US20040249172A1 - Process for the preparationof prostaglandins and analogues thereof - Google Patents

Process for the preparationof prostaglandins and analogues thereof Download PDF

Info

Publication number
US20040249172A1
US20040249172A1 US10/478,513 US47851304A US2004249172A1 US 20040249172 A1 US20040249172 A1 US 20040249172A1 US 47851304 A US47851304 A US 47851304A US 2004249172 A1 US2004249172 A1 US 2004249172A1
Authority
US
United States
Prior art keywords
formula
compound
group
alkyl
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/478,513
Inventor
Alan Greenwood
Derek McHattie
David Thompson
Derek Clissold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resolution Chemicals Ltd
Cascade Biochem Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to RESOLUTION CHEMICALS LIMITED reassignment RESOLUTION CHEMICALS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCHATTIE, DEREK, THOMPSON, DAVID GEORGE, GREENWOOD, ALAN KENNETH
Assigned to RESOLUTION CHEMICALS LIMITED reassignment RESOLUTION CHEMICALS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CASCADE BIOCHEM LIMITED
Assigned to CASCADE BIOCHEM LIMITED reassignment CASCADE BIOCHEM LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CLISSOLD, DEREK WYNDHAM
Publication of US20040249172A1 publication Critical patent/US20040249172A1/en
Priority to US11/189,986 priority Critical patent/US7268239B2/en
Priority to US11/189,985 priority patent/US7498458B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F295/00Macromolecular compounds obtained by polymerisation using successively different catalyst types without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C405/00Compounds containing a five-membered ring having two side-chains in ortho position to each other, and having oxygen atoms directly attached to the ring in ortho position to one of the side-chains, one side-chain containing, not directly attached to the ring, a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, and the other side-chain having oxygen atoms attached in gamma-position to the ring, e.g. prostaglandins ; Analogues or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/93Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems condensed with a ring other than six-membered
    • C07D307/935Not further condensed cyclopenta [b] furans or hydrogenated cyclopenta [b] furans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888

Definitions

  • the present invention relates to a novel process for the synthesis of prostaglandins and prostaglandin analogues.
  • this invention relates to the synthesis of PGF 2 ⁇ and analogues thereof.
  • Prostaglandin F 2 ⁇ ⁇ PGF 2 ⁇ -7-[3,5-dihydroxy-2-(3-hydroxy-1-octenyl)-cyclopentyl]-5-heptenoic acid ⁇ has the structure:
  • This compound causes uterine contraction and is used clinically to induce and accelerate labour, and as an abortifacient.
  • Prostaglandins are generally characterised by the substituents on the cyclopentyl ring.
  • the PGF 2 ⁇ prostaglandins and prostaglandin analogues generally have two hydroxyl groups in a cis configuration relative to the cyclopentane ring, and two side chains in a trans configuration relative to each other, each side chain having one double bond.
  • Analogues of PGF 2 ⁇ can have a different number of double bonds in the side chains, and the substituents along the side chains may vary. Additionally, in some PGF 2 ⁇ analogues, the side chain carboxylic acid group may be esterified.
  • PGF 2 ⁇ analogues having therapeutic use are cloprostenol, which contains a chlorophenyl ether side chain substituent, fluprostenol, which contains a trifluoromethylphenyl ether side chain substituent, and travoprost:
  • Latanoprost [13,14-dihydro-15(R)-17-phenyl-18,19,20-trinor-PGF 2 ⁇ -isopropyl] is an example of a PGF 2 ⁇ analogue having one saturated side chain and wherein the carboxylic acid group is esterified:
  • This compound is used in the clinic for the reduction of elevated intra-ocular pressure in patients with open angle glaucoma and ocular hypertension.
  • Prostaglandin analogues based on PGF 2 ⁇ for use in the treatment of glaucoma and ocular hypertension are described in, for example, European patent number 0 364 417 B1.
  • the procedures for the synthesis of PGF 2 ⁇ analogues described therein start from an advanced-stage intermediate, 16-phenyl-17,18,19,20-trinor PGF 2 ⁇ , or the tetranor homologue thereof.
  • European patent number EP 0 544 899 B1 describes a process for the synthesis of 13,14-dihydro-15(R)-17-phenyl-18,19,20-trinor-PGF 2 ⁇ esters of the formula:
  • [0013] is prepared by transforming the hydroxymethyl group of the protected Corey lactone, with an oxidising agent (dicyclohexylcarbodiimide) to form the corresponding aldehyde. Reaction of the aldehyde with a phenylphosphonium salt forms the above intermediate.
  • the present invention provides a process for the preparation of prostaglandin derivatives having the Formulae (I-A) and (I-B):
  • B represents a substituent selected from the group consisting of:
  • R′′ represents C 1 -C 20 alkyl (preferably a C 1 to C 6 alkyl group, e.g. methyl, ethyl, propyl and iso-propyl), C 3 to C 8 cycloalkyl (e.g. cyclohexyl, cyclopropyl, cyclobutyl) or C 6 to C 10 aryl (preferably phenyl).
  • a preferred R′′ group is iso propyl.
  • R′′ is other than an alkyl, cycloalkyl or aryl group.
  • R′′ groups include, but are not limited to, unsaturated C 1 to C 20 alkyl, unsaturated C 3 to C 8 cycloalkyl, wherein the saturated or unsaturated alkyl or cycloalkyl groups, or aryl groups can be substituted with one or more (typically 1 to 3) substituents such as CF 3 , C 1 to C 6 alkoxy, CN.
  • R′′ groups include C 6 to C 10 heterocycloalkyl (e.g. piperidinyl), C 6 to C 10 heteroaryl (such as pyridyl) and substituted C 6 to C 10 aryl (including substituents such as CF 3 , C 1 to C 6 alkoxy, CN).
  • Scheme 1 illustrates one route to the synthesis of compounds of Formula (I-A) and (I-B), starting from a protected-Corey lactone compound of Formula (X):
  • the intermediate (VI-A) in Scheme 1 can be made by carrying out steps (a) and (b) as shown in Scheme 1, and substituting steps (c), (d), and (e) in Scheme 1 with the steps (e′), (c′) and (d′) as shown in the following Scheme 2:
  • Scheme 3 illustrates an alternative procedure for the synthesis of compounds of Formula (I-A) and (I-B), starting from intermediates of structure (IIIa) and (IIIb):
  • Scheme 4 shows an alternative procedure for the synthesis of compounds of Formula (I-B) starting from the intermediates of Formula (IIa) and (IIb):
  • A represents C 6 to C 10 aryl which may be substituted with one to three substituents independently selected from the group consisting of (i) halo, (ii) C 1 to C 6 alkyl and (iii) unsubstituted C 6 to C 10 aryl;
  • the above reaction may be carried out by electrooxidation in the presence of the organic nitroxyl radical.
  • the oxidation reaction may be carried out in the presence of a nitroxyl radical and at least one molar equivalent of a co-oxidant selected from the group consisting of m-chloroperbenzoic acid, high-valent metal salts, sodium bromite, sodium or calcium hypochlorite, N-chlorosuccinimide or hypervalent iodine compounds such as [bis(acetoxy)iodo]benzene.
  • the co-oxidant is sodium hypochlorite.
  • the stable organic radical preferably comprises a completely ⁇ -substituted piperidin-1-oxy radical, such as 2,2,6,6-tetramethyl-1-piperidinyloxy, free radical (TEMPO, free radical).
  • TEMPO free radical
  • Prior art oxidation procedures for oxidising the compound of Formula (X) to form the compound of Formula (IX) include the use of dimethylsulfoxide-dicyclohexylcarbodiimide.
  • such a method requires isolation of the aldehyde (IX). Since the aldehyde (IX) is not particularly stable in solution, an amount of decomposition product is usually observed during work-up.
  • the aldehyde (IX) solution obtained in this step can be employed in the subsequent step without isolation of the aldehyde, thus minimising any decomposition.
  • A represents C 6 to C 10 aryl which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of (i) halo, (ii) C 1 to C 6 alkyl and (iii) unsubstituted C 6 to C 10 aryl;
  • B represents a substituent selected from the group consisting of: (i) C 1 to C 6 alkyl, (ii) C 7 to C 1-6 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C 1 to C 6 alkyl, halo and CF 3 and (iii) —(CH 2 ) n OR a , wherein n represents 1, 2 or 3 and R a represents a C 6 to C 10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C 1 to C 6 alkyl, halo or CF 3 ,
  • a and B are as defined as above, and each R′′′ is the same or different (preferably the same) and each represents a C 1 to C 6 alkyl group (preferably methyl), the process being carried out in the presence of lithium chloride and an organic base (such as tertiary alkylamines, e.g. di-iso-propylethylamine).
  • an organic base such as tertiary alkylamines, e.g. di-iso-propylethylamine.
  • the compounds of Formula (IX) are commercially available or can be made from commercially available starting materials.
  • the compound of Formula (IX) may be prepared by the process described in U.S. Pat. No. 3,778,450.
  • dimethyl-(2-oxo-4-phenylbutyl)phosphonate may be produced from dimethyl-(2-oxo-propyl)phosphonate via the following reaction:
  • a strong base e.g. n BuLi
  • R y can represent any group that can form a leaving group —OR y .
  • Typical R y groups include C 1 to C 6 alkyl, such as methyl, or ethyl (methyl is preferred).
  • the product from this reaction can be typically purified by distillation.
  • this reaction is usually free of side reactions compared with the prior art process using dimethyl(2-oxopropyl)phosphonate.
  • the reaction is preferably carried out at temperatures in the range of ⁇ 20° C. to 40° C., and preferably ⁇ 10° C. to 30° C.
  • Suitable solvents for this reaction include those selected from the group consisting of benzene, toluene, acetonitrile, dichloromethane, diethylether, and mixtures thereof.
  • the group A preferably represents an unsubstituted C 6 to C 10 aryl group (e.g. phenyl).
  • substituents for the group A include those selected from C 6 to C 10 aryl group being substituted with one substituent selected from halo or phenyl. Further preferred substituents for the group A include unsubstituted or substituted phenyl wherein the substituent is selected from halo or phenyl. In a preferred process, the group A represents phenyl.
  • A represents unsubstituted C 6 to C 10 aryl
  • B represents a substituent selected from the group consisting of:
  • Suitable reducing agents for the reduction of the side chain oxo group include borane-dimethylsulfide complex, lithium tri-sec-butylborohydride, ⁇ LiB[CH(CH 3 )CH(C 2 H 5 ] 3 H ⁇ (L-Selectride RTM ) and sodium borohydride.
  • a non-stereoselective reducing agent may be used (e.g. LiAlH 4 , NaBH 4 and other metallic hydrides).
  • the reducing agent suitably comprises borane-dimethylsulfide complex in the presence of a chiral oxazaborolidine catalyst (“Corey catalyst”) because of the greater selectivity towards the production of a major amount of the desired isomer.
  • Corey catalyst a chiral oxazaborolidine catalyst
  • a preferred reagent for the reduction reaction is borane-dimethylsulfide complex in the presence of a chiral oxazaborolidine catalyst (Corey catalyst).
  • the group A in the compound of Formula (VII) in addition to being unsubstituted C 6 to C 10 aryl, can also represent C 6 to C 10 aryl substituted with one to three substituents independently selected from the group consisting of (i) halo, i.e. fluoro, chloro, bromo or iodo, (ii) C 1 to C 6 alkyl and (iii) Ce to C 10 aryl, such as phenyl.
  • borane-dimethylsulfide complex in combination with a Corey catalyst is especially preferred because the reaction takes place with excellent selectivity. In fact, a marked improvement in stereoselectivity is seen compared with the reaction using L-Selectride RTM .
  • a further advantage is that the reduction reaction using borane-dimethylsulfide complex can be carried out at a higher temperature (typically ⁇ 15° C. to ⁇ 18° C.) compared with L-Selectride RTM , which requires a reaction temperature of less than ⁇ 70° C.
  • the Corey catalyst comprises a chiral oxazaborolidine compound [see J. Am. Chem. Soc., 109, 5551, (1987) and J. Am. Chem. Soc. 109, 7925, (1987) and references cited in Lancaster Catalogue 2000-2001, page 819] such as (R)-tetrahydro-1-methyl-3,3-diphenyl-1H,3H-pyrrole[1,2-c][1,3,2]oxazaborole, may be prepared by reaction of the appropriate chiral prolinol [such as the commercially available (R)-(+)- ⁇ , ⁇ -diphenylprolinol] with a trialkyl boroxine, e.g.:
  • reaction is carried out in inert conditions in a solvent such as toluene, diethylether or tetrahydrofuran.
  • a solvent such as toluene, diethylether or tetrahydrofuran.
  • the oxazaborolidine catalyst is employed as a solution in the reduction step.
  • the dashed line forms an optional double bond
  • B represents a substituent selected from the group consisting of:
  • R′ represents the substituent:
  • R x , R y and R z are the same or different and each independently represents C 1 to C 6 alkyl, C 6 to C 10 aryl or C 7 to C 16 aralkyl;
  • A represents C 6 to C 10 aryl which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of (i) halo, (ii) C 1 to C 6 alkyl and (iii) unsubstituted C 6 to C 10 aryl;
  • R x , R y and R z are as defined above and X represents F, Cl, Br or I.
  • the deprotection step (a) wherein the protecting group A on the hydroxyl group of the cyclopentane ring is removed, is preferably carried out in the presence of a base.
  • Preferred bases for use in the deprotection reaction includes those selected from the group consisting of K 2 CO 3 , Na 2 CO 3 and Li 2 CO 3 , with K 2 CO 3 being particularly preferred.
  • Suitable solvents for the deprotection reaction include alcohols, such as methanol, ethanol and isopropanol.
  • step (a) The isolation of the deprotected product from step (a) may be carried out by standard chromatography procedures. However, it has been found that the deprotected product can advantageously be isolated by extraction with hexane fractions, thus avoiding the use of time consuming and expensive chromatographic procedures.
  • the hydrogenation step can be carried out using any suitable hydrogenation catalyst such as palladium, platinum or rhodium, which may be supported on an inert support, such as carbon.
  • a suitable hydrogenation catalyst is 5% palladium on carbon.
  • the hydrogenation reaction is carried out in the presence of sodium nitrite, preferably in aqueous solution.
  • This procedure avoids the formation of elimination products and thus results in improved yields (typically greater than 95%) of the compounds of Formula (VI-A).
  • Suitable solvents for the hydrogenation reaction include alcohols such as methanol and ethanol.
  • the mixture is preferably stirred with dilute hydrochloric acid to remove the nitrite (by conversion to nitrous acid, which decomposes at ambient temperature). This procedure ensures that nitrite is not carried through to the subsequent synthetic procedures.
  • the role of the sodium nitrite in the hydrogenation reaction is to avoid the formation of elimination products, that is, the elimination of a water molecule from the side chain of the starting material and, as a consequence, formation of the fully saturated deoxygenated analogue of the desired product.
  • the compound produced in step (a) having the Formula (VI) or the compound produced in step (b) having the Formula (VI-A) is reacted with a silylating agent (X)Si(R x )(R y )(R z ).
  • the groups R x , R y , and R z can be the same or different each represents a C 1 to C 6 alkyl group or a C 6 to C 10 aryl group.
  • each of the groups R x , R y , and R z are independently selected from methyl, ethyl, butyl, isopropyl.
  • silylating agents for use in step (c) are selected from the group consisting of trimethylsilyl chloride, triethylsilyl chloride and tert-butyldimethylsilyl chloride. Triethylsilyl chloride is particularly preferred.
  • the silylation step is preferably carried out in the presence of a base, for example an organic base, such as imidazole or trialkylamines, such as triethylamine.
  • a base for example an organic base, such as imidazole or trialkylamines, such as triethylamine.
  • Suitable solvents for use in the silylation reaction include polar aprotic solvents such as tetrahydrofuran or dimethylsulfoxide, or chlorinated solvents such as dichloromethane.
  • polar aprotic solvents such as tetrahydrofuran or dimethylsulfoxide
  • chlorinated solvents such as dichloromethane.
  • the reaction is carried out in a solvent comprising dimethylformamide.
  • silyl protecting groups in accordance with the present invention is advantageous because it generally results in cleaner reactions, with higher yields compared with reactions wherein the hydroxyl group is not protected.
  • silyl protecting groups in the present process has particular advantages compared with the prior art process employing, e.g. benzoyl- and para-phenylbenzoyl (PPB)-protecting groups because silyl groups are stable to the subsequent reduction reaction with e.g. DIBAL-H (di-iso-butylaluminium).
  • PPB para-phenylbenzoyl
  • a second advantage of using silyl protecting groups in the subsequent Wittig reaction [step (i) in Scheme 1], is that the formation of the desired cis isomer is favoured.
  • Silyl protecting groups have the further advantage in that they generally increase the lipophilic character of the molecules, so that their derivatives are readily soluble in organic solvents.
  • removal of the phosphine oxide by-product is facilitated because the silyl-protected Wittig reaction product [(IIIa)/(IIIb)] is soluble in hexane, whereas the triphenylphosphine oxide is insoluble, thus allowing separation by filtration.
  • Subsequent purification of the product can be carried out by silica gel filtration, rather than a full chromatographic purification.
  • a further advantage of employing silyl protecting groups is that these protecting groups can be removed under mild conditions, as discussed below.
  • [0104] can be made from compounds of Formula (VIII) by a process comprising the steps of:
  • R x , R y and R z are as defined above and X represents F, Cl, Br or I.
  • Steps (a) to (c) of this process are depicted as steps (e′), (c′) and (d′) in Scheme 2.
  • Step (d) corresponds to step (f) of Scheme 1, the product of which is a compound of Formula (V) wherein the dashed and solid line represents a single bond.
  • the hydrogenation, reduction, deprotection and silylation steps in this alternative procedure are carried out as for the immediately preceding process to form the compounds of Formula (V).
  • B represents a substituent selected from the group consisting of:
  • R′ represents the substituent:
  • R x , R y and R z are the same or different and each independently represents C 1 to C 6 alkyl, C 6 to C 10 aryl or C 7 to C 16 aralkyl;
  • a suitable reducing agent for this process is di-iso-butylaluminium hydride DIBAL-H), and the reaction may be carried out in e.g. tetrahydrofuran.
  • B represents a substituent selected from the group consisting of:
  • R′ represents the substituent:
  • R x , R y and R z are the same or different and each independently represents C 1 to C 6 alkyl, C 6 to C 10 aryl or C 7 to C 16 aralkyl;
  • R w represents C 1 to C 6 alkyl or C 6 to C 10 aryl
  • X represents fluoro, chloro, bromo or iodo.
  • the group R w represents phenyl.
  • the group X preferably represents bromo.
  • [0135] are commercially available, or can be prepared by reaction of a phosphine, P(R w ) 3 , with HO 2 C(CH 2 ) 4 —X′ (wherein X′ represents halide, e.g. F, Cl, Br or I).
  • Suitable bases for the forming the ylide include those selected from the group consisting of butyllithium, sodium amide, sodium hydride, and alkali metal alkoxides, including sodium methoxide, sodium ethoxide, potassium ethoxide and potassium tert-butoxide. Potassium tert-butoxide is a particularly preferred base.
  • a suitable solvent for this reaction is tetrahydrofuran.
  • the ylide may be formed by the reaction of (4-carboxybutyl)-triphenylphosphonium bromide with potassium tert-butoxide:
  • the ylide can be generated using 3 equivalents of the phosphonium halide and 6 equivalents of base, i.e. a ratio of phosphonium halide and base of 1:2, but is preferably generated using 2.15 equivalents of the phosphonium halide and 4 equivalents of base.
  • the silyl protecting groups of the hydroxyl substituent on the cyclopentyl ring may migrate to the hydroxyl group formed by the opening of the lactol ring, to result in a mixture of 9- and 11-silylated isomers of Formula (IIIa) and (IIIb).
  • R x , R y and R z are the same or different and each independently represents C 1 to C 6 alkyl, C 6 to C 10 aryl or C 7 to C 16 aralkyl;
  • R x , R y and R z are as defined above and X represents F, Cl, Br or I.
  • This procedure is advantageously carried out where a mixture of the compounds of Formula (IIIa) and Formula (IIIb) are formed as the products of the Wittig reaction.
  • the reaction of such a mixture with at least one molar equivalent of a silylating agent, preferably the same silylating agent as is used to protect the hydroxyl groups of the compounds of Formula (V), enables the mixture of compounds of Formula (IIIa) and (IIIb) to be “amalgamated” into a single product of Formula (XI) for subsequent reaction steps.
  • a molar equivalent of silylating agent to starting material is employed. Typically, 1.1 to 2 molar equivalents are employed. The formation of a single product allows for better control of subsequent reaction steps and purification.
  • the dashed line represents an optional double bond
  • B represents a substituent selected from the group consisting of: (i) C 1 to C 6 alkyl, (ii) C 7 to C 16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C 1 to C 6 alkyl, halo and CF 3 and (iii) —(CH 2 ) n OR a , wherein n represents 1, 2 or 3 and R a represents a C 6 to C 10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C 1 to C 6 alkyl, halo or CF 3 ;
  • R′ represents the substituent:
  • R x , R y and R z are the same or different and each independently represents C 1 to C 6 alkyl, C 6 to C 10 aryl or C 7 to C 16 aralkyl;
  • R′′ represents C 1 to C 6 alkyl or C 3 to C 8 cycloalkyl
  • the mixture may be alkylated by the process indicated above, to form a mixture of 9- and 11-silylated esters of Formula (IIa) and (IIb).
  • the silylation it is also possible to carry out the silylation after the alkylation step, i.e. on the mixture of compounds of Formula (IIa) and (IIb).
  • a further aspect of the present invention provides a process for the production of a compound of Formula (XII):
  • R′ represents the substituent:
  • R x , R y and R z are the same or different and each independently represents C 1 to C 6 alkyl, C 6 to C 10 aryl or C 7 to C 16 aralkyl;
  • R′′ represents C 1 to C 6 alkyl or C 3 to C 8 cycloalkyl
  • R x , R y and R z are as defined above and X represents F, Cl, Br or I.
  • this process is preferably carried out in the presence of at least a molar equivalent of silylating agent, and even more preferably 1.1 to 2 molar equivalents of silylating agent is employed. Again, this step leads to the “amalgamation” of the mixture of compounds of Formula (IIa) and (IIb) to form a single product [i.e. compounds of Formula (XII)] which facilitates control of subsequent reaction steps and purification of subsequent intermediates.
  • R′ is the same and each represents the substituent:
  • R x , R y and R z are the same or different and each independently represents C 1 to C 6 alkyl, C 6 to C 10 aryl or C 7 to C 16 aralkyl;
  • R′′ represents C 1 to C 6 alkyl or C 3 to C 8 cycloalkyl
  • R x , R y and R z are the same or different and each independently represents C 1 to C 6 alkyl, C 6 to C 10 aryl or C 7 to C 16 aralkyl;
  • R′′ represents a C 1 to C 6 alkyl group (e.g. isopropanol) or C 3 to C 8 cycloalkyl (e.g. cyclohexanol).
  • the above process may be carried out optionally in the presence of a weak acid catalyst, such as pyridinium p-toluenesulfonate.
  • a weak acid catalyst such as pyridinium p-toluenesulfonate.
  • the reaction should be carried out in the absence of water, to avoid deprotection of the silyl groups.
  • B represents a substituent selected from the group consisting of:
  • B represents a substituent selected from the group consisting of:
  • R′′ represents C 1 to C 6 alkyl or C 3 to C 8 cycloalkyl
  • Suitable reagents for removal of the silyl groups from the compounds of Formula (IIIa), (IIIb), (XI), (IIa), (IIb) and (XII) include weak acids such as acetic acid and citric acid.
  • An especially preferred weak acid is pyridinium p-toluenesulfonate.
  • the reaction may be carried out in any suitable solvent or solvent mixtures.
  • An especially preferred solvent for the deprotection reaction comprises acetone and water.
  • the compounds of Formulae (VI), (VI), (VI-A), (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (I-A), (I-B), (XI), (XII) and (XIV) are single enantiomers (i.e. the wavy line in the side chain represents or ).
  • a stereoselective reducing agent e.g. borane-dimethylsulfide complex in the presence of a chiral oxazaborolidine (Corey) catalyst] in step (c) of Scheme 1, or step (c′) in Scheme 2.
  • the group B in the compounds of Formula (XII), (XI), (VII), (VII), (VI), (VI-A), (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (I-A) or (I-B) is selected from the group consisting of (I) C 1 to C 6 alkyl, (ii) C 7 to C 16 aralkyl wherein the aryl group is unsubstituted and (iii) —(CH 2 ) n OR a , wherein n represents 1, 2 or 3 and R a represents a C 6 to C 10 aryl group which is substituted with a substituent selected from halo or CF 3 .
  • solid and dashed lines in each of Formulae (XII), (XI) (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (I-A) and (I-B) forms a double bond.
  • B preferably represents —CH 2 CH 2 Ph.
  • B preferably represents a substituent selected from the group consisting of:
  • the process of the present invention is generally applicable for the synthesis of prostaglandins and prostaglandin analogues, particularly PGF 2 ⁇ and analogues thereof.
  • the process is particularly useful for the production of a compound selected from the group consisting of:
  • the present invention provides a process for the synthesis of latanoprost comprising the steps of:
  • A represents a C 6 to C 10 aryl group, preferably phenyl, which may be substituted with one to three substituents independently selected from the group consisting of (i) halo, (ii) C 1 to C 6 alkyl and (iii) unsubstituted C 6 to C 10 aryl,
  • each R′′′ the same or different and each represents a C 1 to C 6 alkyl group (preferably methyl), in the presence of lithium chloride and an organic base, to form the compound of Formula (VIII) wherein B is
  • R x , R y and R z are as defined as above (a particularly preferred silylating agent being triethylsilyl chloride) as defined above to form a compound of Formula (V) wherein B is —CH 2 CH 2 Ph:
  • R′ represents:
  • X represents F, Cl, Br or I, with a strong base (such as potassium t-butoxide), to form a compound of Formula (IIIa) or (IIIb) wherein B is —CH 2 CH 2 Ph:
  • steps (1) to (10) correspond to steps (a)-(b)-(c)-(d)-(e)-(f)-(h)-(i)-(j)-(k) in Scheme 1 above.
  • latanoprost can be formed by a procedure involving carrying out steps (1) and (2) of the preceding process, replacing steps (3), (4) and (5) with the following steps (3′), (4′) and (5′), and thereafter carrying out steps (6-(10) as described in the preceding process.
  • Steps (3′), (4′) and (5′) are as follows:
  • each R′ is as defined as above;
  • novel intermediates for the synthesis of a compound of Formula (I-A) or (I-B) as defined above include the following:
  • A represents unsubstituted C 6 to C 10 aryl
  • B represents a substituent selected from the group consisting of: (i) C 1 to C 6 alkyl, (ii) C 7 to C 16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C 1 to C 6 alkyl, halo and CF 3 ; and (iii) —(CH 2 ) n OR a , wherein n represents 1, 2 or 3 and R a represents a C 6 to C 10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C 1 to C 6 alkyl, halo or CF 3 .
  • R x , R y and R z are the same or different and each independently represents C 1 to C 6 alkyl, C 6 to C 10 aryl or C 7 to C 16 aralkyl;
  • A represents unsubstituted C 6 to C 10 aryl, and B is as defined herein;
  • the group A represents phenyl
  • the compounds of Formulae (VII), (VI), (VI-A), (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (XI), (XII), (XIII) and (XIV) are single enantiomers (i.e. the wavy line in the side chain represents or ).
  • the solid and dashed lines represent a single bond and B represents —CH 2 CH 2 Ph.
  • the group R′ is preferably:
  • the group R′′ preferably represents iso-propyl.
  • the present invention further provides the use of any novel intermediate as defined as above in the manufacture of latanoprost and the use of any novel intermediate as defined as above in the manufacture of cloprostenol, fluprostenol, PGF 2 ⁇ , travoprost, or a PGF (preferably PGF 2 ⁇ ) analogue.
  • the present invention also provides the use of a silylating reagent of formula
  • the group X represents F, Cl, Br or I and R x , R y and R z are as previously defined, for protecting a hydroxyl group of an intermediate in the synthesis of a prostaglandin or prostaglandin analogue, such as prostaglandin or prostaglandin analogues based on PG-A, PG-B, PG-C PG-D or PGF.
  • a prostaglandin or prostaglandin analogue such as prostaglandin or prostaglandin analogues based on PG-A, PG-B, PG-C PG-D or PGF.
  • the use of these silylating agents is particularly suitable in the synthesis of prostaglandin PGF 2 ⁇ or prostaglandin analogues based on PGF 2 ⁇ , including latanoprost, cloprostenol, fluprostenol and travoprost. Of these, latanoprost is particularly preferred.
  • R x , R y and R z are methyl, ethyl and tert-butyl.
  • a particularly preferred silylating reagent is triethylsilylchloride.
  • hatched lines attached to the cyclopentane ring indicate bonds that are below the plane of the ring (i.e. bonds in an alpha configuration).
  • Solid wedges attached to the cyclopentane ring indicate bonds that are above the plane of the ring (rings in the beta configuration). It is to be understood that a wavy line, i.e.
  • [0286] represents bonds in either the alpha or beta configuration, and includes single enantiomers, i.e.:
  • the present invention further provides a process for the purification of latanoprost by HPLC comprising the use as an eluent, of a mixture comprising a hydrocarbon, an alcohol and, optionally, acetonitrile.
  • the eluent comprises a hydrocarbon, an alcohol and acetonitrile.
  • acetonitrile as a component of the eluent in the HPLC purification of latanoprost results in an improved separation of the impurities.
  • the use of acetonitrile as a component of the above eluent mixture results in a significantly improved separation of the hitherto difficult to separate 15(S)-trans isomer of latanoprost.
  • the 15(S)-trans isomer does not co-elute with the latanoprost, i.e.
  • the eluent systems in the present purification process comprises a hydrocarbon in an amount range of 80-99 volume percent and an alcohol in an amount range of 1-20 volume percent.
  • the eluent comprises a hydrocarbon in an amount range of 85-99 volume percent and an alcohol in an amount range of 1-15 volume percent.
  • an eluent comprising a hydrocarbon in an amount range of 88-98 volume percent and an alcohol in an amount range of 2-12 volume percent.
  • the eluent comprises a hydrocarbon in an amount range of 85-99 volume percent, an alcohol in an amount of 0.5-10 volume percent and acetonitrile in an amount of 0.5-5 volume percent.
  • an eluent comprises a hydrocarbon in an amount range of 86-98 volume percent, an alcohol in an amount of 1-8 volume percent and acetonitrile in an amount of 1-6 volume percent.
  • an eluent comprising a hydrocarbon in an amount range of 90-96 volume percent, an alcohol in an amount of 2-6 volume percent and acetonitrile in an amount of 2-4 volume percent.
  • the hydrocarbon is a C 5 to C 8 straight chain, branched or cyclic hydrocarbon, wherein the hydrocarbon is preferably an n-alkane. Hexane and heptane are especially preferred.
  • the hydrocarbon employed in the eluent may comprise a mixture of e.g. alkanes, such as hexane fraction. It has been found that good results have been obtained with n-heptane.
  • Preferred alcohols in the above eluent systems are C 1 to C 8 straight chain, branched or cyclic alkanols, with C 1 to C 5 straight chain or branched alkanols being particularly preferred.
  • methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol or butan-2-ol are especially useful. Good results have been obtained with propan-2-ol (isopropanol) as the alcohol component.
  • the use of ethanol as the alcohol component has also produced good separations.
  • the alcohol component of the eluent can include mixtures of one or more alkanols, e.g. combinations of two or more of isopropanol, ethanol and methanol may be used, e.g mixtures in ratios of 1:1 to 3:1 have been successfully employed.
  • a preferred eluent system comprises n-heptane:isopropanol:acetonitrile.
  • Preferred volume percent ranges of n-heptane: isopropanol:acetonitrile are 90-96%:2-7%:2-5%.
  • the ratios of n-heptane:isopropanol: acetonitrile are in the ranges 92-94%:3-5%:2-4%. Good results have been obtained with ratios of 93%: 4%:3%.
  • HPLC procedures are preferably carried out on a silica gel column.
  • suitable columns include Waters RTM Spherisorb, Phenomenex RTM Luna Cyano and Phenomenex RTM Luna Silica.
  • latanoprost that is substantially free of the 15(S)-cis isomer, the 15(S)-trans isomer and the 15(R)-trans isomer.
  • latanoprost containing less than 0.3% in total of any combination of: 15(S)-cis isomer, 15(S)-trans isomer and 15(R)-trans isomer may be produced.
  • latanoprost containing less than 0.1% each of 15(S)-cis-, 15(S)-trans- and 15(R)-trans isomers can be produced.
  • DIBAL-H di-iso-butylaluminiumhydride
  • DBU [1,8-diazabicyclo(5.4.0)undec-7-ene]
  • alkyl refers to C 1 to C 6 straight or branched carbon chains. Particularly preferred alkyl groups for the compounds and processes of the invention include methyl, ethyl, propyl, isopropyl, butyl, and tertiary butyl.
  • aryl represents a carbocyclic group containing from six to fifteen carbon atoms and having at least one aromatic ring. Particularly preferred aryl groups for any of the compounds and methods of the present invention include phenyl and naphthyl.
  • aralkyl refers to an alkyl group as defined above wherein one or more hydrogen atoms (preferably one) have been replaced by unsubstituted C 6 to C 10 aryl groups as defined above.
  • a preferred aralkyl group for the compounds and methods of the invention is benzyl.
  • halo refers to fluoro, chloro, bromo or iodo.
  • substantially free of a particular impurity refers to less than 1%, preferably less than 0.5%, more preferably, less than 0.3% and even more preferably, less than 0.1% of the impurity.
  • a 0.5M solution of potassium bromide was prepared by dissolving KBr (11.9 g) in purified water and then diluting with additional water to 200 ml.
  • PGX-6 (225.1 g, 0.556M) was dissolved in dry tetrahydrofuran (3.5 L) in an inert atmosphere and ‘Corey catalyst’ prepared according to Example 4 (0.25M in toluene, 223 ml, 0.1 eq.) added. The mixture was cooled to approximately ⁇ 15° C. and a solution of borane-methyl sulfide complex (10M BH 3 concentration, 41.7 ml, 417 mMol, 0.75 eq.) in dry tetrahydrofuran (450 ml) was added whilst maintaining the temperature at ca. 15° C. The mixture was then stirred at this temperature for 2 h until the reaction was shown to be complete by TLC.
  • borane-methyl sulfide complex (10M BH 3 concentration, 41.7 ml, 417 mMol, 0.75 eq.
  • PGX 6 315.2 g, 0.779M was dissolved in dry tetrahydrofuran (5.7 L) in an inert atmosphere and ‘Corey catalyst’ (0.25M in toluene, 312 ml, 0.1 eq.) added. The mixture was cooled to approximately ⁇ 15° C. and a solution of borane-methyl sulfide complex (10M BH 3 concentration, 58.5 ml, 0.585M, 0.75 eq.) in dry tetrahydrofuran (630 ml) added whilst maintaining the temperature at ca. 15° C. The mixture was then stirred at this temperature for 2 h until the reaction was shown to be complete by TLC.
  • borane-methyl sulfide complex 10M BH 3 concentration, 58.5 ml, 0.585M, 0.75 eq.
  • the crude mixture of epimers PGX-7/PGX-8 (686.5 g) made according to the synthetic procedure described in Example 5a was crystallised from heptane fraction/ethyl acetate (7:3) to give a crystalline mixture of epimers PGX-7 and PGX-8 (480.4 g) that is free of other impurities.
  • the filtrates from the crystallisation were evaporated to give an oil (150.3 g) comprising mainly impure PGX-7/PGX-8.
  • Injection 1 Injection of an aliquot of crystalline PGX-7/PGX-8 stock solution (A) and collection of appropriate fractions containing pure PGX-7 and impure PGX-7. The column was then flushed with eluent to elute any remaining PGX-8.
  • Injection 2 Injection of an aliquot of crystalline PGX-7/PGX-8 stock solution (A) and collection of appropriate fractions containing pure PGX-7 and impure PGX-7. Column flushed with methanol then equilibration of column with eluent.
  • Injection 3 Injection of an aliquot of impure PGX-7/PGX-8 stock solution (B) and collection of appropriate fractions containing pure PGX-7 and impure PGX-7 and impure PGX-7. Discarded silica gel and re-packed column with fresh silica gel and repeat cycle.
  • PGX-7 (152.0 g, 0.374M, 1.0 eq.) was dissolved in dry methanol (2.28 L) under an inert atmosphere and potassium carbonate (31.0 g, 0.224M, 0.6 eq.) added in one portion. The mixture was stirred at ambient temperature for 3 h until TLC showed the reaction was complete. 5M Hydrochloric acid (65.5 ml) was added to adjust the apparent pH of the solution to about 6.8-7.0 and the mixture then evaporated to dryness in vacuo. The sticky residue was treated with water (1.5 L) and the pH adjusted to 6.8-7.0 by the addition of 1M hydrochloric acid (7 ml).
  • Heptane (0.45 L) was added, the mixture agitated vigorously and the precipitated solid filtered off and washed with heptane (2 ⁇ 150 ml) on the filter. The solid was then triturated with a further quantity of heptane (2 ⁇ 150 ml). All the heptane washes were combined and added to the original filtrates. The aqueous phase was separated off, washed with heptane (2 ⁇ 150 ml) and then extracted with ethyl acetate (1 ⁇ 450 ml, 3 ⁇ 150 ml). The previously isolated solid was added to the combined ethyl acetate extracts and the mixture shaken until a solution formed.
  • PGX-9 (111.5 g 0.369M, 1.0 eq.) was dissolved in ethanol (1.67 L) and 5% palladium on carbon (5.58 g) added followed by a solution of sodium nitrite (8.90 g, 0.129M, 0.35 eq.) in water (100 ml). The mixture was then hydrogenated for 5 h until shown to be complete by TLC. 1M Hydrochloric acid (260 ml) was added and the mixture stirred for 1 h. The solids were removed by filtration through celite, the filtrates then evaporated to give an oily-solid residue which was partitioned between ethyl acetate (0.45 L) and water (0.45 L).
  • Example 7 On completion of the reaction described in Example 7, 1M hydrochloric acid was added and the reaction mixture stirred for 60 minutes as described in Example 7. The pH of the mixture was adjusted to between 5 and 6 by addition of solid sodium hydrogen carbonate prior to the filtration of the used catalyst, and evaporation of the filtrate to dryness. The work-up is then completed as described in Example 7 by extraction of the product into ethyl acetate.
  • Example 7a illustrates the improved procedure:
  • PGX 9 326.5 g, 1.08M, 1.0 eq. was dissolved in ethanol (6.5 L) and 5% palladium on carbon (16.3 g) added followed by a solution of sodium nitrite (26 g, 0.377M, 0.35 eq.) in water (200 ml). The mixture was then hydrogenated for 1.5 h until shown to be complete by TLC. 1M Hydrochloric acid (750 ml) was added and the mixture stirred for 1 h. The pH was adjusted to 5-6 by the addition of solid sodium hydrogen carbonate (55 g).
  • PGX-10 (109.7 g, 0.360M, 1.0 eq.) was dissolved in dry dimethyl formamide (720 ml) under an inert atmosphere.
  • Imidazole 29.4 g, 0.432M, 1.2 eq.
  • triethylamine (102.9 ml, 74.69 g, 0.738M, 2.05 eq.) were added and the mixture then cooled to approximately 0° C.
  • Triethylchlorosilane (111.2 g, 0.738M, 2.05 eq.) was added over 15 minutes at less than 10° C. The mixture was allowed to warm to room temperature and stirred for 2 h until TLC showed the reaction was complete.
  • PGX-11 (186.8 g, 0.3505M, 1.0 eq.) was dissolved in dry tetrahydrofuran (1.86 L) under an inert atmosphere and the solution cooled to less than ⁇ 70° C.
  • Diisobutylaluminium hydride (1.1M in toluene solution, 701 ml, 0.7711M, 2.2 eq.) was added to the reaction whilst maintaining the temperature below ⁇ 70° C. The mixture was then stirred at this temperature for 2 h until the reaction was shown to be complete by TLC. Methanol (132 ml) was added and the mixture allowed to warm to ⁇ 5° C.
  • the amount of (4-carboxybutyl)triphenylphosphonium bromide used in the above reaction is 3.0 equivalents with respect to the amount of starting material PGX-12 used.
  • it is treated with 5.6 equivalents of potassium tert-butoxide.
  • the slight deficit in the amount of potassium tert-butoxide used with respect to (4-carboxybutyl)triphenylphosphonium bromide is deliberate to ensure that all of the potassium tert-butoxide is consumed and is not present during the reaction with the lactol.
  • the organic layer was separated off and the aqueous layer acidified to pH 6 with an additional quantity of 3% aqueous citric acid solution (0.72 L) and then re-extracted with ethyl acetate (2 ⁇ 0.33 L).
  • the combined organic phases were washed with 3% aqueous citric acid solution (2 ⁇ 0.8 L), 5% sodium hydrogen carbonate solution (2 ⁇ 0.8 L) and saturated brine (2 ⁇ 1.6 L).
  • the solvent was evaporated off and heptane (1.0 L) and ethyl acetate (80 ml) added to the residue. The mixture was cooled to ⁇ 20° C. and agitated vigorously. After 30 minutes at ⁇ 20° C.
  • PGX-17 (0.504 g, 0.65 mmol) was weighed into a 50 ml round bottom flask equipped with a magnetic follower. Acetone (6.5 ml) was added and the resulting colourless solution stored at room temperature under a gentle stream of argon.
  • the crude product was purified by flash column chromatography.
  • a flash column was prepared using silica gel 60 (6 g) and hexane fraction/EtOAc (1:1) as the eluent.
  • the crude product (7 mg was removed as retention sample) was dissolved in the eluent (2 ml) and loaded onto the column.
  • the column was then eluted with hexane fraction/EtOAc mixtures as follows: Hexane fraction/EtOAc 1:1 50 ml 1:2 150 ml 1:3 80 ml
  • PGX-17 (170.0 g, 0.219M) was dissolved in acetone (1.9 L) under an inert atmosphere and a solution of pyridinium-p-toluenesulphonate (4.52 g, 18.0 mMol, 0.08 eq.) in water (0.3 L) added. The resulting mixture was stirred at ambient temperature for 3 h until TLC showed the reaction to be complete. After evaporation of the organic volatiles the residue was added to a mixture of ethyl acetate (2.1 L) and brine (2 L). The layers were separated and the aqueous phase further extracted with ethyl acetate (1 L). The organics were combined and washed with brine (0.5 L).
  • HPLC purification of latanoprost was carried out using a Waters RTM Spherisorb silica gel column.
  • the isocratic eluent system comprised a hydrocarbon and an alcohol in volume percent ranges of 88-98% and 2-12% respectively.
  • the hydrocarbons used were n-hexane, hexane fraction, n-heptane or heptane fraction.
  • the alcohols used were isopropanol, ethanol or methanol, either singly or in combination in ratios of 1:1 to 3:1.
  • HPLC separations of latanoprost were carried out using a Waters RTM Spherisorb silica gel column.
  • the isocratic eluent system comprised hydrocarbon: alcohol:acetonitrile in volume percent ratios of 90-96%: 2-6%: 2-4%.
  • the hydrocarbons used were n-hexane, hexane fraction, n-heptane or heptane fraction.
  • the alcohols used were either isopropanol or ethanol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Disclosed are processes for the synthesis and purification of prostaglandins and analogues thereof, especially analogues of PGF.

Description

  • The present invention relates to a novel process for the synthesis of prostaglandins and prostaglandin analogues. In particular, this invention relates to the synthesis of PGF[0001] and analogues thereof.
  • Prostaglandin F[0002] {PGF-7-[3,5-dihydroxy-2-(3-hydroxy-1-octenyl)-cyclopentyl]-5-heptenoic acid} has the structure:
    Figure US20040249172A1-20041209-C00001
  • This compound causes uterine contraction and is used clinically to induce and accelerate labour, and as an abortifacient. [0003]
  • Prostaglandins are generally characterised by the substituents on the cyclopentyl ring. The PGF[0004] prostaglandins and prostaglandin analogues generally have two hydroxyl groups in a cis configuration relative to the cyclopentane ring, and two side chains in a trans configuration relative to each other, each side chain having one double bond. Analogues of PGF can have a different number of double bonds in the side chains, and the substituents along the side chains may vary. Additionally, in some PGF analogues, the side chain carboxylic acid group may be esterified.
  • Examples of PGF[0005] analogues having therapeutic use are cloprostenol, which contains a chlorophenyl ether side chain substituent, fluprostenol, which contains a trifluoromethylphenyl ether side chain substituent, and travoprost:
    Figure US20040249172A1-20041209-C00002
  • These compounds have prostaglandin F agonist activity and are used in the clinic for treating glaucoma and ocular hypertension. [0006]
  • Latanoprost [13,14-dihydro-15(R)-17-phenyl-18,19,20-trinor-PGF[0007] -isopropyl] is an example of a PGF analogue having one saturated side chain and wherein the carboxylic acid group is esterified:
    Figure US20040249172A1-20041209-C00003
  • This compound is used in the clinic for the reduction of elevated intra-ocular pressure in patients with open angle glaucoma and ocular hypertension. [0008]
  • Prostaglandin analogues based on PGF[0009] for use in the treatment of glaucoma and ocular hypertension are described in, for example, European patent number 0 364 417 B1. The procedures for the synthesis of PGF analogues described therein start from an advanced-stage intermediate, 16-phenyl-17,18,19,20-trinor PGF, or the tetranor homologue thereof.
  • European patent number EP 0 544 899 B1 describes a process for the synthesis of 13,14-dihydro-15(R)-17-phenyl-18,19,20-trinor-PGF[0010] esters of the formula:
    Figure US20040249172A1-20041209-C00004
  • wherein the group R represents alkyl, phenyl or benzyl. The starting material for the process disclosed therein is the para-phenylbenzoyl (PPB)-protected Corey lactone: [0011]
    Figure US20040249172A1-20041209-C00005
  • In the disclosed process, the intermediate of formula: [0012]
    Figure US20040249172A1-20041209-C00006
  • is prepared by transforming the hydroxymethyl group of the protected Corey lactone, with an oxidising agent (dicyclohexylcarbodiimide) to form the corresponding aldehyde. Reaction of the aldehyde with a phenylphosphonium salt forms the above intermediate. [0013]
  • The intermediate is then reduced to form the corresponding hydroxy compound, which is subjected to a hydrogenation reaction to form the saturated side chain intermediate of the formula: [0014]
    Figure US20040249172A1-20041209-C00007
  • The lactone oxo group of the above intermediate is reduced to form the corresponding hydroxy analogue, which is subsequently deprotected to give the following intermediate: [0015]
    Figure US20040249172A1-20041209-C00008
  • A subsequent Wittig reaction followed by esterification forms the desired PGF[0016] product.
  • The process disclosed in EP 0 544 899 B1 suffers from a major drawback in that only moderate or low yields are achieved in certain steps. In particular, according to the examples, the yield for the first step (reaction of the PPB-protected Corey lactone with triphenyl-(4-phenyl-3-oxobutylphosphonium iodide on a small scale was only around 49%. Even on a large scale, the reported yield was only around 53%. [0017]
  • These low yields at the outset result in, at best, difficulties in purifying the intermediates, and at worse, a loss of valuable and expensive starting material. Additionally, the reported yield of 38% in the second step (reduction of the side chain oxo group), is also less than satisfactory. [0018]
  • Furthermore, only moderate yields are achieved in subsequent reaction steps, resulting in a dramatic reduction of the overall yield. [0019]
  • In an alternative synthesis described in B. Resul et al., J. Med. Chem. (1993), 36, pp. 243-248, a similar route was employed, with the exception that the deprotection step was carried out before the reduction of the oxo group of the lactone. This process also suffers from low yields (about 58%) in the first step, and only moderate or low yields were reported for subsequent steps. [0020]
  • In view of the prior art procedures and the problems associated therewith, it is an object of the present invention to provide an alternative process for the synthesis of PGF[0021] and analogues and salts thereof. Further objects of at least specific embodiments of the invention include the provision of a synthetic route with good yields and intermediates that can be readily purified.
  • Accordingly, the present invention provides a process for the preparation of prostaglandin derivatives having the Formulae (I-A) and (I-B): [0022]
    Figure US20040249172A1-20041209-C00009
  • wherein: [0023]
  • B represents a substituent selected from the group consisting of: [0024]
  • (i) C[0025] 1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo and CF3; and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3; and
  • R″ represents C[0026] 1-C20 alkyl (preferably a C1 to C6 alkyl group, e.g. methyl, ethyl, propyl and iso-propyl), C3 to C8 cycloalkyl (e.g. cyclohexyl, cyclopropyl, cyclobutyl) or C6 to C10 aryl (preferably phenyl). A preferred R″ group is iso propyl.
  • It will be appreciated by a person of skill in the art that the present invention can be applied to the synthesis of compounds of Formula (I-A) and (I-B) wherein R″ is other than an alkyl, cycloalkyl or aryl group. In fact, the group R″ can represent any group that can be introduced by reaction of an acid intermediate of the compound of Formula (I-A) or (I-B) with a compound R″—X (X=halo, and preferably iodo) in the presence of a base, such as DBU. Examples of other suitable R″ groups include, but are not limited to, unsaturated C[0027] 1 to C20 alkyl, unsaturated C3 to C8 cycloalkyl, wherein the saturated or unsaturated alkyl or cycloalkyl groups, or aryl groups can be substituted with one or more (typically 1 to 3) substituents such as CF3, C1 to C6 alkoxy, CN. Other examples of suitable R″ groups include C6 to C10 heterocycloalkyl (e.g. piperidinyl), C6 to C10 heteroaryl (such as pyridyl) and substituted C6 to C10 aryl (including substituents such as CF3, C1 to C6 alkoxy, CN).
  • The embodiments of the process of the present invention is shown in Schemes 1-4: [0028]
  • Scheme 1 illustrates one route to the synthesis of compounds of Formula (I-A) and (I-B), starting from a protected-Corey lactone compound of Formula (X): [0029]
    Figure US20040249172A1-20041209-C00010
  • In an alternative procedure according to the present invention, the intermediate (VI-A) in Scheme 1 can be made by carrying out steps (a) and (b) as shown in Scheme 1, and substituting steps (c), (d), and (e) in Scheme 1 with the steps (e′), (c′) and (d′) as shown in the following Scheme 2: [0030]
    Figure US20040249172A1-20041209-C00011
  • Scheme 3 illustrates an alternative procedure for the synthesis of compounds of Formula (I-A) and (I-B), starting from intermediates of structure (IIIa) and (IIIb): [0031]
    Figure US20040249172A1-20041209-C00012
  • Scheme 4 shows an alternative procedure for the synthesis of compounds of Formula (I-B) starting from the intermediates of Formula (IIa) and (IIb): [0032]
    Figure US20040249172A1-20041209-C00013
  • In one aspect of the present invention, there is provided a process for the production of a compound of Formula (IX): [0033]
    Figure US20040249172A1-20041209-C00014
  • wherein [0034]
  • A represents C[0035] 6 to C10 aryl which may be substituted with one to three substituents independently selected from the group consisting of (i) halo, (ii) C1 to C6 alkyl and (iii) unsubstituted C6 to C10 aryl;
  • the process comprising subjecting a compound of Formula (X) [0036]
    Figure US20040249172A1-20041209-C00015
  • to an oxidation reaction in the presence of a catalytic amount of a stable organic nitroxyl radical. [0037]
  • The above reaction may be carried out by electrooxidation in the presence of the organic nitroxyl radical. [0038]
  • Alternatively, the oxidation reaction may be carried out in the presence of a nitroxyl radical and at least one molar equivalent of a co-oxidant selected from the group consisting of m-chloroperbenzoic acid, high-valent metal salts, sodium bromite, sodium or calcium hypochlorite, N-chlorosuccinimide or hypervalent iodine compounds such as [bis(acetoxy)iodo]benzene. Preferably, the co-oxidant is sodium hypochlorite. [0039]
  • The stable organic radical preferably comprises a completely α-substituted piperidin-1-oxy radical, such as 2,2,6,6-tetramethyl-1-piperidinyloxy, free radical (TEMPO, free radical). [0040]
  • Prior art oxidation procedures for oxidising the compound of Formula (X) to form the compound of Formula (IX) include the use of dimethylsulfoxide-dicyclohexylcarbodiimide. However, such a method requires isolation of the aldehyde (IX). Since the aldehyde (IX) is not particularly stable in solution, an amount of decomposition product is usually observed during work-up. [0041]
  • Advantageously, in the present method of oxidation of the compound of Formula (IX) using a stable organic radical such as TEMPO free radical, the aldehyde (IX) solution obtained in this step can be employed in the subsequent step without isolation of the aldehyde, thus minimising any decomposition. [0042]
  • In a further aspect of the present invention, there is provided a process for the production of a compound of Formula (VIII): [0043]
    Figure US20040249172A1-20041209-C00016
  • wherein [0044]
  • A represents C[0045] 6 to C10 aryl which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of (i) halo, (ii) C1 to C6 alkyl and (iii) unsubstituted C6 to C10 aryl;
  • B represents a substituent selected from the group consisting of: (i) C[0046] 1 to C6 alkyl, (ii) C7 to C1-6 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo and CF3 and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3,
  • the process comprising subjecting a compound of Formula (IX): [0047]
    Figure US20040249172A1-20041209-C00017
  • to reaction with a phosphonate compound having the structure: [0048]
    Figure US20040249172A1-20041209-C00018
  • wherein A and B are as defined as above, and each R′″ is the same or different (preferably the same) and each represents a C[0049] 1 to C6 alkyl group (preferably methyl), the process being carried out in the presence of lithium chloride and an organic base (such as tertiary alkylamines, e.g. di-iso-propylethylamine).
  • The compounds of Formula (IX) are commercially available or can be made from commercially available starting materials. For example, the compound of Formula (IX) may be prepared by the process described in U.S. Pat. No. 3,778,450. [0050]
  • The phosphonate compound of formula: [0051]
    Figure US20040249172A1-20041209-C00019
  • may be produced by methods known in the art [see for example, B. Resul et al., J. Med. Chem. (1993), 36, 243-248)]. As an example, dimethyl-(2-oxo-4-phenylbutyl)phosphonate may be produced from dimethyl-(2-oxo-propyl)phosphonate via the following reaction: [0052]
    Figure US20040249172A1-20041209-C00020
  • A preferred process for producing the phosphonate compound of formula: [0053]
    Figure US20040249172A1-20041209-C00021
  • comprises the reaction of a dialkylmethylphosphonate of structure: [0054]
    Figure US20040249172A1-20041209-C00022
  • with a strong base (e.g. [0055] nBuLi) to generate an anion, followed by reaction of the anion with a compound of formula B—CO2Ry, wherein Ry can represent any group that can form a leaving group —ORy. Typical Ry groups include C1 to C6 alkyl, such as methyl, or ethyl (methyl is preferred). Thus the reaction of dimethylmethyl phosphonate (methylphosphonic acid dimethyl ester) with a strong base such as n-butyllithium, to general the corresponding anion, followed by reaction of the anion with a compound of Formula B—CO2Ry is shown below:
    Figure US20040249172A1-20041209-C00023
  • Dimethyl(2-oxo-4-phenylbutyl)phosphonate can be produced in good yield from the following reaction: [0056]
    Figure US20040249172A1-20041209-C00024
  • The product from this reaction can be typically purified by distillation. Advantageously, this reaction is usually free of side reactions compared with the prior art process using dimethyl(2-oxopropyl)phosphonate. [0057]
  • The process described above for producing the compound of formula Vil is a modified Horner-Wadsworth-Emmons reaction carried out in milder conditions, in which the usual base used to generate the anion of the phosphonate, sodium hydride in THF or potassium carbonate in toluene, is replaced by a base selected from the group consisting of tertiary alkylamines, such as triethylamine and diisopropylethylamine and DBU [1,8-diazabicyclo(5.4.0)undec-7-ene]. Advantageously, unlike the prior art methods which can lead to poor to moderate yields of the product (VIII), the use of milder reagents, i.e. lithium cations from lithium chloride, in combination with these tertiary alkylamines leads to cleaner reactions with high yield of product. [0058]
  • The reaction is preferably carried out at temperatures in the range of −20° C. to 40° C., and preferably −10° C. to 30° C. Suitable solvents for this reaction include those selected from the group consisting of benzene, toluene, acetonitrile, dichloromethane, diethylether, and mixtures thereof. [0059]
  • In the compound of Formula (VIII), the group A preferably represents an unsubstituted C[0060] 6 to C10 aryl group (e.g. phenyl).
  • Other preferred substituents for the group A include those selected from C[0061] 6 to C10 aryl group being substituted with one substituent selected from halo or phenyl. Further preferred substituents for the group A include unsubstituted or substituted phenyl wherein the substituent is selected from halo or phenyl. In a preferred process, the group A represents phenyl.
  • According to another aspect of the present invention, there is provided a process for the production of a compound of Formula (VII): [0062]
    Figure US20040249172A1-20041209-C00025
  • wherein [0063]
  • A represents unsubstituted C[0064] 6 to C10 aryl;
  • B represents a substituent selected from the group consisting of: [0065]
  • (i) C[0066] 1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo and CF3 and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3;
  • the process comprising reducing the oxo group in the side chain of a compound of Formula (VIII): [0067]
    Figure US20040249172A1-20041209-C00026
  • Suitable reducing agents for the reduction of the side chain oxo group include borane-dimethylsulfide complex, lithium tri-sec-butylborohydride, {LiB[CH(CH[0068] 3)CH(C2H5]3H} (L-SelectrideRTM) and sodium borohydride. Where the final product is desired as a racemate (such as fluprostenol), a non-stereoselective reducing agent may be used (e.g. LiAlH4, NaBH4 and other metallic hydrides).
  • Where the final product is desired as a single isomer (e.g. as in latanoprost), the reducing agent suitably comprises borane-dimethylsulfide complex in the presence of a chiral oxazaborolidine catalyst (“Corey catalyst”) because of the greater selectivity towards the production of a major amount of the desired isomer. Although this reaction strongly favours the production of the desired isomer, any undesired isomer which may be formed, may be separated by chromatographic techniques, such as flash column chromatography. [0069]
  • Thus, a preferred reagent for the reduction reaction is borane-dimethylsulfide complex in the presence of a chiral oxazaborolidine catalyst (Corey catalyst). In this embodiment of the present invention, the group A in the compound of Formula (VII), in addition to being unsubstituted C[0070] 6 to C10 aryl, can also represent C6 to C10 aryl substituted with one to three substituents independently selected from the group consisting of (i) halo, i.e. fluoro, chloro, bromo or iodo, (ii) C1 to C6 alkyl and (iii) Ce to C10 aryl, such as phenyl.
  • The use of borane-dimethylsulfide complex in combination with a Corey catalyst is especially preferred because the reaction takes place with excellent selectivity. In fact, a marked improvement in stereoselectivity is seen compared with the reaction using L-Selectride[0071] RTM. A further advantage is that the reduction reaction using borane-dimethylsulfide complex can be carried out at a higher temperature (typically −15° C. to −18° C.) compared with L-SelectrideRTM, which requires a reaction temperature of less than −70° C.
  • The Corey catalyst comprises a chiral oxazaborolidine compound [see J. Am. Chem. Soc., 109, 5551, (1987) and J. Am. Chem. Soc. 109, 7925, (1987) and references cited in Lancaster Catalogue 2000-2001, page 819] such as (R)-tetrahydro-1-methyl-3,3-diphenyl-1H,3H-pyrrole[1,2-c][1,3,2]oxazaborole, may be prepared by reaction of the appropriate chiral prolinol [such as the commercially available (R)-(+)-α,α-diphenylprolinol] with a trialkyl boroxine, e.g.: [0072]
    Figure US20040249172A1-20041209-C00027
  • The reaction is carried out in inert conditions in a solvent such as toluene, diethylether or tetrahydrofuran. The oxazaborolidine catalyst is employed as a solution in the reduction step. [0073]
  • According to another aspect of the present invention, there is provided a process for the production of a compound of Formula (V): [0074]
    Figure US20040249172A1-20041209-C00028
  • wherein [0075]
  • the dashed line forms an optional double bond; [0076]
  • B represents a substituent selected from the group consisting of: [0077]
  • (i) C[0078] 1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6alkyl, halo and CF3 and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3; and
  • R′ represents the substituent: [0079]
    Figure US20040249172A1-20041209-C00029
  • wherein R[0080] x, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl;
  • the process comprising the steps of: [0081]
  • (a) deprotecting the hydroxyl group of a compound of Formula (VII): [0082]
    Figure US20040249172A1-20041209-C00030
  • wherein A represents C[0083] 6 to C10 aryl which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of (i) halo, (ii) C1 to C6 alkyl and (iii) unsubstituted C6 to C10 aryl;
  • to form the corresponding hydroxy-substituted compound of Formula (VI): [0084]
    Figure US20040249172A1-20041209-C00031
  • (b) optionally, when the dashed line of the compound of Formula (V) represents a single bond, the double bond of the compound of Formula (VI) is hydrogenated to form the compound of Formula (VI-A): [0085]
    Figure US20040249172A1-20041209-C00032
  • (c) subjecting a compound of Formula (VI) or (VI-A) to a reaction with a silylating agent having the formula: [0086]
    Figure US20040249172A1-20041209-C00033
  • wherein R[0087] x, Ry and Rz are as defined above and X represents F, Cl, Br or I.
  • The deprotection step (a) wherein the protecting group A on the hydroxyl group of the cyclopentane ring is removed, is preferably carried out in the presence of a base. Preferred bases for use in the deprotection reaction includes those selected from the group consisting of K[0088] 2CO3, Na2CO3 and Li2CO3, with K2CO3 being particularly preferred.
  • Suitable solvents for the deprotection reaction include alcohols, such as methanol, ethanol and isopropanol. [0089]
  • The isolation of the deprotected product from step (a) may be carried out by standard chromatography procedures. However, it has been found that the deprotected product can advantageously be isolated by extraction with hexane fractions, thus avoiding the use of time consuming and expensive chromatographic procedures. [0090]
  • For the production of prostaglandin derivatives having one saturated side chain, such as latanoprost described above, it is convenient at this stage, i.e. after the deprotection step (a), to hydrogenate the double bond in the side chain to form the intermediate of Formula (VI-A). [0091]
  • The hydrogenation step can be carried out using any suitable hydrogenation catalyst such as palladium, platinum or rhodium, which may be supported on an inert support, such as carbon. An example of a suitable hydrogenation catalyst is 5% palladium on carbon. [0092]
  • In a preferred procedure, the hydrogenation reaction is carried out in the presence of sodium nitrite, preferably in aqueous solution. This procedure avoids the formation of elimination products and thus results in improved yields (typically greater than 95%) of the compounds of Formula (VI-A). Suitable solvents for the hydrogenation reaction include alcohols such as methanol and ethanol. On completion of the hydrogenation reaction, the mixture is preferably stirred with dilute hydrochloric acid to remove the nitrite (by conversion to nitrous acid, which decomposes at ambient temperature). This procedure ensures that nitrite is not carried through to the subsequent synthetic procedures. [0093]
  • Without wishing to be bound by theory, the role of the sodium nitrite in the hydrogenation reaction is to avoid the formation of elimination products, that is, the elimination of a water molecule from the side chain of the starting material and, as a consequence, formation of the fully saturated deoxygenated analogue of the desired product. [0094]
  • In order to produce the compound of Formula (V), the compound produced in step (a) having the Formula (VI) or the compound produced in step (b) having the Formula (VI-A) is reacted with a silylating agent (X)Si(R[0095] x)(Ry)(Rz). The groups Rx, Ry, and Rz can be the same or different each represents a C1 to C6 alkyl group or a C6 to C10 aryl group. Preferably, each of the groups Rx, Ry, and Rz are independently selected from methyl, ethyl, butyl, isopropyl. Particularly preferred silylating agents for use in step (c) are selected from the group consisting of trimethylsilyl chloride, triethylsilyl chloride and tert-butyldimethylsilyl chloride. Triethylsilyl chloride is particularly preferred.
  • The silylation step is preferably carried out in the presence of a base, for example an organic base, such as imidazole or trialkylamines, such as triethylamine. [0096]
  • Suitable solvents for use in the silylation reaction include polar aprotic solvents such as tetrahydrofuran or dimethylsulfoxide, or chlorinated solvents such as dichloromethane. Preferably, however, the reaction is carried out in a solvent comprising dimethylformamide. [0097]
  • The use of silyl protecting groups in accordance with the present invention is advantageous because it generally results in cleaner reactions, with higher yields compared with reactions wherein the hydroxyl group is not protected. [0098]
  • The use of silyl protecting groups in the present process has particular advantages compared with the prior art process employing, e.g. benzoyl- and para-phenylbenzoyl (PPB)-protecting groups because silyl groups are stable to the subsequent reduction reaction with e.g. DIBAL-H (di-iso-butylaluminium). [0099]
  • In fact, the presence of benzoyl- and PPB-protecting groups prevents the use of many reducing agents, including DIBAL-H, in the subsequent reduction of the lactone ring to form the lactol, because such a reaction can result in the reduction of the oxo moieties in the protecting groups. Thus, in prior art procedures wherein DIBAL is employed as a reducing agent and wherein the starting material comprises benzoyl- or PPB-protecting groups, starting materials must be deprotected prior to the reduction step. However, the presence of unprotected hydroxyl groups in the DIBAL-H reduction step is undesirable because each free hydroxyl group or the starting material coordinates with DIBAL-H. As a result, the use of additional equivalents of DIBAL-H becomes necessary. [0100]
  • A second advantage of using silyl protecting groups in the subsequent Wittig reaction [step (i) in Scheme 1], is that the formation of the desired cis isomer is favoured. Silyl protecting groups have the further advantage in that they generally increase the lipophilic character of the molecules, so that their derivatives are readily soluble in organic solvents. Thus, in the Wittig reaction, removal of the phosphine oxide by-product is facilitated because the silyl-protected Wittig reaction product [(IIIa)/(IIIb)] is soluble in hexane, whereas the triphenylphosphine oxide is insoluble, thus allowing separation by filtration. Subsequent purification of the product can be carried out by silica gel filtration, rather than a full chromatographic purification. [0101]
  • A further advantage of employing silyl protecting groups is that these protecting groups can be removed under mild conditions, as discussed below. [0102]
  • Alternatively, the intermediate compound of Formula (V) wherein the solid and dashed lines represent a single bond (i.e. compounds of formula (V-A): [0103]
    Figure US20040249172A1-20041209-C00034
  • can be made from compounds of Formula (VIII) by a process comprising the steps of: [0104]
  • (a) hydrogenating the double bond of the compound of Formula (VIII): [0105]
    Figure US20040249172A1-20041209-C00035
  • to form a compound of Formula (XIII): [0106]
    Figure US20040249172A1-20041209-C00036
  • (b) reducing the side chain oxo group of the compound of Formula (XIII) to form a compound of formula (XIV): [0107]
    Figure US20040249172A1-20041209-C00037
  • (c) deprotecting the hydroxyl group in the compound of Formula (XIV) to form a compound of formula (VI-A): [0108]
    Figure US20040249172A1-20041209-C00038
  • (d) subjecting the compound of Formula (VI-A) to a reaction with a silylating agent having the formula: [0109]
    Figure US20040249172A1-20041209-C00039
  • wherein R[0110] x, Ry and Rz are as defined above and X represents F, Cl, Br or I.
  • Steps (a) to (c) of this process are depicted as steps (e′), (c′) and (d′) in Scheme 2. Step (d) corresponds to step (f) of Scheme 1, the product of which is a compound of Formula (V) wherein the dashed and solid line represents a single bond. The hydrogenation, reduction, deprotection and silylation steps in this alternative procedure are carried out as for the immediately preceding process to form the compounds of Formula (V). [0111]
  • According to another aspect of the present invention, there is provided a process for the preparation of a compound of Formula (IV): [0112]
    Figure US20040249172A1-20041209-C00040
  • wherein: [0113]
  • the dashed line forms an optional double bond; [0114]
  • B represents a substituent selected from the group consisting of: [0115]
  • (i) C[0116] 1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6alkyl, halo and CF3 and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3; and
  • R′ represents the substituent: [0117]
    Figure US20040249172A1-20041209-C00041
  • wherein R[0118] x, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl;
  • the process comprising reducing the lactone oxo group of the compound of Formula (V): [0119]
    Figure US20040249172A1-20041209-C00042
  • A suitable reducing agent for this process is di-iso-butylaluminium hydride DIBAL-H), and the reaction may be carried out in e.g. tetrahydrofuran. [0120]
  • According to a further aspect of the present invention there is provided a process for the production of a compound of Formula (IIIa) or (IIIb), or a mixture thereof: [0121]
    Figure US20040249172A1-20041209-C00043
  • wherein [0122]
  • the dashed line forms an optional double bond; [0123]
  • B represents a substituent selected from the group consisting of: [0124]
  • (i) C[0125] 1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo and CF3 and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3; and
  • R′ represents the substituent: [0126]
    Figure US20040249172A1-20041209-C00044
  • wherein R[0127] x, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl;
  • the process comprising subjecting a compound of Formula (IV): [0128]
    Figure US20040249172A1-20041209-C00045
  • to a Wittig reaction with an ylide, the ylide being formed by reaction of a compound of formula: [0129] HO 2 C ( CH 2 ) 4 P ( R W ) 3 X
    Figure US20040249172A1-20041209-M00001
  • O2C(CH2)4P(Rw)3X
  • with a strong base, wherein [0130]
  • R[0131] w represents C1 to C6 alkyl or C6 to C10 aryl; and
  • X represents fluoro, chloro, bromo or iodo. [0132]
  • Preferably, the group R[0133] w represents phenyl. The group X preferably represents bromo.
  • Reagents of formula: [0134]
  • HO2C(CH2)4P(Rw)3X
  • are commercially available, or can be prepared by reaction of a phosphine, P(R[0135] w)3, with HO2C(CH2)4—X′ (wherein X′ represents halide, e.g. F, Cl, Br or I). Suitable bases for the forming the ylide include those selected from the group consisting of butyllithium, sodium amide, sodium hydride, and alkali metal alkoxides, including sodium methoxide, sodium ethoxide, potassium ethoxide and potassium tert-butoxide. Potassium tert-butoxide is a particularly preferred base. A suitable solvent for this reaction is tetrahydrofuran.
  • Thus, in a preferred embodiment, the ylide may be formed by the reaction of (4-carboxybutyl)-triphenylphosphonium bromide with potassium tert-butoxide: [0136]
    Figure US20040249172A1-20041209-C00046
  • The ylide can be generated using 3 equivalents of the phosphonium halide and 6 equivalents of base, i.e. a ratio of phosphonium halide and base of 1:2, but is preferably generated using 2.15 equivalents of the phosphonium halide and 4 equivalents of base. [0137]
  • During the Wittig reaction, the silyl protecting groups of the hydroxyl substituent on the cyclopentyl ring may migrate to the hydroxyl group formed by the opening of the lactol ring, to result in a mixture of 9- and 11-silylated isomers of Formula (IIIa) and (IIIb). [0138]
  • Although the mixture of compounds (IIIa) and (IIIb) can be separated e.g. by chromatographic procedures, separation is not necessary at this stage because the protecting groups are removed in subsequent reaction steps. Thus, in the process according to the invention, it is preferred that such a mixture of the 9- and 11-silylated isomers (IIIa) and (IIIb) is used in the subsequent reaction step without separation. [0139]
  • In a further aspect of the present invention there is provided a process for the preparation of a compound of Formula (XI): [0140]
    Figure US20040249172A1-20041209-C00047
  • wherein [0141]
  • the groups R′ are the same and each represents the substituent: [0142]
    Figure US20040249172A1-20041209-C00048
  • wherein R[0143] x, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl;
  • the process comprising reacting a compound of Formula (IIIa) or Formula (IIIb), or a mixture thereof, to reaction with a silylating agent having the formula: [0144]
    Figure US20040249172A1-20041209-C00049
  • wherein R[0145] x, Ry and Rz are as defined above and X represents F, Cl, Br or I.
  • This procedure is advantageously carried out where a mixture of the compounds of Formula (IIIa) and Formula (IIIb) are formed as the products of the Wittig reaction. The reaction of such a mixture with at least one molar equivalent of a silylating agent, preferably the same silylating agent as is used to protect the hydroxyl groups of the compounds of Formula (V), enables the mixture of compounds of Formula (IIIa) and (IIIb) to be “amalgamated” into a single product of Formula (XI) for subsequent reaction steps. Preferably, in this step, at least a molar equivalent of silylating agent to starting material is employed. Typically, 1.1 to 2 molar equivalents are employed. The formation of a single product allows for better control of subsequent reaction steps and purification. [0146]
  • According to another aspect of the present invention, there is provided a process for the preparation of a compound of Formula (IIa) or (IIb) or a mixture thereof: [0147]
    Figure US20040249172A1-20041209-C00050
  • wherein [0148]
  • the dashed line represents an optional double bond; [0149]
  • B represents a substituent selected from the group consisting of: (i) C[0150] 1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo and CF3 and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3;
  • R′ represents the substituent: [0151]
    Figure US20040249172A1-20041209-C00051
  • wherein R[0152] x, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl; and
  • R″ represents C[0153] 1 to C6 alkyl or C3 to C8 cycloalkyl;
  • the process comprising subjecting a compound of Formula (IIIa) or Formula (IIIb) or a mixture thereof, to reaction with an alkyl halide of formula R″-Hal, wherein R″ represents a C[0154] 1 to C6 alkyl group (such as isopropyl) or a C3 to C8 cycloalkyl group, and “Hal” represents chloro, bromo, or iodo (preferably iodo), in the presence of DBU.
  • As indicated above, when the Wittig reaction results in migration of the silyl protecting group to form a mixture of 9- and 11-silylated isomers of Formula (IIIa) and (IIIb), the mixture may be alkylated by the process indicated above, to form a mixture of 9- and 11-silylated esters of Formula (IIa) and (IIb). Instead of carrying out a silylation of a mixture of compounds of Formula (IIIa) and (IIIb), it is also possible to carry out the silylation after the alkylation step, i.e. on the mixture of compounds of Formula (IIa) and (IIb). [0155]
  • Accordingly, a further aspect of the present invention provides a process for the production of a compound of Formula (XII): [0156]
    Figure US20040249172A1-20041209-C00052
  • wherein [0157]
  • R′ represents the substituent: [0158]
    Figure US20040249172A1-20041209-C00053
  • wherein R[0159] x, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl; and
  • R″ represents C[0160] 1 to C6 alkyl or C3 to C8 cycloalkyl,
  • the process comprising subjecting a compound of Formula (IIa) or Formula (IIb) or a mixture thereof to reaction with at least one molar equivalent of silylating agent having the formula: [0161]
    Figure US20040249172A1-20041209-C00054
  • wherein R[0162] x, Ry and Rz are as defined above and X represents F, Cl, Br or I.
  • As indicated above for the silylation of the mixture of compounds of Formula (IIIa) and (IIIb), this process is preferably carried out in the presence of at least a molar equivalent of silylating agent, and even more preferably 1.1 to 2 molar equivalents of silylating agent is employed. Again, this step leads to the “amalgamation” of the mixture of compounds of Formula (IIa) and (IIb) to form a single product [i.e. compounds of Formula (XII)] which facilitates control of subsequent reaction steps and purification of subsequent intermediates. [0163]
  • It has been found that in the steps wherein the mixtures of compound of Formula (IIa) and (IIb) or mixtures of compounds of Formula (lla) and (IIIb) are reacted with silylating agents to form single products of Formula (XII) and Formula (XI) respectively (i.e. precursors to the target compounds of Formula IA and IB), purification is facilitated. Advantageously, it has been found that the compounds of Formula (XII) and (XI) can be purified by simply by filtration through silica gel, thus obviating the need to perform a full chromatographic separation, which is particularly undesirable at the late stage of the synthetic process. One reason for this is that the presence of three silyl groups in the compounds of Formula (XII) and (XI) leads to highly lipophilic molecules, which are highly soluble in heptane and thus can be easily separated from the more polar impurities. [0164]
  • According to another aspect of the present invention, there is provided a process for the preparation of a compound of Formula (XII): [0165]
    Figure US20040249172A1-20041209-C00055
  • wherein: [0166]
  • R′ is the same and each represents the substituent: [0167]
    Figure US20040249172A1-20041209-C00056
  • wherein R[0168] x, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl; and
  • R″ represents C[0169] 1 to C6 alkyl or C3 to C8 cycloalkyl;
  • the process comprising subjecting a compound of Formula (XI): [0170]
    Figure US20040249172A1-20041209-C00057
  • wherein the groups R′ are preferably the same and each represents the substituent: [0171]
    Figure US20040249172A1-20041209-C00058
  • wherein R[0172] x, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl;
  • to a reaction with an alcohol, having the formula R″—OH, wherein R″ represents a C[0173] 1 to C6 alkyl group (e.g. isopropanol) or C3 to C8 cycloalkyl (e.g. cyclohexanol).
  • The above process may be carried out optionally in the presence of a weak acid catalyst, such as pyridinium p-toluenesulfonate. The reaction should be carried out in the absence of water, to avoid deprotection of the silyl groups. [0174]
  • According to a further aspect of the present invention, there is provided a process for the production of a compound of Formula (I-A): [0175]
    Figure US20040249172A1-20041209-C00059
  • wherein [0176]
  • B represents a substituent selected from the group consisting of: [0177]
  • (i) C[0178] 1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo and CF3 and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3;
  • the process comprising removing the silyl protecting groups, R′, from a compound selected from the group consisting of [0179]
  • (i) a compound of Formula (IIIa), Formula (IIIb) or a mixture thereof: [0180]
    Figure US20040249172A1-20041209-C00060
  • (ii) a compound of Formula (XI): [0181]
    Figure US20040249172A1-20041209-C00061
  • wherein B and R′ are as defined above. [0182]
  • According to another aspect of the present invention, there is provided a process for the production of a compound of Formula (I-B): [0183]
    Figure US20040249172A1-20041209-C00062
  • wherein [0184]
  • B represents a substituent selected from the group consisting of: [0185]
  • (i) C[0186] 1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo and CF3 and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3; and
  • R″ represents C[0187] 1 to C6 alkyl or C3 to C8 cycloalkyl;
  • the process comprising removing the silyl protecting groups R′ from a compound selected from the group consisting of: [0188]
  • (i) a compound of Formula (IIa) or (IIb) or a mixture thereof: [0189]
    Figure US20040249172A1-20041209-C00063
  • and [0190]
  • (ii) a compound of Formula (XII): [0191]
    Figure US20040249172A1-20041209-C00064
  • wherein B and R″ are as defined as above. [0192]
  • The deprotection of the silyl protecting groups R′ is advantageously carried out in mild reaction conditions. Suitable reagents for removal of the silyl groups from the compounds of Formula (IIIa), (IIIb), (XI), (IIa), (IIb) and (XII) include weak acids such as acetic acid and citric acid. An especially preferred weak acid is pyridinium p-toluenesulfonate. [0193]
  • The reaction may be carried out in any suitable solvent or solvent mixtures. An especially preferred solvent for the deprotection reaction comprises acetone and water. [0194]
  • In accordance with preferred embodiments of the present invention, the compounds of Formulae (VI), (VI), (VI-A), (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (I-A), (I-B), (XI), (XII) and (XIV) are single enantiomers (i.e. the wavy line in the side chain represents [0195]
    Figure US20040249172A1-20041209-P00900
    or
    Figure US20040249172A1-20041209-P00901
    ). As discussed above, such compounds can be made by using a stereoselective reducing agent [e.g. borane-dimethylsulfide complex in the presence of a chiral oxazaborolidine (Corey) catalyst] in step (c) of Scheme 1, or step (c′) in Scheme 2.
  • In accordance with preferred embodiments of the present invention, the group B in the compounds of Formula (XII), (XI), (VII), (VII), (VI), (VI-A), (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (I-A) or (I-B) is selected from the group consisting of (I) C[0196] 1 to C6 alkyl, (ii) C7 to C16 aralkyl wherein the aryl group is unsubstituted and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which is substituted with a substituent selected from halo or CF3.
  • Even more preferred are compounds of Formula (XII), (XI), (VIII), (VII), (VI), (VI-A), (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (I-A) or (I-B) wherein B is selected from the group consisting of (i) C[0197] 1 to C6 straight chain alkyl, (ii) —(CH2)2Ph and (iii) —CH2ORa, wherein Ra represents a phenyl group substituted with a chloro or CF3 group.
  • Especially preferred are compounds of Formula (XII), (XI), (VIII), (VII), (VI), (VI-A), (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (I-A) or (I-B) wherein B represents a substituent selected from the group consisting of: [0198]
    Figure US20040249172A1-20041209-C00065
  • In a further preferred embodiment of the present invention, the solid and dashed lines in each of Formulae (XII), (XI) (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (I-A) and (I-B) forms a single bond. [0199]
  • In yet another preferred embodiment, the solid and dashed lines in each of Formulae (XII), (XI) (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (I-A) and (I-B) forms a double bond. [0200]
  • For the compounds of Formulae (XII), (XI) (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (I-A) and (I-B) wherein the solid and dashed line represents a single bond, B preferably represents —CH[0201] 2CH2Ph.
  • For the compounds of Formulae (XII), (XI) (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (I-A) and (I-B) wherein the dashed line represents a double bond, B preferably represents a substituent selected from the group consisting of: [0202]
    Figure US20040249172A1-20041209-C00066
  • As will be appreciated by a person of skill in the art, the process of the present invention is generally applicable for the synthesis of prostaglandins and prostaglandin analogues, particularly PGF[0203] and analogues thereof. The process is particularly useful for the production of a compound selected from the group consisting of:
    Figure US20040249172A1-20041209-C00067
  • In a preferred embodiment, the present invention provides a process for the synthesis of latanoprost comprising the steps of: [0204]
  • (1) subjecting a compound of Formula (X): [0205]
    Figure US20040249172A1-20041209-C00068
  • wherein A represents a C[0206] 6 to C10 aryl group, preferably phenyl, which may be substituted with one to three substituents independently selected from the group consisting of (i) halo, (ii) C1 to C6 alkyl and (iii) unsubstituted C6 to C10 aryl,
  • to an oxidation reaction with sodium hypochlorite, the oxidation reaction being carried out in the presence of a catalytic amount of a stable organic nitroxyl radical (preferably TEMPO free-radical), to form a compound of Formula (IX): [0207]
    Figure US20040249172A1-20041209-C00069
  • (2) subjecting the compound of Formula (IX) as defined above to reaction with a compound having the structure: [0208]
    Figure US20040249172A1-20041209-C00070
  • wherein each R′″ the same or different and each represents a C[0209] 1 to C6 alkyl group (preferably methyl), in the presence of lithium chloride and an organic base, to form the compound of Formula (VIII) wherein B is
    Figure US20040249172A1-20041209-C00071
  • (3) reducing the side chain oxo group of the compound of Formula (VIII) using borane-dimethylsulfide complex, the reduction being carried out in the presence of a chiral oxazaborolidine catalyst, such as (R)-tetrahydro-1-methyl-3,3-diphenyl-1H,3H-pyrrole[1,2c][1,3,2]oxazaborole, to form a compound of Formula (VIII) wherein B is —CH[0210] 2CH2Ph:
    Figure US20040249172A1-20041209-C00072
  • (4) deprotecting the hydroxyl group of the compound of Formula (VII), preferably using K[0211] 2CO3 in methanol, to form the compound of Formula (VI) wherein B is —CH2CH2Ph:
    Figure US20040249172A1-20041209-C00073
  • (5) hydrogenating the double bond of a compound of Formula (VI) in the presence of a hydrogenation catalyst (such as palladium, platinum or rhodium), the reaction optionally being carried out in the presence of sodium nitrite, to form a compound of Formula (VI-A) wherein B is —CH[0212] 2CH2Ph:
    Figure US20040249172A1-20041209-C00074
  • (6) subjecting the compound of Formula (VI-A) to reaction with a silylating agent of formula [0213]
    Figure US20040249172A1-20041209-C00075
  • wherein R[0214] x, Ry and Rz are as defined as above (a particularly preferred silylating agent being triethylsilyl chloride) as defined above to form a compound of Formula (V) wherein B is —CH2CH2Ph:
    Figure US20040249172A1-20041209-C00076
  • wherein R′ represents: [0215]
    Figure US20040249172A1-20041209-C00077
  • (7) reducing the side chain oxo group of the compound of Formula (V), using a reducing agent such as DIBAL-H, to form a compound of Formula (IV) wherein B is —CH[0216] 2CH2Ph:
    Figure US20040249172A1-20041209-C00078
  • (8) subjecting the compound of Formula (IV) to a Wittig reaction with an ylide, the ylide being formed from the reaction of a compound of formula [0217] HO 2 C ( CH 2 ) 4 P Ph 3 X
    Figure US20040249172A1-20041209-M00002
  • O2C(C H2)4PP h3X
  • wherein X represents F, Cl, Br or I, with a strong base (such as potassium t-butoxide), to form a compound of Formula (IIIa) or (IIIb) wherein B is —CH[0218] 2CH2Ph:
    Figure US20040249172A1-20041209-C00079
  • or a mixture thereof; [0219]
  • (9) alkylating the carboxylic acid group of the compound of Formula (IIIa) or (IIIb), or a mixture thereof, with isopropyl iodide in the presence of DBU, to form the compound of Formula (IIa) or (IIb), wherein B is —CH[0220] 2CH2Ph and R″ is isopropyl:
    Figure US20040249172A1-20041209-C00080
  • or a mixture thereof; and [0221]
  • (10) removing the protecting groups from the compound of Formula (IIa) or (IIb), or a mixture thereof, to form latanoprost: [0222]
    Figure US20040249172A1-20041209-C00081
  • The above steps (1) to (10) correspond to steps (a)-(b)-(c)-(d)-(e)-(f)-(h)-(i)-(j)-(k) in Scheme 1 above. [0223]
  • In an alternative process, latanoprost can be formed by a procedure involving carrying out steps (1) and (2) of the preceding process, replacing steps (3), (4) and (5) with the following steps (3′), (4′) and (5′), and thereafter carrying out steps (6-(10) as described in the preceding process. Steps (3′), (4′) and (5′) are as follows: [0224]
  • (3′) subjecting the double bond of the compound of Formula (VIII) to a hydrogenation reaction in the presence of a hydrogenation catalyst (e.g. palladium, platinum or rhodium), the reaction being carried out optionally in the presence of sodium nitrite, to form a compound of Formula (XIII) wherein B is —CH[0225] 2CH2Ph:
    Figure US20040249172A1-20041209-C00082
  • (4′) reducing the side chain oxo group of the above compound of Formula (XIII) using borane-dimethylsulfide complex, the reduction being carried out in the presence of a chiral oxazaborolidine catalyst, such as (R)tetrahydro-1-methyl-3,3-diphenyl-1H,3H-pyrrole[1,2c]-[1,3,2]oxazaborole, to form a compound of Formula (XIV) wherein B is —CH[0226] 2CH2Ph:
    Figure US20040249172A1-20041209-C00083
  • and [0227]
  • (5′) deprotecting the hydroxyl group of the compound of the above compound of Formula (XIV), preferably using K[0228] 2CO3 in methanol, to form a compound of Formula (VI), wherein the dashed and solid lines represent a single bond, and B is —CH2CH.Ph:
    Figure US20040249172A1-20041209-C00084
  • This procedure corresponds to steps (a)-(b)-(e′)-(c′)-(d′)-(f-(h)-(i)-(j)-(k) depicted in Scheme 1 and Scheme 2. [0229]
  • In a further preferred embodiment, there is provided a process for the synthesis of latanoprost comprising carrying out steps (1) to (8) according to either of the preceding procedures, to form a mixture comprising the compounds of Formula (IIIa) and Formula (IIIb) having the respective structures: [0230]
    Figure US20040249172A1-20041209-C00085
  • and further carrying out the steps of: [0231]
  • (9a) subjecting said mixture to reaction with at least one molar equivalent (preferably at least a molar equivalent, and more preferably 1.1 to 2 molar equivalents) of silylating agent to form a compound of Formula (XI) having the structure: [0232]
    Figure US20040249172A1-20041209-C00086
  • wherein each R′ is as defined as above; [0233]
  • (10a) subjecting the compound of Formula (XI) to a transesterification reaction with isopropanol optionally in the presence of a weak acid catalyst such as pyridinium p-toluenesulfonate, to form the compound of Formula (XII) having the structure: [0234]
    Figure US20040249172A1-20041209-C00087
  • and [0235]
  • (11a) removing the protecting groups R′ to form latanoprost. [0236]
  • These steps (9a) to (11a) correspond to steps (m)-(O)-(p) in Scheme 2 above. [0237]
  • According to a still further embodiment of the present process, there is provided a process for the production of latanoprost comprising carrying out steps (1) to (9) to form a mixture comprising the compounds of Formula (IIa) and Formula (IIb) having the respective structures: [0238]
    Figure US20040249172A1-20041209-C00088
  • and carrying out the further steps of: [0239]
  • (10b) subjecting said mixture to reaction with at least one molar equivalent (preferably at least 1.1 molar equivalents, and more preferably 1.15 to 2 molar equivalents) of silylating agent to form a compound of Formula (XII) having the structure: [0240]
    Figure US20040249172A1-20041209-C00089
  • and [0241]
  • (11b) removing the protecting groups R′ to form latanoprost. [0242]
  • The above steps (10b) and (11b) correspond to steps (q)-(r) shown in Scheme 3 above. [0243]
  • According to a further aspect of the present invention, there are provided novel intermediates for the synthesis of a compound of Formula (I-A) or (I-B) as defined above. The novel intermediates include the following: [0244]
  • compounds of the Formula (VIII): [0245]
    Figure US20040249172A1-20041209-C00090
  • wherein [0246]
  • A represents unsubstituted C[0247] 6 to C10 aryl; and
  • B represents a substituent selected from the group consisting of: (i) C[0248] 1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo and CF3; and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3.
  • compounds of the Formula (VII): [0249]
    Figure US20040249172A1-20041209-C00091
  • and single enantiomers thereof, wherein A and B are as defined herein; [0250]
  • compounds of the Formula (VI): [0251]
    Figure US20040249172A1-20041209-C00092
  • and single enantiomers thereof wherein B is as defined herein; [0252]
  • compounds of the Formula (VI-A): [0253]
    Figure US20040249172A1-20041209-C00093
  • and single enantiomers thereof wherein B is as defined herein; [0254]
  • compounds of the Formula (V): [0255]
    Figure US20040249172A1-20041209-C00094
  • and single enantiomers thereof wherein B is as defined herein and R′ represents the substituent: [0256]
    Figure US20040249172A1-20041209-C00095
  • wherein R[0257] x, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl;
  • compounds of the Formula (IV): [0258]
    Figure US20040249172A1-20041209-C00096
  • and single enantiomers thereof wherein B and R′ are as defined herein; [0259]
  • compounds of the Formula (IIIa) or (IIIb): [0260]
    Figure US20040249172A1-20041209-C00097
  • and single enantiomers, and mixtures thereof wherein B and R′ are as defined herein; [0261]
  • compounds of the Formula (IIa) or (IIb): [0262]
    Figure US20040249172A1-20041209-C00098
  • and single enantiomers and mixtures thereof wherein B. R′ and R″ are as defined herein; [0263]
  • compounds of the Formula (XI): [0264]
    Figure US20040249172A1-20041209-C00099
  • and single enantiomers thereof wherein B and R′ are as defined herein; [0265]
  • compounds of the Formula (XII): [0266]
    Figure US20040249172A1-20041209-C00100
  • and single enantiomers thereof wherein B and R′ are as defined herein; [0267]
  • compounds of Formula XIII: [0268]
    Figure US20040249172A1-20041209-C00101
  • wherein A represents unsubstituted C[0269] 6 to C10 aryl, and B is as defined herein; and
  • compounds of Formula (XIV): [0270]
    Figure US20040249172A1-20041209-C00102
  • and single enantiomers thereof wherein A represents unsubstituted C[0271] 6 to C10 aryl and B is as defined herein.
  • Preferably, in any of the structures herein, the group A represents phenyl. [0272]
  • In accordance with preferred embodiments of the present invention, the compounds of Formulae (VII), (VI), (VI-A), (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (XI), (XII), (XIII) and (XIV) are single enantiomers (i.e. the wavy line in the side chain represents [0273]
    Figure US20040249172A1-20041209-P00900
    or
    Figure US20040249172A1-20041209-P00901
    ).
  • In the intermediates of Formula (VIII), (VII), (VI), (VI-A), (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (X), (XI), (XII) and (XIV) the group B is selected from: [0274]
    Figure US20040249172A1-20041209-C00103
  • Preferably, for the intermediates of Formula (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (XI) and (XII), the solid and dashed lines represent a single bond and B represents —CH[0275] 2CH2Ph.
  • Further preferred are intermediates of Formula (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (XI) and (XII) wherein the solid and dashed lines represent a double bond and B represents a substituent selected from the group consisting of: [0276]
    Figure US20040249172A1-20041209-C00104
  • In the intermediates of Formula (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (XI) and (XII), the group R′ is preferably: [0277]
    Figure US20040249172A1-20041209-C00105
  • In the compounds of Formula (XII), (IIa), (IIb) and (I-B), the group R″ preferably represents iso-propyl. [0278]
  • The present invention further provides the use of any novel intermediate as defined as above in the manufacture of latanoprost and the use of any novel intermediate as defined as above in the manufacture of cloprostenol, fluprostenol, PGF[0279] , travoprost, or a PGF (preferably PGF) analogue.
  • The present invention also provides the use of a silylating reagent of formula [0280]
    Figure US20040249172A1-20041209-C00106
  • wherein the group X represents F, Cl, Br or I and R[0281] x, Ry and Rz are as previously defined, for protecting a hydroxyl group of an intermediate in the synthesis of a prostaglandin or prostaglandin analogue, such as prostaglandin or prostaglandin analogues based on PG-A, PG-B, PG-C PG-D or PGF. The use of these silylating agents is particularly suitable in the synthesis of prostaglandin PGF or prostaglandin analogues based on PGF, including latanoprost, cloprostenol, fluprostenol and travoprost. Of these, latanoprost is particularly preferred.
  • Preferred R[0282] x, Ry and Rz are methyl, ethyl and tert-butyl. A particularly preferred silylating reagent is triethylsilylchloride.
  • Whilst the above processes and steps refer to PGF[0283] and analogues thereof, it will also be understood by a person of skill in the art that the process and steps could be successfully applied to the synthesis of other prostaglandin analogues, for example,
    Figure US20040249172A1-20041209-C00107
  • by the provision of one or more additional reaction steps in order to modify the functional groups on the cyclopentyl ring—for example, oxidation of the cyclopentyl ring oxo groups in the PGF derivatives would result in either the PGD or PGE analogues. [0284]
  • As used herein hatched lines attached to the cyclopentane ring indicate bonds that are below the plane of the ring (i.e. bonds in an alpha configuration). Solid wedges attached to the cyclopentane ring indicate bonds that are above the plane of the ring (rings in the beta configuration). It is to be understood that a wavy line, i.e. [0285]
    Figure US20040249172A1-20041209-C00108
  • represents bonds in either the alpha or beta configuration, and includes single enantiomers, i.e.: [0286]
    Figure US20040249172A1-20041209-C00109
  • or mixtures thereof, including racemic mixtures. Thus: [0287]
    Figure US20040249172A1-20041209-C00110
    Figure US20040249172A1-20041209-C00111
    Figure US20040249172A1-20041209-C00112
    Figure US20040249172A1-20041209-C00113
    Figure US20040249172A1-20041209-C00114
    Figure US20040249172A1-20041209-C00115
  • The single and dashed lines in each of the above formulae can represent optional double bonds. Thus, “[0288]
    Figure US20040249172A1-20041209-P00903
    ” represents either a single bond or a double bond.
  • It has been found that the major impurities in latanoprost, particular when produced by the methods of the present invention, include the following: [0289]
  • the 15(S)-cis isomer of latanoprost: [0290]
    Figure US20040249172A1-20041209-C00116
  • the 15(S)-trans isomer of latanoprost: [0291]
    Figure US20040249172A1-20041209-C00117
  • and the 15(R)-trans isomer of latanoprost: [0292]
    Figure US20040249172A1-20041209-C00118
  • In particular, it has been found that the isomers of latanoprost are particularly difficult to remove because they have similar physical and chemical properties to latanoprost. [0293]
  • The present applicant has found that it is possible to obtain a separation of latanoprost from the 15(S)-cis-, 15(S)-trans- and 15(R)trans isomers of latanoprost using an HPLC purification system with a chiral column. However chiral columns are expensive and are not practical for large scale separations. [0294]
  • These problems have been solved by the use of a non-chiral column and a particular eluent mixture in the HPLC purification of latanoprost. Accordingly, the present invention further provides a process for the purification of latanoprost by HPLC comprising the use as an eluent, of a mixture comprising a hydrocarbon, an alcohol and, optionally, acetonitrile. [0295]
  • The use of such an eluent combination is a particularly preferred method of purification of latanoprost when made by the processes of the present invention. It has been found that the above eluent mixtures can achieve an extremely high purity of the latanoprost. [0296]
  • Preferably, the eluent comprises a hydrocarbon, an alcohol and acetonitrile. Advantageously, it has been found that the use of acetonitrile as a component of the eluent in the HPLC purification of latanoprost results in an improved separation of the impurities. In particular, the use of acetonitrile as a component of the above eluent mixture results in a significantly improved separation of the hitherto difficult to separate 15(S)-trans isomer of latanoprost. In particular, it has been found that the 15(S)-trans isomer does not co-elute with the latanoprost, i.e. a baseline separation of latanoprost of the 15(S)-trans isomer can be achieved. As a result, a higher yield of pure latanoprost may be obtained using the above eluent system compared with prior art procedures. [0297]
  • In particular the eluent systems in the present purification process comprises a hydrocarbon in an amount range of 80-99 volume percent and an alcohol in an amount range of 1-20 volume percent. Preferably, the eluent comprises a hydrocarbon in an amount range of 85-99 volume percent and an alcohol in an amount range of 1-15 volume percent. Even more preferred is an eluent comprising a hydrocarbon in an amount range of 88-98 volume percent and an alcohol in an amount range of 2-12 volume percent. [0298]
  • In the preferred acetonitrile-containing eluent systems of the present purification process, the eluent comprises a hydrocarbon in an amount range of 85-99 volume percent, an alcohol in an amount of 0.5-10 volume percent and acetonitrile in an amount of 0.5-5 volume percent. Preferred is an eluent comprises a hydrocarbon in an amount range of 86-98 volume percent, an alcohol in an amount of 1-8 volume percent and acetonitrile in an amount of 1-6 volume percent. Especially preferred is an eluent comprising a hydrocarbon in an amount range of 90-96 volume percent, an alcohol in an amount of 2-6 volume percent and acetonitrile in an amount of 2-4 volume percent. [0299]
  • In the above eluent systems it is preferred that the hydrocarbon is a C[0300] 5 to C8 straight chain, branched or cyclic hydrocarbon, wherein the hydrocarbon is preferably an n-alkane. Hexane and heptane are especially preferred. The hydrocarbon employed in the eluent may comprise a mixture of e.g. alkanes, such as hexane fraction. It has been found that good results have been obtained with n-heptane.
  • Preferred alcohols in the above eluent systems are C[0301] 1 to C8 straight chain, branched or cyclic alkanols, with C1 to C5 straight chain or branched alkanols being particularly preferred. Of these, methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol or butan-2-ol are especially useful. Good results have been obtained with propan-2-ol (isopropanol) as the alcohol component. The use of ethanol as the alcohol component has also produced good separations. The alcohol component of the eluent can include mixtures of one or more alkanols, e.g. combinations of two or more of isopropanol, ethanol and methanol may be used, e.g mixtures in ratios of 1:1 to 3:1 have been successfully employed.
  • A preferred eluent system comprises n-heptane:isopropanol:acetonitrile. Preferred volume percent ranges of n-heptane: isopropanol:acetonitrile are 90-96%:2-7%:2-5%. Preferably, the ratios of n-heptane:isopropanol: acetonitrile are in the ranges 92-94%:3-5%:2-4%. Good results have been obtained with ratios of 93%: 4%:3%. [0302]
  • The above HPLC procedures are preferably carried out on a silica gel column. Examples of suitable columns include Waters[0303] RTM Spherisorb, PhenomenexRTM Luna Cyano and PhenomenexRTM Luna Silica.
  • By using the above separation procedures, it has been found possible to produce latanoprost that is substantially free of the 15(S)-cis isomer, the 15(S)-trans isomer and the 15(R)-trans isomer. In particular, latanoprost containing less than 0.3% in total of any combination of: 15(S)-cis isomer, 15(S)-trans isomer and 15(R)-trans isomer may be produced. Using the process of the present invention, latanoprost containing less than 0.1% each of 15(S)-cis-, 15(S)-trans- and 15(R)-trans isomers can be produced. [0304]
  • The above processes thus enable latanoprost having an extremely high degree of purity can be obtained, e.g. greater than 98% pure, greater than 99% pure, greater than 99.5% pure. Indeed, it has been found possible to achieve latanoprost purities of greater than 99.8%. [0305]
  • The following abbreviations have been used: [0306]
  • HPLC=high pressure liquid chromatography [0307]
  • MPLC=medium pressure liquid chromatography [0308]
  • L-Selectride=lithium tri-sec-butylborohydride [0309]
  • DMS=dimethylsulfide [0310]
  • DIBAL-H=di-iso-butylaluminiumhydride [0311]
  • PPB=para-phenylbenzoyl [0312]
  • DBU=[1,8-diazabicyclo(5.4.0)undec-7-ene][0313]
  • [0314] nBuLi=n-butyllithium
  • TEMPO, free radical=2,2,6,6-tetramethyl-1-piperidinyloxy, free radical [0315]
  • EtOAc=ethylacetate [0316]
  • DMF=dimethylformamide [0317]
  • TsOH=para-toluenesulphonic acid [0318]
  • KO'Bu=potassium tert-butoxide [0319]
    Figure US20040249172A1-20041209-C00119
  • As used herein the term “alkyl” refers to C[0320] 1 to C6 straight or branched carbon chains. Particularly preferred alkyl groups for the compounds and processes of the invention include methyl, ethyl, propyl, isopropyl, butyl, and tertiary butyl.
  • The term “aryl” represents a carbocyclic group containing from six to fifteen carbon atoms and having at least one aromatic ring. Particularly preferred aryl groups for any of the compounds and methods of the present invention include phenyl and naphthyl. [0321]
  • The term “aralkyl” refers to an alkyl group as defined above wherein one or more hydrogen atoms (preferably one) have been replaced by unsubstituted C[0322] 6 to C10 aryl groups as defined above. A preferred aralkyl group for the compounds and methods of the invention is benzyl.
  • The term “halo” refers to fluoro, chloro, bromo or iodo. [0323]
  • The term “substantially free” of a particular impurity refers to less than 1%, preferably less than 0.5%, more preferably, less than 0.3% and even more preferably, less than 0.1% of the impurity. [0324]
  • The following examples illustrates the preparation of latanoprost in accordance with the present invention: [0325]
  • EXAMPLES
  • Solvents (chromatography grade) were dried over 3 Å molecular sieves prior to use. Purified water was obtained from Loveridge. [0326]
  • The products obtained in the reactions were sealed under argon and stored in a cold room at 4° C. until required. [0327]
  • Column chromatography was carried out on Merck silica gel 60. [0328]
  • As a precaution, where indicated, reactions were carried out under argon. Reaction progress was monitored by thin layer chromatography. [0329]
  • Unless indicated otherwise, final products were dried under high vacuum at a pressure of about 0.01 kPa. [0330]
  • Example 1 Preparation of (1S,5R,6R,7R)-7-Benzoyloxy-6-formyl-2-oxabicyclo[3.3.0]octan-3-one (PGX-5)
  • [0331]
    Figure US20040249172A1-20041209-C00120
  • A 0.5M solution of potassium bromide was prepared by dissolving KBr (11.9 g) in purified water and then diluting with additional water to 200 ml. [0332]
  • 2.1M Sodium hypochlorite solution (476 ml, 1M) was diluted to 1 L by the addition of purified water to give a 1M solution. The pH was then adjusted to 8.83 by the addition, with stirring, of solid sodium bicarbonate. [0333]
  • (−)-Benzyl Corey Lactone (PGX-4) (200 g, 0.724M, 1 eq.) was dissolved in dichloromethane (2 L) under an inert atmosphere and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) free radical (1.13 g, 7.24 mmol, 0.01 eq.) and the aqueous potassium bromide solution prepared above added. The mixture was cooled to approximately 0° C. with stirring and a portion of the aqueous sodium hypochlorite solution prepared above (100 ml) added at this temperature. The reaction was allowed to warm to 10° C. and an additional quantity of the aqueous sodium hypochlorite solution (896 ml) added at 10-15° C. over 40 minutes. After stirring for 20 minutes the reaction was shown to be complete by TLC. The layers were separated, the aqueous phase extracted with dichloromethane (200 ml) and the combined organic phases then washed with water (200 ml) before drying over magnesium sulfate. Filtration and washing of the filtercake with dichloromethane (2×200 ml) gave (1S,5R,6R,7R)-7-benzoyloxy-6-formyl-2-oxabicyclo[3.3.0]octan-3-one (PGX-5) as a solution in dichloromethane. [0334]
  • Example 2 Preparation of Dimethyl (2-oxo-4-phenylbutyl)-phosphonate (PGX-3)
  • [0335]
    Figure US20040249172A1-20041209-C00121
  • Dimethyl methyl phosphonate (PGX-1) (346.2 g, 2.79M, 1.95 eq.) was dissolved in tetrahydrofuran (2.4 L) and the resulting solution cooled to −70° C. under an inert atmosphere. n-Butyllithium (2.5M in tetrahydrofuran, 1.0 L, 2.5M, 1.75 eq.) was added over 105 minutes whilst maintaining the temperature below −65° C. The resulting white suspension was stirred at approximately −70° C. for 20 minutes. A solution of methyl 3-phenyl propionate (PGX-2) (234.8 g, 1.43M, 1.0 eq.) in tetrahydrofuran (400 ml) was then added over 30 minutes whilst maintaining the temperature below −65° C. The mixture was left to stir at approximately −70° C. for 2.5 h until the reaction was complete by TLC. After allowing to warm to approximately 0° C. the reaction was quenched by addition of water (800 ml). tert-Butylmethyl ether (1.0 L) was added and the mixture allowed to separate. The organic phase was extracted with water (5×500 ml), and the combined aqueous phases acidified to pH 2 by the addition of 10% hydrochloric acid (ca. 110 ml). The product was extracted into tert-butylmethyl ether (2×800 ml, then 5×500 ml) and the combined organics dried over magnesium sulfate. Filtration, washing the filtercake with tert-butylmethyl ether (400 ml) and evaporation gave the crude product as an oil (240.4 g). Distillation under reduced pressure (bp 152-156° C. at 8×10[0336] −5-1×10−4 torr) gave dimethyl (2-oxo-4-phenylbutyl)phosphonate as an almost colourless oil (214.1 g 58%).
  • Example 3 Preparation of (1S,5R,6R,7R)-7-Benzoyloxy-6-[3-oxo-5-phenyl-(E)-1-pentenyl]-2-oxabicyclo[3.3.0]octan-3-one (PGX-6)
  • [0337]
    Figure US20040249172A1-20041209-C00122
  • The phosphonate ester (PGX-3) (176.2 g, 0.69M, 0.95 eq.) was dissolved in dry acetonitrile (1.8 L) in an inert atmosphere and lithium chloride (153.4 g, 3.62M, 5.0 eq.) added. The mixture was cooled to approximately −15° C. and dry diisopropyl ethylamine (178.1 g, 1.38M, 1.9 eq.) added over 10 minutes whilst maintaining this temperature. After stirring for about 100 minutes a solution of the aldehyde (PGX-5) in dry dichloromethane (from Step 2) (assumed 0.72M, 1.0 eq.) was added over 20 minutes whilst maintaining the temperature at ca. −15° C. The reaction was then allowed to warm to ambient temperature with stirring until TLC showed it was complete. Water (200 ml) was added and the mixture evaporated in vacuo to remove the majority of the acetonitrile. The residual slurry was partitioned between water (2.0 L) and ethyl acetate (2.0 L). The organic phase was separated off and the aqueous extracted with ethyl acetate (2×500 ml). The combined organics were washed with saturated brine (2×1 L) and dried over magnesium sulfate. After filtration, the solvent was evaporated off to a residual weight of ca. 540 g and hexane (1 L) then added to the residue. After cooling to 4° C. with stirring for 90 minutes the solid was filtered off, washed with hexane:ethyl acetate 4:1 (2×200 ml) and dried in vacuo at ambient temperature to give (1S,5R,6R,7R)-7-benzoyloxy-6-[3-oxo-5-phenyl-(E)-1-pentenyl]-2-oxabicyclo[3.3.0]octan-3-one as a white solid (225.8 g, 77%). [0338]
  • Example 4 Preparation of (R)-Tetrahydro-1-methyl-3,3-diphenyl-1H,3H-pyrrolo[1,2-c]r[1,3,2]oxazaborole (Corey Catalyst)
  • [0339]
    Figure US20040249172A1-20041209-C00123
  • (R)-(+), 1,1-Diphenylprolinol (15.20 g, 60.0 mMol) was dissolved in toluene (600 ml) under an inert atmosphere and trimethylboroxine (7.57 g, 60.3 mMol, 1.0 eq.) added. The mixture was heated to reflux and approximately half of the toluene was distilled off via a Dean-Stark trap. Further toluene (350 ml) was added and this was also distilled off via the Dean-Stark trap until a total of 710 ml of distillate had been collected. The reaction mixture was then allowed to cool to ambient temperature to give (R)tetrahydro-1-methyl-3,3-diphenyl-1H,3H-pyrrolo[1,2-c][1,3,2]oxazaborole as a 0.25M solution in toluene. [0340]
  • Example 5 Preparation of (1S,5R,6R,7R)-7-Benzoyloxy-6-[3(S)-3-hydroxy-5-phenyl-l(E)-pentenyl]-2-oxabicyclo[3.3.0]octan-3-one (PGX-7)
  • [0341]
    Figure US20040249172A1-20041209-C00124
  • PGX-6 (225.1 g, 0.556M) was dissolved in dry tetrahydrofuran (3.5 L) in an inert atmosphere and ‘Corey catalyst’ prepared according to Example 4 (0.25M in toluene, 223 ml, 0.1 eq.) added. The mixture was cooled to approximately −15° C. and a solution of borane-methyl sulfide complex (10M BH[0342] 3 concentration, 41.7 ml, 417 mMol, 0.75 eq.) in dry tetrahydrofuran (450 ml) was added whilst maintaining the temperature at ca. 15° C. The mixture was then stirred at this temperature for 2 h until the reaction was shown to be complete by TLC. Methanol (200 ml) was added over 30 minutes and the mixture allowed to warm to approximately 0° C. before acidification with 10% aqueous hydrochloric acid (1.2 L). Ethyl acetate (2.4 L) was added and the layers allowed to separate. The aqueous phase was extracted with ethyl acetate (1×0.8 L, 1×0.4 L) and the combined organic phases washed with water (1×1.6 L, 3×0.8 L) and then brine (1 L). Drying over magnesium sulfate, filtration and evaporation in vacuo gave the crude product (containing a mixture of the desired 3(S)-isomer, PGX-7, and the undesired 3(R)-isomer PGX-8) as an oil (242.7 g). This was dissolved in dichloromethane:ethyl acetate 2:1 (720 ml) and chromatographed on silica gel 60 (12.8 Kg) eluting with dichloromethane:ethyl acetate 2:1. Impure fractions containing a mixture of PGX-7 and PGX-8 were evaporated and re-chromatographed under the same conditions. Fractions free from PGX-8 (by TLC) were combined and evaporated. Drying in vacuo at ambient temperature gave the desired product (1S,5R,6R,7R)-7-benzoyloxy-6-[3(S)-3-hydroxy-5-phenyl-l(E pentenyl]-2-oxa-bicyclo[3.3.0]octan-3-one as a white solid (167.9 g, 74.2%).
  • Example 5a Preparation of (1S,5R,6R,7R)-7-Benzoyloxy-6-[3(S)-3-hydroxy-5-phenyl-l(E)-pentenyl]-2-oxabicyclo[3.3.0]octan-3-one (PGX 7)
  • [0343]
    Figure US20040249172A1-20041209-C00125
  • PGX 6 (315.2 g, 0.779M) was dissolved in dry tetrahydrofuran (5.7 L) in an inert atmosphere and ‘Corey catalyst’ (0.25M in toluene, 312 ml, 0.1 eq.) added. The mixture was cooled to approximately −15° C. and a solution of borane-methyl sulfide complex (10M BH[0344] 3 concentration, 58.5 ml, 0.585M, 0.75 eq.) in dry tetrahydrofuran (630 ml) added whilst maintaining the temperature at ca. 15° C. The mixture was then stirred at this temperature for 2 h until the reaction was shown to be complete by TLC. Methanol (290 ml) was added over 30 minutes and the mixture allowed to warm to approximately 0° C. before acidification with 10% aqueous hydrochloric acid (1.7 L). Ethyl acetate (3 L) was added and the layers allowed to separate. The aqueous phase was extracted with ethyl acetate (1×1.1 L, 1×0.55 L) and the combined organic phases washed with water (1×2 L, 3×1 L) and then brine (1.5 L). Drying over magnesium sulfate, filtration and evaporation in vacuo gave the crude product (containing a mixture of PGX 7 and the undesired isomer PGX 8) as an oil (349.3 g). The oil was purified by the procedure given in Example 5b.
  • Note: [0345]
  • The chromatographic procedure described in Example 5 in which a 2:1 mixture of dichloromethane:ethylacetate is employed as an eluent for medium pressure chromatography (MPLC) on a silica gel column, suffers from the disadvantage that the column must be re-packed after each separation before subsequent aliquots of the epimeric product mixture can be processed. Thus, such a procedure employs large quantities of both stationary phase and eluent, as well as being time consuming. An improved procedure is given below (Example 5b): [0346]
  • EXAMPLE 5b Separation of (1S,5R,6R,7R)-7-Benzoyloxy-6-[3(S)-3-hydroxy-5-phenyl-l(E)-pentenyl]-2-oxabicyclo[3.3.0]octan-3-one (PGX-7) from (1S,5R,6R,7R)-7-Benzoyloxy-6-[3(R)-3-hydroxy-5-phenyl-l(E)-pentenyl]-2-oxabicyclo[3.3.0]octan-3-one (PGX-8)
  • According to an improved procedure, the crude mixture of epimers PGX-7/PGX-8 (686.5 g) made according to the synthetic procedure described in Example 5a was crystallised from heptane fraction/ethyl acetate (7:3) to give a crystalline mixture of epimers PGX-7 and PGX-8 (480.4 g) that is free of other impurities. The filtrates from the crystallisation were evaporated to give an oil (150.3 g) comprising mainly impure PGX-7/PGX-8. [0347]
  • The crystalline mixture was dissolved in dichloromethane:ethyl acetate (2:1) mixture to give a stock solution (A). The evaporated impure PGX-7/PGX-8 mixture was dissolved in dichloromethane:ethyl acetate (2:1) mixture to give a second stock solution (B). The isomer PGX-7 was then separated from PGX-8 by medium pressure chromatography (MPLC) on a silica gel column by sequential injection of aliquots of the stock solutions according to the following protocol: [0348]
  • Injection 1: Injection of an aliquot of crystalline PGX-7/PGX-8 stock solution (A) and collection of appropriate fractions containing pure PGX-7 and impure PGX-7. The column was then flushed with eluent to elute any remaining PGX-8. [0349]
  • Injection 2: Injection of an aliquot of crystalline PGX-7/PGX-8 stock solution (A) and collection of appropriate fractions containing pure PGX-7 and impure PGX-7. Column flushed with methanol then equilibration of column with eluent. [0350]
  • Injection 3: Injection of an aliquot of impure PGX-7/PGX-8 stock solution (B) and collection of appropriate fractions containing pure PGX-7 and impure PGX-7 and impure PGX-7. Discarded silica gel and re-packed column with fresh silica gel and repeat cycle. [0351]
  • The above strategy increases the throughput of PGX-7 considerably and avoids the need to re-pack the column after every injection. [0352]
  • The column fractions containing the impure PGX-7 are recycled to give more pure PGX-7 utilising the above protocol, except that more than three injections per column can be performed before re-packing the column. [0353]
  • Fractions free from PGX-8 (by TLC) were combined and evaporated. Drying in vacuo at ambient temperature gave (1S,5R,6R,7R)-7-benzoyloxy-6-[3(S)-3-hydroxy-5-phenyl-l(E)-pentenyl]-2-oxabicyclo[3.3.0]octan-3-one (PGX-7) as a white solid (445.2 g). [0354]
  • Example 6 Preparation of (1S,5R,6R,7R)-7-Hydroxy-6-[3(S)-3-hydroxy-5-phenyl-l(E)-pentenyl]-2-oxabicyclo[3.3.0]octan-3-one (PGX-9)
  • [0355]
    Figure US20040249172A1-20041209-C00126
  • PGX-7 (152.0 g, 0.374M, 1.0 eq.) was dissolved in dry methanol (2.28 L) under an inert atmosphere and potassium carbonate (31.0 g, 0.224M, 0.6 eq.) added in one portion. The mixture was stirred at ambient temperature for 3 h until TLC showed the reaction was complete. 5M Hydrochloric acid (65.5 ml) was added to adjust the apparent pH of the solution to about 6.8-7.0 and the mixture then evaporated to dryness in vacuo. The sticky residue was treated with water (1.5 L) and the pH adjusted to 6.8-7.0 by the addition of 1M hydrochloric acid (7 ml). Heptane (0.45 L) was added, the mixture agitated vigorously and the precipitated solid filtered off and washed with heptane (2×150 ml) on the filter. The solid was then triturated with a further quantity of heptane (2×150 ml). All the heptane washes were combined and added to the original filtrates. The aqueous phase was separated off, washed with heptane (2×150 ml) and then extracted with ethyl acetate (1×450 ml, 3×150 ml). The previously isolated solid was added to the combined ethyl acetate extracts and the mixture shaken until a solution formed. This was washed with saturated brine (2×250 ml) and dried over magnesium sulfate. Filtration and evaporation in vacuo gave (1S,5R,6R,7R)-7-hydroxy-6-[3(S)-3-hydroxy-5-phenyl-l(E)-pentenyl]-2-oxabicyclo[3.3.0]octan-3-one as a pale yellow oil (112.1 g, 99.1%). [0356]
  • Example 7 Preparation of (1S,5R,6R,7R)-7-Hydroxy-6-[3(R)-(3-hydroxy-5-phenyl)pentyl]-2-oxabicyclo[3.3.0]octan-3-one (PGX-10)
  • [0357]
    Figure US20040249172A1-20041209-C00127
  • PGX-9 (111.5 g 0.369M, 1.0 eq.) was dissolved in ethanol (1.67 L) and 5% palladium on carbon (5.58 g) added followed by a solution of sodium nitrite (8.90 g, 0.129M, 0.35 eq.) in water (100 ml). The mixture was then hydrogenated for 5 h until shown to be complete by TLC. 1M Hydrochloric acid (260 ml) was added and the mixture stirred for 1 h. The solids were removed by filtration through celite, the filtrates then evaporated to give an oily-solid residue which was partitioned between ethyl acetate (0.45 L) and water (0.45 L). The layers were separated and the aqueous extracted with ethyl acetate (2×0.33 L). The combined organics were washed with brine (2×0.22 L) and then dried over sodium sulfate containing 5% sodium hydrogen carbonate. Filtration and evaporation gave (1S,5R,6R,7R)-7-Hydroxy-6-[3(R)-(3-hydroxy-5-phenyl)pentyl]-2-oxabicyclo[3.3.0]octan-3-one as a yellow oil (110.4 g, 98.4%) [0358]
  • Note: [0359]
  • It has been found to be possible to reduce the time period during which the product PGX-10 is in the acid medium during the HCl work-up, and thus minimise the potential of an acid-catalysed epimerisation of the side-chain hydroxyl group of (1S,5R,6R,7R)-7-Hydroxy-6-[3(R)-(3-hydroxy-5-phenyl)-pentyl]-2-oxabicyclo[3.3.0]octan-3-one [0360]
  • Thus, in the modified procedure, on completion of the reaction described in Example 7, 1M hydrochloric acid was added and the reaction mixture stirred for 60 minutes as described in Example 7. The pH of the mixture was adjusted to between 5 and 6 by addition of solid sodium hydrogen carbonate prior to the filtration of the used catalyst, and evaporation of the filtrate to dryness. The work-up is then completed as described in Example 7 by extraction of the product into ethyl acetate. The following Example 7a illustrates the improved procedure: [0361]
  • Example 7a Preparation of (1S,5R,6R,7R)-7-Hydroxy-6-[3(R)-(3-hydroxy-5-phenyl)pentyl]-2-oxabicyclo[3.3.0]octan-3-one (PGX 10)
  • [0362]
    Figure US20040249172A1-20041209-C00128
  • PGX 9 (326.5 g, 1.08M, 1.0 eq.) was dissolved in ethanol (6.5 L) and 5% palladium on carbon (16.3 g) added followed by a solution of sodium nitrite (26 g, 0.377M, 0.35 eq.) in water (200 ml). The mixture was then hydrogenated for 1.5 h until shown to be complete by TLC. 1M Hydrochloric acid (750 ml) was added and the mixture stirred for 1 h. The pH was adjusted to 5-6 by the addition of solid sodium hydrogen carbonate (55 g). The solids were removed by filtration through celite, the filtrates then evaporated to give an oily-solid residue which was partitioned between ethyl acetate (1.3 L) and water (1.3 L). The layers were separated and the aqueous extracted with ethyl acetate (2×0.975 L). The combined organics were washed with brine (2×0.65 L) and then dried over sodium sulfate. Filtration and evaporation gave (1S,5R,6R,7R)-7-Hydroxy-6-[3(R)-(3-hydroxy-5-phenyl)pentyl]-2-oxabicyclo[3.3.0]octan-3-one as a yellow oil (311.5 g, 94.8%). [0363]
  • Example 8 Preparation of (1S,5R,6R,7R)-6-[3(R)-(5-phenyl-3-triethyl silyloxy)pentyl]-7-triethylsilyloxy-2-oxabicyclo[3.3.0]octan-3-one (PGX-11)
  • [0364]
    Figure US20040249172A1-20041209-C00129
  • PGX-10 (109.7 g, 0.360M, 1.0 eq.) was dissolved in dry dimethyl formamide (720 ml) under an inert atmosphere. Imidazole (29.4 g, 0.432M, 1.2 eq.) and triethylamine (102.9 ml, 74.69 g, 0.738M, 2.05 eq.) were added and the mixture then cooled to approximately 0° C. Triethylchlorosilane (111.2 g, 0.738M, 2.05 eq.) was added over 15 minutes at less than 10° C. The mixture was allowed to warm to room temperature and stirred for 2 h until TLC showed the reaction was complete. After re-cooling to 10° C., hexane (0.55 L) and water (1 L) were added and the layers separated. The aqueous phase was extracted with hexane (1×0.2 L, 1×0.1 L) and the combined organics then washed with water (2×0.5 L) and brine (2×0.5 L). Drying over magnesium sulfate, filtration and evaporation in vacuo gave (1S,5R,6R,7R)-6-[3(R)-(5-phenyl-3-triethylsilyloxy)pentyl]-7-triethylsilyloxy-2-oxabicyclo[3.3.0] octan-3-one as a yellow oil (187.4 g, 97.6%). [0365]
  • EXAMPLE 9 Preparation of (1S,3RS,5R,6R,7R)-6-[3(R)-(5-phenyl-3-triethylsilyloxy)pentyl]-7-triethylsilyloxy-2-oxabicyclo[3.3.0]octan-3-ol (PGX-12)
  • [0366]
    Figure US20040249172A1-20041209-C00130
  • PGX-11 (186.8 g, 0.3505M, 1.0 eq.) was dissolved in dry tetrahydrofuran (1.86 L) under an inert atmosphere and the solution cooled to less than −70° C. Diisobutylaluminium hydride (1.1M in toluene solution, 701 ml, 0.7711M, 2.2 eq.) was added to the reaction whilst maintaining the temperature below −70° C. The mixture was then stirred at this temperature for 2 h until the reaction was shown to be complete by TLC. Methanol (132 ml) was added and the mixture allowed to warm to −5° C. before addition of water (2 L) followed by acidification to pH 3 with 2M aqueous sodium hydrogen sulphate solution (1.54 L, 8.8 eq.). Ethyl acetate (0.66 L) was added and the layers allowed to separate. The aqueous phase was extracted with ethyl acetate (1×0.26 L, 1×0.13 L) and the combined organics then washed with water (2×1.3 L) and brine (2×1.3 L). Drying over magnesium sulfate and evaporation in vacuo gave (1S,3RS,5R,6R,7R)-6-[3(R)-(5-phenyl-3-triethylsilyloxy)pentyl]-7-triethylsilyloxy-2-oxabicyclo[3.3.0]octan-3-ol as an almost colourless oil (182.5 g). [0367]
  • Example 10 Preparation of (Z)-7-{(1 R,2R,3R,5S)-5-Hydroxy-2-[3(R)-(5-phenyl-3-triethylsilyloxy)pentyl-3-(triethylsilyloxy)cyclopentyl}5-heptenoic acid (PGX-13) and (Z)-7-{(1R,2R,3R,5S)-3-Hydroxy-2-[3(R)-(5-phenyl-3-triethyl-silyloxy) pentyl]-5-(triethylsilyloxy)cyclopentyl}-5-heptenoic acid (PGX-14)
  • [0368]
    Figure US20040249172A1-20041209-C00131
  • (4-Carboxybutyl)-triphenylphosphonium bromide (459.0 g, 1.0353M, 3.0 eq.) was suspended in dry tetrahydrofuran (1.84 L) under an inert atmosphere and the mixture cooled to 0° C. 1.07M Potassium tert-butoxide in tetrahydrofuran solution (1.806 L, 1.93M, 5.6 eq.) was then added over 60 minutes at 0° C. After the addition was complete the reaction was allowed to warm to approximately 20° C. and stirred for 1 hour before re-cooling to 0° C. A solution of PGX-12 (184.6 g, 0.3451M, 1.0 eq.) in tetrahydrofuran (0.27 L) was then added at this temperature. The mixture was allowed to warm to room temperature and stirred for 75 minutes until TLC showed the reaction was complete. After re-cooling to 0° C. the mixture was quenched by the addition of water (3 L) and then acidified to pH 5 with 5% aqueous citric acid solution (1.6 L). The product was extracted into ethyl acetate (1×1.0 L, 2×0.4 L) and the combined organics then washed with brine (2×0.7 L). Drying over magnesium sulfate, filtration and evaporation in vacuo gave a mixture of (Z)-7-{(1R, 2R, 3R, 5S)-5-hydroxy-2-[3(R)-(5-phenyl-3-triethylsilyloxy)pentyl]-3-(triethylsilyloxy) cyclo-pentyl}-5-heptenoic acid and (Z)-7-{(1R,2R,3R,5S)-3-hydroxy-2-[3(R)-(5-phenyl-3-triethyl-silyloxy) pentyl]-5-(triethylsilyloxy)cyclopentyl)5-heptenoic acid as a yellow oil (461.7 g). This crude product containing triphenylphosphine oxide by-product was used without purification in the next step of the synthesis. [0369]
  • Note: [0370]
  • The amount of (4-carboxybutyl)triphenylphosphonium bromide used in the above reaction is 3.0 equivalents with respect to the amount of starting material PGX-12 used. In order to generate the ylide and the carboxylate salt, it is treated with 5.6 equivalents of potassium tert-butoxide. The slight deficit in the amount of potassium tert-butoxide used with respect to (4-carboxybutyl)triphenylphosphonium bromide (2.0 equivalents required; 1.87 equivalents used) is deliberate to ensure that all of the potassium tert-butoxide is consumed and is not present during the reaction with the lactol. [0371]
  • However, the present applicant has found that 2.15 equivalents of (4-carboxybutyl)triphenylphosphonium bromide and 4.0 equivalents of potassium tert-butoxide with respect to the amount of the lactol starting material PGX-12 can be used. Advantageously, this leads to a better conversion of PGX-12 to PGX-13/PGX-14. This is illustrated in Example 10a: [0372]
  • EXAMPLE 10a Preparation of (Z)-7-{(1R,2R,3R,5S)-5-Hydroxy-2-[3(R)-(5-phenyl-3-triethylsilyloxy)pentyl]-3-(triethylsilyloxy)cyclopentyl}-5-hept-enoic acid (PGX-13) and (Z)-7-((1R,2R,3R,5S)-3-Hydroxy-2-[3(R)-(5-phenyl-3-triethyl-silyloxy) pentyl]-5-(triethylsilyloxy)cyclopentyl}-5-hept-enoic acid (PGX-14)
  • [0373]
    Figure US20040249172A1-20041209-C00132
  • (4-Carboxybutyl)-triphenylphosphonium bromide (965.5 g, 2.18M, 2.15 eq.) was suspended in dry tetrahydrofuran (4.4 L) under an inert atmosphere and the mixture cooled to 0° C. 0.98M Potassium tert-butoxide in tetrahydrofuran solution (4.135 L, 4.05M, 4.0 eq.) was then added over 60 minutes at 0° C. After the addition was complete the reaction was allowed to warm to approximately 20° C. and stirred for 1 hour before re-cooling to 0° C. A solution of PGX-12 (542.3 g, 1.013M, 1.0 eq.) in tetrahydrofuran (1 L) was then added at this temperature. The mixture was allowed to warm to room temperature and stirred for 60 minutes until TLC showed the reaction was complete. After re-cooling to 0° C. the mixture was quenched by the addition of water (8.6 L) and then acidified to pH 5 with 5% aqueous citric acid solution (4.5 L). The product was extracted into ethyl acetate (1×3 L, 2×1.2 L) and the combined organics then washed with brine (2×2 L). Drying over magnesium sulfate, filtration and evaporation in vacuo gave a mixture of (Z)-7-{(1R,2R,3R,5S)-5-hydroxy-2-[3(R)-(5-phenyl-3-triethylsilyloxy)pentyl]-3-(triethylsilyloxy) cyclopentyl}-5-heptenoic acid and (Z)-7-{(1R,2R,3R,5S)-3-hydroxy-2-[3(R)-(5-phenyl-3-triethyl-silyloxy) pentyl]-5-(triethylsilyloxy)cyclo-pentyl)[0374] 5-heptenoic acid as a yellow oil (1095.6 g). This crude product containing triphenylphosphine oxide by-product was used without purification in the next step of the synthesis.
  • Example 11 Preparation of Isopropyl (Z)-7-(1R,2R,3R,5S)-5-Hydroxy-2-[3(R)-(5-phenyl-3-triethylsilyloxy)pentyl]-3-(triethylsilyloxy)-cyclopentyl}5-heptenoate (PGX-15) and Isopropyl (Z)-7-{(1R,2R,3R,5S)-3-Hydroxy-2-[3(R)-(5-phenyl-3-triethylsilyloxy)pentyl]-5-(triethylsilyloxy)cyclopentyl}-5-heptenoate (PGX-16)
  • [0375]
    Figure US20040249172A1-20041209-C00133
  • The PGX-13/14 mixture (461.1 g, assumed to contain 0.3446M, 1.0 eq.) was dissolved in acetone (2.13 L) under an inert atmosphere and dry 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (290.1 ml, 1.94M, 5.63 eq.) added at ambient temperature. After stirring for approximately 15 minutes, 2-iodopropane (329.7 g, 1.94M, 5.63 eq.) was added and the mixture then stirred for 16 h at ambient temperature. TLC showed that the reaction was incomplete. An additional quantity of DBU (19.1 ml, 0.1275M, 0.37 eq.) was added followed, after 20 minutes, by 2-iodopropane (21.7 g, 0.1275M, 0.37 eq.). After stirring for 4.5 h at ambient temperature the reaction was shown to be complete by TLC. The bulk of the acetone (ca. 1.72 L) was evaporated in vacuo and the residue partitioned between ethyl acetate (0.67 L) and 3% aqueous citric acid solution (1.6 L). The organic layer was separated off and the aqueous layer acidified to pH 6 with an additional quantity of 3% aqueous citric acid solution (0.72 L) and then re-extracted with ethyl acetate (2×0.33 L). The combined organic phases were washed with 3% aqueous citric acid solution (2×0.8 L), 5% sodium hydrogen carbonate solution (2×0.8 L) and saturated brine (2×1.6 L). After drying over magnesium sulfate followed by filtration the solvent was evaporated off and heptane (1.0 L) and ethyl acetate (80 ml) added to the residue. The mixture was cooled to −20° C. and agitated vigorously. After 30 minutes at −20° C. the precipitated solid was filtered off and washed on the filter with heptane:ethyl acetate 9:1 (6×200 ml). Evaporation of the filtrates in vacuo gave a yellow oil. Heptane (600 ml) was added and the solution cooled to −20° C. After 30 minutes the precipitate was filtered off and washed on the filter with heptane (3×100 ml). The filtrate was evaporated in vacuo to give a mixture of isopropyl (Z)-7-{(1R,2R,3R,5S)-5-hydroxy-2-[3(R)-(5-phenyl-3-triethylsilyloxy) pentyl]-3-(tri-ethylsilyloxy)cyclopentyl}-5-heptenoate and isopropyl (Z)-7-{(1R,2R,3R,5S)-3-hydroxy-2-[3(R)-(5-phenyl-3-triethylsilyloxy)pentyl]-5-(triethylsilyloxy)cyclo-pentyl}-5-heptenoate as a yellow oil (238.4 g). [0376]
  • EXAMPLE 12 Preparation of Isopropyl (Z)-7-{(1R,2R,3R,5S)-3,5-bis(triethylsilyloxy)-2-[3(R)(5-phenyl-triethylsilyloxy)pentyl]-cyclopentyl}-5-heptenoate (PGX-17)
  • [0377]
    Figure US20040249172A1-20041209-C00134
  • The PGX-15/16 mixture (237.79 g, assumed to contain 0.344M) was dissolved in dry dimethylformamide (700 ml) under an inert atmosphere. Imidazole (14.04 g, 0.206M, 0.6 eq.) and triethylamine (50.3 ml, 0.361M, 1.05 eq.) were added and the mixture cooled to approximately 0° C. Triethylchlorosilane (60.6 ml, 54.4 g, 0.361M, 1.05 eq.) was then added and the mixture allowed to warm to ambient temperature. Stirring was continued for 2 h until the reaction was shown to be complete by TLC. The reaction mixture was then partitioned between heptane (1.07 L) and water (2.67 L). After separation, the aqueous phase was further extracted with heptane (2×0.27 L). The combined organics were washed with water (2×1.3 L) and then saturated brine (2×1.3 L). After drying over magnesium sulfate followed by filtration the solvent was evaporated in vacuo to give the crude product (235.0 g) as a thick yellow oil. This was dissolved in heptane (90 ml) and purified by column chromatography on silica gel (352.5 g) eluting with heptane and then heptane:ethyl acetate 95:5. The relevant fractions were combined and the solvent evaporated in vacuo to give isopropyl (Z)-7-{(1R,2R,3R,5S)-3,5-bis(triethylsilyloxy)-2-[3(R)-(5-phenyl-3-triethylsilyloxy) pentyl]cyclopentyl}-5-heptenoate as a pale yellow oil (210.5 g). [0378]
  • Example 13 Preparation of Isopropyl (Z)-7-{(1R,2R,3R,5S)-3,5-dihydroxy-2-[3(R)-(3-hydroxy-5-phenyl)pentyl]cyclopentyl}-5-heptenoate (Latanoprost)
  • [0379]
    Figure US20040249172A1-20041209-C00135
  • PGX-17 (0.504 g, 0.65 mmol) was weighed into a 50 ml round bottom flask equipped with a magnetic follower. Acetone (6.5 ml) was added and the resulting colourless solution stored at room temperature under a gentle stream of argon. [0380]
  • A solution of pyridinium-p-toluenesulfonate (Aldrich, 13 mg) in water (0.9 ml) was prepared and added to the reaction solution. The resulting white cloudy suspension was stored at room temperature under a stream of argon. The mixture cleared after about 20 min to give a colourless solution. TLC after 3 hr indicated complete conversion to the required product. The stirring was then stopped and the reaction mixture concentrated under reduced pressure to remove the acetone. The residue was partitioned between ethylacetate (10 ml) and saturated NaCl (15 ml). The organic phase was separated and the aqueous layer extracted with more ethylacetate (2×7.5 ml). The combined organic extracts were washed with saturated NaCl (2×10 ml), dried over MgSO[0381] 4 (0.5 g) and evaporated to dryness under reduced pressure. The crude product was obtained as a colourless oil.
  • The crude product was purified by flash column chromatography. A flash column was prepared using silica gel 60 (6 g) and hexane fraction/EtOAc (1:1) as the eluent. The crude product (7 mg was removed as retention sample) was dissolved in the eluent (2 ml) and loaded onto the column. The column was then eluted with hexane fraction/EtOAc mixtures as follows: [0382]
    Hexane fraction/EtOAc 1:1 50 ml
    1:2 150 ml 
    1:3 80 ml
  • The fractions containing the pure product were combined and evaporated to dryness under reduced pressure. The pure product was obtained as a colourless viscous oil which was dried under high vacuum (0.01 kPa) to constant weight (0.251 g, yield 89.3%). [0383]
  • Example 13a Preparation of Isopropyl (Z)-7-{(1R,2R,3R,5S)-3,5-dihydroxy-2-[3(R)-(3-hydroxy-5-phenyl)pentyl]cyclopentyl}-5-heptenoate (Latanoprost, R23)
  • [0384]
    Figure US20040249172A1-20041209-C00136
  • PGX-17 (170.0 g, 0.219M) was dissolved in acetone (1.9 L) under an inert atmosphere and a solution of pyridinium-p-toluenesulphonate (4.52 g, 18.0 mMol, 0.08 eq.) in water (0.3 L) added. The resulting mixture was stirred at ambient temperature for 3 h until TLC showed the reaction to be complete. After evaporation of the organic volatiles the residue was added to a mixture of ethyl acetate (2.1 L) and brine (2 L). The layers were separated and the aqueous phase further extracted with ethyl acetate (1 L). The organics were combined and washed with brine (0.5 L). Evaporation in vacuo gave a pale yellow oil (166.4 g). This was dissolved in hexane:ethyl acetate 1:1 (0.25 L) and purified by chromatography on silica gel (1.87 Kg) eluting with hexane ethyl acetate (1:1 then 1:2 then 1:3). The relevant fractions were combined and evaporated to give an almost colourless oil (78.0 g). This was further purified by isocratic preparative HPLC on a silica column eluting with heptane (88-95%): methanol/isopropanol (1/2) (5-12%). Evaporation of the relevant combined cuts gave isopropyl (Z)-7-{(1R,2R,3R,5S)-3,5-dihydroxy-2-[3(R)-(3-hydroxy-5-phenyl)pentyl]cyclopentyl)}-5-heptenoate (latanoprost) as an almost colourless oil (50.2 g, 53.0%). [0385]
  • Example 13b HPLC Purification of Latanoprost
  • HPLC purification of latanoprost was carried out using a Waters[0386] RTM Spherisorb silica gel column. The isocratic eluent system comprised a hydrocarbon and an alcohol in volume percent ranges of 88-98% and 2-12% respectively. The hydrocarbons used were n-hexane, hexane fraction, n-heptane or heptane fraction. The alcohols used were isopropanol, ethanol or methanol, either singly or in combination in ratios of 1:1 to 3:1.
  • The results of typical HPLC runs using the above eluent system are shown below: [0387]
    Amount
    Product Run 1 Run 2
    Latanoprost 99.89%  99.83% 
    15(S)-cis isomer 0.08% 0.09%
    15(S)-trans isomer 0.03% 0.07%
    15(R)-trans isomer not detected not detected
  • Thus, it can be seen that the above solvent system achieves a latanoprost purity of greater than 99.8% and the amounts of the undesired isomers are all less than 0.1%. [0388]
  • Example 13c HPLC Separation of Latanoprost and Isomers
  • HPLC separations of latanoprost were carried out using a Waters[0389] RTM Spherisorb silica gel column. The isocratic eluent system comprised hydrocarbon: alcohol:acetonitrile in volume percent ratios of 90-96%: 2-6%: 2-4%. The hydrocarbons used were n-hexane, hexane fraction, n-heptane or heptane fraction. The alcohols used were either isopropanol or ethanol.
  • The following results are shown for a HPLC separation of latanoprost using as eluent, a mixture of heptane:isopropanol:acetonitrile in the volume percent ratios of 93%:4%:3%. The relative retention times of latanoprost, and the 15(S)-cis, 15(S)-trans and 15(R)-trans isomers are shown below: [0390]
    Product Relative Retention Time
    Latanoprost 1.00
    15(S)-cis isomer 0.95
    15(S)-trans isomer 1.13
    15(R)-trans isomer 1.23
  • The above results indicate that an excellent degree of separation of latanoprost from the undesired isomers thereof can be achieved using an eluent system comprising acetonitrile. Similar results were achieved with Phenomenex[0391] RTM Luna Cyano and PhenomenexRTM Luna Silica columns. Using this procedure, it is possible to achieve latanoprost that is substantially pure, or is completely free, of the hitherto difficult to remove isomers.

Claims (48)

1-101 (canceled)
102. A process for the synthesis of a compound of Formula (I-A) or (I-B):
Figure US20040249172A1-20041209-C00137
comprising the steps of:
(1) subjecting a compound of Formula (X):
Figure US20040249172A1-20041209-C00138
wherein
A represents C6 to C10 aryl which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of (i) halo, (ii) C1 to C6 alkyl and (iii) unsubstituted C6 to C10 aryl,
comprising subjecting a compound of Formula (X):
Figure US20040249172A1-20041209-C00139
to an oxidation reaction in the presence of a catalytic amount of a stable organic nitroxyl radical,
(2) subjecting a compound of Formula (IX) as defined above to reaction with a compound having the formula:
Figure US20040249172A1-20041209-C00140
wherein B represents a substituent selected from the group consisting of:
(i) C1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo and CF3 and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3, and
each R′″ is the same or different and each represents a C1 to C6 alkyl group,
the process being carried out in the presence of lithium chloride and an organic base to form the compound of Formula (VIII):
Figure US20040249172A1-20041209-C00141
(3) reducing the side chain oxo group of the compound of Formula (VIII) with a reducing agent to form a compound of Formula (VII):
Figure US20040249172A1-20041209-C00142
(4) deprotecting the hydroxyl group of the compound of Formula (VII) to form the corresponding hydroxy-substituted compound of Formula (VI):
Figure US20040249172A1-20041209-C00143
(5) when the dashed line in the compound of Formula (I-A) or (I-B) is absent: hydrogenating the double bond of a compound of Formula (VI), to form a compound of Formula (VI-A):
Figure US20040249172A1-20041209-C00144
(6) subjecting the compound of Formula (VI) or (VI-A) to reaction with a silylating agent of formula
Figure US20040249172A1-20041209-C00145
wherein Rx, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl, to form a compound of Formula (V):
Figure US20040249172A1-20041209-C00146
wherein R′ represents:
Figure US20040249172A1-20041209-C00147
(7) reducing the lactone oxo group of the compound of Formula (V) to form a compound of Formula (IV):
Figure US20040249172A1-20041209-C00148
(8) subjecting the compound of Formula (IV) to a Wittig reaction with an ylide, the ylide being formed from the reaction of a compound of formula:
HO 2 C ( CH 2 ) 4 P ( R W ) 3 X
Figure US20040249172A1-20041209-M00003
HO2C(CH2)4P(Rw)3X
with a strong base, wherein Rw represents C1 to C6 alkyl or C6 to C10 aryl and X represents F, Cl, Br or I,
to form a compound of Formula (IIIa) or (IIIb) or a mixture thereof:
Figure US20040249172A1-20041209-C00149
(9) for compounds of Formula (I-B): subjecting a compound of Formula (IIIa) or Formula (IIb) or a mixture thereof, to reaction with an alkyl halide of formula R″-Hal, wherein R″ represents a C1 to C6 alkyl group or a C3 to C8 cycloalkyl group, and “Hal” represents chloro, bromo or iodo, in the presence of DBU [1,8-diaza-bicyclo(5.4.0)undec-7-ene], to form a compound of Formula (IIa) or (IIb):
Figure US20040249172A1-20041209-C00150
or a mixture thereof; and
(10) removing the protecting groups from: (a) the compound of Formula (IIIa) or (IIIb) or a mixture thereof to form the compound of Formula (I-A), or (b) a compound of Formula (IIa) or (IIb) or a mixture thereof to form the compound of Formula (I-B).
103. A process according to claim 102 for the synthesis of a compound of Formula (I-B) wherein the dashed line is absent, the process comprising carrying out steps (1) and (2) as defined in claim 1, carrying out the following steps (3′), (4′) and (5′):
(3′) subjecting the double bond of the compound of Formula (VIII) to a hydrogenation reaction to form a compound of Formula (XIII):
Figure US20040249172A1-20041209-C00151
(4′) reducing the side chain oxo group of the compound of Formula (XIII) to form a compound of Formula (XIV):
Figure US20040249172A1-20041209-C00152
(5′) deprotecting the hydroxyl group of the compound Formula (XIV) to form a compound of Formula (VI-A):
Figure US20040249172A1-20041209-C00153
subjecting the above compound of Formula (VI) to reaction steps (6), (7), (8), (9) and (10) as defined in claim 102.
104. A process according to claim 102 for the synthesis of a compound of Formula (I-A) or (I-B) the process comprising producing a compound of Formula (IIIa) or Formula (IIIb) or a mixture thereof according to claim 1:
Figure US20040249172A1-20041209-C00154
and further carrying out the steps of:
(9a) subjecting the compound of Formula (IIIa) or (IIIb) or a mixture thereof, to reaction with at least one molar equivalent of silylating agent to form a compound of Formula (XI):
Figure US20040249172A1-20041209-C00155
(10a) for compounds of Formula (I-B): subjecting the compound of Formula (XI) to a transesterification reaction with an alcohol having the formula R″—OH, wherein R″ represents C] to C6 alkyl or C3 to C8 cycloalkyl optionally in the presence of a weak acid catalyst to form the compound of Formula (XII):
Figure US20040249172A1-20041209-C00156
(11a) removing the protecting groups R′ from either (a) the compound of Formula (XI) to form the compound (I-A) or (b) the compound of Formula (XII) to form the compound (I-B).
105. A process according to claim 102 for the production of a compound of Formula (I-B) comprising carrying out steps (1) to (9) as defined in claim 1 to form a compound of formula (IIa) or (IIb) or a mixture thereof:
Figure US20040249172A1-20041209-C00157
and further carrying out the steps of:
(10b) subjecting the compound of Formula (IIa) or (IIb) of a mixture thereof to reaction with at least one molar equivalent of silylating agent to form a compound of Formula (XII):
Figure US20040249172A1-20041209-C00158
(11b) removing the protecting groups R′.
106. A process according to claim 103 for the synthesis of a compound of Formula (I-A) or (I-B) the process comprising producing a compound of Formula (IIIa) or Formula (IIIb) or a mixture thereof according to claim 2:
Figure US20040249172A1-20041209-C00159
and further carrying out the steps of:
(9a) subjecting the compound of Formula (IIIa) or (IIIb) or a mixture thereof, to reaction with at least one molar equivalent of silylating agent to form a compound of Formula (XI):
Figure US20040249172A1-20041209-C00160
(10a) for compounds of Formula (I-B): subjecting the compound of Formula (XI) to a transesterification reaction with an alcohol having the formula R″—OH, wherein R″ represents C1 to C6 alkyl or C3 to C8 cycloalkyl optionally in the presence of a weak acid catalyst to form the compound of Formula (XII):
Figure US20040249172A1-20041209-C00161
and
(11a) removing the protecting groups R′ from either (a) the compound of Formula (XI) to form the compound (I-A) or (b) the compound of Formula (XII) to form the compound (I-B).
107. A process according to claim 103 for the production of a compound of Formula (I-B) comprising carrying out steps (1) to (9) as defined in claim 2 to form a compound of formula (IIa) or (IIb) or a mixture thereof:
Figure US20040249172A1-20041209-C00162
and further carrying out the steps of:
(10b) subjecting the compound of Formula (IIa) or (IIb) of a mixture thereof to reaction with at least one molar equivalent of silylating agent to form a compound of Formula (XII):
Figure US20040249172A1-20041209-C00163
and
(11b) removing the protecting groups R′.
108. A process for the production of a compound of Formula (IX):
Figure US20040249172A1-20041209-C00164
wherein
A represents C6 to C10 aryl which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of (i) halo, (ii) C1 to C6 alkyl and (iii) unsubstituted C6 to C10 aryl,
comprising subjecting a compound of Formula (X):
Figure US20040249172A1-20041209-C00165
to an oxidation reaction in the presence of a catalytic amount of a stable organic nitroxyl radical.
109. A process for the preparation of a compound of Formula (XI):
Figure US20040249172A1-20041209-C00166
wherein the groups R′ are the same and each represents the substituent:
Figure US20040249172A1-20041209-C00167
wherein Rx, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl;
the process comprising reacting a compound of Formula (IIIa) or Formula (IIIb), or a mixture thereof, to reaction with at least a molar equivalent of silylating agent having the formula:
Figure US20040249172A1-20041209-C00168
wherein Rx, Ry and Rz are as defined above and X represents F, Cl, Br or I.
110. A process for the production of a compound of Formula (XII):
Figure US20040249172A1-20041209-C00169
wherein
each R′ is preferably the same and each represents the substituent:
Figure US20040249172A1-20041209-C00170
wherein
Rx, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl; and
R″ represents C1 to C6 alkyl or C3 to C8 cycloalkyl
the process comprising subjecting a compound of Formula (IIa) or Formula (IIb), or a mixture thereof, to reaction with at least one molar equivalent of silylating agent having the formula:
Figure US20040249172A1-20041209-C00171
wherein Rx, Ry and Rz are as defined above and the group X represents F, Cl, Br or I.
111. A process for the preparation of a compound of Formula (XII):
Figure US20040249172A1-20041209-C00172
wherein:
each R′ is preferably the same and each represents the substituent:
Figure US20040249172A1-20041209-C00173
wherein Rx, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl; and
R″ represents C1 to C6 alkyl or C3 to C8 cycloalkyl;
the process comprising subjecting a compound of Formula (XI):
Figure US20040249172A1-20041209-C00174
wherein the groups R′ are preferably the same and each represents the substituent:
Figure US20040249172A1-20041209-C00175
wherein Rx, Ry and Rz are the same or different and each independently represents C1 to C6 alkyl, C6 to C10 aryl or C7 to C16 aralkyl;
to a transesterification reaction with an alcohol having the formula R″—OH, wherein R″ represents C1 to C6 alkyl or C3 to C8 cycloalkyl.
112. A process for the production of a compound of Formula (I-A):
Figure US20040249172A1-20041209-C00176
wherein
B represents a substituent selected from the group consisting of:
(i) C1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo and CF3 and (iii) (CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3;
the process comprising removing the silyl protecting groups, R′, from a compound selected from the group consisting of
(i) a compound of Formula (IIIa), Formula (IIIb) or a mixture thereof:
Figure US20040249172A1-20041209-C00177
(ii) a compound of Formula (XI):
Figure US20040249172A1-20041209-C00178
wherein B and R′ are as defined in any preceding claim.
113. A process for the production of a compound of Formula (I-B):
Figure US20040249172A1-20041209-C00179
wherein
B represents a substituent selected from the group consisting of:
(i) C1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo and CF3 and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3; and
R″ represents, C1 to C6 alkyl or C3 to C8 cycloalkyl;
the process comprising removing the silyl protecting groups R′ from a compound of Formula (XII):
Figure US20040249172A1-20041209-C00180
wherein B and R″ are as defined as above.
114. A process according to claim 102 wherein the oxidation reaction is carried out by electrooxidation.
115. A process according to claim 102 wherein the oxidation reaction is carried out in the presence of at least one mole of co-oxidant selected from the group consisting of m-chloroperbenzoic acid, high valent metal salts, sodium bromite, sodium or calcium hypochlorite, N-chloro-succinimide or hypervalent iodine compounds such as [bis(acetoxy)iodo]benzene.
116. A process according to claim 102 wherein the nitroxyl radical is a completely α-substituted piperidin-1-oxy radical, such as TEMPO free radical.
117. A process according to claim 102 wherein the reducing agent for reducing the side chain oxo group is selected from the group consisting of borane-dimethylsulfide complex, lithium tri-sec-butylborohydride and sodium borohydride.
118. A process according to claim 102 wherein the reduction of the side chain oxo group is carried out in the presence of a chiral oxazaborolidine catalyst (Corey catalyst) to form a single enantiomer of the compound of Formula (VII).
119. A process according to claim 102 wherein the reduction of the side chain oxo group is carried out in the presence of oxa(R)-tetrahydro-1-methyl-3,3-diphenyl-1H, 3H-pyrrole-[1,2-c][1,3,2]-oxazaborole.
120. A process according to claim 102 wherein the hydroxyl deprotection step to produce the compound of formula (VI) is carried out in the presence of a base selected from the group consisting of K2CO3, Na2CO3 and Li2CO3.
121. A process according to claim 102 wherein hydrogenation reaction is carried out by catalytic hydrogenation in the presence of a catalyst comprising palladium, platinum or rhodium optionally in the presence of sodium nitrite.
122. A process according to claim 102 wherein the silylating agent is selected from the group consisting of trimethylsilyl chloride, triethylsilyl chloride and tert-butyldimethylsilyl chloride.
123. A process according to claim 102 wherein the reducing agent in step (7) is di-iso-butylaluminium hydride.
124. A process according to claim 102 wherein the removal of the protecting group R′ is carried out using a weak acid selected from the group consisting of acetic acid, citric acid or pyridinium p-toluene sulfonate.
125. A process according to claim 102 wherein A represents phenyl.
126. A process according to claim 102 wherein Rw represents phenyl and X represents Br.
127. A process according to claim 102 wherein the group R″ represents isopropyl.
128. A process according to claim 102 wherein B is selected from the group consisting of (i) C1 to C6 alkyl, (ii) C7 to C16 aralkyl wherein the aryl group is unsubstituted and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which is substituted with a substituent selected from halo or CF3.
129. A process according to claim 102 wherein B represents a substituent selected from the group consisting of:
Figure US20040249172A1-20041209-C00181
130. A process according to claim 102 wherein the wavy line in side chain of compounds of any of Formulae (VII), (VI), (VI-A), (V), (IV), (IIIa), (IIIb), (IIa), (IIb), (XI), (XII) or (XIV) represents a single enantiomer.
131. A process according to claim 102 for the synthesis of a compound selected from the group consisting of:
Figure US20040249172A1-20041209-C00182
132. A compound of Formula (XIII):
Figure US20040249172A1-20041209-C00183
wherein A represents unsubstituted C6 to C10 aryl, and
B represents a substituent selected from the group consisting of:
(i) C1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo and CF3 and (iii) (CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3.
133. A compound of Formula (XIV):
Figure US20040249172A1-20041209-C00184
or a single enantiomer thereof, wherein
A represents unsubstituted C6 to C10 aryl and
B represents a substituent selected from the group consisting of:
(i) C1 to C6 alkyl, (ii) C7 to C16 aralkyl, wherein the aryl group may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo and CF3 and (iii) —(CH2)nORa, wherein n represents 1, 2 or 3 and Ra represents a C6 to C10 aryl group which may be unsubstituted or substituted with one to three substituents independently selected from the group consisting of C1 to C6 alkyl, halo or CF3.
134. A process for the purification of latanoprost by HPLC comprising the use as an eluent, of a mixture comprising one or more hydrocarbons, one or more alcohols and, optionally, acetonitrile.
135. A process according to claim 134 wherein the eluent comprises at least one hydrocarbon, at least one alcohol and acetonitrile.
136. A process according to claim 134 wherein the eluent comprises a hydrocarbon or a mixture of hydrocarbons in an amount range of 80-99 volume percent and an alcohol or a mixture of alcohols in an amount range of 1-20 volume percent.
137. A process according to claim 134 wherein the eluent comprises a hydrocarbon or a mixture of hydrocarbons in an amount range of 88-98 volume percent and an alcohol or a mixture of alcohols in an amount range of 2-12 volume percent.
138. A process according to claim 134 wherein the eluent comprises a hydrocarbon or a mixture of hydrocarbons in an amount range of 85-99 volume percent, an alcohol or a mixture of alcohols in an amount of 0.5-10 volume percent and acetonitrile in an amount of 0.5-5 volume percent.
139. A process according to claim 134 wherein the hydrocarbon is hexane or heptane.
140. A process according to claim 134 wherein the alcohol component comprises at least one C1 to C8 straight chain, branched or cyclic alkanol.
141. A process according to claim 134 wherein the alcohol comprises propan-2-ol.
142. Latanoprost substantially free of the 15(S)-cis isomer, the 15(S)-trans isomer and the 15(R)-trans isomer.
143. Latanoprost according to claim 142 containing less than 0.3% in total of any combination of: 15(S)-cis isomer, 15(S)-trans isomer and 15(R)-trans isomer.
144. Latanoprost according to claim 142 containing less than 0.1% each of 15(S)-cis isomer, 15(S)-trans isomer and 15(R)-trans isomer.
145. Latanoprost having a purity of greater than 98%.
146. Latanoprost according to claim 145 having a purity of greater than 99%.
147. Latanoprost according to claim 145 having a purity of greater than 99.5%.
148. Latanoprost according to claim 145 having a purity of greater than 99.8%.
US10/478,513 2001-05-24 2002-05-24 Process for the preparationof prostaglandins and analogues thereof Abandoned US20040249172A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/189,986 US7268239B2 (en) 2001-05-24 2005-07-27 Process for the preparation of prostaglandins and analogues thereof
US11/189,985 US7498458B2 (en) 2001-05-24 2005-07-27 Process for the preparation of prostaglandins and analogues thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0112699.4 2001-05-24
GBGB0112699.4A GB0112699D0 (en) 2001-05-24 2001-05-24 Process for the preparation of prostglandins and analogues thereof
PCT/GB2002/002462 WO2002096898A2 (en) 2001-05-24 2002-05-24 Process for the preparation of prostaglandins and analogues thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/189,985 Division US7498458B2 (en) 2001-05-24 2005-07-27 Process for the preparation of prostaglandins and analogues thereof
US11/189,986 Division US7268239B2 (en) 2001-05-24 2005-07-27 Process for the preparation of prostaglandins and analogues thereof

Publications (1)

Publication Number Publication Date
US20040249172A1 true US20040249172A1 (en) 2004-12-09

Family

ID=9915243

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/478,513 Abandoned US20040249172A1 (en) 2001-05-24 2002-05-24 Process for the preparationof prostaglandins and analogues thereof
US11/189,986 Expired - Fee Related US7268239B2 (en) 2001-05-24 2005-07-27 Process for the preparation of prostaglandins and analogues thereof
US11/189,985 Expired - Fee Related US7498458B2 (en) 2001-05-24 2005-07-27 Process for the preparation of prostaglandins and analogues thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/189,986 Expired - Fee Related US7268239B2 (en) 2001-05-24 2005-07-27 Process for the preparation of prostaglandins and analogues thereof
US11/189,985 Expired - Fee Related US7498458B2 (en) 2001-05-24 2005-07-27 Process for the preparation of prostaglandins and analogues thereof

Country Status (15)

Country Link
US (3) US20040249172A1 (en)
EP (2) EP2311820A1 (en)
JP (2) JP4475943B2 (en)
CN (2) CN101003503A (en)
AU (1) AU2002321396B2 (en)
BR (1) BR0209984A (en)
CA (1) CA2448088A1 (en)
GB (1) GB0112699D0 (en)
HU (1) HUP0400047A3 (en)
IL (1) IL159030A0 (en)
NO (1) NO329883B1 (en)
NZ (1) NZ529634A (en)
SK (1) SK14362003A3 (en)
WO (1) WO2002096898A2 (en)
ZA (1) ZA200308916B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261374A1 (en) * 2001-05-24 2005-11-24 Resolution Chemicals Limited Process for the preparation of prostaglandins and analogues thereof
WO2007041273A2 (en) * 2005-09-29 2007-04-12 Eastar Chemical Corp. Process for the production of intermediates for making prostaglandin derivatives such as latanoprost, travaprost, and bimatoprost
US20080033176A1 (en) * 2006-08-07 2008-02-07 Daiichi Fine Chemical Co., Ltd. Method for preparing prostaglandin derivative

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7321057B2 (en) * 2004-08-02 2008-01-22 R-Tech Ueno, Ltd. Method for manufacturing prostaglandin analogue
PL212658B1 (en) * 2005-04-18 2012-11-30 Inst Farmaceutyczny Method for obtaining the derivatives of 13,14-dihydro-PGF₂α
US7511168B2 (en) 2006-01-18 2009-03-31 Shih-Yi Wei Processes and intermediates for the preparations of prostaglandins
US8546114B2 (en) 2006-01-18 2013-10-01 Chirogate International Inc. Processes for the preparation of optically active cyclopentenones and cyclopentenones prepared therefrom
KR101353187B1 (en) * 2006-02-07 2014-01-17 수캄포 아게 Method for preparing prostaglandin derivative
JP2008037782A (en) * 2006-08-04 2008-02-21 Daiichi Fine Chemical Co Ltd Method for producing prostaglandine derivative
US20090233830A1 (en) * 2008-03-14 2009-09-17 Penny Sue Dirr Automatic detergent dishwashing composition
EP2135860A1 (en) 2008-06-20 2009-12-23 Sandoz AG Improved process for the production of bimatoprost
EP2143712A1 (en) 2008-07-10 2010-01-13 Sandoz AG Improved Process for the Production of Prostaglandins and Prostaglandin Analogs
IT1392492B1 (en) 2008-12-24 2012-03-09 Ind Chimica Srl PROCESS FOR THE PURIFICATION OF LATANOPROST, SYNTHETIC ANALOGUE OF PROSTAGLANDINA PGF2ALFA.
KR101045935B1 (en) * 2009-03-11 2011-07-01 연성정밀화학(주) Method for preparing prostaglandin derivative
WO2011005505A2 (en) 2009-06-22 2011-01-13 Johnson Matthey Public Limited Company Method for the purification of prostaglandins
US8901319B2 (en) * 2009-10-16 2014-12-02 Cayman Chemical Company, Incorporated Process for the preparation of F-series prostaglandins
CA2777352A1 (en) * 2009-11-05 2011-05-12 Biocon Limited A novel process for the preparation of prostaglandins and intermediates thereof
WO2011095990A2 (en) 2010-02-03 2011-08-11 Fdc Limited Process for the purification of prostaglandins and analogues thereof
EP2495235B1 (en) 2011-03-04 2015-08-05 Newchem S.p.A. Process for the synthesis of prostaglandins and intermediates thereof
HU231203B1 (en) * 2011-12-21 2021-10-28 CHINOIN Gyógyszer és Vegyészeti Termékek Gyára Zrt. Novel process for the preparation of travoprost
TWI435752B (en) * 2012-08-15 2014-05-01 Everlight Chem Ind Corp Method of purification of prostaglandins including fluorine atoms by preparative hplc
US9115109B2 (en) 2013-08-15 2015-08-25 Chirogate International Inc. Processes and intermediates for the preparations of isomer free prostaglandins
HU231214B1 (en) 2014-03-13 2021-11-29 CHINOIN Gyógyszer és Vegyészeti Termékek Gyára Zrt. New process for preparing high purity prostaglandins
CN104513186B (en) * 2015-01-13 2016-10-05 宁波第二激素厂 A kind of preparation method of optically pure dextrorotation Cloprostenol Sodium
HU231175B1 (en) * 2015-12-04 2021-06-28 CHINOIN Gyógyszer és Vegyészeti Termékek Gyára Zrt. Production of latanoprostene bunod by gravity column chromatography, in optional, previously definied quality
EP3950672A4 (en) * 2019-03-27 2023-01-11 Kyowa Pharma Chemical Co., Ltd. Method for producing pkrostaglandin
CN112608294B (en) * 2020-12-16 2021-10-26 西安国康瑞金制药有限公司 Preparation method of latanoprost
EP4261206A1 (en) * 2020-12-23 2023-10-18 Kyowa Pharma Chemical Co., Ltd. Method for separating geometrical isomer
CN115991691B (en) * 2023-03-23 2023-05-16 西南交通大学 Preparation method and application of latanoprost intermediate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549688A (en) * 1967-02-16 1970-12-22 Gen Electric Process for the preparation of carboxylic acid esters
US3931279A (en) * 1973-05-21 1976-01-06 The Upjohn Company 5-Oxa prostaglandin F2.sub.α analogs
US3978229A (en) * 1974-04-11 1976-08-31 Ono Pharmaceutical Co., Ltd. Synergistic composition comprising PGF2.sub.α and PGE2
US4158667A (en) * 1976-02-04 1979-06-19 The Upjohn Company 6-Keto PGF analogs
US4346228A (en) * 1975-04-18 1982-08-24 Schering Aktiengesellschaft Novel 11-oxoprostaglandin derivatives
US4680415A (en) * 1985-06-24 1987-07-14 Hoffmann-La Roche Inc. Intermediates for 7-fluoro dihydro PGI compounds
US5223537A (en) * 1991-07-23 1993-06-29 Kabi Pharmacia Ab Method and composition for treatment of gastric and duodenal disorders
US5321128A (en) * 1988-09-06 1994-06-14 Kabi Pharmacia Ab Prostaglandin derivatives for the treatment of glaucoma or ocular hypertension
US6184250B1 (en) * 1993-08-03 2001-02-06 Alcon Laboratories, Inc. Use of cloprostenol and fluprostenol analogues to treat glaucoma and ocular hypertension

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778450A (en) 1971-03-23 1973-12-11 Upjohn Co Certain bicyclic lactones
CA971957A (en) 1971-12-13 1975-07-29 Upjohn Company (The) PROCESS FOR PREPARING PROSTAGLANDIN E'S FROM PROSTAGLANDIN F.alpha.'S
US4100355A (en) 1972-09-15 1978-07-11 The Upjohn Company 8β,12α-PGE2 -type compounds
US3864387A (en) 1973-05-21 1975-02-04 Upjohn Co 5-Oxa phenyl-and phenoxy-substituted prostaglandin F{HD 1{301 {0 {B analogs
US4036832A (en) * 1974-07-03 1977-07-19 Pfizer Inc. 15-Substituted-ω-pentanorprostaglandins
DE2434133C2 (en) * 1974-07-12 1987-03-19 Schering AG, 1000 Berlin und 4709 Bergkamen 15,15-Ethylenedioxy-prostanoic acid derivatives, processes for their preparation and medicaments containing these compounds
EP0059307A1 (en) * 1981-02-26 1982-09-08 Grünenthal GmbH Preparation of 2-oxa-bicyclo(3.3.0)octane compounds and their derivatives
US4599353A (en) 1982-05-03 1986-07-08 The Trustees Of Columbia University In The City Of New York Use of eicosanoids and their derivatives for treatment of ocular hypertension and glaucoma
JPS6137752A (en) * 1984-07-30 1986-02-22 Kuraray Co Ltd Separation and purification of highly unsaturated long-chain fatty acid or its ester
US4943635A (en) 1987-08-27 1990-07-24 President & Fellows Of Harvard College Enantioselective reduction of ketones
EP0394263B1 (en) 1987-09-04 1994-03-16 The Upjohn Company Process for production of prostaglandin intermediates
WO1990002553A1 (en) * 1988-09-06 1990-03-22 Pharmacia Ab Prostaglandin derivatives for the treatment of glaucoma or ocular hypertension
JP2855450B2 (en) 1989-09-11 1999-02-10 小野薬品工業株式会社 Method for producing intermediate of prostaglandin derivative
SE9002596D0 (en) 1990-08-08 1990-08-08 Pharmacia Ab A METHOD OF SYNTHESIS OF PROSTAGLANDIN DERIVATIVES
JPH085873B2 (en) 1990-08-21 1996-01-24 株式会社上野製薬応用研究所 Manufacturing method of prostaglandin intermediate
EP0472338A3 (en) * 1990-08-21 1993-05-19 Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo Method of manufacturing prostaglandin intermediate
HU212570B (en) 1991-06-24 1996-08-29 Chinoin Gyogyszer Es Vegyeszet Process for producing 13,14-dihydro-15(r)-17-phenyl-18,19,20-trinor-pgf2alfa-isopropylester
US5688819A (en) 1992-09-21 1997-11-18 Allergan Cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
DE69327717T2 (en) 1992-09-30 2000-06-21 R-Tech Ueno, Ltd. METHOD FOR PRODUCING ALPHA, BETA-UNSATURATED KETONES
DE4323331A1 (en) 1993-07-08 1995-01-12 Schering Ag Novel bicyclic lactones
US5510383A (en) 1993-08-03 1996-04-23 Alcon Laboratories, Inc. Use of cloprostenol, fluprostenol and their salts and esters to treat glaucoma and ocular hypertension
NL194919C (en) * 1993-09-07 2003-07-04 Tno Process for oxidizing carbohydrates.
US5545665A (en) 1993-12-28 1996-08-13 Allergan Cyclopentane(ene) heptenoic or heptanoic acids and derivatives thereof useful as therapeutic agents
US5698733A (en) 1994-09-30 1997-12-16 Alcon Laboratories, Inc. Use of 9-deoxy prostaglandin derivatives to treat glaucoma
HU223345B1 (en) 1995-12-20 2004-08-30 Chinoin Gyógyszer és Vegyészeti Termékek Gyára Rt. Process for stereoselective reducing alpha, beta-unsaturated ketones
US6649653B1 (en) * 1996-11-12 2003-11-18 Alcon Manufacturing, Ltd. 15-fluoro prostaglandins as ocular hypotensives
SE9702681D0 (en) 1997-07-10 1997-07-10 Pharmacia & Upjohn Ab Method and composition for treatment of impotence
SE9702706D0 (en) 1997-07-11 1997-07-11 Pharmacia & Upjohn Ab Prostaglandin derivatives devoid of side effects for the treatment of glaucoma
WO1999012899A1 (en) 1997-09-09 1999-03-18 The Procter & Gamble Company A process for making prostaglandin f analogs
WO2000020386A1 (en) 1998-10-05 2000-04-13 Alcon Laboratories, Inc. Stannane synthesis of prostanoids
SE9900025D0 (en) 1999-01-08 1999-01-08 Synphora Ab Method and composition for treatment of female sexual dysfunction
AU2960000A (en) 1999-01-08 2000-07-24 University Of Massachusetts Detection of human immunodeficiency virus
JP3501025B2 (en) 1999-07-15 2004-02-23 松下電器産業株式会社 Electric cooker
IL134241A (en) * 2000-01-27 2006-06-11 Finetech Pharmaceutical Ltd Process for the preparation of latanoprost
AU3328601A (en) 2000-02-01 2001-08-14 Cayman Chemical Co Inc Internal 1,15-lactones of fluprostenol and related prostaglandin F<sub>2alpha</sub> analogs and their use in the treatment of glaucoma and intraocular hypertension
AU2000237291A1 (en) 2000-03-07 2001-09-17 Daimlerchrysler Ag Skin effect heating system for a structural member
AU2001261019A1 (en) * 2000-05-15 2001-11-26 Pharmacia And Upjohn Company Process and intermediates to prepare latanoprost
GB0112699D0 (en) * 2001-05-24 2001-07-18 Resolution Chemicals Ltd Process for the preparation of prostglandins and analogues thereof
IL159632A0 (en) * 2001-07-17 2004-06-01 Upjohn Co Process and intermediates to prepare latanoprost

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549688A (en) * 1967-02-16 1970-12-22 Gen Electric Process for the preparation of carboxylic acid esters
US3931279A (en) * 1973-05-21 1976-01-06 The Upjohn Company 5-Oxa prostaglandin F2.sub.α analogs
US3978229A (en) * 1974-04-11 1976-08-31 Ono Pharmaceutical Co., Ltd. Synergistic composition comprising PGF2.sub.α and PGE2
US4346228A (en) * 1975-04-18 1982-08-24 Schering Aktiengesellschaft Novel 11-oxoprostaglandin derivatives
US4158667A (en) * 1976-02-04 1979-06-19 The Upjohn Company 6-Keto PGF analogs
US4680415A (en) * 1985-06-24 1987-07-14 Hoffmann-La Roche Inc. Intermediates for 7-fluoro dihydro PGI compounds
US5321128A (en) * 1988-09-06 1994-06-14 Kabi Pharmacia Ab Prostaglandin derivatives for the treatment of glaucoma or ocular hypertension
US5223537A (en) * 1991-07-23 1993-06-29 Kabi Pharmacia Ab Method and composition for treatment of gastric and duodenal disorders
US6184250B1 (en) * 1993-08-03 2001-02-06 Alcon Laboratories, Inc. Use of cloprostenol and fluprostenol analogues to treat glaucoma and ocular hypertension

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261374A1 (en) * 2001-05-24 2005-11-24 Resolution Chemicals Limited Process for the preparation of prostaglandins and analogues thereof
US7498458B2 (en) 2001-05-24 2009-03-03 Resolution Chemicals Limited Process for the preparation of prostaglandins and analogues thereof
WO2007041273A2 (en) * 2005-09-29 2007-04-12 Eastar Chemical Corp. Process for the production of intermediates for making prostaglandin derivatives such as latanoprost, travaprost, and bimatoprost
WO2007041273A3 (en) * 2005-09-29 2007-10-25 Eastar Chemical Corp Process for the production of intermediates for making prostaglandin derivatives such as latanoprost, travaprost, and bimatoprost
US20090287003A1 (en) * 2005-09-29 2009-11-19 Jiang Xing Chen Process for the production of intermediates for making prostaglandin derivatives such as latanaprost, travaprost, and bimatoprost
US20080033176A1 (en) * 2006-08-07 2008-02-07 Daiichi Fine Chemical Co., Ltd. Method for preparing prostaglandin derivative
US7642370B2 (en) 2006-08-07 2010-01-05 Daiichi Fine Chemical Co., Ltd. Method for preparing prostaglandin derivative

Also Published As

Publication number Publication date
US7498458B2 (en) 2009-03-03
NZ529634A (en) 2004-11-26
WO2002096898A3 (en) 2003-03-20
NO329883B1 (en) 2011-01-17
JP2010053149A (en) 2010-03-11
US20050261374A1 (en) 2005-11-24
IL159030A0 (en) 2004-05-12
JP4475943B2 (en) 2010-06-09
CA2448088A1 (en) 2002-12-05
ZA200308916B (en) 2007-11-28
CN101003503A (en) 2007-07-25
AU2002321396B2 (en) 2007-10-18
BR0209984A (en) 2004-04-06
EP1389198A2 (en) 2004-02-18
CN1533385A (en) 2004-09-29
EP2311820A1 (en) 2011-04-20
GB0112699D0 (en) 2001-07-18
CN1301986C (en) 2007-02-28
HUP0400047A2 (en) 2004-04-28
NO20035162D0 (en) 2003-11-20
SK14362003A3 (en) 2004-05-04
JP2005503354A (en) 2005-02-03
WO2002096898A2 (en) 2002-12-05
US20050272877A1 (en) 2005-12-08
US7268239B2 (en) 2007-09-11
HUP0400047A3 (en) 2007-05-02

Similar Documents

Publication Publication Date Title
US7268239B2 (en) Process for the preparation of prostaglandins and analogues thereof
AU2002321396A1 (en) Process for the preparation of prostaglandins and analogues thereof
EP1385819B1 (en) Process for preparing prostaglandin derivatives and stereospecific starting material thereof
JP5653827B2 (en) Prostaglandin synthesis
US4238414A (en) 2-Decarboxy-2-aminomethyl-6a-carba-PGI2 compounds
US4705806A (en) Prostacyclin analogs
WO2010109476A2 (en) Improved process for the preparation of prostaglandins and analogues thereof
JP2018528940A (en) Method for making beraprost
US4732914A (en) Prostacyclin analogs
US4060540A (en) Novel 3-triphenylmethoxy-1-alkynes, 3-triphenyl-methoxy-1-trans-alkenyl-dialkyl-alanes, and lithium 3-triphenylmethoxy-1-trans-alkenyl-dialkyl alanates
KR101522218B1 (en) Processes and intermediates for the preparations of prostaglandins
US4123456A (en) Novel 11-hydroxy-9-keto-5,6-cis-13,14-cis-prostadienoic acid derivatives
US4343949A (en) Novel 2-substituted-3,4-epoxycyclopentan-1-ones, 2-substituted-3,4-epoxycyclopentan-1-ols, and various 2-substituted-cyclopentenones
RU2774634C2 (en) Method for production and purification of misoprostol
US4179574A (en) Novel 2-substituted-3,4-epoxycyclopentan-1-ones, 2-substituted-3,4-epoxycyclopentan-1-ols, and various 2-substituted-cyclo-pentenones
US4632997A (en) Method for preparing cis-bicyclo[3.3.0]octylidene derivative
JP2839841B2 (en) Process for producing prostaglandin E1s, and synthetic intermediate thereof
EP0553352B1 (en) Novel prostaglandin i2 derivatives
EP1085012B1 (en) Process for producing a purified prostaglandin derivative
US4110368A (en) Hydro substituted prostanoic acids and esters
US4439365A (en) Novel hydroxy substituted prostanoic acids, esters, congeners, intermediates and process
JPH034558B2 (en)
JPS6341376B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: RESOLUTION CHEMICALS LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CASCADE BIOCHEM LIMITED;REEL/FRAME:014796/0927

Effective date: 20031120

Owner name: RESOLUTION CHEMICALS LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GREENWOOD, ALAN KENNETH;MCHATTIE, DEREK;THOMPSON, DAVID GEORGE;REEL/FRAME:014796/0918;SIGNING DATES FROM 20040211 TO 20040213

Owner name: CASCADE BIOCHEM LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CLISSOLD, DEREK WYNDHAM;REEL/FRAME:014796/0980

Effective date: 20040216

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION