US20040228207A1 - System and method for applying an additive to a material stream - Google Patents

System and method for applying an additive to a material stream Download PDF

Info

Publication number
US20040228207A1
US20040228207A1 US10/440,432 US44043203A US2004228207A1 US 20040228207 A1 US20040228207 A1 US 20040228207A1 US 44043203 A US44043203 A US 44043203A US 2004228207 A1 US2004228207 A1 US 2004228207A1
Authority
US
United States
Prior art keywords
spray
mix
chamber
housing
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/440,432
Inventor
Larry McNeff
Clayton McNeff
David Johnston
Peter Greuel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sartec Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/440,432 priority Critical patent/US20040228207A1/en
Assigned to SARTEC CORPORATION reassignment SARTEC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOHNSTON, DAVID J., GREUEL, PETER G., MCNEFF, CLAYTON V., MCNEFF, LARRY C.
Publication of US20040228207A1 publication Critical patent/US20040228207A1/en
Priority to US11/748,223 priority patent/US7441942B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/62Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis comprising liquid feeding, e.g. spraying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/54Mixing liquids with solids wetting solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/72Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices
    • B01F27/724Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with a single helix closely surrounded by a casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/50Movable or transportable mixing devices or plants
    • B01F33/502Vehicle-mounted mixing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/10Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in stationary drums or troughs, provided with kneading or mixing appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/06Mixing of food ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/06Mixing of food ingredients
    • B01F2101/18Mixing animal food ingredients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S119/00Animal husbandry
    • Y10S119/902Feed agitator

Definitions

  • This invention relates generally to the field of feed processing systems and more particularly to systems and methods for combining additives with feed.
  • processed feed allows producers to achieve greater production in less space and at lower operating costs.
  • processed feed allows producers to tailor the feed'nutrition qualities for specific types of animals. Thus, not only can more animals be produced on less land, processed feed also enables the animals to grow larger and healthier.
  • Grain-processing facilities typically combine a number of ingredients, such as wheat, barley and corn, mix them together and mill them to produce an animal feed product. Many grain-processing facilities operate continuously, thus, the milled grain is often moved throughout the system by means of conveyers or augers. Once milled, the feed is subject to various refining processes. For example, the feed may be combined with other materials, cooked, dried or made into flakes or pellets. Often feed is combined with various additives, such as liquid additives, conditioners, supplements, medicines and micro ingredients.
  • these additives are metered and mixed into the feed through direct liquid injection by means of a micro ingredient machine or a liquid chemical pump, and then they are mixed in large chambers or containers, as a batch process; this process often leads to uneven distribution of the additive on the feed.
  • additives require different processing. For example, certain additives are heat sensitive and must be added to the feed after it is cooked; other additives can be mixed with the feed at any appropriate time in the process.
  • Additives work optimally in certain animals at particular concentrations. Thus, it is desirable to efficiently and uniformly distribute the additives into the feed. Uniform distribution of the additive into the feed prevents the livestock from consuming too much or too little of the additive. For example, a feed with an uneven distribution may have negative effects on the animals to which it is fed because some animals may get fed too much additive while others get fed too little additive. The animals that ingest the feed with too high a concentration of additives may be harmed, or the excess additive may pass through the animal without achieving its desired effect. Likewise, an animal that ingests feed with too little an additive content is not receiving the benefits intended by the additive. Thus, efficient uniform application insures that the animals will ingest the proper amount of additive and the additive will perform optimally.
  • the present disclosure relates to a system and method for applying a liquid additive to a material stream.
  • the material stream enters a mix housing, which defines a mix chamber, and is pushed through the mix chamber by an actuating device contained therein.
  • Adjacent the mix housing is a spray housing, which defines a spray chamber.
  • the material stream passes through a volume created by a portion of the mix chamber that is in fluid communication with the spray chamber.
  • a nozzle connected to a liquid additive line and an air line, is coupled to the spray housing.
  • the nozzle creates a fog of liquid additive in the spray chamber and in a volume of the mix chamber adjacent the spray chamber.
  • the fog of liquid additive gets deposited on the material stream.
  • the actuating device mixes the additive into the feed stream.
  • FIG. 1 is a diagram of an embodiment made according to the principles of the present disclosure
  • FIG. 2 is an enlarged view of a portion of FIG. 1;
  • FIG. 3 is a diagram of another embodiment made according to the principles of the present disclosure.
  • FIG. 4 is a diagram of another embodiment made according to the principles of the present disclosure.
  • the system 26 generally includes, among other elements described below, an air source 13 , an additive tank 15 , an additive pump 14 , additive line 17 and air line 12 , a spray nozzle 8 , a spray housing 1 , a mix housing 4 , an actuating device 7 and a control unit 24 .
  • FIGS. 1 and 2 illustrate one embodiment of a mix housing 4 made according to the principles of the present disclosure.
  • the mix housing 4 defines a mix chamber 5 and a mix chamber opening 6 .
  • the mix housing 4 is used to transport material from one point in a feed processing plant to another point in the feed processing plant.
  • Inside the mix chamber 5 is an actuating device 7 . While inside the mix housing 4 , the material stream 25 is progressed through the mix chamber 5 and mixed by the actuating device 7 .
  • the actuating device 7 can be anything capable of moving and mixing the material stream 25 through the mix chamber 5 .
  • the actuating device 7 could be an auger.
  • the auger can be any of a number of commercially available augers; it can also include mixing bars that help mix the material stream 25 as it passes through the mix chamber 5 such that the additive 16 is deposited on the material stream 25 .
  • the actuating device 7 can be a conveyor, rotating drum, or any other device that moves the material stream 25 through the mix chamber 5 .
  • the actuating device may optionally be manually controlled or automated by connecting it to a control unit 24 , which monitors and regulates the flow rate of the material stream 25 by adjusting the speed of the actuating device 7 .
  • the mix housing 4 has a length 30 , a width 23 and a height 22 .
  • the length 30 can be any operable length required to move the material stream 25 from one point in the process to another.
  • the length 30 has a first end 27 , a midsection 28 , and a second end 29 .
  • the material stream 25 enters the mix housing 4 at the first end 27 and exits the mix housing 4 at the second end 29 .
  • mix housing 4 has a width 23 ranging from 1 foot to 8 feet.
  • mix housing 4 has a width 23 that ranges between about 2 feet and 5 feet.
  • the mix housing 4 has a width 23 of about 3 feet.
  • the mix housing 4 has a height 22 that ranges between about 1 and 5 feet.
  • the mix housing 4 has a height 22 that ranges between about 1.5 and 3.5 feet.
  • the mix housing 4 has a height 22 of about 2 feet.
  • the mix housing 4 constructed according to the principles of the present disclosure can have many different shapes.
  • the mix housing 4 can be rectangular, trapezoidal, tubular, cylindrical, U-shaped, or any other shape that can define a mix chamber 5 .
  • the mix housing 4 can also be constructed from any suitable material. Such materials would be recognized by those skilled in the art and chosen depending on the specific requirements of the system.
  • the mix housing could be made of plastic, metal, fiberglass, composite material, wood or any other suitable material.
  • the spray housing 1 is located adjacent the mix housing 4 .
  • the spray housing 1 defines a spray chamber 2 and a spray chamber opening 3 .
  • the spray housing 1 is placed adjacent the mix housing 4 such that the spray chamber opening 3 and the mix chamber opening 6 provides fluid communication between the spray chamber 2 and the mix chamber 5 .
  • the spray chamber opening 3 is about equal to and corresponds in shape to the mix chamber opening 6 .
  • the spray chamber opening 3 can be larger than mix chamber opening 6 , or the spray chamber opening 3 can be smaller than the mix chamber opening 6 , and they do not have to have corresponding shapes.
  • the spray housing 1 is a rectangular box having a length 21 , a height 19 and a width 20 .
  • the length of the spray housing 1 can range from about one half foot to 8 feet.
  • the length 21 of the spray housing 1 is between about 1 and 5 feet.
  • the length 21 of the spray housing 1 is between about 2 to 4 feet.
  • the length 21 of the spray housing 1 is about 3 feet.
  • the width 20 of the spray housing 1 in one embodiment, ranges between about 1 foot and 5 feet.
  • the width 20 of the spray housing 1 ranges between about 1 foot and 2 feet.
  • the width 20 of the spray housing 1 is about one and a half feet.
  • the height 19 of the spray housing 1 can be selected in combination with the spray nozzle 8 so the spray exiting the spray nozzle 8 covers material stream 25 .
  • the height 19 of the spray housing 1 in one embodiment, ranges between about a half of a foot and 4 feet. In another embodiment, the height 19 of the spray housing 1 ranges between about 1 to 3 feet. In yet another embodiment, the height 19 of the spray housing 1 is about 1 to 2 feet.
  • the spray housing 1 made according to the principles of the present disclosure may be made of many different materials.
  • the spray housing 1 may be made of metal, plastic, fiberglass, composite material, wood or a combination of materials.
  • the spray housing 1 may also be many different shapes.
  • the spray housing 1 may be rectangular, triangular, trapezoidal, U-shaped, spherical, tubular, or any other shape that can define a spray chamber 2 .
  • the spray housing may include a spray housing door 39 , which provides access to the spray chamber 2 .
  • Spray housing 1 is located adjacent the mix housing 4 such that the liquid additive 16 is deposited onto the material stream 25 early enough to allow material stream 25 sufficient time to mix in the mix chamber 5 .
  • spray housing 1 is located adjacent the mix housing 4 between the first end 27 and the midsection 28 of the mix housing 4 . While, it should be noted that the spray housing 1 can be located anywhere adjacent the mix housing 4 , it is preferred for the spray housing 1 to be positioned to allow the material stream 25 to be sufficiently mixed in the mix chamber 5 before exiting the mix housing 4 at the second end 29 .
  • spray nozzle 8 is coupled to the spray housing 1 such that it sprays a mixture of air and liquid additive 16 through the spray chamber 2 and into the mix chamber 5 and gets deposited on the material stream 25 .
  • spray nozzle 8 could spray only a liquid additive 16 .
  • the type of spray nozzle 8 used can be any type of nozzle that produces a fine mist or fog that will substantially fill the volume of the mix chamber 5 adjacent the spray housing 1 , such that the liquid additive 16 gets deposited on the material stream 25 .
  • the spray nozzle 8 uses is a “UNIJET 9510” made by Spraying Systems Company.
  • the spray nozzle 8 provides a fan of liquid additive 16 having a width about the size of either the smaller of the spray chamber opening 3 or the mix chamber opening 6 when it reaches either opening.
  • the spray nozzle 8 sprays a fan of air and liquid additive that is about the width of the material stream 25 passing through the mix chamber 5 .
  • the spray or fog ejected from the spray nozzle 8 in one embodiment, has particle sizes ranging from 1 to 100 microns in diameter. In another embodiment, the particle size ejected from the spray nozzle can be from about 10 to 80 microns in diameter. In yet another embodiment, the particle size ejected from the spray nozzle 8 could be between about 30 and 50 microns in diameter.
  • the material stream 25 passes through the mix chamber 5 adjacent the spray chamber 2 .
  • a mixture of air and liquid additive 16 are sprayed out of the spray nozzle 8 and deposited on the material stream 25 .
  • the material stream 25 continues moving through the mix housing 4 by way of the actuating device 7 .
  • the actuating device 7 mixes the material stream 25 and the liquid additive 16 prior to exiting the mix housing 4 .
  • the material stream 25 can be further processed in a number of different ways.
  • the material stream 25 can enter steam chest 18 where it is cooked at between about 150 to 250 degrees Fahrenheit and steam flaked, the material stream can be dry rolled or any other process used to produce a feed product.
  • the additive line 17 is connected to an additive pump 14 , which in turn is connected to an additive tank 15 .
  • Additive tank 15 holds the liquid additive 16 , which is pumped, via the additive pump 14 , through additive line 17 to the air nozzle 8 , where it is mixed with the air in the air line 12 .
  • the system may simply spry additive out the nozzle omitting the air.
  • the liquid additive 16 can be any number of additives that are combined with feed.
  • An example of a liquid additive may be SarStart®—LSC or SarTemp® made by SarTec® Corporation of Anoka, Minn., which are used to condition grain and increase feed efficiency in animals.
  • Other additives may include vitamins, minerals, conditioners, supplements, medicines and micro ingredients.
  • the chemical pump 14 is operatively connected to a control unit 24 such that the control unit 24 regulates the amount of additive 16 that the additive pump 14 provides to the spray nozzle 8 . It will be apparent to one skilled in the art to select the appropriate equipment depending on the system requirements. Alternatively, the additive pump 14 can be manually adjusted to provide the required flow rate for a desired composition of additive 16 and material 25 .
  • an air source 13 supplies the nozzle 8 with air connected through air line 12 .
  • An air filter 10 , an air regulator 11 , and a valve 9 can be connected between the air source 13 and the spray nozzle 8 along the air line 12 .
  • the valve 9 and the air regulator 11 may be operatively connected to a control unit 24 , which regulates the valve 9 and the air regulator 11 to control the air supply in the system 26 .
  • a control unit 24 which regulates the valve 9 and the air regulator 11 to control the air supply in the system 26 .
  • valve 9 could be a solenoid valve.
  • the flow parameters of the system 26 are determined based upon the desired composition of the material stream 25 . It will be apparent to one skilled in the art how to manipulate these parameters according to the desired composition of the material stream 25 .
  • valve 9 and air regulator 11 can be manually adjusted.
  • control unit 24 could also include a computer 31 , including a modem, capable of monitoring, recording, controlling, and displaying the system parameters, such as, flow rates, temperatures, volumes, pressures and concentrations.
  • control unit 24 could be operatively connected to the air regulator 11 , a valve 9 , an air flow meter 33 , an additive flow meter 34 , the pump 14 , a material stream meter 35 , an additive concentration meter 34 , the actuating device 7 , and the steam chest thermometer 38 .
  • the control unit 24 could be operatively connected to a remote workstation 32 , either via a wire 36 or wirelessly using transmitter/receiver devices 37 .
  • FIG. 3 illustrates an embodiment made according to the principles of the present disclosure.
  • FIG. 3 shows a mix housing 204 , having an actuating device 207 to mix the batch material 225 .
  • the mix housing 204 defines a mix chamber 205 and a mix chamber opening 206 , which provides access to the interior of the mix housing 204 and the batch material 225 .
  • Adjacent the mix housing 204 is a spray housing 201 defining a spray chamber 202 and a spray chamber opening 203 .
  • the spray housing 201 is spherical to fit over the mix housing 204 such that the mix chamber opening 206 and the spray chamber opening 203 provide fluid communication between the spray chamber 202 and the mix chamber 205 .
  • the spray housing 201 made according to the principles of the present disclosure may be made of many different materials, and also may also be many different shapes and appropriate sizes.
  • the spray housing 201 may hinge onto the mix housing 204 such that it provides access to the mix chamber 205 to fill the mix chamber 205 with batch material 225 .
  • the spray housing 201 could be removable, or the batch material 225 could be added into the mix chamber 205 through an opening (not shown) in the mix housing 204 designed to receive the batch material 225 .
  • a nozzle 8 is coupled to the spray housing 201 .
  • the nozzle 8 creates a fog of a mixture of air and additive 16 in the spray chamber 202 .
  • the fog travels through the spray chamber opening 203 , the mix chamber opening 206 , and into the mix chamber 205 such that it is deposited onto the batch material 225 as the actuating device 207 mixes the batch material 225 .
  • the actuating device 207 can be a mixing paddle(s) or any type of mixing apparatus used in a mix housing 204 known to one skilled in the art to sufficiently mix the batch material 225 such that the fog of air and liquid additive 16 is sufficiently mixed into the batch material 225 .
  • the parameters of the spray housing 201 such as the material out of which it is made and its shape are similar to the spray housing 1 described above.
  • the size of the spray housing 201 can be any appropriate size, which would be apparent to one skilled in the art, depending on the application for which it is to be used. In choosing the size, one skilled in the art should consider the length, width and height of the spry housing 201 and the mix housing 204 along with the spray nozzle 8 . Such elements should be chosen such that the additive 16 is deposited uniformly onto the batch material 225 as the batch material 225 is mixed.
  • FIG. 4 illustrates yet another embodiment of the present disclosure.
  • FIG. 4 illustrate a spray housing 301 positioned such that a mix truck 300 can be driven under the spray housing 301 .
  • the mix truck 300 contains a mix housing 304 .
  • the mix housing 304 defines a mix chamber 305 and a mix chamber opening 306 that provides access to the interior of the mix housing 304 and the batch material 325 .
  • Adjacent the mix housing 304 is a spray housing 301 defining a spray chamber 302 and a spray chamber opening 303 .
  • the spray housing 301 is rectangular to fit over the mix housing 304 such that the mix chamber opening 306 and the spray chamber opening 303 provide fluid communication between the spray chamber 302 and the mix chamber 305 .
  • the parameters of the spray housing 301 such as the material out of which it is made and its shape are similar to the spray housing 1 described above. Additionally, one skilled in the art would know how to choose the dimensions of the spray housing 301 according to the application for which it is to be used in according with the principles of the present disclosure.
  • a nozzle 8 is coupled to the spray housing 301 .
  • the nozzle 8 creates a fog of a mixture of air and additive 16 in the spray chamber 302 .
  • the fog travels through the spray chamber opening 303 , the mix chamber opening 306 , and into the mix chamber 305 such that it is deposited onto the batch material 325 as the actuating device 307 mixes the batch material 325 .
  • the actuating device 307 can be a mixing paddle(s) or any type of mixing apparatus used in a mix housing 304 known to one skilled in the art to sufficiently mix the batch material 325 such that the fog of air and liquid additive 16 is mixed into the batch material 325 .
  • the remaining elements in FIG. 4 are described in detail above.

Abstract

The present disclosure is generally directed to systems and methods for applying liquid feed additives to a feed composition. In one embodiment, the system has a spray housing defining a spray chamber located adjacent a mix housing carrying a material composition. The mix housing defines a mix chamber, which contains an actuating device, such as an auger, that moves the material stream through the mix chamber. The mix chamber and spray chamber are in fluid communication. A spray nozzle is coupled to the spray housing and in fluid communication with an air source and liquid additive tank. The spray nozzle sprays a fog of air and liquid additive through the spray chamber and into the mix chamber, which gets deposited on the passing feed stream.

Description

    FIELD OF THE INVENTION
  • This invention relates generally to the field of feed processing systems and more particularly to systems and methods for combining additives with feed. [0001]
  • BACKGROUND OF THE INVENTION
  • Many livestock producers use processed feed to raise livestock, such as poultry, cattle, swine, sheep and dairy and beef cattle, rather than unprocessed feed or allowing the animals to graze on open pastures. Processed feed allows producers to achieve greater production in less space and at lower operating costs. In addition to the advantage of raising a larger number of animals on less land, processed feed allows producers to tailor the feed'nutrition qualities for specific types of animals. Thus, not only can more animals be produced on less land, processed feed also enables the animals to grow larger and healthier. [0002]
  • Grain-processing facilities typically combine a number of ingredients, such as wheat, barley and corn, mix them together and mill them to produce an animal feed product. Many grain-processing facilities operate continuously, thus, the milled grain is often moved throughout the system by means of conveyers or augers. Once milled, the feed is subject to various refining processes. For example, the feed may be combined with other materials, cooked, dried or made into flakes or pellets. Often feed is combined with various additives, such as liquid additives, conditioners, supplements, medicines and micro ingredients. Typically, these additives are metered and mixed into the feed through direct liquid injection by means of a micro ingredient machine or a liquid chemical pump, and then they are mixed in large chambers or containers, as a batch process; this process often leads to uneven distribution of the additive on the feed. [0003]
  • Different additives require different processing. For example, certain additives are heat sensitive and must be added to the feed after it is cooked; other additives can be mixed with the feed at any appropriate time in the process. [0004]
  • Additives work optimally in certain animals at particular concentrations. Thus, it is desirable to efficiently and uniformly distribute the additives into the feed. Uniform distribution of the additive into the feed prevents the livestock from consuming too much or too little of the additive. For example, a feed with an uneven distribution may have negative effects on the animals to which it is fed because some animals may get fed too much additive while others get fed too little additive. The animals that ingest the feed with too high a concentration of additives may be harmed, or the excess additive may pass through the animal without achieving its desired effect. Likewise, an animal that ingests feed with too little an additive content is not receiving the benefits intended by the additive. Thus, efficient uniform application insures that the animals will ingest the proper amount of additive and the additive will perform optimally. [0005]
  • SUMMARY OF THE INVENTION
  • The present disclosure relates to a system and method for applying a liquid additive to a material stream. In one embodiment, the material stream enters a mix housing, which defines a mix chamber, and is pushed through the mix chamber by an actuating device contained therein. Adjacent the mix housing is a spray housing, which defines a spray chamber. The material stream passes through a volume created by a portion of the mix chamber that is in fluid communication with the spray chamber. A nozzle, connected to a liquid additive line and an air line, is coupled to the spray housing. The nozzle creates a fog of liquid additive in the spray chamber and in a volume of the mix chamber adjacent the spray chamber. The fog of liquid additive gets deposited on the material stream. As the material continues through the mix chamber, the actuating device mixes the additive into the feed stream. [0006]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram of an embodiment made according to the principles of the present disclosure; [0007]
  • FIG. 2 is an enlarged view of a portion of FIG. 1; [0008]
  • FIG. 3 is a diagram of another embodiment made according to the principles of the present disclosure; and [0009]
  • FIG. 4 is a diagram of another embodiment made according to the principles of the present disclosure.[0010]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to the drawings in which similar elements are numbered identically throughout, descriptions of embodiments constructed according to the principles of the present disclosure are provided. Referring now to FIGS. 1 and 2, the [0011] system 26 generally includes, among other elements described below, an air source 13, an additive tank 15, an additive pump 14, additive line 17 and air line 12, a spray nozzle 8, a spray housing 1, a mix housing 4, an actuating device 7 and a control unit 24.
  • FIGS. 1 and 2 illustrate one embodiment of a [0012] mix housing 4 made according to the principles of the present disclosure. The mix housing 4 defines a mix chamber 5 and a mix chamber opening 6. The mix housing 4 is used to transport material from one point in a feed processing plant to another point in the feed processing plant. Inside the mix chamber 5 is an actuating device 7. While inside the mix housing 4, the material stream 25 is progressed through the mix chamber 5 and mixed by the actuating device 7. The actuating device 7 can be anything capable of moving and mixing the material stream 25 through the mix chamber 5. For example, the actuating device 7 could be an auger. The auger can be any of a number of commercially available augers; it can also include mixing bars that help mix the material stream 25 as it passes through the mix chamber 5 such that the additive 16 is deposited on the material stream 25. Alternatively, the actuating device 7 can be a conveyor, rotating drum, or any other device that moves the material stream 25 through the mix chamber 5. The actuating device may optionally be manually controlled or automated by connecting it to a control unit 24, which monitors and regulates the flow rate of the material stream 25 by adjusting the speed of the actuating device 7.
  • The [0013] mix housing 4 has a length 30, a width 23 and a height 22. The length 30 can be any operable length required to move the material stream 25 from one point in the process to another. The length 30 has a first end 27, a midsection 28, and a second end 29. The material stream 25 enters the mix housing 4 at the first end 27 and exits the mix housing 4 at the second end 29. In one embodiment, mix housing 4 has a width 23 ranging from 1 foot to 8 feet. In another embodiment, mix housing 4 has a width 23 that ranges between about 2 feet and 5 feet. In yet another embodiment, the mix housing 4 has a width 23 of about 3 feet. In another embodiment, the mix housing 4 has a height 22 that ranges between about 1 and 5 feet. In another embodiment, the mix housing 4 has a height 22 that ranges between about 1.5 and 3.5 feet. In yet another embodiment, the mix housing 4 has a height 22 of about 2 feet.
  • The [0014] mix housing 4 constructed according to the principles of the present disclosure can have many different shapes. For example, the mix housing 4 can be rectangular, trapezoidal, tubular, cylindrical, U-shaped, or any other shape that can define a mix chamber 5. The mix housing 4 can also be constructed from any suitable material. Such materials would be recognized by those skilled in the art and chosen depending on the specific requirements of the system. For example, however, the mix housing could be made of plastic, metal, fiberglass, composite material, wood or any other suitable material.
  • Referring now to FIGS. 1 and 2, an embodiment of a spray housing [0015] 1 made according to the principles of the present disclosure is described. The spray housing 1 is located adjacent the mix housing 4. The spray housing 1 defines a spray chamber 2 and a spray chamber opening 3. The spray housing 1 is placed adjacent the mix housing 4 such that the spray chamber opening 3 and the mix chamber opening 6 provides fluid communication between the spray chamber 2 and the mix chamber 5. In one embodiment, the spray chamber opening 3 is about equal to and corresponds in shape to the mix chamber opening 6. Alternatively, the spray chamber opening 3 can be larger than mix chamber opening 6, or the spray chamber opening 3 can be smaller than the mix chamber opening 6, and they do not have to have corresponding shapes.
  • In one embodiment, the spray housing [0016] 1 is a rectangular box having a length 21, a height 19 and a width 20. In one embodiment the length of the spray housing 1 can range from about one half foot to 8 feet. In another embodiment, the length 21 of the spray housing 1 is between about 1 and 5 feet. In another embodiment, the length 21 of the spray housing 1 is between about 2 to 4 feet. In yet another embodiment, the length 21 of the spray housing 1 is about 3 feet. The width 20 of the spray housing 1 in one embodiment, ranges between about 1 foot and 5 feet. In another embodiment, the width 20 of the spray housing 1 ranges between about 1 foot and 2 feet. And in yet another embodiment, the width 20 of the spray housing 1 is about one and a half feet. The height 19 of the spray housing 1 can be selected in combination with the spray nozzle 8 so the spray exiting the spray nozzle 8 covers material stream 25. The height 19 of the spray housing 1, in one embodiment, ranges between about a half of a foot and 4 feet. In another embodiment, the height 19 of the spray housing 1 ranges between about 1 to 3 feet. In yet another embodiment, the height 19 of the spray housing 1 is about 1 to 2 feet.
  • The spray housing [0017] 1 made according to the principles of the present disclosure may be made of many different materials. For example, the spray housing 1 may be made of metal, plastic, fiberglass, composite material, wood or a combination of materials. The spray housing 1 may also be many different shapes. For example, the spray housing 1 may be rectangular, triangular, trapezoidal, U-shaped, spherical, tubular, or any other shape that can define a spray chamber 2. In another embodiment, the spray housing may include a spray housing door 39, which provides access to the spray chamber 2.
  • Spray housing [0018] 1 is located adjacent the mix housing 4 such that the liquid additive 16 is deposited onto the material stream 25 early enough to allow material stream 25 sufficient time to mix in the mix chamber 5. In one embodiment constructed to the principles of the present disclosure, spray housing 1 is located adjacent the mix housing 4 between the first end 27 and the midsection 28 of the mix housing 4. While, it should be noted that the spray housing 1 can be located anywhere adjacent the mix housing 4, it is preferred for the spray housing 1 to be positioned to allow the material stream 25 to be sufficiently mixed in the mix chamber 5 before exiting the mix housing 4 at the second end 29.
  • In one embodiment, [0019] spray nozzle 8 is coupled to the spray housing 1 such that it sprays a mixture of air and liquid additive 16 through the spray chamber 2 and into the mix chamber 5 and gets deposited on the material stream 25. In an alternative embodiment, spray nozzle 8 could spray only a liquid additive 16. Alternatively, there could be a plurality of spray nozzles that spray the liquid additive 16, or a mixture of liquid additive and air, through the spray chamber 2 and into the mix chamber 5 onto the material stream 25. The type of spray nozzle 8 used can be any type of nozzle that produces a fine mist or fog that will substantially fill the volume of the mix chamber 5 adjacent the spray housing 1, such that the liquid additive 16 gets deposited on the material stream 25. In one embodiment of the present disclosure, the spray nozzle 8 uses is a “UNIJET 9510” made by Spraying Systems Company. In an embodiment made according to the principles of the present disclosure, the spray nozzle 8 provides a fan of liquid additive 16 having a width about the size of either the smaller of the spray chamber opening 3 or the mix chamber opening 6 when it reaches either opening. Alternatively, the spray nozzle 8 sprays a fan of air and liquid additive that is about the width of the material stream 25 passing through the mix chamber 5.
  • The spray or fog ejected from the [0020] spray nozzle 8, in one embodiment, has particle sizes ranging from 1 to 100 microns in diameter. In another embodiment, the particle size ejected from the spray nozzle can be from about 10 to 80 microns in diameter. In yet another embodiment, the particle size ejected from the spray nozzle 8 could be between about 30 and 50 microns in diameter.
  • Referring still to FIGS. 1 and 2, in one embodiment the [0021] material stream 25 passes through the mix chamber 5 adjacent the spray chamber 2. A mixture of air and liquid additive 16 are sprayed out of the spray nozzle 8 and deposited on the material stream 25. The material stream 25 continues moving through the mix housing 4 by way of the actuating device 7. The actuating device 7 mixes the material stream 25 and the liquid additive 16 prior to exiting the mix housing 4. Once the material stream 25 and liquid additive 16 are mixed, the material stream 25 can be further processed in a number of different ways. For example, the material stream 25 can enter steam chest 18 where it is cooked at between about 150 to 250 degrees Fahrenheit and steam flaked, the material stream can be dry rolled or any other process used to produce a feed product.
  • Referring now to FIGS. 1-4, the [0022] additive line 17 is connected to an additive pump 14, which in turn is connected to an additive tank 15. Additive tank 15 holds the liquid additive 16, which is pumped, via the additive pump 14, through additive line 17 to the air nozzle 8, where it is mixed with the air in the air line 12. Alternatively, the system may simply spry additive out the nozzle omitting the air. The liquid additive 16 can be any number of additives that are combined with feed. An example of a liquid additive may be SarStart®—LSC or SarTemp® made by SarTec® Corporation of Anoka, Minn., which are used to condition grain and increase feed efficiency in animals. Other additives may include vitamins, minerals, conditioners, supplements, medicines and micro ingredients.
  • In one embodiment, the [0023] chemical pump 14 is operatively connected to a control unit 24 such that the control unit 24 regulates the amount of additive 16 that the additive pump 14 provides to the spray nozzle 8. It will be apparent to one skilled in the art to select the appropriate equipment depending on the system requirements. Alternatively, the additive pump 14 can be manually adjusted to provide the required flow rate for a desired composition of additive 16 and material 25.
  • In one embodiment an [0024] air source 13 supplies the nozzle 8 with air connected through air line 12. An air filter 10, an air regulator 11, and a valve 9 can be connected between the air source 13 and the spray nozzle 8 along the air line 12. In one embodiment, the valve 9 and the air regulator 11 may be operatively connected to a control unit 24, which regulates the valve 9 and the air regulator 11 to control the air supply in the system 26. One skilled in this art can select the appropriate equipment depending on whether the system 26 is automated or manually controlled. For example, in an automated system, valve 9 could be a solenoid valve. The flow parameters of the system 26 are determined based upon the desired composition of the material stream 25. It will be apparent to one skilled in the art how to manipulate these parameters according to the desired composition of the material stream 25. Alternatively, valve 9 and air regulator 11 can be manually adjusted.
  • Additionally, the [0025] control unit 24 could also include a computer 31, including a modem, capable of monitoring, recording, controlling, and displaying the system parameters, such as, flow rates, temperatures, volumes, pressures and concentrations. In this example embodiment, the control unit 24 could be operatively connected to the air regulator 11, a valve 9, an air flow meter 33, an additive flow meter 34, the pump 14, a material stream meter 35, an additive concentration meter 34, the actuating device 7, and the steam chest thermometer 38. The control unit 24 could be operatively connected to a remote workstation 32, either via a wire 36 or wirelessly using transmitter/receiver devices 37. From the workstation 32 the operator could monitor the system parameters in real time, or review stored values to determine what certain parameters were at any given time. An example of such a system is described in U.S. Pat. No. 5,347,468, issued to Rupp et al, is incorporated by reference into this disclosure.
  • Referring now to FIG. 3, FIG. 3 illustrates an embodiment made according to the principles of the present disclosure. FIG. 3 shows a [0026] mix housing 204, having an actuating device 207 to mix the batch material 225. The mix housing 204 defines a mix chamber 205 and a mix chamber opening 206, which provides access to the interior of the mix housing 204 and the batch material 225. Adjacent the mix housing 204 is a spray housing 201 defining a spray chamber 202 and a spray chamber opening 203. In this embodiment the spray housing 201 is spherical to fit over the mix housing 204 such that the mix chamber opening 206 and the spray chamber opening 203 provide fluid communication between the spray chamber 202 and the mix chamber 205. Alternatively, the spray housing 201 made according to the principles of the present disclosure may be made of many different materials, and also may also be many different shapes and appropriate sizes. In another embodiment, the spray housing 201 may hinge onto the mix housing 204 such that it provides access to the mix chamber 205 to fill the mix chamber 205 with batch material 225. Alternatively, the spray housing 201 could be removable, or the batch material 225 could be added into the mix chamber 205 through an opening (not shown) in the mix housing 204 designed to receive the batch material 225.
  • In one embodiment, a [0027] nozzle 8 is coupled to the spray housing 201. The nozzle 8 creates a fog of a mixture of air and additive 16 in the spray chamber 202. The fog travels through the spray chamber opening 203, the mix chamber opening 206, and into the mix chamber 205 such that it is deposited onto the batch material 225 as the actuating device 207 mixes the batch material 225. The actuating device 207 can be a mixing paddle(s) or any type of mixing apparatus used in a mix housing 204 known to one skilled in the art to sufficiently mix the batch material 225 such that the fog of air and liquid additive 16 is sufficiently mixed into the batch material 225. It should be recognized that the parameters of the spray housing 201, such as the material out of which it is made and its shape are similar to the spray housing 1 described above. The size of the spray housing 201 can be any appropriate size, which would be apparent to one skilled in the art, depending on the application for which it is to be used. In choosing the size, one skilled in the art should consider the length, width and height of the spry housing 201 and the mix housing 204 along with the spray nozzle 8. Such elements should be chosen such that the additive 16 is deposited uniformly onto the batch material 225 as the batch material 225 is mixed.
  • Referring now to FIG. 4, FIG. 4 illustrates yet another embodiment of the present disclosure. FIG. 4 illustrate a [0028] spray housing 301 positioned such that a mix truck 300 can be driven under the spray housing 301. The mix truck 300 contains a mix housing 304. The mix housing 304 defines a mix chamber 305 and a mix chamber opening 306 that provides access to the interior of the mix housing 304 and the batch material 325. Adjacent the mix housing 304 is a spray housing 301 defining a spray chamber 302 and a spray chamber opening 303. In this embodiment the spray housing 301 is rectangular to fit over the mix housing 304 such that the mix chamber opening 306 and the spray chamber opening 303 provide fluid communication between the spray chamber 302 and the mix chamber 305. It should be recognized that the parameters of the spray housing 301, such as the material out of which it is made and its shape are similar to the spray housing 1 described above. Additionally, one skilled in the art would know how to choose the dimensions of the spray housing 301 according to the application for which it is to be used in according with the principles of the present disclosure.
  • In another embodiment, a [0029] nozzle 8 is coupled to the spray housing 301. The nozzle 8 creates a fog of a mixture of air and additive 16 in the spray chamber 302. The fog travels through the spray chamber opening 303, the mix chamber opening 306, and into the mix chamber 305 such that it is deposited onto the batch material 325 as the actuating device 307 mixes the batch material 325. The actuating device 307 can be a mixing paddle(s) or any type of mixing apparatus used in a mix housing 304 known to one skilled in the art to sufficiently mix the batch material 325 such that the fog of air and liquid additive 16 is mixed into the batch material 325. The remaining elements in FIG. 4 are described in detail above.
  • It is to be understood that even though numerous characteristics and advantages of various embodiments of the present disclosure have been set forth in the foregoing description, together with the details of the structure and the function of various embodiments of the disclosure, this disclosure is illustrative only and changes may be made in details, especially in matters of shape, size and arrangement and parts within the principles of the present disclosure, to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. [0030]

Claims (33)

What is claimed:
1. A system for applying a liquid additive to a material stream, the system comprising:
a pump operatively connected to an additive tank and in fluid communication with a spray nozzle to move the additive to the spray nozzle;
an air source in fluid communication with the spray nozzle, wherein the air source provides air to the spray nozzle;
a mix housing defining a mix chamber and a mix chamber opening, the mix chamber opening providing access to the interior of the mix chamber and to the material stream;
an actuating device disposed within the mix chamber, the actuating device arranged to move the material stream from a first end to a second end of the mix housing;
a spray housing defining a spray chamber and a spray chamber opening, the spray housing located adjacent to the mix housing providing fluid communication between the spray chamber and the mix chamber through the mix chamber opening and the spray chamber opening; and
the spray nozzle disposed to spray a fog of air and liquid additive into the spray chamber, which passes through the spray chamber opening and the mix chamber opening into the mix chamber and deposits onto the material stream as it passes through the mix chamber.
2. The system in claim 1, further comprising a door positioned on the spray housing to allow access to the spray chamber.
3. The spray housing opening in claim 1, wherein the spray chamber opening is about equal to the size of the mix chamber opening.
4. The spray housing opening in claim 1, wherein the spray chamber opening is greater than the size of the mix housing opening.
5. The spray housing opening in claim 1, wherein the spray chamber opening is less than the size of the mix housing opening.
6. The system in claim 1, wherein the fog substantially fills a volume of the mix chamber defined by an area of the mix chamber opening and a depth of the mix chamber below the mix chamber opening.
7. The system in claim 1, wherein the nozzle is arranged to produce a spray of a mixture of the liquid additive and air to substantially cover the material stream with the liquid additive.
8. The system in claim 1, wherein the actuating device is an auger.
9. The auger in claim 8, wherein the auger is a mixing auger.
10. The system as in claim 1, wherein the liquid additive exiting the nozzle has a droplet diameter of about 1 to 100 microns.
11. The system as in claim 1, wherein the spray housing is coupled to the mix housing between a midsection of the mix housing and a first end of the mix housing.
12. The system as in claim 1, wherein the spray housing is located sufficiently close to a first end of the mix housing to allow the liquid additive and the material stream to be sufficiently mixed in the mix chamber.
13. The system as in claim 1, wherein the system includes a control unit operatively connected to system parameter meters and controllers, a computer and modem, and a work station arranged to automate the system.
14. The system as in claim 1, further comprising a valve operatively positioned between the air source and the spray nozzle.
15. The valve as in claim 14, wherein the valve is a solenoid valve.
16. The system as in claim 1, further comprising an air filter operatively positioned between the spray nozzle and the air source.
17. The system as in claim 1, further comprising an air regulator operatively positioned between the spray nozzle and the air source.
18. The system in claim 1, further comprising a steam chest in fluid communication with the mix chamber, wherein the liquid additive can withstand cooking temperatures within the steam chest ranging from 150 to 250 degrees Fahrenheit.
19. A system for applying a liquid additive to a material stream, the system comprising:
a pump operatively connected to an additive tank and in fluid communication with a spray nozzle to move the additive to the spray nozzle;
an air source in fluid communication with the spray nozzle, the air source providing air to the spray nozzle;
a solenoid valve operatively positioned between the air source and the spray nozzle;
an air filter operatively positioned between the air source and the spray nozzle;
an air regulator operatively positioned between the air source and the spray nozzle;
a mix housing defining a mix chamber and a mix chamber opening, the mix chamber opening providing access to the interior of the mix chamber and to the material stream;
an auger disposed within the mix chamber, the auger arranged to move the material stream from a first end to a second end of the mix housing;
a spray housing defining a spray chamber and a spray chamber opening, the spray housing located adjacent to the mix housing between the midpoint of the mix housing and the first end of the mix housing, providing fluid communication between the spray chamber and the mix chamber through the mix chamber opening and the spray chamber opening;
the spray housing having a length of about 3 feet, a width about the width of the mix housing and a height about 1.5 feet, and the spray nozzle disposed to spray a fog of liquid additive having droplet sizes from about 1 micron to 100 microns into the spray chamber, which passes through the spray chamber opening and the mix chamber opening into the mix chamber and deposits onto the material stream as it passes through the mix chamber.
20. The system as in claim 19, wherein the spray chamber is removable from the mix housing such that it can be added and removed as such a system is needed on a mix housing to combine an additive on a material stream.
21. The spray chamber opening in claim 19, wherein the spray chamber opening is about equal to the size of the mix chamber opening.
22. The spray chamber opening in claim 19, wherein the spray chamber opening is greater than the size of the mix housing opening.
23. The spray chamber opening in claim 19, wherein the spray chamber opening is less than the size of the mix housing opening.
24. The system in claim 19, wherein the fog substantially fills a volume of the mix chamber defined by an area of the mix chamber opening and a depth of the mix chamber below the mix chamber opening.
25. The system in claim 19, wherein the nozzle is arranged to produce a spray of a mixture of the liquid additive and air to substantially cover the material stream with the liquid additive as it passes through the mix chamber.
26. The system in claim 19, wherein a control unit, a computer and system meters are operatively arranged to automate the system such that a user can monitor and control the system from a workstation.
27. A method for making an animal feed product, the method comprising the steps of:
passing a material stream through a mix chamber;
coupling the mix chamber to a spray chamber, wherein the mix chamber and spray chamber are in fluid communication;
forming a fog of liquid additive, the fog including a mixture of air and a liquid feed additive;
depositing the fog onto the material stream;
mixing the material stream and the liquid additive after the deposit of the fog; and
heating the feed stream.
28. A system for applying a liquid additive to a material stream, the system comprising:
a pump operatively connected to an additive tank and in fluid communication with a spray nozzle to move the additive to the spray nozzle;
a mix housing defining a mix chamber and a mix chamber opening, the mix chamber opening providing access to the interior of the mix chamber and to the material stream;
an actuating device disposed within the mix chamber, the actuating device arranged to move the material stream from a first end to a second end of the mix housing;
a spray housing defining a spray chamber and a spray chamber opening, the spray housing located adjacent to the mix housing providing fluid communication between the spray chamber and the mix chamber through the mix chamber opening and the spray chamber opening; and
the spray nozzle disposed to spray a fog of liquid additive into the spray chamber, which passes through the spray chamber opening and the mix chamber opening into the mix chamber and deposits onto the material stream as it passes through the mix chamber.
29. A system for applying a liquid additive to a material, the system comprising:
a pump operatively connected to an additive tank and in fluid communication with a spray nozzle to move the additive to the spray nozzle;
an air source in fluid communication with the spray nozzle, wherein the air source provides air to the spray nozzle;
a mix housing defining a mix chamber and a mix chamber opening, the mix chamber opening providing access to the interior of the mix chamber and to the material;
a mixing device disposed within the mix chamber, the mixing device arranged to mix the material in the mix chamber;
a spray housing defining a spray chamber and a spray chamber opening, the spray housing located adjacent to the mix housing providing fluid communication between the spray chamber and the mix chamber through the mix chamber opening and the spray chamber opening; and
the spray nozzle disposed to spray a fog of air and liquid additive into the spray chamber, which passes through the spray chamber opening and the mix chamber opening into the mix chamber and deposits onto the material as it is mixed in the mix chamber.
30. The system in claim 29, wherein the fog substantially fills the mix chamber.
31. The system in claim 29, wherein the nozzle is arranged to produce a spray of a mixture of the liquid additive and air to substantially cover the material with the liquid additive.
32. The system as in claim 29, wherein the liquid additive exiting the nozzle has a droplet diameter of about 1 to 100 microns.
33. The system as in claim 29, wherein the system includes a control unit operatively connected to a computer, process stream monitors and regulators and a work station such that a user can monitor and control the system from the workstation.
US10/440,432 2003-05-16 2003-05-16 System and method for applying an additive to a material stream Abandoned US20040228207A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/440,432 US20040228207A1 (en) 2003-05-16 2003-05-16 System and method for applying an additive to a material stream
US11/748,223 US7441942B2 (en) 2003-05-16 2007-05-14 System and method for applying an additive to a material stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/440,432 US20040228207A1 (en) 2003-05-16 2003-05-16 System and method for applying an additive to a material stream

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/748,223 Continuation US7441942B2 (en) 2003-05-16 2007-05-14 System and method for applying an additive to a material stream

Publications (1)

Publication Number Publication Date
US20040228207A1 true US20040228207A1 (en) 2004-11-18

Family

ID=33418000

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/440,432 Abandoned US20040228207A1 (en) 2003-05-16 2003-05-16 System and method for applying an additive to a material stream
US11/748,223 Expired - Lifetime US7441942B2 (en) 2003-05-16 2007-05-14 System and method for applying an additive to a material stream

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/748,223 Expired - Lifetime US7441942B2 (en) 2003-05-16 2007-05-14 System and method for applying an additive to a material stream

Country Status (1)

Country Link
US (2) US20040228207A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014176413A1 (en) * 2013-04-26 2014-10-30 Basf Corporation Apparatus and method for coating particulate material
US20170080446A1 (en) * 2014-05-15 2017-03-23 Basf Corporation Functional treatment application to particulate materials such as mulch or potting soil
US10113114B2 (en) 2013-04-26 2018-10-30 Basf Corporation Apparatus and method for coating particulate material
US11006654B2 (en) 2017-07-21 2021-05-18 Sartec Corporation Saponin and bacterial compositions and methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8746959B2 (en) * 2007-07-26 2014-06-10 Ganado Technologies Corp. Apparatus and method to feed livestock
US8827542B2 (en) 2008-07-28 2014-09-09 Ganado Technologies Corp. Apparatus and method to feed livestock
US8361542B2 (en) 2008-11-05 2013-01-29 Miller Alan T Apparatus and methods for treating mulch in situ
EP2245941A1 (en) * 2009-04-27 2010-11-03 3x Technology An apparatus for thawing or cooling food products
CN103768972A (en) * 2014-01-27 2014-05-07 黄山晶品建筑集料科技有限公司 Humidification stirring system
CN110280161B (en) * 2019-06-18 2021-10-08 水发鲁控环保科技(苏州)有限公司 A dregs of fat mixing arrangement for grease refines

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2216921A (en) * 1937-05-28 1940-10-08 Sf Bowser & Co Inc Method and apparatus for introducing solids into a pressure system
US2301461A (en) * 1939-07-31 1942-11-10 Earl O Schnetz Yeast emulsifier
US2628204A (en) * 1950-05-13 1953-02-10 Western Electric Co Method of and apparatus for mixing materials
US3101040A (en) * 1957-07-15 1963-08-20 Ralston Purina Co Apparatus for manufacturing stable pelleted foods
US3130070A (en) * 1960-08-10 1964-04-21 Potters Robert Coating method and apparatus
US3194539A (en) * 1960-02-11 1965-07-13 Eugene Goffart & Cie Mixing apparatus
US3218149A (en) * 1963-02-25 1965-11-16 Chesapeake Corp Of Virginia Method of making fertilizer, mulch and soil conditioner
US3263592A (en) * 1963-11-22 1966-08-02 Fmc Corp Apparatus for processing fatcontaining solids
US3653639A (en) * 1971-02-04 1972-04-04 Whirl Air Flow Corp High pressure air and liquid blending method and apparatus for discrete materials
US3822056A (en) * 1972-03-31 1974-07-02 R Hawes Method and means for adding small measured quantities of selected materials to a large capacity material-mixing plant
US4018426A (en) * 1976-03-17 1977-04-19 Petrolite Corporation System for producing emulsions
US4168674A (en) * 1974-07-16 1979-09-25 Evans Medical Limited Means controlling tablet tumbler
US4183675A (en) * 1978-10-20 1980-01-15 Feed Pelleting, Inc. Energy conserving method and apparatus for pelleting particulate animal feed
US4369597A (en) * 1981-03-24 1983-01-25 Ronald B. Leep Pelletized mint mulch and method of making
US4527902A (en) * 1983-02-08 1985-07-09 Draiswerke Gmbh Methods and mixers for the continuous addition of glue to mixtures consisting of wood chips, wood fibres or the like
US4627338A (en) * 1983-12-14 1986-12-09 Research Corporation Apparatus for the treatment of ruminant forage material or soil
US4846053A (en) * 1985-11-12 1989-07-11 R & J Orwig, Inc. Apparatus for making a molasses-based animal feed mass
US4898092A (en) * 1988-05-09 1990-02-06 Agrichem, Inc. Feed grain conditioning apparatus
US4994286A (en) * 1988-05-09 1991-02-19 Agrichem, Inc. Grain conditioning method
US5100699A (en) * 1989-08-24 1992-03-31 Minnesota Mining And Manufacturing Company Method and apparatus for precision pumping, ratioing, and dispensing of work fluid(s)
US5135174A (en) * 1990-11-08 1992-08-04 Chaplinsky Michael J Automatic micro-feeding system for applying multiple independent plant nutrients to irrigation systems
US5194275A (en) * 1992-08-13 1993-03-16 Agrichem, Inc. Grain processing apparatus
US5200033A (en) * 1991-09-09 1993-04-06 Lwv Associates, Inc. Method for removing organic contaminants from soils
US5358738A (en) * 1993-03-31 1994-10-25 Sawka Craig S Method and apparatus for painting the surfaces of wood chips
US5401534A (en) * 1992-03-17 1995-03-28 Rhone-Poulenc Agrochimie Process and apparatus for continuous treatment of particles
US6007859A (en) * 1997-10-30 1999-12-28 The Boc Group Plc Method of coating a product with a liquid coating in a cooling chamber
US6099159A (en) * 1998-03-20 2000-08-08 The Japan Steel Works, Ltd. Continuous mixing feeder
US6328798B1 (en) * 1999-02-19 2001-12-11 Equistar Chemicals, Lp Coated polymeric particles having improved anti-block characteristics, method of making such particles, and apparatus therefor
US6551401B1 (en) * 2000-10-19 2003-04-22 Becker-Underwood, Inc. Machine for coloring landscaping material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332311A (en) * 1991-10-09 1994-07-26 Beta Raven Inc. Liquid scale and method for liquid ingredient flush thereof
US5347468A (en) * 1992-10-02 1994-09-13 Sartec Corporation Computerized grain delivery system
KR100226115B1 (en) * 1996-05-16 1999-10-15 엔. 터크 윌리엄 Method and system for producing prescription animal bedding from recycled paper waste products
US6056822A (en) * 1997-01-30 2000-05-02 Liquid Systems, Inc. Process and system for coating a feed composition with a feed additive
US6250793B1 (en) * 2000-05-23 2001-06-26 Michael Gian Animal feed additive application utilizing foam

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2216921A (en) * 1937-05-28 1940-10-08 Sf Bowser & Co Inc Method and apparatus for introducing solids into a pressure system
US2301461A (en) * 1939-07-31 1942-11-10 Earl O Schnetz Yeast emulsifier
US2628204A (en) * 1950-05-13 1953-02-10 Western Electric Co Method of and apparatus for mixing materials
US3101040A (en) * 1957-07-15 1963-08-20 Ralston Purina Co Apparatus for manufacturing stable pelleted foods
US3194539A (en) * 1960-02-11 1965-07-13 Eugene Goffart & Cie Mixing apparatus
US3130070A (en) * 1960-08-10 1964-04-21 Potters Robert Coating method and apparatus
US3218149A (en) * 1963-02-25 1965-11-16 Chesapeake Corp Of Virginia Method of making fertilizer, mulch and soil conditioner
US3263592A (en) * 1963-11-22 1966-08-02 Fmc Corp Apparatus for processing fatcontaining solids
US3653639A (en) * 1971-02-04 1972-04-04 Whirl Air Flow Corp High pressure air and liquid blending method and apparatus for discrete materials
US3822056A (en) * 1972-03-31 1974-07-02 R Hawes Method and means for adding small measured quantities of selected materials to a large capacity material-mixing plant
US4168674A (en) * 1974-07-16 1979-09-25 Evans Medical Limited Means controlling tablet tumbler
US4018426A (en) * 1976-03-17 1977-04-19 Petrolite Corporation System for producing emulsions
US4183675A (en) * 1978-10-20 1980-01-15 Feed Pelleting, Inc. Energy conserving method and apparatus for pelleting particulate animal feed
US4369597A (en) * 1981-03-24 1983-01-25 Ronald B. Leep Pelletized mint mulch and method of making
US4527902A (en) * 1983-02-08 1985-07-09 Draiswerke Gmbh Methods and mixers for the continuous addition of glue to mixtures consisting of wood chips, wood fibres or the like
US4627338A (en) * 1983-12-14 1986-12-09 Research Corporation Apparatus for the treatment of ruminant forage material or soil
US4846053A (en) * 1985-11-12 1989-07-11 R & J Orwig, Inc. Apparatus for making a molasses-based animal feed mass
US4898092A (en) * 1988-05-09 1990-02-06 Agrichem, Inc. Feed grain conditioning apparatus
US4994286A (en) * 1988-05-09 1991-02-19 Agrichem, Inc. Grain conditioning method
US4898092B1 (en) * 1988-05-09 1993-10-26 Agrichem, Inc. Feed grain conditioning apparatus
US5100699A (en) * 1989-08-24 1992-03-31 Minnesota Mining And Manufacturing Company Method and apparatus for precision pumping, ratioing, and dispensing of work fluid(s)
US5135174A (en) * 1990-11-08 1992-08-04 Chaplinsky Michael J Automatic micro-feeding system for applying multiple independent plant nutrients to irrigation systems
US5200033A (en) * 1991-09-09 1993-04-06 Lwv Associates, Inc. Method for removing organic contaminants from soils
US5401534A (en) * 1992-03-17 1995-03-28 Rhone-Poulenc Agrochimie Process and apparatus for continuous treatment of particles
US5194275A (en) * 1992-08-13 1993-03-16 Agrichem, Inc. Grain processing apparatus
US5358738A (en) * 1993-03-31 1994-10-25 Sawka Craig S Method and apparatus for painting the surfaces of wood chips
US6007859A (en) * 1997-10-30 1999-12-28 The Boc Group Plc Method of coating a product with a liquid coating in a cooling chamber
US6099159A (en) * 1998-03-20 2000-08-08 The Japan Steel Works, Ltd. Continuous mixing feeder
US6328798B1 (en) * 1999-02-19 2001-12-11 Equistar Chemicals, Lp Coated polymeric particles having improved anti-block characteristics, method of making such particles, and apparatus therefor
US6551401B1 (en) * 2000-10-19 2003-04-22 Becker-Underwood, Inc. Machine for coloring landscaping material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014176413A1 (en) * 2013-04-26 2014-10-30 Basf Corporation Apparatus and method for coating particulate material
US9950331B2 (en) 2013-04-26 2018-04-24 Basf Corporation Apparatus and method for coating particulate material
US10113114B2 (en) 2013-04-26 2018-10-30 Basf Corporation Apparatus and method for coating particulate material
US20170080446A1 (en) * 2014-05-15 2017-03-23 Basf Corporation Functional treatment application to particulate materials such as mulch or potting soil
US10981186B2 (en) 2014-05-15 2021-04-20 Basf Corporation Functional treatment application to particulate materials such as mulch or potting soil
US11006654B2 (en) 2017-07-21 2021-05-18 Sartec Corporation Saponin and bacterial compositions and methods

Also Published As

Publication number Publication date
US7441942B2 (en) 2008-10-28
US20070211564A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
US7441942B2 (en) System and method for applying an additive to a material stream
US6395091B1 (en) Process and system for coating a feed composition with a feed additive
US4994286A (en) Grain conditioning method
US4801210A (en) Method and apparatus for continuous mixing of small, precise quantities of bulk materials with a liquid stream
US4898092A (en) Feed grain conditioning apparatus
EA007368B1 (en) Apparatus, method, and system for applying substances to pre-harvested or harvested forage, grain, and crops
US6250793B1 (en) Animal feed additive application utilizing foam
CN210747176U (en) Drum-type biological feed processing equipment
US20070092617A1 (en) Apparatus for use in making ruminant feedstuff
KR101827563B1 (en) Fermented feed production device having a Washing device
US8393294B2 (en) Live bacteria liquid product applicator and remote management system therefore
EP0373147B1 (en) Method for the preparation and the dosed delivery of a feed mixture to several delivery points, and device for carrying out the method
US7300003B1 (en) Apparatus and method for applying dry inoculant to forage material
US3433205A (en) Automatic poultry feeding device with water sprayed feed mix
IE900868A1 (en) "A method of producing pelletised animal fodder"
CA2182075A1 (en) Dosifying method and apparatus
CN113840544A (en) System for controlled dispensing of food for feeding an animal
JPWO2004101185A1 (en) Waste bread processing method and processing apparatus
GB2055059A (en) A method and device for processing a pulverulent material, using a liquid
CN217218086U (en) Pet food production line with microwave sterilization, baking, curing and drying functions
KR20180122889A (en) mixing device for feed additives
EP0676136A1 (en) Liquid feed dispensing system
CN207252645U (en) A kind of efficient uniform mixing and the agricultural pesticide application device of intermittence sprinkling
CN210434335U (en) Feeding equipment for feed processing
CN217341139U (en) Slow-release type fodder acidifier preparation facilities

Legal Events

Date Code Title Description
AS Assignment

Owner name: SARTEC CORPORATION, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCNEFF, LARRY C.;MCNEFF, CLAYTON V.;JOHNSTON, DAVID J.;AND OTHERS;REEL/FRAME:014442/0804;SIGNING DATES FROM 20030806 TO 20030807

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION