US20040261698A1 - Stent coating apparatus - Google Patents

Stent coating apparatus Download PDF

Info

Publication number
US20040261698A1
US20040261698A1 US10894897 US89489704A US2004261698A1 US 20040261698 A1 US20040261698 A1 US 20040261698A1 US 10894897 US10894897 US 10894897 US 89489704 A US89489704 A US 89489704A US 2004261698 A1 US2004261698 A1 US 2004261698A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
chamber
coating
stents
stent
apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10894897
Inventor
Wouter Roorda
Stephen Pacetti
Original Assignee
Roorda Wouter E.
Pacetti Stephen D.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0221Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts
    • B05B13/025Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts the objects or work being present in bulk
    • B05B13/0257Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts the objects or work being present in bulk in a moving container, e.g. a rotatable foraminous drum

Abstract

An apparatus for coating stent is disclosed. The apparatus can be used to coat multiple stents or a large number of stents simultaneously. The apparatus includes a chamber that can be rotated or tumbled during the application of a coating substance to the stents.

Description

    CROSS REFERENCE
  • This is a continuation of application Ser. No. 09/966,420, filed on Sep. 27, 2001.[0001]
  • BACKGROUND
  • This invention relates to a stent coating apparatus. Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease. A catheter assembly having a balloon portion is introduced percutaneously into the cardiovascular system of a patient via the brachial or femoral artery. The catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion. Once in position across the lesion, the balloon is inflated to a predetermined size to radially press against the atherosclerotic plaque of the lesion for remodeling of the vessel wall. The balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature. [0002]
  • A problem associated with the above procedure includes formation of intimal flaps or torn arterial linings which can collapse and occlude the conduit after the balloon is deflated. Vasospasms and recoil of the vessel wall also threaten vessel closure. Moreover, thrombosis and restenosis of the artery may develop over several months after the procedure, which may require another angioplasty procedure or a surgical by-pass operation. To reduce the partial or total occlusion of the artery by the collapse of arterial lining and to reduce the chance of the development of thrombosis and restenosis, a stent is implanted in the lumen to maintain the vascular patency. [0003]
  • FIG. 1 illustrates a conventional stent [0004] 10 formed from a plurality of struts 12. The plurality of struts 12 are radially expandable and interconnected by connecting elements 14 that are disposed between adjacent struts 12, leaving lateral openings or gaps 16 between adjacent struts 12. Struts 12 and connecting elements 14 define a tubular stent body having an outer, tissue-contacting surface and an inner surface.
  • Stents may be used not only as a mechanical intervention but also as a vehicle for providing biological therapy. As a mechanical intervention, stents may act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway. Typically stents are capable of being compressed, so that they can be inserted through small cavities via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in patent literature disclosing stents which have been applied in PTCA procedures include stents illustrated in U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor. Mechanical intervention via stents has reduced the rate of restenosis as compared to balloon angioplasty; restenosis, however, is still a significant clinical problem. When restenosis does occur in the stented segment, its treatment can be challenging, as clinical options are more limited as compared to lesions that were treated solely with a balloon. [0005]
  • Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. In order to provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or toxic side effects for the patient. Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results. [0006]
  • Although stents work well mechanically, the chronic issues of restenosis and, to a lesser extent, stent thrombosis remain. These events are affected by, and made worse, by mechanical aspects of the stent such as the degree of injury and disturbance of hemodynamics. To the extent that the mechanical functionality of stents has been optimized, it has been postulated that continued improvements could be made by pharmacological therapies. Many systemic therapies have been tried. A challenge is maintaining the necessary concentration of drug at the lesion site for the necessary period of time. This can be done via brute force methods using oral or intravenous administration but the issues of systemic toxicity and side effects arise. Therefore, a preferred route may be achieved by local delivery of drug from the stent itself. Stents are composed of struts that are typically 50-150 microns wide. Being made of metal, plain stents are not useful for drug delivery. Therefore, a coating, usually of a polymer, is applied to serve as a drug reservoir. [0007]
  • Slotted tube stents are made by laser cutting a solid metal hypotube. Leading stent manufacturers can produce thousands of stents per day. Consequently, the drug coating process, which is added on to the existing stent manufacturing process, needs to be rapid and reproducible. Stents are difficult to coat evenly due to their intricate geometry and small size. Conventional coating techniques fill in the spaces between struts creating webbing and bridging. A versatile method of stent coating is by a spray process that avoids webbing by the application of small droplets. [0008]
  • In order to coat a stent, it typically must be held in some manner. This allows it to be positioned and moved under a spray nozzle in a controlled and repeatable manner. However, holding a stent requires making contact with it. At these contact points, the liquid coating can web, accumulate or wick. After drying, this leads to thick coating deposits at the contacts between the stent and the fixture. These deposits can also attach the stent to the holding fixture, which creates tearing and bare spots when the two are eventually separated. It is desirable that the stent be completely coated on all surfaces with no significant bare spots. It is also desirable that there be no significant defects associated with the fixturing. It is further desirable that a coating process is capable of allowing the coating of a large amount or number of stents at one time. [0009]
  • SUMMARY OF THE INVENTION
  • A large-scale stent coating apparatus is disclosed, comprising a chamber to hold a multitude of stents, the chamber being configured to agitate so as to shake the stents within the chamber; and an applicator for depositing a coating substance into the chamber for coating the stents. [0010]
  • In some embodiments, the apparatus additionally includes a system for applying a gas into the chamber. [0011]
  • A large-scale stent coating apparatus is disclosed, comprising a chamber for holding a large number of stents, the chamber being configured to shake so as to tumble the stents by the shaking motion of the chamber; an applicator for depositing a coating substance into the chamber for coating the stents. [0012]
  • A large-scale stent coating apparatus is disclosed, comprising a chamber configured to hold a multitude of stents, the chamber being configured to rotate about an axis that is parallel to the horizontal plane so as to tumble the stents in the chamber; and an applicator for depositing a coating substance into the chamber for coating the stents.[0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a conventional stent; and [0014]
  • FIG. 2 is a schematic flow diagram illustrating a process for coating an implantable device in accordance with an embodiment of the present invention. [0015]
  • DETAILED DESCRIPTION
  • FIG. 2 is a schematic flow diagram illustrating a general overview of a process [0016] 200 for coating an implantable device, such as a stent, in accordance with an embodiment of the present invention. At least one stent 202 is deposited in a pan 204 (see A of FIG. 2).
  • The pan [0017] 204 is agitated to tumble the stent(s) 202 in the pan 204 (see B of FIG. 2). Agitation of the pan 204 may be achieved utilizing a variety of modes including, but not limited to, shaking of the pan 204 to tumble the stent(s) 202 therein. As illustrated in FIG. 2, in one embodiment, agitation of the pan 204 may be achieved by tilting the pan 204 with respect to a horizontal plane 206 such that an axis 208 of the pan 204 extends at an acute angle (e.g., extending at an angle between 0 degrees and 90 degrees) to the horizontal plane 206. The pan 204 can be rotated about the axis 208 to tumble the stent(s) 202 in the pan 204. As an option, the rotating axis 208 may extend at about 45 degrees with respect to the horizontal plane 206. In one embodiment, the pan 204 may be rotated between about 5 revolutions per minute (rpm) and about 400 rpm and in a preferred embodiment between about 10 rpm and about 200 rpm.
  • Continuing the process [0018] 200, a coating substance is introduced to coat the tumbling stent(s) 202. In one embodiment, the coating substance 210 may be sprayed into the pan 204 to coat the tumbling stent(s) 202 with the coating substance (see C of FIG. 2). Because of the continuous tumbling motion, the spray coating solution is divided equally over the stents 202. In one embodiment, the coating substance may comprise a polymer dissolved in a fluid and, optionally, an active agent added thereto. The actual spray time chosen may depend on various factors such as, for example, the equipment used, the number of stents being deposited in the pan 204, and the volatility of the solvent.
  • As a further option, gaseous composition [0019] 212 may be directed over the tumbling stent(s) 202 to aid in the drying of the coating substance on the stent(s) 202. In the embodiment illustrated in FIG. 2, the gaseous compound 212 may be blown into the rotating pan 204 to aid drying of the coating substance 210 on the tumbling stent(s) 202 (see D of FIG. 2). In one such embodiment, the gaseous composition 212 may comprise air. As another option, the gaseous composition 212 may have a temperature between about 15° C. and about 200° C.
  • It should further be noted that one or more subsequent coating substances may also be sequentially introduced to the tumbling implantable device to apply one or more further coatings on the implantable device. [0020]
  • Embodiments of the disclosed process may be utilized to coat one or more stents (especially large numbers of stents)—including drug delivery stents. The process may be utilized used to apply primers, drug containing layers, and/or topcoats. The significance of this process is two-fold: this process simplifies the spray process and increases its reproducibility by virtue of being a simpler process. Additionally, since the stent is not contacted continuously at any one point, the issue of end ring defects should be reduced or essentially eliminated. It should also be noted that embodiments of the disclosed process maybe used on any drug eluting stent. Such coatings can be used on balloon expandable or self-expanding stents. The stent may be utilized in any part of the vasculature including neurological, carotid, coronary, renal, aortic, iliac, femoral, or other peripheral vasculature. There may also be no limitations on stent length, diameter, strut thickness, strut pattern, or stent material. [0021]
  • Implantable Devices [0022]
  • While the process detailed herein is often described with reference to coating a stent, it should be understood that the device or prosthesis coated in accordance with the embodiments of the present invention may be any suitable medical substrate that can be implanted in a human or veterinary patient. Examples of such implantable devices include stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, anastomosis devices (e.g., AXIUS Coronary Shunt available from Guidant Corporation), pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention. A polymeric implantable device should be compatible with the composition. The ethylene vinyl alcohol copolymer, however, adheres very well to metallic materials, more specifically to stainless steel. [0023]
  • Coating Substance [0024]
  • In an embodiment of the present invention, the coating substance may include a polymer dissolved in a fluid and optionally, an active agent added thereto. As a further option, the coating substance may include radiopaque elements, or radioactive isotopes. [0025]
  • Representative examples of polymers that can be used to coat a stent include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(hydroxyvalerate); poly(L-lactic acid); polycaprolactone; poly(lactide-co-glycolide); poly(hydroxybutyrate); poly(hydroxybutyrate-co-valerate); polydioxanone; polyorthoester; polyanhydride; poly(glycolic acid); poly(D,L-lactic acid); poly(glycolic acid-co-trimethylene carbonate); polyphosphoester; polyphosphoester urethane; poly(amino acids); cyanoacrylates; poly(trimethylene carbonate); poly(iminocarbonate); copoly(ether-esters) (e.g. PEO/PLA); polyalkylene oxalates; polyphosphazenes; biomolecules, such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid; polyurethanes; silicones; polyesters; polyolefins; polyisobutylene and ethylene-alphaolefin copolymers; acrylic polymers and copolymers; vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene halides, such as polyvinylidene fluoride and polyvinylidene chloride; polyacrylonitrile; polyvinyl ketones; polyvinyl aromatics, such as polystyrene; polyvinyl esters, such as polyvinyl acetate; copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers; polyamides, such as Nylon 66 and polycaprolactam; alkyd resins; polycarbonates; polyoxymethylenes; polyimides; polyethers; epoxy resins; polyurethanes; rayon; rayon-triacetate; cellulose; cellulose acetate; cellulose butyrate; cellulose acetate butyrate; cellophane; cellulose nitrate; cellulose propionate; cellulose ethers; and carboxymethyl cellulose. [0026]
  • In an embodiment of the present invention, the fluid in which the polymer is dissolved may comprise a solvent which may be defined as a liquid substance or composition that is compatible with the polymer and is capable of dissolving the polymer at the concentration desired in the composition. Examples of solvents include, but are not limited to, dimethylsulfoxide (DMSO), chloroform, acetone, water (buffered saline), xylene, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, ethyl acetate, methylethylketone, propylene glycol monomethylether, isopropanol, isopropanol admixed with water, N-methyl pyrrolidinone, toluene, and combinations thereof. [0027]
  • The embodiments of the composition may be prepared by conventional methods wherein all components are combined, then blended. For example, in an illustrative embodiment, a predetermined amount of an ethylene vinyl alcohol copolymer may be added to a predetermined amount of dimethyl acetamide (DMAC or DMAc). If necessary, heating, stirring and/or mixing can be employed to effect dissolution of the copolymer into the solvent—for example in an 80° C. water bath for one to two hours. [0028]
  • Active Agent [0029]
  • The active agent may be in true solution or saturated in the blended composition. If the active agent is not completely soluble in the composition, operations including mixing, stirring, and/or agitation can be employed to effect homogeneity of the residues. The active agent may be added in fine particles. The mixing of the active agent can be conducted at ambient pressure and at room temperature such that supersaturating the active ingredient is not desired. The active agent can be for inhibiting the activity of vascular smooth muscle cells. More specifically, the active agent can be aimed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells for the inhibition of restenosis. The active agent can also include any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. For example, the agent can be for enhancing wound healing in a vascular site or improving the structural and elastic properties of the vascular site. Examples of agents include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I[0030] 1, actinomycin X1, and actinomycin Cl. The active agent can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. Taxotere®, from Aventis S. A., Frankfurt, Germany) methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax a (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.); calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, rapamycin and dexamethasone.
  • Examples of radiopaque elements include, but are not limited to, gold, tantalum, and platinum. An example of a radioactive isotope is P[0031] 32. Sufficient amounts of such substances may be dispersed in the composition such that the substances are not present in the composition as agglomerates or flocs.
  • The dosage or concentration of the active agent required to produce a favorable therapeutic effect should be less than the level at which the active agent produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the active agent required to inhibit the desired cellular activity of the vascular region can depend upon factors such as the particular circumstances of the patient; the nature of the trauma; the nature of the therapy desired; the time over which the ingredient administered resides at the vascular site; and if other therapeutic agents are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art. [0032]
  • Application Process [0033]
  • In accordance with an embodiment of the present invention, the coating substance may be sprayed on to the stents utilizing a spray apparatus, such as, for example, an EFD 780S spray device with VALVEMATE 7040 control system (manufactured by EFD Inc., East Providence, R.I.). EFD spray device is an air-assisted external mixing atomizer. The composition is atomized into small droplets by air and uniformly applied to the stent surface. The atomization pressure can be maintained at a range of about 5 to 20 psi. The droplet size depends on such factors as viscosity of the solution, surface tension of the solvent, and atomizing pressure. Other types of spray applicators, including air-assisted internal mixing atomizers and ultrasonic applicators can also be used for the application of the composition. [0034]
  • The flow rate of the solution from the spray nozzle can be from about 0.01 mg/second to about 1.0 mg/second, for example about 0.1 mg/second. As an option, multiple repetitions for applying the composition can be performed, wherein each repetition is about 1 second to about 10 seconds, for example about 5 seconds, in duration. The amount of coating applied by each repetition can be about 0.1 micrograms/cm (of stent surface) to about 10 micrograms/cm, for example less than about 2 micrograms/cm per 5 second spray. [0035]
  • Each repetition can be followed by removal of a significant amount of the solvent(s). The removal of the solvent(s) can be performed following a waiting period of about 0.1 second to about 5 seconds after the application of the coating composition so as to allow the liquid sufficient time to flow and spread over the stent surface before the solvent(s) is removed to form a coating. The waiting period is particularly suitable if the coating composition contains a volatile solvent, such as solvents having boiling points >130° C. at ambient pressure, since such solvents are typically removed quickly. [0036]
  • Removal of the solvent(s) can be induced by the application of a gas or air. The application of a warm gas between each repetition prevents coating defects and minimizes interaction between the active agent and the solvent. Any suitable gas can be employed, examples of which include air or nitrogen. The temperature of the gas can be from about 15° C. to about 200° C. In one embodiment, for temperature stable drugs, the drying air temperature can be from ambient temperature up to about 100° C. and for drugs that are temperature sensitive, the temperature may be from ambient temperature up to about 50° C. The flow speed of the gas can be from about 0.5 feet[0037] 3/second (0.01 meters3/second) to about 50 feet3/second (1.42 meters3/second), more narrowly about 2.5 feet3/second (0.07 meters3/second) to about 15 feet3/second (0.43 meters3/second). The gas can be applied for about 1 second to about 100 seconds, more narrowly for about 2 seconds to about 20 seconds. By way of example, warm gas applications can be performed at a temperature of about 60° C., at a flow speed of about 10 feet3/second, and for about 10 seconds.
  • In one embodiment, the stent can be warmed to a temperature of from about 35° C. to about 80° C. prior to the application of the coating composition so as to facilitate faster removal of the solvent(s). The particular temperature selected depends, at least in part, on the particular active agent employed in the coating composition. By way of example, pre-heating of the stent prior to applying a composition containing actinomycin D should be performed at a temperature not greater than about 55° C. Pre-heating is particularly suitable for embodiments in which the solvent(s) employed in the coating composition has a high boiling point, i.e., volatile solvents having boiling points of, for example, >130° C. at ambient pressure (e.g., dimethylsulfoxide (DMSO), dimethylformamide (DMF), and dimethylacetamide (DMAC)). [0038]
  • Any suitable number of repetitions of applying the composition followed by removing the solvent(s) can be performed to form a coating of a desired thickness or weight. In embodiments in which the coating composition contains a volatile solvent, a waiting period of from about 0.1 second to about 20 seconds can be employed between solvent removal of one repetition and composition application of the subsequent repetition so as to ensure that the wetting rate of the coating composition is slower than the evaporation rate of the solvent within the composition, thereby promoting coating uniformity. [0039]
  • Coating Layers [0040]
  • To form an optional primer layer on the surface of the device, an embodiment of the composition free from any active agents is applied to the surface of the device. For the thermoplastic polymers, the composition could be exposed to a heat treatment at a temperature range of greater than about the glass transition temperature and less than about the melting temperature of the copolymer. The device should be exposed to the heat treatment for any suitable duration of time (e.g., 30 minutes) which would allow for the formation of the primer layer on the surface of the device and allows for the evaporation of the solvent. The primer can be used for increasing the retention of a reservoir coating containing the active agent on the surface of the device, particularly metallic surfaces such as stainless steel. The primer can act as an intermediary adhesive tie layer between the surface of the device and the coating carrying the active agent—which, in effect, allows for the quantity of the active agent to be increased in the reservoir coating. [0041]
  • For the formation of the reservoir coating containing an active agent, an embodiment of the composition containing an active agent or combination of agents is applied to the device. If a primer layer is employed, the application should be performed subsequent to the drying of the primer layer. [0042]
  • An optional topcoat can be formed over the reservoir coating containing the active agents. An embodiment of the composition, free from any active agents, can be applied to the reservoir region subsequent to the drying of the reservoir region. The solvent is then allowed to evaporate, for example, by exposure to a selected temperature, to form the rate-limiting diffusion barrier. [0043]
  • For the reservoir coating containing the active agent and the optional top coat, a final heat treatment could be conducted to remove essentially all of the solvent(s) from the composition on the stent. The heat treatment can be conducted at about 30° C. to about 200° C. for about 15 minutes to about 16 hours, more narrowly at about 50° C. to about 100° C. for about 1 hour to about 4 hours. By way of example, the heat treatment can be conducted at about 75° C. for 1 hour. The temperature of exposure should not adversely affect the characteristics of the active agent or of the coating. The heating can be conducted in an anhydrous atmosphere and at ambient pressure. The heating can, alternatively, be conducted under a vacuum condition. It is understood that essentially all of the solvent(s) will be removed from the composition but traces or residues can remain blended in the coating. [0044]
  • Method of Use [0045]
  • A stent having the above-described coating is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries. [0046]
  • Briefly, an angiogram is first performed to determine the appropriate positioning for stent therapy. Angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above described coating may then be expanded at the desired area of treatment. A post insertion angiogram may also be utilized to confirm appropriate positioning. [0047]
  • While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention. [0048]

Claims (9)

    What is claimed is:
  1. 1. A large-scale stent coating apparatus, comprising
    a chamber to hold a multitude of stents, the chamber being configured to agitate so as to shake the stents within the chamber; and
    an applicator for depositing a coating substance into the chamber for coating the stents.
  2. 2. The apparatus of claim 1, additionally comprising means for applying a gas into the chamber.
  3. 3. The apparatus of claim 1, additionally comprising means for drying the coating applied to the stents within the chamber.
  4. 4. The apparatus of claim 1, additionally comprising means for applying a gas at a temperature of 15 deg. C to 200 deg. C into the chamber.
  5. 5. A large-scale stent coating apparatus, comprising
    a chamber for holding a large number of stents, the chamber being configured to shake so as to tumble the stents by the shaking motion of the chamber;
    an applicator for depositing a coating substance into the chamber for coating the stents.
  6. 6. The apparatus of claim 5, additionally comprising a nozzle for applying a gas into the chamber.
  7. 7. A large-scale stent coating apparatus, comprising
    a chamber configured to hold a multitude of stents, the chamber being configured to rotate about an axis that is parallel to the horizontal plane so as to tumble the stents in the chamber; and
    an applicator for depositing a coating substance into the chamber for coating the stents.
  8. 8. The apparatus of claim 7, wherein the chamber is configured to rotate between 5 to 400 rpm.
  9. 9. The apparatus of claim 7, additionally including means for blowing a gas into the chamber.
US10894897 2001-09-27 2004-07-19 Stent coating apparatus Abandoned US20040261698A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US96642001 true 2001-09-27 2001-09-27
US10894897 US20040261698A1 (en) 2001-09-27 2004-07-19 Stent coating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10894897 US20040261698A1 (en) 2001-09-27 2004-07-19 Stent coating apparatus
US12043926 US7824729B2 (en) 2001-09-27 2008-03-06 Methods for coating an implantable device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US96642001 Continuation 2001-09-27 2001-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12043926 Division US7824729B2 (en) 2001-09-27 2008-03-06 Methods for coating an implantable device

Publications (1)

Publication Number Publication Date
US20040261698A1 true true US20040261698A1 (en) 2004-12-30

Family

ID=33541757

Family Applications (2)

Application Number Title Priority Date Filing Date
US10894897 Abandoned US20040261698A1 (en) 2001-09-27 2004-07-19 Stent coating apparatus
US12043926 Active US7824729B2 (en) 2001-09-27 2008-03-06 Methods for coating an implantable device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12043926 Active US7824729B2 (en) 2001-09-27 2008-03-06 Methods for coating an implantable device

Country Status (1)

Country Link
US (2) US20040261698A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030165614A1 (en) * 2002-03-01 2003-09-04 Henrik Hansen Coating a medical implant using a pan coater
US20060029722A1 (en) * 2004-08-04 2006-02-09 Larson Marian L Apparatus for coating medical devices
US20070193509A1 (en) * 2006-02-17 2007-08-23 Howmedica Osteonics Corp. Multi-station rotation system for use in spray operations
US20080230000A1 (en) * 2002-09-30 2008-09-25 Advanced Cardiovascular Systems Inc. Stent Spin Coating Apparatus
US20100266780A1 (en) * 2006-02-17 2010-10-21 Howmedica Osteonics Corp. Multi-station rotation system for use in spray operations
US20110059227A1 (en) * 2009-09-04 2011-03-10 Pacetti Stephen D System and Method for Coating a Stent
WO2012056473A1 (en) * 2010-10-27 2012-05-03 Envision Scientific Private Limited Method and system for coating substrates
US8337937B2 (en) 2002-09-30 2012-12-25 Abbott Cardiovascular Systems Inc. Stent spin coating method
US8568764B2 (en) * 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015160998A3 (en) 2014-04-17 2016-01-14 Abbott Cardiovascular Systems Inc. Coatings for braided medical devices and methods of forming same

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2554803A (en) * 1949-09-12 1951-05-29 Pittsburgh Plate Glass Co Apparatus for the application of finishing materials by dipping
US3357398A (en) * 1962-09-28 1967-12-12 Abbott Lab Method and apparatus for coating tablets
US3496082A (en) * 1964-10-19 1970-02-17 Ransburg Electro Coating Corp Electrophoretic coating method and apparatus utilizing bath circulation to minimize impurities
US3616396A (en) * 1969-07-18 1971-10-26 Du Pont Electrophoretic coating process
US3841262A (en) * 1970-06-18 1974-10-15 Boehringer Mannheim Gmbh Apparatus for coating tablets
US3911860A (en) * 1973-05-08 1975-10-14 Driam Metallprodukt Gmbh & Co Device for the continuous production of dragees
US3951775A (en) * 1973-01-15 1976-04-20 George Koch Sons, Inc. Electrocoating tank arrangement
US4141316A (en) * 1976-01-23 1979-02-27 Gustav Grun Apparatus for the treatment of powdery or granular material
US4176591A (en) * 1978-04-10 1979-12-04 Power Douglas P Cooking pan for baking pizza pies and like food products
US4576108A (en) * 1984-10-03 1986-03-18 Frito-Lay, Inc. Apparatus for applying viscous seasoning evenly to tumbling food articles
US4581242A (en) * 1984-04-03 1986-04-08 Manesty Machines Limited Method and apparatus for the batchwise coating of articles
US4639383A (en) * 1983-09-20 1987-01-27 Thomas Engineering, Inc. Method and apparatus for coating particulate granules
US4685419A (en) * 1984-09-14 1987-08-11 Nippon Paint Company, Ltd. Method and apparatus for powder surface treating
US4688514A (en) * 1985-07-27 1987-08-25 Yoshida Kogyo K. K. Barrel-type coating apparatus
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US4952419A (en) * 1987-08-31 1990-08-28 Eli Lilly And Company Method of making antimicrobial coated implants
US5158804A (en) * 1987-10-16 1992-10-27 Board Of Trustees Of The University Of Illinois Particle coating apparatus for small-scale processing
US5326720A (en) * 1990-10-25 1994-07-05 Nippon Sheet Glass Co., Ltd. Method for producing silicon dioxide film which prevents escape of Si component to the environment
US5338569A (en) * 1993-04-14 1994-08-16 Hatch J Mel Process for coating dowels with water soluble glue
US5370734A (en) * 1992-01-21 1994-12-06 Soremartec S.A. Device for applying coatings starting from flowable substances
US5376175A (en) * 1993-08-17 1994-12-27 Long, Jr.; Richard L. Method and means for uniformly coating particulate material
US5863614A (en) * 1995-07-31 1999-01-26 Becton Dickinson And Company Method for coating objects with a porous resilient matrix
US6129038A (en) * 1997-04-23 2000-10-10 Bwi Plc Tablet coating machine
US6214407B1 (en) * 1998-07-30 2001-04-10 Co.Don Ag Method of surface coating medical implants
US6254888B1 (en) * 2000-01-28 2001-07-03 Boehringer Ingelheim Pharmaceuticals, Inc. Method for coating pharmaceutical dosage forms
US6258799B1 (en) * 1998-09-25 2001-07-10 Shin-Etsu Chemical Co. Ltd. Aqueous coating composition and process for preparing solid pharmaceutical preparation
US6364948B1 (en) * 2000-03-21 2002-04-02 Mars, Inc. Coating and drying apparatus
US6368658B1 (en) * 1999-04-19 2002-04-09 Scimed Life Systems, Inc. Coating medical devices using air suspension
US20020110689A1 (en) * 2000-12-15 2002-08-15 Kimberly-Clark Worldwide, Inc. Coated activated carbon
US6607598B2 (en) * 1999-04-19 2003-08-19 Scimed Life Systems, Inc. Device for protecting medical devices during a coating process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3420859C2 (en) 1984-06-05 1986-05-07 Alois 5202 Hennef De Mueller
US6503556B2 (en) * 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
US20030165614A1 (en) 2002-03-01 2003-09-04 Henrik Hansen Coating a medical implant using a pan coater
US6932930B2 (en) * 2003-03-10 2005-08-23 Synecor, Llc Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2554803A (en) * 1949-09-12 1951-05-29 Pittsburgh Plate Glass Co Apparatus for the application of finishing materials by dipping
US3357398A (en) * 1962-09-28 1967-12-12 Abbott Lab Method and apparatus for coating tablets
US3496082A (en) * 1964-10-19 1970-02-17 Ransburg Electro Coating Corp Electrophoretic coating method and apparatus utilizing bath circulation to minimize impurities
US3616396A (en) * 1969-07-18 1971-10-26 Du Pont Electrophoretic coating process
US3841262A (en) * 1970-06-18 1974-10-15 Boehringer Mannheim Gmbh Apparatus for coating tablets
US3951775A (en) * 1973-01-15 1976-04-20 George Koch Sons, Inc. Electrocoating tank arrangement
US3911860A (en) * 1973-05-08 1975-10-14 Driam Metallprodukt Gmbh & Co Device for the continuous production of dragees
US4141316A (en) * 1976-01-23 1979-02-27 Gustav Grun Apparatus for the treatment of powdery or granular material
US4176591A (en) * 1978-04-10 1979-12-04 Power Douglas P Cooking pan for baking pizza pies and like food products
US4639383A (en) * 1983-09-20 1987-01-27 Thomas Engineering, Inc. Method and apparatus for coating particulate granules
US4581242A (en) * 1984-04-03 1986-04-08 Manesty Machines Limited Method and apparatus for the batchwise coating of articles
US4685419A (en) * 1984-09-14 1987-08-11 Nippon Paint Company, Ltd. Method and apparatus for powder surface treating
US4576108A (en) * 1984-10-03 1986-03-18 Frito-Lay, Inc. Apparatus for applying viscous seasoning evenly to tumbling food articles
US4688514A (en) * 1985-07-27 1987-08-25 Yoshida Kogyo K. K. Barrel-type coating apparatus
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) * 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4952419A (en) * 1987-08-31 1990-08-28 Eli Lilly And Company Method of making antimicrobial coated implants
US5158804A (en) * 1987-10-16 1992-10-27 Board Of Trustees Of The University Of Illinois Particle coating apparatus for small-scale processing
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5326720A (en) * 1990-10-25 1994-07-05 Nippon Sheet Glass Co., Ltd. Method for producing silicon dioxide film which prevents escape of Si component to the environment
US5370734A (en) * 1992-01-21 1994-12-06 Soremartec S.A. Device for applying coatings starting from flowable substances
US5338569A (en) * 1993-04-14 1994-08-16 Hatch J Mel Process for coating dowels with water soluble glue
US5376175A (en) * 1993-08-17 1994-12-27 Long, Jr.; Richard L. Method and means for uniformly coating particulate material
US5863614A (en) * 1995-07-31 1999-01-26 Becton Dickinson And Company Method for coating objects with a porous resilient matrix
US6129038A (en) * 1997-04-23 2000-10-10 Bwi Plc Tablet coating machine
US6214407B1 (en) * 1998-07-30 2001-04-10 Co.Don Ag Method of surface coating medical implants
US6258799B1 (en) * 1998-09-25 2001-07-10 Shin-Etsu Chemical Co. Ltd. Aqueous coating composition and process for preparing solid pharmaceutical preparation
US6368658B1 (en) * 1999-04-19 2002-04-09 Scimed Life Systems, Inc. Coating medical devices using air suspension
US6607598B2 (en) * 1999-04-19 2003-08-19 Scimed Life Systems, Inc. Device for protecting medical devices during a coating process
US6254888B1 (en) * 2000-01-28 2001-07-03 Boehringer Ingelheim Pharmaceuticals, Inc. Method for coating pharmaceutical dosage forms
US6364948B1 (en) * 2000-03-21 2002-04-02 Mars, Inc. Coating and drying apparatus
US20020110689A1 (en) * 2000-12-15 2002-08-15 Kimberly-Clark Worldwide, Inc. Coated activated carbon

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030165614A1 (en) * 2002-03-01 2003-09-04 Henrik Hansen Coating a medical implant using a pan coater
US8042486B2 (en) 2002-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Stent spin coating apparatus
US7604831B2 (en) * 2002-09-30 2009-10-20 Advanced Cardiovascular Systems Inc. Stent spin coating method
US8337937B2 (en) 2002-09-30 2012-12-25 Abbott Cardiovascular Systems Inc. Stent spin coating method
US20080230000A1 (en) * 2002-09-30 2008-09-25 Advanced Cardiovascular Systems Inc. Stent Spin Coating Apparatus
US20080233268A1 (en) * 2002-09-30 2008-09-25 Advanced Cardiovascular Systems Inc. Stent Spin Coating Method
US7585369B2 (en) * 2004-08-04 2009-09-08 Larson Marian L Apparatus for coating medical devices
US20060228464A1 (en) * 2004-08-04 2006-10-12 Larson Marian L Method for coating medical devices
US7781010B2 (en) * 2004-08-04 2010-08-24 Larson Marian L Method for coating medical devices
US20060029722A1 (en) * 2004-08-04 2006-02-09 Larson Marian L Apparatus for coating medical devices
US20100266780A1 (en) * 2006-02-17 2010-10-21 Howmedica Osteonics Corp. Multi-station rotation system for use in spray operations
US20070193509A1 (en) * 2006-02-17 2007-08-23 Howmedica Osteonics Corp. Multi-station rotation system for use in spray operations
US7981479B2 (en) 2006-02-17 2011-07-19 Howmedica Osteonics Corp. Multi-station rotation system for use in spray operations
US7836847B2 (en) 2006-02-17 2010-11-23 Howmedica Osteonics Corp. Multi-station rotation system for use in spray operations
US8568764B2 (en) * 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US8828418B2 (en) * 2006-05-31 2014-09-09 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US9180227B2 (en) 2006-05-31 2015-11-10 Advanced Cardiovascular Systems, Inc. Coating layers for medical devices and method of making the same
US20110059227A1 (en) * 2009-09-04 2011-03-10 Pacetti Stephen D System and Method for Coating a Stent
US8573148B2 (en) * 2009-09-04 2013-11-05 Abbott Cardiovascular Systems Inc. System for coating a stent
WO2012056473A1 (en) * 2010-10-27 2012-05-03 Envision Scientific Private Limited Method and system for coating substrates

Also Published As

Publication number Publication date Type
US20080213462A1 (en) 2008-09-04 application
US7824729B2 (en) 2010-11-02 grant

Similar Documents

Publication Publication Date Title
US7005137B1 (en) Coating for implantable medical devices
US7232573B1 (en) Stent coatings containing self-assembled monolayers
US6759054B2 (en) Ethylene vinyl alcohol composition and coating
US7354480B1 (en) Stent mandrel fixture and system for reducing coating defects
US7175873B1 (en) Rate limiting barriers for implantable devices and methods for fabrication thereof
US20050266039A1 (en) Coated medical device and method for making the same
US6663662B2 (en) Diffusion barrier layer for implantable devices
US20040029952A1 (en) Ethylene vinyl alcohol composition and coating
US6544582B1 (en) Method and apparatus for coating an implantable device
US20050214339A1 (en) Biologically degradable compositions for medical applications
US20040220665A1 (en) Thermal treatment of a drug eluting implantable medical device
US7563324B1 (en) System and method for coating an implantable medical device
EP0623354B1 (en) Intravascular stents
US6503954B1 (en) Biocompatible carrier containing actinomycin D and a method of forming the same
US6287628B1 (en) Porous prosthesis and a method of depositing substances into the pores
US20070173923A1 (en) Drug reservoir stent
US20010001824A1 (en) Chamber for applying therapeutic substances to an implantable device
US20070059434A1 (en) Rate limiting barriers for implantable devices and methods for fabrication thereof
US7211150B1 (en) Apparatus and method for coating and drying multiple stents
US6790228B2 (en) Coating for implantable devices and a method of forming the same
US6753071B1 (en) Rate-reducing membrane for release of an agent
US6783793B1 (en) Selective coating of medical devices
US20030077312A1 (en) Coated intraluminal stents and reduction of restenosis using same
US20070020382A1 (en) 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US20070088255A1 (en) Method of treating vascular disease at a bifurcated vessel using a coated balloon