US20040256045A1 - Positive pressure hot bonder - Google Patents

Positive pressure hot bonder Download PDF

Info

Publication number
US20040256045A1
US20040256045A1 US10/465,319 US46531903A US2004256045A1 US 20040256045 A1 US20040256045 A1 US 20040256045A1 US 46531903 A US46531903 A US 46531903A US 2004256045 A1 US2004256045 A1 US 2004256045A1
Authority
US
United States
Prior art keywords
gripper
pressure
pressure applicator
tile
applicator assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/465,319
Other versions
US6835262B1 (en
Inventor
Carl Reis
Thomas Ambrose
Chandrakant Shah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Systems Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/465,319 priority Critical patent/US6835262B1/en
Assigned to NORTHROP GRUMMAN CORPORATION reassignment NORTHROP GRUMMAN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMBROSE, THOMAS, REIS, CARL, SHAH, CHANDRAKANT H.
Priority to PCT/US2004/018459 priority patent/WO2005000574A2/en
Priority to EP04776437A priority patent/EP1638766A2/en
Publication of US20040256045A1 publication Critical patent/US20040256045A1/en
Application granted granted Critical
Publication of US6835262B1 publication Critical patent/US6835262B1/en
Priority to IL172660A priority patent/IL172660A0/en
Assigned to NORTHROP GRUMMAN SYSTEMS CORPORATION reassignment NORTHROP GRUMMAN SYSTEMS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NORTHROP GRUMMAN CORPORATION
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/52Protection, safety or emergency devices; Survival aids
    • B64G1/58Thermal protection, e.g. heat shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/40Sound or heat insulation, e.g. using insulation blankets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor

Definitions

  • the present invention generally relates to bonding systems, and more particularly to an improved bonding system having pressure applicators which transition to and position the repaired/replaced tiles therebetween so that positive and counteracting pressures may be applied to the tiles for proper adhesion.
  • the bonded ceramic tiles are typically subjected to vacuum bagging.
  • vacuum bagging due to tile butt joints and porosity of tiles, such vacuum bagging must extend beyond the replaced tile area.
  • This defined bagging procedure is typically complex, and susceptible to human error if not carefully and meticulously attended to.
  • the vacuum bagging is typically time-consuming, as this procedure may take 8 to 48 hours to accomplish.
  • the time to repair an aircraft may be extensive, with the greater repair time comes the increased labor costs that the aerospace manufacturing companies must bear.
  • the present invention addresses and overcomes the above-described deficiencies of prior art bonding systems by providing an improved bonding system that utilizes its pressure applicators to apply both positive and counteracting pressures upon the repaired/replaced ceramic tiles. More specifically, the pressure applicators themselves transition to the tiles while the tiles are stationed within the bonding system and heated via a removable heating element, so as to conveniently provide both pressure and heat necessary for proper adhesion. In this respect, not only does the present invention mitigate the need to resort to inefficient and costly bond procedures, but it also improves the adhesion that is often required in such procedures.
  • a pressure bonding system for applying pressure onto at least one tile of a workpiece.
  • This system comprises upper and lower gripper members each having first and second gripper ends. The second gripper ends are connected to each other. Further, the first gripper ends are movable relative to each other to receive the workpiece therebetween.
  • an upper pressure applicator assembly may be slidably engaged to the upper gripper member. The upper pressure applicator assembly may be slidable along the upper gripper member between the first and second ends along a length of the workpiece. The workpiece may be placed between the upper and lower gripper members with an edge thereof being adjacent the second gripper ends. The upper pressure applicator may apply pressure to the tile(s) upon relative movement of the first ends towards the workpiece to a position adjacent the tile(s).
  • the upper and lower gripper members may be fabricated from any metallic material. However, aluminum is preferred. Due to the hinged connection of the second gripper ends, the first ends may be movable away from each other to provide an opening which is generally greater than a thickness of the workpiece between the upper and lower gripper members.
  • the tile(s) used is ceramic tile(s) which may be bonded to the workpiece such as an aerodynamic structure.
  • An exemplary aerodynamic structure would be a wing of an aircraft.
  • a heating element may be disposed between the upper pressure applicator assembly and the tile(s). This heating element is laid over and provides heat to the tile(s) while it is being pressurized.
  • the heating element used for this purpose is a heat blanket.
  • the upper gripper member comprises inward and outward gripper surfaces, as well as an exterior side gripper surface forming a channel substantially between the first and second gripper ends. Adjacent to this channel are a series of gripper holes.
  • the upper pressure applicator assembly has a first upper surface which is disposed adjacent the inward gripper surface and which is slidable relative thereto.
  • the first upper surface preferably includes an upper connection bracket that may be slidably engaged to the channel formed along the exterior side gripper surface.
  • This connection bracket has a series of upper connection holes which may be aligned with the gripper holes. When the holes are aligned, a pin may be inserted collectively therethrough to prevent the upper connection bracket, and thus the upper pressure applicator assembly, from further sliding along the channel.
  • the upper pressure applicator is a platen having a generally rectangular configuration.
  • the upper pressure applicator assembly comprises a second upper surface having an upper pressure applicator for applying pressure to the tile(s). More particularly, the second upper surface defines an upper recess in which the upper pressure applicator is disposed therewithin.
  • the upper pressure applicator may simply be a rubber pad. In the other preferred embodiment, it is a bladder which may be inflated and deflated to apply variable pressure to the tile(s).
  • the lower gripper member comprises a lower pressure applicator assembly which is slidably engaged thereto. This assembly is used for counteracting the pressure applied by the upper pressure applicator assembly. Similar to the upper gripper member, the lower gripper member has inward and outward gripper surfaces. It further has an exterior side gripper surface that defines a channel substantially between the first and second gripper ends. A series of gripper holes are formed adjacent to this channel.
  • the lower pressure applicator assembly is a platen with a generally rectangular configuration.
  • the lower pressure applicator assembly includes a first lower surface disposed adjacent the inward gripper surface.
  • the first lower surface may be sized and configured to be slidable relative to the inward gripper surface.
  • the first lower surface may include a lower connection bracket which may be slidably engaged to the channel formed along the lower gripper member's exterior side gripper surface.
  • the lower connection bracket defines a series of lower connection holes that may be aligned with the gripper holes whereat a pin may be inserted collectively therethrough. The insertion of the pin in this manner stations the lower connection bracket, and thus the lower pressure applicator assembly, in place.
  • the lower pressure applicator assembly may include a second lower surface which has a lower pressure applicator.
  • the lower pressure applicator is utilized for counteracting the pressure applied by the upper pressure applicator assembly.
  • the second lower surface has a lower recess placing the lower pressure applicator therewithin.
  • the lower pressure applicator may be a rubber pad or an inflatable/deflatable bladder configured to apply variable counteracting pressure.
  • a gripper member retaining mechanism may be operatively engaged to upper and lower gripper members to maintain the gripper members in pressure bearing relation to the tile(s).
  • This retaining mechanism is sized to tightly retain the workpiece between the upper and lower gripper members.
  • the gripper member retaining mechanism is preferably a manually tightenable clamp, other devices operative to generate compressing force are contemplated.
  • the retaining mechanism may be extended between the outward gripper surfaces of the upper and lower gripper members.
  • the upper gripper member is comprised of first and second elongated upper arms
  • the lower gripper member is comprised of first and second elongated lower arms.
  • the flange portions of the first upper and lower arms may be generally extended toward and engaged to each other.
  • the flange portions of the second upper and lower arms may be generally extended toward and engaged to each other.
  • the upper flange portions may each have an upper aperture and the lower flange portions may each have a lower aperture.
  • the lower flange portions may be disposed between the upper flange portions in a manner as to align the lower apertures with the upper apertures. Thereafter, a pivot pin may be inserted through the upper and lower apertures and be secured therewithin so that a hinged connection may be formed thereat.
  • FIG. 1 is a perspective view of a pressure bonding system utilized for applying pressure onto tiles constructed in accordance with a preferred embodiment of the present invention and illustrating its upper and lower gripper members;
  • FIG. 2 is a top view of the upper gripper member of FIG. 1 and illustrating an upper pressure applicator assembly which is slidably engaged between the first and second gripper ends thereof;
  • FIG. 3 is a cross-sectional view of the upper gripper member of FIG. 1 and illustrating its channel which slidably engages the upper pressure applicator assembly thereto;
  • FIG. 4 is a side view of the pressure bonding system of FIG. 1 and illustrating upper and lower pressure applicator assemblies which are positioned adjacent its first gripper ends;
  • FIG. 5 is a side view of the pressure bonding system of FIG. 1 and illustrating upper and lower pressure applicator assemblies which are positioned adjacent its second gripper ends.
  • FIG. 1 perspectively illustrates a pressure bonding system 10 constructed in accordance with a preferred embodiment of the present invention.
  • the pressure bonding system 10 is adapted to apply pressure onto at least one tile 12 of a workpiece 14 .
  • the pressure bonding system 10 may be formed to have a variety of shapes, configurations, geometries and textures other than for that shown in FIGS. 1-5.
  • Such bonding system 10 may be fabricated from any material such as metal, hard plastic, hard rubber, or wood.
  • the pressure bonding system 10 may be any general desired shape, it is understood that the pressure bonding system 10 as depicted is symbolic in nature. However, the pressure bonding system 10 is comprised of an upper gripper member 16 and a lower gripper member 18 each having a first gripper end 20 and a second gripper end 22 .
  • the upper and lower gripper members 16 , 18 may be fabricated from any material. However, it is expressly stated herein that such members 16 , 18 are preferably fabricated from a metallic material. More preferably, aluminum is used to fabricate the upper and lower gripper members 16 , 18 .
  • the first ends 20 may transition toward and away from each other to provide a plurality of differently sized openings 24 between the upper and lower gripper members 16 , 18 .
  • openings 20 may vary, it is anticipated that the opening 20 would generally be greater than a thickness 25 of the workpiece 14 when operational so that the workpiece 14 can be conveniently placed between the upper and lower gripper members 16 , 18 .
  • the second gripper ends 22 are preferably connected together in a hinged fashion in order to transition the first ends 20 with respect to each other.
  • the workpiece 14 may be disposed in any manner pursuant to technician's needs and specifications. However, it is preferred that an edge 26 of the workpiece 14 is adjacent the second gripper ends 22 when ready to apply pressure to the tile(s) 12 .
  • the upper gripper member 16 is formed of a first elongated upper arm 28 and a second elongated upper arm 30 .
  • the lower gripper member 18 is formed of a first elongated lower arm 32 and a second elongated lower arm 34 .
  • the first and second upper arms 28 , 30 each define an upper flange portion 36 formed adjacent the second gripper end 22
  • the first and second lower arms 32 , 34 each define a lower flange portion 38 also formed adjacent the second gripper end 22 .
  • Each of the upper flange portions 36 has an upper aperture 40 and each of the lower flange portions 38 has a lower aperture 42 .
  • the upper flange portion 36 of the first upper arm 28 is generally extended toward the lower flange portion 38 of the first lower arm 32 .
  • the upper flange portion 36 of the second upper arm 30 is also generally extended toward the lower flange portion 38 of the second lower arm 34 .
  • the lower flange portions 38 are disposed between the upper flange portions 36 .
  • a person of ordinary skill in the art will recognize that such specific configuration is not mandatory, but merely preferred.
  • the upper and lower apertures 40 , 42 are aligned with each other. Thereafter, a rod-like structure 44 which is sufficiently lengthened to pass through the upper and lower apertures 40 , 42 may be inserted through the same 40 , 42 and be secured therewithin to provide the hinged connection thereat.
  • An exemplary rod-like structure 44 would be a pivot pin and the like.
  • a raising mechanism 45 such as a hydraulic piston (best shown in FIG. 1 in dotted lines) may be attached to the rod-like structure 44 in order to raise and lower the pressure bonding system 10 as a whole to the workpiece 14 .
  • an upper pressure applicator assembly 46 which is slidably engaged to both the first and second upper arms 28 , 30 .
  • the upper pressure applicator assembly 46 may be used to apply pressure to the tile(s) 12 upon relative movement of the first gripper ends 20 towards the workpiece 14 .
  • this applicator assembly 46 is configured to be slidably movable between the first and second gripper ends 20 , 22 of the upper arms 28 , 30 . More specifically, the upper pressure applicator assembly 46 may be moved along a length 48 of the workpiece 14 placed between the upper arms 28 , 30 and lower arms 32 , 34 .
  • the tile(s) 12 as defined herein is ceramic tile(s). However, it is also contemplated herein that other types of tiles 12 may be substituted in lieu thereof. Additionally, the workpiece 14 as described herein may be any aerodynamic structure such as an aircraft's wing or a trailing edge thereof.
  • each of the upper arms 28 , 30 have an inward gripper surface 50 and an exterior side gripper surface 52 .
  • the exterior side gripper surfaces 52 each have a channel 53 which is defined substantially therealong between the first and second gripper ends 20 , 22 .
  • the upper pressure applicator assembly 46 comprises a first upper surface 54 . With these surfaces 50 , 52 , 54 now defined, it should be noted that the first upper surface 54 is preferably disposed adjacent the inward gripper surface 50 so as to be slidable with respect thereto.
  • the first upper surface 54 of the upper pressure applicator assembly 46 may include an upper connection mechanism 56 which may be slidably engaged to the channel 53 of the exterior side gripper surface 52 .
  • a type of upper connection mechanism 56 that may be used for this purpose is a L-shaped connection bracket but other types capable of making similar connections may be used.
  • the upper pressure applicator assembly 46 may slidably move and be stationed in position by any known or conventional method.
  • the preferred method is that the exterior side gripper surface 52 comprises a series of gripper holes 58 extending beneath and generally parallel to the channel 53 .
  • the upper connection mechanism 56 may comprise a series of upper connection holes 60 , the gripper holes 58 and upper connection holes 60 may be aligned with each other when the upper pressure applicator assembly 46 needs to be stationed. Thereafter, a pin 62 for example may be inserted collectively therethrough to prevent the upper connection mechanism 56 from further sliding along the channel 53 .
  • a lower pressure applicator assembly 64 may be slidably engaged to both the first and second lower arms 32 , 34 .
  • the lower pressure applicator assembly 46 may be utilized to counteract the pressure applied by the upper pressure applicator assembly 46 . It should be noted that providing this applicator assembly 64 is optional as the lower arms 32 , 34 may simply yield any planar surface opposite to the upper pressure applicator assembly 46 to generally oppose its applied pressure.
  • the lower applicator assembly 64 is preferably incorporated into the pressure bonding system 10 so that a counteracting pressure may be generated in response to the applied pressure to increase the pressurization of the tile(s) 12 upon the workpiece 14 . This aspect of the invention will be soon be illustrated.
  • the lower pressure applicator assembly 64 is also configured to slidably move between the first and second gripper ends 20 , 22 of the lower arms 32 , 34 .
  • This applicator assembly 64 may move by itself, or concurrently with the upper pressure applicator assembly 46 along the length 48 of the workpiece 14 disposed therebetween.
  • each of the lower arms 32 , 34 have an inward gripper surface 66 and an exterior side gripper surface 68 .
  • the exterior side gripper surfaces 68 of the lower arms 32 , 34 each include a channel 70 formed substantially therealong between the first and second gripper ends 20 , 22 .
  • the lower pressure applicator assembly 64 further has a first lower surface 72 .
  • the first lower surface 72 is preferably disposed adjacent the inward gripper surface 66 in a manner as to be slidable relative thereto.
  • the first lower surface 72 of the lower pressure applicator assembly 64 may comprise a lower connection mechanism 74 similar or identical to the upper connection mechanism 56 .
  • This lower mechanism 74 is preferably a L-shaped connection bracket which may be slidably engaged to the lower channel 70 .
  • the lower arms 32 , 34 may also have a series of gripper holes 76 on each of their exterior side gripper surfaces 68 which may be aligned with respective lower connection holes 78 of the lower connection mechanism 74 . By inserting a pin 80 for example through these aligned holes 76 , 78 , the lower connection mechanism 74 may be prevented from further sliding along the lower channel 70 .
  • the upper and lower pressure applicator assemblies 46 , 64 are preferably moved by hand. However, slideability of the assemblies 46 , 64 via electronic means is contemplated herein.
  • the upper and lower assemblies 46 , 64 may each be formed as platens having a generally rectangular configuration. However, it is not necessary that such assemblies 46 , 64 be platens or have this specific configuration.
  • the upper and lower assemblies 46 , 64 may be made from any material. But, metal is preferred, and even more preferably, aluminum.
  • the upper pressure applicator assembly 46 comprises a second upper surface 82 with an upper recess 84
  • the lower pressure applicator assembly 64 comprises a second lower surface 86 with a lower recess 88 .
  • Respectively disposed within the upper recess 84 and lower recess 88 are an upper pressure applicator 90 and a lower pressure applicator 92 .
  • the upper and lower pressure applicators 90 , 92 may be adhesively or fastenably engaged within their respective recesses 84 , 88 .
  • the upper pressure applicator 90 may be utilized to apply pressure upon the tile(s) 12
  • the lower pressure applicator 92 may be used to apply counteracting pressure upon the opposite side of thereof.
  • the upper and lower pressure applicators 90 , 92 may each be a rubber pad sized and configured to apply the respective pressures via relative movement of the first gripper ends 20 towards the workpiece 14 .
  • the upper and lower pressure applicators 90 , 92 may each be a bladder which can be selectively inflated and deflated so as to apply variable pressure and counteracting pressure upon the tile(s) 12 .
  • the bladders may be fabricated from any expandable elastomeric material. These bladders may be filled up to an optimal amount (e.g., 7 pounds of pressure) with any fluids such as air or water, but air is preferred. It is recognized herein that the bladders may be filled by direct attachment of a pump for example, or by a control unit box 94 which is placed upon an outward gripper surface 96 of the upper arms 28 , 30 . In this respect, the control unit box 94 is attached to shop air to derive air therefrom (via an air connecting hose 98 shown in FIG. 1) and further deliver this air to the bladders (via a bladder connecting hose 100 shown in FIG. 1).
  • the control unit box 94 is operative to monitor and apply fluid pressure within the inflatable/deflatable bladders. As such, as shown in FIG. 1, this box 94 comprises various pressure and vacuum gauges thereupon to facilitate the accomplishment of its operations. However, separate pressure gauges 102 may be placed upon the assemblies 46 , 64 themselves to determine the actual pressure levels within the bladders. Moreover, the upper and lower assemblies 46 , 64 may even have pressure relief valves (not shown) for releasing over-pressurized air and/or gated valves for ensuring optimal pressure levels within the bladders.
  • a gripper member tightener 104 may be extended between the upper arms 28 , 30 and lower arms 32 , 34 in a generally perpendicular relationship to the length 48 of the workpiece 14 . More specifically, the tightener 104 is extended between the outward gripper surface 96 of the upper arms 28 , 30 and the outward gripper surface 106 of the lower arms 32 , 34 . By such extension, the gripper member tightener 104 may tightly retain the workpiece 14 between the upper arms 28 , 30 and the lower arms 32 , 34 . Although various types of tighteners may be used for this purpose, it is preferred that a manually tightenable clamp is utilized.
  • a heating element 108 is placed between the upper pressure applicator 90 and the targeted tile(s) 12 . By doing so, both pressure and heat are applied to the workpiece 14 to thereby ensure optimal adhering of the tile(s) 12 thereto.
  • heating element 108 may not be necessary as hot air may be provided to the tile(s) 12 from a pore or pores (not shown) formed through the upper pressure applicator 90 .
  • various heating elements may be used, it is preferred that high-temperature heat blanket is utilized for this purpose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Critical Care (AREA)
  • Emergency Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Finishing Walls (AREA)

Abstract

There is provided a pressure bonding system for applying pressure onto at least one tile of a workpiece. This system comprises upper and lower gripper members each having first and second gripper ends. The second gripper ends are connected to each other. The first gripper ends are movable relative to each other to receive the workpiece therebetween. Moreover, an upper pressure applicator assembly is slidably engaged to the upper gripper member. The upper pressure applicator assembly is slidable along the upper gripper member between the first and second ends along a length of the workpiece. The workpiece is placed between the upper and lower gripper members with an edge thereof being adjacent the second gripper ends. The upper pressure applicator applies pressure to the tile(s) upon relative movement of the first ends towards the workpiece to a position adjacent the tile(s).

Description

    STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT
  • [0001] This invention was made with Government support under contract F33657-87C-2000 awarded by the United States Government. The Government has certain rights in this invention.
  • CROSS-REFERENCE TO RELATED APPLICATIONS
  • Not Applicable [0002]
  • BACKGROUND OF THE INVENTION
  • The present invention generally relates to bonding systems, and more particularly to an improved bonding system having pressure applicators which transition to and position the repaired/replaced tiles therebetween so that positive and counteracting pressures may be applied to the tiles for proper adhesion. [0003]
  • The outer skins of modern day aircrafts and spacecrafts are typically formed by high-temperature ceramic tiles to protect their underlying structural and electrical parts. By utilizing these tiles, the airplanes and spacecrafts remain quite safe and operable as external elements such as rocks or birds are substantially prevented from damaging their internal parts. However, though such ceramic tiles may achieve their primary objective of protecting the underlying parts, they possess certain deficiencies which detract from their overall utility. [0004]
  • Perhaps the greatest deficiency of the high-temperature ceramic tiles is their susceptibility to impacts caused by the external elements. Such impacts oftentimes result in dents and/or cracks on the outer structural integrity of the aircrafts and spacecrafts. These dents and/or cracks are not only aesthetically unpleasing, but may further lead to undesirable operational characteristics such as reduced aerodynamic characteristics. [0005]
  • Obviously, the marring leading to these structural and operational deficiencies are unacceptable on multi-million dollar aircrafts and spacecrafts. In order to cure such deficiencies, the aircrafts and spacecrafts frequently have to be subjected to multi-step repair procedures. First, the damaged ceramic tiles are taken out as they must be replaced with new ones. Then, the impacted region(s) must be thoroughly cleaned of all dirts and debris. Thereafter, new ceramic tiles are bonded to the impacted region(s) typically with high-temperature silicone adhesives. As is commonly known in the aerospace industry, silicon adhesives require optimal heat and pressure to ensure proper adhesion. [0006]
  • In this respect, especially when the replaced tiles are considerable, the bonded ceramic tiles are typically subjected to vacuum bagging. However, due to tile butt joints and porosity of tiles, such vacuum bagging must extend beyond the replaced tile area. This defined bagging procedure is typically complex, and susceptible to human error if not carefully and meticulously attended to. Furthermore, the vacuum bagging is typically time-consuming, as this procedure may take 8 to 48 hours to accomplish. With the addition of other procedures as mentioned above, the time to repair an aircraft may be extensive, with the greater repair time comes the increased labor costs that the aerospace manufacturing companies must bear. [0007]
  • Thus, there has long been a need in the industry, and in the aerospace industry in particular, for a bonding system which would improve the procedure associated with adhering the replacement ceramic tiles onto aircraft and spacecraft in a more time-efficient and cost-effective manner. Further, there is a need to properly install these ceramic tiles by utilizing a systematic approach to more consistently yield optimal adhesion of the tiles. [0008]
  • The present invention addresses and overcomes the above-described deficiencies of prior art bonding systems by providing an improved bonding system that utilizes its pressure applicators to apply both positive and counteracting pressures upon the repaired/replaced ceramic tiles. More specifically, the pressure applicators themselves transition to the tiles while the tiles are stationed within the bonding system and heated via a removable heating element, so as to conveniently provide both pressure and heat necessary for proper adhesion. In this respect, not only does the present invention mitigate the need to resort to inefficient and costly bond procedures, but it also improves the adhesion that is often required in such procedures. [0009]
  • BRIEF SUMMARY OF THE INVENTION
  • In accordance with a preferred embodiment of the present invention, there is provided a pressure bonding system for applying pressure onto at least one tile of a workpiece. This system comprises upper and lower gripper members each having first and second gripper ends. The second gripper ends are connected to each other. Further, the first gripper ends are movable relative to each other to receive the workpiece therebetween. Moreover, an upper pressure applicator assembly may be slidably engaged to the upper gripper member. The upper pressure applicator assembly may be slidable along the upper gripper member between the first and second ends along a length of the workpiece. The workpiece may be placed between the upper and lower gripper members with an edge thereof being adjacent the second gripper ends. The upper pressure applicator may apply pressure to the tile(s) upon relative movement of the first ends towards the workpiece to a position adjacent the tile(s). [0010]
  • The upper and lower gripper members may be fabricated from any metallic material. However, aluminum is preferred. Due to the hinged connection of the second gripper ends, the first ends may be movable away from each other to provide an opening which is generally greater than a thickness of the workpiece between the upper and lower gripper members. Preferably, the tile(s) used is ceramic tile(s) which may be bonded to the workpiece such as an aerodynamic structure. An exemplary aerodynamic structure would be a wing of an aircraft. [0011]
  • In accordance with the present invention, a heating element may be disposed between the upper pressure applicator assembly and the tile(s). This heating element is laid over and provides heat to the tile(s) while it is being pressurized. In the preferred embodiment, the heating element used for this purpose is a heat blanket. [0012]
  • The upper gripper member comprises inward and outward gripper surfaces, as well as an exterior side gripper surface forming a channel substantially between the first and second gripper ends. Adjacent to this channel are a series of gripper holes. The upper pressure applicator assembly has a first upper surface which is disposed adjacent the inward gripper surface and which is slidable relative thereto. The first upper surface preferably includes an upper connection bracket that may be slidably engaged to the channel formed along the exterior side gripper surface. This connection bracket has a series of upper connection holes which may be aligned with the gripper holes. When the holes are aligned, a pin may be inserted collectively therethrough to prevent the upper connection bracket, and thus the upper pressure applicator assembly, from further sliding along the channel. Preferably, the upper pressure applicator is a platen having a generally rectangular configuration. [0013]
  • In the present invention, the upper pressure applicator assembly comprises a second upper surface having an upper pressure applicator for applying pressure to the tile(s). More particularly, the second upper surface defines an upper recess in which the upper pressure applicator is disposed therewithin. In one preferred embodiment, the upper pressure applicator may simply be a rubber pad. In the other preferred embodiment, it is a bladder which may be inflated and deflated to apply variable pressure to the tile(s). [0014]
  • In accordance with a preferred embodiment of the present invention, the lower gripper member comprises a lower pressure applicator assembly which is slidably engaged thereto. This assembly is used for counteracting the pressure applied by the upper pressure applicator assembly. Similar to the upper gripper member, the lower gripper member has inward and outward gripper surfaces. It further has an exterior side gripper surface that defines a channel substantially between the first and second gripper ends. A series of gripper holes are formed adjacent to this channel. In the preferred embodiment, the lower pressure applicator assembly is a platen with a generally rectangular configuration. [0015]
  • Furthermore, the lower pressure applicator assembly includes a first lower surface disposed adjacent the inward gripper surface. The first lower surface may be sized and configured to be slidable relative to the inward gripper surface. More particularly, the first lower surface may include a lower connection bracket which may be slidably engaged to the channel formed along the lower gripper member's exterior side gripper surface. The lower connection bracket defines a series of lower connection holes that may be aligned with the gripper holes whereat a pin may be inserted collectively therethrough. The insertion of the pin in this manner stations the lower connection bracket, and thus the lower pressure applicator assembly, in place. [0016]
  • In addition, the lower pressure applicator assembly may include a second lower surface which has a lower pressure applicator. The lower pressure applicator is utilized for counteracting the pressure applied by the upper pressure applicator assembly. In particular, the second lower surface has a lower recess placing the lower pressure applicator therewithin. Like the upper pressure applicator, the lower pressure applicator may be a rubber pad or an inflatable/deflatable bladder configured to apply variable counteracting pressure. [0017]
  • In accordance with the present invention, a gripper member retaining mechanism may be operatively engaged to upper and lower gripper members to maintain the gripper members in pressure bearing relation to the tile(s). This retaining mechanism is sized to tightly retain the workpiece between the upper and lower gripper members. Although the gripper member retaining mechanism is preferably a manually tightenable clamp, other devices operative to generate compressing force are contemplated. Specifically, the retaining mechanism may be extended between the outward gripper surfaces of the upper and lower gripper members. [0018]
  • In one preferred embodiment of the present invention, the upper gripper member is comprised of first and second elongated upper arms, whereas the lower gripper member is comprised of first and second elongated lower arms. Adjacent or at the second gripper ends, the upper arms each have an upper flange portion and the lower arms each have a lower flange portion. The flange portions of the first upper and lower arms may be generally extended toward and engaged to each other., Likewise, the flange portions of the second upper and lower arms may be generally extended toward and engaged to each other. [0019]
  • More specifically, the upper flange portions may each have an upper aperture and the lower flange portions may each have a lower aperture. In this regard, the lower flange portions may be disposed between the upper flange portions in a manner as to align the lower apertures with the upper apertures. Thereafter, a pivot pin may be inserted through the upper and lower apertures and be secured therewithin so that a hinged connection may be formed thereat.[0020]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These as well as other features of the present invention will become more apparent upon reference to the drawings wherein: [0021]
  • FIG. 1 is a perspective view of a pressure bonding system utilized for applying pressure onto tiles constructed in accordance with a preferred embodiment of the present invention and illustrating its upper and lower gripper members; [0022]
  • FIG. 2 is a top view of the upper gripper member of FIG. 1 and illustrating an upper pressure applicator assembly which is slidably engaged between the first and second gripper ends thereof; [0023]
  • FIG. 3 is a cross-sectional view of the upper gripper member of FIG. 1 and illustrating its channel which slidably engages the upper pressure applicator assembly thereto; [0024]
  • FIG. 4 is a side view of the pressure bonding system of FIG. 1 and illustrating upper and lower pressure applicator assemblies which are positioned adjacent its first gripper ends; and [0025]
  • FIG. 5 is a side view of the pressure bonding system of FIG. 1 and illustrating upper and lower pressure applicator assemblies which are positioned adjacent its second gripper ends.[0026]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the drawings wherein the showings are for purposes of illustrating preferred embodiments of the present invention only, and not for purposes of limiting the same, FIG. 1 perspectively illustrates a [0027] pressure bonding system 10 constructed in accordance with a preferred embodiment of the present invention. The pressure bonding system 10 is adapted to apply pressure onto at least one tile 12 of a workpiece 14. In this regard, the pressure bonding system 10 may be formed to have a variety of shapes, configurations, geometries and textures other than for that shown in FIGS. 1-5. Such bonding system 10 may be fabricated from any material such as metal, hard plastic, hard rubber, or wood.
  • Referring more particularly to FIGS. 1, 4 and [0028] 5, as the pressure bonding system 10 may be any general desired shape, it is understood that the pressure bonding system 10 as depicted is symbolic in nature. However, the pressure bonding system 10 is comprised of an upper gripper member 16 and a lower gripper member 18 each having a first gripper end 20 and a second gripper end 22. The upper and lower gripper members 16, 18 may be fabricated from any material. However, it is expressly stated herein that such members 16, 18 are preferably fabricated from a metallic material. More preferably, aluminum is used to fabricate the upper and lower gripper members 16, 18.
  • The first ends [0029] 20 may transition toward and away from each other to provide a plurality of differently sized openings 24 between the upper and lower gripper members 16, 18. Although such openings 20 may vary, it is anticipated that the opening 20 would generally be greater than a thickness 25 of the workpiece 14 when operational so that the workpiece 14 can be conveniently placed between the upper and lower gripper members 16, 18. As will be demonstrated below, the second gripper ends 22 are preferably connected together in a hinged fashion in order to transition the first ends 20 with respect to each other. The workpiece 14 may be disposed in any manner pursuant to technician's needs and specifications. However, it is preferred that an edge 26 of the workpiece 14 is adjacent the second gripper ends 22 when ready to apply pressure to the tile(s) 12.
  • Referring now to FIGS. 1 and 2, the [0030] upper gripper member 16 is formed of a first elongated upper arm 28 and a second elongated upper arm 30. Likewise, the lower gripper member 18 is formed of a first elongated lower arm 32 and a second elongated lower arm 34. The first and second upper arms 28, 30 each define an upper flange portion 36 formed adjacent the second gripper end 22, whereas the first and second lower arms 32, 34 each define a lower flange portion 38 also formed adjacent the second gripper end 22. Each of the upper flange portions 36 has an upper aperture 40 and each of the lower flange portions 38 has a lower aperture 42.
  • In this regard, the [0031] upper flange portion 36 of the first upper arm 28 is generally extended toward the lower flange portion 38 of the first lower arm 32. Furthermore, the upper flange portion 36 of the second upper arm 30 is also generally extended toward the lower flange portion 38 of the second lower arm 34. Upon forming this relationship, the lower flange portions 38 are disposed between the upper flange portions 36. However, a person of ordinary skill in the art will recognize that such specific configuration is not mandatory, but merely preferred.
  • The upper and [0032] lower apertures 40, 42 are aligned with each other. Thereafter, a rod-like structure 44 which is sufficiently lengthened to pass through the upper and lower apertures 40, 42 may be inserted through the same 40, 42 and be secured therewithin to provide the hinged connection thereat. An exemplary rod-like structure 44 would be a pivot pin and the like. Lastly, a raising mechanism 45 such as a hydraulic piston (best shown in FIG. 1 in dotted lines) may be attached to the rod-like structure 44 in order to raise and lower the pressure bonding system 10 as a whole to the workpiece 14.
  • Moreover, there is provided an upper [0033] pressure applicator assembly 46 which is slidably engaged to both the first and second upper arms 28, 30. The upper pressure applicator assembly 46 may be used to apply pressure to the tile(s) 12 upon relative movement of the first gripper ends 20 towards the workpiece 14. As will be described shortly, this applicator assembly 46 is configured to be slidably movable between the first and second gripper ends 20, 22 of the upper arms 28, 30. More specifically, the upper pressure applicator assembly 46 may be moved along a length 48 of the workpiece 14 placed between the upper arms 28, 30 and lower arms 32, 34. Before proceeding to the specificity of how the upper pressure applicator 46 is slidably engaged, it is important to state that the tile(s) 12 as defined herein is ceramic tile(s). However, it is also contemplated herein that other types of tiles 12 may be substituted in lieu thereof. Additionally, the workpiece 14 as described herein may be any aerodynamic structure such as an aircraft's wing or a trailing edge thereof.
  • As illustrated in FIGS. 1 and 3-[0034] 5, each of the upper arms 28, 30 have an inward gripper surface 50 and an exterior side gripper surface 52. The exterior side gripper surfaces 52 each have a channel 53 which is defined substantially therealong between the first and second gripper ends 20, 22. Further, the upper pressure applicator assembly 46 comprises a first upper surface 54. With these surfaces 50, 52, 54 now defined, it should be noted that the first upper surface 54 is preferably disposed adjacent the inward gripper surface 50 so as to be slidable with respect thereto.
  • More particularly, the first [0035] upper surface 54 of the upper pressure applicator assembly 46 may include an upper connection mechanism 56 which may be slidably engaged to the channel 53 of the exterior side gripper surface 52. A type of upper connection mechanism 56 that may be used for this purpose is a L-shaped connection bracket but other types capable of making similar connections may be used. Through such engagement, the upper pressure applicator assembly 46 may slidably move and be stationed in position by any known or conventional method. However, the preferred method is that the exterior side gripper surface 52 comprises a series of gripper holes 58 extending beneath and generally parallel to the channel 53. As the upper connection mechanism 56 may comprise a series of upper connection holes 60, the gripper holes 58 and upper connection holes 60 may be aligned with each other when the upper pressure applicator assembly 46 needs to be stationed. Thereafter, a pin 62 for example may be inserted collectively therethrough to prevent the upper connection mechanism 56 from further sliding along the channel 53.
  • Likewise, a lower [0036] pressure applicator assembly 64 may be slidably engaged to both the first and second lower arms 32, 34. The lower pressure applicator assembly 46 may be utilized to counteract the pressure applied by the upper pressure applicator assembly 46. It should be noted that providing this applicator assembly 64 is optional as the lower arms 32, 34 may simply yield any planar surface opposite to the upper pressure applicator assembly 46 to generally oppose its applied pressure. However, the lower applicator assembly 64 is preferably incorporated into the pressure bonding system 10 so that a counteracting pressure may be generated in response to the applied pressure to increase the pressurization of the tile(s) 12 upon the workpiece 14. This aspect of the invention will be soon be illustrated.
  • Similar to the [0037] upper assembly 46, the lower pressure applicator assembly 64 is also configured to slidably move between the first and second gripper ends 20, 22 of the lower arms 32, 34. This applicator assembly 64 may move by itself, or concurrently with the upper pressure applicator assembly 46 along the length 48 of the workpiece 14 disposed therebetween. Likewise, each of the lower arms 32, 34 have an inward gripper surface 66 and an exterior side gripper surface 68. The exterior side gripper surfaces 68 of the lower arms 32, 34 each include a channel 70 formed substantially therealong between the first and second gripper ends 20, 22. Moreover, the lower pressure applicator assembly 64 further has a first lower surface 72. The first lower surface 72 is preferably disposed adjacent the inward gripper surface 66 in a manner as to be slidable relative thereto.
  • In particular, the first [0038] lower surface 72 of the lower pressure applicator assembly 64 may comprise a lower connection mechanism 74 similar or identical to the upper connection mechanism 56. This lower mechanism 74 is preferably a L-shaped connection bracket which may be slidably engaged to the lower channel 70. However, other similar kinds of connection mechanisms may be used. The lower arms 32, 34 may also have a series of gripper holes 76 on each of their exterior side gripper surfaces 68 which may be aligned with respective lower connection holes 78 of the lower connection mechanism 74. By inserting a pin 80 for example through these aligned holes 76, 78, the lower connection mechanism 74 may be prevented from further sliding along the lower channel 70.
  • Referring now to FIGS. 1, 4 and [0039] 5, the upper and lower pressure applicator assemblies 46, 64 are preferably moved by hand. However, slideability of the assemblies 46, 64 via electronic means is contemplated herein. In addition, the upper and lower assemblies 46, 64 may each be formed as platens having a generally rectangular configuration. However, it is not necessary that such assemblies 46, 64 be platens or have this specific configuration. The upper and lower assemblies 46, 64 may be made from any material. But, metal is preferred, and even more preferably, aluminum. The upper pressure applicator assembly 46 comprises a second upper surface 82 with an upper recess 84, whereas the lower pressure applicator assembly 64 comprises a second lower surface 86 with a lower recess 88.
  • Respectively disposed within the upper recess [0040] 84 and lower recess 88 are an upper pressure applicator 90 and a lower pressure applicator 92. Essentially, the upper and lower pressure applicators 90, 92 may be adhesively or fastenably engaged within their respective recesses 84, 88. The upper pressure applicator 90 may be utilized to apply pressure upon the tile(s) 12, wherein the lower pressure applicator 92 may be used to apply counteracting pressure upon the opposite side of thereof. The upper and lower pressure applicators 90, 92 may each be a rubber pad sized and configured to apply the respective pressures via relative movement of the first gripper ends 20 towards the workpiece 14.
  • Alternatively, the upper and [0041] lower pressure applicators 90, 92 may each be a bladder which can be selectively inflated and deflated so as to apply variable pressure and counteracting pressure upon the tile(s) 12. The bladders may be fabricated from any expandable elastomeric material. These bladders may be filled up to an optimal amount (e.g., 7 pounds of pressure) with any fluids such as air or water, but air is preferred. It is recognized herein that the bladders may be filled by direct attachment of a pump for example, or by a control unit box 94 which is placed upon an outward gripper surface 96 of the upper arms 28, 30. In this respect, the control unit box 94 is attached to shop air to derive air therefrom (via an air connecting hose 98 shown in FIG. 1) and further deliver this air to the bladders (via a bladder connecting hose 100 shown in FIG. 1).
  • The [0042] control unit box 94 is operative to monitor and apply fluid pressure within the inflatable/deflatable bladders. As such, as shown in FIG. 1, this box 94 comprises various pressure and vacuum gauges thereupon to facilitate the accomplishment of its operations. However, separate pressure gauges 102 may be placed upon the assemblies 46, 64 themselves to determine the actual pressure levels within the bladders. Moreover, the upper and lower assemblies 46, 64 may even have pressure relief valves (not shown) for releasing over-pressurized air and/or gated valves for ensuring optimal pressure levels within the bladders.
  • Referring particularly to FIGS. 4 and 5, a [0043] gripper member tightener 104 may be extended between the upper arms 28, 30 and lower arms 32, 34 in a generally perpendicular relationship to the length 48 of the workpiece 14. More specifically, the tightener 104 is extended between the outward gripper surface 96 of the upper arms 28, 30 and the outward gripper surface 106 of the lower arms 32, 34. By such extension, the gripper member tightener 104 may tightly retain the workpiece 14 between the upper arms 28, 30 and the lower arms 32, 34. Although various types of tighteners may be used for this purpose, it is preferred that a manually tightenable clamp is utilized.
  • When applying pressures upon the tile(s) [0044] 12 of the workpiece 14, it is recommended a heating element 108 is placed between the upper pressure applicator 90 and the targeted tile(s) 12. By doing so, both pressure and heat are applied to the workpiece 14 to thereby ensure optimal adhering of the tile(s) 12 thereto. However, it is expressly contemplated herein that such heating element 108 may not be necessary as hot air may be provided to the tile(s) 12 from a pore or pores (not shown) formed through the upper pressure applicator 90. Although various heating elements may be used, it is preferred that high-temperature heat blanket is utilized for this purpose.
  • Additional modifications and improvements of the present invention may also be apparent to those of ordinary skill in the art. Thus, the particular combination of parts described and illustrated herein is intended to represent only certain embodiments of the present invention, and is not intended to serve as limitations of alternative devices within the spirit and scope of the invention. [0045]

Claims (39)

What is claimed is:
1. A pressure bonding system for applying pressure onto at least one tile of a workpiece having an edge and a length, the system comprising:
upper and lower gripper members each having first and second gripper ends, the second gripper ends being connected to each other, the first gripper ends being movable relative to each other to receive the workpiece therebetween; and
an upper pressure applicator assembly slidably engaged to the upper gripper member, the upper pressure applicator assembly being slidable along the upper gripper member between the first and second gripper ends along the length of the workpiece placed between the upper and lower gripper members with the edge thereof being adjacent the second gripper ends to apply pressure to the tile(s) upon relative movement of the first gripper ends towards the workpiece to a position adjacent the tile(s).
2. The system of claim 1 wherein the upper and lower gripper members are fabricated from a metallic material.
3. The system of claim 2 wherein the metallic material is aluminum.
4. The system of claim 1 wherein the workpiece has a thickness, the first gripper ends being movable away from each other to provide an opening generally greater than the thickness of the workpiece between the upper and lower gripper members.
5. The system of claim 1 further comprising a gripper member retaining mechanism operatively engaged to the upper and lower gripper members to maintain the gripper members in pressure bearing relation to the tile(s).
6. The system of claim 5 wherein the gripper member retaining mechanism is a manually tightenable clamp.
7. The system of claim 5 wherein the upper and lower gripper members each have an outward gripper surface wherein the gripper member retaining mechanism is extended therebetween.
8. The system of claim 1 wherein the upper gripper member comprises first and second elongated upper arms and the lower gripper member comprises first and second elongated lower arms.
9. The system of claim 8 wherein the upper arms each have an upper flange portion and the lower arms each have a lower flange portion collectively formed adjacent the second gripper ends, the flange portions of the first upper and lower arms generally extending toward and engaged to each other, the flange portions of the second upper and lower arms generally extending toward and engaged to each other.
10. The system of claim 9 wherein the upper flange portions each have an upper aperture and the lower flange portions each have a lower aperture, the lower flange portions being disposed between the upper flange portions in a manner as to align the lower apertures with the upper apertures.
11. The system of claim 10 further comprising a pivot pin inserted through the upper and lower apertures and secured therewithin to provide a hinged connection thereat.
12. The system of claim 1 further comprising a heating element for providing heat to the tile(s) while being pressurized, the heating element being disposed between the upper pressure applicator assembly and the tile(s).
13. The system of claim 12 wherein the heating element is a heat blanket.
14. The system of claim 1 wherein the at least one tile is at least one ceramic tile.
15. The system of claim 1 wherein the workpiece is an aerodynamic structure.
16. The system of claim 15 wherein the aerodynamic structure is a wing of an aircraft.
17. The system of claim 1 wherein the upper gripper member comprises an inward gripper surface and the upper pressure applicator assembly comprises a first upper surface, the first upper surface being disposed adjacent the inward gripper surface and being slidable relative thereto.
18. The system of claim 17 wherein the first upper surface comprises an upper connection bracket and the upper gripper member comprises an exterior side gripper surface defining a channel substantially between the first and second gripper ends, the upper connection bracket being slidably engaged to the channel.
19. The system of claim 18 wherein the exterior side gripper surface of the upper gripper member has a series of gripper holes adjacent the channel and the upper connection bracket has a series of upper connection holes, the gripper holes and the upper connection holes being alignable with each other wherein a pin is inserted collectively therethrough to prevent the upper connection bracket from sliding along the channel of the upper gripper member.
20. The system of claim 1 wherein the upper pressure applicator assembly comprises a second upper surface having an upper pressure applicator for applying pressure to the tile(s).
21. The system of claim 20 wherein the second upper surface defines an upper recess, the upper pressure applicator being disposed within the upper recess.
22. The system of claim 20 wherein the upper pressure applicator is a rubber pad.
23. The system of claim 20 wherein the upper pressure applicator is an inflatable/deflatable bladder for applying variable pressure to the tile(s).
24. The system of claim 1 wherein the lower gripper member comprises a lower pressure applicator assembly slidably engaged thereto for counteracting the pressure applied by the upper pressure applicator assembly.
25. The system of claim 24 wherein the lower gripper member comprises an inward gripper surface and the lower pressure applicator assembly comprises a first lower surface, the first lower surface being disposed adjacent the inward gripper surface and being slidable relative thereto.
26. The system of claim 25 wherein the first lower surface comprises a lower connection bracket and the lower gripper member comprises an exterior side gripper surface defining a channel substantially between the first and second gripper ends, the lower connection bracket being slidably engaged to the channel.
27. The system of claim 26 wherein the exterior side gripper surface of the lower gripper member has a series of gripper holes adjacent the channel and the lower connection bracket has a series of lower connection holes, the gripper holes and the lower connection holes being alignable with each other wherein a pin is inserted collectively therethrough to prevent the lower connection bracket from sliding along the channel of the lower gripper member.
28. The system of claim 24 wherein the lower pressure applicator assembly comprises a second lower surface having a lower pressure applicator for applying pressure to the tile(s).
29. The system of claim 28 wherein the second lower surface defines a lower recess, the lower pressure applicator being disposed within the lower recess.
30. The system of claim 28 wherein the lower pressure applicator is a rubber pad.
31. The system of claim 28 wherein the lower pressure applicator is an inflatable/deflatable bladder for applying variable counteracting pressure.
32. The system of claim 24 wherein the upper and lower pressure applicator assemblies are platens each having a generally rectangular configuration.
33. A method of bonding at least one ceramic tile onto an aerodynamic structure having an edge and a length with a pressure bonding system, the system including upper and lower gripper members each having a second gripper end movably connected to each other, the method comprising the steps of:
a) placing the aerodynamic structure having the ceramic tile(s) thereon between the upper and lower gripper members with the edge thereof being adjacent the movably connected second gripper ends;
b) laying a heating element over the ceramic tile(s) for applying heat thereto;
c) sliding an upper pressure applicator assembly relative to the second gripper ends to the ceramic tile(s) along the length of the aerodynamic structure;
d) sliding a lower pressure applicator assembly relative to the second gripper ends along the length of the aerodynamic structure to dispose the ceramic tile(s) between the upper and lower applicator assemblies;
e) moving first ends of the upper and lower gripper members to a position adjacent the aerodynamic structure;
f) applying pressure to the ceramic tile(s) with the upper pressure applicator assembly; and
g) counteracting the applied pressure with the lower pressure applicator assembly.
34. The method of claim 33 wherein step a) comprises:
1) moving the first gripper ends of the upper and lower gripper members away from each other to form an opening generally greater than the thickness of the aerodynamic structure; and
2) inserting the aerodynamic structure through the opening formed by the first gripper ends.
35. The method of claim 33 wherein the heating element in step b) is a heat blanket.
36. The method of claim 33 wherein step c) comprises:
1) sliding the upper pressure applicator assembly between the first and second ends of the upper gripper member towards the ceramic tile(s); and
2) stationing the upper pressure applicator assembly when positioned generally above the ceramic tile(s).
37. The method of claim 33 wherein step d) comprises:
1) sliding the lower pressure applicator assembly between the first and second ends of the lower gripper member towards the ceramic tile(s); and
2) stationing the lower pressure applicator assembly when the ceramic tile(s) is disposed between the upper and lower applicator assemblies.
38. The method of claim 33 wherein steps f) and g) comprise:
1) defining an upper pressure applicator of the upper pressure applicator assembly and a lower pressure applicator of the lower pressure applicator assembly;
2) applying pressure to the ceramic tile(s) with the upper pressure applicator; and
3) counteracting the applied pressure with the lower pressure applicator.
39. The method of 38 wherein the upper and lower pressure applicators are inflatable/deflatable bladders for applying variable pressure and counteracting pressure.
US10/465,319 2003-06-19 2003-06-19 Positive pressure hot bonder Expired - Lifetime US6835262B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/465,319 US6835262B1 (en) 2003-06-19 2003-06-19 Positive pressure hot bonder
PCT/US2004/018459 WO2005000574A2 (en) 2003-06-19 2004-06-09 Positive pressure hot bonder
EP04776437A EP1638766A2 (en) 2003-06-19 2004-06-09 Positive pressure hot bonder
IL172660A IL172660A0 (en) 2003-06-19 2005-12-18 Positive pressure hot bonder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/465,319 US6835262B1 (en) 2003-06-19 2003-06-19 Positive pressure hot bonder

Publications (2)

Publication Number Publication Date
US20040256045A1 true US20040256045A1 (en) 2004-12-23
US6835262B1 US6835262B1 (en) 2004-12-28

Family

ID=33517492

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/465,319 Expired - Lifetime US6835262B1 (en) 2003-06-19 2003-06-19 Positive pressure hot bonder

Country Status (4)

Country Link
US (1) US6835262B1 (en)
EP (1) EP1638766A2 (en)
IL (1) IL172660A0 (en)
WO (1) WO2005000574A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180009068A1 (en) * 2016-07-08 2018-01-11 Sikorsky Aircraft Corporation Mobile pressure tool for rotor blade processes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100024185A1 (en) * 2007-02-21 2010-02-04 United Technologies Corporation Complete wire mesh repair with heat blanket
US8047252B2 (en) * 2008-12-19 2011-11-01 United Technologies Corporation Modular component pressure application fixture
US10030540B2 (en) * 2014-11-25 2018-07-24 Rolls-Royce North American Technologies Inc. Fan case liner removal with external heat mat

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2725091A (en) * 1949-10-19 1955-11-29 Us Rubber Co Apparatus for joining thermoplastic sheet material
US3661683A (en) * 1970-11-03 1972-05-09 Airline Systems Inc Patch press
US3837965A (en) * 1972-10-17 1974-09-24 Us Air Force Portable repair apparatus
US3996091A (en) * 1974-09-11 1976-12-07 General Electric Company Method and apparatus for heat bonding
US4866508A (en) * 1986-09-26 1989-09-12 General Electric Company Integrated circuit packaging configuration for rapid customized design and unique test capability
US4904073A (en) * 1988-08-10 1990-02-27 Aware, Inc. Fractal tiling for multiple mirror optical devices
US4907062A (en) * 1985-10-05 1990-03-06 Fujitsu Limited Semiconductor wafer-scale integrated device composed of interconnected multiple chips each having an integration circuit chip formed thereon
US5055383A (en) * 1988-11-17 1991-10-08 International Business Machines Corporation Process for making masks with structures in the submicron range
US5374388A (en) * 1993-04-22 1994-12-20 Lockheed Corporation Method of forming contoured repair patches
US5442156A (en) * 1991-04-09 1995-08-15 The Boeing Company Heating apparatus for composite structure repair
US5519629A (en) * 1993-07-19 1996-05-21 Hewlett-Packard Company Tileable gate array cell for programmable logic devices and gate array having tiled gate array cells
US5587923A (en) * 1994-09-07 1996-12-24 Lsi Logic Corporation Method for estimating routability and congestion in a cell placement for integrated circuit chip
US5657972A (en) * 1994-12-22 1997-08-19 Isi Norgren, Inc. Clamp with inflatable bladder
US5702963A (en) * 1990-12-31 1997-12-30 Kopin Corporation Method of forming high density electronic circuit modules
US5728258A (en) * 1995-12-15 1998-03-17 E-Systems, Inc. Portable non-gravitational positive pressure generator and method of use
US5835378A (en) * 1995-11-20 1998-11-10 Lsi Logic Corporation Computer implemented method for leveling interconnect wiring density in a cell placement for an integrated circuit chip
US5856101A (en) * 1994-05-24 1999-01-05 Affymetrix, Inc. Computer-aided engineering system for design of sequence arrays and lithographic masks
US5975183A (en) * 1998-03-23 1999-11-02 Northrop Grumman Corporation Repair pressure applicator for in the field damaged aircraft
US6005649A (en) * 1998-07-22 1999-12-21 Rainbow Displays, Inc. Tiled, flat-panel microdisplay array having visually imperceptible seams
US6003223A (en) * 1998-11-19 1999-12-21 Headway Technologies, Inc. Common alignment target image field stitching method for step and repeat alignment in photoresist
US6091620A (en) * 1999-07-06 2000-07-18 Virage Logic Corporation Multi-bank memory with word-line banking, bit-line banking and I/O multiplexing utilizing tilable interconnects
US6301124B1 (en) * 1999-02-04 2001-10-09 Dell Usa, L.P. Computer chassis identification method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6435242B1 (en) * 1998-03-23 2002-08-20 Northrop Grumman Corp Repair pressure applicator

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2725091A (en) * 1949-10-19 1955-11-29 Us Rubber Co Apparatus for joining thermoplastic sheet material
US3661683A (en) * 1970-11-03 1972-05-09 Airline Systems Inc Patch press
US3837965A (en) * 1972-10-17 1974-09-24 Us Air Force Portable repair apparatus
US3996091A (en) * 1974-09-11 1976-12-07 General Electric Company Method and apparatus for heat bonding
US4907062A (en) * 1985-10-05 1990-03-06 Fujitsu Limited Semiconductor wafer-scale integrated device composed of interconnected multiple chips each having an integration circuit chip formed thereon
US4866508A (en) * 1986-09-26 1989-09-12 General Electric Company Integrated circuit packaging configuration for rapid customized design and unique test capability
US4904073A (en) * 1988-08-10 1990-02-27 Aware, Inc. Fractal tiling for multiple mirror optical devices
US5055383A (en) * 1988-11-17 1991-10-08 International Business Machines Corporation Process for making masks with structures in the submicron range
US5702963A (en) * 1990-12-31 1997-12-30 Kopin Corporation Method of forming high density electronic circuit modules
US5442156A (en) * 1991-04-09 1995-08-15 The Boeing Company Heating apparatus for composite structure repair
US5492466A (en) * 1993-04-22 1996-02-20 Lockheed Corporation Vacuum mold and heating device for processing contoured repair patches
US5374388A (en) * 1993-04-22 1994-12-20 Lockheed Corporation Method of forming contoured repair patches
US5519629A (en) * 1993-07-19 1996-05-21 Hewlett-Packard Company Tileable gate array cell for programmable logic devices and gate array having tiled gate array cells
US5856101A (en) * 1994-05-24 1999-01-05 Affymetrix, Inc. Computer-aided engineering system for design of sequence arrays and lithographic masks
US5587923A (en) * 1994-09-07 1996-12-24 Lsi Logic Corporation Method for estimating routability and congestion in a cell placement for integrated circuit chip
US5657972A (en) * 1994-12-22 1997-08-19 Isi Norgren, Inc. Clamp with inflatable bladder
US5835378A (en) * 1995-11-20 1998-11-10 Lsi Logic Corporation Computer implemented method for leveling interconnect wiring density in a cell placement for an integrated circuit chip
US5728258A (en) * 1995-12-15 1998-03-17 E-Systems, Inc. Portable non-gravitational positive pressure generator and method of use
US5975183A (en) * 1998-03-23 1999-11-02 Northrop Grumman Corporation Repair pressure applicator for in the field damaged aircraft
US6005649A (en) * 1998-07-22 1999-12-21 Rainbow Displays, Inc. Tiled, flat-panel microdisplay array having visually imperceptible seams
US6003223A (en) * 1998-11-19 1999-12-21 Headway Technologies, Inc. Common alignment target image field stitching method for step and repeat alignment in photoresist
US6301124B1 (en) * 1999-02-04 2001-10-09 Dell Usa, L.P. Computer chassis identification method
US6091620A (en) * 1999-07-06 2000-07-18 Virage Logic Corporation Multi-bank memory with word-line banking, bit-line banking and I/O multiplexing utilizing tilable interconnects

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180009068A1 (en) * 2016-07-08 2018-01-11 Sikorsky Aircraft Corporation Mobile pressure tool for rotor blade processes
US10836001B2 (en) * 2016-07-08 2020-11-17 Sikorsky Aircraft Corporation Mobile pressure tool for rotor blade processes
US11548103B2 (en) 2016-07-08 2023-01-10 Sikorsky Aircraft Corporation Mobile pressure tool for rotor blade processes

Also Published As

Publication number Publication date
WO2005000574A2 (en) 2005-01-06
EP1638766A2 (en) 2006-03-29
US6835262B1 (en) 2004-12-28
IL172660A0 (en) 2006-04-10
WO2005000574A3 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US5570631A (en) Apparatus for fabricating a helicopter main rotor blade
EP2012973B1 (en) Reconfigurable low-profile pneumatic edge-clamp systems and methods
US20120298311A1 (en) Apparatus for Void-Free Debulking of Adhesive Bonded Joints
US20040093731A1 (en) Adjustable system and method for supporting and joining structural members
BR102012021009B1 (en) method for making a composite blade reinforcer
US6835262B1 (en) Positive pressure hot bonder
EP1456082B1 (en) Method of forming and indirect testing of a bond on an aircraft component
US11548103B2 (en) Mobile pressure tool for rotor blade processes
US5728258A (en) Portable non-gravitational positive pressure generator and method of use
US20190030842A1 (en) Heated collapsible elastomeric bladder tool to form and repair composite structures
US5449133A (en) Pneumatic de-icer having improved aerodynamic characteristics
EP1767335A2 (en) Method and apparatus for welding of polymer composite components
US10000019B2 (en) Installation assembly and associated method for forming a bonded joint
US3285794A (en) Inflatable tool for applying bonding pressure to patterned areas
JP2001520599A (en) Apparatus and method for assembling a helicopter main rotor blade subassembly
JP4283924B2 (en) Bonding method and bonding apparatus
AU2019208214B2 (en) Composite fabrication system with alternating air pressure control
CN204585653U (en) A kind of car vacuum tire sectional repair vulcanizer
AU2006222661A1 (en) Method and apparatus for welding of polymer composite components
US8617342B1 (en) Air clamp
CN114985590A (en) Composite forming tool and forming method for large-curvature titanium alloy skin part

Legal Events

Date Code Title Description
AS Assignment

Owner name: NORTHROP GRUMMAN CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REIS, CARL;AMBROSE, THOMAS;SHAH, CHANDRAKANT H.;REEL/FRAME:014848/0546

Effective date: 20030605

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: NORTHROP GRUMMAN SYSTEMS CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHROP GRUMMAN CORPORATION;REEL/FRAME:025597/0505

Effective date: 20110104

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12