US20040248464A1 - Stacked electrical connector assembly - Google Patents

Stacked electrical connector assembly Download PDF

Info

Publication number
US20040248464A1
US20040248464A1 US10/668,880 US66888003A US2004248464A1 US 20040248464 A1 US20040248464 A1 US 20040248464A1 US 66888003 A US66888003 A US 66888003A US 2004248464 A1 US2004248464 A1 US 2004248464A1
Authority
US
United States
Prior art keywords
connector assembly
electrical connector
housing
insulating housing
terminal group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/668,880
Other versions
US7008261B2 (en
Inventor
Zhenglan Xue
Jinkui Hu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hon Hai Precision Industry Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to HON HAI PRECISION IND. CO., LTD. reassignment HON HAI PRECISION IND. CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HU, JINKUI, XUE, ZHENGLAN
Publication of US20040248464A1 publication Critical patent/US20040248464A1/en
Application granted granted Critical
Publication of US7008261B2 publication Critical patent/US7008261B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/716Coupling device provided on the PCB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • H01R25/006Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits the coupling part being secured to apparatus or structure, e.g. duplex wall receptacle

Definitions

  • the present invention generally relates to an electrical connector assembly, and particularly to a stacked electrical connector assembly provided with a common housing.
  • a computer is required to provide connectors at input/output ports, which are usually mounted on a main printed circuit board (PCB) thereof, to mate with corresponding complementary connectors of peripheral devices for signal transmission therebetween.
  • the electrical connectors are usually arranged in a stacked manner.
  • a stacked jack socket connector assembly mounted on a printed circuit board for transmitting audio signals from jack plugs to corresponding circuitries on the printed circuit board.
  • Such stacked jack socket connector assembly is disclosed in U.S. Pat. Nos. 4,695,116, 5,709,554 and 6,116,959.
  • Each of the stacked jack socket connector assemblies disclosed in the patents mentioned above comprises at least two dielectric housings each defining an axial cavity therein, a plurality of sets of spring contacts respectively received in the housings with spring contacting portions thereof exposed in the cavities of the housings for electrically connecting with jack plugs, and plurality of transition contacts electrically connected with the spring contacts.
  • each stacked jack socket connector assembly is separately manufactured and then assembled together. This structure does not accord with the current trend and there still remains room for decreasing the occupied space of such a stacked jack socket connector assembly.
  • a unitary connector assembly having multiple rows and columns of mating ports, either aligned or offset, is desired.
  • each dielectric housing of the stacked jack socket connector assembly is preferable to have a different color from that of other housings for easy to distinguish in use.
  • the colored housings are relatively costly.
  • an electrical connector assembly in accordance with the present invention comprises an insulating housing defining a first face and an opposite second face, a plurality of mating ports, a first terminal group, a second terminal group and a third terminal group.
  • the insulating housing comprises a plurality of receiving spaces alternately extending from the second face toward the first face thereof.
  • a plurality of first, second and third slots are respectively defined in the housing and communicate with corresponding receiving spaces.
  • the mating ports are respectively assembled to the housing and align with the receiving spaces.
  • the first terminal group is assembled to the insulating housing and comprises a plurality of terminals received in the receiving spaces.
  • Each terminal comprises a pair of contacting portions adapted for electrically connecting with a complementary connector and a plurality of tail portions respectively received in the third slots.
  • the second terminal group is received in the second slots and comprises a plurality of arms respectively extending into the mating ports of the housing.
  • the third terminal group is received in the third slots and electrically connects with the tail portions of the first terminal group.
  • FIG. 1 is an assembled view of an electrical connector assembly in accordance with the present invention
  • FIG. 2 is a partially exploded, perspective view of FIG. 1;
  • FIG. 3 is a partially exploded, perspective view of FIG. 2;
  • FIG. 4 is a view similar to FIG. 3, but taken from a different aspect
  • FIG. 5 is a perspective, exploded view of a terminal module shown in FIG. 3;
  • FIG. 6 is a partially assembled view of FIG. 4 with a spacer and a metal shield of the electrical connector assembly removed for simplicity.
  • an electrical connector assembly 1 in accordance with the present invention is a stacked audio socket connector assembly and comprises an insulating housing 11 , a terminal module comprising a first terminal group 12 , a second terminal group 13 and a third terminal group 14 respectively received in the insulating housing 11 , a spacer 16 , a plurality of retaining blocks 15 , a plurality of mating ports 17 and a metal shield 18 .
  • the insulating housing 11 is generally in a rectangular shape.
  • the housing 11 comprises a first face 11 a and an opposite second face 11 b .
  • Five cavities 119 are defined rearwardly from the first face 11 a of the housing 11 and are alternately arranged in a first array and a second array parallel to each other and along a direction parallel to the first face 11 a of the housing 11 .
  • Each cavity 119 comprises a cylindrical hole 1192 and a pair of trapeziform spaces 1191 respectively communicating with the cylindrical hole 1192 .
  • Five receiving spaces 111 are defined forwardly from the second face 11 b of the housing 11 and respectively communicate with the cavities 119 .
  • the five receiving spaces 111 are respectively designated as 111 a , 111 b , 111 c , 111 d and 111 e .
  • a first slot 112 , a second slot 114 and s third slot 113 are respectively defined forwardly from the second face 11 b of the housing 11 and communicate a corresponding receiving space 111 .
  • the slots 112 , 113 , 114 are respectively located above the receiving space 111 , below the receiving space 111 , and in a middle of a bottom edge of the receiving space 111 .
  • a plurality of side apertures 118 is defined in opposite sides of the insulating housing 11 .
  • a plurality of positioning holes 116 is defined forwardly from the second face 11 b of the housing 11 and is respectively aligning with the side apertures 118 along a right-to-left direction of the housing 11 .
  • a plurality of slits 115 is defined between every two neighboring receiving spaces 111 .
  • a recess is defined in a bottom surface of the insulating housing 11 to form a pair of latching edges 117 respectively adjacent to opposite sides of the housing 11 .
  • the first terminal group 12 comprises five signal terminal units, namely four first terminal units 121 and one second terminal unit 122 .
  • Each first terminal unit 121 consists of two pairs of halves oriented 180 degrees relative to each other.
  • Each pair of halves comprises a first board portion 123 , a second board portion 126 parallel to the first board portion 123 , a contacting portion 124 curly extending from the first board portion 123 toward the second board portion 126 , and a plurality of tail portions 127 extending vertically from bottom edges of the first and the second board portions 123 , 126 .
  • the second terminal unit 122 has the substantially same structure as that of the first terminal unit 121 except that tail portions 125 thereof extend straight downwardly from the bottom edges of the first and the second board portions 123 , 126 .
  • the second terminal group 13 comprises a first grounding contact 130 and a second grounding contact 135 .
  • Each of the first and the second grounding contacts 130 , 135 comprise a vertical body strip 132 , a plurality of arms 131 horizontally extending forward from the body strip 132 (the first grounding contact 130 comprises three arms 131 while the second grounding contact 135 comprises two arms 131 ).
  • the arms 131 are spaced apart and parallel to one another.
  • a protrusion 134 extends forwardly from the body strip 42 of the second grounding contact 135 and adjacent to the top arm 131 .
  • a pair of protrusions 134 extends forwardly from the body strip 42 of the first grounding contact 130 , one adjacent to the top and the other to the middle arms 131 , respectively.
  • An insert leg 133 extends downwardly from the bottom arm 131 for soldering to a printed circuit board (not shown).
  • the third terminal group 14 consists of four sets of transition contacts 140 having a similar structure as one another.
  • Each transition contact 140 comprises a mating portion 141 and a terminating portion 142 bending at a right angle from the mating portion 141 .
  • each retaining block 15 comprises a body section 151 and a pair of retaining latches 154 extending forwardly from opposite sides of a front end of the body section 151 .
  • the body section 151 defines a through slit 153 in a middle portion of the front end thereof, and the through slit 153 aligns with the slits 115 of the insulating housing 11 .
  • a plurality of grooves 155 is defined in a rear end of the body section 151 and a pair of openings 152 is defined in both sides of the body section 151 .
  • the spacer 16 is generally step-shaped and comprises a vertical panel 161 and a base 162 extending forwardly from a bottom end of the panel 161 .
  • the vertical panel 161 comprises a first step 165 and a second step 164 higher than the first step 165 .
  • a plurality of vertical passages 168 respectively extends through the first and the second steps 165 , 164 .
  • a pair of through slots 166 is respectively defined in center portions of the first and the second steps 165 , 164 .
  • the base 162 defines a plurality of rectangular recesses 163 extending therethrough.
  • Each step 165 , 164 also forms a pair of posts 167 extending upwardly therefrom.
  • Each mating port 17 comprises a cylindrical neck 173 and a pair of projections 171 extending oppositely from upper and lower edges of the neck 173 .
  • a passageway 172 is defined forwardly from a rear surface of the projection 171 and partially extends into the neck 173 .
  • the metal shield 18 is general in a rectangular shape and comprises a front wall 183 , a top wall 184 and a pair of opposite side walls 185 .
  • Five holes 181 are defined in the front wall 183 and align with the mating ports 17 , and a plurality of feet 182 extends downwardly from bottom edges of the pair of side walls 185 .
  • the first and the second terminal units 121 , 122 of the first terminal group 12 are first assembled to the insulating housing 11 from a rear-to-front direction of the housing 11 and respectively received in the receiving spaces 111 , the first and the third slots 112 , 113 .
  • the tail portions 125 of the second terminal 122 extend beyond the bottom surface of the housing 11 .
  • the first and the second grounding contacts 130 , 135 of the second terminal group 13 are then assembled to the housing 11 with the arms 131 thereof being respectively received in the third slots 114 and the protrusions 134 thereof being received in the slits 115 of the housing 11 .
  • the insert legs 133 of the grounding contacts 130 , 135 extend beyond the bottom surface of the housing 11 .
  • the mating portions 141 of the four sets of transition contacts 140 of the third terminal group 14 are respectively received in the third slots 113 of the receiving spaces 111 and electrically contact with the tail portions 127 of the first terminal units 121 .
  • the terminating portions 142 of the transition contacts 140 extend beyond the bottom surface of the housing 11 .
  • One of the three retaining blocks 15 is assembled to the insulating housing 11 above the receiving space 111 b with one retaining latch 154 thereof being receiving in a corresponding positioning hole 116 and the other retaining latch 154 thereof being received in a corresponding side aperture 118 aligning with the positioning hole 116 .
  • an upper portion of the vertical body strip 132 of the first grounding contact 130 is received in the through slit 153 of the retaining block 15 .
  • the other two retaining blocks 15 are respectively assembled to the top of the housing 11 and engage with corresponding positioning holes 116 and side apertures 118 of the housing 11 .
  • the spacer 16 is assembled to the housing 11 from a bottom of the housing 11 .
  • the base 162 of the spacer 16 is received in the recess defined in the bottom surface of the housing 11 and is secured by the pair of latching edges 117 .
  • the terminating portions 142 of the transition contacts 140 respectively protrude through the vertical passages 168 of the first and the second steps 165 , 164 and extend beyond a bottom surface of the spacer 16 .
  • the body strips 132 of the second terminal group 13 are respectively received in the through slots 166 of the spacer 16 .
  • the posts 167 of the spacer 16 are respectively received in the openings 152 of corresponding retaining blocks 152 .
  • the mating ports 17 are respectively inserted into the cavities 119 from the first face 11 a of the housing 11 .
  • the projections 171 of each mating port 17 are received in the pair of trapeziform spaces 1191 , while the cylindrical neck 173 is received in the cylindrical hole 1192 of a corresponding cavity 119 .
  • the arms 131 of the second terminal group 13 extend into the passageways 172 of the mating ports 17 for providing better grounding effect to the electrical connector assembly 1 .
  • the metal shield 18 is finally assembled to the insulating housing 11 along the front-to-rear direction and encloses the housing 11 .
  • the cylindrical necks 173 protrude through corresponding holes 181 and are exposed outside the metal shield 18 .
  • the electrical connector assembly 1 provides a common housing 11 for the terminal groups 12 , 13 , 14 , the occupied space of the electrical connector assembly 1 on the printed circuit board is apparently decreased.
  • the alternately arranged structure of the cavities 119 is also helpful to minimize the occupied space of the electrical connector assembly 1 .
  • the mating ports 17 are assembled to the housing 11 instead of being integrally formed with the housing 11 , each mating port 17 can be dyed with different colors more conveniently than the integral structure.

Abstract

An electrical connector assembly (1) includes an insulating housing (11), a number of mating ports (17), a first terminal group (12), a second terminal group (13) and a third terminal group (14). The insulating housing defines a number of receiving spaces (111) alternately arranged. A number of first, second and third slots (112, 114, 113) are respectively defined in the housing and communicate with corresponding cavities. The first terminal group comprises a plurality of terminal units each comprising a pair of contacting portions (124) exposed into the receiving spaces and a number of tail portions respectively received in the third slots. The second terminal group is received in the second slots. The third terminal group is received in the third slots and electrically connects with the tail portions of the first terminal group.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention generally relates to an electrical connector assembly, and particularly to a stacked electrical connector assembly provided with a common housing. [0002]
  • 2. Description of Related Art [0003]
  • A computer is required to provide connectors at input/output ports, which are usually mounted on a main printed circuit board (PCB) thereof, to mate with corresponding complementary connectors of peripheral devices for signal transmission therebetween. In order to sufficiently utilize limited area of the main PCB, the electrical connectors are usually arranged in a stacked manner. There exists in the art a stacked jack socket connector assembly mounted on a printed circuit board for transmitting audio signals from jack plugs to corresponding circuitries on the printed circuit board. Such stacked jack socket connector assembly is disclosed in U.S. Pat. Nos. 4,695,116, 5,709,554 and 6,116,959. Each of the stacked jack socket connector assemblies disclosed in the patents mentioned above comprises at least two dielectric housings each defining an axial cavity therein, a plurality of sets of spring contacts respectively received in the housings with spring contacting portions thereof exposed in the cavities of the housings for electrically connecting with jack plugs, and plurality of transition contacts electrically connected with the spring contacts. [0004]
  • Current trend inclines to use more miniaturized components aimed at high integration. The dielectric housings of each stacked jack socket connector assembly mentioned above are separately manufactured and then assembled together. This structure does not accord with the current trend and there still remains room for decreasing the occupied space of such a stacked jack socket connector assembly. A unitary connector assembly having multiple rows and columns of mating ports, either aligned or offset, is desired. Furthermore, each dielectric housing of the stacked jack socket connector assembly is preferable to have a different color from that of other housings for easy to distinguish in use. However, the colored housings are relatively costly. [0005]
  • Hence, an improved stacked electrical connector assembly is highly desired to overcome the disadvantages of the related art. [0006]
  • BRIEF SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the present invention to provide a stacked electrical connector assembly having a common housing for minimizing occupied space thereof. [0007]
  • It is another object of the present invention to provide a jack connector which is easy to distinguish in use and is more economical. [0008]
  • In order to achieve the above-mentioned objects, an electrical connector assembly in accordance with the present invention comprises an insulating housing defining a first face and an opposite second face, a plurality of mating ports, a first terminal group, a second terminal group and a third terminal group. The insulating housing comprises a plurality of receiving spaces alternately extending from the second face toward the first face thereof. A plurality of first, second and third slots are respectively defined in the housing and communicate with corresponding receiving spaces. The mating ports are respectively assembled to the housing and align with the receiving spaces. The first terminal group is assembled to the insulating housing and comprises a plurality of terminals received in the receiving spaces. Each terminal comprises a pair of contacting portions adapted for electrically connecting with a complementary connector and a plurality of tail portions respectively received in the third slots. The second terminal group is received in the second slots and comprises a plurality of arms respectively extending into the mating ports of the housing. The third terminal group is received in the third slots and electrically connects with the tail portions of the first terminal group. [0009]
  • Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of the present embodiment when taken in conjunction with the accompanying drawings.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an assembled view of an electrical connector assembly in accordance with the present invention; [0011]
  • FIG. 2 is a partially exploded, perspective view of FIG. 1; [0012]
  • FIG. 3 is a partially exploded, perspective view of FIG. 2; [0013]
  • FIG. 4 is a view similar to FIG. 3, but taken from a different aspect; [0014]
  • FIG. 5 is a perspective, exploded view of a terminal module shown in FIG. 3; and [0015]
  • FIG. 6 is a partially assembled view of FIG. 4 with a spacer and a metal shield of the electrical connector assembly removed for simplicity.[0016]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Reference will now be made to the drawing figures to describe the present invention in detail. [0017]
  • With reference to FIGS. 1 and 2, and in conjunction with FIGS. 3 and 4, an [0018] electrical connector assembly 1 in accordance with the present invention is a stacked audio socket connector assembly and comprises an insulating housing 11, a terminal module comprising a first terminal group 12, a second terminal group 13 and a third terminal group 14 respectively received in the insulating housing 11, a spacer 16, a plurality of retaining blocks 15, a plurality of mating ports 17 and a metal shield 18.
  • Referring to FIGS. 3 and 4, the [0019] insulating housing 11 is generally in a rectangular shape. The housing 11 comprises a first face 11 a and an opposite second face 11 b. Five cavities 119 are defined rearwardly from the first face 11 a of the housing 11 and are alternately arranged in a first array and a second array parallel to each other and along a direction parallel to the first face 11 a of the housing 11. Each cavity 119 comprises a cylindrical hole 1192 and a pair of trapeziform spaces 1191 respectively communicating with the cylindrical hole 1192. Five receiving spaces 111 are defined forwardly from the second face 11 b of the housing 11 and respectively communicate with the cavities 119. The five receiving spaces 111 are respectively designated as 111 a, 111 b, 111 c, 111 d and 111 e. A first slot 112, a second slot 114 and s third slot 113 are respectively defined forwardly from the second face 11 b of the housing 11 and communicate a corresponding receiving space 111. The slots 112, 113, 114 are respectively located above the receiving space 111, below the receiving space 111, and in a middle of a bottom edge of the receiving space 111. A plurality of side apertures 118 is defined in opposite sides of the insulating housing 11. A plurality of positioning holes 116 is defined forwardly from the second face 11 b of the housing 11 and is respectively aligning with the side apertures 118 along a right-to-left direction of the housing 11. A plurality of slits 115 is defined between every two neighboring receiving spaces 111. A recess is defined in a bottom surface of the insulating housing 11 to form a pair of latching edges 117 respectively adjacent to opposite sides of the housing 11.
  • Referring to FIG. 5, the [0020] first terminal group 12 comprises five signal terminal units, namely four first terminal units 121 and one second terminal unit 122. Each first terminal unit 121 consists of two pairs of halves oriented 180 degrees relative to each other. Each pair of halves comprises a first board portion 123, a second board portion 126 parallel to the first board portion 123, a contacting portion 124 curly extending from the first board portion 123 toward the second board portion 126, and a plurality of tail portions 127 extending vertically from bottom edges of the first and the second board portions 123, 126. The second terminal unit 122 has the substantially same structure as that of the first terminal unit 121 except that tail portions 125 thereof extend straight downwardly from the bottom edges of the first and the second board portions 123, 126.
  • Continuing to FIG. 5, the [0021] second terminal group 13 comprises a first grounding contact 130 and a second grounding contact 135. Each of the first and the second grounding contacts 130, 135 comprise a vertical body strip 132, a plurality of arms 131 horizontally extending forward from the body strip 132 (the first grounding contact 130 comprises three arms 131 while the second grounding contact 135 comprises two arms 131). The arms 131 are spaced apart and parallel to one another. A protrusion 134 extends forwardly from the body strip 42 of the second grounding contact 135 and adjacent to the top arm 131. A pair of protrusions 134 extends forwardly from the body strip 42 of the first grounding contact 130, one adjacent to the top and the other to the middle arms 131, respectively. An insert leg 133 extends downwardly from the bottom arm 131 for soldering to a printed circuit board (not shown).
  • With reference to FIG. 5, the [0022] third terminal group 14 consists of four sets of transition contacts 140 having a similar structure as one another. Each transition contact 140 comprises a mating portion 141 and a terminating portion 142 bending at a right angle from the mating portion 141.
  • Now referring to FIGS. 2-4, each retaining [0023] block 15 comprises a body section 151 and a pair of retaining latches 154 extending forwardly from opposite sides of a front end of the body section 151. The body section 151 defines a through slit 153 in a middle portion of the front end thereof, and the through slit 153 aligns with the slits 115 of the insulating housing 11. A plurality of grooves 155 is defined in a rear end of the body section 151 and a pair of openings 152 is defined in both sides of the body section 151.
  • Continuing to FIGS. 2-4, the [0024] spacer 16 is generally step-shaped and comprises a vertical panel 161 and a base 162 extending forwardly from a bottom end of the panel 161. The vertical panel 161 comprises a first step 165 and a second step 164 higher than the first step 165. A plurality of vertical passages 168 respectively extends through the first and the second steps 165, 164. A pair of through slots 166 is respectively defined in center portions of the first and the second steps 165, 164. The base 162 defines a plurality of rectangular recesses 163 extending therethrough. Each step 165, 164 also forms a pair of posts 167 extending upwardly therefrom.
  • Each [0025] mating port 17 comprises a cylindrical neck 173 and a pair of projections 171 extending oppositely from upper and lower edges of the neck 173. A passageway 172 is defined forwardly from a rear surface of the projection 171 and partially extends into the neck 173.
  • Referring to FIG. 1, the [0026] metal shield 18 is general in a rectangular shape and comprises a front wall 183, a top wall 184 and a pair of opposite side walls 185. Five holes 181 are defined in the front wall 183 and align with the mating ports 17, and a plurality of feet 182 extends downwardly from bottom edges of the pair of side walls 185.
  • Referring to FIGS. 1-6, in assembly, the first and the second [0027] terminal units 121, 122 of the first terminal group 12 are first assembled to the insulating housing 11 from a rear-to-front direction of the housing 11 and respectively received in the receiving spaces 111, the first and the third slots 112, 113. The tail portions 125 of the second terminal 122 extend beyond the bottom surface of the housing 11. The first and the second grounding contacts 130, 135 of the second terminal group 13 are then assembled to the housing 11 with the arms 131 thereof being respectively received in the third slots 114 and the protrusions 134 thereof being received in the slits 115 of the housing 11. The insert legs 133 of the grounding contacts 130, 135 extend beyond the bottom surface of the housing 11. The mating portions 141 of the four sets of transition contacts 140 of the third terminal group 14 are respectively received in the third slots 113 of the receiving spaces 111 and electrically contact with the tail portions 127 of the first terminal units 121. The terminating portions 142 of the transition contacts 140 extend beyond the bottom surface of the housing 11.
  • One of the three retaining [0028] blocks 15 is assembled to the insulating housing 11 above the receiving space 111 b with one retaining latch 154 thereof being receiving in a corresponding positioning hole 116 and the other retaining latch 154 thereof being received in a corresponding side aperture 118 aligning with the positioning hole 116. At the same time, an upper portion of the vertical body strip 132 of the first grounding contact 130 is received in the through slit 153 of the retaining block 15. The other two retaining blocks 15 are respectively assembled to the top of the housing 11 and engage with corresponding positioning holes 116 and side apertures 118 of the housing 11.
  • The [0029] spacer 16 is assembled to the housing 11 from a bottom of the housing 11. The base 162 of the spacer 16 is received in the recess defined in the bottom surface of the housing 11 and is secured by the pair of latching edges 117. The terminating portions 142 of the transition contacts 140 respectively protrude through the vertical passages 168 of the first and the second steps 165, 164 and extend beyond a bottom surface of the spacer 16. The body strips 132 of the second terminal group 13 are respectively received in the through slots 166 of the spacer 16. The posts 167 of the spacer 16 are respectively received in the openings 152 of corresponding retaining blocks 152. Thus, the retaining blocks 15 and the spacer 16 are assembled to the insulating housing 11 reliably and provide perfect positioning function to the second and the third terminal groups 13, 14.
  • The [0030] mating ports 17 are respectively inserted into the cavities 119 from the first face 11 a of the housing 11. The projections 171 of each mating port 17 are received in the pair of trapeziform spaces 1191, while the cylindrical neck 173 is received in the cylindrical hole 1192 of a corresponding cavity 119. The arms 131 of the second terminal group 13 extend into the passageways 172 of the mating ports 17 for providing better grounding effect to the electrical connector assembly 1. The metal shield 18 is finally assembled to the insulating housing 11 along the front-to-rear direction and encloses the housing 11. The cylindrical necks 173 protrude through corresponding holes 181 and are exposed outside the metal shield 18.
  • It is noted that since the [0031] electrical connector assembly 1 provides a common housing 11 for the terminal groups 12, 13, 14, the occupied space of the electrical connector assembly 1 on the printed circuit board is apparently decreased. The alternately arranged structure of the cavities 119 is also helpful to minimize the occupied space of the electrical connector assembly 1. In addition, since the mating ports 17 are assembled to the housing 11 instead of being integrally formed with the housing 11, each mating port 17 can be dyed with different colors more conveniently than the integral structure.
  • It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. [0032]

Claims (26)

1. An electrical connector assembly comprises:
an insulating housing comprising a first face and an opposite second face, the insulating housing comprising a first array of receiving spaces extending from the second face toward the first face thereof and a first array of cavities extending from the first face toward the second face thereof and respectively communicating with the receiving spaces;
a plurality of mating ports assembled to the insulating housing and respectively received in the cavities of the insulating housing;
a first terminal group assembled to the insulating housing and comprising a plurality of terminal units, each terminal unit comprising a contacting portion exposed in a corresponding receiving space and a plurality of tail portions;
a second terminal group assembled to the insulating housing and comprising a plurality of arms respectively extending into the receiving spaces of the housing; and
a third terminal group assembled to the insulating housing and electrically connecting with the tail portions of the first terminal group.
2. The electrical connector assembly as claimed in claim 1, wherein the insulating housing further comprises a second array of receiving spaces parallel to the first array of spaces, and wherein the receiving spaces are arranged alternately.
3. The electrical connector assembly as described in claim 1, wherein each cavity of the insulating housing comprises a pair of trapeziform spaces and a cylindrical hole connecting the trapeziform spaces, and wherein each mating port comprises a cylindrical neck received in the cylindrical hole and a pair of projections respectively received in the pair of trapeziform spaces.
4. The electrical connector assembly as described in claim 3, wherein each terminal unit of the first terminal group comprises a pair of halves oriented 180 degrees relative to each other, and wherein the insulating housing defines a plurality of first and third slots communicating with a corresponding receiving space thereof to receive each half of the first terminal group.
5. The electrical connector assembly as disclosed in claim 4, wherein each half comprises a first board portion, a second board portion parallel to the first board portion, and wherein the contacting portion curly extends from the first board portion toward the second board portion.
6. The electrical connector assembly as disclosed in claim 5, wherein the insulating housing defines a plurality of second slots communicating with corresponding receiving spaces thereof to receive the arms of the second terminal group.
7. The electrical connector assembly as described in claim 6, wherein the second terminal group comprises a body strip, the arms and an insert leg adapted for connecting to a printed circuit board, and wherein the arms are spaced apart and extend from the body strip.
8. The electrical connector assembly as described in claim 7, wherein the third terminal group comprises a plurality of sets of transition contacts, and wherein each transition contact comprises a mating portion received in a corresponding third slot and electrically connected with a corresponding tail portion of the first terminal group.
9. The electrical connector assembly as described in claim 8, further comprising a spacer defining a plurality of passages therethrough, and wherein the transition contacts of the third terminal group comprise a plurality of terminating portions extending vertically from the mating portions through the passages.
10. The electrical connector assembly as described in claim 9, wherein the spacer is step-shaped and comprises a first step and a second step, and wherein the passages are respectively defined through the first and the second steps.
11. The electrical connector assembly as described in claim 9, wherein the spacer comprises a panel and a base vertically extending from the panel, and wherein the insulating housing forms a pair of latching edges engaging with the base.
12. The electrical connector assembly as described in claim 9, further comprising a plurality of retaining blocks respectively engaging with the insulating housing and the spacer to secure the spacer to the housing.
13. The electrical connector assembly as described in claim 12, wherein each retaining block comprises a body section and a pair of retaining latches extending from the body section and engaging with the housing.
14. The electrical connector assembly as described in claim 13, wherein the body section of the retaining block defines an opening in a side thereof, and wherein the spacer forms a post received in the opening of the retaining block.
15. (canceled)
16. An audio socket connector comprising:
an insulating housing comprising a first face and an opposite second face, the insulating housing comprising a cavity extending from the first face and a receiving space extending from the second face;
a plurality of signal terminals and grounding contacts respectively received in the receiving space; and
a mating port assembled to the insulating housing and received in the cavity, the mating port comprising a neck exposed beyond the first face of the insulating housing.
17. (canceled)
18. A multi-port connector assembly comprising:
a unitary insulative housing defining a plurality of cavities arranged in rows and columns in a front portion and a plurality of receiving spaces in a rear portion and in aligned communication with the corresponding cavities in a front-to-back direction, respectively;
said cavities being arranged in at least two columns;
plural groups of signal terminals forwardly inserted into the corresponding receiving spaces, respectively; said groups being similar to one another.
at least two grounding terminals each with arms extending into the corresponding receiving spaces, respectively;
a spacer located behind the housing and defining plural sets of vertical passageways, said plural sets of vertical passageways being arranged in at least two columns corresponding to said at least two columns of the cavities, respectively; and
plural sets of transition contacts located between said plural groups of signal terminals and the spacer, said plural sets of transition contacts being arranged in at least two columns corresponding to said at least two columns of the cavities and said at least two columns of vertical passageways, each set of transition contacts defining horizontal sections mechanically and electrically engaged with the corresponding group of signal terminals, respectively, and vertical sections received in and aligned by the corresponding set of vertical passageways, respectively; wherein
the horizontal sections of the transition contacts in each individual set are similar with one another, while those in different sets in the same column are different from one another under a condition that the transition contacts located in a higher level have longer horizontal sections than those in a lower level.
19. The assembly as described in claim 18, wherein said two columns of the vertical passageways are asymmetrically arranged by two side of an imaginary center plane of said housing which divides said cavities into said two columns without overlapping in a vertical direction.
20. The assembly as described in claim 18, further including a plurality of blocks attached to the rear portion of the housing and engaged with different positions of said spacer, wherein said blocks are arranged in at least two columns in compliance with said two columns of the cavities.
21. The assembly as described in claim 18, further including a plurality of mating ports being attached to the front portion of the housing, wherein said mating ports are arranged with at least two columns, and at least one of said mating ports defines a color different from those of others.
22. The assembly as described in claim 21, wherein each of said mating ports includes a projection received in the corresponding cavity and behind a front face of the housing.
23. The assembly as described in claim 18, wherein said spacer defines two spaced vertical slots to receive said two grounding terminals therein, respectively.
24. The assembly as described in claim 23, wherein said two slots are different from each other.
25. The electrical connector assembly as described in claim 16, wherein said mating port does not receive the signal terminals and the ground contacts therein.
26. the assembly as described in claim 18, wherein each of said cavities includes a circular hole with at least one fastening opening beside said hole, and a plurality of mating ports respectively assembled into the corresponding cavities, and wherein each of mating port defines a cylindrical neck received in the hole and at least one fastening projection received in the corresponding fastening opening.
US10/668,880 2003-06-06 2003-09-22 Stacked electrical connector assembly Expired - Fee Related US7008261B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW92210429 2003-06-06
TW092210429U TW572398U (en) 2003-06-06 2003-06-06 Electrical connector assembly

Publications (2)

Publication Number Publication Date
US20040248464A1 true US20040248464A1 (en) 2004-12-09
US7008261B2 US7008261B2 (en) 2006-03-07

Family

ID=32592115

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/668,880 Expired - Fee Related US7008261B2 (en) 2003-06-06 2003-09-22 Stacked electrical connector assembly

Country Status (2)

Country Link
US (1) US7008261B2 (en)
TW (1) TW572398U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347972A (en) * 2013-07-24 2015-02-11 富士康(昆山)电脑接插件有限公司 Electrical connector
US20150104980A1 (en) * 2011-03-10 2015-04-16 Charles M. Gross Method and apparatus for mounting a cable connector onto a panel
US20170250478A1 (en) * 2016-02-29 2017-08-31 Wago Verwaltungsgesellschaft Mbh Terminal strip
US20180131140A1 (en) * 2016-11-08 2018-05-10 Foxconn Interconnect Technology Limited Connector with front side identification ring communicatively coupled with rear side led
US20180131141A1 (en) * 2016-11-08 2018-05-10 Foxconn Interconnect Technology Limited Connector having pcb with thereof led communicatively coupled with identification ring

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM285116U (en) * 2005-08-26 2006-01-01 Advanced Connectek Inc Improved structure of audio frequency receptacle
US7507115B2 (en) * 2006-10-04 2009-03-24 Lotes Co., Ltd. Electrical connector
US7470146B1 (en) * 2008-05-13 2008-12-30 U.D. Electronic Corp. Audio jack assembly
CN201430244Y (en) * 2009-03-27 2010-03-24 富士康(昆山)电脑接插件有限公司 Electric connector
US9484654B2 (en) * 2014-04-10 2016-11-01 Foxconn Interconnect Technology Limited Electrical connector with improved contacts

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695116A (en) * 1984-02-27 1987-09-22 Switchcraft, Inc. Stacked electrical jacks
US5613880A (en) * 1995-07-28 1997-03-25 Wang; Tsan-Chi Dual-plug BNC connector
US5709554A (en) * 1996-02-12 1998-01-20 Savage, Jr.; John M. Angled circuit connector structure
US6068520A (en) * 1997-03-13 2000-05-30 Berg Technology, Inc. Low profile double deck connector with improved cross talk isolation
US6116959A (en) * 1996-06-17 2000-09-12 Cliff Electronic Components, Ltd. Stacked electrical socket assembly
US6227905B1 (en) * 1999-12-03 2001-05-08 Hon Hai Precision Ind. Co., Ltd. Receptacle electrical connector assembly
US6234834B1 (en) * 1999-12-17 2001-05-22 Hon Hai Precision Ind. Co., Ltd. Stacked electrical connector assembly
US6234833B1 (en) * 1999-12-03 2001-05-22 Hon Hai Precision Ind. Co., Ltd. Receptacle electrical connector assembly

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695116A (en) * 1984-02-27 1987-09-22 Switchcraft, Inc. Stacked electrical jacks
US5613880A (en) * 1995-07-28 1997-03-25 Wang; Tsan-Chi Dual-plug BNC connector
US5709554A (en) * 1996-02-12 1998-01-20 Savage, Jr.; John M. Angled circuit connector structure
US6116959A (en) * 1996-06-17 2000-09-12 Cliff Electronic Components, Ltd. Stacked electrical socket assembly
US6068520A (en) * 1997-03-13 2000-05-30 Berg Technology, Inc. Low profile double deck connector with improved cross talk isolation
US6227905B1 (en) * 1999-12-03 2001-05-08 Hon Hai Precision Ind. Co., Ltd. Receptacle electrical connector assembly
US6234833B1 (en) * 1999-12-03 2001-05-22 Hon Hai Precision Ind. Co., Ltd. Receptacle electrical connector assembly
US6234834B1 (en) * 1999-12-17 2001-05-22 Hon Hai Precision Ind. Co., Ltd. Stacked electrical connector assembly

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150104980A1 (en) * 2011-03-10 2015-04-16 Charles M. Gross Method and apparatus for mounting a cable connector onto a panel
US9502845B2 (en) * 2011-03-10 2016-11-22 Fci Americas Technology Llc Method and apparatus for mounting a cable connector onto a panel
CN104347972A (en) * 2013-07-24 2015-02-11 富士康(昆山)电脑接插件有限公司 Electrical connector
US20170250478A1 (en) * 2016-02-29 2017-08-31 Wago Verwaltungsgesellschaft Mbh Terminal strip
US9960505B2 (en) * 2016-02-29 2018-05-01 WAGO Vervaltungsgesellschaft mbH Terminal strip
US20180131140A1 (en) * 2016-11-08 2018-05-10 Foxconn Interconnect Technology Limited Connector with front side identification ring communicatively coupled with rear side led
US20180131141A1 (en) * 2016-11-08 2018-05-10 Foxconn Interconnect Technology Limited Connector having pcb with thereof led communicatively coupled with identification ring
US10236642B2 (en) * 2016-11-08 2019-03-19 Foxconn Interconnect Technology Limited Connector having PCB with thereof LED communicatively coupled with identification ring
US10236641B2 (en) * 2016-11-08 2019-03-19 Foxconn Interconnect Technology Limited Connector with front side identification ring communicatively coupled with rear side LED

Also Published As

Publication number Publication date
TW572398U (en) 2004-01-11
US7008261B2 (en) 2006-03-07

Similar Documents

Publication Publication Date Title
US6511348B1 (en) Modular jack assembly with signal conditioning
US6551140B2 (en) Electrical connector having differential pair terminals with equal length
US7331825B2 (en) Electrical connector
US6669514B2 (en) High-density receptacle connector
US6705902B1 (en) Connector assembly having contacts with uniform electrical property of resistance
US7241157B2 (en) Modular jack with a detective switch
US6835092B2 (en) Stacked electrical connector assembly with enhanced grounding arrangement
US6435914B1 (en) Electrical connector having improved shielding means
US6244896B1 (en) Dual multiport RJ connector arrangement
US6234834B1 (en) Stacked electrical connector assembly
US7878847B2 (en) Electrical connector with improved contact arrangement
US7083468B2 (en) Stacked electrical connector assembly
US6312293B1 (en) Receptacle connector having an anti-mismating means
US8968034B2 (en) Electrical connector having a tongue with signal contacts and a pair of posts with power contacts
US6416364B1 (en) RJ-45 receptacle connector with terminal protection means
US20050112952A1 (en) Power jack connector
US20070155240A1 (en) Electrical connector with firm frame for mating with corresponding connector
US8021170B2 (en) Electrical connector having improved terminal module
US6923687B2 (en) Audio jack having improved contacts
US9362681B2 (en) Electrical connector with shielding plate secured therein
US6210237B1 (en) Multi-port modular jack assembly and method for making the same
US7008261B2 (en) Stacked electrical connector assembly
US6508665B1 (en) Electrical connector having printed circuit board mounted therein
US7086895B1 (en) Card connector
US6458001B1 (en) Receptacle connector having anti-mismating structures

Legal Events

Date Code Title Description
AS Assignment

Owner name: HON HAI PRECISION IND. CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:XUE, ZHENGLAN;HU, JINKUI;REEL/FRAME:014568/0010

Effective date: 20030630

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140307