US20040248402A1 - Methods of forming openings extending through electrically insulative material to electrically conductive material - Google Patents
Methods of forming openings extending through electrically insulative material to electrically conductive material Download PDFInfo
- Publication number
- US20040248402A1 US20040248402A1 US10/454,303 US45430303A US2004248402A1 US 20040248402 A1 US20040248402 A1 US 20040248402A1 US 45430303 A US45430303 A US 45430303A US 2004248402 A1 US2004248402 A1 US 2004248402A1
- Authority
- US
- United States
- Prior art keywords
- electrically insulative
- etch
- cap
- stack
- electrically
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 239000004020 conductor Substances 0.000 title claims abstract description 63
- 239000000463 material Substances 0.000 title claims description 91
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 53
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 53
- 238000005530 etching Methods 0.000 claims description 34
- 125000006850 spacer group Chemical group 0.000 claims description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 20
- 238000000059 patterning Methods 0.000 claims description 11
- 235000012239 silicon dioxide Nutrition 0.000 claims description 10
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- 239000005368 silicate glass Substances 0.000 claims description 8
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 claims description 6
- 239000005380 borophosphosilicate glass Substances 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims 6
- 239000010410 layer Substances 0.000 description 34
- 238000012545 processing Methods 0.000 description 21
- 238000010276 construction Methods 0.000 description 17
- 230000001681 protective effect Effects 0.000 description 17
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 10
- 239000012634 fragment Substances 0.000 description 9
- 230000000873 masking effect Effects 0.000 description 9
- -1 for example Substances 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76831—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76897—Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/48—Data lines or contacts therefor
- H10B12/485—Bit line contacts
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/48—Data lines or contacts therefor
- H10B12/488—Word lines
Definitions
- FIG. 8 is a view of the FIG. 3 wafer fragment shown at a processing stage subsequent to that of FIG. 7.
- material 126 , pedestal 118 , and electrically insulative caps 20 , 122 and 124 are shown forming a substantially planar upper surface extending over substrate 12 .
- Such substantially planar upper surface can be formed by, for example, chemical-mechanical polishing or other planarization processes.
- the etch utilized for patterning materials 160 and 162 will also be utilized to extend opening 152 into cap 20 . Accordingly, the depth of opening 152 at the processing stage of FIG. 6 can be deeper than the depth of opening 152 at the processing stage of FIG. 4, as shown.
- electrically insulative material 162 will consist essentially of silicon nitride
- conductive material 160 will consist essentially of tungsten and/or tungsten-containing compounds
- cap 20 will comprise silicon nitride.
- the etch utilized to pattern materials 160 and 162 , and to simultaneously extend opening 152 into cap 20 can comprise an etch utilizing Cl 2 , NF 3 , and CH 2 F 2 .
- An exemplary etch can utilize a flow rate of Cl 2 of 10 sccm, a flow rate of NF 3 of 40 sccm, and a flow rate of CH 2 F 2 of 12 sccm.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
- The invention pertains to methods of forming openings through electrically insulative caps to electrically conductive materials.
- Various semiconductor constructions comprise an insulative cap stacked over a conductive material. For instance, wordlines and bitlines typically comprise conductive materials patterned as lines extending across a semiconductor substrate, and protected by electrically insulative caps formed over the electrically conductive lines.
- It is frequently desired to form openings extending through the protective cap to the conductive material beneath the cap. For instance, it can be desired to form an electrical interconnect extending to the electrically conductive material of a wordline or bitline. This is commonly accomplished by forming an opening extending through an electrically insulative protective cap to expose electrically conductive material of the wordline or bitline, and subsequently filling the opening with an electrically conductive material to form the electrical interconnect to the conductive material of the wordline or bitline.
- A prior art process for forming an electrical interconnect to conductive material of a line is described with reference to FIGS. 1 and 2. Referring initially to FIG. 1, a
semiconductor construction 10 includes asubstrate 12 having anupper surface 14.Substrate 12 can comprise, for example, monocrystalline silicon lightly-doped with background p-type dopant. To aid in interpretation of the claims that follow, the terms “semiconductive substrate” and “semiconductor substrate” are defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates described above. - A thin layer of electrically
insulative material 16 is formed overupper surface 14, and an electricallyconductive line 18 is formed overinsulative material 16.Insulative material 16 can comprise, for example, silicon dioxide. The electrically conductive material ofline 18 can comprise, for example, one or more materials selected from the group of metals, metal compounds and conductively-doped silicon. Althoughline 18 is shown having a homogeneous cross section, it is to be understood that the line can comprise a stack of one or more electrically conductive layers of differing composition relative to one another.Line 18 would have a length extending into and out of the page relative to the FIG. 1 cross-sectional view. - A
protective material 20 is formed around electricallyconductive line 18.Protective material 20 is typically an electrically insulative material, and can comprise, consist essentially of, or consist of silicon nitride. Astack 22 can be considered to compriseprotective material 20,line 18 andinsulative material 16. Theprotective material 20 can extend around three sides ofconductive material 18 in the stack (as shown), or, in other aspects (not shown) can be only over the top ofmaterial 18. - A thick mass of electrically
insulative material 24 is formed overstack 22, as well as oversurface 14 ofsubstrate 12.Mass 24 can comprise, for example, a silicate glass (such as, for example, borophosphosilicate glass (BPSG)).Mass 24 can be homogeneous, or can comprise a stack of electrically insulative materials.Mass 24 will typically comprise a thickness overstack 22 of at least about 10,000 Å, frequently at least about 15,000 Å, and even at least about 20,000 Å. - A patterned
masking material 26 is formed overmass 24.Masking material 26 can comprise, for example, photoresist, and can be patterned utilizing photolithographic processing.Patterned masking material 26 defines anopening 28 extending through the patterned masking material and to an upper surface ofmass 24. - Referring to FIG. 2, opening28 is extended through
mass 24, throughprotective material 20, and to an upper surface ofconductive material 18, utilizing a suitable etch. Ifmass 24 consists of a silicate glass, andprotective material 20 consists of silicon nitride, a suitable etch for forming opening 28 can be an etch utilizing CF4. - A problem which occurs during formation of opening28 is that even though etches are known which can etch both a silicate glass of
mass 24 and a silicon nitride material ofprotective layer 20, the etches will frequently be slower relative to a silicon nitride material than to a silicate glass. Accordingly, the downward progression of the etch slows once the etch reachesprotective material 20. The etch can then start to extend laterally outward which forms a widenedregion 30 of opening 28. - A continuing goal of semiconductor processing is to reduce dimensions associated with circuit components to enable an increase in packing density of the components. Ultimately, a conductive interconnect is to be formed in opening28, and the widening of opening 28 confers an increased lateral dimension to the electrical interconnect. Such increased lateral dimension reduces a packing density that can be achieved. Accordingly, it is desired to develop new methods for forming openings which alleviate or prevent the widening associated with prior art processes.
- The invention includes a method of forming an opening extending through an electrically insulative cap to an electrically conductive material. A substrate is provided. The substrate supports a stack and an electrical node. The stack includes an electrically insulative cap over an electrically conductive material. An electrically insulative layer is formed over the stack and over the electrical node. A first etch is utilized to etch through the electrically insulative layer to the electrical node and to the insulative cap. The first etch etches partially into the electrically insulative cap but does not etch entirely through the electrically insulative cap. A second etch is conducted after the first etch, and is utilized to etch entirely through the electrically insulative cap to the conductive material of the stack.
- In another aspect, the invention includes a method of forming an opening through a silicon nitride-containing cap to an electrically conductive material. A substrate is provided, and the substrate supports a wordline stack and an electrical node. The stack comprises a silicon nitride-containing cap over an electrically conductive material. A first electrically insulative layer is formed over the stack and over the electrical node. A first etch is utilized to etch through the first electrically insulative layer to the electrical node and to the silicon nitride-containing cap. The first etch also etches partially into the silicon-nitride-containing cap, but does not etch entirely through the cap. The partial etching of the first etch into the silicon nitride-containing cap forms a first opening extending into the cap to a first depth. A second electrically insulative layer is formed within the first opening in the cap. The second electrically insulative layer is anisotropically etched to form, in at least one cross-sectional view, separated spacers within the first opening in the silicon nitride-containing cap. An electrically insulative material is formed over the stack, within the first opening, and over the separated spacers. The electrically insulative material has a total thickness of at least about 10,000 Å. A second etch is utilized to form a second opening which extends through the electrically insulative material, between the separated spacers, through the silicon nitride-containing cap, and to the electrically conductive material of the stack.
- Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
- FIG. 1 is a diagrammatic, cross-sectional, fragmentary view of a semiconductor wafer construction shown at a preliminary processing stage of a prior art method.
- FIG. 2 is a view of the FIG. 1 wafer fragment shown at a prior art processing stage subsequent to that of FIG. 1.
- FIG. 3 is a diagrammatic, cross-sectional view of a semiconductor wafer fragment shown at a preliminary processing stage of an exemplary aspect of the present invention.
- FIG. 4 is a view of the FIG. 3 wafer fragment shown at a processing stage subsequent to that of FIG. 3.
- FIG. 5 is a view of the FIG. 3 wafer fragment shown at a processing stage subsequent to that of FIG. 4.
- FIG. 6 is a view of the FIG. 3 wafer fragment shown at a processing stage subsequent to that of FIG. 5.
- FIG. 7 is a view of the FIG. 3 wafer fragment shown at a processing stage subsequent to that of FIG. 6.
- FIG. 8 is a view of the FIG. 3 wafer fragment shown at a processing stage subsequent to that of FIG. 7.
- FIG. 9 is a view of the FIG. 3 wafer fragment shown at a processing stage subsequent to that of FIG. 8.
- FIG. 10 is a view of the FIG. 3 wafer fragment shown at a processing stage subsequent to that of FIG. 9.
- This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
- In one aspect, the invention includes recognition that the problems described in the “Background” section of this disclosure associated with the etching of a silicon nitride-containing cap can be alleviated, and even prevented, if the thickness of the cap is reduced prior to the etch utilized to penetrate the cap. Accordingly, the invention incorporates exposure of a silicon nitride cap to one or more etching processes which reduce a thickness of the cap prior to the etch ultimately utilized to penetrate through the cap. The etching processes utilized to reduce the thickness of the cap can be etching processes typically utilized during fabrication of circuit elements peripheral to the cap, and accordingly can be readily incorporated into existing semiconductor fabrication processes.
- Exemplary aspects of the present invention are described with reference to FIGS. 3-10. In referring to FIGS. 3-10, identical numbering will be utilized as was utilized above in describing the prior art in the “Background” section of this disclosure, where appropriate.
- Referring initially to FIG. 3, a
semiconductor construction 100 is illustrated.Construction 100 comprises asubstrate 12 having anupper surface 14.Substrate 12 can comprise, for example, monocrystalline silicon, as described previously in the “Background” section of this disclosure. - A
stack 22 is formed overupper surface 14 ofsubstrate 12.Stack 22 comprisesinsulative material 16,conductive material 18, andprotective cap 20, as described previously in the “Background” section of this disclosure.Stack 22 can be, for example, a wordline stack, with the wordline extending into and out of the page relative to the cross-sectional view of FIG. 3. -
Construction 100 further comprises several circuit elements peripheral to stack 22. In the shown aspect of the invention,construction 100 comprises a pair oftransistor devices conductive transistor gates upper surface 14 ofsubstrate 12 bydielectric material 110. Thedielectric material 110 can comprise, for example, silicon dioxide. Electricallyconductive gates -
Transistor device 102 includes source/drain regions substrate 12. The source/drain regions can comprise conductively-doped regions of a semiconductor material, for example.Transistor device 104 comprises the source/drain region 114, and a source/drain region 116. - A
bitline contact 118 is formed over and in electrical connection with source/drain region 114.Bitline contact 118 can comprise any suitable conductive material including, for example, metals, metal compounds, and/or conductively-doped silicon. - An
isolation region 120 is shown extending withinsubstrate 12 and adjacent source/drain region 112.Isolation region 120 can comprise a conventional construction, and accordingly can comprise, for example, a shallow trench isolation region filled with suitable electrically insulative material, such as, for example, silicon dioxide. - Ultimately,
transistor devices drain regions - A
protective cap 122 extends aroundconductive gate material 106, and anotherprotective cap 124 extends aroundconductive gate material 108.Protective caps - An electrically
insulative material 126 extends oversubstrate 12, and betweenstack 22 andtransistor device 102.Electrically insulative material 126 can comprise any suitable material, including, for example, a silicate glass, such as BPSG. - An electrically
insulative layer 128 is formed overstack 22, and also overtransistor devices Electrically insulative layer 128 can comprise any suitable electrically insulative material, and in typical applications can comprise, consist essentially of, or consist of silicon dioxide. The silicon dioxide oflayer 128 can be formed by, for example, chemical vapor deposition (CVD) utilizing tetraethyl orthosilicate (TEOS). - In subsequent processing (described below) an opening is to be formed through
material 128 so that a material can be formed in electrical contact withpedestal 118.Pedestal 118 can thus be considered an electrical node to which electrical contact is ultimately to be made.Pedestal 118 comprises anupper surface 130, and in some aspects of the invention, theupper surface 130 can be considered the actual location of the electrical node to which electrical contact is ultimately to be made. - In the shown aspect of the invention,
material 126,pedestal 118, and electrically insulative caps 20, 122 and 124 are shown forming a substantially planar upper surface extending oversubstrate 12. Such substantially planar upper surface can be formed by, for example, chemical-mechanical polishing or other planarization processes. - Referring to FIG. 4, an etch is utilized to form an
opening 150 extending through electricallyinsulative layer 128 and to theupper surface 130 ofpedestal 118. The etch is simultaneously utilized to form anopening 152 extending throughinsulative layer 128, and partially intocap 20. The specific locations ofopenings layer 128 can consist essentially of, or consist of silicon dioxide; andcap 20 can consist essentially of, or consist of silicon nitride. In such aspects, the etch utilized to extend throughlayer 128 and partially intocap 20 can comprise CF4 as a reactive etchant material. Particular etching conditions can utilize CF4 at a flow rate of 90 standard cubic centimeters per minute (sccm) together with an inert gas (with the term “inert” indicating that the gas is inert relative to reaction with exposed materials of construction 100) provided at a flow rate of 20 sccm. An exemplary suitable inert gas is argon. - In the discussion that follows, the etch of FIG. 4 can be referred to as a first etch, to distinguish such etch from subsequent etches described below. Also, the depth to which
opening 152 extends intocap 20 can be referred to as a first depth. - Referring to FIG. 5, a
conductive mass 160 is formed overlayer 128 and withinopenings Mass 160 comprises one or more conductive materials, and in particular aspects can comprise, predominately comprise (by atomic percent), consist essentially of, or consist of tungsten.Mass 160 is ultimately patterned into a bitline in the shown exemplary aspect of the invention, and accordingly can comprise conventional materials suitable for incorporation in bitline constructions.Mass 160 is shown formed in electrical contact withpedestal 118, and specifically is shown formed directly againstupper surface 130 ofpedestal 118. - A
protective insulative material 162 is formed overconductive mass 160.Insulative material 162 can comprise any suitable material, including, for example, silicon dioxide and/or silicon nitride. - Referring to FIG. 6,
materials block 164 comprising sidewalls 166. In an exemplary aspect of the invention,material 160 can, as described above, be considered to be formed into a bitline. Accordingly,material 160 would be a line extending into and out of the page. Accordingly, theblock 164 comprisingmaterials - The patterning of
materials materials materials - In particular aspects of the invention, the etch utilized for patterning
materials cap 20. Accordingly, the depth ofopening 152 at the processing stage of FIG. 6 can be deeper than the depth ofopening 152 at the processing stage of FIG. 4, as shown. In particular aspects of the invention, electricallyinsulative material 162 will consist essentially of silicon nitride,conductive material 160 will consist essentially of tungsten and/or tungsten-containing compounds, andcap 20 will comprise silicon nitride. In such aspects, the etch utilized topattern materials cap 20, can comprise an etch utilizing Cl2, NF3, and CH2F2. An exemplary etch can utilize a flow rate of Cl2 of 10 sccm, a flow rate of NF3 of 40 sccm, and a flow rate of CH2F2 of 12 sccm. - Referring to FIG. 7, an electrically
insulative layer 170 is formed overblock 164, and also withinopening 152.Electrically insulative layer 170 can be referred to as a second electrically insulative layer to distinguishlayer 170 fromlayer 128.Layer 170 can comprise, consist essentially of, or consist of, for example, silicon nitride. - Referring to FIG. 8, electrically insulative
layer 170 is anisotropically etched topattern layer 170 intospacers 172 alongsidewalls 166 ofblock 164. In the shown aspect of the invention, the anisotropic etch ofmaterial 170 also patterns the material intospacers 174 withinopening 152. Althoughspacers 174 appear separated from one another in the shown cross-sectional view, it is to be understood that theopening 152 can comprise a continuous periphery (for instance, opening 152 can comprise a circular shape when viewed from above), and accordingly thespacers 174 which appear separate from one another in the view of FIG. 8 could be part of a single spacer extending entirely around a continuous periphery ofopening 152. -
Spacers 174narrow opening 152. The anisotropic etch utilized to formspacers 174 is shown extending intocap 20, and accordingly is shown extendingopening 152 to a new depth which is deeper than the depth ofopening 152 prior to the anisotropic etch. In particular aspects of the invention,insulative material 170 andcap 20 both consist essentially of silicon nitride. In such aspects, the anisotropic etch ofmaterial 170 can utilize, for example, CF4. In particular aspects, the anisotropic etch can utilize a flow rate of CF4 of 90 sccm, and a flow rate of argon of 20 sccm. The anisotropic etching conditions are preferably conducted for a sufficient time to extend a depth ofopening 152 intocap 20, without extending the opening to an extent that the opening penetrates entirely throughcap 20. - Although the illustrated processing forms spacers174 within opening 152 from layer 170 (FIGS. 7 and 8), it is to be understood that the invention encompasses other processing in which spacers are not formed within
opening 152. For instance, if sidewalls of opening 152 are not sufficiently vertical (which can occur, for example, if sidewall edges oflayer 128 along opening 152 are not sufficiently vertical),layer 170 will be etched from within the opening rather than forming the shownspacers 174. The processing described below as occurring subsequent to formation ofspacers 174 can also be conducted in the absence ofspacers 174. - Referring to FIG. 9, a
mass 24 of insulative material is formed overblock 164 and overstack 22.Mass 24 can comprise one or more electrically insulative materials. Although the mass is shown as a homogeneous composition, it is to be understood that the mass can comprise layers of insulative materials, as described previously with reference to prior art FIG. 1.Mass 24 can have a thickness overstack 22 of at least about 10,000 Å, at least about 15,000 Å, or even at least about 20,000 Å. In particular aspects,mass 24 will comprise, consist essentially of, or consist of a silicate glass, such as, for example, BPSG. - A patterned
masking layer 26 is formed overmass 24. Maskinglayer 26 can comprise, for example, photoresist, as discussed previously with reference to prior art FIG. 1.Patterned masking layer 26 defines anopening 200, which is extended throughmass 24, throughcap 22, and toconductive material 18. In the shown aspect of the invention, opening 200 extends between thespacers 174. -
Opening 200 differs from the prior art opening 28 (FIG. 2) in that the undesired widenedportion 30 of the prior art construction is not present in the construction of FIG. 9. The thinning of the upper surface ofcap 20 at the various processing stages of the present invention has reduced the time that it takes for an etch to penetratecap 20 and reachconductive material 18, and has thus alleviated, and in particular aspects even prevented, formation of the undesired widened portion 30 (FIG. 2) which occurred in prior art processes. - In particular aspects of the invention, the etch utilized to form opening200 can be considered a second etch, while the etch utilized to penetrate layer 128 (the etch described previously with reference to FIG. 4) can be considered a first etch. The second etch of FIG. 9 is separate from the first etch, in that the first etch has been stopped, and some intervening processing has occurred between the first etch and the second etch. In the exemplary shown aspect of the invention, the etch of FIG. 9 is actually the fourth etch in the series of etches progressing from the first etch of FIG. 4, the second etch of FIG. 6, the third etch of FIG. 8, and finally the fourth etch of FIG. 9.
- Referring to FIG. 10, masking material26 (FIG. 9) is removed, and a
conductive interconnect 202 is formed withinopening 200.Conductive interconnect 202 can comprise any suitable conductive material, including, for example, metals, metal compounds and/or conductively-doped silicon. In particular aspects of the invention,conductive material 18 is part of a wordline extending into and out of the shown cross-sectional view ofconstruction 100. In such aspects,interconnect 202 can be utilized to connect the wordline to other circuitry (not shown). - Although the invention is described above with reference to a procedure of forming a single opening through an electrically insulative cap to a conductive material, it is to be understood that the invention can be utilized for simultaneously forming multiple openings extending through multiple insulative caps to multiple conductive lines, as well as for forming multiple openings extending through a single cap to a conductive line.
- In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
Claims (43)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/454,303 US6828238B1 (en) | 2003-06-03 | 2003-06-03 | Methods of forming openings extending through electrically insulative material to electrically conductive material |
US10/999,769 US7030499B2 (en) | 2003-06-03 | 2004-11-29 | Semiconductor constructions |
US11/389,633 US20060166489A1 (en) | 2003-06-03 | 2006-03-24 | Semiconductor constructions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/454,303 US6828238B1 (en) | 2003-06-03 | 2003-06-03 | Methods of forming openings extending through electrically insulative material to electrically conductive material |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/999,769 Continuation US7030499B2 (en) | 2003-06-03 | 2004-11-29 | Semiconductor constructions |
Publications (2)
Publication Number | Publication Date |
---|---|
US6828238B1 US6828238B1 (en) | 2004-12-07 |
US20040248402A1 true US20040248402A1 (en) | 2004-12-09 |
Family
ID=33476638
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/454,303 Expired - Lifetime US6828238B1 (en) | 2003-06-03 | 2003-06-03 | Methods of forming openings extending through electrically insulative material to electrically conductive material |
US10/999,769 Expired - Fee Related US7030499B2 (en) | 2003-06-03 | 2004-11-29 | Semiconductor constructions |
US11/389,633 Abandoned US20060166489A1 (en) | 2003-06-03 | 2006-03-24 | Semiconductor constructions |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/999,769 Expired - Fee Related US7030499B2 (en) | 2003-06-03 | 2004-11-29 | Semiconductor constructions |
US11/389,633 Abandoned US20060166489A1 (en) | 2003-06-03 | 2006-03-24 | Semiconductor constructions |
Country Status (1)
Country | Link |
---|---|
US (3) | US6828238B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040248406A1 (en) * | 2003-06-04 | 2004-12-09 | Sung-Un Kwon | Local interconnection method and structure for use in semiconductor device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7341951B2 (en) * | 2005-12-27 | 2008-03-11 | Micron Technology, Inc. | Methods of forming semiconductor constructions |
JP2010016249A (en) * | 2008-07-04 | 2010-01-21 | Nec Electronics Corp | Method of manufacturing semiconductor device, and semiconductor device |
KR101728288B1 (en) | 2011-12-30 | 2017-04-18 | 인텔 코포레이션 | Self-enclosed asymmetric interconnect structures |
US8772938B2 (en) | 2012-12-04 | 2014-07-08 | Intel Corporation | Semiconductor interconnect structures |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5362666A (en) * | 1992-09-18 | 1994-11-08 | Micron Technology, Inc. | Method of producing a self-aligned contact penetrating cell plate |
US5498570A (en) * | 1994-09-15 | 1996-03-12 | Micron Technology Inc. | Method of reducing overetch during the formation of a semiconductor device |
US5907781A (en) * | 1998-03-27 | 1999-05-25 | Advanced Micro Devices, Inc. | Process for fabricating an integrated circuit with a self-aligned contact |
US6300178B1 (en) * | 1997-10-28 | 2001-10-09 | Kabushiki Kaisha Toshiba | Semiconductor device with self-aligned contact and manufacturing method thereof |
US6423627B1 (en) * | 1998-09-28 | 2002-07-23 | Texas Instruments Incorporated | Method for forming memory array and periphery contacts using a same mask |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10321724A (en) * | 1997-03-19 | 1998-12-04 | Fujitsu Ltd | Semiconductor device and manufacture therefor |
US6177340B1 (en) * | 1999-02-18 | 2001-01-23 | Taiwan Semiconductor Manufacturing Company | Method to reduce contact hole aspect ratio for embedded DRAM arrays and logic devices, via the use of a tungsten bit line structure |
US6368979B1 (en) * | 2000-06-28 | 2002-04-09 | Lsi Logic Corporation | Process for forming trenches and vias in layers of low dielectric constant carbon-doped silicon oxide dielectric material of an integrated circuit structure |
US6406968B1 (en) * | 2001-01-23 | 2002-06-18 | United Microelectronics Corp. | Method of forming dynamic random access memory |
US6635576B1 (en) * | 2001-12-03 | 2003-10-21 | Taiwan Semiconductor Manufacturing Company | Method of fabricating borderless contact using graded-stair etch stop layers |
US6903022B2 (en) * | 2002-10-03 | 2005-06-07 | Promos Technologies Inc. | Method of forming contact hole |
US6674168B1 (en) * | 2003-01-21 | 2004-01-06 | International Business Machines Corporation | Single and multilevel rework |
-
2003
- 2003-06-03 US US10/454,303 patent/US6828238B1/en not_active Expired - Lifetime
-
2004
- 2004-11-29 US US10/999,769 patent/US7030499B2/en not_active Expired - Fee Related
-
2006
- 2006-03-24 US US11/389,633 patent/US20060166489A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5362666A (en) * | 1992-09-18 | 1994-11-08 | Micron Technology, Inc. | Method of producing a self-aligned contact penetrating cell plate |
US5498570A (en) * | 1994-09-15 | 1996-03-12 | Micron Technology Inc. | Method of reducing overetch during the formation of a semiconductor device |
US5753565A (en) * | 1994-09-15 | 1998-05-19 | Micron Technology, Inc. | Method of reducing overetch during the formation of a semiconductor device |
US6300178B1 (en) * | 1997-10-28 | 2001-10-09 | Kabushiki Kaisha Toshiba | Semiconductor device with self-aligned contact and manufacturing method thereof |
US5907781A (en) * | 1998-03-27 | 1999-05-25 | Advanced Micro Devices, Inc. | Process for fabricating an integrated circuit with a self-aligned contact |
US6423627B1 (en) * | 1998-09-28 | 2002-07-23 | Texas Instruments Incorporated | Method for forming memory array and periphery contacts using a same mask |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040248406A1 (en) * | 2003-06-04 | 2004-12-09 | Sung-Un Kwon | Local interconnection method and structure for use in semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
US7030499B2 (en) | 2006-04-18 |
US20060166489A1 (en) | 2006-07-27 |
US6828238B1 (en) | 2004-12-07 |
US20050095853A1 (en) | 2005-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6306772B1 (en) | Deep trench bottle-shaped etching using Cl2 gas | |
US8613864B2 (en) | Methods of forming semiconductor constructions | |
US7387939B2 (en) | Methods of forming semiconductor structures and capacitor devices | |
US7268057B2 (en) | Methods of filling openings with oxide, and methods of forming trenched isolation regions | |
US8030156B2 (en) | Methods of forming DRAM arrays | |
US6071823A (en) | Deep trench bottle-shaped etch in centura mark II NG | |
US6277758B1 (en) | Method of etching doped silicon dioxide with selectivity to undoped silicon dioxide with a high density plasma etcher | |
US7687341B2 (en) | Method for fabricating semiconductor device | |
US20060166489A1 (en) | Semiconductor constructions | |
US7119015B2 (en) | Method for forming polysilicon plug of semiconductor device | |
US6727150B2 (en) | Methods of forming trench isolation within a semiconductor substrate including, Tshaped trench with spacers | |
US6239011B1 (en) | Method of self-aligned contact hole etching by fluorine-containing discharges | |
US20090163029A1 (en) | Method of manufacturing semiconductor device | |
US6501140B2 (en) | Transistor structures | |
US7384823B2 (en) | Method for manufacturing a semiconductor device having a stabilized contact resistance | |
US7573116B2 (en) | Etch aided by electrically shorting upper and lower sidewall portions during the formation of a semiconductor device | |
KR100745398B1 (en) | Method for forming tungsten pattern and method for manufacturing semiconductor device using the same | |
US6140245A (en) | Semiconductor processing methods, and methods of forming capacitor constructions | |
US20020072217A1 (en) | Method for improving contact reliability in semiconductor devices | |
US6503813B1 (en) | Method and structure for forming a trench in a semiconductor substrate | |
CN113496952B (en) | Semiconductor structure and manufacturing method thereof | |
US6436831B1 (en) | Methods of forming insulative plugs and oxide plug forming methods | |
KR100384843B1 (en) | Method for fabricating capacitor | |
JP3662767B2 (en) | Manufacturing method of lower electrode of capacitor | |
WO2002015262A1 (en) | Method of isolating semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HERMES, MICHAEL J.;REEL/FRAME:014144/0804 Effective date: 20030529 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001 Effective date: 20160426 Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001 Effective date: 20160426 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001 Effective date: 20160426 Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001 Effective date: 20160426 Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001 Effective date: 20180703 Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001 Effective date: 20180703 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001 Effective date: 20180629 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:050937/0001 Effective date: 20190731 |
|
AS | Assignment |
Owner name: MICRON SEMICONDUCTOR PRODUCTS, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001 Effective date: 20190731 Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001 Effective date: 20190731 |