ ] ⁇ 3.524 + 0.0196 ⁇ ⁇ Co + 0.110 ⁇ ⁇ Cr + 0.478 ⁇ ⁇ Mo + 0.444 ⁇ ⁇ W + ⁇ 0.441 ⁇ ⁇ Re + 0.3125 ⁇ ⁇ Ru + 0.179 ⁇ ⁇ Al + 0.422 ⁇ ⁇ Ti + ⁇ 0.7 ⁇ ⁇ Ta + 0.7 ⁇ ⁇ Nb ,
  • a degradation parameter D is now introduced for characterizing the creep behavior of nickel-base alloys, and is determined according to the following equation:
  • the yield stress ⁇ 0.2 of nickel-base alloys at room temperature in the degraded state is determined based on the degradation parameter, and those alloys are chosen which have the smallest differences of the yield stress between the initial state and the degraded state, i.e., those alloys which have the highest possible values of the yield stress in the degraded state
  • FIG. 1 shows the dependence of yield stress after degradation at room temperature of the lattice displacement between the ⁇ -phase and the ⁇ ′-phase for various known nickel-base superalloys
  • FIG. 2 shows the dependence of the yield stress at room temperature on the degradation parameter for various known nickel-base superalloys.
  • FIG. 1 shows, for different known nickel-base superalloys which are used for producing a single-crystal or directionally solidified workpiece body, the dependence of the yield strength ⁇ 0.2 after degradation at room temperature of the lattice displacement ⁇ between the ⁇ -phase and the ⁇ -phase.
  • the lattice displacement ⁇ between the ⁇ -phase and the ⁇ ′-phase was calculated in the known manner as follows:
  • a ⁇ is the lattice constant of the ⁇ -phase and a ⁇ ′ is the lattice constant of the ⁇ ′-phase.
  • the lattice displacement ⁇ between the ⁇ -phase and the ⁇ ′-phase at room temperature in the alloys investigated is located in the region of about ⁇ 0.24% to +0.58%. With increase of the positive lattice displacement, the yield strength ⁇ 0.2 also increases after degradation at room temperature. Of the alloys investigated, the alloy PWA1480 has the highest positive lattice displacement ⁇ between the ⁇ -phase and the ⁇ ′-phase, and consequently also the highest yield strength ⁇ 0.2 after degradation at room temperature.
  • the lattice constants of the ⁇ -phase a ⁇ and of the ⁇ ′-phase a ⁇ ′ were determined according to the following, known per se (see P. Caron: High ⁇ ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications. Proceedings of the 9th international symposium on superalloys—SUPERALLOY 2000, pp. 737-746, Champion, USA, Sep.
  • a ⁇ ⁇ [ ⁇ ] ⁇ 3.524 + 0.0196 ⁇ ⁇ Co + 0.110 ⁇ ⁇ Cr + 0.478 ⁇ ⁇ Mo + 0.444 ⁇ ⁇ W + ⁇ 0.441 ⁇ ⁇ Re + 0.3125 ⁇ ⁇ Ru + 0.179 ⁇ ⁇ Al + 0.422 ⁇ ⁇ Ti + ⁇ 0.7 ⁇ ⁇ Ta + 0.7 ⁇ ⁇ Nb ,
  • the degradation behavior of the alloy can now be optimized according to the invention, in that positive lattice displacement ⁇ between the ⁇ -phase and the ⁇ ′-phase is set as high as possible by variation of the composition.
  • a degradation parameter D was introduced for the nickel-base alloys, and is determined according to the following equation:
  • the yield strength ⁇ 0.2 at room temperature after degrading is then determined based on the said degradation parameter. These values are plotted against each other in FIG. 2 for the alloys from Table 1. In order to optimize properties, the yield strength at room temperature is to be as high as possible for the various degradation parameters. This prescription is best fulfilled by the alloy PW1480, which at room temperature has a lattice displacement ⁇ between the ⁇ -phase and the ⁇ ′-phase of +0.58%.
  • the alloy CMSX4 which has a lattice displacement ⁇ between the ⁇ -phase and the ⁇ ′-phase of ⁇ 0.24% at the most in accordance with the invention, but has, on the contrary, based on the degradation parameter D, which is at least about 5,000 KhMPa, the smallest value of the yield strength. This alloy would thus be unsuitable in view of degradation behavior.
  • TABLE 1 Chemical Composition of the Alloys in Wt. %.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The invention relates to a method of developing a nickel-base superalloy consisting of a γ-phase and γ′-phase for the production of single-crystal or directionally solidified bodies of material. The invention is characterized in that the properties of nickel-base superalloys with a volume proportion of γ′-phase of at least 50% after a degradation at room temperature are optimized, in that the composition of the alloy is chosen such that at room temperature a lattice displacement (δ) between the γ-phase and the γ′-phase is as high as possible. It is thereby attained that the yield strength at room temperature after degrading is comparatively high, and thus only a small difference of the yield strengths occurs between initial state and degraded state.

Description

  • This application is a Continuation of and claims priority under 35 U.S.C. § 120 to International application number PCT/IB02/04619, filed 05 Nov. 2002, and claims priority under 35 U.S.C. 119 to Swiss application number 2001 2059/01, filed 09 Nov. 2001, the entireties of both of which are incorporated by reference herein.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The invention relates to a method of developing a nickel-base superalloy which is used for the production of a single-crystal or directionally solidified body of material. [0003]
  • 2. Brief Description of the Related Art [0004]
  • A whole series of nickel-base superalloys are known from the prior art, and are used for the production of single-crystal or directionally solidified bodies of material. Such bodies of material are used, for example, in power station construction with high temperature loading. Material strength at high temperature can, for example, be maximized by means of these single crystal components, whereby in its turn the inlet temperature of gas turbines can be increased, which leads to an increase of efficiency of the gas turbine. [0005]
  • Heretofore such alloys were developed according to the following concepts: [0006]
  • increase of creep strength, [0007]
  • increase of oxidation- and corrosion-resistance, [0008]
  • increase of resistance to crack growth, particularly to LCF (low cycle fatigue), [0009]
  • improvement of castability and of heat treatment possibilities, [0010]
  • reduction of costs. [0011]
  • Known nickel-base superalloys are, for example, the alloys CMSX-2, CMSX-4, CMSX-10, Rene N5, Rene N6, PWA 1484 and PWA 1483, and their combination, for example, can be gathered from G. L. Erickson: Corrosion Resistant Single Crystal Superalloys for Industrial Gas Turbine Application, International Gas & Turbine Aeroengine Congress & Exhibition, Orlando, Fla., Jun. 2-Jun. 5, 1997. Such alloys are subjected after the casting process to a heat treatment in which in a first solution annealing step the γ′-phase unevenly precipitated during the casting process is completely or partially dissolved. In a second heat treatment step this phase is precipitated again in a controlled manner. To attain optimum properties, this precipitation heat treatment is carried out such that fine uniformly distributed particles of the γ′-phase arise in the γ-phase. [0012]
  • It is known that lattice displacement can play a decisive role for creep strength at high temperatures. Many of the known nickel-base superalloys have a positive or negative lattice displacement between the γ-matrix and the γ′-phase. Dislocations upon sliding or cutting of γ′ grains are prevented by this lattice distortion, which effects an increase of the short time strength at elevated temperatures. While on the one hand in the literature on nickel-base superalloys at room temperature a negative lattice displacement with the highest possible amplitude is required (P. Caron: High γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications. Proceedings of the 9th international symposium on superalloys—SUPERALLOY 2000, pp. 737-746, Champion, USA, Sep. 17-21, 2000), other nickel-base superalloys (see, for example, [0013] EP 0 914 483 B1) are designed by a corresponding choice of the addition elements such that no lattice displacement is present, since it was observed that a directed grain enlargement of the γ′-particles, and following this a degradation of the γ′-structure, arises over a long period at high temperatures due to a lattice displacement between γ- and γ′-phases in the presence of a moderate or low mechanical stress.
  • SUMMARY OF THE INVENTION
  • The invention seeks to avoid the disadvantages of the known prior art, and has as its object to provide a method for developing nickel-base superalloys which depends on a new, simple concept. [0014]
  • The object is attained according to the invention in that the properties of nickel-base superalloys with a volume fraction of less than 50% after degradation at room temperature are optimized, in that the composition of the alloy is chosen such that at room temperature a lattice displacement 6 between the γ-phase and the γ′-phase is as high as possible, where δ[%]=2 (a[0015] γ′−aγ)/(aγ′+aγ) and aγis the lattice constant of the γ-phase and aγ′ is the lattice constant of the γ′-phase.
  • The advantages of the invention consist in that it is relatively easy to develop nickel-base superalloys having optimized degradation behavior with this method. [0016]
  • It was found that in the presence of a mechanical load and a long-time high temperature stress, a directed coarsening of the γ′-particles, the so-called raft formation (rafting) occurs and, at high γ′-content (i.e., with a γ′ volume fraction of at least 50%), tends toward inversion of the microstructure, i.e., the γ′ becomes the continuous phase, in which the earlier γ-matrix is embedded. Since the intermetallic γ′-phase tends toward environmental embrittlement, under certain load conditions this leads to a large decrease in the mechanical properties, above all of the yield stress, at room temperature. The environmental embrittlement particularly occurs when moisture and long holding times under tensile load are present. If according to the invention a high positive lattice displacement between the γ-phase and the γ′-phase is selected, the degradation of the properties is then less strongly marked, i.e., the loss of yield strength in the degraded state, compared with the undegraded state, is only small. [0017]
  • It is advantageous if the lattice constants of the γ-phase a[0018] γ and of the γ′-phase aγ′ are determined according to the following known equations: a γ [ Å ] = 3.524 + 0.0196 Co + 0.110 Cr + 0.478 Mo + 0.444 W + 0.441 Re + 0.3125 Ru + 0.179 Al + 0.422 Ti + 0.7 Ta + 0.7 Nb ,
    Figure US20040261921A1-20041230-M00001
  • where the numbers before the element symbols give the relative atomic fraction of the respective element in the γ-phase and [0019] a γ [ Å ] = 3.57 - 0.004 Cr + 0.208 Mo + 0.194 W + 0.262 Re + 0.1335 Ru + 0.258 Ti + 0.5 Ta + 0.46 Nb ,
    Figure US20040261921A1-20041230-M00002
  • where the numbers before the element symbols give the relative atomic fraction of the respective element in the γ′-phase. [0020]
  • A degradation parameter D is now introduced for characterizing the creep behavior of nickel-base alloys, and is determined according to the following equation:[0021]
  • D=(T−800)t 1/2σ1/5
  • with T=temperature in ° K, t=time in h, and σ=stress in MPa. The yield stress σ[0022] 0.2 of nickel-base alloys at room temperature in the degraded state is determined based on the degradation parameter, and those alloys are chosen which have the smallest differences of the yield stress between the initial state and the degraded state, i.e., those alloys which have the highest possible values of the yield stress in the degraded state
  • Still other objects, features, and attendant advantages of the present invention will become apparent to those skilled in the art from a reading of the following detailed description of embodiments constructed in accordance therewith, taken in conjunction with the accompanying drawings.[0023]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiment examples of the invention are shown in the diagrams. [0024]
  • FIG. 1 shows the dependence of yield stress after degradation at room temperature of the lattice displacement between the γ-phase and the γ′-phase for various known nickel-base superalloys, and [0025]
  • FIG. 2 shows the dependence of the yield stress at room temperature on the degradation parameter for various known nickel-base superalloys. [0026]
  • Only the features essential for the invention are shown. Like elements have the same reference numerals in both Figures[0027]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The invention is explained in detail hereinafter, using embodiment examples and the accompanying FIGS. 1 and 2. [0028]
  • It was found that with prior application of a mechanical load and long term high temperature stress, a directed enlargement of the γ′-particles, so-called raft formation (rafting), occurs, and that with the presence of a high γ′-content (i.e., with a γ′-volume content of at least 50%), inversion of the microstructure occurs, i.e., γ′ becomes the continuous phase, and is embedded in the previous γ-matrix. Since the intermetallic γ′-phase tends toward environmental embrittlement, under given load conditions this leads to a moderate decrease of the mechanical properties, above all of the yield strength at room temperature. Thus a degradation of the properties results. Environmental embrittlement particularly occurs when tensile loading occurs for long holding times in the presence of moisture. If according to the invention an alloy with a high positive lattice displacement δ between the γ-phase and the γ′-phase is now chosen, the degradation of properties is less strongly marked, i.e., the loss of yield strength in the degraded state is only small in comparison with the undegraded state. [0029]
  • FIG. 1 shows, for different known nickel-base superalloys which are used for producing a single-crystal or directionally solidified workpiece body, the dependence of the yield strength σ[0030] 0.2 after degradation at room temperature of the lattice displacement δ between the γ-phase and the γ-phase. The lattice displacement δ between the γ-phase and the γ′-phase was calculated in the known manner as follows:
  • δ[%]=2(a γ′ −a γ)/(a γ′ +a γ)
  • where a[0031] γ is the lattice constant of the γ-phase and aγ′ is the lattice constant of the γ′-phase.
  • Alloys with the chemical composition set out in Table 1 (data in wt. %) were used. [0032]
  • The lattice displacement δ between the γ-phase and the γ′-phase at room temperature in the alloys investigated is located in the region of about −0.24% to +0.58%. With increase of the positive lattice displacement, the yield strength σ[0033] 0.2 also increases after degradation at room temperature. Of the alloys investigated, the alloy PWA1480 has the highest positive lattice displacement δ between the γ-phase and the γ′-phase, and consequently also the highest yield strength σ0.2 after degradation at room temperature.
  • The lattice constants of the γ-phase a[0034] γ and of the γ′-phase aγ′ were determined according to the following, known per se (see P. Caron: High γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications. Proceedings of the 9th international symposium on superalloys—SUPERALLOY 2000, pp. 737-746, Champion, USA, Sep. 17-21, 2000): a γ [ Å ] = 3.524 + 0.0196 Co + 0.110 Cr + 0.478 Mo + 0.444 W + 0.441 Re + 0.3125 Ru + 0.179 Al + 0.422 Ti + 0.7 Ta + 0.7 Nb ,
    Figure US20040261921A1-20041230-M00003
  • where the numbers before the element symbols give the relative atomic fraction of the respective element in the γ-phase and [0035] a γ [ Å ] = 3.57 - 0.004 Cr + 0.208 Mo + 0.194 W + 0.262 Re + 0.1335 Ru + 0.258 Ti + 0.5 Ta + 0.46 Nb ,
    Figure US20040261921A1-20041230-M00004
  • where the numbers before the element symbols give the relative atomic fraction of the respective element in the γ′-phase. The alloying elements B, Zr and C play no significant part in relation to the lattice displacement, especially as they are only present as trace elements in small quantities. [0036]
  • The degradation behavior of the alloy can now be optimized according to the invention, in that positive lattice displacement δ between the γ-phase and the γ′-phase is set as high as possible by variation of the composition. For characterizing creep behavior, a degradation parameter D was introduced for the nickel-base alloys, and is determined according to the following equation:[0037]
  • D=(T−800)t 1/2σ1/5
  • with T=temperature in ° K, t=time in h, and σ=stress in MPa. [0038]
  • The yield strength σ[0039] 0.2 at room temperature after degrading is then determined based on the said degradation parameter. These values are plotted against each other in FIG. 2 for the alloys from Table 1. In order to optimize properties, the yield strength at room temperature is to be as high as possible for the various degradation parameters. This prescription is best fulfilled by the alloy PW1480, which at room temperature has a lattice displacement δ between the γ-phase and the γ′-phase of +0.58%. The alloy CMSX4, which has a lattice displacement δ between the γ-phase and the γ′-phase of −0.24% at the most in accordance with the invention, but has, on the contrary, based on the degradation parameter D, which is at least about 5,000 KhMPa, the smallest value of the yield strength. This alloy would thus be unsuitable in view of degradation behavior.
    TABLE 1
    Chemical Composition of the Alloys in Wt. %.
    ALLOY Ni Co Cr Al Ti Mo W Ta Nb Hf B Zr C Re
    SXIN738 Remainder 8.5 16 3.4 3.4 1.7 2.6 1.7 0.9 0.03
    SXCM247 Remainder 9.2 8.1 5.6 0.7 0.5 9.5 3.2 1.4 0.015 0.015 0.07
    MC2 Remainder 5 8 5.0 1.5 2 8 6
    CMSX2 Remainder 5 8 5.6 1.0 0.6 8 6
    CMSX4 Remainder 9 6.5 5.6 1.0 0.6 6 6.5 0.1 3
    CMSX6 Remainder 5 10 4.8 4.7 3 2 0.1
    PW1480 Remainder 5 10 5.0 1.5 4 12
    SXN5 Remainder 8 7 6.2 2 5 7 0.2 3
  • [0040]
    List of Reference Symbols
    σ0.2 yield strength
    δ lattice displacement
    aγ lattice constant of the γ-phase
    aγ′ lattice constant of the γ′-phase
    D degradation parameter
    T temperature
    t time
  • While the invention has been described in detail with reference to preferred embodiments thereof, it will be apparent to one skilled in the art that various changes can be made, and equivalents employed, without departing from the scope of the invention. Each of the aforementioned documents is incorporated by reference herein in its entirety. [0041]

Claims (4)

What is claimed is:
1. A method of developing a nickel-base superalloy consisting of γ- and γ′-phases, for the production of single crystal or directionally solidified bodies of material, wherein the properties of nickel-base superalloys with a volume fraction of γ′-phase of at least 50% after degrading at room temperature are optimized, comprising:
selecting the composition of the alloy such that at room temperature a lattice displacement (δ) between the γ-phase and the γ′-phase is as high as possible, where
δ[%]=2(a γ′ −a γ)/(a γ′ +a γ),
wherein aγ is the lattice constant of the γ-phase, and wherein aγ′ is the lattice constant of the γ′-phase.
2. A method according to claim 1, comprising:
determining the lattice constant (aγ) of the γ-phase and the lattice constant (aγ′) of the γ′-phase according to the following equations:
a γ [ Å ] = 3.524 + 0.0196 Co + 0.110 Cr + 0.478 Mo + 0.444 W + 0.441 Re + 0.3125 Ru + 0.179 Al + 0.422 Ti + 0.7 Ta + 0.7 Nb ,
Figure US20040261921A1-20041230-M00005
wherein the numbers before the element symbols give the relative atomic fraction of the respective element in the γ-phase; and
a γ [ Å ] = 3.57 - 0.004 Cr + 0.208 Mo + 0.194 W + 0.262 Re + 0.1335 Ru + 0.258 Ti + 0.5 Ta + 0.46 Nb ,
Figure US20040261921A1-20041230-M00006
wherein the numbers before the element symbols give the relative atomic fraction of the respective element in the γ′-phase.
3. A method according to claim 1, comprising:
characterizing the long term behavior of nickel-base superalloys including determining a degradation parameter (D) from the following equation:
D=(T−800)t 1/2σ1/5
wherein T=temperature in ° K, t=time in h, and σ=stress in MPa; and
determining the yield strength (σ0.2) at room temperature after degrading is determined based on said degradation parameter (D).
4. A method according to claim 3, comprising:
maximizing yield strength (σ0.2) at room temperature.
US10/838,353 2001-11-09 2004-05-05 Method of developing a nickel-base superalloy Abandoned US20040261921A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH20592001 2001-11-09
CH20012059/01 2001-11-09
PCT/IB2002/004619 WO2003040419A1 (en) 2001-11-09 2002-11-05 Method for developing a nickel-base super alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2002/004619 Continuation WO2003040419A1 (en) 2001-11-09 2002-11-05 Method for developing a nickel-base super alloy

Publications (1)

Publication Number Publication Date
US20040261921A1 true US20040261921A1 (en) 2004-12-30

Family

ID=4567342

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/838,353 Abandoned US20040261921A1 (en) 2001-11-09 2004-05-05 Method of developing a nickel-base superalloy

Country Status (4)

Country Link
US (1) US20040261921A1 (en)
EP (1) EP1451382A1 (en)
CN (1) CN100345990C (en)
WO (1) WO2003040419A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221925A1 (en) * 2003-05-09 2004-11-11 Hideki Tamaki Ni-based superalloy having high oxidation resistance and gas turbine part
US20080241560A1 (en) * 2005-07-12 2008-10-02 Mohamed Youssef Nazmy Ceramic Thermal Barrier Coating
US10138534B2 (en) 2015-01-07 2018-11-27 Rolls-Royce Plc Nickel alloy
US10266919B2 (en) 2015-07-03 2019-04-23 Rolls-Royce Plc Nickel-base superalloy
US10309229B2 (en) 2014-01-09 2019-06-04 Rolls-Royce Plc Nickel based alloy composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430500C (en) * 2005-11-18 2008-11-05 中国科学院金属研究所 Third nickel-base high-temperature single crystal alloy in low cost
CN100494467C (en) * 2006-08-16 2009-06-03 中国科学院金属研究所 Directional freezing column crystal or single-crystal nickel-base high-temperature alloy repairing or coating method
CN100557092C (en) * 2007-12-17 2009-11-04 北京航空航天大学 Adopt the method for seed crystal method and spiral crystal separation method combined preparation Ni based single-crystal high-temperature alloy
US9347124B2 (en) * 2011-11-07 2016-05-24 Siemens Energy, Inc. Hold and cool process for superalloy joining
US9644504B2 (en) * 2015-03-17 2017-05-09 Caterpillar Inc. Single crystal engine valve
CN113308654B (en) * 2020-02-27 2022-04-08 南京理工大学 Nickel-based alloy with nano structure and gamma' phase composite structure and preparation method thereof
CN112359303B (en) * 2020-11-09 2021-08-24 中南大学 Data-driven nickel-based superalloy strength evaluation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250435A (en) * 1985-08-29 1987-03-05 Natsuo Yugawa Phase stability indicating diagram of alloy
CN1059712C (en) * 1997-09-26 2000-12-20 冶金工业部钢铁研究总院 Antioxidant nickel-base alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221925A1 (en) * 2003-05-09 2004-11-11 Hideki Tamaki Ni-based superalloy having high oxidation resistance and gas turbine part
US7169241B2 (en) * 2003-05-09 2007-01-30 Hitachi, Ltd. Ni-based superalloy having high oxidation resistance and gas turbine part
US20070163682A1 (en) * 2003-05-09 2007-07-19 Hitachi, Ltd. Ni-based superalloy having high oxidation resistance and gas turbine part
US20080241560A1 (en) * 2005-07-12 2008-10-02 Mohamed Youssef Nazmy Ceramic Thermal Barrier Coating
US7666516B2 (en) 2005-07-12 2010-02-23 Alstom Technology Ltd. Ceramic thermal barrier coating
US20100104764A1 (en) * 2005-07-12 2010-04-29 Mohamed Youssef Nazmy Method of forming a ceramic thermal barrier coating
US10309229B2 (en) 2014-01-09 2019-06-04 Rolls-Royce Plc Nickel based alloy composition
US10138534B2 (en) 2015-01-07 2018-11-27 Rolls-Royce Plc Nickel alloy
US10266919B2 (en) 2015-07-03 2019-04-23 Rolls-Royce Plc Nickel-base superalloy
US10422024B2 (en) 2015-07-03 2019-09-24 Rolls-Royce Plc Nickel-base superalloy

Also Published As

Publication number Publication date
CN100345990C (en) 2007-10-31
CN1585829A (en) 2005-02-23
EP1451382A1 (en) 2004-09-01
WO2003040419A1 (en) 2003-05-15

Similar Documents

Publication Publication Date Title
US9518310B2 (en) Superalloys and components formed thereof
EP2295611B1 (en) Method of heat treating a Ni-based superalloy article and article made thereby
EP2770080B1 (en) Nickel-base alloys and methods of heat treating nickel base alloys
EP3587606A1 (en) Ni-based super heat-resistant alloy and method for manufacturing same
EP1498503B1 (en) Ni-BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY AND Ni-BASE SINGLE CRYSTAL SUPERALLOY
EP1591548A1 (en) Method for producing of a low thermal expansion Ni-base superalloy
JPH09157779A (en) Low thermal expansion nickel base superalloy and its production
US20040261921A1 (en) Method of developing a nickel-base superalloy
EP2128284A1 (en) Ni-BASED SINGLE CRYSTAL SUPERALLOY AND TURBINE VANE USING THE SAME
JPH0297634A (en) Ni base superalloy and its manufacture
JPH0672296B2 (en) Manufacturing method of single crystal alloy with high creep resistance
US20050016645A1 (en) Co-Ni-base alloy
US6740292B2 (en) Nickel-base superalloy
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP3559670B2 (en) High-strength Ni-base superalloy for directional solidification
US6706241B1 (en) Nickel-base superalloy
JPH10317079A (en) Steam turbine blade and its production
JP3820430B2 (en) Ni-based single crystal superalloy, manufacturing method thereof, and gas turbine component
EP1270754B1 (en) Two-step aging treatment for Ni-Cr-Mo alloys
JP2000064005A (en) HEAT TREATMENT OF Ni-BASE HEAT RESISTANT ALLOY
US8696980B2 (en) Nickel-base superalloy with improved degradation behavior
EP0952234A1 (en) Titanium aluminide for precision casting
JP2002146460A (en) Nickel based single crystal superalloy, its production method and gas turbine high temperature parts
JP2000063969A (en) Nickel base superalloy, its production and gas turbine part
US9017605B2 (en) Nickel-based superalloy

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALSTOM TECHNOLOGY LTD, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAZMY, MOHAMED;REEL/FRAME:015055/0086

Effective date: 20040504

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION