US20040261657A1 - Phase change inks containing colorant compounds - Google Patents
Phase change inks containing colorant compounds Download PDFInfo
- Publication number
- US20040261657A1 US20040261657A1 US10/606,631 US60663103A US2004261657A1 US 20040261657 A1 US20040261657 A1 US 20040261657A1 US 60663103 A US60663103 A US 60663103A US 2004261657 A1 US2004261657 A1 US 2004261657A1
- Authority
- US
- United States
- Prior art keywords
- group
- phase change
- composition according
- ink composition
- change ink
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003086 colorant Substances 0.000 title claims abstract description 246
- 230000008859 change Effects 0.000 title claims abstract description 240
- 150000001875 compounds Chemical class 0.000 title claims abstract description 90
- 239000000976 ink Substances 0.000 title description 327
- 239000000203 mixture Substances 0.000 claims abstract description 241
- 229910052751 metal Inorganic materials 0.000 claims abstract description 77
- 239000002184 metal Substances 0.000 claims abstract description 77
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 22
- 125000004432 carbon atom Chemical group C* 0.000 claims description 241
- 125000000217 alkyl group Chemical group 0.000 claims description 123
- 238000000034 method Methods 0.000 claims description 119
- -1 (iv) on Chemical group 0.000 claims description 82
- 230000008569 process Effects 0.000 claims description 81
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 79
- 239000002253 acid Substances 0.000 claims description 73
- 125000003118 aryl group Chemical group 0.000 claims description 70
- 229910052757 nitrogen Inorganic materials 0.000 claims description 69
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 62
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 62
- 239000001993 wax Substances 0.000 claims description 47
- 125000005842 heteroatom Chemical group 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 42
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 41
- 229910052760 oxygen Inorganic materials 0.000 claims description 41
- 239000001301 oxygen Substances 0.000 claims description 41
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 40
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 40
- 229910052698 phosphorus Inorganic materials 0.000 claims description 40
- 239000011574 phosphorus Substances 0.000 claims description 40
- 229910052710 silicon Inorganic materials 0.000 claims description 40
- 239000010703 silicon Substances 0.000 claims description 40
- 229910052717 sulfur Inorganic materials 0.000 claims description 40
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 39
- 150000001450 anions Chemical class 0.000 claims description 39
- 239000011593 sulfur Substances 0.000 claims description 39
- 238000006243 chemical reaction Methods 0.000 claims description 38
- 239000002904 solvent Substances 0.000 claims description 32
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 31
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 25
- 238000007639 printing Methods 0.000 claims description 25
- 150000001768 cations Chemical class 0.000 claims description 19
- 239000011701 zinc Substances 0.000 claims description 19
- 229910052725 zinc Inorganic materials 0.000 claims description 19
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 18
- 239000000539 dimer Substances 0.000 claims description 17
- 125000000858 thiocyanato group Chemical group *SC#N 0.000 claims description 17
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 16
- 150000003839 salts Chemical class 0.000 claims description 16
- 125000003368 amide group Chemical group 0.000 claims description 15
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 15
- 239000007795 chemical reaction product Substances 0.000 claims description 15
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 14
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 14
- 125000005843 halogen group Chemical group 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 14
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 14
- 238000012546 transfer Methods 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 13
- 125000003277 amino group Chemical group 0.000 claims description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 13
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 13
- 125000004185 ester group Chemical group 0.000 claims description 13
- 150000002148 esters Chemical class 0.000 claims description 13
- 125000001033 ether group Chemical group 0.000 claims description 13
- 239000012948 isocyanate Substances 0.000 claims description 13
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 13
- 125000004018 acid anhydride group Chemical group 0.000 claims description 12
- 125000002252 acyl group Chemical group 0.000 claims description 12
- 125000003172 aldehyde group Chemical group 0.000 claims description 12
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 claims description 12
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 claims description 12
- 125000001651 cyanato group Chemical group [*]OC#N 0.000 claims description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 12
- 150000002513 isocyanates Chemical class 0.000 claims description 12
- 125000001261 isocyanato group Chemical group *N=C=O 0.000 claims description 12
- 125000001810 isothiocyanato group Chemical group *N=C=S 0.000 claims description 12
- 125000000468 ketone group Chemical group 0.000 claims description 12
- 125000000018 nitroso group Chemical group N(=O)* 0.000 claims description 12
- 125000005496 phosphonium group Chemical group 0.000 claims description 12
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 12
- 125000001174 sulfone group Chemical group 0.000 claims description 12
- 125000003375 sulfoxide group Chemical group 0.000 claims description 12
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 claims description 12
- 125000000101 thioether group Chemical group 0.000 claims description 12
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 12
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 11
- 239000003963 antioxidant agent Substances 0.000 claims description 11
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims description 11
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 150000001408 amides Chemical class 0.000 claims description 10
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 10
- QWDQYHPOSSHSAW-UHFFFAOYSA-N 1-isocyanatooctadecane Chemical compound CCCCCCCCCCCCCCCCCCN=C=O QWDQYHPOSSHSAW-UHFFFAOYSA-N 0.000 claims description 9
- 230000003078 antioxidant effect Effects 0.000 claims description 9
- 150000002193 fatty amides Chemical class 0.000 claims description 9
- 238000007641 inkjet printing Methods 0.000 claims description 9
- 150000002739 metals Chemical class 0.000 claims description 9
- 125000002560 nitrile group Chemical group 0.000 claims description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 8
- 239000011347 resin Substances 0.000 claims description 8
- 229920005989 resin Polymers 0.000 claims description 8
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 8
- 125000003107 substituted aryl group Chemical group 0.000 claims description 8
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 8
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 claims description 7
- 239000004698 Polyethylene Substances 0.000 claims description 7
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 claims description 7
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 claims description 7
- 150000004056 anthraquinones Chemical class 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 239000011651 chromium Substances 0.000 claims description 7
- DJWFNQUDPJTSAD-UHFFFAOYSA-N n-octadecyloctadecanamide Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)CCCCCCCCCCCCCCCCC DJWFNQUDPJTSAD-UHFFFAOYSA-N 0.000 claims description 7
- 229920000573 polyethylene Polymers 0.000 claims description 7
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 claims description 7
- 239000004034 viscosity adjusting agent Substances 0.000 claims description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 claims description 6
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 6
- 229920001577 copolymer Polymers 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- KBAYQFWFCOOCIC-GNVSMLMZSA-N [(1s,4ar,4bs,7s,8ar,10ar)-1,4a-dimethyl-7-propan-2-yl-2,3,4,4b,5,6,7,8,8a,9,10,10a-dodecahydrophenanthren-1-yl]methanol Chemical compound OC[C@@]1(C)CCC[C@]2(C)[C@H]3CC[C@H](C(C)C)C[C@H]3CC[C@H]21 KBAYQFWFCOOCIC-GNVSMLMZSA-N 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 239000011575 calcium Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 229940124530 sulfonamide Drugs 0.000 claims description 5
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 claims description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 4
- 239000005977 Ethylene Substances 0.000 claims description 4
- 239000005058 Isophorone diisocyanate Substances 0.000 claims description 4
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 claims description 4
- ULNRRNBMNIIOJK-UHFFFAOYSA-N isocyanatourea Chemical compound NC(=O)NN=C=O ULNRRNBMNIIOJK-UHFFFAOYSA-N 0.000 claims description 4
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 4
- 150000003456 sulfonamides Chemical class 0.000 claims description 4
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052768 actinide Inorganic materials 0.000 claims description 3
- 150000001255 actinides Chemical class 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 3
- 239000000194 fatty acid Substances 0.000 claims description 3
- 229930195729 fatty acid Natural products 0.000 claims description 3
- 150000004665 fatty acids Chemical class 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 3
- 229910052753 mercury Inorganic materials 0.000 claims description 3
- 239000004200 microcrystalline wax Substances 0.000 claims description 3
- 235000019808 microcrystalline wax Nutrition 0.000 claims description 3
- DTSBBUTWIOVIBV-UHFFFAOYSA-N molybdenum niobium Chemical compound [Nb].[Mo] DTSBBUTWIOVIBV-UHFFFAOYSA-N 0.000 claims description 3
- 229910052762 osmium Inorganic materials 0.000 claims description 3
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 claims description 3
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052699 polonium Inorganic materials 0.000 claims description 3
- HZEBHPIOVYHPMT-UHFFFAOYSA-N polonium atom Chemical compound [Po] HZEBHPIOVYHPMT-UHFFFAOYSA-N 0.000 claims description 3
- 229910052705 radium Inorganic materials 0.000 claims description 3
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052702 rhenium Inorganic materials 0.000 claims description 3
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 239000010948 rhodium Substances 0.000 claims description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052706 scandium Inorganic materials 0.000 claims description 3
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- 239000003784 tall oil Substances 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052713 technetium Inorganic materials 0.000 claims description 3
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052714 tellurium Inorganic materials 0.000 claims description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052716 thallium Inorganic materials 0.000 claims description 3
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 3
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 claims description 2
- 239000004716 Ethylene/acrylic acid copolymer Substances 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 235000021355 Stearic acid Nutrition 0.000 claims description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 2
- 125000006165 cyclic alkyl group Chemical group 0.000 claims description 2
- RJLZSKYNYLYCNY-UHFFFAOYSA-N ethyl carbamate;isocyanic acid Chemical compound N=C=O.CCOC(N)=O RJLZSKYNYLYCNY-UHFFFAOYSA-N 0.000 claims description 2
- 150000002191 fatty alcohols Chemical class 0.000 claims description 2
- 229920000554 ionomer Polymers 0.000 claims description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M nitrite group Chemical group N(=O)[O-] IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 239000008117 stearic acid Substances 0.000 claims description 2
- 125000004417 unsaturated alkyl group Chemical group 0.000 claims description 2
- 239000011964 heteropoly acid Substances 0.000 claims 3
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims 1
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 claims 1
- YWMAPNNZOCSAPF-UHFFFAOYSA-N Nickel(1+) Chemical compound [Ni+] YWMAPNNZOCSAPF-UHFFFAOYSA-N 0.000 claims 1
- KVLCHQHEQROXGN-UHFFFAOYSA-N aluminium(1+) Chemical compound [Al+] KVLCHQHEQROXGN-UHFFFAOYSA-N 0.000 claims 1
- 229940007076 aluminum cation Drugs 0.000 claims 1
- 229940006429 bismuth cation Drugs 0.000 claims 1
- JDIBGQFKXXXXPN-UHFFFAOYSA-N bismuth(3+) Chemical compound [Bi+3] JDIBGQFKXXXXPN-UHFFFAOYSA-N 0.000 claims 1
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical group OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 claims 1
- 229940006444 nickel cation Drugs 0.000 claims 1
- CGFYHILWFSGVJS-UHFFFAOYSA-N silicic acid;trioxotungsten Chemical compound O[Si](O)(O)O.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 CGFYHILWFSGVJS-UHFFFAOYSA-N 0.000 claims 1
- 239000011135 tin Substances 0.000 claims 1
- 229940006486 zinc cation Drugs 0.000 claims 1
- 0 CC.CC.CC.CC.[1*]N([2*])C1=CC=C2C(=C1)[Y]C1=C/C(=[N+](\[3*])[4*])C=CC1=C2C1=CC=CC=C1 Chemical compound CC.CC.CC.CC.[1*]N([2*])C1=CC=C2C(=C1)[Y]C1=C/C(=[N+](\[3*])[4*])C=CC1=C2C1=CC=CC=C1 0.000 description 107
- 239000000047 product Substances 0.000 description 72
- 239000012071 phase Substances 0.000 description 68
- 239000000975 dye Substances 0.000 description 47
- VFNKZQNIXUFLBC-UHFFFAOYSA-N 2',7'-dichlorofluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Cl)=C(O)C=C1OC1=C2C=C(Cl)C(O)=C1 VFNKZQNIXUFLBC-UHFFFAOYSA-N 0.000 description 38
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 30
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 29
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 29
- 229920006395 saturated elastomer Polymers 0.000 description 28
- 125000004122 cyclic group Chemical group 0.000 description 27
- 239000003446 ligand Substances 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 239000000243 solution Substances 0.000 description 25
- 150000007513 acids Chemical class 0.000 description 24
- 239000002585 base Substances 0.000 description 24
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 22
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 22
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 22
- 239000011541 reaction mixture Substances 0.000 description 21
- 239000001022 rhodamine dye Substances 0.000 description 20
- 239000012458 free base Substances 0.000 description 19
- 229910001868 water Inorganic materials 0.000 description 19
- 239000011592 zinc chloride Substances 0.000 description 18
- HKUFIYBZNQSHQS-UHFFFAOYSA-N n-octadecyloctadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCNCCCCCCCCCCCCCCCCCC HKUFIYBZNQSHQS-UHFFFAOYSA-N 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 17
- 230000003595 spectral effect Effects 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 13
- 239000012065 filter cake Substances 0.000 description 13
- 125000001424 substituent group Chemical group 0.000 description 13
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 12
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 12
- 238000002835 absorbance Methods 0.000 description 11
- 150000001412 amines Chemical class 0.000 description 11
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 11
- 239000000292 calcium oxide Substances 0.000 description 11
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 11
- 239000000543 intermediate Substances 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 235000005074 zinc chloride Nutrition 0.000 description 11
- BPYMGZQBAGHVBJ-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] BPYMGZQBAGHVBJ-UHFFFAOYSA-N 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000012264 purified product Substances 0.000 description 10
- XNIOWJUQPMKCIJ-UHFFFAOYSA-N 2-(benzylamino)ethanol Chemical compound OCCNCC1=CC=CC=C1 XNIOWJUQPMKCIJ-UHFFFAOYSA-N 0.000 description 9
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 9
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 9
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 9
- 150000001721 carbon Chemical group 0.000 description 9
- 239000000460 chlorine Substances 0.000 description 9
- 239000012943 hotmelt Substances 0.000 description 9
- 125000004433 nitrogen atom Chemical group N* 0.000 description 9
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 8
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 8
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 8
- 125000002947 alkylene group Chemical group 0.000 description 8
- 229910052801 chlorine Inorganic materials 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000010992 reflux Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 125000003944 tolyl group Chemical group 0.000 description 8
- 238000000862 absorption spectrum Methods 0.000 description 7
- 125000003545 alkoxy group Chemical group 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 150000007942 carboxylates Chemical group 0.000 description 7
- 239000012876 carrier material Substances 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 125000005248 alkyl aryloxy group Chemical group 0.000 description 6
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 6
- 229910052794 bromium Inorganic materials 0.000 description 6
- 125000002843 carboxylic acid group Chemical group 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 6
- 239000011737 fluorine Substances 0.000 description 6
- 229910052731 fluorine Inorganic materials 0.000 description 6
- 239000006210 lotion Substances 0.000 description 6
- 150000002736 metal compounds Chemical class 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 6
- 125000000542 sulfonic acid group Chemical group 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 5
- 125000004104 aryloxy group Chemical group 0.000 description 5
- LPTWEDZIPSKWDG-UHFFFAOYSA-N benzenesulfonic acid;dodecane Chemical compound OS(=O)(=O)C1=CC=CC=C1.CCCCCCCCCCCC LPTWEDZIPSKWDG-UHFFFAOYSA-N 0.000 description 5
- 239000012975 dibutyltin dilaurate Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000010017 direct printing Methods 0.000 description 5
- 230000008034 disappearance Effects 0.000 description 5
- 150000003840 hydrochlorides Chemical class 0.000 description 5
- 125000000879 imine group Chemical group 0.000 description 5
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 5
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 5
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 5
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- IOOMXAQUNPWDLL-UHFFFAOYSA-N 2-[6-(diethylamino)-3-(diethyliminiumyl)-3h-xanthen-9-yl]-5-sulfobenzene-1-sulfonate Chemical compound C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=C(S(O)(=O)=O)C=C1S([O-])(=O)=O IOOMXAQUNPWDLL-UHFFFAOYSA-N 0.000 description 4
- ICSNLGPSRYBMBD-UHFFFAOYSA-N 2-aminopyridine Chemical compound NC1=CC=CC=N1 ICSNLGPSRYBMBD-UHFFFAOYSA-N 0.000 description 4
- PTHDBHDZSMGHKF-UHFFFAOYSA-N 2-piperidin-2-ylethanol Chemical compound OCCC1CCCCN1 PTHDBHDZSMGHKF-UHFFFAOYSA-N 0.000 description 4
- DZNJMLVCIZGWSC-UHFFFAOYSA-N 3',6'-bis(diethylamino)spiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(N(CC)CC)C=C1OC1=CC(N(CC)CC)=CC=C21 DZNJMLVCIZGWSC-UHFFFAOYSA-N 0.000 description 4
- CWLKGDAVCFYWJK-UHFFFAOYSA-N 3-aminophenol Chemical compound NC1=CC=CC(O)=C1 CWLKGDAVCFYWJK-UHFFFAOYSA-N 0.000 description 4
- QNGVNLMMEQUVQK-UHFFFAOYSA-N 4-n,4-n-diethylbenzene-1,4-diamine Chemical compound CCN(CC)C1=CC=C(N)C=C1 QNGVNLMMEQUVQK-UHFFFAOYSA-N 0.000 description 4
- BJOBQVJGQYUEFT-UHFFFAOYSA-N C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(C)=O)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CC(=O)O Chemical compound C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(C)=O)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CC(=O)O BJOBQVJGQYUEFT-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- BZORFPDSXLZWJF-UHFFFAOYSA-N N,N-dimethyl-1,4-phenylenediamine Chemical compound CN(C)C1=CC=C(N)C=C1 BZORFPDSXLZWJF-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- YCSBALJAGZKWFF-UHFFFAOYSA-N anthracen-2-amine Chemical compound C1=CC=CC2=CC3=CC(N)=CC=C3C=C21 YCSBALJAGZKWFF-UHFFFAOYSA-N 0.000 description 4
- 125000000732 arylene group Chemical group 0.000 description 4
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 4
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- GUEIZVNYDFNHJU-UHFFFAOYSA-N quinizarin Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(O)=CC=C2O GUEIZVNYDFNHJU-UHFFFAOYSA-N 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 229940043267 rhodamine b Drugs 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 4
- 210000002268 wool Anatomy 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- LNBKJWCRFAZVLK-UHFFFAOYSA-N 3',6'-dichlorospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(Cl)C=C1OC1=CC(Cl)=CC=C21 LNBKJWCRFAZVLK-UHFFFAOYSA-N 0.000 description 3
- CYQBIIIAQYFGOP-UHFFFAOYSA-N 3-amino-2,4-diethylphenol Chemical compound CCC1=CC=C(O)C(CC)=C1N CYQBIIIAQYFGOP-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- CLHYWXYCQBHPEV-UHFFFAOYSA-N COC.C[Y]C Chemical compound COC.C[Y]C CLHYWXYCQBHPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 3
- 229910019213 POCl3 Inorganic materials 0.000 description 3
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 3
- 241000364021 Tulsa Species 0.000 description 3
- 229960000583 acetic acid Drugs 0.000 description 3
- 150000001251 acridines Chemical class 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 229940043237 diethanolamine Drugs 0.000 description 3
- LAWOZCWGWDVVSG-UHFFFAOYSA-N dioctylamine Chemical compound CCCCCCCCNCCCCCCCC LAWOZCWGWDVVSG-UHFFFAOYSA-N 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000004043 dyeing Methods 0.000 description 3
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000007655 standard test method Methods 0.000 description 3
- ZYECOAILUNWEAL-NUDFZHEQSA-N (4z)-4-[[2-methoxy-5-(phenylcarbamoyl)phenyl]hydrazinylidene]-n-(3-nitrophenyl)-3-oxonaphthalene-2-carboxamide Chemical compound COC1=CC=C(C(=O)NC=2C=CC=CC=2)C=C1N\N=C(C1=CC=CC=C1C=1)/C(=O)C=1C(=O)NC1=CC=CC([N+]([O-])=O)=C1 ZYECOAILUNWEAL-NUDFZHEQSA-N 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 2
- GUTWGLKCVAFMPJ-UHFFFAOYSA-N 1-(2,6-dibromo-4-methylanilino)-4-hydroxyanthracene-9,10-dione Chemical compound BrC1=CC(C)=CC(Br)=C1NC1=CC=C(O)C2=C1C(=O)C1=CC=CC=C1C2=O GUTWGLKCVAFMPJ-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 2
- UKFTXWKNVSVVCJ-UHFFFAOYSA-N 2-[(6-hydrazinylpyridazin-3-yl)-(2-hydroxyethyl)amino]ethanol;hydron;dichloride Chemical class Cl.Cl.NNC1=CC=C(N(CCO)CCO)N=N1 UKFTXWKNVSVVCJ-UHFFFAOYSA-N 0.000 description 2
- HDECRAPHCDXMIJ-UHFFFAOYSA-N 2-methylbenzenesulfonyl chloride Chemical compound CC1=CC=CC=C1S(Cl)(=O)=O HDECRAPHCDXMIJ-UHFFFAOYSA-N 0.000 description 2
- MXGVVALOHKCYGY-UHFFFAOYSA-N 3-[ethyl(octadecyl)amino]phenol Chemical compound CCCCCCCCCCCCCCCCCCN(CC)C1=CC=CC(O)=C1 MXGVVALOHKCYGY-UHFFFAOYSA-N 0.000 description 2
- 229940018563 3-aminophenol Drugs 0.000 description 2
- GPLYAUJTVOYYTL-UHFFFAOYSA-N 4-amino-2-hydroxybenzenesulfonic acid Chemical compound NC1=CC=C(S(O)(=O)=O)C(O)=C1 GPLYAUJTVOYYTL-UHFFFAOYSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- LIUUXJORSBXLCH-UHFFFAOYSA-N CC(=O)OCC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)OC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CC(=O)OCC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)OC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)[O-] LIUUXJORSBXLCH-UHFFFAOYSA-N 0.000 description 2
- ZNGABJJRUKMZBJ-UHFFFAOYSA-N CC(C)=O.CS(C)(=O)=O Chemical compound CC(C)=O.CS(C)(=O)=O ZNGABJJRUKMZBJ-UHFFFAOYSA-N 0.000 description 2
- UZNRZZINDDXTMT-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCCNC(=O)O.CCCCCCCCCCCCCCCCCCNC(=O)OCCN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CCOC(=O)NC)CCOC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)O.CCCCCCCCCCCCCCCCCCNC(=O)OCCN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CCOC(=O)NC)CCOC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] UZNRZZINDDXTMT-UHFFFAOYSA-N 0.000 description 2
- VDNRXGZCMBNIAO-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCCNC(=O)OCC(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NC)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(COC(=O)NCCCCCCCCCCCCCCCCCC)OC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)OCC(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NC)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(COC(=O)NCCCCCCCCCCCCCCCCCC)OC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] VDNRXGZCMBNIAO-UHFFFAOYSA-N 0.000 description 2
- BHIXNZSSKOHBJK-UHFFFAOYSA-N CCCCCCCCN(CCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCC)CCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CCCCCCCCN(CCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCC)CCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] BHIXNZSSKOHBJK-UHFFFAOYSA-N 0.000 description 2
- CGCRNBHWMBPMEE-UHFFFAOYSA-N CNC(=O)NCC(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(CNC(=O)NC)NC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CNC(=O)NCC(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(CNC(=O)NC)NC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] CGCRNBHWMBPMEE-UHFFFAOYSA-N 0.000 description 2
- XJYOTZWEXWLICU-UHFFFAOYSA-N CNC(=O)OCC(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(COC(=O)NC)OC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CNC(=O)OCC(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(COC(=O)NC)OC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] XJYOTZWEXWLICU-UHFFFAOYSA-N 0.000 description 2
- VVAPTOUWCSVEOV-UHFFFAOYSA-N CSC.C[Y]C Chemical compound CSC.C[Y]C VVAPTOUWCSVEOV-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical class NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 244000299507 Gossypium hirsutum Species 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- FDJQZOJLXPFHQI-UHFFFAOYSA-N O=C1OC2(c3ccc(N(CCO)Cc4ccccc4)cc3Oc3cc(N(CCO)Cc4ccccc4)ccc32)c2ccccc21 Chemical compound O=C1OC2(c3ccc(N(CCO)Cc4ccccc4)cc3Oc3cc(N(CCO)Cc4ccccc4)ccc32)c2ccccc21 FDJQZOJLXPFHQI-UHFFFAOYSA-N 0.000 description 2
- 229910006069 SO3H Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 244000172533 Viola sororia Species 0.000 description 2
- PGNDRABIEJKCTH-SLPOFXBYSA-N [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])C(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)C)C=CC1=C2C1=CC=CC=C1C(=O)[O-])C(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)C Chemical compound [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])C(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)C)C=CC1=C2C1=CC=CC=C1C(=O)[O-])C(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)C PGNDRABIEJKCTH-SLPOFXBYSA-N 0.000 description 2
- XHVYMVPEGYPQRE-HBAMXUDRSA-N [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])c3ccc(N(C)C)cc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-])c1ccc(N(C)C)cc1 Chemical compound [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])c3ccc(N(C)C)cc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-])c1ccc(N(C)C)cc1 XHVYMVPEGYPQRE-HBAMXUDRSA-N 0.000 description 2
- VOVUPUVNFCLZSA-BQTQVFSXSA-N [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])c3ccc4cc5ccccc5cc4c3)C=CC1=C2C1=CC=CC=C1C(=O)[O-])c1ccc2cc3ccccc3cc2c1 Chemical compound [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])c3ccc4cc5ccccc5cc4c3)C=CC1=C2C1=CC=CC=C1C(=O)[O-])c1ccc2cc3ccccc3cc2c1 VOVUPUVNFCLZSA-BQTQVFSXSA-N 0.000 description 2
- OGSKOBIFBPUEKB-BINQCOMASA-N [H]N(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound [H]N(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] OGSKOBIFBPUEKB-BINQCOMASA-N 0.000 description 2
- NNZGFJIRNYQUTH-DXFHLYCTSA-N [H]N(CCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])C)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound [H]N(CCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])C)C=CC1=C2C1=CC=CC=C1C(=O)[O-] NNZGFJIRNYQUTH-DXFHLYCTSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000005529 alkyleneoxy group Chemical group 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- BKNBVEKCHVXGPH-UHFFFAOYSA-N anthracene-1,4,9,10-tetrol Chemical compound C1=CC=C2C(O)=C3C(O)=CC=C(O)C3=C(O)C2=C1 BKNBVEKCHVXGPH-UHFFFAOYSA-N 0.000 description 2
- 239000001000 anthraquinone dye Substances 0.000 description 2
- 125000005532 aryl alkyleneoxy group Chemical group 0.000 description 2
- 125000005605 benzo group Chemical group 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical class NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 230000031709 bromination Effects 0.000 description 2
- 238000005893 bromination reaction Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000009615 deamination Effects 0.000 description 2
- 238000006481 deamination reaction Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- CXPOFJRHCFPDRI-UHFFFAOYSA-N dodecylbenzene;sulfuric acid Chemical compound OS(O)(=O)=O.CCCCCCCCCCCCC1=CC=CC=C1 CXPOFJRHCFPDRI-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XXUJMEYKYHETBZ-UHFFFAOYSA-N ethyl 4-nitrophenyl ethylphosphonate Chemical compound CCOP(=O)(CC)OC1=CC=C([N+]([O-])=O)C=C1 XXUJMEYKYHETBZ-UHFFFAOYSA-N 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical class C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- DMCJFWXGXUEHFD-UHFFFAOYSA-N pentatriacontan-18-one Chemical compound CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCCCCCCCC DMCJFWXGXUEHFD-UHFFFAOYSA-N 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 150000003097 polyterpenes Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- 239000012260 resinous material Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 150000003628 tricarboxylic acids Chemical class 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- YWWDBCBWQNCYNR-UHFFFAOYSA-N trimethylphosphine Chemical compound CP(C)C YWWDBCBWQNCYNR-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- WTLBZVNBAKMVDP-UHFFFAOYSA-N tris(2-butoxyethyl) phosphate Chemical compound CCCCOCCOP(=O)(OCCOCCCC)OCCOCCCC WTLBZVNBAKMVDP-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- RNHDAKUGFHSZEV-UHFFFAOYSA-N 1,4-dioxane;hydrate Chemical compound O.C1COCCO1 RNHDAKUGFHSZEV-UHFFFAOYSA-N 0.000 description 1
- QBDAFARLDLCWAT-UHFFFAOYSA-N 2,3-dihydropyran-6-one Chemical compound O=C1OCCC=C1 QBDAFARLDLCWAT-UHFFFAOYSA-N 0.000 description 1
- SZCYJXOLJOCXEV-UHFFFAOYSA-N 2-(3,6-dichloroacridin-9-yl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1C1=C(C=CC(Cl)=C2)C2=NC2=CC(Cl)=CC=C12 SZCYJXOLJOCXEV-UHFFFAOYSA-N 0.000 description 1
- QXHDYMUPPXAMPQ-UHFFFAOYSA-N 2-(4-aminophenyl)ethanol Chemical compound NC1=CC=C(CCO)C=C1 QXHDYMUPPXAMPQ-UHFFFAOYSA-N 0.000 description 1
- XXAGRMCFQRKKEE-UHFFFAOYSA-N 2-(ethylamino)-4-methylphenol Chemical compound CCNC1=CC(C)=CC=C1O XXAGRMCFQRKKEE-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical class NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- YFZYSLYYVLMMKI-UHFFFAOYSA-N 2-[3-(ethylamino)-6-ethyliminoxanthen-9-yl]benzoic acid Chemical compound C=12C=CC(=NCC)C=C2OC2=CC(NCC)=CC=C2C=1C1=CC=CC=C1C(O)=O YFZYSLYYVLMMKI-UHFFFAOYSA-N 0.000 description 1
- AAIVSORHCTUDSS-UHFFFAOYSA-N 2-acridin-1-ylbenzoic acid Chemical class OC(=O)C1=CC=CC=C1C1=CC=CC2=NC3=CC=CC=C3C=C12 AAIVSORHCTUDSS-UHFFFAOYSA-N 0.000 description 1
- VKPPFDPXZWFDFA-UHFFFAOYSA-N 2-chloroethanamine Chemical compound NCCCl VKPPFDPXZWFDFA-UHFFFAOYSA-N 0.000 description 1
- QALDINNNYCSHFM-UHFFFAOYSA-N 3-amino-2-ethylphenol Chemical compound CCC1=C(N)C=CC=C1O QALDINNNYCSHFM-UHFFFAOYSA-N 0.000 description 1
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- XBKSNQYTFKODBJ-UHFFFAOYSA-O Br.CC(=O)OCCC1=CC(Br)=C(NC2=CC=C(O)C3=C2C(=O)C2=CC=CC=C2C3=O)C(Br)=C1.CC(=O)OCCC1=CC(Br)=C([NH2+]C2=CC=C(O)C3=C2C(=O)C2=CC=CC=C2C3=O)C(Br)=C1.[Br-] Chemical compound Br.CC(=O)OCCC1=CC(Br)=C(NC2=CC=C(O)C3=C2C(=O)C2=CC=CC=C2C3=O)C(Br)=C1.CC(=O)OCCC1=CC(Br)=C([NH2+]C2=CC=C(O)C3=C2C(=O)C2=CC=CC=C2C3=O)C(Br)=C1.[Br-] XBKSNQYTFKODBJ-UHFFFAOYSA-O 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- MIYYPQVFSIXGPP-UHFFFAOYSA-N C1=CC=C2[Y]C3=CCC=CC3=CC2=C1 Chemical compound C1=CC=C2[Y]C3=CCC=CC3=CC2=C1 MIYYPQVFSIXGPP-UHFFFAOYSA-N 0.000 description 1
- OQHQAXVAWHRWHV-UHFFFAOYSA-N C=C(NCCCCCCCCCCCCCCCCCC)OCCC1CCCC/[N+]1=C1/C=CC2=C(C3=CC=CC=C3C(=O)[O-])C3=CC=C(N4CCCCC4CCOC(=O)NCCCCCCCCCCCCCCCCCC)C=C3OC2=C1 Chemical compound C=C(NCCCCCCCCCCCCCCCCCC)OCCC1CCCC/[N+]1=C1/C=CC2=C(C3=CC=CC=C3C(=O)[O-])C3=CC=C(N4CCCCC4CCOC(=O)NCCCCCCCCCCCCCCCCCC)C=C3OC2=C1 OQHQAXVAWHRWHV-UHFFFAOYSA-N 0.000 description 1
- FHOLKHKRXKIQMD-UHFFFAOYSA-N C=C(NCCCCCCCCCCCCCCCCCC)OCCC1CCCCN1c1ccc2c(c1)Oc1cc(N3CCCCC3CCOC(=O)NCCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 Chemical compound C=C(NCCCCCCCCCCCCCCCCCC)OCCC1CCCCN1c1ccc2c(c1)Oc1cc(N3CCCCC3CCOC(=O)NCCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 FHOLKHKRXKIQMD-UHFFFAOYSA-N 0.000 description 1
- HFBXBICBZVLJON-UHFFFAOYSA-N C=C1C=CC2=C(C3=C(C(=O)O)C=CC=C3)C3=CC=C(C)C=C3OC2=C1 Chemical compound C=C1C=CC2=C(C3=C(C(=O)O)C=CC=C3)C3=CC=C(C)C=C3OC2=C1 HFBXBICBZVLJON-UHFFFAOYSA-N 0.000 description 1
- XLLLMVSYMBENEP-UHFFFAOYSA-O C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].C=CN(CC)c1ccc2c(c1)Oc1cc(N(CC)CCOC(=O)NC)ccc1C21OC(=O)c2ccccc21.CNC(=O)O.CNC(=O)O.CNC(=O)O Chemical compound C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].C=CN(CC)c1ccc2c(c1)Oc1cc(N(CC)CCOC(=O)NC)ccc1C21OC(=O)c2ccccc21.CNC(=O)O.CNC(=O)O.CNC(=O)O XLLLMVSYMBENEP-UHFFFAOYSA-O 0.000 description 1
- QAMYQCGYVFRFFC-UHFFFAOYSA-N C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CCCCCCCCCCCCCCCCCCNC(=O)O Chemical compound C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CCCCCCCCCCCCCCCCCCNC(=O)O QAMYQCGYVFRFFC-UHFFFAOYSA-N 0.000 description 1
- DVXXTOMJUKZERT-UHFFFAOYSA-N C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)O Chemical compound C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)O DVXXTOMJUKZERT-UHFFFAOYSA-N 0.000 description 1
- JGTXICQAUIVIQQ-UHFFFAOYSA-O C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O.CCCCCCCCCCCCCCCCCCNC(=O)O Chemical compound C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O.CCCCCCCCCCCCCCCCCCNC(=O)O JGTXICQAUIVIQQ-UHFFFAOYSA-O 0.000 description 1
- JGTXICQAUIVIQQ-UHFFFAOYSA-N C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CCCCCCCCCCCCCCCCCCNC(=O)O Chemical compound C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CCCCCCCCCCCCCCCCCCNC(=O)O JGTXICQAUIVIQQ-UHFFFAOYSA-N 0.000 description 1
- CTQLIFKYWYCKOM-UHFFFAOYSA-O C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)O.C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)[O-].C=CN(CC)c1ccc2c(c1)Oc1cc(N(CC)CCOC(C)=O)ccc1C21OC(=O)c2ccccc21.CC(=O)O.CC(=O)O.CNC(=O)O Chemical compound C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)O.C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)[O-].C=CN(CC)c1ccc2c(c1)Oc1cc(N(CC)CCOC(C)=O)ccc1C21OC(=O)c2ccccc21.CC(=O)O.CC(=O)O.CNC(=O)O CTQLIFKYWYCKOM-UHFFFAOYSA-O 0.000 description 1
- CBVHPTOPQRLLOH-UHFFFAOYSA-N C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CC(=O)O Chemical compound C=CN(CC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CC(=O)O CBVHPTOPQRLLOH-UHFFFAOYSA-N 0.000 description 1
- VWXJJCGOKLNWHU-UHFFFAOYSA-N C=CN(CC)c1ccc2c(c1)Oc1cc(N(CC)CCOC(=O)NCCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21.CCCCCCCCCCCCCCCCCCNC(=O)O Chemical compound C=CN(CC)c1ccc2c(c1)Oc1cc(N(CC)CCOC(=O)NCCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21.CCCCCCCCCCCCCCCCCCNC(=O)O VWXJJCGOKLNWHU-UHFFFAOYSA-N 0.000 description 1
- IESNXHNEIVEWQX-UHFFFAOYSA-O C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(=O)NC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)O.C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(=O)NC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-].C=CN(Cc1ccccc1)c1ccc2c(c1)Oc1cc(N(CCOC(=O)NC)Cc3ccccc3)ccc1C21OC(=O)c2ccccc21.CNC(=O)O.CNC(=O)O.CNC(=O)O Chemical compound C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(=O)NC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)O.C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(=O)NC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-].C=CN(Cc1ccccc1)c1ccc2c(c1)Oc1cc(N(CCOC(=O)NC)Cc3ccccc3)ccc1C21OC(=O)c2ccccc21.CNC(=O)O.CNC(=O)O.CNC(=O)O IESNXHNEIVEWQX-UHFFFAOYSA-O 0.000 description 1
- FXFXZFQKHASUII-UHFFFAOYSA-N C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(=O)NC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CCCCCCCCCCCCCCCCCCNC(=O)O Chemical compound C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(=O)NC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CCCCCCCCCCCCCCCCCCNC(=O)O FXFXZFQKHASUII-UHFFFAOYSA-N 0.000 description 1
- KHGUHWSTOIUUPC-UHFFFAOYSA-N C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(=O)NC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)O Chemical compound C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(=O)NC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)O KHGUHWSTOIUUPC-UHFFFAOYSA-N 0.000 description 1
- BZXRVVICGXTIHC-UHFFFAOYSA-O C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(=O)NCCCCCCCCCCCCCCCCCC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)O.CCCCCCCCCCCCCCCCCCNC(=O)O Chemical compound C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(=O)NCCCCCCCCCCCCCCCCCC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)O.CCCCCCCCCCCCCCCCCCNC(=O)O BZXRVVICGXTIHC-UHFFFAOYSA-O 0.000 description 1
- BZXRVVICGXTIHC-UHFFFAOYSA-N C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(=O)NCCCCCCCCCCCCCCCCCC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CCCCCCCCCCCCCCCCCCNC(=O)O Chemical compound C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(=O)NCCCCCCCCCCCCCCCCCC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CCCCCCCCCCCCCCCCCCNC(=O)O BZXRVVICGXTIHC-UHFFFAOYSA-N 0.000 description 1
- PSWCYSCJBXTCSM-UHFFFAOYSA-O C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(C)=O)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)O.C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(C)=O)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-].C=CN(Cc1ccccc1)c1ccc2c(c1)Oc1cc(N(CCOC(C)=O)Cc3ccccc3)ccc1C21OC(=O)c2ccccc21.CC(=O)O.CC(=O)O.CC(=O)O Chemical compound C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(C)=O)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)O.C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(C)=O)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-].C=CN(Cc1ccccc1)c1ccc2c(c1)Oc1cc(N(CCOC(C)=O)Cc3ccccc3)ccc1C21OC(=O)c2ccccc21.CC(=O)O.CC(=O)O.CC(=O)O PSWCYSCJBXTCSM-UHFFFAOYSA-O 0.000 description 1
- BJOBQVJGQYUEFT-UHFFFAOYSA-O C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(C)=O)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)O.CC(=O)O Chemical compound C=CN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCOC(C)=O)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)O.CC(=O)O BJOBQVJGQYUEFT-UHFFFAOYSA-O 0.000 description 1
- QIBSSUPUIMFVHH-UHFFFAOYSA-N C=CN(Cc1ccccc1)c1ccc2c(c1)Oc1cc(N(CCOC(=O)NCCCCCCCCCCCCCCCCCC)Cc3ccccc3)ccc1C21OC(=O)c2ccccc21.CCCCCCCCCCCCCCCCCCNC(=O)O Chemical compound C=CN(Cc1ccccc1)c1ccc2c(c1)Oc1cc(N(CCOC(=O)NCCCCCCCCCCCCCCCCCC)Cc3ccccc3)ccc1C21OC(=O)c2ccccc21.CCCCCCCCCCCCCCCCCCNC(=O)O QIBSSUPUIMFVHH-UHFFFAOYSA-N 0.000 description 1
- GCMJWBBPJQLZIP-UHFFFAOYSA-N C=CN(Cc1ccccc1)c1ccc2c(c1)Oc1cc(N(CCOC(C)=O)Cc3ccccc3)ccc1C21OC(=O)c2ccccc21.CC(=O)O Chemical compound C=CN(Cc1ccccc1)c1ccc2c(c1)Oc1cc(N(CCOC(C)=O)Cc3ccccc3)ccc1C21OC(=O)c2ccccc21.CC(=O)O GCMJWBBPJQLZIP-UHFFFAOYSA-N 0.000 description 1
- RNQYGIBUJSGUTO-UHFFFAOYSA-N CC(=O)O.CCN(CCOC(C)=O)C1=CC=C2C(=C1)OC1=CC(=[N+](CCOC(C)=O)CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CC(=O)O.CCN(CCOC(C)=O)C1=CC=C2C(=C1)OC1=CC(=[N+](CCOC(C)=O)CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)[O-] RNQYGIBUJSGUTO-UHFFFAOYSA-N 0.000 description 1
- CZLGYDMUTMQWDY-UHFFFAOYSA-N CC(=O)OCC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(C)OC(C)=O Chemical compound CC(=O)OCC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(C)OC(C)=O CZLGYDMUTMQWDY-UHFFFAOYSA-N 0.000 description 1
- ZCLWTDOYXAHHJE-UHFFFAOYSA-O CC(=O)OCC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)OC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)O.CC(=O)OCC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)N(C)c1ccc2c(c1)Oc1cc(N(C)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)OC(C)=O)ccc1C21OC(=O)c2ccccc21 Chemical compound CC(=O)OCC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)OC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)O.CC(=O)OCC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)N(C)c1ccc2c(c1)Oc1cc(N(C)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)OC(C)=O)ccc1C21OC(=O)c2ccccc21 ZCLWTDOYXAHHJE-UHFFFAOYSA-O 0.000 description 1
- PBYILQJZSBOHPL-UHFFFAOYSA-N CC(=O)OCCC1=CC=C(NC2=CC=C(O)C3=C2C(=O)C2=CC=CC=C2C3=O)C=C1 Chemical compound CC(=O)OCCC1=CC=C(NC2=CC=C(O)C3=C2C(=O)C2=CC=CC=C2C3=O)C=C1 PBYILQJZSBOHPL-UHFFFAOYSA-N 0.000 description 1
- WIPWXAVLRXNTIN-UHFFFAOYSA-N CC(=O)OCCC1CCCCN1 Chemical compound CC(=O)OCCC1CCCCN1 WIPWXAVLRXNTIN-UHFFFAOYSA-N 0.000 description 1
- ZNVKVLZIYRCJKA-UHFFFAOYSA-O CC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)O.CC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CC(=O)OCCC1CCCCN1c1ccc2c(c1)Oc1cc(N3CCCCC3CCOC(C)=O)ccc1C21OC(=O)c2ccccc21 Chemical compound CC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)O.CC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CC(=O)OCCC1CCCCN1c1ccc2c(c1)Oc1cc(N3CCCCC3CCOC(C)=O)ccc1C21OC(=O)c2ccccc21 ZNVKVLZIYRCJKA-UHFFFAOYSA-O 0.000 description 1
- LYZCYIYWPJIAQA-UHFFFAOYSA-N CC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(C)=O)C=CC1=C2C1=CC=CC=C1C(=O)[O-] LYZCYIYWPJIAQA-UHFFFAOYSA-N 0.000 description 1
- OSEWZBWXLMYGLT-UHFFFAOYSA-N CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)N Chemical compound CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)N OSEWZBWXLMYGLT-UHFFFAOYSA-N 0.000 description 1
- PALJNVFQPYQJFI-UHFFFAOYSA-N CC(O)C(O)C(O)C(O)N(C)c1ccc2c(c1)Oc1cc(N(C)C(O)C(O)C(O)C(O)CO)ccc1C21OC(=O)c2ccccc21 Chemical compound CC(O)C(O)C(O)C(O)N(C)c1ccc2c(c1)Oc1cc(N(C)C(O)C(O)C(O)C(O)CO)ccc1C21OC(=O)c2ccccc21 PALJNVFQPYQJFI-UHFFFAOYSA-N 0.000 description 1
- OSKBWFGRVSLAIO-KISUUTDGSA-O CC.CC.CC.CC1=CC=CC=C1NC1=CC2=C(C=C1)C(C1=C(C)C=CC=C1)=C1C=C/C(=[NH+]\C3=C(C)C=CC=C3)C=C1O2 Chemical compound CC.CC.CC.CC1=CC=CC=C1NC1=CC2=C(C=C1)C(C1=C(C)C=CC=C1)=C1C=C/C(=[NH+]\C3=C(C)C=CC=C3)C=C1O2 OSKBWFGRVSLAIO-KISUUTDGSA-O 0.000 description 1
- HXENRNDTSJHDRA-UHFFFAOYSA-E CC.CC1=C(C(=O)O)C=CC=C1C(=O)[O-].CC1=CC(C(=O)[O-])=CC(C(=O)[O-])=C1.CC1=CC(C(=O)[O-])=CC=C1C(=O)[O-].CC1=CC=C(C(=O)O)C=C1C(=O)O.CC1=CC=C(C(=O)[O-])C(C(=O)[O-])=C1.CC1=CC=CC(C(=O)[O-])=C1C(=O)[O-].CC1=CC=CC=C1 Chemical compound CC.CC1=C(C(=O)O)C=CC=C1C(=O)[O-].CC1=CC(C(=O)[O-])=CC(C(=O)[O-])=C1.CC1=CC(C(=O)[O-])=CC=C1C(=O)[O-].CC1=CC=C(C(=O)O)C=C1C(=O)O.CC1=CC=C(C(=O)[O-])C(C(=O)[O-])=C1.CC1=CC=CC(C(=O)[O-])=C1C(=O)[O-].CC1=CC=CC=C1 HXENRNDTSJHDRA-UHFFFAOYSA-E 0.000 description 1
- FQJIRHKOXAGSIY-UHFFFAOYSA-E CC.CC1=C(C)C(S(=O)(=O)[O-])=CC=C1.CC1=CC(C)=CC(S(=O)(=O)[O-])=C1.CC1=CC=C(S(=O)(=O)[O-])C(C)=C1.CC1=CC=C(S(=O)(=O)[O-])C(S(=O)(=O)[O-])=C1.CC1=CC=C(S(=O)(=O)[O-])C=C1S(=O)(=O)[O-].CC1=CC=CC(S(=O)(=O)[O-])=C1S(=O)(=O)[O-].CC1=CC=CC=C1 Chemical compound CC.CC1=C(C)C(S(=O)(=O)[O-])=CC=C1.CC1=CC(C)=CC(S(=O)(=O)[O-])=C1.CC1=CC=C(S(=O)(=O)[O-])C(C)=C1.CC1=CC=C(S(=O)(=O)[O-])C(S(=O)(=O)[O-])=C1.CC1=CC=C(S(=O)(=O)[O-])C=C1S(=O)(=O)[O-].CC1=CC=CC(S(=O)(=O)[O-])=C1S(=O)(=O)[O-].CC1=CC=CC=C1 FQJIRHKOXAGSIY-UHFFFAOYSA-E 0.000 description 1
- VJYSTXYGPSRWKH-UHFFFAOYSA-K CC.CC1=CC=CC(S(=O)(=O)[O-])=C1.CC1=CC=CC(S(=O)(=O)[O-])=C1.CC1=CC=CC=C1.CC1=CC=CC=C1S(=O)(=O)[O-] Chemical compound CC.CC1=CC=CC(S(=O)(=O)[O-])=C1.CC1=CC=CC(S(=O)(=O)[O-])=C1.CC1=CC=CC=C1.CC1=CC=CC=C1S(=O)(=O)[O-] VJYSTXYGPSRWKH-UHFFFAOYSA-K 0.000 description 1
- LJFWQNJLLOFIJK-UHFFFAOYSA-N CC1=CC=C(NC2=CC=C(O)C3=C2C(=O)C2=CC=CC=C2C3=O)C=C1 Chemical compound CC1=CC=C(NC2=CC=C(O)C3=C2C(=O)C2=CC=CC=C2C3=O)C=C1 LJFWQNJLLOFIJK-UHFFFAOYSA-N 0.000 description 1
- QDCYHGCNPKIUMO-UHFFFAOYSA-N CC1CCCCN1c1ccc2c(c1)Oc1cc(N3CCCCC3CCO)ccc1C21OC(=O)c2ccccc21 Chemical compound CC1CCCCN1c1ccc2c(c1)Oc1cc(N3CCCCC3CCO)ccc1C21OC(=O)c2ccccc21 QDCYHGCNPKIUMO-UHFFFAOYSA-N 0.000 description 1
- AFERKSZTWYFFEB-UHFFFAOYSA-N CCCCCCCCCC1=CC2=CC(CCCCCCCCC)=C(SOOO)C=C2C=C1S(=O)(=O)O Chemical compound CCCCCCCCCC1=CC2=CC(CCCCCCCCC)=C(SOOO)C=C2C=C1S(=O)(=O)O AFERKSZTWYFFEB-UHFFFAOYSA-N 0.000 description 1
- BUEZARKIMLETIT-UHFFFAOYSA-M CCCCCCCCCC1=CC2=CC(CCCCCCCCC)=C(SOO[O-])C=C2C=C1S(=O)(=O)[O-].CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O Chemical compound CCCCCCCCCC1=CC2=CC(CCCCCCCCC)=C(SOO[O-])C=C2C=C1S(=O)(=O)[O-].CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O BUEZARKIMLETIT-UHFFFAOYSA-M 0.000 description 1
- SBRIKIQQAXQHGQ-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCCN(C)c1ccc2c(c1)Oc1cc(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 Chemical compound CCCCCCCCCCCCCCCCCCN(C)c1ccc2c(c1)Oc1cc(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 SBRIKIQQAXQHGQ-UHFFFAOYSA-N 0.000 description 1
- RLCVWNOJYKFVOJ-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=C/C(=[N+](/C)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=C/C(=[N+](/C)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] RLCVWNOJYKFVOJ-UHFFFAOYSA-N 0.000 description 1
- GUJGNQMFEUHPGI-UHFFFAOYSA-M CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] GUJGNQMFEUHPGI-UHFFFAOYSA-M 0.000 description 1
- BPYMGZQBAGHVBJ-UHFFFAOYSA-O CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O Chemical compound CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O BPYMGZQBAGHVBJ-UHFFFAOYSA-O 0.000 description 1
- NLAOWLWFOOBXJI-MTWACZTLSA-Q CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O.[H]/[N+](CCCCCCCCCCCCCCCCCC)=C1/C=CC2=C(C3=CC=CC=C3C(=O)O)C3=CC=C(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=C3OC2=C1.[H]N(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O Chemical compound CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O.[H]/[N+](CCCCCCCCCCCCCCCCCC)=C1/C=CC2=C(C3=CC=CC=C3C(=O)O)C3=CC=C(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=C3OC2=C1.[H]N(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O NLAOWLWFOOBXJI-MTWACZTLSA-Q 0.000 description 1
- NLAOWLWFOOBXJI-MTWACZTLSA-N CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].[H]/[N+](CCCCCCCCCCCCCCCCCC)=C1/C=CC2=C(C3=CC=CC=C3C(=O)[O-])C3=CC=C(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=C3OC2=C1.[H]N(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].[H]/[N+](CCCCCCCCCCCCCCCCCC)=C1/C=CC2=C(C3=CC=CC=C3C(=O)[O-])C3=CC=C(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=C3OC2=C1.[H]N(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] NLAOWLWFOOBXJI-MTWACZTLSA-N 0.000 description 1
- LRJRXGHAISBMLT-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C1=[O+][Zn-2]2(O1)OC(C1=CC=CC=C1C1=C3C=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=C3OC3=CC(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)=CC=C31)=[O+]2.[Cl-].[Cl-] Chemical compound CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C1=[O+][Zn-2]2(O1)OC(C1=CC=CC=C1C1=C3C=CC(=[N+](CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=C3OC3=CC(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)=CC=C31)=[O+]2.[Cl-].[Cl-] LRJRXGHAISBMLT-UHFFFAOYSA-N 0.000 description 1
- FSGHOFOFNPPABB-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)c1ccc2c(c1)Oc1cc(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21.[H]N(CCCCCCCCCCCCCCCCCC)c1ccc2c(c1)Oc1cc(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21.[H]N(CCCCCCCCCCCCCCCCCC)c1ccc2c(c1)Oc1cc(N([H])CCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 Chemical compound CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)c1ccc2c(c1)Oc1cc(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21.[H]N(CCCCCCCCCCCCCCCCCC)c1ccc2c(c1)Oc1cc(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21.[H]N(CCCCCCCCCCCCCCCCCC)c1ccc2c(c1)Oc1cc(N([H])CCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 FSGHOFOFNPPABB-UHFFFAOYSA-N 0.000 description 1
- UFJLPQDREVEANJ-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCCNC(=O)O.CCCCCCCCCCCCCCCCCCNC(=O)OCCN(CC)c1ccc2c(c1)Oc1cc(N(CCOC(=O)NC)CCOC(=O)NCCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)O.CCCCCCCCCCCCCCCCCCNC(=O)OCCN(CC)c1ccc2c(c1)Oc1cc(N(CCOC(=O)NC)CCOC(=O)NCCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 UFJLPQDREVEANJ-UHFFFAOYSA-N 0.000 description 1
- HKTLTUGBVCJIOO-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCCNC(=O)OCC(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NC)N(C)c1ccc2c(c1)Oc1cc(N(C)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(COC(=O)NCCCCCCCCCCCCCCCCCC)OC(=O)NCCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)OCC(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NC)N(C)c1ccc2c(c1)Oc1cc(N(C)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(COC(=O)NCCCCCCCCCCCCCCCCCC)OC(=O)NCCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 HKTLTUGBVCJIOO-UHFFFAOYSA-N 0.000 description 1
- ZOVVVBLTYUEIMK-UHFFFAOYSA-O CCCCCCCCCCCCCCCCCCNC(=O)OCC(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(COC(=O)NCCCCCCCCCCCCCCCCCC)OC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)OCC(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(OC(=O)NCCCCCCCCCCCCCCCCCC)C(COC(=O)NCCCCCCCCCCCCCCCCCC)OC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O ZOVVVBLTYUEIMK-UHFFFAOYSA-O 0.000 description 1
- GXLMXZSJUZHSQW-OQSCQCPHSA-N CCCCCCCCCCCCCCCCCCNC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=N3\CCCCC3CCOC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=N3\CCCCC3CCOC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O GXLMXZSJUZHSQW-OQSCQCPHSA-N 0.000 description 1
- JSYFCFJIQJDVFX-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCCNC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(=O)NCCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] JSYFCFJIQJDVFX-UHFFFAOYSA-N 0.000 description 1
- BHIXNZSSKOHBJK-UHFFFAOYSA-O CCCCCCCCN(CCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCC)CCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O Chemical compound CCCCCCCCN(CCCCCCCC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCCCCCCC)CCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O BHIXNZSSKOHBJK-UHFFFAOYSA-O 0.000 description 1
- RWWDCKQCMZDXQL-UHFFFAOYSA-N CCCCCCCCN(CCCCCCCC)c1ccc2c(c1)Oc1cc(N(CCCCCCCC)CCCCCCCC)ccc1C21OC(=O)c2ccccc21 Chemical compound CCCCCCCCN(CCCCCCCC)c1ccc2c(c1)Oc1cc(N(CCCCCCCC)CCCCCCCC)ccc1C21OC(=O)c2ccccc21 RWWDCKQCMZDXQL-UHFFFAOYSA-N 0.000 description 1
- XEQNRQBTAKVTJE-UHFFFAOYSA-N CCCNC(=O)NC Chemical compound CCCNC(=O)NC XEQNRQBTAKVTJE-UHFFFAOYSA-N 0.000 description 1
- FVDLRCDWHVEWCQ-UHFFFAOYSA-N CCCOC(=O)NC Chemical compound CCCOC(=O)NC FVDLRCDWHVEWCQ-UHFFFAOYSA-N 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N CCCOC(C)=O Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- SKYQHTPSZWFPDP-UHFFFAOYSA-N CCN(CC)c(cc1)ccc1Nc1cc(Oc2cc(Nc(cc3)ccc3N(CC)CC)ccc2C2(c3c4cccc3)OC4=O)c2cc1 Chemical compound CCN(CC)c(cc1)ccc1Nc1cc(Oc2cc(Nc(cc3)ccc3N(CC)CC)ccc2C2(c3c4cccc3)OC4=O)c2cc1 SKYQHTPSZWFPDP-UHFFFAOYSA-N 0.000 description 1
- IPHLQPZTAYEVNJ-UHFFFAOYSA-O CCN(CCNC(=O)NC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.CCN(CCNC(=O)NC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CCN(CCNC(=O)NC)c1ccc2c(c1)Oc1cc(N(CC)CCNC(=O)NC)ccc1C21OC(=O)c2ccccc21 Chemical compound CCN(CCNC(=O)NC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.CCN(CCNC(=O)NC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CCN(CCNC(=O)NC)c1ccc2c(c1)Oc1cc(N(CC)CCNC(=O)NC)ccc1C21OC(=O)c2ccccc21 IPHLQPZTAYEVNJ-UHFFFAOYSA-O 0.000 description 1
- DTHDXZNBBQHWPV-UHFFFAOYSA-N CCN(CCNC(=O)NC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CCN(CCNC(=O)NC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\CC)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] DTHDXZNBBQHWPV-UHFFFAOYSA-N 0.000 description 1
- ORWIHRWBFQAXHV-UHFFFAOYSA-N CCN(CCO)c1ccc2c(c1)Oc1cc(N(CC)CCO)ccc1C21OC(=O)c2ccccc21 Chemical compound CCN(CCO)c1ccc2c(c1)Oc1cc(N(CC)CCO)ccc1C21OC(=O)c2ccccc21 ORWIHRWBFQAXHV-UHFFFAOYSA-N 0.000 description 1
- KRRSMKLNYKGJSB-UHFFFAOYSA-N CCN(CCOC(=O)NC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCOC(=O)NC)CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)O Chemical compound CCN(CCOC(=O)NC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCOC(=O)NC)CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)O KRRSMKLNYKGJSB-UHFFFAOYSA-N 0.000 description 1
- PZOIBLSWJIPNSO-UHFFFAOYSA-N CN(CCO)c1ccc2c(c1)Oc1cc(N(CCO)CCO)ccc1C21OC(=O)c2ccccc21 Chemical compound CN(CCO)c1ccc2c(c1)Oc1cc(N(CCO)CCO)ccc1C21OC(=O)c2ccccc21 PZOIBLSWJIPNSO-UHFFFAOYSA-N 0.000 description 1
- KNSUUMXHIJGAHB-UHFFFAOYSA-N CNC(=O)NCC(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(C)NC(=O)NC Chemical compound CNC(=O)NCC(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(C)NC(=O)NC KNSUUMXHIJGAHB-UHFFFAOYSA-N 0.000 description 1
- QTGQFBSQODDSHU-UHFFFAOYSA-O CNC(=O)NCC(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(CNC(=O)NC)NC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.CNC(=O)NCC(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)N(C)c1ccc2c(c1)Oc1cc(N(C)C(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(CNC(=O)NC)NC(=O)NC)ccc1C21OC(=O)c2ccccc21 Chemical compound CNC(=O)NCC(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(CNC(=O)NC)NC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.CNC(=O)NCC(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)N(C)c1ccc2c(c1)Oc1cc(N(C)C(NC(=O)NC)C(NC(=O)NC)C(NC(=O)NC)C(CNC(=O)NC)NC(=O)NC)ccc1C21OC(=O)c2ccccc21 QTGQFBSQODDSHU-UHFFFAOYSA-O 0.000 description 1
- FFMBBIOIYYTUGX-UHFFFAOYSA-N CNC(=O)NCCC1CCCCN1 Chemical compound CNC(=O)NCCC1CCCCN1 FFMBBIOIYYTUGX-UHFFFAOYSA-N 0.000 description 1
- FGCNKWRBGXHOBV-UHFFFAOYSA-O CNC(=O)NCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.CNC(=O)NCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)NCCC1CCCCN1c1ccc2c(c1)Oc1cc(N3CCCCC3CCNC(=O)NC)ccc1C21OC(=O)c2ccccc21 Chemical compound CNC(=O)NCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.CNC(=O)NCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)NCCC1CCCCN1c1ccc2c(c1)Oc1cc(N3CCCCC3CCNC(=O)NC)ccc1C21OC(=O)c2ccccc21 FGCNKWRBGXHOBV-UHFFFAOYSA-O 0.000 description 1
- FMDVQGKHCORKKE-UHFFFAOYSA-N CNC(=O)NCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CNC(=O)NCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] FMDVQGKHCORKKE-UHFFFAOYSA-N 0.000 description 1
- QMXSOWYKPCHEIN-UHFFFAOYSA-O CNC(=O)NCCN(CCNC(=O)NC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCNC(=O)NC)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.CNC(=O)NCCN(CCNC(=O)NC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCNC(=O)NC)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)NCCN(CCNC(=O)NC)c1ccc2c(c1)Oc1cc(N(CCNC(=O)NC)CCNC(=O)NC)ccc1C21OC(=O)c2ccccc21 Chemical compound CNC(=O)NCCN(CCNC(=O)NC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCNC(=O)NC)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.CNC(=O)NCCN(CCNC(=O)NC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCNC(=O)NC)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)NCCN(CCNC(=O)NC)c1ccc2c(c1)Oc1cc(N(CCNC(=O)NC)CCNC(=O)NC)ccc1C21OC(=O)c2ccccc21 QMXSOWYKPCHEIN-UHFFFAOYSA-O 0.000 description 1
- YMBIWBKMJUGWFA-UHFFFAOYSA-N CNC(=O)NCCN(CCNC(=O)NC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCNC(=O)NC)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CNC(=O)NCCN(CCNC(=O)NC)C1=CC=C2C(=C1)OC1=CC(=[N+](CCNC(=O)NC)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] YMBIWBKMJUGWFA-UHFFFAOYSA-N 0.000 description 1
- ZKILHVBUDFOWIC-FVHGLUMTSA-N CNC(=O)NCCN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=N(\[CH+]c3ccccc3)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)NCCN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCNC(=O)NC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)O.CNC(=O)NCCN(Cc1ccccc1)C1CCC2C(C1)OC1CC(N(CCNC(=O)NC)Cc3ccccc3)CCC1C21OC(=O)c2ccccc21 Chemical compound CNC(=O)NCCN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=N(\[CH+]c3ccccc3)CCNC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)NCCN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCNC(=O)NC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)O.CNC(=O)NCCN(Cc1ccccc1)C1CCC2C(C1)OC1CC(N(CCNC(=O)NC)Cc3ccccc3)CCC1C21OC(=O)c2ccccc21 ZKILHVBUDFOWIC-FVHGLUMTSA-N 0.000 description 1
- XMUWSNREQVBQAR-UHFFFAOYSA-N CNC(=O)NCCN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCNC(=O)NC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CNC(=O)NCCN(Cc1ccccc1)C1=CC=C2C(=C1)OC1=C/C(=[N+](/CCNC(=O)NC)Cc3ccccc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-] XMUWSNREQVBQAR-UHFFFAOYSA-N 0.000 description 1
- HZGFUQMMSIAAHT-UHFFFAOYSA-N CNC(=O)OCC(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(C)OC(=O)NC Chemical compound CNC(=O)OCC(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(C)OC(=O)NC HZGFUQMMSIAAHT-UHFFFAOYSA-N 0.000 description 1
- HXYBKTZYVLVQDV-UHFFFAOYSA-O CNC(=O)OCC(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(COC(=O)NC)OC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.CNC(=O)OCC(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)N(C)c1ccc2c(c1)Oc1cc(N(C)C(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(COC(=O)NC)OC(=O)NC)ccc1C21OC(=O)c2ccccc21 Chemical compound CNC(=O)OCC(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\C)C(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(COC(=O)NC)OC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.CNC(=O)OCC(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)N(C)c1ccc2c(c1)Oc1cc(N(C)C(OC(=O)NC)C(OC(=O)NC)C(OC(=O)NC)C(COC(=O)NC)OC(=O)NC)ccc1C21OC(=O)c2ccccc21 HXYBKTZYVLVQDV-UHFFFAOYSA-O 0.000 description 1
- PIYIXOGYEKONAL-UHFFFAOYSA-N CNC(=O)OCCC1CCCCN1 Chemical compound CNC(=O)OCCC1CCCCN1 PIYIXOGYEKONAL-UHFFFAOYSA-N 0.000 description 1
- VZPUCTHCJXQIBP-UHFFFAOYSA-O CNC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.CNC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)OCCC1CCCCN1c1ccc2c(c1)Oc1cc(N3CCCCC3CCOC(=O)NC)ccc1C21OC(=O)c2ccccc21 Chemical compound CNC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)O.CNC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-].CNC(=O)OCCC1CCCCN1c1ccc2c(c1)Oc1cc(N3CCCCC3CCOC(=O)NC)ccc1C21OC(=O)c2ccccc21 VZPUCTHCJXQIBP-UHFFFAOYSA-O 0.000 description 1
- LKXCQDTYJVSCIP-UHFFFAOYSA-N CNC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound CNC(=O)OCCC1CCCCN1C1=CC=C2C(=C1)OC1=C/C(=[N+]3\CCCCC3CCOC(=O)NC)C=CC1=C2C1=CC=CC=C1C(=O)[O-] LKXCQDTYJVSCIP-UHFFFAOYSA-N 0.000 description 1
- JPLFILAQMVZKLE-UHFFFAOYSA-N CNC(O)C(O)C(O)C(O)CO Chemical compound CNC(O)C(O)C(O)C(O)CO JPLFILAQMVZKLE-UHFFFAOYSA-N 0.000 description 1
- XYQAJDWSEDFTKU-UHFFFAOYSA-N C[N](C)(CC=N)N Chemical compound C[N](C)(CC=N)N XYQAJDWSEDFTKU-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical group O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 229910006124 SOCl2 Inorganic materials 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 108010067973 Valinomycin Proteins 0.000 description 1
- 235000005811 Viola adunca Nutrition 0.000 description 1
- 240000009038 Viola odorata Species 0.000 description 1
- 235000013487 Viola odorata Nutrition 0.000 description 1
- 235000002254 Viola papilionacea Nutrition 0.000 description 1
- WCJVSHHRUWLGOH-GZIBPCENSA-N [H]/[N+](CCCCCCCCCCCCCCCCCC)=C1/C=CC2=C(C3=CC=CC=C3C(=O)[O-])C3=CC=C(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=C3OC2=C1 Chemical compound [H]/[N+](CCCCCCCCCCCCCCCCCC)=C1/C=CC2=C(C3=CC=CC=C3C(=O)[O-])C3=CC=C(N(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC)C=C3OC2=C1 WCJVSHHRUWLGOH-GZIBPCENSA-N 0.000 description 1
- IOKRZGJJPZREEM-UWKDOGHWSA-O [H]N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])C)C=CC1=C2C1=CC=CC=C1C(=O)O.[H]N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])C)C=CC1=C2C1=CC=CC=C1C(=O)[O-].[H]N(C)c1ccc2c(c1)Oc1cc(N([H])C)ccc1C21OC(=O)c2ccccc21 Chemical compound [H]N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])C)C=CC1=C2C1=CC=CC=C1C(=O)O.[H]N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])C)C=CC1=C2C1=CC=CC=C1C(=O)[O-].[H]N(C)c1ccc2c(c1)Oc1cc(N([H])C)ccc1C21OC(=O)c2ccccc21 IOKRZGJJPZREEM-UWKDOGHWSA-O 0.000 description 1
- QCRIAIGCQBOVLG-ZVHZXABRSA-N [H]N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])C)C=CC1=C2C1=CC=CC=C1C(=O)[O-] Chemical compound [H]N(C)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])C)C=CC1=C2C1=CC=CC=C1C(=O)[O-] QCRIAIGCQBOVLG-ZVHZXABRSA-N 0.000 description 1
- ZTPIYUWPNKEHAG-UHFFFAOYSA-N [H]N(C)c1ccc2c(c1)Oc1cc(N([H])CCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 Chemical compound [H]N(C)c1ccc2c(c1)Oc1cc(N([H])CCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 ZTPIYUWPNKEHAG-UHFFFAOYSA-N 0.000 description 1
- PGNDRABIEJKCTH-SLPOFXBYSA-O [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])C(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)C)C=CC1=C2C1=CC=CC=C1C(=O)O)C(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)C Chemical compound [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])C(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)C)C=CC1=C2C1=CC=CC=C1C(=O)O)C(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)C PGNDRABIEJKCTH-SLPOFXBYSA-O 0.000 description 1
- XHVYMVPEGYPQRE-HBAMXUDRSA-O [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])c3ccc(N(C)C)cc3)C=CC1=C2C1=CC=CC=C1C(=O)O)c1ccc(N(C)C)cc1 Chemical compound [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])c3ccc(N(C)C)cc3)C=CC1=C2C1=CC=CC=C1C(=O)O)c1ccc(N(C)C)cc1 XHVYMVPEGYPQRE-HBAMXUDRSA-O 0.000 description 1
- CYTGLTMWYSMQSL-VDMDNSBISA-N [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])c3ccc(N(C)CC)cc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-])c1ccc(N(CC)CC)cc1 Chemical compound [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])c3ccc(N(C)CC)cc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-])c1ccc(N(CC)CC)cc1 CYTGLTMWYSMQSL-VDMDNSBISA-N 0.000 description 1
- QRWLCVBPMJJFJM-ZQXDMQSWSA-O [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])c3ccc(N(CC)CC)cc3)C=CC1=C2C1=CC=CC=C1C(=O)O)c1ccc(N(CC)CC)cc1 Chemical compound [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])c3ccc(N(CC)CC)cc3)C=CC1=C2C1=CC=CC=C1C(=O)O)c1ccc(N(CC)CC)cc1 QRWLCVBPMJJFJM-ZQXDMQSWSA-O 0.000 description 1
- QRWLCVBPMJJFJM-ZQXDMQSWSA-N [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])c3ccc(N(CC)CC)cc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-])c1ccc(N(CC)CC)cc1 Chemical compound [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](/[H])c3ccc(N(CC)CC)cc3)C=CC1=C2C1=CC=CC=C1C(=O)[O-])c1ccc(N(CC)CC)cc1 QRWLCVBPMJJFJM-ZQXDMQSWSA-N 0.000 description 1
- VOVUPUVNFCLZSA-BQTQVFSXSA-O [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])c3ccc4cc5ccccc5cc4c3)C=CC1=C2C1=CC=CC=C1C(=O)O)c1ccc2cc3ccccc3cc2c1 Chemical compound [H]N(C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])c3ccc4cc5ccccc5cc4c3)C=CC1=C2C1=CC=CC=C1C(=O)O)c1ccc2cc3ccccc3cc2c1 VOVUPUVNFCLZSA-BQTQVFSXSA-O 0.000 description 1
- OGSKOBIFBPUEKB-BINQCOMASA-O [H]N(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O Chemical compound [H]N(CCCCCCCCCCCCCCCCCC)C1=CC=C2C(=C1)OC1=C/C(=[N+](\[H])CCCCCCCCCCCCCCCCCC)C=CC1=C2C1=CC=CC=C1C(=O)O OGSKOBIFBPUEKB-BINQCOMASA-O 0.000 description 1
- PRFZJNWDDASESJ-UHFFFAOYSA-N [H]N(CCCCCCCCCCCCCCCCCC)c1ccc2c(c1)Oc1cc(N([H])CCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 Chemical compound [H]N(CCCCCCCCCCCCCCCCCC)c1ccc2c(c1)Oc1cc(N([H])CCCCCCCCCCCCCCCCCC)ccc1C21OC(=O)c2ccccc21 PRFZJNWDDASESJ-UHFFFAOYSA-N 0.000 description 1
- YQIZXUBLOVBIBO-UHFFFAOYSA-N [H]N(c1ccc(N(C)C)cc1)c1ccc2c(c1)Oc1cc(N([H])c3ccc(N(C)C)cc3)ccc1C21OC(=O)c2ccccc21 Chemical compound [H]N(c1ccc(N(C)C)cc1)c1ccc2c(c1)Oc1cc(N([H])c3ccc(N(C)C)cc3)ccc1C21OC(=O)c2ccccc21 YQIZXUBLOVBIBO-UHFFFAOYSA-N 0.000 description 1
- SZXHJGACLVYYMQ-UHFFFAOYSA-N [H]N(c1ccc(N(C)CC)cc1)c1ccc2c(c1)Oc1cc(N([H])c3ccc(N(CC)CC)cc3)ccc1C21OC(=O)c2ccccc21 Chemical compound [H]N(c1ccc(N(C)CC)cc1)c1ccc2c(c1)Oc1cc(N([H])c3ccc(N(CC)CC)cc3)ccc1C21OC(=O)c2ccccc21 SZXHJGACLVYYMQ-UHFFFAOYSA-N 0.000 description 1
- HCCLIXHQPHNSDQ-UHFFFAOYSA-N [H]N(c1ccc2c(c1)Oc1cc(N([H])C(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)C)ccc1C21OC(=O)c2ccccc21)C(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)C Chemical compound [H]N(c1ccc2c(c1)Oc1cc(N([H])C(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)C)ccc1C21OC(=O)c2ccccc21)C(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)C HCCLIXHQPHNSDQ-UHFFFAOYSA-N 0.000 description 1
- KAXKPIPQEIQVBR-UHFFFAOYSA-N [H]N(c1ccc2c(c1)Oc1cc(N([H])c3ccc4cc5ccccc5cc4c3)ccc1C21OC(=O)c2ccccc21)c1ccc2cc3ccccc3cc2c1 Chemical compound [H]N(c1ccc2c(c1)Oc1cc(N([H])c3ccc4cc5ccccc5cc4c3)ccc1C21OC(=O)c2ccccc21)c1ccc2cc3ccccc3cc2c1 KAXKPIPQEIQVBR-UHFFFAOYSA-N 0.000 description 1
- PFRUBEOIWWEFOL-UHFFFAOYSA-N [N].[S] Chemical compound [N].[S] PFRUBEOIWWEFOL-UHFFFAOYSA-N 0.000 description 1
- YVIMHTIMVIIXBQ-UHFFFAOYSA-N [SnH3][Al] Chemical compound [SnH3][Al] YVIMHTIMVIIXBQ-UHFFFAOYSA-N 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 1
- 150000005415 aminobenzoic acids Chemical class 0.000 description 1
- 150000003927 aminopyridines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000001448 anilines Chemical group 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000981 basic dye Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- MIAUJDCQDVWHEV-UHFFFAOYSA-N benzene-1,2-disulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1S(O)(=O)=O MIAUJDCQDVWHEV-UHFFFAOYSA-N 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- WAMGVVQHTXUAFV-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1.OC(=O)C1=CC=CC=C1.OC(=O)C1=CC=CC=C1 WAMGVVQHTXUAFV-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- TXFLGZOGNOOEFZ-UHFFFAOYSA-N bis(2-chloroethyl)amine Chemical compound ClCCNCCCl TXFLGZOGNOOEFZ-UHFFFAOYSA-N 0.000 description 1
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 239000012320 chlorinating reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- FCFNRCROJUBPLU-UHFFFAOYSA-N compound M126 Natural products CC(C)C1NC(=O)C(C)OC(=O)C(C(C)C)NC(=O)C(C(C)C)OC(=O)C(C(C)C)NC(=O)C(C)OC(=O)C(C(C)C)NC(=O)C(C(C)C)OC(=O)C(C(C)C)NC(=O)C(C)OC(=O)C(C(C)C)NC(=O)C(C(C)C)OC1=O FCFNRCROJUBPLU-UHFFFAOYSA-N 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000005546 dideoxynucleotide Substances 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 239000000982 direct dye Substances 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000000986 disperse dye Substances 0.000 description 1
- QQVHEQUEHCEAKS-UHFFFAOYSA-N diundecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCC QQVHEQUEHCEAKS-UHFFFAOYSA-N 0.000 description 1
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 description 1
- 229940071161 dodecylbenzenesulfonate Drugs 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- DZGCGKFAPXFTNM-UHFFFAOYSA-N ethanol;hydron;chloride Chemical compound Cl.CCO DZGCGKFAPXFTNM-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 125000002462 isocyano group Chemical group *[N+]#[C-] 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 150000002596 lactones Chemical group 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- KBOPZPXVLCULAV-UHFFFAOYSA-N mesalamine Chemical compound NC1=CC=C(O)C(C(O)=O)=C1 KBOPZPXVLCULAV-UHFFFAOYSA-N 0.000 description 1
- 229960004963 mesalazine Drugs 0.000 description 1
- 239000010814 metallic waste Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000005442 molecular electronic Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-M naphthalene-1-sulfonate Chemical compound C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-M 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- IPSIPYMEZZPCPY-UHFFFAOYSA-N new fuchsin Chemical compound [Cl-].C1=CC(=[NH2+])C(C)=CC1=C(C=1C=C(C)C(N)=CC=1)C1=CC=C(N)C(C)=C1 IPSIPYMEZZPCPY-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 125000006187 phenyl benzyl group Chemical group 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
- WKFBZNUBXWCCHG-UHFFFAOYSA-N phosphorus trifluoride Chemical compound FP(F)F WKFBZNUBXWCCHG-UHFFFAOYSA-N 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 239000013460 polyoxometalate Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical group [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 239000000992 solvent dye Substances 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 238000012430 stability testing Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000005649 substituted arylene group Chemical group 0.000 description 1
- 150000008054 sulfonate salts Chemical class 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- JNXDCMUUZNIWPQ-UHFFFAOYSA-N trioctyl benzene-1,2,4-tricarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCC)C(C(=O)OCCCCCCCC)=C1 JNXDCMUUZNIWPQ-UHFFFAOYSA-N 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- FCFNRCROJUBPLU-DNDCDFAISA-N valinomycin Chemical compound CC(C)[C@@H]1NC(=O)[C@H](C)OC(=O)[C@@H](C(C)C)NC(=O)[C@@H](C(C)C)OC(=O)[C@H](C(C)C)NC(=O)[C@H](C)OC(=O)[C@@H](C(C)C)NC(=O)[C@@H](C(C)C)OC(=O)[C@H](C(C)C)NC(=O)[C@H](C)OC(=O)[C@@H](C(C)C)NC(=O)[C@@H](C(C)C)OC1=O FCFNRCROJUBPLU-DNDCDFAISA-N 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000001018 xanthene dye Substances 0.000 description 1
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 1
- 239000002478 γ-tocopherol Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/34—Hot-melt inks
Definitions
- Y is a hydrogen atom or a bromine atom
- n is an integer of 0, 1, 2, 3, or 4
- R 1 is an alkylene group or an arylalkylene group
- X is (a) a hydrogen atom, (b) a group of the formula
- R 2 is an alkyl group, an aryl group, an arylalkyl group, or an alkylaryl group, (c) an alkyleneoxy, aryleneoxy, arylalkyleneoxy, or alkylaryleneoxy group, or (d) a group of the formula
- R 4 is an alkyl group, an aryl group, an arylalkyl group, or an alkylaryl group.
- phase change ink composition comprising a phase change ink carrier and a colorant compound of the formula
- Y is a hydrogen atom or a bromine atom
- n is an integer of 0, 1, 2, 3, or 4
- R 1 is an alkylene group or an arylalkylene group
- X is (a) a hydrogen atom, (b) a group of the formula
- R 2 is an alkyl group, an aryl group, an arylalkyl group, or an alkylaryl group, (c) an alkyleneoxy, aryleneoxy, arylalkyleneoxy, or alkylaryleneoxy group, or (d) a group of the formula
- R 4 is an alkyl group, an aryl group, an arylalkyl group, or an alkylaryl group.
- Y is a hydrogen atom or a bromine atom
- n is an integer of 0, 1, 2, 3, or 4
- R 1 is an alkylene group or an arylalkylene group
- R 2 is an alkyl group, an aryl group, an arylalkyl group, or an alkylaryl group
- R 4 is an alkyl group, an aryl group, a n arylalkyl group, or an alkylaryl group
- a process which comprises (a) preparing a first reaction mixture by admixing (1) leucoquinizarin and, optionally, quinizarin, (2) an aminobenzene substituted with an alcohol group of the formula —R 1 —OH, (3) boric acid, and (4) an optional solvent, and heating the first reaction mixture to prepare an alcohol-substituted colorant of the formula
- M is either (1) a metal ion having a positive charge of +y wherein y is an integer which is at least 2, said metal ion being capable of forming a compound with at least two
- chromogen moieties or (2) a metal-containing moiety capable of forming a compound with at least two
- chromogen moieties z is an integer representing the number of
- R 1 , R 2 , R 3 , R 4 , R 15 , R 6 , R 7 , a, b, c, d, Y, Q, Q ⁇ , A, and CA are, as defined therein.
- phase change inks comprising a carrier and a colorant of the formula
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d, Y. Q, Q-, A, and CA are as defined therein.
- the present invention is directed to phase change inks. More specifically, the present invention is directed to hot melt or phase change inks containing specific colorant compounds.
- One embodiment of the present invention is directed to a phase change ink carrier and a colorant compound of the formula
- M is either (1) a metal ion having a positive charge of +y wherein y is an integer which is at least 2, said metal ion being capable of forming a compound with at least two
- chromogen moieties or (2) a metal-containing moiety capable of forming a compound with at least two
- chromogen moieties z is an integer representing the number of
- R 1 , R 2 , R 3 , and R 4 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group; (iv) an arylalkyl group, or (v) an alkylaryl group, wherein R 1 and R 2 can be joined together to form a ring, wherein R 3 and R 4 can be joined together to form a ring, and wherein R 1 , R 2 , R 3 , and R 4 can each be joined to a phenyl ring in the central structure, a and b each, independently of the others, is an integer which is 0, 1, 2, or 3, c is an integer which is 0, 1, 2, 3, or 4, each R 5 , R 6 , and R 7 , independently of the others, is (i) an alkyl group, (ii) an aryl group, (iii) an arylalkyl
- R 8 , R 9 , and R 10 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group, (iv) an arylalkyl group, or (v) an alkylaryl group, provided that the number of carbon atoms in R 1 +R 2 +R 3 +R 4 +R 5 +R 6 +R?+R 8 +R 9 +R 10 is at least about 16, Q ⁇ is a COO ⁇ group or a SO 3 ⁇ group, d is an integer which is 1, 2, 3, 4, or 5, A is an anion, and CA is either a hydrogen atom or a cation associated with all but one of the Q ⁇ groups.
- phase change inks (sometimes referred to as “hot melt inks”) are in the solid phase at ambient temperature, but exist in the liquid phase at the elevated operating temperature of an ink jet printing device. At the jet operating temperature, droplets of liquid ink are ejected from the printing device and, when the ink droplets contact the surface of the recording substrate, either directly or via an intermediate heated transfer belt or drum, they quickly solidify to form a predetermined pattern of solidified ink drops.
- Phase change inks have also been used in other printing technologies, such as gravure printing, as disclosed in, for example, U.S. Pat. No. 5,496,879 and German Patent Publications DE 4205636AL and DE 4205713AL, the disclosures of each of which are totally incorporated herein by reference.
- Phase change inks for color printing typically comprise a phase change ink carrier composition which is combined with a phase change ink compatible colorant.
- a series of colored phase change inks can be formed by combining ink carrier compositions with compatible subtractive primary colorants.
- the subtractive primary colored phase change inks can comprise four component dyes, namely, cyan, magenta, yellow and black, although the inks are not limited to these four colors.
- These subtractive primary colored inks can be formed by using a single dye or a mixture of dyes. For example, magenta can be obtained by using a mixture of Solvent Red Dyes or a composite black can be obtained by mixing several dyes.
- the subtractive primary colorants employed can comprise dyes from the classes of Color Index (C.I.) Solvent Dyes, Disperse Dyes, modified Acid and Direct Dyes, and Basic Dyes.
- the colorants can also include pigments, as disclosed in, for example, U.S. Pat. No. 5,221,335, the disclosure of which is totally incorporated herein by reference.
- U.S. Pat. No. 5,621,022 the disclosure of which is totally incorporated herein by reference, discloses the use of a specific class of polymeric dyes in phase change ink compositions.
- Phase change inks have also been used for applications such-as postal marking, industrial marking, and labelling.
- Phase change inks are desirable for ink jet printers because they remain in a solid phase at room temperature during shipping, long term storage, and the like.
- the problems associated with nozzle clogging as a result of ink evaporation with liquid ink jet inks are largely eliminated, thereby improving the reliability of the ink jet printing.
- the droplets solidify immediately upon contact with the substrate, so that migration of ink along the printing medium is prevented and dot quality is improved.
- compositions suitable for use as phase change ink carrier compositions are known.
- Some representative examples of references disclosing such materials include U.S. Pat. No. 3,653,932, U.S. Pat. No. 4,390,369, U.S. Pat. No. 4,484,948, U.S. Pat. No. 4,684,956, U.S. Pat. No. 4,851,045, U.S. Pat. No. 4,889,560, U.S. Pat. No. 5,006,170, U.S. Pat. No. 5,151,120, U.S. Pat. No. 5,372,852, U.S. Pat. No.
- Suitable carrier materials can include paraffins, microcrystalline waxes, polyethylene waxes, ester waxes, fatty acids and other waxy: materials, fatty amide containing materials, sulfonamide materials, resinous materials made from different natural sources (tall oil rosins and rosin esters, for example), and many synthetic resins, oligomers, polymers, and copolymers.
- X 1 is an ester group or an amide group (such as of a carboxylic or sulfonic acid) or a fatty amine salt of a sulfonic acid
- each X 2 independently is a substituent
- m has a value of from 0 to 2
- Y 1 and Y 2 are each independently H, alkyl, or halo
- each Z independently is an ester or amide group
- a ⁇ is an anion.
- the compound is useful as a colorant for toners, D2T2 printing, plastics, polyesters, nylons, and inks, especially ink jet or hot melt inks.
- HCl the following N,N′-diarylrhodamines which were isolated as HCl salts: Ph, m. 255-600; o-meC6H 4 , m. 205-100; m-meC6H 4 , m. 195-2000; p-meC 6 H 4 , m. 255-60°.
- PhCH 2 NH 2 similarly gave N,N′-dibenzylrhodamine, m. 160-50; HCl salt decomp. 160-50; di-HCl salt decomp. 2100.
- PhCH 2 NH 2 and 3-chloro-6-anilinofluorane gave 90-5% N-phenyl-N′-benzylrhodamine isolated as the HCl salt, m. 200-100. The absorption spectra of these rhodamines are shown. Dibenzylrhodamine fluoresces strongly in solution, while the phenyl benzyl analog has a weak fluorescence. The benzyl groups cause a bathochromic shift of the absorption band in the substituted rhodamines; the diarylrhodamines form blue-violet solutions unlike the orange-yellow produced by unsubstituted rhodamine. The di-HCl salt of dibenzylrhodamine loses one HCl in soln as shown by behavior in EtOH.
- Rhodol was a constant byproduct as a result of partial deamination of rhodamine. The deamination is promoted by longer reaction time and higher temperatures. These factors also promoted the formation of a dark, amorphous material. o-Hydroxysulfanilic acid was formed in the reaction in up to 32% yield at 160° in 2 hours; more drastic conditions lowered its yield rapidly. Prior to the appearance of substantial amounts of rhodamine in the mixture, sulfonation of m-H 2 C 6 H 4 OH takes place, and the resulting compound appears to be the intermediate which reacts, with this compound forming rhodamine by displacement of the sulfonic acid group.
- U.S. Pat. No. 1,991,482 (Allemann), the disclosure of which is totally incorporated herein by reference, discloses a process of producing rhodamine dyes which comprises condensing a halogenated primary amine of: the benzene series with fluorescein dichloride and sulfonating the condensed product.
- R 1 -R 6 are hydrogen, fluorine, chlorine, lower alkyl lower alkene, lower alkyne, sulfonate, sulfone, amino, amido, nitrile, lower alkoxy, lining group, or combinations thereof or, when taken together, R 1 and R 6 is benzo, or, when taken together, R 4 and R 5 is benzo;
- Y 1 -Y 4 are hydrogen or lower alkyl or, when taken together, Y, and R 2 is propano and Y 2 and R 1 is propano, or, when taken together, Y 3 and R 3 is propano and Y 4 and R 4 is propano;
- X 1 -X 3 taken separately are selected from the group consisting of hydrogen, chlorine, fluorine, lower alkyl carboxylate, sulfonic acid, —CH 2 OH, and linking group.
- the invention includes reagents labeled with the 4,7-dichlororhodamine dye compounds, including deoxynucleotides, dideoxynucleotides, and polynucleotides.
- the invention includes methods utilizing such dye compounds and reagents including dideoxy polynucleotide sequencing and fragment analysis methods.
- L is C 2 -C 10 -alkylene
- R 1 , R 2 , and R 3 are each independently of the others hydrogen, substituted or unsubstituted C 1 -C 10 -alkyl or C 5 -C 7 -cycloalkyl or R 1 and R 2 together with the nitrogen atom linking them together are a hetero cyclic radical
- An is one equivalent of an anion and m and n are each independently of the other 0 or 1.
- a ⁇ is an anion
- R is hydrogen or unsubstituted or substituted alkyl or cycloalkyl
- R 1 and R 2 independently of one another are each hydrogen or unsubstituted or substituted alkyl or cycloalkyl, or one of the radicals may furthermore be aryl, or R 1 and R 2 , together with the nitrogen atom, form a saturated heterocyclic structure
- the radicals R 3 independently of one another are each hydrogen or C 1 -C 4 -alkyl
- R 4 and R 5 independently of one another are each unsubstituted or substituted alkyl or cycloalkyl
- one of the radicals may furthermore be hydrogen, aryl or hetaryl
- R 4 and R 5 together with the nitrogen atom, form a saturated heterocyclic structure
- n is 1, 2 or 3
- X is hydrogen, chlorine, bromine, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy or nitro and
- British Patent Publication GB 421 737 discloses dyes of the rhodamine series which are prepared by condensing naphthalene-2:3-dicarboxylic acid with a m-aminophenol in which the nitrogen group is substituted by one or two alkyl groups, the products, if desired, being sulphonated.
- the unsulphonated products may be used as lake colouring matters whilst the sulphonated dyes are acid wool dyes.
- naphthalene-2:3-dicarboxylic acid is condensed with diethyl-m-aminophenol in the presence of zinc chloride giving a product which dyes tannin-mordanted cotton in the same shade as Rhodamine B and a sulphonated product which dyes wool bluish-red shades;
- monoethyl-m-aminophenol is used instead of the diethyl-m-aminophenol in example (1), yielding a dye, which when sulphonated dyes wool red-orange shades;
- 2-ethylamino-p-cresol replaces the diethyl-m-aminophenol in example (1), yielding a dye dyeing and printing tannin-mordanted cotton in shades similar to Rhodamine 69BS and when sulphonated dyeing wool red.
- R 1 , R 3 are each lower alkyl;
- R 2 is lower alkyl, 10C or higher long-chain alkyl;
- R 4 is 10C or higher long-chain alkyl;
- X ⁇ is an anion, or squarylium compounds of formula II
- R 2 is 10C or higher long-chain alkyl.
- phase change ink compatible colorants which comprise a phase change ink soluble complex of (a) a tertiary alkyl primary amine and (b) dye chromophores, i.e., materials that absorb light in the visible wavelength region to produce color having at least one pendant acid functional. group in the free acid form (not the salt of that acid).
- dye chromophores i.e., materials that absorb light in the visible wavelength region to produce color having at least one pendant acid functional. group in the free acid form (not the salt of that acid).
- Thin films of uniform thickness of the subject phase change ink compositions which employ the modified phase change ink colorants exhibit a high degree of lightness and chroma.
- the primary amine-dye chromophore complexes are soluble in the phase change ink carrier and exhibit excellent thermal stability.
- U.S. Pat. No. 5,507,864 discloses a phase change ink composition that includes a combination of different dye types such as an anthraquinone dye and a xanthene dye, which is most preferably a rhodamine dye. While each dye type is insufficiently soluble with respect to favored carrier compositions to preserve color saturation in reduced ink quantity prints, the dye type combination permits increased dye loading and maintains print quality.
- a favored carrier composition is adjusted to promote the colored form of a preferred rhodamine dye (C.I.
- Solvent Red 49 and mixed with a preferred anthraquinone dye (C.I. Solvent Red. 172) whose concentration is kept below a critical level to prevent post printed blooming.
- the resulting preferred phase change ink compositions provide a magenta phase change-ink with enhanced light fastness and color saturation, as well as good compatibility with preferred existing subtractive primary color phase change inks.
- A is an organic chromophore
- Y is an oxyalkylene or poly(oxyalkylene)
- R is an arylene or alkylene
- n represents the number of repeating segments, and is an integer of from about 2 to about 50
- p represents the number of chains per chromophore and is an integer of from about 1 to about 6.
- European Patent Publication 0565 798 discloses ultraviolet radiation-curable primary and secondary coating compositions for optical fibers.
- the primary coatings comprise a hydrocarbon polyol-based reactively terminated aliphatic urethane oligomer; a hydrocarbon-monomer terminated with at least one end group capable of reacting with the terminus of the oligomer; and an optional photoinitiator.
- the secondary coatings comprise a polyester and/or polyether-based aliphatic urethane reactively terminated oligomer; a hydrocarbonaceous viscosity-adjusting component capable of reacting with the reactive terminus of (I); and an optional photoinitiator. Also disclosed are optical fibers coated with the secondary coating alone or with the primary and secondary coatings of the invention.
- magenta colorant compositions While known compositions and processes are-suitable for their intended purposes, a need remains for new magenta colorant compositions. In addition, a need remains for magenta colorant compositions particularly suitable for use in phase change inks. Further, a need remains for magenta colorants with desirable thermal stability. Additionally, a need remains for magenta colorants that exhibit minimal undesirable discoloration when exposed to elevated temperatures. There is also a need for magenta colorants that exhibit a desirable brilliance. In addition, there is a need for magenta colorants that exhibit a desirable hue. Further, there is a need for magenta colorants that are of desirable chroma. Additionally, there is a need for magenta colorants that have desirably high lightfastness characteristics.
- a need remains for magenta colorants that exhibit desirable solubility characteristics in phase change ink carrier compositions.
- a need remains for magenta colorants that enable phase change inks to be jetted at temperatures of over 135° C. while maintaining thermal stability.
- a need remains for magenta colorants that enable phase change inks that generate images with low pile height.
- magenta colorants that enable phase change inks that generate images that approach lithographic thin image quality there is a need for magenta colorants that exhibit oxidative stability. Further, there is a need for magenta colorants that do not precipitate from phase change ink carriers.
- magenta colorants that do not, when included in phase change inks, diffuse into adjacently printed inks of different colors.
- a need also remains for magenta colorants that do not leach from media such as phase change ink carriers into tape adhesives, paper, or the like.
- magenta colorants that, when incorporated into phase change inks, do not lead to clogging of a phase change ink jet printhead.
- magenta colorants that enable phase change inks that generate images with sharp edges that remain sharp over time.
- magenta colorants that enable phase change inks that generate images of desirably high optical density. Additionally, there is a need for magenta colorants that, because of their good solubility in phase change ink carriers, enable the generation of images of low pile height without the loss of desirably high optical density. A need also remains for magenta colorants that enable cost-effective inks. In addition, a need remains for magenta colorants that are compounds having metal compounds associated with chromogens, wherein the thermal stability of the metal compound colorants exceeds that of the chromogens unassociated with a metal.
- the present invention is directed to a phase change ink composition
- a phase change ink composition comprising a phase change ink carrier and a colorant compound of the formula
- M is either (1) a metal ion having a positive charge of +y wherein y is an integer which is at least 2, said metal ion being capable of forming a compound with at least two
- chromogen moieties or (2) a metal-containing moiety capable of forming a compound with at least two
- chromogen moieties z is an integer representing the number of
- R 1 , R 2 , R 3 , and R 4 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group, (iv) an arylalkyl group, or (v) an alkylaryl group, wherein R 1 and R 2 can be joined together to form a ring, wherein R 3 and R 4 can be joined together to form a ring, and wherein R 1 , R 2 , R 3 , and R 4 can each be joined to a phenyl ring in the central structure, a and b each, independently of the others, is an integer which is 0, 1, 2, or 3, c is an integer which is 0, 1, 2, 3, or 4, each R 5 , R 6 , and R 7 , independently of the others, is (i) an alkyl group, (ii) an aryl group, (iii) an arylalkyl
- R 8 , R 9 , and R 10 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group, (iv) an arylalkyl group, or (v) an alkylaryl group, provided that the number of carbon atoms in R 1 +R 2 +R 3 +R 4 +R 5 +R 6 +R 7 +R 8 +R 9 +R 10 is at least about 16, Q ⁇ is a COO ⁇ group or a SO 3 — group, d is an integer which is 1, 2, 3, 4, or 5, A is an anion, and CA is either a hydrogen atom or a cation associated with all but one of the Q ⁇ groups.
- the present invention is directed to phase change inks containing colorant compounds of the formula
- M is either (1) a metal ion having a positive charge of +y wherein y is an integer which is at least 2, said metal ion being capable of forming a compound with at least two
- chromogen moieties or (2) a: metal-containing moiety capable of forming a compound, with at least two
- chromogen moieties and z is an integer representing the number of
- chromogen moieties associated with the metal is at least 2. There is no necessary upper limit on the value of z.
- Examples of metal cations having a positive charge of +y wherein y is an integer which is at least 2 include +2, +3, +4, and higher cations of magnesium, calcium, strontium, barium, radium, aluminum, gallium, germanium, indium, tin, antimony, tellurium, thallium, lead, bismuth, polonium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, niobium molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, metals of the lanthamide series, such as europium and the like, metals of the actinide series, and the like.
- metal ionic moieties such as Me 3+ X ⁇ wherein Me represents a trivalent metal atom and X represents a monovalent anion, such as Cl ⁇ , Br ⁇ , I ⁇ , HSO 4 ⁇ , HSO 3 ⁇ , CH 3 SO 3 ⁇ , CH 3 C 6 H 4 SO 3 ⁇ , NO 3 ⁇ , HCOO ⁇ , CH 3 COO ⁇ , H 2 PO 4 ⁇ , SCN ⁇ , BF 4 ⁇ , ClO 4 ⁇ , SSO 3 ⁇ , PF 6 ⁇ , SbCl 6 ⁇ , or the like, or Me 4+ X ⁇ or Me 4+ X ⁇ or Me 4+ X 2 ⁇ wherein Me represents a tetravalent metal atom, X represents a monovalent anion, and X 2 represents 2 monovalent anions, Me 4+ X 2 ⁇ wherein Me represents a tetravalent metal atom and
- metal coordination compounds wherein metals such as magnesium, calcium, strontium, barium, radium, aluminum, gallium, germanium, indium, tin, antimony, tellurium, thallium, lead, bismuth, polonium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, niobium molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, metals of the lanthamide series, such as europium and the like, metals of the actinide series, and the like are associated with one or more ligands, such as carbonyl (carbon monoxide) ligands, ferrocene ligands, halide ligands, such as fluoride
- R 51 , R 52 , and R 53 each, independently of the others, is (i) a hydrogen atom, (ii) a halogen atom, such as fluorine, chlorine, bromine, iodine, or the like, (iii) an alkyl group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkyl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkyl group), in one embodiment with at least 1 carbon atom, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iv) an aryl group (including unsubstituted and substituted aryl groups, and wherein hetero atoms, such
- R 61 , R 62 , and R 63 each, independently of the others, is (i) a hydrogen atom, (ii)a halogen atom, such as fluorine, chlorine, bromine, iodine, or the like, (iii) an alkyl group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkyl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkyl group), in one embodiment with at least 1 carbon atom, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iv) an aryl group (including unsubstituted and substituted aryl groups, and wherein hetero atoms
- heteropblyacids also known as polyoxometalates, which are acids comprising inorganic metal-oxygen clusters; these materials are discussed in, for example, “Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines,” M. T. Pope et al., Angew. Chem. Int. Ed. Engl ., Vol. 30, p.
- heteropolyacids include phosphotungstic acids, including (but not limited to) those of the general formula H 3 PO 4 .12WO 3 .XH 2 O (wherein X is variable, with common values including (but not being limited to) 12, 24, or the like), silicotungstic acids, including (but not limited to) those of the general formula H 4 SiO 2 .12WO 3 XH 2 O (wherein X is variable, with common values including (but not being limited to) 12, 24, 26, or the like), phosphomolybdic acids, including (but not limited to) those of the general formula 12MoO 3 H 3 PO 4 .XH 2 O (wherein X is variable, with common values including (but not being limited to) 12, 24, 26, or the like) and the like, all commercially available from, for example, Aldrich Chemical Co., Milwaukee, Wis., as well as mixtures thereof;
- chromogen moieties His meant that the metal cation or metal-containing moiety can react with two or more
- chromogen moiety and the metal cation or metal-containing moiety to form a compound is suitable, including ionic compounds, covalent compounds, coordination compounds, and the like.
- R 1 , R 2 , R 3 , and R 4 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkyl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkyl group), in one embodiment with at least 1 carbon atom, in another embodiment with at least about 2 carbon atoms, in yet another embodiment with at least about 6 carbon atoms, in another embodiment with at least about 8 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iii) an aryl group (
- R 8 , R 9 , and R 10 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkyl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkyl group), in one embodiment with at least 1 carbon atom, in another embodiment with at least about 2 carbon atoms, in yet another embodiment with at least about 6 carbon atoms, in another embodiment with at least about 8 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, and in ane embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iii) an aryl group (including unsub
- each of R 21 , R 22 , R 23 , and R 24 is (i) a hydrogen atom, (ii) an alkyl group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkyl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkyl group), in one embodiment with at least 1 carbon atom, in another embodiment with at least about 2 carbon atoms, in yet another embodiment with at least about 6 carbon atoms, in another embodiment with at least about 8 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iii) an alkyl group (including linear, branched, saturated
- one of the R 7 groups is in the ortho position and is either an ester based on a carboxylic acid, an ester based on a sulfonic acid, an amide based on a carboxylic acid, or an amide based on a sulfonic acid, or (ii) one of the Q ⁇ groups is a sulfonate salt, i.e., when the chromogen is of the formula
- R 12 R 13 , R 14 , R 15 , R 16 , and R 17 each independently of the other, is (i) an alkyl group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkyl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkyl group), in one embodiment with at least 1 carbon atom, and in one embodiment with no more than about 50 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, (ii) an aryl group (including unsubstituted and substituted aryl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the aryl group), in one embodiment with at
- the number of carbon atoms in R 1 +R 2 +R 3 +R 4 is at least about 16, in another embodiment at least about 18, in yet another embodiment at least about 20, in still another embodiment at least about 22, in another embodiment at least about 24, in yet another embodiment at least about 26, in still another embodiment at least about 28, in another embodiment at least about; 30, in yet another embodiment at least about 32, in still another embodiment at least about 34, in another embodiment at least-about 36, in yet another embodiment at least about 38, in still another embodiment at least about 40, in another embodiment at least about 42, in yet another embodiment at least about 44, in still another embodiment at least about 46, in another embodiment at least about 48, in yet another embodiment at least about 50, in still another embodiment at least about 52, in another embodiment at least about 54, in: yet another embodiment at least about 56, in still another embodiment at least about 58, in another embodiment at least about 60, in yet another embodiment at least about 62, in still another embodiment at least about 64, in another embodiment at least about 66, in yet another embodiment at least about at least about
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , and R 10 can also be groups such as alkoxy, polyalkyleneoxy, aryloxy, polyaryleneoxy, arylalkyloxy, polyarylalkyleneoxy, alkylaryloxy, or polyalkylaryleneoxy groups, provided that the oxygen atom in such a group is not directly bonded to a nitrogen, oxygen, or sulfur atom in the
- Compounds for the inks of the present invention include those wherein the chromogen is a monocarboxylic acid or a monocarboxylate, wherein
- monocarboxylic acid disulfonic acids and monocarboxylate disulfonates monocarboxylic acid trisulfonic acids and monocarboxylate trisulfonates, monocarboxylic acid tetrasulfonic acids and monocarboxylate tetrasulfonates, dicarboxylic acid monosulfonic acids and dicarboxylate monosulfonates, dicarboxylic acid disulfonic acids and dicarboxylate disulfonates, dicarboxylic acid trisulfonic acids and dicarboxylate trisulfonates, tricarboxylic acid monosulfonic acids and tricarboxylate monosulfonates, tricarboxylic acid disulfonic acids and tricarboxylate disulfonates, tetracarboxylic acid monosulfonic acids and tetracarboxylate monosulfonates, and the like.
- a compound according to the present invention it is possible for a compound according to the present invention to have both one or more acid groups (i.e., COOH or SO 3 H) and one or more anionic salt groups (i.e., COO ⁇ or SO 3 ⁇ ) present in the molecule.
- one or more acid groups i.e., COOH or SO 3 H
- one or more anionic salt groups i.e., COO ⁇ or SO 3 ⁇
- Colorant compounds suitable for inks according to the present invention include rhodamines, wherein
- the anion A can be an organic dianion of the formula A 1 -R 11 -A 2 wherein A 1 and, A 2 each, independently of the other, are anionic groups, such as carboxylate, sulfonate, or the like, and wherein R 11 is (i) an alkylene group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkylene groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkylene group), in one embodiment with at least 1 carbon atom, in another embodiment with at least about 2 carbon atoms, in yet another embodiment with at least about 6 carbon atoms, in another embodiment with a t least about 8 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms
- the anion A can be an orgdnic trianion, tetraanion, and higher, an, oligomeric and polymeric anion, such as a polysulfonate or polycarboxylate, or the like.
- the chromogen for the colorant compounds for the inks according to the present invention is of the formula
- the positive charge is delocalized, and that other tautomeric structures can be drawn, including (but not limited to)
- the compounds in the inks of the present invention are of the general formula
- M is a metal cation
- y is an integer representing the charge on the metal cation and is at least 2
- A is an anion
- x is an integer representing the charge on the anion
- Colorant compounds for inks of the present invention can be prepared by any desired or effective procedure. Preparation of the chromogen will be discussed first. By “chromogen” is meant the
- component of the metal compound which is later reacted with the metal cation or metal containing moiety to form the colorant of the present invention for example, a dihalofluorescein, such as dichlorofluorescein or the like, can be admixed with one or more amines having the desired R 1 , R 2 , R 3 , and R 4 groups thereon, an optional zinc halide, such as zinc chloride or the like, and an optional normucleophilic base, such as calcium oxide, zinc oxide, or the like, either neat or, optionally, in the presence of a solvent.
- a dihalofluorescein such as dichlorofluorescein or the like
- an optional zinc halide such as zinc chloride or the like
- an optional normucleophilic base such as calcium oxide, zinc oxide, or the like
- the amine and the dihalofluorescein are present in any desired or effective relative amounts, tin one embodiment at least about 0.9 mole of base per every one mole of dihalofluorescein, in another embodiment at least about 0.95 mole of base per every one mole of dihalofluorescein, and in yet another embodiment at least about 1 mole of base per every one mole of dihalofluorescein, and in one embodiment no more than about 20 moles of base per every one mole of dihalofluorescein, in another embodiment no more than about 10 moles of base per every one mole of dihalofluorescein, and in yet another embodiment no more than about 2 moles of base per every one mole of dihalofluorescein, although the relative amounts can be outside of these ranges.
- Dichlorofluorescein is commercially available from, for, example, Aldrich Chemical Co., Milwaukee, Wis.
- Dihalofluoresceins can also be prepared by the reaction of fluorescein with PX 5 wherein X is fluorine, chlorine, bromine, or iodine, or with a toluenesulfonylhalide, such as toluenesulfonylchloride or the like.
- the dihalofluorescein and the zinc halide are present in any desired or effective relative amounts, in one embodiment at least about 2 moles of zinc halide per every one mole of dihalofluorescein, in another embodiment at least about 2.5 moles of zinc halide per every one mole of dihalofluorescein, and yet in another embodiment at least about 3 moles of zinc halide per every one mole of dihalofluorescein, and in one embodiment no more than about 5 moles of zinc halide per every one mole of dihalofluorescein, in another embodiment no more than about 4.5 moles of zinc halide per every one mole of dihaloflubrescein, and in yet another embodiment no more than about 4 moles of zinc halide per every one mole of dihalofluorescein, although the relative amounts can be outside of these ranges.
- the base is present in any desired or effective amount, in one embodiment at least about 2 equivalents of base per every one mole of dihalofluorescein (i.e., about 2 moles of monobasic base per every one mole of dihalofluorescein, about 1 mole of dibasic base, such as calcium oxide, per every one mole of dihalofluorescein, and the like), in another embodiment at least about 2.5 equivalents of base per every one mole of dihalofluorescein, and yet in another embodiment at least about 3 equivalents of base per every one mole of dihalofluorescein, and in one embodiment no more than about 10 equivalents of base per every one mole of dihalofluorescein, in another embodiment no more than about 5 equivalents of base per every one mole of dihalofluorescein, and in yet another embodiment no more than about 3.2 equivalents of base per every one mole of dihalofluorescein, although the relative amounts can be outside of these ranges.
- the reaction can be run neat, in the absence of a solvent.
- the reaction can be run in the presence of an optional solvent.
- suitable solvents include tetramethylene sulfone (sulfolane), N-methylpyrrolidone, dimethyl formamide, dimethyl sulfoxide, octanol, or the like, as well as mixtures thereof.
- the optional solvent is present in any desired or effective amount, in one embodiment at least about 11 liter per every 0.1 mole of dihalofluorescein, in another embodiment at least about 1 liter per every 0.3 mole of dihalofluorescein, and in yet another embodiment at least about 1 liter per every 0.35 mole of dihalofluorescein, and in one embodiment no more than about 1 liter per every 2 moles of dihalofluorescein, in another embodiment no more than about liter per every 1.5 moles of dihalofluorescein, and in yet another embodiment no more than about 1 liter per every 1 mole of dihalofluorescein, although the relative amounts can be outside of these ranges.
- the mixture of dihalofluorescein, amine, optional zinc halide, optional base, and optional solvent is then heated to any effective temperature, in one embodiment at least about 62° C., in another embodiment at least about 150° C., and in yet another embodiment at least about 190° C., and in one embodiment no more than about 28° C., in another embodiment no more than about 220° C., and in yet another embodiment no more than about 200° C., although the temperature can be outside of these ranges.
- the mixture of dihalofluorescein, amine, optional zinc halide, optional base, and optional solvent is heated for any effective period of time, in one embodiment at least about 5 minutes, in another embodiment at least about 2 hours, and in yet another embodiment at least about 3 hours, and in one embodiment no more than about 4 days, in another embodiment no more than about 60 hours, and in yet another embodiment no more than about 40 hours, although the time can be outside of these ranges.
- the resulting chromogen product can be purified by pouring the reaction mixture into an organic non-water-soluble and non-water-miscible solvent in which the product is soluble or miscible and in which undesirable salt byproducts are not soluble, such as methyl isobutyl ketone, toluene, hexane, heptane, or the like, followed by admixing the solvent containing the product with water in a separatory funnel and separating the aqueous and organic phases.
- an organic non-water-soluble and non-water-miscible solvent in which the product is soluble or miscible and in which undesirable salt byproducts are not soluble, such as methyl isobutyl ketone, toluene, hexane, heptane, or the like, followed by admixing the solvent containing the product with water in a separatory funnel and separating the aqueous and organic phases.
- the crude chromogen product can then, if desired, be further purified by washing it with aqueous EDTA to remove metal salts, followed by washing with water. If desired, a titration or other instrumental technique, such as AA (atomic absorption) or ICP (inductively coupled plasma) can be performed to determine if the metal salts have been completely removed.
- AA atomic absorption
- ICP inductively coupled plasma
- Additional numbers of carbon atoms can be placed on the central structure by, for example, selecting long chain amines as reactants. Examples of such compounds include (but are not limited to) those of the formulae
- R is a linear alkyl group of the formula —C n H 2 n+1 wherein n is at least about 12
- R is a branched alkyl group of the formula —C n H 2n+1 wherein n is at least about 12
- R is an ether group of the formula —(CH 2 ) 3 —O—C n H 2n+1 wherein n is at least about 11, and the like, as well as their ring-opened, or protonated, or free-base forms and their zwitterionic forms.
- Additional numbers of carbon atoms can also be placed on the central structure by, for example, first preparing the corresponding alcohols and then reacting these alcohols with, for example, high-carbon-number acids to prepare esters, high-carbon-number isocyanates to prepare urethanes, or the like.
- high-carbon-number acids to prepare esters
- high-carbon-number isocyanates to prepare urethanes, or the like.
- examples of such compounds include (but are not limited to) those of the formulae
- R is a group of the formula
- n is at least about 12
- R is a group of the formula
- n is at least about 12
- R is a group of the formula
- n is at least about 12
- two R groups on the same nitrogen atom form a group, with the nitrogen atom, of the formula
- n is at least about 12
- two R groups on the same nitrogen atom form a group, with the nitrogen atom, of the formula
- n is at least about 12, (9) two R groups on the same nitrogen atom form a group, with the nitrogen atom, of the formula
- n is at least about 12, and the like, as well as their ring-opened, or protonated, or free-base forms and their zwitterionic forms.
- n is at least about 11, (b) those of the formulae
- n is at least about 12, (c) those of the formulae
- n is at least about 12, (d) those of the formulae
- n is at least about 12, (e) those of the formulae
- n is at least about 12, (f) those of the formulae
- n is at least about 12, (g) those of the formulae
- n is at least about 12, (h) those of the formulae
- n is at least about 12, (i) those of the formulae
- n is at least about 12, (j) those of the formulae
- n is at least about 12, (k) those of the formulae
- n is at least about 12, (1) those of the formulae
- n is at least about 12, (m) those of the formulae
- n is at least about 12, (n) those of the formulae
- n is at least about 12, (O) those of the formulae
- n is at least about 12 and the like.
- the chromogen can then be formed into a metal compound colorant by admixing it with an appropriate metal salt, optionally in the presence of a solvent, such as acetone, toluene, methyl isobutyl ketone, or the like.
- a solvent such as acetone, toluene, methyl isobutyl ketone, or the like.
- suitable metals are provided hereinabove.
- suitable salts include those formed from the desired metal and any desired or effective anions, including (but not limited to) F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , SCN — , CF 3 SO 3 — , [C 10 H 8 (SO 3 ) 2 ]2 ⁇ , CH 3 ⁇ C 6 H 4 ⁇ SO 3 ⁇ , PF 6 ⁇ , ClO 4 ⁇ , NO 2 ⁇ C 6 H 4 ⁇ SO 3 ⁇ , NH 2 ⁇ C 6 H 4 ⁇ SO 3 ⁇ , SCN ⁇ , dodecylbenzene sulfonate, or the like.
- the chromogen and the metal salt are present in any desired or effective relative amounts, generally at least about 2 moles of chromogen per every one mole of metal salt, and higher when higher ratios of chromogen to metal or metal containing moiety are desired, although the relative amounts can be outside of these ranges.
- the optional solvent is present in any desired or effective amount, in one embodiment at least about 1 liter per every 0.01 mole of chromogen, in another embodiment at least about 1 liter per every 0.04 mole of chromogen, and in yet another embodiment at least about 1 liter per every 0.08 mole of chromogen, and in one embodiment no more than about 1 liter per every 0.5 mole of chromogen, in another embodiment no more than about 1 liter per every 0.1 mole of chromogen, and in yet another embodiment no more than about 1 liter per every 0.09 mole of chromogen, although the relative amounts can be outside of these ranges.
- the chromogen and the metal salt are allowed to react for any desired or effective period of time, in one embodiment at least about 0.5 hour, in another embodiment at least about 8 hours, and in yet another embodiment at least about 12 hours, and in one embodiment no more than about 96 hours, in another embodiment no more than about 48 hours, and in yet another embodiment no more than about 24 hours, although the time can be outside of these ranges.
- the chromogen and the metal salt are allowed to react at any desired or effective temperature, in one embodiment at least about 25° C., in another embodiment at, least about 55° C., and in yet another embodiment at least about 100° C., and in one embodiment no more than about 190° C., in another embodiment no more than about 150° C., and in yet another embodiment no more than about 110° C., although the time can be outside of these ranges.
- any desired or effective temperature in one embodiment at least about 25° C., in another embodiment at, least about 55° C., and in yet another embodiment at least about 100° C., and in one embodiment no more than about 190° C., in another embodiment no more than about 150° C., and in yet another embodiment no more than about 110° C., although the time can be outside of these ranges.
- an optional solvent generally lower temperatures can be employed, whereas when the reaction is run neat, the temperature is sufficiently high to render the chromogen molten.
- the resulting product can then be isolated by any desired or effective method, such as by distilling, off the solvent, cooling the reaction mixture (when the product is soluble in the solvent at elevated temperatures and insoluble in the solvent at lowered temperatures), or the like.
- Another embodiment of the present invention is directed to a compound comprising the reaction product of (a) a chromogen of the formula
- R 1 , R 2 , R 3 , and R 4 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group, (iv) an arylalkyl group, or (v) an alkylaryl group, wherein R 1 and R 2 can be joined together to form a ring, wherein R 3 and R 4 can be joined together to form a ring, and wherein R 1 , R 2 , R 3 , and R 4 can each be joined to a phenyl ring in the central structure.
- a and b each, independently of the others is an integer which is 0, 1, 2, or 3
- c is an integer which is 0, 1, 2, 3, or 4
- each R 5 , R 6 , and R 7 independently of the others, is (i) an alkyl group, (ii) an aryl group, (iii) an arylalkyl group, (iv) an alkylaryl group,
- R 8 , R 9 , and R 10 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group, (iv) an arylalkyl group, or (v) an alkylaryl group, provided that the number of carbon atoms in R 1 +R 2 +R 3 +R 4 +R 5 +R 6 +R 7 +R 8 +R 9 +R 10 is at least about 16, Q ⁇ is a COO ⁇ group or a SO 3 — group, d is an integer which is 1, 2, 3, 4, or 5, A is an anion, and CA is either a hydrogen atom or a cation associated with all but one of the Q ⁇ groups, and (b) a metal salt of which the metal portion is either (1) a metal ion having a positive charge of +y wherein y is an integer which is at least 2, said metal ion being capable of forming a compound with at least two
- moieties or (2) a metal-containing moiety capable of forming a compound with at least two
- coordination complexes may form.
- Q ⁇ is: a carboxylate anion
- d is 1
- the metal is capable of coordinating to four ligands
- a metal colorant compound ac cording to the present invention may have the formula
- the metal colorant compound may have the structure
- the metal colorant compound may have the structure
- the metal colorant compound may have the structure
- Phase change inks of the present invention contain a phase change carrier system or composition.
- the phase change carrier composition is typically designed for use in either a direct printing mode or an indirect or offset printing transfer system.
- the phase change carrier composition in one embodiment contains one or more materials that enable the phase change ink (1) to be applied in a thin film of uniform thickness on the final recording substrate (such as paper, transparency material, and the like) when cooled to ambient temperature after printing directly to the recording substrate, (2) to be ductile while retaining sufficient flexibility so that the applied image on the substrate will not fracture upon bending, and (3) to possess a high degree of lightness, chroma; transparency, and thermal stability.
- the final recording substrate such as paper, transparency material, and the like
- the phase change carrier composition in one embodiment exhibits not only the characteristics desirable for direct printing mode inks, but also certain fluidic and mechanical properties desirable for use in such a system, as described in, for example, U.S. Pat. No. 5,389,958 the disclosure of which is totally incorporated herein by reference.
- any desired or effective carrier composition can be used.
- suitable ink carrier materials include fatty amides, such as monoamides, tetra-amides, mixtures thereof, and the like.
- suitable fatty amide ink carrier materials include stearyl stearamide, a dimer acid based tetra-amide, that is the reaction product of dimer acid, ethylene diamine, and stearic acid, a dimer acid based tetra-amide that is the reaction product of dimer acid, ethylene diamine, and a carboxylic acid having at least about 36 carbon atoms, and the like, as well as mixtures thereof.
- the fatty amide ink carrier is a dimer acid based tetra-amide that is the reaction product of dimer acid, ethylene diamine, and a carboxylic acid having at least about 36 carbon atoms
- the carboxylic acid is of the general formula
- R is an alkyl group, including linear, branched, saturated, unsaturated, and cyclic alkyl groups, said alkyl group in one embodiment having at least about 36 carbon atoms, in another embodiment having at least about 40 carbon atoms, said alkyl group in one embodiment having no more than about 200 carbon atoms, in another embodiment having no more than about 150 carbon atoms, and in yet another embodiment having no more than about 100 carbon atoms, although the number of carbon atoms can be outside of these ranges.
- Carboxylic acids of this formula are commercially available from, for example, Baker Petrolite, Tulsa, Okla., and can also be prepared as described in Example 1 of U.S. Pat. No.
- phase change ink carrier materials are isocyanate-derived resins and waxes, such as urethane isocyanate-derived materials, urea isocyanate-derived materials, urethane/urea isocyanate-derived materials, mixtures thereof, and the like.
- isocyanate-derived carrier materials is disclosed in, for example, U.S. Pat. No. 5,750,604, U.S. Pat. No. 5,780,528, U.S. Pat. No. 5,782,966, U.S. Pat. No. 5,783,658, U.S. Pat. No. 5,827,918, U.S. Pat. No. 5,830,942, U.S. Pat. No.
- phase change ink carrier materials for the present invention include paraffins, microcrystalline waxes, polyethylene waxes, ester waxes, amide waxes, fatty acids, fatty alcohols, fatty amides and other waxy materials, sulfonamide materials, resinous materials made from different natural sources (such as, for example, tall oil rosins and rosin esters), and many synthetic resins, oligomers, polymers and copolymers, such as ethylene/vinyl acetate copolymers, ethylene/acrylic acid copolymers, ethylene/vinyl acetate/acrylic acid copolymers, copolymers of acrylic acid with polyamides; and the like, ionomers, and the like, as well as mixtures thereof.
- One-or more of these materials can also be employed in a mixture with a fatty amide material and/or an isocyanate-derived material.
- the phase change ink carrier comprises (a) a polyethylene wax, present in the ink in an amount in one embodiment of at least about 25 percent by weight of the ink, in another embodiment of at least about 30 percent by weight of the ink, and in yet another embodiment of at least about 37 percent by weight of the ink, and in one embodiment of no more than about 60 percent by weight of the ink, in another embodiment of no more than about 53 percent by weight of the ink, and in yet another embodiment of no more than about 48 percent by weight of the ink, although the amount can be outside of these ranges; (b) a stearyl stearamide wax, present in the ink in an amount in one embodiment of at least about 8 percent by weight of the ink, in another embodiment of at least about 10 percent by weight of the ink, and in yet another embodiment of at least about 12 percent by weight of the ink, and in one embodiment of no more than about 32 percent by weight of the ink, in another embodiment of no more than about 28 percent by weight of the ink
- the ink carrier is present in the phase change ink of the present invention in any desired or effective amount, in one embodiment of at least about 0.1 percent by weight of the ink, in another embodiment of at least about 50 percent by weight of the ink, and in yet another embodiment of at least about 90 percent by weight of the ink, and in one embodiment of no more than about 99 percent by weight of the ink, in another embodiment of no more than about 98 percent by weight of the ink, and in yet another embodiment of no more than about 95 percent by weight of the ink, although the amount can be outside of these ranges.
- phase change inks of the present invention contain a colorant compound of the formula
- This colorant is present in the ink in any desired or effective amount to obtain the desired color or hue, in one embodiment of at least about 0.1 percent by weight of the ink, in another embodiment of at least about 0.5 percent by weight of the ink, in yet another embodiment of at least about 1 percent by weight of the ink, in still another embodiment of at least about 2 percent by weight of the ink, and in another-embodiment of at least about 3 percent by weight of the ink, and in one embodiment of no more than about 20 percent by weight of the ink, in another embodiment of no more than about 13 percent by weight of the ink, and in yet another embodiment of no more than about 6 percent by weight of the ink, although the amount can be outside of these ranges.
- the colorant according to the present invention can either be the sole colorant in the ink or can be present in combination with other colorants, such as dyes, pigments, mixtures thereof, and the like.
- the inks of the present invention include an anthraquinone colorant in addition to the colorant according to the present invention.
- suitable anthraquinone colorants include Solvent Red 172, colorants as disclosed in U.S. Pat. No. 6,395,078 and U.S. Pat. No. 6,422,695, the disclosures of each of which are totally incorporated herein by reference, colorants as disclosed in Copending Application U.S. Ser. No. 10/260,146, Copending Application U.S. Ser. No. 10/260,376, and Copending Application U.S. Ser. No. 10/260,379, the disclosures of each of which are totally incorporated herein by reference, and the like.
- the anthraquinone colorant is one prepared as described in Example XVII, Parts 1 through 5.
- the anthraquinone colorant can be present in the inks of the present invention in any desired or effective amount to achieve the desired color, hue, and other characteristics, in one embodiment of at least about 1 percent by weight of the ink, in another embodiment of at least about 2 percent by weight of the ink, and in yet another embodiment of at least about 3 percent by weight of the ink, and in one embodiment of no more than about 20 percent by weight of the ink, in another embodiment of no more than about 13 percent by weight of the ink, and in yet another embodiment of no more than about 6 percent by weight of the ink, although the amount can be outside of these ranges.
- the inks of the present invention further contain an acid having a K a value greater than that of the K a of the carboxylic acid and/or sulfonic acid and/or carboxylate and/or sulfonate groups on the colorant.
- suitable acids include organic sulfonic acids, including alkyl benzene sulfonic acids such as para-toluene-sulfonic acid, dodecylbenzenesulfonic acid, and the like, p-toluene sulfonic acid, hydrochloric acid, trifluoroacetic acid, methylsulfonic acid, trifluoromethyl sulfonic acid, hydrobromic acid, and the like, as well as mixtures thereof.
- alkyl benzene sulfonic acids such as para-toluene-sulfonic acid, dodecylbenzenesulfonic acid, and the like
- p-toluene sulfonic acid hydrochloric acid
- trifluoroacetic acid methylsulfonic acid
- trifluoromethyl sulfonic acid trifluoromethyl sulfonic acid
- hydrobromic acid hydrobromic acid
- the acid is present in any desired or effective amount, in one embodiment at least about 2 percent by weight of the amount of colorant according to the present invention, and in another embodiment at least about 5 percent by weight of the amount of colorant according to the present invention, and in one embodiment no more than about 100 percent by weight of the amount of the colorant according to the present invention, and in another embodiment no more than about 30 percent by weight of the colorant according to the present invention, although the amount of acid can be outside of these ranges.
- the inks of the present invention can also optionally contain an antioxidant.
- the optional antioxidants of the ink compositions protect the images from oxidation and also protect the ink components from oxidation during the heating portion of the ink preparation process.
- suitable antioxidants include NAUGUARD® 524, NAUGUARD® 76, and NAUGUARD® 512 (commercially available from Uniroyal Chemical Company, Oxford, CT), IRGANOX® 1010 (commercially available from Ciba Geigy), and the like.
- the optional antioxidant is present in the ink in any desired or effective amount, in one embodiment of at least about 0.01 percent by weight of the ink, in another embodiment of at least about 0.1 percent by weight of the ink, and in yet another embodiment of at least about; percent by weight of the ink, and in one embodiment of no more than about 20 percent by weight of the ink, in another embodiment of no more than about 5 percent by weight of the ink, and in yet another embodiment of no more than about 3 percent by weight of the ink, although the amount can be outside of these ranges.
- the inks of the present invention can also optionally contain a viscosity modifier.
- suitable viscosity modifiers include aliphatic ketones, such as stearone, and the like.
- the optional viscosity modifier is present in the ink in any desired or effective amount, in one embodiment of at least about 0.1 percent by weight of the ink, in another embodiment of at least about 1 percent by weight of the ink, and in yet another embodiment of at least about 10 percent by weight of the ink, and in one embodiment of no more than about 99 percent by weight of the ink, in another embodiment of no more than about 30 percent by weight of the ink, and in yet another embodiment of no more than about 15 percent by weight of the ink, although the amount can be outside of these ranges.
- clarifiers such as UNION CAMP® X37-523-235 (commercially available from Union Camp), in an amount in one embodiment of at least about 0.01 percent by weight of the ink, in another embodiment of at least about 0.1 percent by weight of the ink, and in yet another embodiment of at least about 5 percent by weight of the ink, and in one embodiment of no more than about 98 percent by weight of the ink, in another embodiment of no more than about 50 percent by weight of the ink, and in yet another embodiment of no more than about 10 percent by weight of the ink, although the amount can be outside of these ranges, tackifiers; such as FORAL® 85, a glycerol ester of hydrogenated abietic (rosin) acid (commercially available from Hercules), FORAL® 105, a pentaerythritol ester of hydroabietic (rosin) acid (commercially available from Hercules), CELLOLYN® 21, a hydroabietic (
- the ink compositions of the present invention in one embodiment have melting points of no lower than about 50° C., in another embodiment of no lower than about 70° C., and in yet another embodiment of no lower than about 80° C., and have melting points in one embodiment of no higher than about 160° C., in another embodiment of no higher than about 140° C., and in yet another embodiment of no higher than about 100° C., although the melting point can be outside of these ranges.
- the ink compositions of the present invention generally have melt viscosities at the jetting temperature (in one embodiment no lower than about 75° C., in another embodiment no lower than about 100° C., and in yet another embodiment no lower than about 120° C., and in one embodiment no higher than about 180° C., and in another embodiment no higher than about 150° C., although the jetting temperature can be outside of these ranges) in one embodiment of no more than about 30 centipoise in another embodiment of no more than about 20 centipoise, and in yet another embodiment of no more than about 15 centipoise, and in one embodiment of no less than about 2 centipoise, in another embodiment of no less than about 5 centipoise, and in yet another embodiment of no less than about 7 centipoise, although the melt viscosity can be outside of these ranges.
- the ink compositions of the present invention can be prepared by any desired or suitable method.
- the ink ingredients can be mixed together, followed by heating, to a temperature in one embodiment of at least about 100° C., and in one embodiment of no more than about 140° C., although the temperature can be outside of these ranges, and stirring until a homogeneous ink composition is obtained, followed by cooling the ink to ambient temperature (typically from about 20 to about 25° C.).
- the inks of the present invention are solid at ambient temperature.
- the inks in their molten state are poured into molds and then allowed to cool and solidify to form ink sticks.
- the inks of the present invention can be employed in apparatus for direct printing ink jet processes and in indirect (offset) printing ink jet applications.
- Another embodiment of the present invention is directed to a process which comprises incorporating an ink of the present invention into an ink jet printing apparatus, melting the ink, and causing droplets of the melted ink to be ejected in an imagewise pattern onto a recording substrate.
- a direct printing process is also disclosed in, for example, U.S. Pat. No. 5,195,430, the disclosure of which is totally incorporated herein by reference.
- Yet another embodiment of the present invention is directed to a process which comprises incorporating an ink of the present invention into an ink jet printing apparatus, melting the ink, causing droplets of the melted ink to be ejected in an imagewise pattern onto an intermediate transfer member, and transferring the ink in the imagewise pattern from the intermediate transfer member to a final recording substrate.
- the intermediate transfer member is heated to a temperature above that of the final recording sheet and below that of the melted ink in the printing apparatus.
- the printing apparatus employs a piezoelectric printing process-wherein droplets of the ink are caused to be ejected in imagewise pattern by oscillations of piezoelectric vibrating elements.
- Inks of the present invention can also be employed in other hot melt printing processes, such as hot melt acoustic ink jet printing, hot melt thermal ink jet printing, hot melt continuous stream or deflection ink jet printing, and the like.
- Phase change inks of the present invention can also be used in printing processes other than hot melt ink jet printing processes.
- Any suitable substrate or recording sheet can be employed, including plain papers such as XEROX® 4024 papers, XEROX® Image: Series papers, Courtland 4024 DP paper, ruled notebook paper, bond paper, silica coated papers such as Sharp Company silica coated paper, JuJo paper, Hammermill Laserprint Paper, and the like, transparency materials, fabrics, textile products, plastics, polymeric films, inorganic substrates such as metals and wood, and the like.
- a mixture of dichlorofluorescein (105 grams, 0.284 mole, prepared as described above), calcium oxide (24, grams, 0.62 mole; obtained from Aldrich Chemical Co., Milwaukee, Wis.), ZnCl 2 (116 grams, 0.85 mole; obtained from Aldrich Chemical Co.), and distearyl amine (288 grams, 0.585 mole; ARMEEN 2HT, obtained from Akzo-Nobel, McCook, Ill.) in 650 milliliters of tetramethylene sulfone (obtained from Chevron Phillips Chemical Co., LP, The Woodlands, Tex.) was stirred and heated to 190° C. in a 1 liter round bottom flask. After 10 hours of heating, the deeply magenta colored mixture was cooled to 120° C. and poured into 2.5 liters of methyl isobutyl ketone (MIBK) and stirred until totally dissolved.
- MIBK methyl isobutyl ketone
- A is the anion corresponding to the acid used for protonaton.
- the zwitterionic form of this colorant is believed to be of the formula
- Example IB The process of Example IB was repeated except that dioctyl amine (NH((CH 2 ) 7 CH 3 ) 2 , obtained from Aldrich Chemical Co., Milwaukee, Wis.) was used instead of distearyl amine.
- the dioctyl amine was present in an amount of 1.95 moles of dioctyl amine per every one mole of dichlorofluorescein.
- Example IC The process of Example IC was repeated using the product obtained in Example IIB. It is believed that the purified product was of the formula
- A is the anion corresponding to the acid used for protonaton.
- the zwitterionic form of this colorant is believed to be of the formula
- Example ID was repeated using the product obtained in Example IIC.
- Example IB The process of Example IB was repeated except that the reaction was run with 2.05 moles of stearyl amine per every one mole of dichlorofluorescein.
- Example IC The process of Example IC was repeated using the product obtained in Example 111B. It is believed that the purified product was of the formula
- A is the anion corresponding to the acid used for protonaton.
- the zwitterionic form of this colorant is believed to be of the formula
- Example ID was repeated using the product obtained in Example IIIC.
- PRIMENE JM-T was present in an amount of 2 moles of PRIMENE JM-T per every one mole of dichlorofluorescein.
- Example IC The process of Example IC was repeated using the product obtained in Example IVB. It is believed that the purified product was of the formula
- A is the anion corresponding to the acid used for protonaton.
- the zwitterionic form of this colorant is believed to be of the formula
- Example ID was repeated using the product obtained in Example IVC.
- Example IB The process of Example IB was repeated except that UNILIN 425-PA (obtained from Tomah Products, Milton, Wis., of the formula CH 3 (CH 2 ) 31 —O—CH 2 CH 2 CH 2 NH 2 ) was used instead of distearyl amine.
- the UNILIN 425-PA was present in an amount of 2 moles of UNILIN 425-PA per every one mole of dichlorofluorescein. It is believed that the product was of the formula
- A is the anion corresponding to the acid used for protonaton.
- the zwitterionic form of this colorant is believed to be of the formula
- Example —IB The process of Example —IB was repeated except that diethanol amine (obtained from Aldrich Chemical Co., Milwaukee, Wis., of the formula HN(CH 2 CH 2 OH) 2 ) was used instead of distearyl amine.
- the diethanol amine was present in an amount of 2.5 moles of diethanol amine per every one mole of dichlorofluorescein.
- 2 moles of zinc chloride were used per every one mole of dichlorofluorescein and 1 mole of calcium oxide was used per every one mole of dichlorofluorescein
- the solvent was N-methylpyrrolidone instead of tetramethylene sulfone, and the reaction mixture was heated to 125° C. for 100 hours.
- Example IC The process of Example IC was repeated using the product obtained in Example VIB except that the product was poured into methanol and sufficient EDTA was added to remove all of the Zn 2+ and Ca 2+ ions. It is believed that the purified product was of the formula
- Example VIC About 10 grams of the product obtained in Example VIC is added to 23.4 grams of octadecylisocyanate (available from Aldrich Chemical Co., Milwaukee, Wis.) at 120° C., after which 2 drops of dibutyltindilaurate catalyst (available from Aldrich Chemical Co.) is added and the reaction is stirred and heated until disappearance of the isocyanate peak in the IR is observed.
- octadecylisocyanate available from Aldrich Chemical Co., Milwaukee, Wis.
- dibutyltindilaurate catalyst available from Aldrich Chemical Co.
- A is the anion corresponding to the acid used for protonaton.
- the zwitterionic form of this colorant is believed to be of the formula
- N-methyl-D-glucamine was present in an amount of 2.5 moles of N-methyl-D-glucamine per every one mole of dichlorofluorescein.
- 2 moles of zinc chloride were used per every one mole of dichlorofluorescein and 1.5 moles of calcium oxide was used per every one mole of dichlorofluorescein, the solvent was N-methylpyrrolidone instead of tetramethylene sulfone, and the reaction mixture was heated to 130° C. for 7 days.
- Example IC The process of Example IC was repeated using the product obtained in Example VIIB except that the product was poured into methanol and sufficient EDTA was added to remove all of the Zn 2+ and Ca 2+ ions. It is believed that the purified product was of the formula
- Example YIJC About 10 grams of the product obtained in Example YIJC is added to 45 grams of octadecylisocyanate (available from Aldrich Chemical Co., Milwaukee, Wis.) at 120° C., after which 4 drops of dibutyltindilaurate catalyst (available from Aldrich Chemical Co.) is added and the reaction is stirred and heated until disappearance of the isocyanate peak in the IR is observed.
- the deca-urethane rhodamine is poured into aluminum tins and is believed to be of the formula
- A is the anion corresponding to the acid used for protonaton.
- the zwitterionic form of this colorant is believed to be of the formula
- Example IB The process of Example IB was repeated except that 2-piperidine ethanol (obtained from Aldrich Chemical Co., Milwaukee, Wis.), of the formula
- Example VIIIB About 10 grams of the product obtained in Example VIIIB is added to 10.7 grams of octadecylisocyanate (available from Aldrich Chemical Co., Milwaukee, Wis.) at 120° C., after which 1 drop of dibutyltindilaurate catalyst (available from Aldrich Chemical Co.) is added and the reaction is stirred and heated until disappearance of the isocyanate peak in the IR is observed.
- the di-urethane rhodamine is poured into aluminum tins and is believed to be of the formula
- T 5 The ring-opened, or protonated, or free-base form of this colorant is T 5 believed to be of the formula
- A is the anion corresponding to the acid used for protonaton.
- the zwifterionic form of this colorant is believed to be of the formula
- A is the anion corresponding to the acid used for protonaton.
- the zwitterionic form of this colorant is believed to be of the formula
- A is the anion corresponding to the acid used for protonaton.
- the zwitterionic form of this colorant is believed to be of the formula
- N-benzylethanolamine was present in an amount of 2.5 moles of N-benzylethanolamine per every one mole of dichlorofluorescein.
- 2 moles of zinc chloride were used per every one mole of dichlorofluorescein and 1 mole of calcium oxide was used per every one mole of dichlorofluorescein, the solvent was dimethyl formamide instead of tetramethylene sulfone, and the reaction mixture was heated to 150° C. for 48 hours.
- Example IC The process of Example IC was repeated using the product obtained in Example XIB except that the product was poured into methanol and sufficient EDTA was added to remove all of the Zn 2+ and Ca 2 + ions. It is believed that the purified product was of the formula
- Example XIC About 10 grams of the product obtained in Example XIC is added to 9.9 grams of octadecylisocyanate (available from Aldrich Chemical Co., Milwaukee, Wis.) at 120° C., after which 1 drop of dibutyltindilaurate catalyst (available from Aldrich Chemical Co.) is added and the reaction is stirred and heated until disappearance of the isocyanate peak in the IR is observed.
- octadecylisocyanate available from Aldrich Chemical Co., Milwaukee, Wis.
- dibutyltindilaurate catalyst available from Aldrich Chemical Co.
- A is the anion corresponding to the acid used for protonaton.
- the zwitterionic form of this colorant is believed to be of the formula
- N-benzylethanolamine was present in an amount of 10 moles of N-benzylethanolamine per every one mole of dichlorofluorescein.
- 2 moles of zinc chloride were used per every one mole of dichlorofluorescein and 1 mole of calcium oxide was used per every one mole of dichlorofluorescein, the solvent was the excess N-benzylethanolamine instead of tetramethylene sulfone, and the reaction mixture was refluxed in an oil bath for 48 hours, followed by distilling off the excess amine.
- Example IC The process of Example IC was repeated using the product obtained in Example XIIB except that the product was poured into methanol and sufficient EDTA was added to remove all of the Zn 2+ and Ca 2+ ions. It is believed that the purified product was of the formula
- the reaction mixture is then cooled to 40° C. and filtered.
- the filter cake is reslurried and filtered two more times in methanol to remove residual xylene.
- the filter cake is then dried in air at ambient temperature. It is believed that this filter cake will contain a colorant of the formula
- n has an average value of about 50.
- the ring-opened, or protonated, or free-base form of this colorant is believed to be of the formula
- A is the anion corresponding to the acid used for protonaton.
- the zwitterionic form of this colorant is believed to be of the formula
- [0281] was used instead of distearyl amine.
- the 2-(ethylamino)ethanol was present in an amount of, 20 moles of 2-(ethylamino)ethanol per every one mole of dichlorofluorescein.
- 2 moles of zinc chloride were used per every one mole of dichlorofluorescein and 1 mole of calcium oxide was used per every one mole of dichlorofluorescein, the solvent was the excess 2-(ethylamino)ethanol instead of tetramethylene sulfone, and the reaction mixture was refluxed in an oil bath for 24 hours, followed by distilling off the excess amine.
- Example IC The process of Example IC was repeated using the product obtained in Example XIIIB except that the product was poured into methanol and sufficient EDTA was added to remove all of the Zn 2+ and Ca 2+ ions. It is believed that the purified product was of the formula
- Example XIIIC About 10 grams of the product obtained in Example XIIIC is added to 12.5 grams of octadecylisocyanate (available from Aldrich Chemical Co., Milwaukee, Wis.) at 120° C., after which 1 drop of dibutyltindilaurate catalyst (available from Aldrich Chemical Co.) is added and the reaction is stirred and heated until disappearance of the isocyanate peak in the IR is observed.
- the diurethane rhodamine is poured into aluminum tins and is believed to be of the formula
- a ⁇ is the anion corresponding to the acid used for protonaton.
- the zwitterionic form of this colorant is believed to be of the formula
- A is the anion corresponding to the acid used for protonaton.
- the zwitterionic form of this colorant is believed to be of the formula
- Example OB The process of Example OB was repeated except that a mixture of stearyl amine (ARMEEN 0.18D; obtained from Akzo-Nobel, McCook, Ill.) and distearyl amine was used instead of pure distearyl amine.
- the stearyl amine was present in an amount of 1.02 moles of stearyl amine per every, one mole of dichlorofluorescein, and the distearyl amine was present in an amount of 1.02 moles of distearyl amine per every one mole of dichlorofluorescein.
- Example IC The process of Example IC was, repeated using the product obtained in Example XVB. It is believed that the: purified product was a mixture of compounds of the formulae
- Example ID was repeated using the product obtained in Example XVC.
- Example II The process of Example I was repeated except that 80.3 grams of the ring-closed purified tetrastearyl chromogen, 400 grams of toluene, and 3.5 grams of CaCl 2 were employed.
- the product a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- Example II The process of Example I was repeated except that 100.2 grams of the ring-closed purified tetrastearyl chromogen, 600 grams of toluene, and 8.2 grams of BiCl 3 were employed.
- the product a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- Example II The process of Example I was repeated except that 100 grams of the ring-closed purified tetrastearyl chromogen, 1,000 grams of MIBK, and 8.8 grams of SnCl 2 in a 2 liter. 3-necked roundbottom flask were employed. The product, a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- Example II The process of Example I was repeated except that 32.4 grams of the ring-closed purified tetrostearyl chromogen, about 400 grams of MIBK, and. 1.6 grams of FeCl 2 were employed.
- the product a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- Example I The process of Example I was repeated except that 35 grams of the ring-closed purified tetrastearyl chromogen, about 400 grams of MIBK, and 1.83 grams of CuCl 2 were employed.
- the product a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- Example II The process of Example I was repeated except that 32.7 grams of the ring-closed purified tetrastearyl chromogen, about 400 grams of MIBK, and 1.13 grams of AlCl 3 were employed.
- the product a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature the product was a deep magenta/red colored somewhat hard wax.
- Example II The process of Example I was repeated except that 5.5 grams of the ring-closed purified tetrastearyl chromogen, about 100 grams of MIBK, and 0.53 grams of nickel II acetate (Ni(CH 3 COO) 2 ) were employed.
- the product a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- Example I The process of Example I was repeated except that 34.1 grams of the ring-closed purified tetrastearyl chromogen, about 400 grams of MIBK, 13.1 grams of phosphotungstic-acid, and 5.6 grams of phosphomolybdic acid were employed.
- the product a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- Example I The process of Example I was repeated except that 24.3 grams of the ring-closed purified tetrastearyl chromogen, about 250 grams of toluene, and 0.9 grams of titanium IV chloride were employed.
- the product a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- Example II The process of Example I was repeated except that 25.2grams of the ring-closed purified tetrastearyl chromogen, about 250 grams of MIBK, and 1.04 grams of chromium III chloride were employed.
- the product a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- a secondary magenta colorant was prepared as follows.
- reaction mixture was cooled and filtered.
- product filter cake was dried in air at ambient temperature.
- the spectral strength of the alcohol-substituted colorant was determined using a spectrophotographic procedure based on the measurement of the colorant in solution by dissolving the colorant in toluene and measuring the absorbance using a Perkin Elmer Lambda 2S UV/VIS spectrophotometer.
- the spectral strength of the alcohol-substituted colorant was measured as about 21,000 mL Absorbance Units per gram at absorption ⁇ max , indicating a purity of about 80 percent.
- the spectral strength of the brominated ethyl acetate-substituted colorant was determined using a spectrophotographic procedure based on the measurement of the colorant in solution by dissolving the colorant in toluene and measuring the absorbance using a Perkin Elmer Lambda 2S UV/VIS spectrophotometer.
- the spectral strength of the brominated ethyl acetate-substituted colorant was measured as about 15,000 mL Absorbance Units per gram at absorption ⁇ max . This spectral strength indicated a purity of about 60 percent.
- the reaction mixture was then quenched into 234 grams of deionized water and allowed to cool to room temperature. Glacial acetic acid was added until the solution reached a pHF of between 6 and 7. The reaction mixture was then filtered. The filter cake was reslurried and filtered twice in deionized water to remove most of the residual N-methyl-2-pyrrolidone. The filter cake was then dried in a 60° C. oven. This filter cake contained a brominated alcohol-substituted colorant of the formula
- the spectral strength of the brominated alcohol-substituted colorant was determined using a spectrophotographic procedure based on the measurement of the colorant in solution by dissolving the colorant in an equal mixture, of toluene and tetrahydrofuran and measuring the absorbance using a Perkin Elmer Lambda 2S UV/VIS spectrophotometer.
- the spectral strength of the brominated alcohol-substituted colorant was measured as about 16,000 mL Absorbance Units per gram at absorption ⁇ max . This spectral strength indicated a purity of about 60 percent.
- R 2 is a linear alkyl group having an average of about 50 carbon atoms.
- the spectral strength of the colorant was determined using a spectrophotographic procedure based on the measurement of the colorant in solution by dissolving the colorant in an equal mixture of toluene and tetrahydrofuran and measuring the absorbance using a Perkin Elmer Lambda 2S UV/VIS spectrophotometer.
- the spectral strength of the colorant was measured as about 5,000 mL Absorbance Units per gram at absorption ⁇ max . This spectral strength indicated a purity of about 40 percent.
- Ink A—1 In a stainless steel beaker were combined 153.22 grams of polyethylene wax (PE655, obtained from Baker Petrolite, Tulsa, Okla., of the formula CH 3 (CH 2 ) 50 OH 3 ), 39.72 grams of stearyl stearamide wax (KEMAMIDE® S-180, obtained from Crompton Corporation, Greenwich, Conn.), 62.99 grams of a tetra-amide resin obtained from the reaction of one equivalent of dimer diacid with two equivalents of ethylene diamine and UNICID® 700 (a carboxylic acid derivative of a long chain alcohol obtained from Baker Petrolite, Tulsa, Okla.), prepared as described in Example 1 of U.S. Pat. No.
- PE655 polyethylene wax
- KEMAMIDE® S-180 obtained from Crompton Corporation, Greenwich, Conn.
- UNICID® 700 a carboxylic acid derivative of a long chain alcohol obtained from Baker Petrolite, Tulsa, Okla.
- magenta ink thus formed was filtered through a heated MOTT® apparatus (obtained from Mott Metallurgical) using Whatman #3 filter paper under a pressure of 15 pounds per square inch.
- the filtered phase change ink was poured into molds and allowed to solidify to form ink sticks.
- magenta phase change ink thus prepared exhibited a viscosity of 10.80 centipoise as measured by a Rheometrics-cone-plate viscometer at about 140° C., and a spectral strength of 1,279 milliliters absorbance per gram at 550 nanometers, determined by using a spectrophotographic procedure based on the measurement of the colorant in solution by dissolving the solid, ink in n-butanol and measuring the absorbance using a Perkin Elmer Lambda 2S UV/VIS spectrophotometer.
- Ink A-2 was prepared in a similar manner to that used to prepare Ink A-1 but using a different formulation for the ink composition as described in the table below. The properties of Ink A-2 were, obtained using the same methods as those used for Ink A-1. The melting points of 84° C. and 105° C. were measured by differential scanning calorimetry using a DuPont 2100 calorimeter. Ink A-2 had a glass transition temperature (Tg) of 19° C. As shown in the table, the predominant difference between Ink A-1 and Ink A-2 is the relative concentration of the colorant in the ink.
- Ink A-3 was prepared in a similar manner to that used to prepare Ink A-1 but using a different formulation for the ink composition as described in the table below. The properties of Ink A-3 were obtained using the same methods as those used for Ink A-1 and Ink A-2. As shown in the table, the predominant difference between Ink A-3 and Inks A-1 and A-2 is the relative higher concentration of the colorant in the ink. As a result, the spectral strength of Ink A-3 is also higher than those of Inks A-1 and A-2, suggesting very good solubility of the colorant described in Example IF in the ink carrier.
- Inks B-1 and B-2 Inks B-1 and B-2 were prepared in a similar manner to that used to prepare Ink A-1 but using the colorant of Example XVII instead of the colorant of Example IF. Their formulations are described in the table below. The properties of Ink B-1 and Ink B-2 were obtained using the same methods as those used for Inks A-1 and A-2. As shown in the table, the predominant difference between Ink B-1 and Ink B-2 is the relative concentration of the colorant in the ink.
- Ink C was prepared by the process described for Ink A-1 except that the colorant from Example XVIII was used in place of the colorant from Example IF. The properties of Ink C were obtained using the same methods as those used for Ink A-1.
- Inks D-1 and D-2 were prepared by the process described for Ink A-1 except that the colorant from Example XIX was used in place of the colorant from Example IF.
- the properties of Ink D-1 and Ink D-2 were obtained using the same methods as those used for Ink A-1.
- Ink E was prepared by the process described for Ink A-1 except that the colorant from Example XX was used in place of the dye from Example IF. The properties of Ink E were obtained using the same methods as those used for Ink A-1′.
- Ink F was prepared by the process described for Ink A-1 except that the colorant from Example XXI was used in place of the dye from Example IF. The properties of Ink F were obtained using the same methods as those used for Ink A-1.
- Ink G was prepared by the process described for Ink A-1 except that the colorant from Example XXII was used in place of the dye from Example IF. The properties of Ink G were obtained using the same methods as those used for Ink A-1.
- Ink H was prepared by the process described for Ink A-1 except that the colorant from Example XXIII was used in place of the dye from Example IF. The properties of Ink H were obtained using the same methods as those used for Ink A-1.
- Ink 1 Ink I was prepared by the process described for Ink A-1 except that the colorant from Example XXIV was used in place of the dye from Example IF. The properties of Ink I were obtained using the same methods as those used for Ink A-1.
- Ink J was prepared by the process described for Ink A-1 except that the colorant from Example XXV was used in place of the dye from Example IF. The properties of Ink J were obtained using the same methods as those used for Ink A-1.
- Ink K was prepared by the process described for Ink A-1 except that the colorant from Example XXVI was used in place of the dye from Example IF. The properties of Ink K were obtained using the same methods as those used for Ink A-1.
- Comparative Ink II An ink was prepared by the process described for Ink A-1 except that instead of the colorant from Example IF, the commercially available SR 49 and dodecyl benzene sulfuric acid (DDBSA, Bio-soft S-100, obtained from Stepan Company, Elwood, Ill.) were used. The properties of Comparative Ink 1 were obtained using the same methods as those used for Ink A-1.
- DBSA dodecyl benzene sulfuric acid
- Comparative Ink 2 An ink was prepared by the process described for Ink A-1 except that instead of the colorant from Example IF, a colorant comprising the chromogen of Example ID (said chromogen not being part of a metal compound according to the, present invention) and dodecyl benzene sulfuric acid (DDBSA, Bio-soft S-100, obtained from Stepan Company, Elwood, Ill.) were used.
- the properties of Comparative Ink 2 were obtained using the, same methods as those used for Ink A-1.
- Comparative Ink 3 An ink was prepared by the process described for Ink A-1 including the colorant preparation from Example IF, except that instead of using the chromogen from Example ID, commercially available Solvent Red 49 was used as the chromogen to prepare the resulting zinc colorant. The properties of Comparative Ink 3 were obtained using the same methods as those used for Ink A-1. Since it was found that the spectral strength of the unfiltered ink was higher than that of the filtered ink, the actual relative colorant amount of the colorant is in fact less than that listed in the following formulation table.
- the colorant described in Comparative Example 3 has much lower solubility than that of the colorant described in Example A; it is believed that the better solubility of the colorant in Inks A-1 through A-3 can be attributed to the long alkyl groups on the chromogen compared to those of commercially available Solvent Red 49.
- magenta inks thus prepared were successfully printed on HAMMERMILL LASERPRINT® paper (obtained from International Paper, Memphis, Tenn.) with a XEROX® PHASER 860 printer, which uses a printing process wherein the ink is first jetted in an imagewise pattern onto an intermediate transfer member followed by transfer of the imagewise pattern from the intermediate transfer member to a final recording substrate.
- the solid field images with a resolution of 450 dpi ⁇ 600 dpi were generated from the printer, and their color space data were obtained on an ACS® Spectro Sensor® II Colorimeter (obtained from Applied Color Systems Inc.) in accordance with the measuring methods stipulated in ASTM IE805 (Standard Practice of Instrumental Methods of Color or Color Difference Measurements of Materials) using the appropriate calibration standards supplied by the instrument manufacturer.
- measurement data were reduced, via tristimulus integration, following ASTM E308 (Standard Method for Computing the Colors of Objects using the CIE System) in order to calculate the 1976 CIE L* (Lightness), Q* (redness-greenness), and b* (yellowness-blueness) CIELAB values for each phase change ink sample.
- the color values in the above tables indicate that the colorants' of Inks A through K can be used in hot melt inks with good magenta color as evidenced by the a* and, b* values of the prints.
- Ink A can exhibit magenta color with a chroma larger than that of Comparative Ink 1., which was made from commercially available SR 49, which has been considered to be a bright magenta dye.
- SR 49 dye which normally needs a relatively strong acid such as DDBSA to develop its color in an ink base
- the colorants in Inks A through K of this invention show reasonably strong magenta color without an acid developer.
- the inks were heated in glass jars continuously in an oven at 140° C., followed by sampling and printing the inks on HAMMERMILL Laserprint papers using a K-Proofer, and finally measuring the color changes of the prints of the sampled inks as a function of time.
- the color changes of the resultant prints were monitored by CIELAB values and expressed by Delta E relative to the initial CIELAB values. The color change of each sample was determined according to the methods described hereinabove for obtaining CIELAB values.
- a thermal stability test was performed by continuously heating the test inks in a printer at 136° C. and measuring the color change of the prints as a function of time (referred to as the “No-standby” test).
- the color changes of the resultant prints were monitored by CIELAB values and expressed by Delta E relative to the initial CIELAB values.
- the color change of each sample was, determined according to the methods described hereinabove for obtaining CIELAB values.
- the inks were exposed to a mixture of finger oil and hand lotion.
- a test person applied in two subsequent steps a hand lotion to his/her hands, and dried off excess lotion with a towel. Then, the person gently touched the printed inks at the right side of a particular print, starting at 90% coverage strip and proceeded in a downward motion to the 20% coverage strip. Afterwards, the procedure was repeated on the same print with the other hand, starting on the left side with the 20% coverage strip, and moving upward towards higher coverages. Without renewal of hand lotion, this was repeated with the next print.
- the person was instructed to re-apply lotion to the hands in the described manner, and proceed with the next two prints. When all prints had been exposed to the finger oils, the prints were deposited into manila folders, whereby each print was separated from the next by a blank sheet of paper. The folder then was stored at ambient temperature for 5 days.
- the prints were removed from the manila folders and laid out in a systematic pattern on a sufficiently large table in a sufficiently bright and evenly lit room
- One test person in some cases several test persons—then compared visually the finger marks on the prints with those seen on the prints of the reference ink.
- Observers were instructed to grade fingerprint performance qualitatively on a scale from ⁇ 3 to +3, with ⁇ 3 indicating worst behavior, and +3 indicating no finger marks observed. In this system of grades, the value ⁇ 0 would then indicate no difference of performance as compared to the print of the reference ink.
- the prints were; also aged at elevated temperatures of 45° C. and 60° C. in addition to aging at room temperature.
- the tested ink according to the present invention was Ink A-1 and the reference ink was Comparative Ink 1.
- the evaluation scores were as follows: Ink room temp. 45° C. 60° C. A-1 0.7 1.1 1.5 1 0 0 0
- Ink A-2 and Comparative Ink 1 were tested for diffusion tendency of their colorants.
- a clear ink was also prepared in the same manner as for Ink A-2 but without any colorants.
- This diffusion evaluation method used printed images to test for the ability of the colorant from a magenta ink pixel to diffuse into neighboring colorless ink pixels that surrounded the magenta ink pixel.
- the test prints were generated to contain about 20 percent individual magenta pixels surrounded by 80 percent clear ink pixels.
- the prints were analyzed at room temperature over a number of days for overall color change detected using a color image analyzer, and the response was measured as change in delta E ( ⁇ E) over time and shown in the table below.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Ink Jet (AREA)
- Paints Or Removers (AREA)
Abstract
Description
- Cross-reference is made to the following copending applications:
-
-
-
- wherein R 4 is an alkyl group, an aryl group, an arylalkyl group, or an alkylaryl group.
- Copending application U.S. Ser. No. 10/260,376, filed Sep. 27, 2002, entitled “Phase Change Inks,” with the named inventors C. Wayne Jaeger and Jeffery H. Banning, the disclosure of which is totally incorporated herein by reference, discloses a phase change ink composition comprising a phase change ink carrier and a colorant compound of the formula
-
-
- wherein R 4 is an alkyl group, an aryl group, an arylalkyl group, or an alkylaryl group.
- Copending application U.S. Ser. No. 10/260,379, filed Sep. 27, 2002, entitled “Methods for Making Colorant Compounds,” with the named inventors C. Wayne Jaeger and Jeffery H. Banning, the disclosure of which is totally incorporated herein by reference, discloses a process for preparing a colorant of the formula
- wherein Y is a hydrogen atom or a bromine atom, n is an integer of 0, 1, 2, 3, or 4, R 1 is an alkylene group or an arylalkylene group, R2 is an alkyl group, an aryl group, an arylalkyl group, or an alkylaryl group, and R4 is an alkyl group, an aryl group, a n arylalkyl group, or an alkylaryl group, can be prepared by a process which comprises (a) preparing a first reaction mixture by admixing (1) leucoquinizarin and, optionally, quinizarin, (2) an aminobenzene substituted with an alcohol group of the formula —R1—OH, (3) boric acid, and (4) an optional solvent, and heating the first reaction mixture to prepare an alcohol-substituted colorant of the formula
-
- or (B) an acid of the formula R 2COOH in the presence of an optional esterification catalyst, or (ii) a urethane-substituted colorant by reaction with an isocyanate compound of the formula
- R4—N═C═O
- and (c) brominating the colorant thus prepared, wherein either conversion to ester or urethane can be performed before bromination or bromination can be performed before conversion to ester or urethane.
- Copending application U.S. Ser. No. ______ (not yet assigned; Attorney Docket Number D/A3152), filed concurrently herewith, entitled “Colorant Compounds,” with the named inventors Jeffery H. Banning, Bo Wu, James M. Duff, Wolfgang G. Wedler, Jule W. Thomas, and Randall R. Bridgeman, the disclosure of which is totally incorporated herein by reference, discloses compounds of the formula
-
-
-
- chrombgen moieties associated with the metal and is at least 2, and R., R 2, R3, R4, R5, R6, R7, a, b, c, d, Y, Q−, A, and CA are as defined therein.
- Copending application U.S. Ser. No. ______ (not yet assigned; Attorney Docket Number D/A3153), filed concurrently herewith, entitled “Colorant Compounds,” with the named inventors Jeffery H. Banning, Bo Wu, James M. Duff, Wolfgang G. Wedler, and Donald R. Titterington, the disclosure of which is totally incorporated herein by reference, discloses compounds of the formulae
- wherein R 1, R2, R3, R4, R15, R6, R7, a, b, c, d, Y, Q, Q−, A, and CA are, as defined therein.
- Copending application U.S. Ser. No. ______ (not yet assigned; Attorney Docket Number D/3153Q), filed concurrently herewith, entitled “Phase Change Inks Containing Colorant Compounds,” with the named inventors Bo Wu, Jeffery H. Banning, James M. Duff, Wolfgang G. Wedler, and Donald R. Titterington, the disclosure of which is totally incorporated herein by reference, discloses phase change inks comprising a carrier and a colorant of the formula
- wherein R 1, R2, R3, R4, R5, R6, R7, a, b, c, d, Y. Q, Q-, A, and CA are as defined therein.
- The present invention is directed to phase change inks. More specifically, the present invention is directed to hot melt or phase change inks containing specific colorant compounds. One embodiment of the present invention is directed to a phase change ink carrier and a colorant compound of the formula
-
-
-
- chromogen moieties associated with the metal and is at least 2, R 1, R2, R3, and R4 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group; (iv) an arylalkyl group, or (v) an alkylaryl group, wherein R1 and R2 can be joined together to form a ring, wherein R3 and R4 can be joined together to form a ring, and wherein R1, R2, R3, and R4 can each be joined to a phenyl ring in the central structure, a and b each, independently of the others, is an integer which is 0, 1, 2, or 3, c is an integer which is 0, 1, 2, 3, or 4, each R5, R6, and R7, independently of the others, is (i) an alkyl group, (ii) an aryl group, (iii) an arylalkyl group, (iv) an alkylaryl group, (v) a halogen atom, (vi) an ester group, (vii) an amide group, (viii) a sulfone group, (ix) an amine group or ammonium group, (x) a nitrile group, (xi) a nitro group, (xii) a hydroxy group, (xiii) a cyano group, (xiv) a pyridine or pyridinium group, (xv) an ether group, (xvi) an aldehyde group, (xvii) a ketone group, (xviii) a carbonyl group, (xix) a thiocarbonyl group, (xx) a sulfate group, (xxi) a sulfide group, (xxii) a sulfoxide group, (xxiii) a phosphine or phosphonium group, (xxiv) a phosphate group, (xxv) a mercapto group, (xxvi) a nitroso group, (xxvii) on acyl group, (xxviii) an acid anhydride group, (xxix) an azide group, (xxx) an azo group, (xxxi) a cyanato group, (xxxii) an isocyanato group, (xxxiii) a thiocyanato group, (xxxiv) an isothiocyanato group, (xxxv) a urethane group, or (xxxvi) a urea group, wherein R5, R6, and R7 can each be joined to a phenyl ring in the central structure,
- R 8, R9, and R10 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group, (iv) an arylalkyl group, or (v) an alkylaryl group, provided that the number of carbon atoms in R1+R2+R3+R4+R5+R6+R?+R8+R9+R10 is at least about 16, Q− is a COO− group or a SO3 − group, d is an integer which is 1, 2, 3, 4, or 5, A is an anion, and CA is either a hydrogen atom or a cation associated with all but one of the Q− groups.
- In general, phase change inks (sometimes referred to as “hot melt inks”) are in the solid phase at ambient temperature, but exist in the liquid phase at the elevated operating temperature of an ink jet printing device. At the jet operating temperature, droplets of liquid ink are ejected from the printing device and, when the ink droplets contact the surface of the recording substrate, either directly or via an intermediate heated transfer belt or drum, they quickly solidify to form a predetermined pattern of solidified ink drops. Phase change inks have also been used in other printing technologies, such as gravure printing, as disclosed in, for example, U.S. Pat. No. 5,496,879 and German Patent Publications DE 4205636AL and DE 4205713AL, the disclosures of each of which are totally incorporated herein by reference.
- Phase change inks for color printing typically comprise a phase change ink carrier composition which is combined with a phase change ink compatible colorant. In a specific embodiment, a series of colored phase change inks can be formed by combining ink carrier compositions with compatible subtractive primary colorants. The subtractive primary colored phase change inks can comprise four component dyes, namely, cyan, magenta, yellow and black, although the inks are not limited to these four colors. These subtractive primary colored inks can be formed by using a single dye or a mixture of dyes. For example, magenta can be obtained by using a mixture of Solvent Red Dyes or a composite black can be obtained by mixing several dyes. U.S. Pat. No. 4,889,560, U.S. Pat. No. 4,889,761, and U.S. Pat. No. 5,372,852, the disclosures of each of which are totally incorporated herein by reference, teach that the subtractive primary colorants employed can comprise dyes from the classes of Color Index (C.I.) Solvent Dyes, Disperse Dyes, modified Acid and Direct Dyes, and Basic Dyes. The colorants can also include pigments, as disclosed in, for example, U.S. Pat. No. 5,221,335, the disclosure of which is totally incorporated herein by reference. U.S. Pat. No. 5,621,022, the disclosure of which is totally incorporated herein by reference, discloses the use of a specific class of polymeric dyes in phase change ink compositions.
- Phase change inks have also been used for applications such-as postal marking, industrial marking, and labelling.
- Phase change inks are desirable for ink jet printers because they remain in a solid phase at room temperature during shipping, long term storage, and the like. In addition, the problems associated with nozzle clogging as a result of ink evaporation with liquid ink jet inks are largely eliminated, thereby improving the reliability of the ink jet printing. Further, in phase change ink jet printers wherein the ink droplets are applied directly onto the final recording substrate (for example, paper, transparency material and the like), the droplets solidify immediately upon contact with the substrate, so that migration of ink along the printing medium is prevented and dot quality is improved.
- Compositions suitable for use as phase change ink carrier compositions are known. Some representative examples of references disclosing such materials include U.S. Pat. No. 3,653,932, U.S. Pat. No. 4,390,369, U.S. Pat. No. 4,484,948, U.S. Pat. No. 4,684,956, U.S. Pat. No. 4,851,045, U.S. Pat. No. 4,889,560, U.S. Pat. No. 5,006,170, U.S. Pat. No. 5,151,120, U.S. Pat. No. 5,372,852, U.S. Pat. No. 5,496,879, European Patent Publication 0187352, European Patent Publication 0206286, German Patent Publication DE 4205636AL, German Patent Publication DE 4205713AL, and PCT Patent Application WO 94/04619, the disclosures of each of which are totally incorporated herein by reference. Suitable carrier materials can include paraffins, microcrystalline waxes, polyethylene waxes, ester waxes, fatty acids and other waxy: materials, fatty amide containing materials, sulfonamide materials, resinous materials made from different natural sources (tall oil rosins and rosin esters, for example), and many synthetic resins, oligomers, polymers, and copolymers.
-
- wherein X 1 is an ester group or an amide group (such as of a carboxylic or sulfonic acid) or a fatty amine salt of a sulfonic acid, each X2 independently is a substituent, m has a value of from 0 to 2, Y1 and Y2 are each independently H, alkyl, or halo, each Z independently is an ester or amide group, and A− is an anion. The compound is useful as a colorant for toners, D2T2 printing, plastics, polyesters, nylons, and inks, especially ink jet or hot melt inks.
- “Rhodamine Dyes and Related Compounds. XV. Rhodamine Dyes with Hydroaromatic and Polymethylene Radicals,” I. S. Ioffe et al., Zh. Organ. Khim. (1965), 1 (3), 584-6, the disclosure of which is totally incorporated herein by reference, discloses a process wherein heating dichlorofluoran with ZnCl2—ZnO and the appropriate amine for 3 hours at 220° followed by treatment with aqueous HCl gave N,N′-dicyclohexylrhodamine-HCl, m. 180-5°, N,N′-di(tetramethylene)rhodamihe-HCl, decompd. 240°, N,N′-di(pentdmethylene)rhodamine-HCl, m. 205-100, N,N′-di(hexamethylene)rhodamine-HCl, decompd. 1750. These dyes gave yellow or orange fluorescence and their spectra were given.
- “Rhodamine Dyes and Related Compounds. XI. Aryl- and Alkylrhodamines Containing Carboxyl Groups,” I. S. Ioffe et al., Zh. Obsch. Khim. (1964), 34(6), 2041-4, the disclosure of which is totally incorporated herein by reference, discloses a process wherein heating aminobenzoic acids with 3,6-dichlorofluoran in the presence of ZnCl2 for 6 hours at 24-500 gave after an aqueous treatment: N,N′-bis(o-carboxyphenyl)rhodamine-HCl; m-isomer-HCl; and p-isomer-HCl. A similar reaction with HCl salts of glycine, x-alanine, or β-alanine gave: N,N′-bis(carboxymethyl)rhodamine-HCl; N,N′-bis(α-carboxyethyl)rhodamine-HCl; and N,N′-bis(β-carboxyethyl)rhodamine-HCl. The latter group showed yellow-green fluorescence, lacking in the aryl derivatives. Spectra of the products are shown.
- “Rhodamine Dyes and Related Compounds. X. Fluorescence of Solutions of Alkyl- and Arylalkylrhodamines,” I. S. Ioffe et al., Zh. Obsch. Khim. (1964), 34(6), 2039-41, the disclosure of which is totally incorporated herein by reference, discloses fluorescence spectra for the following rhodamines: N,N′-diethyl; N,N′-dibenzyl; N,N′-bis(β-phenylethyl); N,N′-bis(β-phenylisopropyl). In symmetrical substituted rhodamines, the entry of an alkyl or arylalkyl group into both amino residues resulted in the displacement of fluorescence max. toward longer wavelengths, a similar displacement of absorption and an increase in the quantum yield of fluorescence. In unsymmetrical derivatives, an aryl group entering one of the amino groups shifted the spectra to a greater degree in the same direction and sharply reduced the quantum yield of fluorescence.
- “Rhodamine Dyes and Related Compounds. IX. Rhodamine B Sulfonic Acids and their Derivatives,” I. S. Ioffe et al., Zh. Obsch. Khim. (1964), 34(2), 640-44, the disclosure of which is totally incorporated herein by reference, discloses that heating m-Et2NC6H4OH and K β-sulfophthalate at 150° while concentrated H2SO4 was being added gave after 3 hours at 150-700, followed by heating with H2O 15 min., a residue, of crude sulforhodamine, purified by solution in hot aqueous Na2CO3 and precipitation with AcOH. The mixed isomeric rhodamine sulfonic acids refluxed 3 hours with 30% AcOH, clarified, and cooled gave a first isomer with Rf 0.74 on paper in aqueous-solution (pH 9) while the residue was the other isomer with Rf 0.98. The first isomer and PCl5 gave the sulfonyl chloride, isolated as HCl salt, red solid (from CHCl3-ligroine), which with NH3 in CHCl3 gave the sulfonamide, a violet powder. The two isomers and Rhodamine B had similar spectral characteristics. The two isomers probably contain the SO3H group in the 4- and 5-positions of the Ph ring of Rhodamine B. Their absorption and fluorescence spectra are shown. Their solutions in CHCl3 gave stronger fluorescence than those in Me2CO.
- “Rhodamine Dyes and Related Compounds. VIII. Amides of Sulforhodamine B Containing β-Hydroxyethyl and β-Chloroethyl Groups,” I. S. Ioffe et al., Zh. Obsch. Khim. (1963), 33(12), 394376, the disclosure of which is totally incorporated herein by reference, discloses that sulforhodamine B chloride heated 10-12 hours with HOCH2CH2NH2 at 170-80°, then triturated with saturated NaCl gave, after solution in CHCl3 and precipitation with petroleum ether, 80% red sulforhodamine B N(β-hydroxyethyl)amide; similar reaction with HN(CH2CH2OH)2 gave 70% N,N-bis(β-hydroxyethyl)amide, a bright red wax. These treated with SOCl2 in CHCl3 gave, respectively, N—(β-chloroethyl)amide, a brown powder, and N,N-bis(β-chloroethyl)amide, a violet powder. Absorption spectra of the amides are shown. The (hydroxyethyl)amides displayed strong orange fluorescence in solution.
- “Rhodamine Dyes and Related Compounds. VII. (β-Phenylethyl)rhodamines,” I. S. Ioffe et al., Zh. Obsch. Khim. (1963), 33(4), 1089-92, the disclosure of which is totally incorporated herein by reference, discloses a process wherein heating dichlorofluoran with PhCH2CH2NH2 or PhCH2CH(Me)NH2 in the presence of ZnO and ZnCl2 for 5-6 hours at 2200 gave, after heating for 2 hours with aqueous HCl, 96-8% crude products which, after crystallization from alc. HCl, gave red, powdery N,N′-bis(β-phenylethyl)rhodamine-HCl, m. 172-50, or N,N′-bis(α-methyl-β-phenylethyl)rhodamine-HCl, m. 1.75-80; N-phenyl-N′-(C-phenylethyl)rhodamine-HCl, m. 162-60, was prepared from PhCH2CH2NH2 and 3′-chloro-6′-anilinofluoran under the above conditions. Treated with alc. NaOH and quenched in H2O, these hydrochlorides gave the free bases of the dyes as brown-red solids, which tended to form colloids in aqueous medium. The free bases m. 123-5°, decompd. 120°, and m. 164-8°, respectively. The ultraviolet and visible spectra of the dyes were similar to the spectra of dibenzylrhodamine, but had deeper color; strong fluorescence, was shown by these dyes. The spectrum of the bis(β-phenylethyl)rhodamine was almost identical: with that of diethylrhodamine.
- “Rhodamine Dyes and Related Compounds. VI. Chloride and Amides of Sulforhodamine, B,” 1. S. Ioffe et al., Zh. Obsch. Khim. (1962), 32, 1489-92, the disclosure of which is totally incorporated herein by reference, discloses that sulforhodamine B (5 g., dried, at 1250) and 3 g. PCl5 heated in 50 milliliters CHCl3 for 4 hours, then extd. with cold H2O to remove excess PCl6, gave, after concentration of the dried organic layer and treatment of the residue with much cold petroleum ether, the dark red p-sulfonyl chloride, C27H29O6N2S2Cl, which slowly forms the original compound on contact with H2O. With NH3 in CHCl3 it gave the corresponding p-sulfonamide, 81%, red-violet powder, sol. in EtOH or AcOH; similarly was prepared the p-sulfonanilide, brown-violet solid. These have absorption spectra similar to the original compound but with less intense absorption. The p-sulfonyl chloride has a more intense absorption than the amides.
- “Rhodamine Dyes and Related Compounds. V. α-Pyridylrhodamine,” 1. S. Ioffe et al., Zh. Obsch. Khim. (1962), 32, 1485-9, the disclosure of which is totally incorporated herein by reference, discloses a process wherein heating 3,6-dichlorofluorane with 2-aminopyridine in the presence of ZnCl 2 for 3 hours at 160-800 gave, after extraction with hot H2O and EtOH and crystallization of the residue from aqueous Me2CO, 3-chloro-6-x-pyridylaminofluorane-HCl, m. 280-20; free base, m. 185-7°. This heated with 2-aminopyridine and ZnCl2 at 250-60° for 6 hours, then precipitated from hot EtOH—HCl with H2O, gave red N,N′-bis(α-pyridyl)rhodamine-HCl, m. 238-400, also formed directly from dichlorofluorane and excess aminopyridine at 250-60°. Similarly, 3-chloro-6-anilino-fluorane gave red-violet N-phenyl-N′-α-pyridylrhodamine-HCl, m. 225-300. All these were converted to N,N′-diphenylrhodamine by heating with PhNH2 and ZnCl2 for 3 hours at 180-2000. The absorption spectra of the products are shown; dipyridylrhodamine has a more intense color than other members of the group.
- “Rhodamine Dyes and Related Compounds. IV. Aryl- and Benzylrhodamines,” I. S. Ioffe et al., Zh. Obsch. Khim. (1962), 32, 1480-5, the disclosure of which is totally incorporated herein by reference, discloses a process wherein heating fluorescein chloride with ArNH 2 in the presence of ZnCl2—ZnO for 4 to 5 hours at 210-20° gave, after leaching with hot dil. HCl, soln. of the residue in hot PhNH2, and pptn. with dil. HCl, the following N,N′-diarylrhodamines which were isolated as HCl salts: Ph, m. 255-600; o-meC6H4, m. 205-100; m-meC6H4, m. 195-2000; p-meC6H4, m. 255-60°. PhCH2NH2 similarly gave N,N′-dibenzylrhodamine, m. 160-50; HCl salt decomp. 160-50; di-HCl salt decomp. 2100. PhCH2NH2 and 3-chloro-6-anilinofluorane gave 90-5% N-phenyl-N′-benzylrhodamine isolated as the HCl salt, m. 200-100. The absorption spectra of these rhodamines are shown. Dibenzylrhodamine fluoresces strongly in solution, while the phenyl benzyl analog has a weak fluorescence. The benzyl groups cause a bathochromic shift of the absorption band in the substituted rhodamines; the diarylrhodamines form blue-violet solutions unlike the orange-yellow produced by unsubstituted rhodamine. The di-HCl salt of dibenzylrhodamine loses one HCl in soln as shown by behavior in EtOH.
- “Rhodamine Dyes and Related Compounds. III. Reaction of m-aminophenol With Phthalic Anhydride in Hot Sulfuric Acid,” I. S. Ioffe et al., Zh. Obsch. Khim. (1962), 32, 1477-80, the disclosure of which is totally incorporated herein by reference, discloses that heating 25 g. of m-H 2C6H4OH with 20, g. o-C6H4(CO)20 in 100 milliliters concentrated H2SO4 at 160-200° for 2-8 hours was used to examine the effects of conditions of condensation on the reaction products. Rhodamine formation began at 170° and reached a max. (20%) in 2 hours at 190°. Rhodol was a constant byproduct as a result of partial deamination of rhodamine. The deamination is promoted by longer reaction time and higher temperatures. These factors also promoted the formation of a dark, amorphous material. o-Hydroxysulfanilic acid was formed in the reaction in up to 32% yield at 160° in 2 hours; more drastic conditions lowered its yield rapidly. Prior to the appearance of substantial amounts of rhodamine in the mixture, sulfonation of m-H2C6H4OH takes place, and the resulting compound appears to be the intermediate which reacts, with this compound forming rhodamine by displacement of the sulfonic acid group. This was confirmed by reaction of o-C6H4(CO)2O with o-hydroxysulfanilic acid under the conditions shown above. m-Aminosalicylic acid also yields the same products in a mixture similar to that formed by m-H2C6H4OH.
- “Rhodamine Dyes and Related Compounds. XVIII. N,N′-Dialkylrhodamines with Long Chain Hydrocarbon Radicals,” I. S. Ioffe et al., Zh. Organ. Khim. (1970), 6(2), 369-71, the disclosure of which is totally incorporated herein by reference, discloses a process wherein the condensation of I (X=Cl) with RNH2 (R═C6H13, C8H17, C16H33, or C18H37) gave the title dyes. (I, X=NHR) (II). The presence of alkyl groups in 11 did not change their color in comparison with II. (R═H); all II absorbed strongly at 523-6 nm. However, long alkyl chains altered the hydrophobic properties of II as shown by the change of their partition coefficients in oil-alc. or kerosine-alc. systems with the length of R chain.
- “Rhodamine Dyes and Related Compounds. XIX. Mutual Transformations of Colorless and Chlored Forms of N,N′-Substituted Rhodamine,” I. S. Ioffe et al., Zh. Organ. Khim. (1972), 8(8), 1726-9, the disclosure of which is totally incorporated herein by reference, discloses that substituted rhodamines give colored solutions in polar and colorless solutions in nonpolar solvents. The solvent polarity at which the colorless lactone form is converted to the quinoid, internal salt form depends on the number and structure of alkyl, aryl, or H substituents. Absorption spectra of N,N′-diethylrhodamine in water-dioxane mixtures show how the light absorption increases when the solvent polarity (i.e., water amount in the mixture) is increased.
- “Synthesis of N-Substituted Flaveosines, Acridine Analogs of Rhodamine Dyes,” I. S. Ioffe et al., Zh. Org. Khim. (1966), 2(9), 1721, the disclosure of which is totally incorporated herein by reference, discloses that o-(3,6-chloro-9-acridinyl)benzoic acid heated with BuNH2 or Bu2NH readily gave the hydrochlorides.
- “Rhodamine Dyes and Related Compounds. XVII. Acridine Analogs of Rhodamine and Fluorescein,” I. S. Ioffe et al., Zh. Organ. Khim. (1966), 2(5), 927-31, the disclosure of which is totally incorporated herein by reference, discloses absorption spectra for flaveosin, fluorescein, azafluorescein, their Et esters and diacetyl derivatives. Replacement of the xanthene structure by the acridine group changed the spectra of such dyes. Azafluorescein heated with PCl5 at 95-1000° gave o-(3,6-dichloro-9-acridinyl)-benzoic acid, decomp. >3000; its uv spectrum was similar to that of unsubstituted acridinylbenzoic acid. One of the flavebsin compounds heated with 25% H2SO4 in a sealed tube 10 hours at 200-20° gave azafluorescein, decomp. >3800; heated with EtOH—H2SO4 it gave one of the flaveosins, decomp. >3000 Ac2O—H2SO4 gave in 1 hour one of the flaveosins, decomp. 2060. The compound formed by treatment of 3,6-dichlorofluorane with NH3 was prepared. Its uv spectrum is given.
- “New Lipophilic Rhodamines and Their Application to Optical Potassium Sensing,” T. Werner et al., Journal of Fluorescence, Vol. 2, No. 3, pp. 93798 (1992), the disclosure of which is totally incorporated herein by reference, discloses' the synthesis of new lipophilic fluorescent rhodamines directly from 3,6-dichlorofluoresceins and the respective long-chain amines with excellent solubility in lipids and lipophilic membranes. Spectrophotomenric and luminescent properties of the dyes are reported and discussed with respect to their application in new optical ion sensors. One rhodamine was applied in a polyvinyl chloride)-based sensor membrane for continuous and sensitive optical determination of potassium ion, using valinomycin as the neutral ion carrier.
- U.S. Pat. No. 1,991,482 (Allemann), the disclosure of which is totally incorporated herein by reference, discloses a process of producing rhodamine dyes which comprises condensing a halogenated primary amine of: the benzene series with fluorescein dichloride and sulfonating the condensed product.
-
- wherein R 1-R6 are hydrogen, fluorine, chlorine, lower alkyl lower alkene, lower alkyne, sulfonate, sulfone, amino, amido, nitrile, lower alkoxy, lining group, or combinations thereof or, when taken together, R1 and R6 is benzo, or, when taken together, R4 and R5 is benzo; Y1-Y4 are hydrogen or lower alkyl or, when taken together, Y, and R2 is propano and Y2 and R1 is propano, or, when taken together, Y3 and R3 is propano and Y4 and R4 is propano; and X1-X3 taken separately are selected from the group consisting of hydrogen, chlorine, fluorine, lower alkyl carboxylate, sulfonic acid, —CH2OH, and linking group. In another aspect, the invention includes reagents labeled with the 4,7-dichlororhodamine dye compounds, including deoxynucleotides, dideoxynucleotides, and polynucleotides. In an additional aspect, the invention includes methods utilizing such dye compounds and reagents including dideoxy polynucleotide sequencing and fragment analysis methods.
-
- where L is C 2-C10-alkylene, R1, R2, and R3 are each independently of the others hydrogen, substituted or unsubstituted C1-C10-alkyl or C5-C7-cycloalkyl or R1 and R2 together with the nitrogen atom linking them together are a hetero cyclic radical, An is one equivalent of an anion and m and n are each independently of the other 0 or 1.
-
- where A − is an anion, R is hydrogen or unsubstituted or substituted alkyl or cycloalkyl, R1 and R2 independently of one another are each hydrogen or unsubstituted or substituted alkyl or cycloalkyl, or one of the radicals may furthermore be aryl, or R1 and R2, together with the nitrogen atom, form a saturated heterocyclic structure, the radicals R3 independently of one another are each hydrogen or C1-C4-alkyl, R4 and R5 independently of one another are each unsubstituted or substituted alkyl or cycloalkyl, or one of the radicals may furthermore be hydrogen, aryl or hetaryl, R4 and R5, together with the nitrogen atom, form a saturated heterocyclic structure, n is 1, 2 or 3, X is hydrogen, chlorine, bromine, C1-C4-alkyl, C1-C4-alkoxy or nitro and Y is hydrogen or chlorine, are particularly useful for dyeing paper stocks.
- U.S. Pat. No. 1,981,515 (Kyrides), the disclosure of which is totally incorporated herein by reference, discloses intermediates for rhodamine dyestuffs.
- U.S. Pat. No. 1,981,516 (Kyrides), the disclosure of which is totally incorporated herein by reference, discloses intermediates for secondary alkylated rhodamine dyes.
- British Patent Publication GB 421 737, the disclosure of which is totally incorporated herein by reference, discloses dyes of the rhodamine series which are prepared by condensing naphthalene-2:3-dicarboxylic acid with a m-aminophenol in which the nitrogen group is substituted by one or two alkyl groups, the products, if desired, being sulphonated. The unsulphonated products may be used as lake colouring matters whilst the sulphonated dyes are acid wool dyes. In examples, (1) naphthalene-2:3-dicarboxylic acid is condensed with diethyl-m-aminophenol in the presence of zinc chloride giving a product which dyes tannin-mordanted cotton in the same shade as Rhodamine B and a sulphonated product which dyes wool bluish-red shades; (2) monoethyl-m-aminophenol is used instead of the diethyl-m-aminophenol in example (1), yielding a dye, which when sulphonated dyes wool red-orange shades; (3) 2-ethylamino-p-cresol replaces the diethyl-m-aminophenol in example (1), yielding a dye dyeing and printing tannin-mordanted cotton in shades similar to Rhodamine 69BS and when sulphonated dyeing wool red.
-
-
- wherein R 2 is 10C or higher long-chain alkyl. Example: 3,6-(N,N′-diethyl-N,N′-dioctadecyl) diamino-9-(2-carboxyphenyl) xanthilium perchlorate. Use: materials for molecular electronics, which are suitable for use as materials for photoelectric converter, optical memory, etc. Preparation: 2-(4-N,N′-diethylamino-2-hydroxybenzoyl)-benzoic acid, which is a condensate between N-ethyl-N-octadecyl-m-hydroxyaniline and phthalic anhydride, is reacted with. N-ethyl-N-octadecyl-m-hydroxyaniline to obtain the compound of formula I. 3-HOC6H4N(Et)(CH2)17Me and phthalic anhydride were heated at 150° for 4 hours, treated with aqueous NH3, and the amorphous intermediate mixed with aqueous HClO4 forming a compound of formula I (R═R2=Et; R1═R3═C18H37; X═ClO4), having λmax (MeOH) 550 nm.
- U.S. Pat. No. 5,084,099 (Jaeger et al.), the disclosure of which is totally incorporated herein by reference, discloses modified phase change ink compatible colorants which comprise a phase change ink soluble complex of (a) a tertiary alkyl primary amine and (b) dye chromophores, i.e., materials that absorb light in the visible wavelength region to produce color having at least one pendant acid functional. group in the free acid form (not the salt of that acid). These modified colorants are extremely useful in producing phase change inks when combined with a phase change ink carrier, even though the unmodified dye chromophores have limited solubility in the phase change ink carrier. Thin films of uniform thickness of the subject phase change ink compositions which employ the modified phase change ink colorants exhibit a high degree of lightness and chroma. The primary amine-dye chromophore complexes are soluble in the phase change ink carrier and exhibit excellent thermal stability.
- U.S. Pat. No. 5,507,864 (Jaeger et al.), the disclosure of which is totally incorporated herein by reference, discloses a phase change ink composition that includes a combination of different dye types such as an anthraquinone dye and a xanthene dye, which is most preferably a rhodamine dye. While each dye type is insufficiently soluble with respect to favored carrier compositions to preserve color saturation in reduced ink quantity prints, the dye type combination permits increased dye loading and maintains print quality. In a preferred embodiment of the invention, a favored carrier composition is adjusted to promote the colored form of a preferred rhodamine dye (C.I. Solvent Red 49) and mixed with a preferred anthraquinone dye (C.I. Solvent Red. 172) whose concentration is kept below a critical level to prevent post printed blooming. The resulting preferred phase change ink compositions provide a magenta phase change-ink with enhanced light fastness and color saturation, as well as good compatibility with preferred existing subtractive primary color phase change inks.
- U.S. Pat. No. 5,621,022 (Jaeger et al.), the disclosure of which is totally incorporated herein by reference, discloses a phase change ink composition wherein the ink composition utilizes polymeric dyes in combination with a selected phase change ink carrier composition.
- U.S. Pat. No. 5,747,554 (Sacripante et al.), the disclosure of which is totally incorporated herein by reference, discloses an ink composition comprising a polyesterified-dye (I) or polyurethane-dye (II) with a viscosity of from about 3 centipoise to about 20 centipoise at a temperature of from about 125° C. to about 165° C. and represented by the formulas
- wherein A is an organic chromophore, Y is an oxyalkylene or poly(oxyalkylene), R is an arylene or alkylene, n represents the number of repeating segments, and is an integer of from about 2 to about 50, and p represents the number of chains per chromophore and is an integer of from about 1 to about 6.
- U.S. Pat. No. 5,902,841 (Jaeger et al.), the disclosure of which is totally incorporated herein by reference, discloses a phase change ink composition wherein the ink composition utilizes colorant in combination with a selected phase change ink carrier composition containing at least one hydroxy-functional fatty amide compound.
- European Patent Publication 0565 798 (Shustack), the disclosure of which is totally incorporated herein by reference, discloses ultraviolet radiation-curable primary and secondary coating compositions for optical fibers., The primary coatings comprise a hydrocarbon polyol-based reactively terminated aliphatic urethane oligomer; a hydrocarbon-monomer terminated with at least one end group capable of reacting with the terminus of the oligomer; and an optional photoinitiator. The secondary coatings comprise a polyester and/or polyether-based aliphatic urethane reactively terminated oligomer; a hydrocarbonaceous viscosity-adjusting component capable of reacting with the reactive terminus of (I); and an optional photoinitiator. Also disclosed are optical fibers coated with the secondary coating alone or with the primary and secondary coatings of the invention.
- While known compositions and processes are-suitable for their intended purposes, a need remains for new magenta colorant compositions. In addition, a need remains for magenta colorant compositions particularly suitable for use in phase change inks. Further, a need remains for magenta colorants with desirable thermal stability. Additionally, a need remains for magenta colorants that exhibit minimal undesirable discoloration when exposed to elevated temperatures. There is also a need for magenta colorants that exhibit a desirable brilliance. In addition, there is a need for magenta colorants that exhibit a desirable hue. Further, there is a need for magenta colorants that are of desirable chroma. Additionally, there is a need for magenta colorants that have desirably high lightfastness characteristics. A need also remains for magenta colorants that have a desirably pleasing color. In addition, a need remains for magenta colorants that exhibit desirable solubility characteristics in phase change ink carrier compositions. Further, a need remains for magenta colorants that enable phase change inks to be jetted at temperatures of over 135° C. while maintaining thermal stability. Additionally, a need remains for magenta colorants that enable phase change inks that generate images with low pile height. There is also a need for magenta colorants that enable phase change inks that generate images that approach lithographic thin image quality. In addition, there is a need for magenta colorants that exhibit oxidative stability. Further, there is a need for magenta colorants that do not precipitate from phase change ink carriers. Additionally, there is a need for magenta colorants that do not, when included in phase change inks, diffuse into adjacently printed inks of different colors. A need also remains for magenta colorants that do not leach from media such as phase change ink carriers into tape adhesives, paper, or the like. In addition, a need remains for magenta colorants that, when incorporated into phase change inks, do not lead to clogging of a phase change ink jet printhead. Further, there is a need for magenta colorants that enable phase change inks that generate images with sharp edges that remain sharp over time. Additionally, there is a need for magenta colorants that enable phase change inks that generate images which retain their high image quality in warm climates. Further, there is a need for magenta colorants that enable phase change inks that generate images of desirably high optical density. Additionally, there is a need for magenta colorants that, because of their good solubility in phase change ink carriers, enable the generation of images of low pile height without the loss of desirably high optical density. A need also remains for magenta colorants that enable cost-effective inks. In addition, a need remains for magenta colorants that are compounds having metal compounds associated with chromogens, wherein the thermal stability of the metal compound colorants exceeds that of the chromogens unassociated with a metal.
-
-
-
-
- chromogen moieties associated with the metal and is at least 2, R 1, R2, R3, and R4 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group, (iv) an arylalkyl group, or (v) an alkylaryl group, wherein R1 and R2 can be joined together to form a ring, wherein R3 and R4 can be joined together to form a ring, and wherein R1, R2, R3, and R4 can each be joined to a phenyl ring in the central structure, a and b each, independently of the others, is an integer which is 0, 1, 2, or 3, c is an integer which is 0, 1, 2, 3, or 4, each R5, R6, and R7, independently of the others, is (i) an alkyl group, (ii) an aryl group, (iii) an arylalkyl group, (iv), an alkylaryl group, (v) a halogen atom, (vi) an ester group, (vii) an amide group, (viii) a sulfone group, (ix) an amine group or ammonium group, (x) a nitrile group, (xi) a nitro group, (xii) a hydroxy group, (xiii) a cyano group, (xiv) a pyridine or pyridinium group, (xv) an ether group, (xvi) an aldehyde group, (xvii) a ketone group, (xviii) a carbonyl group, (xix) a thiocarbonyl group, (xx) a sulfate group, (xxi) a sulfide group, (xxii) a sulfoxide group, (xxiii) a phosphine or phosphonium group, (xxiv) a phosphate group, (xxv) a mercapto group, (xxvi) a nitroso group, (xxvii) an acyl group, (xxviii) an acid anhydride group, (xxix) an azide group, (xxx) an azo group, (xxxi) a cyanato group, (xxxii) an isocyanato group, (xxxiii) a thiocyanato group, (xxxiv) an isothiocyanato group, (xxxv) a urethane group, or (xxxvi) a urea group, wherein R5, R6, and R7 can each be joined to a phenyl ring in the central structure,
- R 8, R9, and R10 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group, (iv) an arylalkyl group, or (v) an alkylaryl group, provided that the number of carbon atoms in R1+R2+R3+R4+R5+R6+R7+R8+R9+R10 is at least about 16, Q− is a COO− group or a SO3— group, d is an integer which is 1, 2, 3, 4, or 5, A is an anion, and CA is either a hydrogen atom or a cation associated with all but one of the Q− groups.
-
-
-
-
- chromogen moieties associated with the metal and is at least 2. There is no necessary upper limit on the value of z.
- Examples of metal cations having a positive charge of +y wherein y is an integer which is at least 2 include +2, +3, +4, and higher cations of magnesium, calcium, strontium, barium, radium, aluminum, gallium, germanium, indium, tin, antimony, tellurium, thallium, lead, bismuth, polonium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, niobium molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, metals of the lanthamide series, such as europium and the like, metals of the actinide series, and the like.
- Examples of Metal-Containing Moieties Include:
- metal ionic moieties, such as Me 3+X− wherein Me represents a trivalent metal atom and X represents a monovalent anion, such as Cl−, Br−, I−, HSO4 −, HSO3 −, CH3SO3 −, CH3C6H4SO3 −, NO3 −, HCOO−, CH3COO−, H2PO4 −, SCN−, BF4 −, ClO4 −, SSO3 −, PF6 −, SbCl6 −, or the like, or Me4+X− or Me4+X− or Me4+X2 − wherein Me represents a tetravalent metal atom, X represents a monovalent anion, and X2 represents 2 monovalent anions, Me4+X2 − wherein Me represents a tetravalent metal atom and X2 − represents a divalent anion, and the like;
- metal coordination compounds, wherein metals such as magnesium, calcium, strontium, barium, radium, aluminum, gallium, germanium, indium, tin, antimony, tellurium, thallium, lead, bismuth, polonium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, niobium molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, metals of the lanthamide series, such as europium and the like, metals of the actinide series, and the like are associated with one or more ligands, such as carbonyl (carbon monoxide) ligands, ferrocene ligands, halide ligands, such as fluoride, chloride, bromide, iodide, or the like, amine ligands of the formula
- wherein R 51, R52, and R53 each, independently of the others, is (i) a hydrogen atom, (ii) a halogen atom, such as fluorine, chlorine, bromine, iodine, or the like, (iii) an alkyl group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkyl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkyl group), in one embodiment with at least 1 carbon atom, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iv) an aryl group (including unsubstituted and substituted aryl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the aryl group), in one embodiment with at least about 6 carbon atoms, and in one embodiment with no more than about 26 carbon atoms, in another embodiment with no more than about 22 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, (v) an arylalkyl group (including unsubstituted and substituted arylalkyl groups, wherein the alkyl portion of the arylalkyl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the arylalkyl group), in one embodiment with at least about 7 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as benzyl or the like, or (vi) an alkylaryl group (including unsubstituted and substituted alkylaryl groups, wherein the alkyl portion of the alkylaryl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the alkylaryl group), in one embodiment with at least about 7 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as tolyl or the like, wherein, one or more of R51, R52, and R53 can be joined together to form a ring, and wherein the substituents on the substituted alkyl, aryl, arylalkyl, and alkylaryl groups can be (but are not limited to) hydroxy groups, halogen a atoms, amine groups, imine groups, ammonium groups, cyano groups, pyridine groups, pyridinium groups, ether groups, aldehyde groups, ketone groups, ester groups, amide groups, carbonyl groups, thiocarbonyl groups, sulfate groups, sulfonate groups, sulfonic acid groups, sulfide groups, sulfoxide groups, phosphine groups, phosphonium groups, phosphate groups, nitrile groups, mercapto groups, nitro groups, nitroso groups, sulfone groups, acyl groups, acid anhydride groups, azide groups, azo groups, cyanato groups, isocyanato groups, thiocyanato groups, isothiocyanato groups, carboxylate groups, carboxylic acid groups, urethane groups, urea groups, mixtures thereof, and the like, wherein two or more substituents can be joined together to form a ring, with specific examples of suitable amine ligands including ammonia, trimethylamine, ethylenediamine, bipyridine, and the like, phosphine ligands of the formula
- wherein R 61, R62, and R63 each, independently of the others, is (i) a hydrogen atom, (ii)a halogen atom, such as fluorine, chlorine, bromine, iodine, or the like, (iii) an alkyl group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkyl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkyl group), in one embodiment with at least 1 carbon atom, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iv) an aryl group (including unsubstituted and substituted aryl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the aryl group), in one embodiment with at least about 6 carbon atoms, and in one embodiment with no more than about 26 carbon atoms, in another embodiment with no more than about 22 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, (v) an arylalkyl group (including unsubstituted and substituted arylalkyl groups, wherein the alkyl portion of the arylalkyl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may hot be present in either or both of the alkyl portion and the aryl portion of the arylalkyl group), in one embodiment with at least about 7 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as benzyl or the like, (vi) an alkylaryl group (including unsubstituted and substituted alkylaryl groups, wherein the alkyl portion of the alkylaryl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the alkylaryl group), in one embodiment with at least about 7 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as tolyl or the like, (vii) an alkoxy group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkoxy groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkoxy group), in one embodiment with at least 1 carbon atom, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon-atoms, although the number of carbon atoms can be outside of these ranges, (viii) an aryloxy group (including unsubstituted and substituted aryloxy groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the aryloxy group), in one embodiment with at least about 6 carbon atoms, and in one embodiment with no more than about 26 carbon atoms, in another embodiment with no more than about 22 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, (ix) an arylalkyloxy group (including unsubstituted and substituted arylalkyloxy groups, wherein the alkyl portion of the arylalkyloxy group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the arylalkyloxy group), in one embodiment with at least about 7 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as benzyloxy or the like, or (x) an alkylaryloxy group (including unsubstituted and substituted alkylaryloxy groups, wherein the alkyl portion of the alkylaryloxy group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the alkylaryloxy group), in one embodiment with at least about 7 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as tolyloxy or the like, wherein one or more of R61; R62, and R63 can be joined together to form a ring, and wherein the substituents on the substituted alkyl, alkoxy, cryl, aryloxy, arylalkyl, arylalkyloxy, alkylaryl, and alkylaryloxy groups can be (but are not limited to) hydroxy groups, halogen atoms, amine groups, imine groups, ammonium groups, cyano groups, pyridine groups, pyridinium groups, ether groups, aldehyde groups, ketone groups, ester groups, amide groups, carbonyl groups, thiocarbonyl groups, sulfate groups, sultanate groups, sulfonic acid groups, sulfide groups, sulfoxide groups, phosphine groups, phosphonium groups, phosphate, groups, nitrile groups, mercapto groups, nitro groups, nitroso groups, sulfone groups, acyl groups, acid anhydride groups, azide groups, azo groups, cyanato groups, isocyanato groups, thiocyanato groups, isothiocyanato groups, carboxylate groups, carboxylic acid groups, urethane groups, urea groups, mixtures thereof, and the like, wherein two or more substituents can be joined together to form a ring, with specific examples of suitable phosphine ligands including phosphine, trifluorophosphine, trichlorophosphine, trimethylphosphine, triphenylphosphine, trethoxyphosphine, and the like, water ligands, cyano ligands, isocyano ligands, hydroxide anions, nitro ligands, nitrito ligands, thiocyanato ligands, nitric oxide ligands, and the like; including monodentate ligands, bidentate ligands, tridentate ligands, tetradentate ligands, pentadentate ligands, hexadentate ligands (such as ethylene diamine tetraacetic acid), bridging ligands joining two or more metal atoms in a complex, crown ether ligands, and the like; a wide variety of ligands and metal complexes are disclosed in, for example, Advanced Inorganic Chemistry, Fourth Edition, F. A. Cotton and G. Wilkinson, John Wiley & Sons (1980), the disclosure of which is totally incorporated herein by reference;
- heteropblyacids, also known as polyoxometalates, which are acids comprising inorganic metal-oxygen clusters; these materials are discussed in, for example, “Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines,” M. T. Pope et al., Angew. Chem. Int. Ed. Engl., Vol. 30, p. 34 (1991), the disclosure of which is totally incorporated herein by reference; examples of heteropolyacids include phosphotungstic acids, including (but not limited to) those of the general formula H3PO4.12WO3.XH2O (wherein X is variable, with common values including (but not being limited to) 12, 24, or the like), silicotungstic acids, including (but not limited to) those of the general formula H4SiO2.12WO3XH2O (wherein X is variable, with common values including (but not being limited to) 12, 24, 26, or the like), phosphomolybdic acids, including (but not limited to) those of the general formula 12MoO3H3PO4.XH2O (wherein X is variable, with common values including (but not being limited to) 12, 24, 26, or the like) and the like, all commercially available from, for example, Aldrich Chemical Co., Milwaukee, Wis., as well as mixtures thereof;
-
- moieties.
-
-
-
- chromogen moiety and the metal cation or metal-containing moiety to form a compound is suitable, including ionic compounds, covalent compounds, coordination compounds, and the like.
- R 1, R2, R3, and R4 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkyl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkyl group), in one embodiment with at least 1 carbon atom, in another embodiment with at least about 2 carbon atoms, in yet another embodiment with at least about 6 carbon atoms, in another embodiment with at least about 8 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iii) an aryl group (including unsubstituted and substituted aryl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the aryl group), in one embodiment with at least about 6 carbon atoms, in another embodiment with at least about 10 carbon atoms, and in yet another embodiment with at least about 14 carbon atoms, and in one embodiment with no more than about 26 carbon atoms, in another embodiment with no more than about 22 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iv) an arylalkyl group (including unsubstituted and substituted arylalkyl groups, wherein the alkyl portion of the arylalkyl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the arylalkyl group), in one embodiment with at least about 7 carbon atoms, in another embodiment with at least about 12 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as benzyl or the like, or (v) an alkylaryl group (including unsubstituted and substituted alkylaryl groups, wherein the alkyl portion of the alkylaryl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the alkylaryl group), in one embodiment with at least about 7 carbon atoms, in another embodiment with at least about 12 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, and in on e embodiment with no more than about 51 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as tolyl or, the like, wherein R1 and R2 can be joined together to form a ring, wherein R3 and R4 can be joined together to form a ring, and wherein R1, R2, R3, and R4 can each be joined to a phenyl ring in the central structure, a and b each, independently of the others, is an integer which is 0, 1, 2, or 3, c is an integer which is 0, 1, 2, 3, or 4, each R5, R6, and R7, independently of the others, is (i) an alkyl group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkyl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkyl group), in one embodiment with at least 1 carbon atom, and in one embodiment with no more than about 50 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, (ii) an aryl group (including unsubstituted and substituted aryl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the aryl group), in one embodiment with at least about 6 carbon atoms, and in one embodiment with no more than about 0.55 carbon tom, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iii) an arylalkyl group (including unsubstituted and substituted arylalkyl groups, wherein the alkyl portion of the arylalkyl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the arylalkyl group), in one embodiment with at least about 7 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no m ore than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as benzyl or the like, (iv) an alkylaryl group (including unsubstituted and substituted alkylaryl groups, wherein the alkyl portion of the alkylaryl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the alkylaryl group), in one embodiment with at least about 7 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as tolyl or the like, (v) a halogen atom, such as fluorine, chlorine, bromine, iodine, or the like, (vi) an ester group, (vii) an amide group, (viii) a sulfone group, (ix) an amine group or ammonium group, (xi) a nitro group, (xii) a hydroxy group, (xiii) a cyano group, (xiv) a pyridine or pyridinium group, (xv) an ether group, (xvi) an aldehyde group, (xvii) a ketone group, (xviii) a carbonyl group, (xix) a thiocarbonyl group, (xx) a sulfate group, (xxi) a sulfide group, (xxii) a sulfoxide group, (xxiii) a phosphine or phosphonium group, (xxiv) a phosphate group, (xxv) a mercapto group, (xxvi) a nitroso group, (xxvii) an acyl group, (xxviii) an acid anhydride group, (xxix) an azide group, (xxx) an azo group, (xxxi) a cyanato group, (xxxii) an isocyanato group, (xxxiii) a thiocyanato group, (xxxiv) an isothiocyanato group, (xxxv) a urethane group, or (xxxvi) a urea group, wherein R5, R6, and R7 can each be joined to a phenyl ring in the central structure,
- R 8, R9, and R10 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkyl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkyl group), in one embodiment with at least 1 carbon atom, in another embodiment with at least about 2 carbon atoms, in yet another embodiment with at least about 6 carbon atoms, in another embodiment with at least about 8 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, and in ane embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iii) an aryl group (including unsubstituted and substituted aryl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the aryl group), in one embodiment with at least about 6 carbon atoms, in another embodiment with at least about 10 carbon atoms, and in yet another embodiment with at least about 14 carbon atoms; and in one embodiment with no more than about 26 carbon atoms, in another embodiment with no more than about 22 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iv) an arylalkyl group (including unsubstituted and substituted arylalkyl groups, wherein the alkyl portion of the arylalkyl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen sulfur, silicon, phosphorus, and the like either may or may not be present in; either or both of the alkyl portion and the aryl portion of the arylalkyl group), in one embodiment with at least about 7 carbon atoms, in another embodiment with at least about 12 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, Land in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as benzyl or the like, or (v) an alkylaryl group (including unsubstituted and substituted alkylaryl groups, wherein the alkyl portion of the alkylaryl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the alkylaryl group), in one embodiment with at least about 7 carbon atoms, in another embodiment with at least about 12 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as tolyl or the like, provided that the number of carbon atoms in R1+R2+R3+R4+R5+R6+R7+R8+R9+R10 is in one embodiment at least about 16, in another embodiment at least about 18, in yet another embodiment at least about 20, in still another embodiment at least about 22, in another embodiment at least about 24, in yet another embodiment at least about 26, in still another embodiment at least about 28, in another embodiment at least about 30, in yet another embodiment at least about 32, in still another embodiment at least about: 34, in another embodiment at least about 36, in yet another embodiment at least about 38, in still another embodiment at least about 40, in another embodiment at least about 42, in yet another embodiment at least about 44, in still another embodiment at least about 46, in another embodiment at least about 48, in yet another embodiment at least about 50, in still another embodiment at least about 52, in another embodiment at least about 54, in yet another embodiment at least about 56, in still another embodiment at least; about 58, in another embodiment at least about 60, in yet another embodiment at least about 62, in still another embodiment at least about 64, in another embodiment at least about 66, in yet another embodiment at least about 68, in still another embodiment at least about 70, and in another embodiment at least about 72, each Q−, independently of the others, is a COO− group or a SO3 − group, d is an integer which is 1, 2, 3, 4, or 5, A is an anion, with examples of suitable anions including (but not being limited to) Cl−, Br−, I−, HSO4 −, HSO3 −, ½ SO4 2 −, ½ SO32 −; CH3SO3 −, CH3C6H4SO3 −, NO3 −, HCOO−, CH3COO−, H2PO4 −, ½ HPO42−, SCN−, BF4 −, ClO4 −, SSO3 −, PF6 −, SbCl6 −, or the like, as well as mixtures thereof, and CA is either a hydrogen atom or a cation associated with all but one of the Q− groups, with examples of suitable cations including (but not being limited to) alkali metal cations, such as Li+, Na+, K+, Rb+, and Cs+, nonpolymeric or monomeric ammonium and quaternary amine cations, including those of the general formula
- wherein each of R 21, R22, R23, and R24, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkyl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkyl group), in one embodiment with at least 1 carbon atom, in another embodiment with at least about 2 carbon atoms, in yet another embodiment with at least about 6 carbon atoms, in another embodiment with at least about 8 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iii) an aryl group (including unsubstituted and substituted aryl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the aryl group), in one embodiment with at least about 6 carbon atoms, in another embodiment with at least about 10 carbon atoms, and in yet another embodiment with at least about 14 carbon atoms, and in one embodiment with no more than about 26 carbon atoms, in another embodiment with no more than about 22 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iv) an arylalkyl group (including unsubstituted and substituted arylalkyl groups, wherein the alkyl portion of the arylalkyl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the arylalkyl group), in one embodiment with at least about 7 carbon atoms, in another embodiment with at least about 12 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, and in one embodiment with no-more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as benzyl or the like, or (v) an alkylaryl group (including unsubstituted and substituted alkylaryl groups, wherein the alkyl portion of the alkylaryl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the alkylaryl group), in one embodiment with at least about 7 carbon atoms, in another embodiment with at least about 12 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as tolyl or the like, wherein one or more of R21, R22, R23, and R24 can be joined together to form a ring, and wherein the substituents on the substituted alkyl, aryl arylalkyl, and alkylaryl groups can be (but are not limited to) hydroxy groups, halogen atoms, amine groups, imine groups, ammonium groups, cyano groups, pyridine groups, pyridinium groups, ether groups, aldehyde groups, ketone groups, ester groups, amide groups, carbonyl groups, thiocarbonyl groups, sulfate groups, sultfonate groups, sulfonic acid groups, sulfide groups, sulfoxide groups, phosphine groups, phosphonium groups, phosphate groups, nitrile groups, mercapto groups, nitro groups, nitroso groups, sulfone groups, acyl groups, acid anhydride groups, azide groups, azo groups, cyanato groups, isocyanato groups, thiocyanato groups, isothiocyanato groups, carboxylate groups, carboxylic acid groups, urethane groups, urea groups, mixtures thereof, and the like, wherein two or more substituents can be joined together to form a ring, oligomeric and polymeric cations, such as cationic polymers or oligomers, and the like, as well as mixtures thereof.
-
- and either (i) one of the R 7 groups is in the ortho position and is either an ester based on a carboxylic acid, an ester based on a sulfonic acid, an amide based on a carboxylic acid, or an amide based on a sulfonic acid, or (ii) one of the Q− groups is a sulfonate salt, i.e., when the chromogen is of the formula
- wherein R 12 R13, R14, R15, R16, and R17 each independently of the other, is (i) an alkyl group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkyl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkyl group), in one embodiment with at least 1 carbon atom, and in one embodiment with no more than about 50 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, (ii) an aryl group (including unsubstituted and substituted aryl groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the aryl group), in one embodiment with at least about 6 carbon atoms, and in one embodiment with no more than about 55 carbon atoms in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iii) an aryldlkyl group (including unsubstituted and substituted aryllkyl groups, wherein the alkyl portion of the arylalkyl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the arylalkyl group), in one embodiment with at least about 7 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as benzyl or the like, or (iv) an alkylaryl group (including unsubstituted and substituted alkylaro groups, wherein the alkyl portion of the alkylaryl group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the alkylaryl group), in one embodiment with at least about 7 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as tolyl or the like, wherein the substituents on the substituted alkyl, aryl, arylalkyl, and alkylaryl groups can be (but are not limited to) hydroxy groups, halogen atoms, amine groups, imine groups, ammonium groups, cyano groups, pyridine groups, pyridinium groups, ether groups, aldehyde groups, ketone groups, ester groups, amide groups, carbonyl groups, thiocarbonyl groups, sulfate groups, sulfonate groups, sulfonic acid groups, sulfide groups, sulfoxide groups, phosphine groups, phosphonium groups, phosphate groups, nitrile groups, mercapto groups, nitro groups; nitroso groups, sulfone groups, acyl groups, acid anhydride groups, azide groups, azo groups, cyanato groups, isocyanato groups, thiocyanato groups, isothiocyanato groups, carboxylate groups, carboxylic acid groups, urethane groups, urea groups, mixtures thereof, and the like, wherein two or more substituents can be joined together to form a ring, in one specific embodiment, (I) either (a) c is an integer which is 0, 1, 2, or 3, or (b) d is an integer which is 1, 2, 3, or 4, and (II) either (a) three of R1, R2, R3, and R4 are hydrogen atoms; (b) only one of R1, R2, R3, and R4 is a hydrogen atom; (c) R1 and R2 are both hydrogen atoms; (d) R3 and R4 are both hydrogen atoms; or (e) R1 and R3 are both hydrogen atoms and R2 and R4 are each, independently of the other, either alkyl groups or arylalkyl groups.
- In one embodiment, the number of carbon atoms in R 1+R2+R3+R4 is at least about 16, in another embodiment at least about 18, in yet another embodiment at least about 20, in still another embodiment at least about 22, in another embodiment at least about 24, in yet another embodiment at least about 26, in still another embodiment at least about 28, in another embodiment at least about; 30, in yet another embodiment at least about 32, in still another embodiment at least about 34, in another embodiment at least-about 36, in yet another embodiment at least about 38, in still another embodiment at least about 40, in another embodiment at least about 42, in yet another embodiment at least about 44, in still another embodiment at least about 46, in another embodiment at least about 48, in yet another embodiment at least about 50, in still another embodiment at least about 52, in another embodiment at least about 54, in: yet another embodiment at least about 56, in still another embodiment at least about 58, in another embodiment at least about 60, in yet another embodiment at least about 62, in still another embodiment at least about 64, in another embodiment at least about 66, in yet another embodiment at least about 68, in still another embodiment at least about 70, and in another embodiment at least about 72.
- Since hetero atoms can be included in the alkyl, aryl, arylalkyl, and alkylaryl groups, and since the groups can be substituted, it is to be understood that R 1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 can also be groups such as alkoxy, polyalkyleneoxy, aryloxy, polyaryleneoxy, arylalkyloxy, polyarylalkyleneoxy, alkylaryloxy, or polyalkylaryleneoxy groups, provided that the oxygen atom in such a group is not directly bonded to a nitrogen, oxygen, or sulfur atom in the
- central structure.
-
-
-
-
-
-
-
-
- monocarboxylic acid disulfonic acids and monocarboxylate disulfonates, monocarboxylic acid trisulfonic acids and monocarboxylate trisulfonates, monocarboxylic acid tetrasulfonic acids and monocarboxylate tetrasulfonates, dicarboxylic acid monosulfonic acids and dicarboxylate monosulfonates, dicarboxylic acid disulfonic acids and dicarboxylate disulfonates, dicarboxylic acid trisulfonic acids and dicarboxylate trisulfonates, tricarboxylic acid monosulfonic acids and tricarboxylate monosulfonates, tricarboxylic acid disulfonic acids and tricarboxylate disulfonates, tetracarboxylic acid monosulfonic acids and tetracarboxylate monosulfonates, and the like. In addition, it is possible for a compound according to the present invention to have both one or more acid groups (i.e., COOH or SO 3H) and one or more anionic salt groups (i.e., COO− or SO3 −) present in the molecule.
-
-
-
-
-
-
-
-
- and the like.
- In a specific embodiment, the anion A can be an organic dianion of the formula A 1-R11-A2 wherein A1 and, A2 each, independently of the other, are anionic groups, such as carboxylate, sulfonate, or the like, and wherein R11 is (i) an alkylene group (including linear, branched, saturated, unsaturated, cyclic, substituted, and unsubstituted alkylene groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the alkylene group), in one embodiment with at least 1 carbon atom, in another embodiment with at least about 2 carbon atoms, in yet another embodiment with at least about 6 carbon atoms, in another embodiment with a t least about 8 carbon atoms, and in yet another embodiment with at least about 18 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, (ii) an arylene group (including unsubstituted and substituted arylene groups, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in the arylene group), in one embodiment with at least about 6 carbon atoms, in another embodiment with at least about 10 carbon atoms, and in yet another embodiment with at least about 14 carbon atoms, and in one embodiment with no more than about 26 carbon atoms, in another embodiment with no more than about 22 carbon atoms, and in yet another embodiment with no more than about 18 carbon atoms, although the number of carbon atoms can be outside of these ranges, (iii) an arylalkylene group (including unsubstituted and substituted arylalkylene groups, wherein the alkyl portion of the arylalkylene group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the drylalkylene group), in one embodiment with at least about 7 carbon atoms, in another embodiment with at least about 12 carbon atoms and in yet another embodiment with at least about 18 carbon atoms, and in one embodiment with no more than about 55 carbon atoms, in another embodiment with no more than about 30 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as benzyl or the like, or (iv) an alkylarylene group (including unsubstituted and substituted alkylarylene groups, wherein the alkyl portion of the alkylarylene group can be linear, branched, saturated, unsaturated, and/or cyclic, and wherein hetero atoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, and the like either may or may not be present in either or both of the alkyl portion and the aryl portion of the alkylarylene group), in one embodiment with at least about 7 carbon atoms, in another embodiment with at least about 12 carbon atoms, and in yet: another embodiment with at least about 18 carbon atoms, and in one embodiment with no more than about 55 carbon, atoms, in another embodiment with no more than about 35 carbon atoms, and in yet another embodiment with no more than about 20 carbon atoms, although the number of carbon atoms can be outside of these ranges, such as tolyl or the like, and wherein the substituents on the substituted alkylene, arylene, arylalkylene, and alkylarylene groups can be (but are not limited to) hydroxy groups, halogen atoms, amine groups, imine groups, ammonium groups, cyano groups, pyridine groups, pyridinium groups, ether groups, aldehyde groups, ketone groups, ester groups, amide groups, carbonyl groups, thiocarbonyl groups, sulfate groups, sulfonate groups, sulfonic acid groups, sulfide groups, sulfoxide groups, phosphine groups, phosphonium groups, phosphate groups, nitrile groups, mercapto groups, nitro groups, nitroso groups, sulfone groups, acyl groups, acid anhydride groups, azide groups, azo groups, cyanato groups, isocyanato groups, thiocyanato groups, isothiocyanato groups, carboxylate groups, carboxylic acid groups, urethane groups, urea groups, mixtures thereof, and the like, wherein two or more substituents can be joined together to form a ring. Examples of suitable organic dianions include unsubstituted and substituted naphthalene disulfonates, unsubstituted and substituted benzene disulfonates, and the like, as well as mixtures thereof.
- In another specific embodiment, the anion A can be an orgdnic trianion, tetraanion, and higher, an, oligomeric and polymeric anion, such as a polysulfonate or polycarboxylate, or the like.
-
-
-
- and the like. It is to be understood that all possible tautomeric forms of these colorants are included within the above formulae.
-
- wherein M is a metal cation, y is an integer representing the charge on the metal cation and is at least 2, A is an anion, and x is an integer representing the charge on the anion.
-
- component of the metal compound which is later reacted with the metal cation or metal containing moiety to form the colorant of the present invention. For example, a dihalofluorescein, such as dichlorofluorescein or the like, can be admixed with one or more amines having the desired R 1, R2, R3, and R4 groups thereon, an optional zinc halide, such as zinc chloride or the like, and an optional normucleophilic base, such as calcium oxide, zinc oxide, or the like, either neat or, optionally, in the presence of a solvent.
- The amine and the dihalofluorescein are present in any desired or effective relative amounts, tin one embodiment at least about 0.9 mole of base per every one mole of dihalofluorescein, in another embodiment at least about 0.95 mole of base per every one mole of dihalofluorescein, and in yet another embodiment at least about 1 mole of base per every one mole of dihalofluorescein, and in one embodiment no more than about 20 moles of base per every one mole of dihalofluorescein, in another embodiment no more than about 10 moles of base per every one mole of dihalofluorescein, and in yet another embodiment no more than about 2 moles of base per every one mole of dihalofluorescein, although the relative amounts can be outside of these ranges.
- Dichlorofluorescein is commercially available from, for, example, Aldrich Chemical Co., Milwaukee, Wis. Dihalofluoresceins can also be prepared by the reaction of fluorescein with PX 5 wherein X is fluorine, chlorine, bromine, or iodine, or with a toluenesulfonylhalide, such as toluenesulfonylchloride or the like.
- When an optional zinc halide is used, the dihalofluorescein and the zinc halide are present in any desired or effective relative amounts, in one embodiment at least about 2 moles of zinc halide per every one mole of dihalofluorescein, in another embodiment at least about 2.5 moles of zinc halide per every one mole of dihalofluorescein, and yet in another embodiment at least about 3 moles of zinc halide per every one mole of dihalofluorescein, and in one embodiment no more than about 5 moles of zinc halide per every one mole of dihalofluorescein, in another embodiment no more than about 4.5 moles of zinc halide per every one mole of dihaloflubrescein, and in yet another embodiment no more than about 4 moles of zinc halide per every one mole of dihalofluorescein, although the relative amounts can be outside of these ranges.
- When an optional base is used, the base is present in any desired or effective amount, in one embodiment at least about 2 equivalents of base per every one mole of dihalofluorescein (i.e., about 2 moles of monobasic base per every one mole of dihalofluorescein, about 1 mole of dibasic base, such as calcium oxide, per every one mole of dihalofluorescein, and the like), in another embodiment at least about 2.5 equivalents of base per every one mole of dihalofluorescein, and yet in another embodiment at least about 3 equivalents of base per every one mole of dihalofluorescein, and in one embodiment no more than about 10 equivalents of base per every one mole of dihalofluorescein, in another embodiment no more than about 5 equivalents of base per every one mole of dihalofluorescein, and in yet another embodiment no more than about 3.2 equivalents of base per every one mole of dihalofluorescein, although the relative amounts can be outside of these ranges.
- If desired, the reaction can be run neat, in the absence of a solvent. In addition, if desired, the reaction can be run in the presence of an optional solvent. Examples of suitable solvents include tetramethylene sulfone (sulfolane), N-methylpyrrolidone, dimethyl formamide, dimethyl sulfoxide, octanol, or the like, as well as mixtures thereof. When present, the optional solvent is present in any desired or effective amount, in one embodiment at least about 11 liter per every 0.1 mole of dihalofluorescein, in another embodiment at least about 1 liter per every 0.3 mole of dihalofluorescein, and in yet another embodiment at least about 1 liter per every 0.35 mole of dihalofluorescein, and in one embodiment no more than about 1 liter per every 2 moles of dihalofluorescein, in another embodiment no more than about liter per every 1.5 moles of dihalofluorescein, and in yet another embodiment no more than about 1 liter per every 1 mole of dihalofluorescein, although the relative amounts can be outside of these ranges.
- The mixture of dihalofluorescein, amine, optional zinc halide, optional base, and optional solvent is then heated to any effective temperature, in one embodiment at least about 62° C., in another embodiment at least about 150° C., and in yet another embodiment at least about 190° C., and in one embodiment no more than about 28° C., in another embodiment no more than about 220° C., and in yet another embodiment no more than about 200° C., although the temperature can be outside of these ranges.
- The mixture of dihalofluorescein, amine, optional zinc halide, optional base, and optional solvent is heated for any effective period of time, in one embodiment at least about 5 minutes, in another embodiment at least about 2 hours, and in yet another embodiment at least about 3 hours, and in one embodiment no more than about 4 days, in another embodiment no more than about 60 hours, and in yet another embodiment no more than about 40 hours, although the time can be outside of these ranges.
- If desired, the resulting chromogen product can be purified by pouring the reaction mixture into an organic non-water-soluble and non-water-miscible solvent in which the product is soluble or miscible and in which undesirable salt byproducts are not soluble, such as methyl isobutyl ketone, toluene, hexane, heptane, or the like, followed by admixing the solvent containing the product with water in a separatory funnel and separating the aqueous and organic phases.
- The crude chromogen product can then, if desired, be further purified by washing it with aqueous EDTA to remove metal salts, followed by washing with water. If desired, a titration or other instrumental technique, such as AA (atomic absorption) or ICP (inductively coupled plasma) can be performed to determine if the metal salts have been completely removed. The purified product can be isolated by distilling off any solvents.
- Various substituents<can be placed on the rings of the chromogens of the present invention by any desired or effective method, such as, for example, the methods disclosed in U.S. Pat. No. 5,847,162 and U.S. Pat. No. 1,991,482, the disclosures of each of which are totally incorporated herein by reference.
-
-
- and (1) R is a linear alkyl group of the formula —C nH2 n+1 wherein n is at least about 12, (2) R is a branched alkyl group of the formula —CnH2n+1 wherein n is at least about 12, (3) R is an ether group of the formula —(CH2)3—O—CnH2n+1 wherein n is at least about 11, and the like, as well as their ring-opened, or protonated, or free-base forms and their zwitterionic forms.
- Additional numbers of carbon atoms can also be placed on the central structure by, for example, first preparing the corresponding alcohols and then reacting these alcohols with, for example, high-carbon-number acids to prepare esters, high-carbon-number isocyanates to prepare urethanes, or the like. Examples of such compounds include (but are not limited to) those of the formulae
-
-
-
-
-
-
-
-
-
-
- wherein n is at least about 12, and the like, as well as their ring-opened, or protonated, or free-base forms and their zwitterionic forms.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- wherein n is at least about 12 and the like.
- The chromogen can then be formed into a metal compound colorant by admixing it with an appropriate metal salt, optionally in the presence of a solvent, such as acetone, toluene, methyl isobutyl ketone, or the like.
- Examples of suitable metals are provided hereinabove. Examples of suitable salts include those formed from the desired metal and any desired or effective anions, including (but not limited to) F −, Cl−, Br−, I−, SCN—, CF3SO3 —, [C10H8(SO3)2]2−, CH3 −C6H4 −SO3 −, PF6 −, ClO4 −, NO2 −C6H4 −SO3 −, NH2 −C6H4 −SO3 −, SCN−, dodecylbenzene sulfonate, or the like.
- The chromogen and the metal salt are present in any desired or effective relative amounts, generally at least about 2 moles of chromogen per every one mole of metal salt, and higher when higher ratios of chromogen to metal or metal containing moiety are desired, although the relative amounts can be outside of these ranges.
- When present, the optional solvent is present in any desired or effective amount, in one embodiment at least about 1 liter per every 0.01 mole of chromogen, in another embodiment at least about 1 liter per every 0.04 mole of chromogen, and in yet another embodiment at least about 1 liter per every 0.08 mole of chromogen, and in one embodiment no more than about 1 liter per every 0.5 mole of chromogen, in another embodiment no more than about 1 liter per every 0.1 mole of chromogen, and in yet another embodiment no more than about 1 liter per every 0.09 mole of chromogen, although the relative amounts can be outside of these ranges.
- The chromogen and the metal salt are allowed to react for any desired or effective period of time, in one embodiment at least about 0.5 hour, in another embodiment at least about 8 hours, and in yet another embodiment at least about 12 hours, and in one embodiment no more than about 96 hours, in another embodiment no more than about 48 hours, and in yet another embodiment no more than about 24 hours, although the time can be outside of these ranges.
- The chromogen and the metal salt are allowed to react at any desired or effective temperature, in one embodiment at least about 25° C., in another embodiment at, least about 55° C., and in yet another embodiment at least about 100° C., and in one embodiment no more than about 190° C., in another embodiment no more than about 150° C., and in yet another embodiment no more than about 110° C., although the time can be outside of these ranges. When an optional solvent is used, generally lower temperatures can be employed, whereas when the reaction is run neat, the temperature is sufficiently high to render the chromogen molten.
- The resulting product can then be isolated by any desired or effective method, such as by distilling, off the solvent, cooling the reaction mixture (when the product is soluble in the solvent at elevated temperatures and insoluble in the solvent at lowered temperatures), or the like.
-
- wherein R 1, R2, R3, and R4 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group, (iv) an arylalkyl group, or (v) an alkylaryl group, wherein R1 and R2 can be joined together to form a ring, wherein R3 and R4 can be joined together to form a ring, and wherein R1, R2, R3, and R4 can each be joined to a phenyl ring in the central structure., a and b each, independently of the others, is an integer which is 0, 1, 2, or 3, c is an integer which is 0, 1, 2, 3, or 4, each R5, R6, and R7, independently of the others, is (i) an alkyl group, (ii) an aryl group, (iii) an arylalkyl group, (iv) an alkylaryl group, (v) a halogen atom, (vi) an ester group, (vii) an amide group, (viii) a sulfone group, (ix) an amine group or ammonium group, (x) a nitrite group, (xi) a nitro group, (xii) a hydroxy group, (xiii) a cyano group, (xiv) a pyridine or pyridinium group, (xv) an ether group, (xvi) an aldehyde group, (xvii) a ketone group, (xviii) a carbonyl group, (xix) a thiocarbonyl group, (xx) a sulfate group, (xxi) a sulfide group, (xxii) a sulfoxide group, (xxiii) a phosphine or phosphonium group, (xxiv) a phosphate group, (xxv) a mercapto group, (xxvi) a nitroso group, (xxvii) an acyl group, (xxviii) an acid anhydride group, (xxix) an azide group, (xxx) an azo group, (xxxi) a cyanato group, (xxxii) an isocyanato group, (xxxiii) a thiocyanato group, (xxxiv) an isothiocyanato group, (xxxv) a urethane group, or (xxxvi) a urea group, wherein R5, R6, and R7 can each be joined to a phenyl ring in the central structure,
- R 8, R9, and R10 each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group, (iv) an arylalkyl group, or (v) an alkylaryl group, provided that the number of carbon atoms in R1+R2+R3+R4+R5+R6+R7+R8+R9+R10 is at least about 16, Q− is a COO− group or a SO3— group, d is an integer which is 1, 2, 3, 4, or 5, A is an anion, and CA is either a hydrogen atom or a cation associated with all but one of the Q− groups, and (b) a metal salt of which the metal portion is either (1) a metal ion having a positive charge of +y wherein y is an integer which is at least 2, said metal ion being capable of forming a compound with at least two
-
- moieties.
- While not being limited to any particular theory, it is believed that in at least some embodiments of the present invention and with at least some metal cations or metal-containing moieties, coordination complexes may form. For example, when Q − is: a carboxylate anion, d is 1, and the metal is capable of coordinating to four ligands, a metal colorant compound ac cording to the present invention may have the formula
-
-
-
- It is believed that sulfonate anions will form complexes similar to those formed by carboxylate anions.
- Phase change inks of the present invention contain a phase change carrier system or composition. The phase change carrier composition is typically designed for use in either a direct printing mode or an indirect or offset printing transfer system.
- In the direct printing mode, the phase change carrier composition in one embodiment contains one or more materials that enable the phase change ink (1) to be applied in a thin film of uniform thickness on the final recording substrate (such as paper, transparency material, and the like) when cooled to ambient temperature after printing directly to the recording substrate, (2) to be ductile while retaining sufficient flexibility so that the applied image on the substrate will not fracture upon bending, and (3) to possess a high degree of lightness, chroma; transparency, and thermal stability.
- In an offset printing transfer or indirect printing mode, the phase change carrier composition in one embodiment exhibits not only the characteristics desirable for direct printing mode inks, but also certain fluidic and mechanical properties desirable for use in such a system, as described in, for example, U.S. Pat. No. 5,389,958 the disclosure of which is totally incorporated herein by reference.
- Any desired or effective carrier composition can be used. Examples of suitable ink carrier materials include fatty amides, such as monoamides, tetra-amides, mixtures thereof, and the like. Specific examples of suitable fatty amide ink carrier materials include stearyl stearamide, a dimer acid based tetra-amide, that is the reaction product of dimer acid, ethylene diamine, and stearic acid, a dimer acid based tetra-amide that is the reaction product of dimer acid, ethylene diamine, and a carboxylic acid having at least about 36 carbon atoms, and the like, as well as mixtures thereof. When the fatty amide ink carrier is a dimer acid based tetra-amide that is the reaction product of dimer acid, ethylene diamine, and a carboxylic acid having at least about 36 carbon atoms, the carboxylic acid is of the general formula
- wherein R is an alkyl group, including linear, branched, saturated, unsaturated, and cyclic alkyl groups, said alkyl group in one embodiment having at least about 36 carbon atoms, in another embodiment having at least about 40 carbon atoms, said alkyl group in one embodiment having no more than about 200 carbon atoms, in another embodiment having no more than about 150 carbon atoms, and in yet another embodiment having no more than about 100 carbon atoms, although the number of carbon atoms can be outside of these ranges. Carboxylic acids of this formula are commercially available from, for example, Baker Petrolite, Tulsa, Okla., and can also be prepared as described in Example 1 of U.S. Pat. No. 6,174,937, the disclosure of which is totally incorporated herein by reference. Further information on fatty amide carrier materials is disclosed in, for example, U.S. Pat. No. 4,889,560, U.S. Pat. No. 4,889,761, U.S. Pat. No. 5,194,638, U.S. Pat. No. 4,830,671, U.S. Pat. No. 6,174,937, U.S. Pat. No. 5,372,852, U.S. Pat. No. 5,597,856, U.S. Pat. No. 6,174,937, and British Patent GB 2 238 792, the disclosures of each of which are totally incorporated herein by reference.
- Also suitable as phase change ink carrier materials are isocyanate-derived resins and waxes, such as urethane isocyanate-derived materials, urea isocyanate-derived materials, urethane/urea isocyanate-derived materials, mixtures thereof, and the like. Further information on isocyanate-derived carrier materials is disclosed in, for example, U.S. Pat. No. 5,750,604, U.S. Pat. No. 5,780,528, U.S. Pat. No. 5,782,966, U.S. Pat. No. 5,783,658, U.S. Pat. No. 5,827,918, U.S. Pat. No. 5,830,942, U.S. Pat. No. 5,919,839, U.S. Pat. No. 6,255,432, U.S. Pat. No. 6,309,453, British Patent GB 2 294 939, British Patent GB 2 305 928, British Patent GB 2 305 670, British Patent GB 2 290 793, PCT Publication WO 94/14902, PCT Publication WO 97/12003, PCT Publication WO 97/13816, PCT Publication WO 96/14364, PCT Publication WO 97/33943, and PCT Publication WO 95/04760, the disclosures of each of which are totally incorporated herein by reference.
- Mixtures of fatty amide materials and isocyanate-derived materials can also be employed as the ink carrier composition for inks of the present invention.
- Additional suitable phase change ink carrier materials for the present invention include paraffins, microcrystalline waxes, polyethylene waxes, ester waxes, amide waxes, fatty acids, fatty alcohols, fatty amides and other waxy materials, sulfonamide materials, resinous materials made from different natural sources (such as, for example, tall oil rosins and rosin esters), and many synthetic resins, oligomers, polymers and copolymers, such as ethylene/vinyl acetate copolymers, ethylene/acrylic acid copolymers, ethylene/vinyl acetate/acrylic acid copolymers, copolymers of acrylic acid with polyamides; and the like, ionomers, and the like, as well as mixtures thereof. One-or more of these materials can also be employed in a mixture with a fatty amide material and/or an isocyanate-derived material.
- In one specific embodiment, the phase change ink carrier comprises (a) a polyethylene wax, present in the ink in an amount in one embodiment of at least about 25 percent by weight of the ink, in another embodiment of at least about 30 percent by weight of the ink, and in yet another embodiment of at least about 37 percent by weight of the ink, and in one embodiment of no more than about 60 percent by weight of the ink, in another embodiment of no more than about 53 percent by weight of the ink, and in yet another embodiment of no more than about 48 percent by weight of the ink, although the amount can be outside of these ranges; (b) a stearyl stearamide wax, present in the ink in an amount in one embodiment of at least about 8 percent by weight of the ink, in another embodiment of at least about 10 percent by weight of the ink, and in yet another embodiment of at least about 12 percent by weight of the ink, and in one embodiment of no more than about 32 percent by weight of the ink, in another embodiment of no more than about 28 percent by weight of the ink, and in yet another embodiment of no more than about 25 percent by weight of the ink, although the amount can be outside of these ranges; (c) a dimer acid based tetra-amide that is the reaction product of dimer acid, ethylene diamine, and a long chain hydrocarbon having greater than thirty six carbon atoms and having a terminal carboxylic acid group, present in the ink in an amount in one embodiment of at least about 10 percent by weight of the ink, in another embodiment of at least about 13 percent by weight of the ink, and in yet another embodiment of at least about 16 percent by weight of the ink, and in one embodiment of no more than about 32 percent by weight of the ink, in another embodiment of no more than about 27 percent by weight of the ink, and in yet another embodiment of no more than about 22 percent by weight of the ink, although the amount can be outside of, these ranges; (d) a urethane resin derived from the reaction of two equivalents of hydroabietyl alcohol and one equivalent of isophorone diisocyanate, present in the ink in an amount in one embodiment of at least about 6 percent by weight of the ink, in another embodiment of at least about 8 percent by weight of the ink, and in yet another embodiment of at least about 10 percent by weight of the ink, and in one embodiment of no more than about 16 percent by weight of the ink, in another embodiment of no more than about 14 percent by weight of the ink, and in yet another embodiment of no more than about 12 percent by weight of the ink, although the amount can be outside of these ranges; (e) a urethane resin that is the adduct of three equivalents of stearyl isocyanate and a glycerol-based propoxylate alcohol, present in the ink in an amount in one embodiment of at least about 2 percent by weight of the ink, in another embodiment of at least about 3 percent by weight of the ink, and in yet another embodiment of at least about 4.5 percent by weight of the ink, and in one embodiment of no more than about 13 percent by weight of the ink, in another embodiment of no more than about 10 percent by weight of the ink, and in yet another embodiment of no more than about 7.5 percent by weight of the ink, although the amount can be outside of these ranges; and (f) an antioxidant, present in the ink in an amount in one embodiment of at least about 0.01 percent by weight of the ink, in another embodiment of at least about 0.05 percent by weight of the ink, and in yet another embodiment of at least about 0.1 percent by weight of the ink, and in 20: one embodiment of no more than about 1 percent by weight of the ink, in another embodiment of no more than about 0.5 percent by weight of the ink, and in yet another embodiment of no more than about 0.3 percent by weight of the ink, although the amount can be outside: of these ranges.
- The ink carrier is present in the phase change ink of the present invention in any desired or effective amount, in one embodiment of at least about 0.1 percent by weight of the ink, in another embodiment of at least about 50 percent by weight of the ink, and in yet another embodiment of at least about 90 percent by weight of the ink, and in one embodiment of no more than about 99 percent by weight of the ink, in another embodiment of no more than about 98 percent by weight of the ink, and in yet another embodiment of no more than about 95 percent by weight of the ink, although the amount can be outside of these ranges.
-
- This colorant is present in the ink in any desired or effective amount to obtain the desired color or hue, in one embodiment of at least about 0.1 percent by weight of the ink, in another embodiment of at least about 0.5 percent by weight of the ink, in yet another embodiment of at least about 1 percent by weight of the ink, in still another embodiment of at least about 2 percent by weight of the ink, and in another-embodiment of at least about 3 percent by weight of the ink, and in one embodiment of no more than about 20 percent by weight of the ink, in another embodiment of no more than about 13 percent by weight of the ink, and in yet another embodiment of no more than about 6 percent by weight of the ink, although the amount can be outside of these ranges. The colorant according to the present invention can either be the sole colorant in the ink or can be present in combination with other colorants, such as dyes, pigments, mixtures thereof, and the like.
- In a specific embodiment, the inks of the present invention include an anthraquinone colorant in addition to the colorant according to the present invention. Examples of suitable anthraquinone colorants include Solvent Red 172, colorants as disclosed in U.S. Pat. No. 6,395,078 and U.S. Pat. No. 6,422,695, the disclosures of each of which are totally incorporated herein by reference, colorants as disclosed in Copending Application U.S. Ser. No. 10/260,146, Copending Application U.S. Ser. No. 10/260,376, and Copending Application U.S. Ser. No. 10/260,379, the disclosures of each of which are totally incorporated herein by reference, and the like. In a specific embodiment, the anthraquinone colorant is one prepared as described in Example XVII, Parts 1 through 5. The anthraquinone colorant can be present in the inks of the present invention in any desired or effective amount to achieve the desired color, hue, and other characteristics, in one embodiment of at least about 1 percent by weight of the ink, in another embodiment of at least about 2 percent by weight of the ink, and in yet another embodiment of at least about 3 percent by weight of the ink, and in one embodiment of no more than about 20 percent by weight of the ink, in another embodiment of no more than about 13 percent by weight of the ink, and in yet another embodiment of no more than about 6 percent by weight of the ink, although the amount can be outside of these ranges.
- In specific embodiments, the inks of the present invention further contain an acid having a K a value greater than that of the Ka of the carboxylic acid and/or sulfonic acid and/or carboxylate and/or sulfonate groups on the colorant. Specific examples of suitable acids include organic sulfonic acids, including alkyl benzene sulfonic acids such as para-toluene-sulfonic acid, dodecylbenzenesulfonic acid, and the like, p-toluene sulfonic acid, hydrochloric acid, trifluoroacetic acid, methylsulfonic acid, trifluoromethyl sulfonic acid, hydrobromic acid, and the like, as well as mixtures thereof. The acid is present in any desired or effective amount, in one embodiment at least about 2 percent by weight of the amount of colorant according to the present invention, and in another embodiment at least about 5 percent by weight of the amount of colorant according to the present invention, and in one embodiment no more than about 100 percent by weight of the amount of the colorant according to the present invention, and in another embodiment no more than about 30 percent by weight of the colorant according to the present invention, although the amount of acid can be outside of these ranges.
- The inks of the present invention can also optionally contain an antioxidant. The optional antioxidants of the ink compositions protect the images from oxidation and also protect the ink components from oxidation during the heating portion of the ink preparation process. Specific examples of suitable antioxidants include NAUGUARD® 524, NAUGUARD® 76, and NAUGUARD® 512 (commercially available from Uniroyal Chemical Company, Oxford, CT), IRGANOX® 1010 (commercially available from Ciba Geigy), and the like. When present, the optional antioxidant is present in the ink in any desired or effective amount, in one embodiment of at least about 0.01 percent by weight of the ink, in another embodiment of at least about 0.1 percent by weight of the ink, and in yet another embodiment of at least about; percent by weight of the ink, and in one embodiment of no more than about 20 percent by weight of the ink, in another embodiment of no more than about 5 percent by weight of the ink, and in yet another embodiment of no more than about 3 percent by weight of the ink, although the amount can be outside of these ranges.,
- The inks of the present invention can also optionally contain a viscosity modifier. Examples of suitable viscosity modifiers include aliphatic ketones, such as stearone, and the like. When present, the optional viscosity modifier is present in the ink in any desired or effective amount, in one embodiment of at least about 0.1 percent by weight of the ink, in another embodiment of at least about 1 percent by weight of the ink, and in yet another embodiment of at least about 10 percent by weight of the ink, and in one embodiment of no more than about 99 percent by weight of the ink, in another embodiment of no more than about 30 percent by weight of the ink, and in yet another embodiment of no more than about 15 percent by weight of the ink, although the amount can be outside of these ranges.
- Other optional additives to the inks include clarifiers, such as UNION CAMP® X37-523-235 (commercially available from Union Camp), in an amount in one embodiment of at least about 0.01 percent by weight of the ink, in another embodiment of at least about 0.1 percent by weight of the ink, and in yet another embodiment of at least about 5 percent by weight of the ink, and in one embodiment of no more than about 98 percent by weight of the ink, in another embodiment of no more than about 50 percent by weight of the ink, and in yet another embodiment of no more than about 10 percent by weight of the ink, although the amount can be outside of these ranges, tackifiers; such as FORAL® 85, a glycerol ester of hydrogenated abietic (rosin) acid (commercially available from Hercules), FORAL® 105, a pentaerythritol ester of hydroabietic (rosin) acid (commercially available from Hercules), CELLOLYN® 21, a hydroabietic (rosin) alcohol ester of phthalic acid (commercially available from Hercules), ARAKAWA KE-311 Resin, a triglyceride of hydrogenated abietic (rosin) acid (commercially available from Arakawa Chemical Industries, Ltd.), synthetic polyterpene resins such as NEVTAC® 2300, NEVTAC® 100, and NEVTAC® 80 (commercially available from Neville Chemical Company), WINGTACK® 86, a modified synthetic polyterpene resin (commercially available from Goodyear), and the like, in an amount in one embodiment of at least about 0.1 percent by weight of the ink, in another embodiment of at least about 5 percent by weight of the ink, and in yet another embodiment of at least about 10 percent by weight of the ink, and in one embodiment of no more than about 98 percent by weight of the ink, in another embodiment of no more than about 75 percent by weight of the ink, and in yet another embodiment of no more than about 50 percent by weight of the ink, although the amount can be outside of these range, adhesives, such as VERSAMID® 757, 759, or 744 (commercially available from Henkel), in an amount in one embodiment of at least about 0.1 percent by weight of the ink, in another embodiment of at least about 1 percent by weight of the ink, and in yet another embodiment of at least about 5 percent by weight of the ink, and in one embodiment of no more than about 98 percent by weight of the ink, in another embodiment of no more than about 50 percent by weight of the ink, and in yet another embodiment of no more than about 10 percent by weight of the ink, although the amount can be outside of these ranges, plasticizers, such as UNIPLEX® 250 (commercially available from Uniplex), the phthalate ester plasticizers commercially available from Monsanto under the trade name SANTICIZER®, such as dioctyl phthdlate, diundecyl phthalate, alkylbenzyl phthalate (SANTICIZER® 278), triphenyl phosphate (commercially available from Monsanto), KP-140®, a tributoxyethyl phosphate (commercially available from FMC Corporation), MORFLEX® 150, a dicyclohexyl phthdlate (commercially available from Morflex Chemical Company Inc.), trioctyl trimellitate (commercially available from Eastman Kodak Co.), and the like, in an amount in one embodiment of at least about 0.1 percent by weight of the ink, in another embodiment of at least about 1 percent by weight of the ink, and in yet another embodiment of at least about 2 percent by weight of the ink, and in one embodiment of no more than about 50 percent by weight of the ink, in another embodiment of no more than about 30 percent by weight of the ink, and in yet another embodiment of no more than about 10 percent by weight of the ink, although the amount can be outside of these ranges, and the like.
- The ink compositions of the present invention in one embodiment have melting points of no lower than about 50° C., in another embodiment of no lower than about 70° C., and in yet another embodiment of no lower than about 80° C., and have melting points in one embodiment of no higher than about 160° C., in another embodiment of no higher than about 140° C., and in yet another embodiment of no higher than about 100° C., although the melting point can be outside of these ranges.
- The ink compositions of the present invention generally have melt viscosities at the jetting temperature (in one embodiment no lower than about 75° C., in another embodiment no lower than about 100° C., and in yet another embodiment no lower than about 120° C., and in one embodiment no higher than about 180° C., and in another embodiment no higher than about 150° C., although the jetting temperature can be outside of these ranges) in one embodiment of no more than about 30 centipoise in another embodiment of no more than about 20 centipoise, and in yet another embodiment of no more than about 15 centipoise, and in one embodiment of no less than about 2 centipoise, in another embodiment of no less than about 5 centipoise, and in yet another embodiment of no less than about 7 centipoise, although the melt viscosity can be outside of these ranges.
- The ink compositions of the present invention can be prepared by any desired or suitable method. For example, the ink ingredients can be mixed together, followed by heating, to a temperature in one embodiment of at least about 100° C., and in one embodiment of no more than about 140° C., although the temperature can be outside of these ranges, and stirring until a homogeneous ink composition is obtained, followed by cooling the ink to ambient temperature (typically from about 20 to about 25° C.). The inks of the present invention are solid at ambient temperature. In a specific embodiment, during the formation process, the inks in their molten state are poured into molds and then allowed to cool and solidify to form ink sticks.
- The inks of the present invention can be employed in apparatus for direct printing ink jet processes and in indirect (offset) printing ink jet applications. Another embodiment of the present invention is directed to a process which comprises incorporating an ink of the present invention into an ink jet printing apparatus, melting the ink, and causing droplets of the melted ink to be ejected in an imagewise pattern onto a recording substrate. A direct printing process is also disclosed in, for example, U.S. Pat. No. 5,195,430, the disclosure of which is totally incorporated herein by reference. Yet another embodiment of the present invention is directed to a process which comprises incorporating an ink of the present invention into an ink jet printing apparatus, melting the ink, causing droplets of the melted ink to be ejected in an imagewise pattern onto an intermediate transfer member, and transferring the ink in the imagewise pattern from the intermediate transfer member to a final recording substrate. In a specific embodiment, the intermediate transfer member is heated to a temperature above that of the final recording sheet and below that of the melted ink in the printing apparatus. An offset or indirect printing process is also disclosed in, for example, U.S. Pat. No. 5,389,958, the disclosure of which is totally incorporated herein by reference. In one specific embodiment, the printing apparatus employs a piezoelectric printing process-wherein droplets of the ink are caused to be ejected in imagewise pattern by oscillations of piezoelectric vibrating elements. Inks of the present invention can also be employed in other hot melt printing processes, such as hot melt acoustic ink jet printing, hot melt thermal ink jet printing, hot melt continuous stream or deflection ink jet printing, and the like. Phase change inks of the present invention can also be used in printing processes other than hot melt ink jet printing processes.
- Any suitable substrate or recording sheet can be employed, including plain papers such as XEROX® 4024 papers, XEROX® Image: Series papers, Courtland 4024 DP paper, ruled notebook paper, bond paper, silica coated papers such as Sharp Company silica coated paper, JuJo paper, Hammermill Laserprint Paper, and the like, transparency materials, fabrics, textile products, plastics, polymeric films, inorganic substrates such as metals and wood, and the like.
- Specific embodiments of the invention will now be described in detail. These examples are intended to be illustrative, and the invention is not limited to the materials, conditions, or process parameters set forth in these embodiments. All parts and percentages are by weight unless otherwise indicated.
- A mixture of fluorescein (100 grams, 0.331 mole; obtained from Aldrich Chemical Co., Milwaukee, Wis.) and PCl 5 (128.5 grams, 0.62 mole; obtained from Aldrich Chemical Co.) in 650 milliliters of chlorobenzene was stirred and heated to 140° C. in a 1 liter round bottom flask equipped with a reflux condenser. After 6 hours of heating, the reflux condenser was replaced with a distillation setup, and POCl3 formed during the reaction as well as the chlorobenzene were distilled off. After all of the POCl3 and chlorobenzene were removed, 300 grams of N-methylpyrrolidinone was added and the resulting mixture was heated to 100° C. with stirring until all of the crude dichlorofluorescein dissolved. The solution was then poured into a 4 liter beaker containing 1 liter of deionized water. A tan solid precipitated out and was collected on a filter and dried in a vacuum oven. The final tan solid matched the IR, NMR, and TLC of commercially available dichlorofluorescein.
- Other synthetic processes can also be used. For example, a one-pot process using DMF solvent can be employed wherein the POCl 3 intermediate is not distilled off but is removed by reaction with methanol, which also precipitates the dichlorofluorescein as a white solid. Methods using toluenesulfonylchloride, a less reactive and corrosive chlorinating agent than PCl5, can also be used.
- A mixture of dichlorofluorescein (105 grams, 0.284 mole, prepared as described above), calcium oxide (24, grams, 0.62 mole; obtained from Aldrich Chemical Co., Milwaukee, Wis.), ZnCl 2 (116 grams, 0.85 mole; obtained from Aldrich Chemical Co.), and distearyl amine (288 grams, 0.585 mole; ARMEEN 2HT, obtained from Akzo-Nobel, McCook, Ill.) in 650 milliliters of tetramethylene sulfone (obtained from Chevron Phillips Chemical Co., LP, The Woodlands, Tex.) was stirred and heated to 190° C. in a 1 liter round bottom flask. After 10 hours of heating, the deeply magenta colored mixture was cooled to 120° C. and poured into 2.5 liters of methyl isobutyl ketone (MIBK) and stirred until totally dissolved.
- The solution of crude tetrastearyl colorant in MIBK was then transferred to a 4 liter separatory funnel. Three aqueous EDTA washes were then performed (50 grams of the tetrasodium salt of EDTA in 1,000 milliliters of water for each wash) to remove all of the zinc and calcium salts in the crude reaction product. The product, dissolved in MIBK, remained on the top layer with the water/EDTA chelated metal waste on the bottom layer, which was discarded. Two washes with deionized water (1 liter each) were then performed. At this point, the MIBK solution was no longer magenta, but a faint orangeish-red color. The lack of a brilliant magenta color at this point indicated a ring-closed, or free base, form of the colorant, believed to be of the formula
- The solution of the ring-closed, purified tetrdstearyl colorant in MIBK was then transferred to a 2 liter round bottom flask with distillation setup. The MIBK and residual water were distilled off and the product, a slightly viscous wax when hot, was transferred to a jar and allowed to harden. The wax was a deep red colored, somewhat hard wax when cooled to room temperature.
- 250 grams of the solid, ring-closed, purified tetrastearyl colorant prepared in Example ID was then transferred to a 1 liter beaker and 500 milliliters of MIBK were added and allowed to dissolve the solid with stirring. A stoichiometric amount of dodecyl benzene sulfonic acid was added to this solution and stirred for 1 hour. A deep magenta hue was observed with the addition of the acid. The solution was then transferred to a distillation setup and the MIBK removed. The molten ring-opened waxy colorant was then transferred to an aluminum tin and allowed to cool to room temperature. The ring-opened, or protonated, or free-base form of this colorant is believed to be of the formula
-
- The process was repeated a number of times substituting for dodecyl benzene sulfonic acid the following acids: p-toluene sulfonic acid; hydrochloric acid; trifluoroacetic acid; methyl sulfonic acid; trifluoromethyl sulfonic acid; and hydrobromic acid. Similar results were observed in all cases.
- To a 1-liter 3-necked roundbottom flask with TEFLON® coated magnet and silicone oil bath was added 229 grams of the ring-closed purified tetrastearyl chromogen and 200 grams of MIBK. The mixture was heated to reflux. Thereafter, about 12.2 grams of ZnCl 2 (obtained from Aldrich Chemical Co., Milwaukee, Wis.) was added in a stoichiometric amount of 2 moles of zinc chloride per every one mole of tetrastearyl chromogen. The solution was stirred for about 18 hours. Thereafter, the MIBK was distilled off. The product, a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax, believed to be a coordination compound of the formula
- The process of Example IB was repeated except that dioctyl amine (NH((CH 2)7CH3)2, obtained from Aldrich Chemical Co., Milwaukee, Wis.) was used instead of distearyl amine. The dioctyl amine was present in an amount of 1.95 moles of dioctyl amine per every one mole of dichlorofluorescein.
-
-
-
- The process of Example ID was repeated using the product obtained in Example IIC.
- The process of Example IB was repeated except that the reaction was run with 2.05 moles of stearyl amine per every one mole of dichlorofluorescein.
-
-
-
- The process of Example ID was repeated using the product obtained in Example IIIC.
-
- was used instead of distearyl amine. The PRIMENE JM-T was present in an amount of 2 moles of PRIMENE JM-T per every one mole of dichlorofluorescein.
-
-
-
- The process of Example ID was repeated using the product obtained in Example IVC.
- The process of Example IB was repeated except that UNILIN 425-PA (obtained from Tomah Products, Milton, Wis., of the formula CH 3(CH2)31—O—CH2CH2CH2NH2) was used instead of distearyl amine. The UNILIN 425-PA was present in an amount of 2 moles of UNILIN 425-PA per every one mole of dichlorofluorescein. It is believed that the product was of the formula
-
-
- The process of Example —IB was repeated except that diethanol amine (obtained from Aldrich Chemical Co., Milwaukee, Wis., of the formula HN(CH 2CH2OH)2) was used instead of distearyl amine. The diethanol amine was present in an amount of 2.5 moles of diethanol amine per every one mole of dichlorofluorescein. In addition, 2 moles of zinc chloride were used per every one mole of dichlorofluorescein and 1 mole of calcium oxide was used per every one mole of dichlorofluorescein, the solvent was N-methylpyrrolidone instead of tetramethylene sulfone, and the reaction mixture was heated to 125° C. for 100 hours.
-
- About 10 grams of the product obtained in Example VIC is added to 23.4 grams of octadecylisocyanate (available from Aldrich Chemical Co., Milwaukee, Wis.) at 120° C., after which 2 drops of dibutyltindilaurate catalyst (available from Aldrich Chemical Co.) is added and the reaction is stirred and heated until disappearance of the isocyanate peak in the IR is observed. The tetraurethane rhodamine is poured into aluminum tins and is believed to be of the formula
-
-
-
- was used instead of distearyl amine. The N-methyl-D-glucamine was present in an amount of 2.5 moles of N-methyl-D-glucamine per every one mole of dichlorofluorescein. In addition, 2 moles of zinc chloride were used per every one mole of dichlorofluorescein and 1.5 moles of calcium oxide was used per every one mole of dichlorofluorescein, the solvent was N-methylpyrrolidone instead of tetramethylene sulfone, and the reaction mixture was heated to 130° C. for 7 days.
-
- About 10 grams of the product obtained in Example YIJC is added to 45 grams of octadecylisocyanate (available from Aldrich Chemical Co., Milwaukee, Wis.) at 120° C., after which 4 drops of dibutyltindilaurate catalyst (available from Aldrich Chemical Co.) is added and the reaction is stirred and heated until disappearance of the isocyanate peak in the IR is observed. The deca-urethane rhodamine is poured into aluminum tins and is believed to be of the formula
-
-
-
- was used instead of distearyl amine. The 2-piperidine ethanol was present in an amount of 2.5 moles of 2-piperidine-ethanol per every one mole of dichlorofluorescein. In addition, 2 moles of zinc chloride were used per every one mole of dichlorofluorescein and 1 mole of calcium oxide was used per every one mole of dichlorofluorescein, the solvent was N-methylpyrrolidone instead of tetramethylene sulfone, and the reaction mixture was heated to 160° C. for 24 hours. The reaction product was then poured into water and filtered and washed with water. It is believed that the product was of the formula
- About 10 grams of the product obtained in Example VIIIB is added to 10.7 grams of octadecylisocyanate (available from Aldrich Chemical Co., Milwaukee, Wis.) at 120° C., after which 1 drop of dibutyltindilaurate catalyst (available from Aldrich Chemical Co.) is added and the reaction is stirred and heated until disappearance of the isocyanate peak in the IR is observed. The di-urethane rhodamine is poured into aluminum tins and is believed to be of the formula
-
-
-
- was used instead of distearyl amine. The N,N-dimethyl-1,4-phenylene diamine was present in an amount of 2.5 moles of N,N-dimethyl-1,4-phenylene diamine per every one mole of dichlorofluorescein. In addition, 2 moles, of zinc chloride were used per every one mole of dichlorofluorescein and 1 mole of calcium oxide was used per every one mole of dichlorofluorescein, the solvent was N-methylpyrrolidone instead of tetramethylene sulfone, and the reaction mixture was heated to 140° C. for 48 hours. The reaction product was then poured into water and filtered and washed with water. It is believed that the product was of the formula
-
-
-
- was used instead of distearyl amine. The N,N-diethyl-1,4-phenylene diamine was present in an amount of 2.5 moles of N,N-diethyl-1,4-phenylene diamine per every one mole of dichlorofluorescein. In addition, 2 moles of zinc chloride were used per every one mole of dichlorofluorescein and 1 mole of calcium oxide was used per every one mole of dichlorofluorescein, the solvent was N-methylpyrrolidone instead of tetramethylene sulfone, and the reaction mixture was heated to 150° C. for 96 hours. The reaction product was then poured into water and filtered and washed with water. It is believed that the product was of the formula
-
-
-
- was used instead of distearyl amine. The N-benzylethanolamine was present in an amount of 2.5 moles of N-benzylethanolamine per every one mole of dichlorofluorescein. In addition, 2 moles of zinc chloride were used per every one mole of dichlorofluorescein and 1 mole of calcium oxide was used per every one mole of dichlorofluorescein, the solvent was dimethyl formamide instead of tetramethylene sulfone, and the reaction mixture was heated to 150° C. for 48 hours.
-
- About 10 grams of the product obtained in Example XIC is added to 9.9 grams of octadecylisocyanate (available from Aldrich Chemical Co., Milwaukee, Wis.) at 120° C., after which 1 drop of dibutyltindilaurate catalyst (available from Aldrich Chemical Co.) is added and the reaction is stirred and heated until disappearance of the isocyanate peak in the IR is observed. The diurethane rhodaminee is poured into aluminum tins and is believed to be of the formula
-
-
-
- was used instead of distearyl amine. The N-benzylethanolamine was present in an amount of 10 moles of N-benzylethanolamine per every one mole of dichlorofluorescein. In addition, 2 moles of zinc chloride were used per every one mole of dichlorofluorescein and 1 mole of calcium oxide was used per every one mole of dichlorofluorescein, the solvent was the excess N-benzylethanolamine instead of tetramethylene sulfone, and the reaction mixture was refluxed in an oil bath for 48 hours, followed by distilling off the excess amine.
-
- In a glass reaction flask is combined 10 grams of the product obtained in Example XIIC, 29.8 grams of UNICID® 700 (a material containing carboxylic acid of the formula RCOOH wherein R is a linear alkyl group having an average of about 50 carbon atoms, also containing other unfunctionalized wax materials in an amount of up to about 25 percent by weight; available from Baker Petrolite, Sugarland, Tex.), 152 grams of xylene (available from Tarr, Inc., Portland, Oreg.), and 0.6 grams of para-toluenesulfonic acid (available from Capital Resin Corp., Columbus, Ohio). The materials are mixed and heated to a reflux temperature of about 143° C. After about 72 hours, the reaction is complete. The reaction mixture is then cooled to 40° C. and filtered. The filter cake is reslurried and filtered two more times in methanol to remove residual xylene. The filter cake is then dried in air at ambient temperature. It is believed that this filter cake will contain a colorant of the formula
-
-
-
- was used instead of distearyl amine. The 2-(ethylamino)ethanol was present in an amount of, 20 moles of 2-(ethylamino)ethanol per every one mole of dichlorofluorescein. In addition, 2 moles of zinc chloride were used per every one mole of dichlorofluorescein and 1 mole of calcium oxide was used per every one mole of dichlorofluorescein, the solvent was the excess 2-(ethylamino)ethanol instead of tetramethylene sulfone, and the reaction mixture was refluxed in an oil bath for 24 hours, followed by distilling off the excess amine.
-
- About 10 grams of the product obtained in Example XIIIC is added to 12.5 grams of octadecylisocyanate (available from Aldrich Chemical Co., Milwaukee, Wis.) at 120° C., after which 1 drop of dibutyltindilaurate catalyst (available from Aldrich Chemical Co.) is added and the reaction is stirred and heated until disappearance of the isocyanate peak in the IR is observed. The diurethane rhodamine is poured into aluminum tins and is believed to be of the formula
-
-
-
-
-
-
- The process of Example OB was repeated except that a mixture of stearyl amine (ARMEEN 0.18D; obtained from Akzo-Nobel, McCook, Ill.) and distearyl amine was used instead of pure distearyl amine. The stearyl amine was present in an amount of 1.02 moles of stearyl amine per every, one mole of dichlorofluorescein, and the distearyl amine was present in an amount of 1.02 moles of distearyl amine per every one mole of dichlorofluorescein.
-
-
-
- The process of Example ID was repeated using the product obtained in Example XVC.
-
- (dinonylnaphthalene disulfonic acid, 50 wt. % in isobutanol, NACURE® 155, obtained from King. Industries, Norwalk, Conn.) in a stoichiometric amount of 2 moles of naphthalene sulfonate adduct per every one mole of tetrastearyl colorant. The solution was stirred until a magenta color developed fully. Thereafter, the solution was transferred to a 2 liter round bottom flask equipped with distillation setup, and the MIBK was distilled off. The product, a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax, believed to be of the formula
- The process of Example I was repeated except that 80.3 grams of the ring-closed purified tetrastearyl chromogen, 400 grams of toluene, and 3.5 grams of CaCl 2 were employed. The product, a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- The process of Example I was repeated except that 100.2 grams of the ring-closed purified tetrastearyl chromogen, 600 grams of toluene, and 8.2 grams of BiCl 3 were employed. The product, a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- The process of Example I was repeated except that 100 grams of the ring-closed purified tetrastearyl chromogen, 1,000 grams of MIBK, and 8.8 grams of SnCl 2 in a 2 liter. 3-necked roundbottom flask were employed. The product, a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- The process of Example I was repeated except that 32.4 grams of the ring-closed purified tetrostearyl chromogen, about 400 grams of MIBK, and. 1.6 grams of FeCl 2 were employed. The product, a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- The process of Example I was repeated except that 35 grams of the ring-closed purified tetrastearyl chromogen, about 400 grams of MIBK, and 1.83 grams of CuCl 2 were employed. The product, a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- The process of Example I was repeated except that 32.7 grams of the ring-closed purified tetrastearyl chromogen, about 400 grams of MIBK, and 1.13 grams of AlCl 3 were employed. The product, a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature the product was a deep magenta/red colored somewhat hard wax.
- The process of Example I was repeated except that 5.5 grams of the ring-closed purified tetrastearyl chromogen, about 100 grams of MIBK, and 0.53 grams of nickel II acetate (Ni(CH 3COO)2) were employed. The product, a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- The process of Example I was repeated except that 34.1 grams of the ring-closed purified tetrastearyl chromogen, about 400 grams of MIBK, 13.1 grams of phosphotungstic-acid, and 5.6 grams of phosphomolybdic acid were employed. The product, a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- The process of Example I was repeated except that 24.3 grams of the ring-closed purified tetrastearyl chromogen, about 250 grams of toluene, and 0.9 grams of titanium IV chloride were employed. The product, a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- The process of Example I was repeated except that 25.2grams of the ring-closed purified tetrastearyl chromogen, about 250 grams of MIBK, and 1.04 grams of chromium III chloride were employed. The product, a slightly viscous wax when warm, was transferred to a jar and allowed to harden. At room temperature, the product was a deep magenta/red colored somewhat hard wax.
- The processes of Examples XVII through XXVI are repeated but substituting the chromogens prepared in Examples II through XVI for the chromogen prepared in Example I. It is believed that similar results will be observed.
- A secondary magenta colorant was prepared as follows.
- In a glass reaction flask were combined 73 grams of sublimed quinizarin (obtained from Aceto Corp., Lake Success, N.Y.), 49 grams of leucoquinizarin (obtained from Aceto Corp.), 66 grams of 4-aminobenzene-ethanol (obtained from Aceto Corp.), 31 grams of boric acid (obtained from Aldrich Chemical Co., Milwaukee, Wis.), and 780 grams of methanol (obtained from JT Baker, Phillipsburg, N.J.). The materials were mixed and heated until the solvent refluxed at about 66° C.
-
- The reaction mixture was cooled and filtered. The product filter cake was dried in air at ambient temperature.
- The spectral strength of the alcohol-substituted colorant was determined using a spectrophotographic procedure based on the measurement of the colorant in solution by dissolving the colorant in toluene and measuring the absorbance using a Perkin Elmer Lambda 2S UV/VIS spectrophotometer. The spectral strength of the alcohol-substituted colorant was measured as about 21,000 mL Absorbance Units per gram at absorption λ max, indicating a purity of about 80 percent.
- In a glass reaction flask were combined 8 grams of the alcohol-substituted colorant prepared in Part 1 of this Example, 68 grams of glacial acetic acid (obtained from JT Baker), 13 grams of propionic acid (obtained from Aldrich Chemical Co.), and 2.3 grams of acetic anhydride (obtained from Aldrich Chemical Co.). The materials were mixed and heated to a reflux temperature of about 121° C. After about 4 hours of reflux, the reaction was complete and the reaction mixture contained an ethyl acetate-substituted colorant of the formula
- About 91 grams of the reaction mixture containing the ethyl acetate-substituted colorant from Part 2 of this Example was charged into a glass reaction flask. The mixture was cooled to a minimum of 30° C. While mixing, about 9 grams of bromine (obtained from Aldrich Chemical Co.) was added to the mixture at a rate such that the temperature remained below about 40° C. The mixture was then heated to about 40° C. After about 24 hours of mixing the reaction was complete.
- The reaction mixture was then quenched into 234 grams of deionized water and allowed to cool to room temperature. The reaction mixture was then filtered. The filter cake was reslurried and filtered twice in deionized water to remove most of the residual acetic acid. The filter cake was then dried in a 60° C. oven. This filter cake contained a mixture of brominated ethyl acetate-substituted colorants of the formulae
- The spectral strength of the brominated ethyl acetate-substituted colorant was determined using a spectrophotographic procedure based on the measurement of the colorant in solution by dissolving the colorant in toluene and measuring the absorbance using a Perkin Elmer Lambda 2S UV/VIS spectrophotometer. The spectral strength of the brominated ethyl acetate-substituted colorant was measured as about 15,000 mL Absorbance Units per gram at absorption λ max. This spectral strength indicated a purity of about 60 percent.
- In a glass reaction flask were combined 18 grams of the mixture of the brominated ethyl acetate-substituted colorant and its salt prepared in Part 3 of this Example, 72 grams of N-methyl-2-pyrrolidone (obtained from Aldrich Chemical Co.), 4 grams of sodium hydroxide (obtained from Aldrich Chemical Co.), and 4 grams of deionized water. The materials were mixed and heated to about 60° C. After about 3 hours the reaction was complete.
- The reaction mixture was then quenched into 234 grams of deionized water and allowed to cool to room temperature. Glacial acetic acid was added until the solution reached a pHF of between 6 and 7. The reaction mixture was then filtered. The filter cake was reslurried and filtered twice in deionized water to remove most of the residual N-methyl-2-pyrrolidone. The filter cake was then dried in a 60° C. oven. This filter cake contained a brominated alcohol-substituted colorant of the formula
- The spectral strength of the brominated alcohol-substituted colorant was determined using a spectrophotographic procedure based on the measurement of the colorant in solution by dissolving the colorant in an equal mixture, of toluene and tetrahydrofuran and measuring the absorbance using a Perkin Elmer Lambda 2S UV/VIS spectrophotometer. The spectral strength of the brominated alcohol-substituted colorant was measured as about 16,000 mL Absorbance Units per gram at absorption λ max. This spectral strength indicated a purity of about 60 percent.
- In a glass reaction flask-were combined 16 grams of the brominated alcohol-substituted colorant prepared in Part 4 of this, Example, 31 grams of UNICID® 700 (a material containing carboxylic acid of the formula R 2COOH wherein R2 is a linear alkyl group having an average of about 50 carbon atoms, also containing other unfunctionalized wax materials in an amount of up to about 25 percent by weight; obtained from Baker Petrolite, Sugarland, Tex.), 152 grams of xylene (obtained from Tarr, Inc., Portland, Oreg.), and 0.6 grams of para-toluenesulfonic acid (obtained from Capital Resin Corp., Columbus, Ohio). The materials were mixed and heated to a reflux temperature of about 143° C. After about 7 hours, the reaction was complete.
-
- wherein R 2 is a linear alkyl group having an average of about 50 carbon atoms.
- The spectral strength of the colorant was determined using a spectrophotographic procedure based on the measurement of the colorant in solution by dissolving the colorant in an equal mixture of toluene and tetrahydrofuran and measuring the absorbance using a Perkin Elmer Lambda 2S UV/VIS spectrophotometer. The spectral strength of the colorant was measured as about 5,000 mL Absorbance Units per gram at absorption λ max. This spectral strength indicated a purity of about 40 percent.
- Ink compositions containing the colorants of Examples IF and XVII through XXVI, and, for comparison purposes, commercially available n-butyl Solvent Red 172 (n-BuSR172; UNIGRAPH Red 1900, obtained from United Color Manufacturing, Inc., Newtown, Pa.), commercially available Solvent Red 49 (SR49; a rhodamine colorant obtained from BASF, Germany), and a colorant comprising the chromrogen of Example ID (said chromogen not being part of a metal compound according to the present invention) were prepared as follows.
- Ink A—1: In a stainless steel beaker were combined 153.22 grams of polyethylene wax (PE655, obtained from Baker Petrolite, Tulsa, Okla., of the formula CH 3(CH2)50OH3), 39.72 grams of stearyl stearamide wax (KEMAMIDE® S-180, obtained from Crompton Corporation, Greenwich, Conn.), 62.99 grams of a tetra-amide resin obtained from the reaction of one equivalent of dimer diacid with two equivalents of ethylene diamine and UNICID® 700 (a carboxylic acid derivative of a long chain alcohol obtained from Baker Petrolite, Tulsa, Okla.), prepared as described in Example 1 of U.S. Pat. No. 6,174,937, the disclosure of which is, totally incorporated herein by reference, 39.76 grams of a urethane resin obtained from the reaction of two equivalents of ABITOL®. E hydroabietyl alcohol (obtained from Hercules Inc., Wilmington, Del.) and one equivalent of isophorone diisocyanate, prepared as described in Example 1 of U.S. Pat. No. 5,782,966, the disclosure of which is totally incorporated herein by reference, 27.02 grams of a urethane resin that was the adduct of three equivalents of stearyl isocyanate and a glycerol-based alcohol, prepared as described in Example 4 of U.S. Pat. No. 6,309,453, the disclosure of which is totally incorporated herein by reference, and, 0.65 gram of NAUGUARD® 445 antioxidant (obtained from Uniroyal Chemical Co., Middlebury, Conn.). The materials were melted together at a temperature of 135° C. in an oven, and then blended by stirring in a temperature-controlled mantle at 135° C. for 0.2 hour. To this mixture was then added 12.31 grams of the colorant prepared as described in Example IF and 6.70 grams of a secondary magenta colorant (prepared as described in Parts 1 through 5 of this Example). After stirring for 2 additional hours, the magenta ink thus formed was filtered through a heated MOTT® apparatus (obtained from Mott Metallurgical) using Whatman #3 filter paper under a pressure of 15 pounds per square inch. The filtered phase change ink was poured into molds and allowed to solidify to form ink sticks. The magenta phase change ink thus prepared exhibited a viscosity of 10.80 centipoise as measured by a Rheometrics-cone-plate viscometer at about 140° C., and a spectral strength of 1,279 milliliters absorbance per gram at 550 nanometers, determined by using a spectrophotographic procedure based on the measurement of the colorant in solution by dissolving the solid, ink in n-butanol and measuring the absorbance using a Perkin Elmer Lambda 2S UV/VIS spectrophotometer.
- Ink A-2: Ink A-2 was prepared in a similar manner to that used to prepare Ink A-1 but using a different formulation for the ink composition as described in the table below. The properties of Ink A-2 were, obtained using the same methods as those used for Ink A-1. The melting points of 84° C. and 105° C. were measured by differential scanning calorimetry using a DuPont 2100 calorimeter. Ink A-2 had a glass transition temperature (Tg) of 19° C. As shown in the table, the predominant difference between Ink A-1 and Ink A-2 is the relative concentration of the colorant in the ink.
- Ink A-3: Ink A-3 was prepared in a similar manner to that used to prepare Ink A-1 but using a different formulation for the ink composition as described in the table below. The properties of Ink A-3 were obtained using the same methods as those used for Ink A-1 and Ink A-2. As shown in the table, the predominant difference between Ink A-3 and Inks A-1 and A-2 is the relative higher concentration of the colorant in the ink. As a result, the spectral strength of Ink A-3 is also higher than those of Inks A-1 and A-2, suggesting very good solubility of the colorant described in Example IF in the ink carrier.
- Inks B-1 and B-2: Inks B-1 and B-2 were prepared in a similar manner to that used to prepare Ink A-1 but using the colorant of Example XVII instead of the colorant of Example IF. Their formulations are described in the table below. The properties of Ink B-1 and Ink B-2 were obtained using the same methods as those used for Inks A-1 and A-2. As shown in the table, the predominant difference between Ink B-1 and Ink B-2 is the relative concentration of the colorant in the ink.
- Ink C: Ink C was prepared by the process described for Ink A-1 except that the colorant from Example XVIII was used in place of the colorant from Example IF. The properties of Ink C were obtained using the same methods as those used for Ink A-1.
- Inks D-1 and D-2: Inks D-1 and D-2 were prepared by the process described for Ink A-1 except that the colorant from Example XIX was used in place of the colorant from Example IF. The properties of Ink D-1 and Ink D-2 were obtained using the same methods as those used for Ink A-1.
- Ink E: Ink E was prepared by the process described for Ink A-1 except that the colorant from Example XX was used in place of the dye from Example IF. The properties of Ink E were obtained using the same methods as those used for Ink A-1′.
- Ink F: Ink F was prepared by the process described for Ink A-1 except that the colorant from Example XXI was used in place of the dye from Example IF. The properties of Ink F were obtained using the same methods as those used for Ink A-1.
- Ink G: Ink G was prepared by the process described for Ink A-1 except that the colorant from Example XXII was used in place of the dye from Example IF. The properties of Ink G were obtained using the same methods as those used for Ink A-1.
- Ink H: Ink H was prepared by the process described for Ink A-1 except that the colorant from Example XXIII was used in place of the dye from Example IF. The properties of Ink H were obtained using the same methods as those used for Ink A-1.
- Ink 1: Ink I was prepared by the process described for Ink A-1 except that the colorant from Example XXIV was used in place of the dye from Example IF. The properties of Ink I were obtained using the same methods as those used for Ink A-1.
- Ink J: Ink J was prepared by the process described for Ink A-1 except that the colorant from Example XXV was used in place of the dye from Example IF. The properties of Ink J were obtained using the same methods as those used for Ink A-1.
- Ink K: Ink K was prepared by the process described for Ink A-1 except that the colorant from Example XXVI was used in place of the dye from Example IF. The properties of Ink K were obtained using the same methods as those used for Ink A-1.
- Comparative Ink II: An ink was prepared by the process described for Ink A-1 except that instead of the colorant from Example IF, the commercially available SR 49 and dodecyl benzene sulfuric acid (DDBSA, Bio-soft S-100, obtained from Stepan Company, Elwood, Ill.) were used. The properties of Comparative Ink 1 were obtained using the same methods as those used for Ink A-1.
- Comparative Ink 2: An ink was prepared by the process described for Ink A-1 except that instead of the colorant from Example IF, a colorant comprising the chromogen of Example ID (said chromogen not being part of a metal compound according to the, present invention) and dodecyl benzene sulfuric acid (DDBSA, Bio-soft S-100, obtained from Stepan Company, Elwood, Ill.) were used. The properties of Comparative Ink 2 were obtained using the, same methods as those used for Ink A-1.
- Comparative Ink 3: An ink was prepared by the process described for Ink A-1 including the colorant preparation from Example IF, except that instead of using the chromogen from Example ID, commercially available Solvent Red 49 was used as the chromogen to prepare the resulting zinc colorant. The properties of Comparative Ink 3 were obtained using the same methods as those used for Ink A-1. Since it was found that the spectral strength of the unfiltered ink was higher than that of the filtered ink, the actual relative colorant amount of the colorant is in fact less than that listed in the following formulation table. Therefore, the colorant described in Comparative Example 3 has much lower solubility than that of the colorant described in Example A; it is believed that the better solubility of the colorant in Inks A-1 through A-3 can be attributed to the long alkyl groups on the chromogen compared to those of commercially available Solvent Red 49.
- The following tables summarize the compositions of the various inks and the amounts of ingredients (weight percentage numbers given in the tables) therein:
A-1 A-2 A-3 B-1 B-2 C Example IF colorant 3.56 5.04 6.28 — — — Example XVII colorant — — — 3.98 3.55 — Example XVIII colorant — — — — — 3.55 POLYWAX 44.36 44.15 43.41 44.06 45.38 45.38 Tetra-amide 19.10 17.81 17.56 18.91 18.47 18.47 S-180 11.51 13.76 13.42 12.55 11.78 11.78 Urethane Resin 1* 11.51 9.75 9.84 10.53 11.13 11.13 Urethane Resin 2** 7.82 7.45 7.41 7.86 7.56 7.56 2° magenta colorant 1.94 1.83 1.87 1.92 1.94 1.94 NAUGUARD 445 0.19 0.19 0.20 0.19 0.19 0.19 Total 100.0 100.0 100.0 100.0 100.0 100.0 D-1 D-2 E F G H Example XIX colorant 3.51 3.55 — — — — Example XX colorant — — 3.55 — — — Example XXI colorant — — — 3.55 — — Example XXII colorant — — — — 3.54 — Example XXIII colorant — — — — — 3.55 POLYWAX 43.30 45.38 45.89 45.58 46.89 45.38 Tetra-amide 19.96 18.47 18.15 18.34 17.54 18.47 S-180 13.02 11.78 11.91 11.83 12.17 11.78 Urethane Resin 1* 10.30 11.13 10.94 11.05 10.57 11.13 Urethane Resin 2** 7.81 7.56 7.43 7.51 7.18 7.56 2° magenta colorant 1.91 1.94 1.94 1.94 1.93 1.94 NAUGUARD 445 0.20 0.19 0.19 0.20 0.18 0.19 Total 100.0 100.0 100.0 100.0 100.0 100.0 I J K 1 2 3 Example XXIV colorant 3.55 — — — — — Example XXV colorant — 3.55 — — — — Example XXVI colorant — — 3.54 — — — SR 49 colorant — — — 0.46 — — Example ID colorant — — — — 2.61 — Zn-SR 49 colorant — — — — — 0.75 POLYWAX 45.38 45.38 46.26 45.67 40.16 45.58 Tetra-amide 18.47 18.47 17.93 19.04 17.82 21.35 S-180 11.78 11.78 12.01 13.17 19.38 13.20 Urethane Resin 1* 11.13 11.13 10.80 10.68 12.47 9.00 Urethane Resin 2** 7.56 7.56 7.34 8.09 4.26 8.00 2° magenta colorant 1.94 1.94 1.94 1.91 2.03 1.92 DDABS — — — 0.80 1.10 — NAUGUARD 445 0.19 0.19 0.18 0.20 0.18 0.20 Total 100.0 100.0 100.0 100.0 100.0 100.0 - The magenta inks thus prepared were successfully printed on HAMMERMILL LASERPRINT® paper (obtained from International Paper, Memphis, Tenn.) with a XEROX® PHASER 860 printer, which uses a printing process wherein the ink is first jetted in an imagewise pattern onto an intermediate transfer member followed by transfer of the imagewise pattern from the intermediate transfer member to a final recording substrate. The solid field images with a resolution of 450 dpi×600 dpi were generated from the printer, and their color space data were obtained on an ACS® Spectro Sensor® II Colorimeter (obtained from Applied Color Systems Inc.) in accordance with the measuring methods stipulated in ASTM IE805 (Standard Practice of Instrumental Methods of Color or Color Difference Measurements of Materials) using the appropriate calibration standards supplied by the instrument manufacturer. For purposes of verifying and quantifying the overall calorimetric performance of the inks, measurement data were reduced, via tristimulus integration, following ASTM E308 (Standard Method for Computing the Colors of Objects using the CIE System) in order to calculate the 1976 CIE L* (Lightness), Q* (redness-greenness), and b* (yellowness-blueness) CIELAB values for each phase change ink sample.
- Another type of printed sample was generated on HAMMERMILL LASERPRINT® paper using a K Printing Proofer (manufactured by RK Print Coat Instrument Ltd., Litlington, Royston, Heris, SG8 0OZ, U.K.). In this method, the tested inks were melted onto a printing plate set at 150° C. temperature. A roller bar fitted with the paper was then rolled over the plate containing the melted ink on its surface. The ink on the paper was cooled, resulting in three separated images of rectangular blocks. The most intensely colored block contained the most ink deposited on the paper, and was therefore used to obtain the color value measurements.
- Printed samples of the magenta inks both from the XEROX PHASER® printer and from the K-Proofer were evaluated for color characteristics, which are reported in the tables below. As is apparent, the CIE L*a*b* values for inks made with colorants according to the present invention represent a good magenta shade printed ink. The tables below list the viscosity (ζ centipoise) of the inks at 140° C., the spectral strength in n-butanol (SS, mL*g −1cm−1) and absorbance maximum (Lambda max, Xmax, nm) of the inks, the glass transition point (Tg, ° C.), the melting points (mp, ° C., as measured by DSC), and the CIE L*a*b color coordinates of the prints made either using the XEROX PHASER® 860 printer or the K-proofer:
A-1 A-2 A-3 B-1 B-2 C η 10.80 10.62 10.79 10.62 10.76 10.65 SS 1279 1619 2095 1187 1102 1151 λmax 550 550 550 549 552 558 Tg — 18.4 17.7 — — — mp — 84.3, 83.9, — — — 104.6 104.8 L* (860) 55.0 48.4 49.1 71.46 — 63.07 a* (860) 75.1 80.2 83.7 48.88 — 60.10 b* (860) −39.1 −34.6 −40.9 −31.03 — −33.04 L* (K-P) 60.9 — 52.06 — 68.49 64.95 a* (K-P) 59.6 — 74.14 — 44.62 48.47 b* (K-P) −31.3 — −40.93 — −22.36 −27.18 D-1 D-2 E F G H η 10.75 10.44 10.67 10.67 10.58 10.65 SS 1203 1262 1418 1255 1291 810 λmax 558 556 558 549 556 548 Tg — — — — — — mp — — — — — — L* (860) 61.14 — — — — — a* (860) 64.00 — — — — — b* (860) −34.56 — — — — — L* (K-P) — 64.11 55.76 59.42 56.09 63.56 a* (K-P) — 50.15 51.16 51.41 57.85 45.14 b* (K-P) — −27.29 −30.26 −32.17 −31.78 −28.69 I J K 1 2 3 η 10.77 10.60 10.75 10.77 10.54 10.36 SS 887 1082 1115 1279 1328 909 λmax 553 554 552 555 552 543 Tg — — — 21.2 — — mp — — — 82.7, — — 103.6 L* (860) — — — 54.0 50.1 — a* (860) — — — 76.8 69.1 — b* (860) — — — −41.3 −37.2 — L* (K-P) 56.64 67.58 63.14 60.9 56.3 — a* (K-P) 57.97 35.64 43.36 68.0 59.3 — b* (K-P) −33.52 −21.41 −28.36 −42.7 −32.5 — - The color values in the above tables indicate that the colorants' of Inks A through K can be used in hot melt inks with good magenta color as evidenced by the a* and, b* values of the prints. As evidenced in the tables, Ink A can exhibit magenta color with a chroma larger than that of Comparative Ink 1., which was made from commercially available SR 49, which has been considered to be a bright magenta dye. In contrast to commercial SR 49 dye, which normally needs a relatively strong acid such as DDBSA to develop its color in an ink base, the colorants in Inks A through K of this invention show reasonably strong magenta color without an acid developer. Although not being limited to any particular theory, it is believed that the color development role in the inks of this invention was played by the metal ion in the colorants. Good dye solubilities of the colorants in Inks A through C and J through K of this invention in tested ink bases are demonstrated by the very high dye loads and corresponding very high spectral strength of the inks.
- Colorant degradation can lead to an undesirable color shift or fade as d result of the colorant decomposition reaction in an ink. This phenomenon can adversely affect the color quality or consistency of prints from the inks if the colorant is not thermally stable. Thermal stability of the colorants in Inks A through K according to this invention was compared to SR 0.49 dye in Comparative Ink I by monitoring color changes of the prints from their cooked inks.
- In one method, the inks were heated in glass jars continuously in an oven at 140° C., followed by sampling and printing the inks on HAMMERMILL Laserprint papers using a K-Proofer, and finally measuring the color changes of the prints of the sampled inks as a function of time. The color changes of the resultant prints were monitored by CIELAB values and expressed by Delta E relative to the initial CIELAB values. The color change of each sample was determined according to the methods described hereinabove for obtaining CIELAB values. Color changes were determined following ASTM D2244-89 (Standard Test Method for Calculation of Color Differences From instrumentally Measured Color Coordinates) (delta E=[(L* 1−L*2)2+(a*1−a*2)2+(b*1−b*2)2]1/2). The results for these Inks are shown in the tables below. As the data in the tables indicate, Inks A-1 through C-1 and Ink K containing the colorants according to the present invention demonstrated better color stability than Comparative Ink 1 containing commercial SR 49.
Ink 0 1 3 5 10 18 A-1 0.0 1.8 4.0 6.1 14.6 — B-2 0.0 0.7 1.4 2.5 4.4 — C 0.0 0.5 2.0 2.6 — 11.6 D-2 0.0 0.9 2.9 5.5 9.1 — E 0.0 3.1 13.0 19.5 25.6 — F 0.0 6.3 14.0 21.5 39.4 — G 0.0 3.2 6.9 8.3 16.0 — H 0.0 2.7 6.2 11.4 23.8 — I 0.0 1.6 3.9 7.6 16.6 — J 0.0 5.2 10.7 15.6 26.6 — K 0.0 1.7 3.7 8.0 11.6 — 1 0.0 2.2 3.7 6.4 10.7 — - In another method a thermal stability test was performed by continuously heating the test inks in a printer at 136° C. and measuring the color change of the prints as a function of time (referred to as the “No-standby” test). The color changes of the resultant prints were monitored by CIELAB values and expressed by Delta E relative to the initial CIELAB values. The color change of each sample was, determined according to the methods described hereinabove for obtaining CIELAB values. Color changes were determined following ASTM D2244-89 (Standard Test Method for Calculation of Color Differences From instrumentally Measured Color Coordinates) (delta E=[(L* 1−L*2)2+(a*1−a*2)2+(b*1−b*2)2]1/2). The results for tested Inks were as follows:
aging time (days) A-1 A-2 B-1 C D-1 1 0 0 0 0 0 0 0 0.3 0.8 0.4 1 1.8 0.6 2.2 0.5 1.6 0.5 1.4 1.7 1 3.7 1 2 0.7 1.5 3.5 3.7 6 2 2.2 1.5 3.4 5.7 7.9 8.4 3 3.8 1.7 3.2 6.3 12 11 4 4.4 2.5 4.1 — — 14 5 5.1 2.9 4 — — 16 6 6.3 3.7 5.2 — — 17 7 7 4 4.4 — — 18 8 8.6 4.7 5.1 11 34 20 9 8.1 5.4 5.9 14 38 21 10 8.4 6.2 6.6 16 40 21 11 8.5 6.7 6.7 15 40 22 12 8.6 7.4 7.5 — — 24 13 8.2 7.7 8.3 19 44 25 14 8.5 8.1 9 20 45 26 - All tested inks were subjected to a qualitative test for fingerprint resistance at room temperature. This test proceeded in three steps: printing of the inks, exposure of the prints to a mixture of finger oils and hand lotion ingredients, and finally a comparison of the various inks against a reference after a 5-day period.
- The study was performed by initially printing the inks on A-size Hammermill Paper, including 20, 30, 40, 50, 60, 70, 80, and 90% ink coverage per sheet. Each sheet was dedicated to one ink only. For this purpose, the ink had been printed in portrait orientation in eight rectangular areas, measuring approximately 8″×1.25″with, each stripe representing one type of coverage. Three identical prints were generated per ink at a particular resolution, and two resolutions—355×464 dpi, and 600×600 dpi—were compared for each ink. The sets of prints included a reference ink, against which the experimental inks were compared at the two resolutions.
- After the printing had been completed, the inks were exposed to a mixture of finger oil and hand lotion. For this purpose, a test person applied in two subsequent steps a hand lotion to his/her hands, and dried off excess lotion with a towel. Then, the person gently touched the printed inks at the right side of a particular print, starting at 90% coverage strip and proceeded in a downward motion to the 20% coverage strip. Afterwards, the procedure was repeated on the same print with the other hand, starting on the left side with the 20% coverage strip, and moving upward towards higher coverages. Without renewal of hand lotion, this was repeated with the next print. After the second print had been exposed to the finger oils, the person was instructed to re-apply lotion to the hands in the described manner, and proceed with the next two prints. When all prints had been exposed to the finger oils, the prints were deposited into manila folders, whereby each print was separated from the next by a blank sheet of paper. The folder then was stored at ambient temperature for 5 days.
- At the end of this time period, the prints were removed from the manila folders and laid out in a systematic pattern on a sufficiently large table in a sufficiently bright and evenly lit room One test person—in some cases several test persons—then compared visually the finger marks on the prints with those seen on the prints of the reference ink. Observers were instructed to grade fingerprint performance qualitatively on a scale from −3 to +3, with −3 indicating worst behavior, and +3 indicating no finger marks observed. In this system of grades, the value ±0 would then indicate no difference of performance as compared to the print of the reference ink.
- The prints were; also aged at elevated temperatures of 45° C. and 60° C. in addition to aging at room temperature. The tested ink according to the present invention was Ink A-1 and the reference ink was Comparative Ink 1. The evaluation scores were as follows:
Ink room temp. 45° C. 60° C. A-1 0.7 1.1 1.5 1 0 0 0 - The results in the above table show that the images of the Ink A-1 prints were less affected by hand oils than those of Comparative Ink 1, suggesting better image stability.
- Ink A-2 and Comparative Ink 1 were tested for diffusion tendency of their colorants. A clear ink was also prepared in the same manner as for Ink A-2 but without any colorants. This diffusion evaluation method used printed images to test for the ability of the colorant from a magenta ink pixel to diffuse into neighboring colorless ink pixels that surrounded the magenta ink pixel. The test prints were generated to contain about 20 percent individual magenta pixels surrounded by 80 percent clear ink pixels. The prints were analyzed at room temperature over a number of days for overall color change detected using a color image analyzer, and the response was measured as change in delta E (ΔE) over time and shown in the table below. The color difference of each sample was determined according to the methods described hereinabove for obtaining CIELAB values. Color differences were determined following ASTM D2244-89 (Standard Test Method for Calculation of Color Differences From instrumentally Measured Color Coordinates) (delta E [(L* 1−L*2)2+(a*1−a*2)2+(b*1−b*2)2])1/2). Both HAMMERMILL LASERPRINT® paper and XEROX® 4024 paper were used, and the color change results in terms of ΔE over time were as follows:
HAMMERMILL LASERPRINT ® XEROX ® 4024 Comp. Comp. Aging Time (days) Ink A-2 Ink 1 Ink A-2 Ink 1 0 0 0 0 0 0.75 0.1 0.8 0.5 1.2 1.75 0.5 1.4 0.8 1.8 3 0.3 1.5 0.7 2.0 5.1 0.5 1.7 0.9 2.5 6.95 0.6 2.1 0.8 3.0 22 1.4 3.4 1.3 4.3 - As the data indicate, the colorants examined had all diffused into surrounding clear base pixels, as evident by the color change and measured as a change in delta E (ΔE). The colorant in Ink A-2, however, underwent diffusion to a significantly lesser degree than the comparative colorant SR49 in Comparative Ink 1. These results indicate that the colorant in Ink A-2 is superior to the comparative commercial colorant SR49 in its ability for minimal dye diffusion. While not being limited to any particular theory, it is believed that the long alkyl groups of the colorant prepared in Example IF of this invention hindered the mobility of the colorant molecule.
- Other embodiments and modifications of the present invention may occur to those of ordinary skill in the art subsequent to a review of the information presented herein; these embodiments and modifications, as well as equivalents thereof, are also included within the scope of this invention.
- The recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefor, is not intended to limit a claimed process to any order except as specified in the claim itself.
Claims (148)
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/606,631 US6835238B1 (en) | 2003-06-26 | 2003-06-26 | Phase change inks containing colorant compounds |
| DE602004006921T DE602004006921T2 (en) | 2003-06-26 | 2004-05-18 | Phase change inks containing dyes |
| EP04011823A EP1491595B1 (en) | 2003-06-26 | 2004-05-18 | Phase change inks containing colorant compounds |
| CA2471533A CA2471533C (en) | 2003-06-26 | 2004-06-18 | Phase change inks containing colorant compounds |
| MXPA04006262A MXPA04006262A (en) | 2003-06-26 | 2004-06-24 | Phase change inks containing colorant compounds. |
| CNB2004100620477A CN100497497C (en) | 2003-06-26 | 2004-06-25 | Phase change inks containing colorant compounds |
| JP2004190164A JP5265843B2 (en) | 2003-06-26 | 2004-06-28 | Color change composition containing phase change ink |
| BRPI0402453-2A BRPI0402453B1 (en) | 2003-06-26 | 2004-06-28 | PHASE CHANGE INK COMPOSITION UNDERSTANDING A PHASE CHANGE VEHICLE AND A COLORING COMPOUND AND PROCESS |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/606,631 US6835238B1 (en) | 2003-06-26 | 2003-06-26 | Phase change inks containing colorant compounds |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US6835238B1 US6835238B1 (en) | 2004-12-28 |
| US20040261657A1 true US20040261657A1 (en) | 2004-12-30 |
Family
ID=33418695
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/606,631 Expired - Lifetime US6835238B1 (en) | 2003-06-26 | 2003-06-26 | Phase change inks containing colorant compounds |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US6835238B1 (en) |
| EP (1) | EP1491595B1 (en) |
| JP (1) | JP5265843B2 (en) |
| CN (1) | CN100497497C (en) |
| BR (1) | BRPI0402453B1 (en) |
| CA (1) | CA2471533C (en) |
| DE (1) | DE602004006921T2 (en) |
| MX (1) | MXPA04006262A (en) |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050178289A1 (en) * | 2004-02-13 | 2005-08-18 | Canon Kabushiki Kaisha | Novel colorant compound, ink, ink tank, recording unit, recording apparatus and recording process |
| US20080087190A1 (en) * | 2006-10-12 | 2008-04-17 | Xerox Corporation | Fluorescent phase change inks |
| US20080098927A1 (en) * | 2006-10-26 | 2008-05-01 | Xerox Corporation | Pigmented phase change inks |
| US20080145558A1 (en) * | 2006-12-19 | 2008-06-19 | Xerox Corporation | Ink compositions |
| US20080145559A1 (en) * | 2006-12-19 | 2008-06-19 | Xerox Corporation | Phase change inks |
| US20080154032A1 (en) * | 2006-12-21 | 2008-06-26 | Xerox Corporation | Colorant compounds |
| US20080152824A1 (en) * | 2006-12-21 | 2008-06-26 | Xerox Corporation | Phase change inks |
| US20080184910A1 (en) * | 2007-02-06 | 2008-08-07 | Xerox Corporation | Colorant compounds |
| US20080187664A1 (en) * | 2007-02-06 | 2008-08-07 | Xerox Corporation | Phase change inks containing colorant compounds |
| US20080184911A1 (en) * | 2007-02-06 | 2008-08-07 | Xerox Corporation | Colorant compounds |
| US20080186371A1 (en) * | 2007-02-06 | 2008-08-07 | Xerox Corporation | Phase change inks containing colorant compounds |
| US20080186372A1 (en) * | 2007-02-06 | 2008-08-07 | Xerox Corporation | Phase change inks containing colorant compounds |
| US20080245263A1 (en) * | 2007-04-04 | 2008-10-09 | Xerox Corporation | Phase change inks containing colorant compounds |
| US20080245264A1 (en) * | 2007-04-04 | 2008-10-09 | Xerox Corporation. | Phase change inks containing colorant compounds |
| US20080302272A1 (en) * | 2007-06-07 | 2008-12-11 | Xerox Corporation | Nonpolar and solid or phase change ink compositions comprising quinacridone nanoscale pigment particles |
| US20100124611A1 (en) * | 2008-11-17 | 2010-05-20 | Xerox Corporation | Phase Change Inks Containing Graphene-Based Carbon Allotrope Colorants |
| US20100313788A1 (en) * | 2009-06-10 | 2010-12-16 | Xerox Corporation | Solid or phase change inks with improved properties |
| US20110061565A1 (en) * | 2008-03-07 | 2011-03-17 | Xerox Corporation | Compounds suitable for use in inks and inks having such compounds |
| US20110177245A1 (en) * | 2010-01-19 | 2011-07-21 | Xerox Corporation | Ink compositions |
| US8147714B2 (en) | 2008-10-06 | 2012-04-03 | Xerox Corporation | Fluorescent organic nanoparticles and a process for producing fluorescent organic nanoparticles |
| US8222313B2 (en) | 2008-10-06 | 2012-07-17 | Xerox Corporation | Radiation curable ink containing fluorescent nanoparticles |
| US8236198B2 (en) | 2008-10-06 | 2012-08-07 | Xerox Corporation | Fluorescent nanoscale particles |
| US8541154B2 (en) | 2008-10-06 | 2013-09-24 | Xerox Corporation | Toner containing fluorescent nanoparticles |
| US8586141B2 (en) * | 2008-10-06 | 2013-11-19 | Xerox Corporation | Fluorescent solid ink made with fluorescent nanoparticles |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6730150B1 (en) * | 1996-06-28 | 2004-05-04 | Xerox Corporation | Phase change ink formulation containing a combination of a urethane resin, a mixed urethane/urearesin, a mono-amide and a polyethylene wax |
| US6998493B2 (en) * | 2003-06-26 | 2006-02-14 | Xerox Corporation | Colorant compounds |
| US7176317B2 (en) * | 2003-06-26 | 2007-02-13 | Xerox Corporation | Colorant compounds |
| US7033424B2 (en) * | 2004-07-23 | 2006-04-25 | Xerox Corporation | Phase change inks |
| US20070252879A1 (en) * | 2006-04-28 | 2007-11-01 | Xerox Corporation | Phase change ink additives |
| US20080145557A1 (en) | 2006-12-18 | 2008-06-19 | Xerox Corporation | Phase change inks containing dialkyl ethers |
| US7641728B2 (en) * | 2007-04-23 | 2010-01-05 | Hewlett-Packard Development Company, L.P. | Ink composition and method for forming the same |
| US7677713B2 (en) * | 2007-05-30 | 2010-03-16 | Xerox Corporation | Solid ink set incorporating naturally derived materials and processes thereof |
| US7699918B2 (en) * | 2007-05-31 | 2010-04-20 | Xerox Corporation | Reactive ink components and methods for forming images using reactive inks |
| JP6028478B2 (en) * | 2011-10-14 | 2016-11-16 | Jsr株式会社 | Colorant, coloring composition, color filter and display element |
| CN102492309B (en) * | 2011-11-11 | 2013-06-19 | 大连理工大学 | Suspended Photothermal Conversion Organic Phase Change Dyes |
| US8920551B1 (en) * | 2013-08-28 | 2014-12-30 | Xerox Corporation | Phase change inks |
| KR101814670B1 (en) | 2015-08-27 | 2018-01-30 | 삼성에스디아이 주식회사 | Novel urethane resin, photosensitive resin composition comprising the same and color filter |
| KR102023158B1 (en) * | 2016-10-11 | 2019-09-19 | 삼성에스디아이 주식회사 | Photosensitive resin composition, photosensitive resin layer using the same and color filter |
| JP7706329B2 (en) * | 2021-10-15 | 2025-07-11 | 富士フイルム株式会社 | Fluorescent compounds and fluorescently labeled biological materials using the same |
Citations (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1981516A (en) * | 1934-11-20 | Intermediates for secondary alkyl | ||
| US1981515A (en) * | 1928-12-01 | 1934-11-20 | Nat Aniline & Chem Co Inc | Intermediates for rhodamine dyestuffs |
| US1991482A (en) * | 1932-03-24 | 1935-02-19 | Du Pont | Rhodamine dyes |
| US3653932A (en) * | 1969-08-28 | 1972-04-04 | Teletype Corp | Electrostatic printing composition comprising didodecyl sebacate |
| US4390369A (en) * | 1981-12-17 | 1983-06-28 | Exxon Research And Engineering Co. | Natural wax-containing ink jet inks |
| US4484948A (en) * | 1981-12-17 | 1984-11-27 | Exxon Research And Engineering Co. | Natural wax-containing ink jet inks |
| US4647675A (en) * | 1984-07-12 | 1987-03-03 | Basf Aktiengesellschaft | Rhodamine dyes |
| US4684956A (en) * | 1984-05-10 | 1987-08-04 | Willett International Limited | Method for applying a hot melt ink to a substrate |
| US4851045A (en) * | 1986-08-25 | 1989-07-25 | Seiko Epson Corporation | Hot-melt ink |
| US4889761A (en) * | 1988-08-25 | 1989-12-26 | Tektronix, Inc. | Substrates having a light-transmissive phase change ink printed thereon and methods for producing same |
| US4889560A (en) * | 1988-08-03 | 1989-12-26 | Tektronix, Inc. | Phase change ink composition and phase change ink produced therefrom |
| US4935059A (en) * | 1988-06-23 | 1990-06-19 | Basf Aktiengesellschaft | Basic rhodamine dyes |
| US5006170A (en) * | 1989-06-22 | 1991-04-09 | Xerox Corporation | Hot melt ink compositions |
| US5084099A (en) * | 1991-06-17 | 1992-01-28 | Tektronix, Inc. | Phase change ink colorants and phase change inks produced therefrom |
| US5151120A (en) * | 1989-03-31 | 1992-09-29 | Hewlett-Packard Company | Solid ink compositions for thermal ink-jet printing having improved printing characteristics |
| US5221335A (en) * | 1990-05-23 | 1993-06-22 | Coates Electrographics Limited | Stabilized pigmented hot melt ink containing nitrogen-modified acrylate polymer as dispersion-stabilizer agent |
| US5372852A (en) * | 1992-11-25 | 1994-12-13 | Tektronix, Inc. | Indirect printing process for applying selective phase change ink compositions to substrates |
| US5496879A (en) * | 1992-02-25 | 1996-03-05 | Siegwerk Druckfarben Gmbh & Co. Kg | Printing ink |
| US5507864A (en) * | 1994-11-14 | 1996-04-16 | Tektronix, Inc. | Phase change ink composition employing a combination of dyes |
| US5621022A (en) * | 1992-11-25 | 1997-04-15 | Tektronix, Inc. | Use of polymeric dyes in hot melt ink jet inks |
| US5747554A (en) * | 1996-03-29 | 1998-05-05 | Xerox Corporation | Ink compositions |
| US5847162A (en) * | 1996-06-27 | 1998-12-08 | The Perkin Elmer Corporation | 4, 7-Dichlororhodamine dyes |
| US5902841A (en) * | 1992-11-25 | 1999-05-11 | Tektronix, Inc. | Use of hydroxy-functional fatty amides in hot melt ink jet inks |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB421737A (en) | 1933-06-30 | 1934-12-31 | Ici Ltd | Manufacture of new rhodamine dyes and their application |
| DE2018168C3 (en) * | 1970-04-16 | 1974-05-22 | Farbwerke Hoechst Ag, Vormals Meister Lucius & Bruening, 6000 Frankfurt | Pigment preparations and processes for their production |
| US4050945A (en) * | 1974-07-08 | 1977-09-27 | Yoshio Suzuki | Heat-sensitive color-producing compositions and articles using same |
| US4361842A (en) * | 1979-09-14 | 1982-11-30 | Canon Kabushiki Kaisha | Recording method using film forming liquid composition |
| EP0187352B1 (en) | 1984-12-31 | 1991-06-05 | Howtek, Inc. | A method of ink jet colour printing |
| DE3671460D1 (en) | 1985-06-25 | 1990-06-28 | Howtek Inc | INK FOR INK JET PRINT. |
| US5352712A (en) | 1989-05-11 | 1994-10-04 | Borden, Inc. | Ultraviolet radiation-curable coatings for optical fibers |
| US5385957A (en) | 1992-08-24 | 1995-01-31 | Videojet Systems International, Inc. | Hotmelt ink jet comprising ionomers having melting points from about 50° C. to about 130° or a softening point below about 80° C., and an image-forming agent |
| US5620820A (en) * | 1995-10-12 | 1997-04-15 | Xerox Corporation | Four color toner set |
| GB2311075A (en) | 1997-04-26 | 1997-09-17 | Zeneca Ltd | Ester or amide containing xanthene dyes for use in ink jet or hot melt inks |
-
2003
- 2003-06-26 US US10/606,631 patent/US6835238B1/en not_active Expired - Lifetime
-
2004
- 2004-05-18 DE DE602004006921T patent/DE602004006921T2/en not_active Expired - Lifetime
- 2004-05-18 EP EP04011823A patent/EP1491595B1/en not_active Expired - Lifetime
- 2004-06-18 CA CA2471533A patent/CA2471533C/en not_active Expired - Fee Related
- 2004-06-24 MX MXPA04006262A patent/MXPA04006262A/en active IP Right Grant
- 2004-06-25 CN CNB2004100620477A patent/CN100497497C/en not_active Expired - Fee Related
- 2004-06-28 BR BRPI0402453-2A patent/BRPI0402453B1/en not_active IP Right Cessation
- 2004-06-28 JP JP2004190164A patent/JP5265843B2/en not_active Expired - Fee Related
Patent Citations (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1981516A (en) * | 1934-11-20 | Intermediates for secondary alkyl | ||
| US1981515A (en) * | 1928-12-01 | 1934-11-20 | Nat Aniline & Chem Co Inc | Intermediates for rhodamine dyestuffs |
| US1991482A (en) * | 1932-03-24 | 1935-02-19 | Du Pont | Rhodamine dyes |
| US3653932A (en) * | 1969-08-28 | 1972-04-04 | Teletype Corp | Electrostatic printing composition comprising didodecyl sebacate |
| US4390369A (en) * | 1981-12-17 | 1983-06-28 | Exxon Research And Engineering Co. | Natural wax-containing ink jet inks |
| US4484948A (en) * | 1981-12-17 | 1984-11-27 | Exxon Research And Engineering Co. | Natural wax-containing ink jet inks |
| US4684956A (en) * | 1984-05-10 | 1987-08-04 | Willett International Limited | Method for applying a hot melt ink to a substrate |
| US4647675A (en) * | 1984-07-12 | 1987-03-03 | Basf Aktiengesellschaft | Rhodamine dyes |
| US4851045A (en) * | 1986-08-25 | 1989-07-25 | Seiko Epson Corporation | Hot-melt ink |
| US4935059A (en) * | 1988-06-23 | 1990-06-19 | Basf Aktiengesellschaft | Basic rhodamine dyes |
| US4889560A (en) * | 1988-08-03 | 1989-12-26 | Tektronix, Inc. | Phase change ink composition and phase change ink produced therefrom |
| US4889761A (en) * | 1988-08-25 | 1989-12-26 | Tektronix, Inc. | Substrates having a light-transmissive phase change ink printed thereon and methods for producing same |
| US5151120A (en) * | 1989-03-31 | 1992-09-29 | Hewlett-Packard Company | Solid ink compositions for thermal ink-jet printing having improved printing characteristics |
| US5006170A (en) * | 1989-06-22 | 1991-04-09 | Xerox Corporation | Hot melt ink compositions |
| US5221335A (en) * | 1990-05-23 | 1993-06-22 | Coates Electrographics Limited | Stabilized pigmented hot melt ink containing nitrogen-modified acrylate polymer as dispersion-stabilizer agent |
| US5084099A (en) * | 1991-06-17 | 1992-01-28 | Tektronix, Inc. | Phase change ink colorants and phase change inks produced therefrom |
| US5496879A (en) * | 1992-02-25 | 1996-03-05 | Siegwerk Druckfarben Gmbh & Co. Kg | Printing ink |
| US5372852A (en) * | 1992-11-25 | 1994-12-13 | Tektronix, Inc. | Indirect printing process for applying selective phase change ink compositions to substrates |
| US5621022A (en) * | 1992-11-25 | 1997-04-15 | Tektronix, Inc. | Use of polymeric dyes in hot melt ink jet inks |
| US5902841A (en) * | 1992-11-25 | 1999-05-11 | Tektronix, Inc. | Use of hydroxy-functional fatty amides in hot melt ink jet inks |
| US5507864A (en) * | 1994-11-14 | 1996-04-16 | Tektronix, Inc. | Phase change ink composition employing a combination of dyes |
| US5747554A (en) * | 1996-03-29 | 1998-05-05 | Xerox Corporation | Ink compositions |
| US5847162A (en) * | 1996-06-27 | 1998-12-08 | The Perkin Elmer Corporation | 4, 7-Dichlororhodamine dyes |
Cited By (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050178289A1 (en) * | 2004-02-13 | 2005-08-18 | Canon Kabushiki Kaisha | Novel colorant compound, ink, ink tank, recording unit, recording apparatus and recording process |
| US7083667B2 (en) * | 2004-02-13 | 2006-08-01 | Canon Kabushiki Kaisha | Colorant compound, ink, ink tank, recording unit, recording apparatus and recording process |
| US20080087190A1 (en) * | 2006-10-12 | 2008-04-17 | Xerox Corporation | Fluorescent phase change inks |
| US7674326B2 (en) | 2006-10-12 | 2010-03-09 | Xerox Corporation | Fluorescent phase change inks |
| US20080098927A1 (en) * | 2006-10-26 | 2008-05-01 | Xerox Corporation | Pigmented phase change inks |
| US20080145558A1 (en) * | 2006-12-19 | 2008-06-19 | Xerox Corporation | Ink compositions |
| US20080145559A1 (en) * | 2006-12-19 | 2008-06-19 | Xerox Corporation | Phase change inks |
| US7781026B2 (en) * | 2006-12-19 | 2010-08-24 | Xerox Corporation | Ink compositions |
| US7713342B2 (en) * | 2006-12-19 | 2010-05-11 | Xerox Corporation | Phase change inks |
| US20080154032A1 (en) * | 2006-12-21 | 2008-06-26 | Xerox Corporation | Colorant compounds |
| US20080152824A1 (en) * | 2006-12-21 | 2008-06-26 | Xerox Corporation | Phase change inks |
| US8057589B2 (en) * | 2006-12-21 | 2011-11-15 | Xerox Corporation | Phase change inks |
| US20080186372A1 (en) * | 2007-02-06 | 2008-08-07 | Xerox Corporation | Phase change inks containing colorant compounds |
| US8303671B2 (en) * | 2007-02-06 | 2012-11-06 | Xerox Corporation | Colorant compounds |
| US20080184910A1 (en) * | 2007-02-06 | 2008-08-07 | Xerox Corporation | Colorant compounds |
| US7997712B2 (en) * | 2007-02-06 | 2011-08-16 | Xerox Corporation | Phase change inks containing colorant compounds |
| US20080186371A1 (en) * | 2007-02-06 | 2008-08-07 | Xerox Corporation | Phase change inks containing colorant compounds |
| US20080184911A1 (en) * | 2007-02-06 | 2008-08-07 | Xerox Corporation | Colorant compounds |
| US8163074B2 (en) * | 2007-02-06 | 2012-04-24 | Xerox Corporation | Phase change inks containing colorant compounds |
| US20080187664A1 (en) * | 2007-02-06 | 2008-08-07 | Xerox Corporation | Phase change inks containing colorant compounds |
| US7749315B2 (en) * | 2007-04-04 | 2010-07-06 | Xerox Corporation | Phase change inks containing colorant compounds |
| US7811368B2 (en) * | 2007-04-04 | 2010-10-12 | Xerox Corporation | Phase change inks containing colorant compounds |
| US20080245263A1 (en) * | 2007-04-04 | 2008-10-09 | Xerox Corporation | Phase change inks containing colorant compounds |
| US20080245264A1 (en) * | 2007-04-04 | 2008-10-09 | Xerox Corporation. | Phase change inks containing colorant compounds |
| US20080302272A1 (en) * | 2007-06-07 | 2008-12-11 | Xerox Corporation | Nonpolar and solid or phase change ink compositions comprising quinacridone nanoscale pigment particles |
| US20110061565A1 (en) * | 2008-03-07 | 2011-03-17 | Xerox Corporation | Compounds suitable for use in inks and inks having such compounds |
| US8372188B2 (en) * | 2008-03-07 | 2013-02-12 | Xerox Corporation | Compounds suitable for use in inks and inks having such compounds |
| US8147714B2 (en) | 2008-10-06 | 2012-04-03 | Xerox Corporation | Fluorescent organic nanoparticles and a process for producing fluorescent organic nanoparticles |
| US8222313B2 (en) | 2008-10-06 | 2012-07-17 | Xerox Corporation | Radiation curable ink containing fluorescent nanoparticles |
| US8236198B2 (en) | 2008-10-06 | 2012-08-07 | Xerox Corporation | Fluorescent nanoscale particles |
| US8541154B2 (en) | 2008-10-06 | 2013-09-24 | Xerox Corporation | Toner containing fluorescent nanoparticles |
| US8586141B2 (en) * | 2008-10-06 | 2013-11-19 | Xerox Corporation | Fluorescent solid ink made with fluorescent nanoparticles |
| US8177897B2 (en) * | 2008-11-17 | 2012-05-15 | Xerox Corporation | Phase change inks containing graphene-based carbon allotrope colorants |
| US20100124611A1 (en) * | 2008-11-17 | 2010-05-20 | Xerox Corporation | Phase Change Inks Containing Graphene-Based Carbon Allotrope Colorants |
| US20100313788A1 (en) * | 2009-06-10 | 2010-12-16 | Xerox Corporation | Solid or phase change inks with improved properties |
| US8915993B2 (en) | 2009-06-10 | 2014-12-23 | Xerox Corporation | Solid or phase change inks with improved properties |
| US20110177245A1 (en) * | 2010-01-19 | 2011-07-21 | Xerox Corporation | Ink compositions |
Also Published As
| Publication number | Publication date |
|---|---|
| US6835238B1 (en) | 2004-12-28 |
| EP1491595A1 (en) | 2004-12-29 |
| JP2005015807A (en) | 2005-01-20 |
| CA2471533A1 (en) | 2004-12-26 |
| DE602004006921T2 (en) | 2007-10-18 |
| DE602004006921D1 (en) | 2007-07-26 |
| EP1491595B1 (en) | 2007-06-13 |
| BRPI0402453B1 (en) | 2014-12-30 |
| JP5265843B2 (en) | 2013-08-14 |
| CN100497497C (en) | 2009-06-10 |
| CN1576329A (en) | 2005-02-09 |
| CA2471533C (en) | 2010-03-23 |
| MXPA04006262A (en) | 2005-02-03 |
| BRPI0402453A (en) | 2005-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6835238B1 (en) | Phase change inks containing colorant compounds | |
| US6998493B2 (en) | Colorant compounds | |
| US6860931B2 (en) | Phase change inks containing colorant compounds | |
| US7176317B2 (en) | Colorant compounds | |
| US7732625B2 (en) | Colorant compounds | |
| US20080187664A1 (en) | Phase change inks containing colorant compounds | |
| US7311767B2 (en) | Processes for preparing phase change inks | |
| EP1961793B1 (en) | Phase change inks containing colorant compounds | |
| US7033424B2 (en) | Phase change inks | |
| US20060021547A1 (en) | Phase change inks |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: XEROX CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WU, BO;BANNING, JEFFERY H.;DUFF, JAMES M.;AND OTHERS;REEL/FRAME:014697/0738;SIGNING DATES FROM 20030919 TO 20031031 |
|
| AS | Assignment |
Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT, TEXAS Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015722/0119 Effective date: 20030625 Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT,TEXAS Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015722/0119 Effective date: 20030625 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: JP MORGAN CHASE BANK,TEXAS Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:016761/0158 Effective date: 20030625 Owner name: JP MORGAN CHASE BANK, TEXAS Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:016761/0158 Effective date: 20030625 |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |
|
| AS | Assignment |
Owner name: XEROX CORPORATION, CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO BANK ONE, N.A.;REEL/FRAME:061360/0501 Effective date: 20220822 Owner name: XEROX CORPORATION, CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO BANK ONE, N.A.;REEL/FRAME:061360/0628 Effective date: 20220822 |
|
| AS | Assignment |
Owner name: CITIBANK, N.A., AS AGENT, DELAWARE Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:062740/0214 Effective date: 20221107 |
|
| AS | Assignment |
Owner name: XEROX CORPORATION, CONNECTICUT Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT R/F 062740/0214;ASSIGNOR:CITIBANK, N.A., AS AGENT;REEL/FRAME:063694/0122 Effective date: 20230517 |
|
| AS | Assignment |
Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:064760/0389 Effective date: 20230621 |
|
| AS | Assignment |
Owner name: XEROX CORPORATION, CONNECTICUT Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT RF 064760/0389;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:068261/0001 Effective date: 20240206 |



















































































































































































































































