US20040222133A1 - Desulfurization and novel sorbent for same - Google Patents

Desulfurization and novel sorbent for same Download PDF

Info

Publication number
US20040222133A1
US20040222133A1 US10/864,202 US86420204A US2004222133A1 US 20040222133 A1 US20040222133 A1 US 20040222133A1 US 86420204 A US86420204 A US 86420204A US 2004222133 A1 US2004222133 A1 US 2004222133A1
Authority
US
United States
Prior art keywords
accordance
range
noble metal
sorbent composition
sorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/864,202
Inventor
Gyanesh Khare
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/864,202 priority Critical patent/US20040222133A1/en
Publication of US20040222133A1 publication Critical patent/US20040222133A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • B01J20/106Perlite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/14Diatomaceous earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3491Regenerating or reactivating by pressure treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/514Process applicable either to preparing or to regenerating or to rehabilitating catalyst or sorbent

Definitions

  • This invention relates to a sorbent composition, a process of making a sorbent composition, and a process of using a sorbent composition for the removal of sulfur from a hydrocarbon-containing fluid.
  • Hydrocarbon-containing fluids such as gasoline and diesel fuels typically contain a quantity of sulfur.
  • High levels of sulfur in such automotive fuels is undesirable because oxides of sulfur present in automotive exhaust may irreversibly poison noble metal catalysts employed in automobile catalytic converters.
  • Emissions from such poisoned catalytic converters may contain high levels of non-combusted hydrocarbons, oxides of nitrogen, and/or carbon monoxide, which, when catalyzed by sunlight, form ground level ozone, more commonly referred to as smog.
  • cracked-gasoline Much of the sulfur present in the final blend of most gasolines originates from a gasoline blending component commonly known as “cracked-gasoline.” Thus, reduction of sulfur levels in cracked-gasoline will inherently serve to reduce sulfur levels in most gasolines, such as, automobile gasolines, racing gasolines, aviation gasolines, boat gasolines, and the like.
  • Another object of this invention is to provide a method of making a novel sorbent which is useful in the desulfurization of such hydrocarbon-containing fluid streams.
  • Still another object of this invention is to provide a process for the removal of sulfur-containing compounds from hydrocarbon-containing fluid streams which minimizes saturation of olefins and aromatics therein.
  • a further object of this invention is to provide a process for the removal of sulfur-containing compounds from hydrocarbon-containing fluid streams which minimizes hydrogen consumption.
  • a novel sorbent composition suitable for removing sulfur from a hydrocarbon-containing fluid.
  • the sorbent composition comprises a reduced-valence noble metal, zinc oxide, and a carrier.
  • a process of making a sorbent composition comprises the steps of: admixing zinc oxide and a carrier so as to form a support mix; particulating the support mix so as to form a support particulate; incorporating the support particulate with a noble metal or a noble metal-containing compound to provide a promoted particulate comprising an unreduced noble metal; and reducing the promoted particulate to provide a reduced sorbent composition comprising a reduced-valence noble metal.
  • a process for removing sulfur from a hydrocarbon-containing fluid stream comprises the steps of: contacting the hydrocarbon-containing fluid stream with a sorbent composition comprising a reduced-valence noble metal and a support in a desulfurization zone under conditions such that there is formed a desulfurized fluid stream and a sulfurized sorbent; separating the desulfurized fluid stream from the sulfurized sorbent; regenerating at least a portion of the separated sulfurized sorbent in a regeneration zone so as to remove at least a portion of the sulfur therefrom and provide a regenerated desulfurized sorbent; reducing the desulfurized sorbent in an activation zone to provide a reduced sorbent composition which will effect the removal of sulfur from the hydrocarbon-containing fluid stream when contacted with the same; and returning at least a portion of the reduced sorbent composition to the desulfurization zone.
  • a novel sorbent composition suitable for removing sulfur from hydrocarbon-containing fluids comprises a support and a reduced-valence noble metal.
  • the support may be any component or combination of components which can be used as a support for the sorbent composition of the present invention to help promote the desulfurization process of the present invention.
  • the support is an active component of the sorbent composition.
  • suitable support components include, but are not limited to, zinc oxide and any suitable inorganic and/or organic carriers.
  • suitable inorganic carriers include, but are not limited to, silica, silica gel, alumina, diatomaceous earth, expanded perlite, kieselguhr, silica-alumina, titania, zirconia, zinc aluminate, zinc titanate, zinc silicate, magnesium aluminate, magnesium titanate, synthetic zeolites, natural zeolites, and combinations thereof.
  • suitable organic carriers include, but are not limited to, activated carbon, coke, charcoal, carbon-containing molecular sieves, and combinations thereof.
  • a preferred support comprises zinc oxide, silica, and alumina.
  • the zinc oxide used in the preparation of the sorbent composition of the present invention can be either in the form of zinc oxide, such as powdered zinc oxide, or in the form of one or more zinc compounds that are convertible to zinc oxide under the conditions of preparation described herein.
  • suitable zinc compounds include, but are not limited to, zinc sulfide, zinc sulfate, zinc hydroxide, zinc carbonate, zinc acetate, zinc nitrate, and combinations thereof.
  • the zinc oxide is in the form of powdered zinc oxide.
  • the zinc oxide will generally be present in the sorbent composition of the present invention in an amount in the range of from about 10 to about 90 weight percent zinc oxide based on the total weight of the sorbent composition, preferably in an amount in the range of from about 15 to about 80 weight percent zinc oxide, and most preferably in an amount in the range of from 20 to 70 weight percent zinc. oxide.
  • the silica used in the preparation of the sorbent composition of the present invention can be either in the form of silica or in the form of one or more silicon compounds.
  • Any suitable type of silica may be employed in preparing the sorbent composition of the present invention.
  • suitable types of silica include, but are not limited to, diatomite, expanded perlite, silicalite, silica colloid, flame-hydrolyzed silica, hydrolyzed silica, silica gel, precipitated silica, and combinations thereof.
  • silicon compounds that are convertible to silica such as silicic acid, ammonium silicate and the like and combinations thereof can also be employed.
  • the silica is in the form of diatomite or expanded perlite.
  • the silica will generally be present in the sorbent composition of the present invention in an amount in the range of from about 5 to about 85 weight percent silica based on the total weight of the sorbent composition, preferably in an amount in the range of from about 10 to about 60 weight percent silica, and most preferably in an amount in the range of from 15 to 55 weight percent silica.
  • the alumina used in preparing the sorbent composition of the present invention can be present in the source of silica, can be any suitable commercially available alumina material (including, but not limited to, colloidal alumina solutions, hydrated aluminas, and, generally, those alumina compounds produced by the dehydration of alumina hydrates), or both.
  • the preferred alumina is a hydrated alumina such as, for example, boehmite or pseudoboehmite.
  • the alumina will generally be present in the sorbent composition of the present invention in an amount in the range of from about 1 to about 30 weight percent alumina based on the total weight of the sorbent composition, preferably in an amount in the range of from about 5 to about 20 weight percent alumina, and most preferably in an amount in the range of from 5 to 15 weight percent alumina.
  • the sorbent composition of the present invention further comprises a noble metal.
  • the noble metal can be present in the form of an elemental noble metal, a noble metal-containing compound, a noble metal oxide, or a noble metal oxide precursor.
  • the metal component of the noble metal is preferably selected from the group consisting of platinum, palladium, rhodium, ruthenium, osmium, iridium, and combinations thereof. Most preferably, the metal component of the noble metal is platinum.
  • a portion, preferably a substantial portion, of the noble metal is present in the form of a reduced-valence noble metal.
  • the valence of the reduced-valence noble metal is reduced to a value which is less than the valence of the noble metal in its common oxidized state, preferably less than 3, more preferably less than 2, and most preferably 0.
  • the noble metal will generally be present in the sorbent composition of the present invention in an amount in the range of from about 0.05 to about 30 weight percent noble metal based on the total weight of the sorbent composition, preferably in an amount in the range of from about 0.1 to 15 weight percent noble metal, and most preferably in an amount in the range of from 0.2 to 5 weight percent noble metal.
  • At least 10 weight percent of the noble metal present in the sorbent composition is in the form of a reduced-valence noble metal, more preferably at least 40 weight percent of the noble metal is a reduced-valence noble metal, and most preferably at least 80 weight percent of the noble metal is a reduced-valence noble metal.
  • the reduced-valence noble metal will generally be present in the sorbent composition of the present invention in an amount in the range of from about 0.01 to about 25 weight percent reduced-valence noble metal based on the total weight of the sorbent composition, preferably in an amount in the range of from about 0.1 to 10 weight percent reduced-valence noble metal, and most preferably in an amount in the range of from 0.2 to 4 weight percent reduced-valence noble metal.
  • the support is generally prepared by combining the support compounds, described above, together in appropriate proportions, described above, by any suitable method or manner known in the art which provides for the intimate mixing of such components to thereby provide a substantially homogeneous mixture comprising the support components, preferably a substantially homogeneous mixture comprising zinc oxide, silica, and alumina.
  • Any suitable means for mixing the support component can be used to achieve the desired dispersion of the components. Examples of suitable means for mixing include, but are not limited to, mixing tumblers, stationary shells or troughs, Muller mixers, which are of the batch or continuous type, impact mixers, and the like. It is presently preferred to use a Muller mixer as the means for mixing the support components.
  • the support components are contacted together by any manner known in the art to provide a resulting mixture which can be in a form selected from the group consisting of a wet mix, a dough, a paste, a slurry, and the like.
  • a resulting support mixture can then be shaped to form a particulate(s) selected from the group consisting of a granulate, an extrudate, a tablet, a sphere, a pellet, a micro-sphere, and the like.
  • the resulting support mixture is in the form of a wet mix
  • the wet mix can be densified, dried, calcined, and thereafter shaped, or particulated, through the granulation of the densified, dried, calcined mix to form granulates.
  • the resulting support mixture when the resulting support mixture is in the form of either a dough state or paste state, such resulting mixture can then be shaped, preferably extruded, to form a particulate, preferably cylindrical extrudates having a diameter in the range of from about ⁇ fraction (1/32) ⁇ inch to 1 ⁇ 2 inch and any suitable length, preferably a length in the range of from about 1 ⁇ 8 inch to about 1 inch.
  • the resulting support particulates, preferably cylindrical extrudates are then dried and calcined under conditions as disclosed herein.
  • the resulting support mixture is in the form of a slurry and the particulation of such slurry is achieved by spray drying the slurry to form micro-spheres thereof having a mean particle size generally in the range of from about 1 micrometer to about 500 micrometers, preferably in the range of from about 10 micrometers to about 300 micrometers.
  • Spray drying is known in the art and is discussed in Perry's Chemical Engineers'Handbook , Sixth Edition, published by McGraw-Hill, Inc., at pages 20-54 through 20-58. Additional information can be obtained from the Handbook of Industrial Drying , published by Marcel Dekker. Inc., at pages 243 through 293.
  • mean particle size refers to the size of the particulate material as determined by using a RO-TAP Testing Sieve Shaker, manufactured by W.S. Tyler Inc., of Mentor, Ohio, or other comparable sieves.
  • the material to be measured is placed in the top of a nest of standard eight inch diameter stainless steel framed sieves with a pan on the bottom. The material undergoes sifting for a period of about 10 minutes; therafter, the material retained on each sieve is weighed. The percent retained on each sieve is calculated by dividing the weight of the material retained on a particular sieve by the weight of the original sample. This information is used to compute the mean particle size.
  • the spray dried support particulate can then be dried under a drying condition as disclosed herein and calcined under a calcining condition as disclosed herein.
  • calcining is conducted in an oxidizing atmosphere, such as in the presence of oxygen or air, to form a dried and calcined support particulate.
  • the calcination can be conducted under any suitable condition that removes residual water and oxidizes and combustibles.
  • the resulting dried and calcined support particulate is then incorporated with the noble metal, described above.
  • the noble metal may be incorporated in, on, or with the dried and calcined support particulate by any suitable means or method known in the art such as, for example, impregnating, soaking, spraying, and combinations thereof.
  • the preferred method of incorporating the noble metal into the dried and calcined support particulate is impregnating using standard incipient wetness impregnation techniques.
  • the preferred method uses an impregnating solution comprising the desired concentration of the noble metal so as to ultimately provide a promoted particulate which can be subjected to drying, calcining, and reduction to provide the sorbent composition of the present invention.
  • the impregnating solution can be any aqueous or an organic solvent solution in amounts of such solution which suitably provides for the impregnation of the dried and calcined support particulates.
  • a preferred impregnating solution is formed by dissolving a noble metal-containing compound in water. It is acceptable to use somewhat of an acidic solution to aid in the dissolution of the noble metal-containing compound. It is more preferred for the particulates to be impregnated with the noble metal by use of a solution containing tetraamine platinum(II) nitrate dissolved in water.
  • the amount of the noble metal incorporated, preferably impregnated, onto, into, or with the support is an amount which provides, after the promoted particulate material has been dried calcined, and reduced, a sorbent composition having an amount of the reduced-valence noble metal as disclosed herein.
  • the noble metal-promoted particulates are subsequently dried and calcined under conditions disclose herein to thereby provide a dried, calcined, noble metal-promoted particulate comprising an unreduced noble metal.
  • a drying condition can include a temperature in the range of from about 180° F. to about 290° F., preferably in the range of from about 190° F. to about 280° F., and more preferably in the range of from 200° F. to 270° F.
  • Such drying condition can also include a time period generally in the range of from about 0.5 hour to about 60 hours, preferably in the range of from about 1 hour to about 40 hours, and more preferably in the range of from 1.5 hours to 20 hours.
  • Such drying condition can also include a pressure generally in the range of from about sub-atmospheric (i.e., about 28 inches of mercury) to about 150 pounds per square inch absolute (psia), preferably in the range of from about atmospheric to about 100 psia, more preferably about atmospheric, so long as the desired temperature can be maintained.
  • a pressure generally in the range of from about sub-atmospheric (i.e., about 28 inches of mercury) to about 150 pounds per square inch absolute (psia), preferably in the range of from about atmospheric to about 100 psia, more preferably about atmospheric, so long as the desired temperature can be maintained.
  • Any drying method(s) known to one skilled in the art such as, for example, air drying, heat drying, vacuum drying, and the like and combinations thereof can be used.
  • a calcining condition can include a temperature in the range of from about 400° F. to about 1800° F., preferably in the range of from about 500° F. to about 1600° F., and more preferably in the range of from 800° F. to about 1500° F.
  • Such calcining condition can also include a time period generally in the range of from about 1 hour to about 60 hours, preferably in the range of from about 2 hours to about 20 hours, and more preferably in the range of from 3 hours to 15 hours.
  • Such calcining condition can also include a pressure, generally in the range of from about 7 pounds per square inch absolute (psia) to about 750 psia, preferably in the range of from about 7 psia to about 450 psia, and more preferably in the range of from 7 psia to 150 psia.
  • a pressure generally in the range of from about 7 pounds per square inch absolute (psia) to about 750 psia, preferably in the range of from about 7 psia to about 450 psia, and more preferably in the range of from 7 psia to 150 psia.
  • the dried, calcined, noble metal-promoted particulates are thereafter subjected to reduction with a suitable reducing agent, preferably hydrogen, under reducing conditions, to thereby provide a reduced sorbent composition comprising a reduced-valence noble metal having a valence which is less than that of the unreduced noble metal.
  • a suitable reducing agent preferably hydrogen
  • Reduction can be carried out at a temperature in the range of from about 100° F. to about 1500° F. and at a pressure in the range of from about 15 pounds per square inch absolute (psia) to about 1,500 psia.
  • Such reduction is carried out for a time period sufficient to achieve the desired level of noble metal reduction.
  • Such reduction can generally be achieved in a time period in the range of from about 0.01 hour to about 20 hours.
  • the hydrocarbon-containing fluid feed employed in the desulfurization process of this embodiment of the present invention is preferably a sulfur-containing hydrocarbon fluid, more preferably, gasoline or diesel fuel, most preferably cracked-gasoline or diesel fuel.
  • the hydrocarbon-containing fluid described herein as suitable feed in the process of the present invention comprises a quantity of olefins, aromatics, sulfur, as well as paraffins and naphthenes.
  • the amount of olefins in gaseous cracked-gasoline is generally in the range of from about 10 to about 35 weight percent olefins based on the total weight of the gaseous cracked-gasoline.
  • the amount of aromatics in gaseous cracked-gasoline is generally in the range of from about 20 to about 40 weight percent aromatics based on the total weight of the gaseous cracked-gasoline.
  • the amount of aromatics in gaseous diesel fuel is generally in the range of from about 10 to about 90 weight percent aromatics based on the total weight of the gaseous diesel fuel.
  • the amount of sulfur in the hydrocarbon-containing fluid, preferably cracked-gasoline or diesel fuel, suitable for use in a process of the present invention can be in the range of from about 100 parts per million sulfur by weight of the cracked-gasoline to about 10,000 parts per million sulfur by weight of the cracked-gasoline and from about 100 parts per million sulfur by weight of the diesel fuel to about 50,000 parts per million sulfur by weight of the diesel fuel prior to the treatment of such hydrocarbon-containing fluid with the process of the present invention.
  • the amount of sulfur in the desulfurized hydrocarbon-containing fluid following treatment in accordance with the process of the present invention is less than about 100 parts per million (ppm) sulfur by weight of hydrocarbon-containing fluid, preferably less than about 90 ppm sulfur by weight of hydrocarbon-containing fluid, and more preferably less than about 80 ppm sulfur by weight of hydrocarbon-containing fluid.
  • gasoline denotes a mixture of hydrocarbons boiling in the range of from about 100° F. to about 400° F., or any fraction thereof.
  • suitable gasoline include, but are not limited to, hydrocarbon streams in refineries such as naphtha, straight-run naphtha, coker naphtha, catalytic gasoline, visbreaker naphtha, alkylate, isomerate, reformate, and the like and combinations thereof.
  • cracked-gasoline denotes a mixture of hydrocarbons boiling in the range of from about 100° F. to about 400° F., or any fraction thereof, that are products from either thermal or catalytic processes that crack larger hydrocarbon molecules into smaller molecules.
  • suitable thermal processes include, but are not limited to, coking, thermal cracking, visbreaking and the like and combinations thereof.
  • suitable catalytic cracking processes include, but are not limited to fluid catalytic cracking, heavy oil cracking, and the like and combinations thereof.
  • suitable cracked-gasoline include, but are not limited to, coker gasoline, thermally cracked gasoline, visbreaker gasoline, fluid catalytically cracked gasoline, heavy oil cracked gasoline, and the like and combinations thereof.
  • the cracked-gasoline may be fractionated and/or hydrotreated prior to desulfurization when used as a hydrocarbon-containing fluid in a process of the present invention.
  • diesel fuel denotes a mixture of hydrocarbons boiling in the range of from about 300° F. to about 750° F., or any fraction thereof.
  • suitable diesel fuels include, but are not limited to, light cycle oil, kerosene, jet fuel, straight-run diesel, hydrotreated diesel, and the like and combinations thereof.
  • sulfur denotes sulfur in any form such as elemental sulfur or a sulfur compound normally present in a hydrocarbon-containing fluid such as cracked gasoline or diesel fuel.
  • sulfur which can be present during a process of the present invention, usually contained in a hydrocarbon-containing fluid, include, but are not limited to, hydrogen sulfide, carbonyl sulfide (COS), carbon disulfide (CS 2 ), mercaptans (RSH), organic sulfides (R-S-R), organic disulfides (R-S-S-R), thiophene, substituted thiophenes, organic trisulfides, organic tetrasulfides, benzothiophene, alkyl thiophenes, alkyl benzothiophenes, alkyl dibenzothiophenes, and the like and combinations thereof as well as the heavier molecular weights of same which are normally present in a diesel fuel of the types contemplate
  • fluid denotes gas, liquid, vapor, and combinations thereof.
  • gaseous denotes that state in which the hydrocarbon-containing fluid, such as cracked-gasoline or diesel fuel, is primarily in a gas or vapor phase.
  • the desulfurizing of the hydrocarbon-containing fluid is carried out in a desulfurization zone under a set of conditions that includes total pressure, temperature, weight hourly space velocity, and hydrogen flow. These conditions are such that the sorbent composition can desulfurize the hydrocarbon-containing fluid to produce a desulfurized hydrocarbon-containing fluid and a sulfurized sorbent composition.
  • the hydrocarbon-containing fluid preferably cracked-gasoline or diesel fuel
  • the hydrocarbon-containing fluid be in a gas or vapor phase.
  • the total pressure can be in the range of from about 15 pounds per square inch absolute (psia) to about 1500 psia. However, it is presently preferred that the total pressure be in a range of from about 50 psia to about 500 psia.
  • the temperature should be sufficient to keep the hydrocarbon-containing fluid in essentially a vapor or gas phase. While such temperatures can be in the range of from about 100° F. to about 1000° F., it is presently preferred that the temperature be in the range of from about 400° F. to about 800° F. when treating a cracked-gasoline and in the range of from about 500° F. to about 900° F. when treating a diesel fuel.
  • Weight hourly space velocity is defined as the numerical ratio of the rate at which a hydrocarbon-containing fluid is charged to the desulfurization zone in pounds per hour at standard condition of temperature and pressure (STP) divided by the pounds of sorbent composition contained in the desulfurization zone to which the hydrocarbon-containing fluid is charged.
  • STP temperature and pressure
  • WHSV should be in the range of from about 0.5 hr ⁇ 1 to about 50 hr ⁇ 1 , preferably in the range of from about 1 hr ⁇ 1 to about 20 hr ⁇ 1 .
  • the desulfurizing (i.e., desulfurization) of the hydrocarbon-containing fluid should be conducted for a time sufficient to affect the removal of at least a substantial portion sulfur from such hydrocarbon-containing fluid.
  • an agent be employed which interferes with any possible chemical or physical reacting of the olefinic and aromatic compounds in the hydrocarbon-containing fluid which is being treated with a sorbent composition of the present invention.
  • agent is hydrogen.
  • Hydrogen flow in the desulfurization zone is generally such that the mole ratio of hydrogen to hydrocarbon-containing fluid is the range of from about 0.1 to about 10, preferably in the range of from about 0.2 to about 3.
  • a diluent such as methane, carbon dioxide, flue gas, nitrogen and the like and combinations thereof can be used.
  • a high purity hydrogen be employed in achieving the desired desulfurization of a hydrocarbon-containing fluid such as cracked-gasoline or diesel fuel.
  • a sorbent composition be used having a mean particle size, as described herein, in the range of from about 1 micrometer to about 500 micrometers.
  • sorbent composition has a mean particle size in the range of from about 10 micrometers to about 300 micrometers
  • the sorbent composition should generally have a particulate size in the range of from about ⁇ fraction (1/32) ⁇ inch to about 1 ⁇ 2 inch diameter, preferably in the range of from about ⁇ fraction (1/32) ⁇ inch to about 1 ⁇ 4 inch diameter.
  • a sorbent composition having a surface area in the range of from about 1 square meter per gram to about 1000 square meters per gram (m 2 /g), preferably in the range of from about 1 m 2 /g to about 800 m 2 /g.
  • the desulfurized hydrocarbon-containing fluid and sulfurized sorbent composition can then be separated by any manner or method known in the art that can separate a solid from a fluid, preferably a solid from a gas.
  • suitable separating means for separating solids and gases include, but are not limited to, cyclonic devices, settling chambers, impingement devices, filters, and combinations thereof.
  • the desulfurized hydrocarbon-containing fluid preferably desulfurized gaseous cracked-gasoline or desulfurized gaseous diesel fuel, can then be recovered and preferably liquefied. liquefaction of such desulfurized hydrocarbon-containing fluid can be accomplished by any manner or method known in the art.
  • the sulfurized sorbent is then regenerated in a regeneration zone under a set of conditions that includes temperature, total pressure, and sulfur removing agent partial pressure.
  • the regenerating is carried out at a temperature generally in the range of from about 100° F. to about 1500° F., preferably in the range of from about 800° F. to about 1200° F.
  • Total pressure is generally in the range of from about 25 pounds per square inch absolute (psia) to about 500 psia.
  • the sulfur removing agent partial pressure is generally in the range of from about 1 percent to about 100 percent of the total pressure.
  • the sulfur removing agent i.e., regenerating agent
  • the sulfur removing agent is a composition(s) that helps to generate gaseous sulfur-containing compounds and oxygen-containing compounds such as sulfur dioxide, as well as to burn off any remaining hydrocarbon deposits that might be present.
  • the preferred sulfur removing agent, i.e., regenerating agent, suitable for use in the regeneration zone is oxygen or an oxygen-containing gas(es) such as air.
  • Such regeneration is carried out for a time sufficient to achieve the desired level of regeneration.
  • Such regeneration can generally be achieved in a time period in the range of from about 0.1 hour to about 24 hours, preferably in the range of from about 0.5 hour to about 3 hours.
  • a stripper zone can be inserted before and/or after, preferably before, regenerating the sulfurized sorbent composition in the regeneration zone.
  • Such stripper zone preferably utilizing a stripping agent, will serve to remove a portion, preferably all, of any hydrocarbon(s) from the sulfurized sorbent composition.
  • Such stripper zone can also serve to remove oxygen and sulfur dioxide from the system prior to introduction of the regenerated sorbent composition into the activation zone.
  • Such stripping employs a set of conditions that includes total pressure, temperature, and stripping agent partial pressure.
  • the stripping when employed, is carried out at a total pressure in the range of from about 25 pounds per square inch absolute (psia) to about 500 psia.
  • the temperature for such stripping can be in the range of from about 100° F. to about 1000° F.
  • Such stripping is carried out for a time sufficient to achieve the desired level of stripping.
  • Such stripping can generally be achieved in a time period in the range of from about 0.1 hour to about 4 hours, preferably in the range of from about 0.3 hour to about 1 hour.
  • the stripping agent is a composition(s) that helps to remove a hydrocarbon(s) from the sulfurized sorbent composition.
  • the stripping agent is nitrogen.
  • the desulfurized sorbent composition is then subjected to reducing, i.e., activating, in an activation zone with a reducing agent, preferably hydrogen, so that at least a portion of the unreduced noble metal incorporated on, in, or with the sorbent composition is reduced to thereby provide a reduced sorbent composition comprising a reduced-valence noble metal.
  • a reducing agent preferably hydrogen
  • Such reduced-valence noble metal is incorporated on, in, or with such sorbent composition in an amount that provides for the removal of sulfur from the hydrocarbon-containing fluid according to a process of the present invention.
  • the reducing, i.e., activating, of the desulfurized sorbent composition is carried out at a temperature in the range of from about 100° F. to about 1500° F. and at a pressure in the range of from about 15 pounds per square inch absolute (psia) to about 1500 psia.
  • psia pounds per square inch absolute
  • Such reduction is carried out for a time sufficient to achieve the desired level of noble metal reduction.
  • Such reduction can generally be achieved in a time period in the range of from about 0.01 hour to about 20 hours.
  • At least a portion of the resulting reduced (i.e., activated) sorbent composition can be returned to the desulfurization zone.
  • the steps of desulfurizing, regenerating, reducing (i.e., activating), and optionally stripping before and/or after such regenerating can be accomplished in a single zone or vessel or in multiple zones or vessels.
  • the desulfurization zone can be any zone wherein desulfurizing a hydrocarbon-containing fluid such as cracked-gasoline, diesel fuel or the like can take place.
  • the regeneration zone can be any zone wherein regenerating or desulfurizing a sulfurized sorbent composition can take place.
  • the activation zone can be any zone wherein reducing, i.e., activating, a regenerated, desulfurized sorbent composition can take place. Examples of suitable zones are fixed bed reactors, moving bed reactors, fluidized bed reactors, transport reactors, reactor vessels and the like.
  • the steps of desulfurizing, regenerating, reducing, and optionally stripping before and/or after such regenerating are accomplished in a single zone or vessel.
  • the steps of desulfurizing, regenerating, reducing, and optionally stripping before and/or after such regenerating are accomplished in multiple zones or vessels.
  • the desulfurized hydrocarbon-containing fluid resulting from the practice of a process of the present invention is a desulfurized cracked-gasoline
  • such desulfurized cracked-gasoline can be used in the formulation of gasoline blends to provide gasoline products suitable for commercial consumption and can also be used where a cracked-gasoline containing low levels of sulfur is desired.
  • the desulfurized hydrocarbon-containing fluid resulting from the practice of a process of the present invention is a desulfurized diesel fuel
  • such desulfurized diesel fuel can be used in the formulation of diesel fuel blends to provide diesel fuel products suitable for commercial consumption and can also be used where a diesel fuel containing low levels of sulfur is desired.
  • a noble metal-promoted sorbent composition comprising a reduced-valence noble metal, zinc oxide, alumina, and silica is effective to desulfurize cracked-gasoline.
  • Batch 1 of the support for the inventive sorbent was made by mixing 22.0 lbs. of distilled water and 315.79 grams of acetic acid in a Cowles dissolver to create a water/acid solution.
  • a 6.375 lb. quantity of aluminum hydroxide powder (Disperal Alumina Powder, available from CONDEA Vista Company, Houston, Tex.) was added to the water/acid solution and mixed for 30 minutes to create an alumina slurry.
  • a 20.02 lb. quantity of diatomaceous earth (CeliteTM Filter Cell, available from Mansville Sale Corporation, Lampoc, Calif.) and a 25.03 lb.
  • the sorbent base slurry was then formed into sorbent base particulate using a counter-current spray drier (Niro Atomizer Model 68, available from Niro Atomizer Inc., Columbia, Md.).
  • the sorbent base slurry was charged to the spray drier wherein it was contacted in a particulating chamber with air flowing through the chamber.
  • the air flowing through the chamber had an inlet temperature of approximately 320° C. and an outlet temperature of approximately 140° C., and operated to partially dry the sorbent base slurry into a sorbent base particulate.
  • the sorbent base particulate was then further dried in an oven by ramping the oven temperature at 3° C./min to 150° C. and holding at 150° C. for 1 hour.
  • the dried sorbent base particulate was then calcined by ramping the oven temperature at 5° C./min to 635° C. and holding at 635° C. for 1 hour.
  • Batches 2, 3, and 4 of the sorbent support were made using the same process as Batch 1, except the powdered mixture and alumina slurry were mixed for 30 minutes, rather than 25 minutes, to make the sorbent base slurry.
  • the sorbent base particulate of Batches 1-4 were then mixed together prior to impregnation with the noble metal promoter.
  • a 90 gram quantity of the mixed sorbent base particulate of Batches 1-4 was then impregnated with 27 grams of a tetraamine platinum (II) nitrate solution (containing 2% Pt) using incipient wetness techniques and dried for 30 minutes using a blow drier.
  • the impregnated sorbent was then put in an oven and further dried by ramping the oven temperature at 2° C./min to 120° C. and holding at 120° C. for 1 hour.
  • the dried sorbent was then calcined by ramping the oven temperature at 2° C./min to 510° C. and holding at 510° C. for 1 hour.
  • the resulting noble metal-promoted sorbent contained about 0.6 wt. % platinum.
  • the platinum-promoted sorbent was then sieved to provide a 10 gram quantity of platinum-promoted sorbent which passed through the 50 mesh sieve but was retained above the 230 mesh sieve (i.e., ⁇ 50/+230 mesh).
  • the 10 gram quantity of platinum-promoted sorbent was placed in a reactor (1 inch I.D. fluidized bed reactor with clam shell heater) and heated to 700° F. in flowing nitrogen at a rate of 150 cc/min for a period of 30 minutes. The nitrogen was then turned off and hydrogen was charged to the 700° F. reactor at a rate of 300 cc/min for 75 minutes to reduce the platinum-promoted sorbent.
  • Catalytically cracked gasoline having a sulfur content of 345 ppmw was then charged to the 728° F. reactor at a rate of 13.4 ml/hr. Simultaneously with the CCG, nitrogen and hydrogen were charged to the reactor at 150 cc/min and 150 cc/min, respectively. After 1 hour, a 9.54 gram effluent sample was taken from the 749° F. reactor and designated Sample 1 A. After 2 hours, a 10.21 gram effluent sample was taken from the 759° F. reactor and designed Sample 2A. After 3 hours, a 13.35 gram effluent sample was taken from the 739° F. reactor and designated Sample 3A. After 4 hours, a 12.41 gram effluent sample was taken from the 714° F. reactor and designated Sample 4A.
  • CCG Catalytically cracked gasoline
  • the CCG and hydrogen flow to the reactor was then terminated and the reactor temperature was reduced to about 230° C.
  • the reactor temperature was then increased to 900° F. in flowing nitrogen at 240 cc/min over a period of 45 minutes.
  • the platinum-promoted sorbent was then oxidized by charging air to the 907° F. reactor at 60 cc/min for 75 minutes. The air was then turned off and the reactor temperature was reduced to, and maintained at, 700° F. for 20 minutes.
  • Hydrogen was then charged to the 720° F. reactor at a rate of 300 cc/min for 83 minutes to reduce the platinum-promoted sorbent.
  • CCG having a sulfur content of 345 ppmw was then charged to the 720° F.
  • the reduced-valence noble metal-promoted sorbent composition of the present invention is effective for removing sulfur from catalytically cracked gasoline.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A sorbent composition comprising a support and a reduced-valence noble metal can be used to desulfurize a hydrocarbon-containing fluid such as cracked-gasoline or diesel fuel.

Description

    RELATED APPLICATIONS
  • This is a continuation of application Ser. No. 09/976,195, filed Oct. 12, 2001 entitled DESULFURIZATION AND NOVEL SORBENT FOR SAME, and hereby incorporated by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • This invention relates to a sorbent composition, a process of making a sorbent composition, and a process of using a sorbent composition for the removal of sulfur from a hydrocarbon-containing fluid. [0002]
  • Hydrocarbon-containing fluids such as gasoline and diesel fuels typically contain a quantity of sulfur. High levels of sulfur in such automotive fuels is undesirable because oxides of sulfur present in automotive exhaust may irreversibly poison noble metal catalysts employed in automobile catalytic converters. Emissions from such poisoned catalytic converters may contain high levels of non-combusted hydrocarbons, oxides of nitrogen, and/or carbon monoxide, which, when catalyzed by sunlight, form ground level ozone, more commonly referred to as smog. [0003]
  • Much of the sulfur present in the final blend of most gasolines originates from a gasoline blending component commonly known as “cracked-gasoline.” Thus, reduction of sulfur levels in cracked-gasoline will inherently serve to reduce sulfur levels in most gasolines, such as, automobile gasolines, racing gasolines, aviation gasolines, boat gasolines, and the like. [0004]
  • Many conventional processes exist for removing sulfur from cracked-gasoline. However, most conventional sulfur removal processes, such as hydrodesulfurization, tend to saturate olefins and aromatics in the cracked-gasoline and thereby reduce its octane number (both research and motor octane number). Thus, there is a need for a process wherein desulfurization of cracked-gasoline is achieved while the octane number is maintained. [0005]
  • In addition to the need for removing sulfur from cracked-gasoline, there is also a need to reduce the sulfur content in diesel fuel. In removing sulfur from diesel fuel by hydrodesulfurization, the cetane is improved but there is a large cost in hydrogen consumption. Such hydrogen is consumed by both hydrodesulfurization and aromatic hydrogenation reactions. Thus, there is a need for a process wherein desulfurization is achieved without a significant consumption of hydrogen so as to provide a more economical process for the desulfurization of hydrocarbon-containing fluids. [0006]
  • SUMMARY OF THE INVENTION
  • It is thus an object of the present invention to provide a novel sorbent system for the removal of sulfur from hydrocarbon-containing fluid streams such as cracked-gasoline and diesel fuels. [0007]
  • Another object of this invention is to provide a method of making a novel sorbent which is useful in the desulfurization of such hydrocarbon-containing fluid streams. [0008]
  • Still another object of this invention is to provide a process for the removal of sulfur-containing compounds from hydrocarbon-containing fluid streams which minimizes saturation of olefins and aromatics therein. [0009]
  • A further object of this invention is to provide a process for the removal of sulfur-containing compounds from hydrocarbon-containing fluid streams which minimizes hydrogen consumption. [0010]
  • It should be noted that the above-listed objects need not all be accomplished by the invention claimed herein and other objects and advantages of this invention will be apparent from the following description of the invention and appended claims. [0011]
  • In one aspect of the present invention, there is provided a novel sorbent composition suitable for removing sulfur from a hydrocarbon-containing fluid. The sorbent composition comprises a reduced-valence noble metal, zinc oxide, and a carrier. [0012]
  • In accordance with another aspect of the present invention, there is provided a process of making a sorbent composition. The process comprises the steps of: admixing zinc oxide and a carrier so as to form a support mix; particulating the support mix so as to form a support particulate; incorporating the support particulate with a noble metal or a noble metal-containing compound to provide a promoted particulate comprising an unreduced noble metal; and reducing the promoted particulate to provide a reduced sorbent composition comprising a reduced-valence noble metal. [0013]
  • In accordance with a further aspect of the present invention, there is provided a process for removing sulfur from a hydrocarbon-containing fluid stream. The process comprises the steps of: contacting the hydrocarbon-containing fluid stream with a sorbent composition comprising a reduced-valence noble metal and a support in a desulfurization zone under conditions such that there is formed a desulfurized fluid stream and a sulfurized sorbent; separating the desulfurized fluid stream from the sulfurized sorbent; regenerating at least a portion of the separated sulfurized sorbent in a regeneration zone so as to remove at least a portion of the sulfur therefrom and provide a regenerated desulfurized sorbent; reducing the desulfurized sorbent in an activation zone to provide a reduced sorbent composition which will effect the removal of sulfur from the hydrocarbon-containing fluid stream when contacted with the same; and returning at least a portion of the reduced sorbent composition to the desulfurization zone.[0014]
  • DETAILED DESCRIPTION OF THE INVENTION
  • In accordance with a first embodiment of the present invention, a novel sorbent composition suitable for removing sulfur from hydrocarbon-containing fluids is provided. The sorbent composition comprises a support and a reduced-valence noble metal. [0015]
  • The support may be any component or combination of components which can be used as a support for the sorbent composition of the present invention to help promote the desulfurization process of the present invention. Preferably, the support is an active component of the sorbent composition. Examples of suitable support components include, but are not limited to, zinc oxide and any suitable inorganic and/or organic carriers. Examples of suitable inorganic carriers include, but are not limited to, silica, silica gel, alumina, diatomaceous earth, expanded perlite, kieselguhr, silica-alumina, titania, zirconia, zinc aluminate, zinc titanate, zinc silicate, magnesium aluminate, magnesium titanate, synthetic zeolites, natural zeolites, and combinations thereof. Examples of suitable organic carriers include, but are not limited to, activated carbon, coke, charcoal, carbon-containing molecular sieves, and combinations thereof. A preferred support comprises zinc oxide, silica, and alumina. [0016]
  • When the support comprises zinc oxide, the zinc oxide used in the preparation of the sorbent composition of the present invention can be either in the form of zinc oxide, such as powdered zinc oxide, or in the form of one or more zinc compounds that are convertible to zinc oxide under the conditions of preparation described herein. Examples of suitable zinc compounds include, but are not limited to, zinc sulfide, zinc sulfate, zinc hydroxide, zinc carbonate, zinc acetate, zinc nitrate, and combinations thereof. Preferably, the zinc oxide is in the form of powdered zinc oxide. [0017]
  • When the support comprises zinc oxide, the zinc oxide will generally be present in the sorbent composition of the present invention in an amount in the range of from about 10 to about 90 weight percent zinc oxide based on the total weight of the sorbent composition, preferably in an amount in the range of from about 15 to about 80 weight percent zinc oxide, and most preferably in an amount in the range of from 20 to 70 weight percent zinc. oxide. [0018]
  • When the support comprises silica, the silica used in the preparation of the sorbent composition of the present invention can be either in the form of silica or in the form of one or more silicon compounds. Any suitable type of silica may be employed in preparing the sorbent composition of the present invention. Examples of suitable types of silica include, but are not limited to, diatomite, expanded perlite, silicalite, silica colloid, flame-hydrolyzed silica, hydrolyzed silica, silica gel, precipitated silica, and combinations thereof. In addition, silicon compounds that are convertible to silica such as silicic acid, ammonium silicate and the like and combinations thereof can also be employed. Preferably, the silica is in the form of diatomite or expanded perlite. [0019]
  • When the support comprises silica, the silica will generally be present in the sorbent composition of the present invention in an amount in the range of from about 5 to about 85 weight percent silica based on the total weight of the sorbent composition, preferably in an amount in the range of from about 10 to about 60 weight percent silica, and most preferably in an amount in the range of from 15 to 55 weight percent silica. [0020]
  • When the support comprises alumina, the alumina used in preparing the sorbent composition of the present invention can be present in the source of silica, can be any suitable commercially available alumina material (including, but not limited to, colloidal alumina solutions, hydrated aluminas, and, generally, those alumina compounds produced by the dehydration of alumina hydrates), or both. The preferred alumina is a hydrated alumina such as, for example, boehmite or pseudoboehmite. [0021]
  • When the support comprises alumina, the alumina will generally be present in the sorbent composition of the present invention in an amount in the range of from about 1 to about 30 weight percent alumina based on the total weight of the sorbent composition, preferably in an amount in the range of from about 5 to about 20 weight percent alumina, and most preferably in an amount in the range of from 5 to 15 weight percent alumina. [0022]
  • The sorbent composition of the present invention further comprises a noble metal. The noble metal can be present in the form of an elemental noble metal, a noble metal-containing compound, a noble metal oxide, or a noble metal oxide precursor. The metal component of the noble metal is preferably selected from the group consisting of platinum, palladium, rhodium, ruthenium, osmium, iridium, and combinations thereof. Most preferably, the metal component of the noble metal is platinum. [0023]
  • A portion, preferably a substantial portion, of the noble metal is present in the form of a reduced-valence noble metal. The valence of the reduced-valence noble metal is reduced to a value which is less than the valence of the noble metal in its common oxidized state, preferably less than 3, more preferably less than 2, and most preferably 0. [0024]
  • The noble metal will generally be present in the sorbent composition of the present invention in an amount in the range of from about 0.05 to about 30 weight percent noble metal based on the total weight of the sorbent composition, preferably in an amount in the range of from about 0.1 to 15 weight percent noble metal, and most preferably in an amount in the range of from 0.2 to 5 weight percent noble metal. [0025]
  • It is preferred that at least 10 weight percent of the noble metal present in the sorbent composition is in the form of a reduced-valence noble metal, more preferably at least 40 weight percent of the noble metal is a reduced-valence noble metal, and most preferably at least 80 weight percent of the noble metal is a reduced-valence noble metal. [0026]
  • The reduced-valence noble metal will generally be present in the sorbent composition of the present invention in an amount in the range of from about 0.01 to about 25 weight percent reduced-valence noble metal based on the total weight of the sorbent composition, preferably in an amount in the range of from about 0.1 to 10 weight percent reduced-valence noble metal, and most preferably in an amount in the range of from 0.2 to 4 weight percent reduced-valence noble metal. [0027]
  • In accordance with a second embodiment of the present invention, a process for making the inventive sorbent composition of the first embodiment of the present invention is provided. [0028]
  • In the manufacture of the sorbent composition of the present invention, the support is generally prepared by combining the support compounds, described above, together in appropriate proportions, described above, by any suitable method or manner known in the art which provides for the intimate mixing of such components to thereby provide a substantially homogeneous mixture comprising the support components, preferably a substantially homogeneous mixture comprising zinc oxide, silica, and alumina. Any suitable means for mixing the support component can be used to achieve the desired dispersion of the components. Examples of suitable means for mixing include, but are not limited to, mixing tumblers, stationary shells or troughs, Muller mixers, which are of the batch or continuous type, impact mixers, and the like. It is presently preferred to use a Muller mixer as the means for mixing the support components. [0029]
  • The support components are contacted together by any manner known in the art to provide a resulting mixture which can be in a form selected from the group consisting of a wet mix, a dough, a paste, a slurry, and the like. Such resulting support mixture can then be shaped to form a particulate(s) selected from the group consisting of a granulate, an extrudate, a tablet, a sphere, a pellet, a micro-sphere, and the like. For example, if the resulting support mixture is in the form of a wet mix, the wet mix can be densified, dried, calcined, and thereafter shaped, or particulated, through the granulation of the densified, dried, calcined mix to form granulates. Also for example, when the resulting support mixture is in the form of either a dough state or paste state, such resulting mixture can then be shaped, preferably extruded, to form a particulate, preferably cylindrical extrudates having a diameter in the range of from about {fraction (1/32)} inch to ½ inch and any suitable length, preferably a length in the range of from about ⅛ inch to about 1 inch. The resulting support particulates, preferably cylindrical extrudates, are then dried and calcined under conditions as disclosed herein. [0030]
  • More preferably, the resulting support mixture is in the form of a slurry and the particulation of such slurry is achieved by spray drying the slurry to form micro-spheres thereof having a mean particle size generally in the range of from about 1 micrometer to about 500 micrometers, preferably in the range of from about 10 micrometers to about 300 micrometers. Spray drying is known in the art and is discussed in [0031] Perry's Chemical Engineers'Handbook, Sixth Edition, published by McGraw-Hill, Inc., at pages 20-54 through 20-58. Additional information can be obtained from the Handbook of Industrial Drying, published by Marcel Dekker. Inc., at pages 243 through 293. As used herein, the term “mean particle size” refers to the size of the particulate material as determined by using a RO-TAP Testing Sieve Shaker, manufactured by W.S. Tyler Inc., of Mentor, Ohio, or other comparable sieves. The material to be measured is placed in the top of a nest of standard eight inch diameter stainless steel framed sieves with a pan on the bottom. The material undergoes sifting for a period of about 10 minutes; therafter, the material retained on each sieve is weighed. The percent retained on each sieve is calculated by dividing the weight of the material retained on a particular sieve by the weight of the original sample. This information is used to compute the mean particle size.
  • The spray dried support particulate can then be dried under a drying condition as disclosed herein and calcined under a calcining condition as disclosed herein. Preferably, calcining is conducted in an oxidizing atmosphere, such as in the presence of oxygen or air, to form a dried and calcined support particulate. The calcination can be conducted under any suitable condition that removes residual water and oxidizes and combustibles. [0032]
  • The resulting dried and calcined support particulate is then incorporated with the noble metal, described above. The noble metal may be incorporated in, on, or with the dried and calcined support particulate by any suitable means or method known in the art such as, for example, impregnating, soaking, spraying, and combinations thereof. The preferred method of incorporating the noble metal into the dried and calcined support particulate is impregnating using standard incipient wetness impregnation techniques. The preferred method uses an impregnating solution comprising the desired concentration of the noble metal so as to ultimately provide a promoted particulate which can be subjected to drying, calcining, and reduction to provide the sorbent composition of the present invention. The impregnating solution can be any aqueous or an organic solvent solution in amounts of such solution which suitably provides for the impregnation of the dried and calcined support particulates. A preferred impregnating solution is formed by dissolving a noble metal-containing compound in water. It is acceptable to use somewhat of an acidic solution to aid in the dissolution of the noble metal-containing compound. It is more preferred for the particulates to be impregnated with the noble metal by use of a solution containing tetraamine platinum(II) nitrate dissolved in water. [0033]
  • Generally, the amount of the noble metal incorporated, preferably impregnated, onto, into, or with the support is an amount which provides, after the promoted particulate material has been dried calcined, and reduced, a sorbent composition having an amount of the reduced-valence noble metal as disclosed herein. [0034]
  • Once the noble metal has been incorporated in, on, or with the dried and calcined support particulate, the noble metal-promoted particulates are subsequently dried and calcined under conditions disclose herein to thereby provide a dried, calcined, noble metal-promoted particulate comprising an unreduced noble metal. [0035]
  • Generally, a drying condition, as referred to herein, can include a temperature in the range of from about 180° F. to about 290° F., preferably in the range of from about 190° F. to about 280° F., and more preferably in the range of from 200° F. to 270° F. Such drying condition can also include a time period generally in the range of from about 0.5 hour to about 60 hours, preferably in the range of from about 1 hour to about 40 hours, and more preferably in the range of from 1.5 hours to 20 hours. Such drying condition can also include a pressure generally in the range of from about sub-atmospheric (i.e., about 28 inches of mercury) to about 150 pounds per square inch absolute (psia), preferably in the range of from about atmospheric to about 100 psia, more preferably about atmospheric, so long as the desired temperature can be maintained. Any drying method(s) known to one skilled in the art such as, for example, air drying, heat drying, vacuum drying, and the like and combinations thereof can be used. [0036]
  • Generally, a calcining condition, as referred to herein, can include a temperature in the range of from about 400° F. to about 1800° F., preferably in the range of from about 500° F. to about 1600° F., and more preferably in the range of from 800° F. to about 1500° F. Such calcining condition can also include a time period generally in the range of from about 1 hour to about 60 hours, preferably in the range of from about 2 hours to about 20 hours, and more preferably in the range of from 3 hours to 15 hours. Such calcining condition can also include a pressure, generally in the range of from about 7 pounds per square inch absolute (psia) to about 750 psia, preferably in the range of from about 7 psia to about 450 psia, and more preferably in the range of from 7 psia to 150 psia. [0037]
  • The dried, calcined, noble metal-promoted particulates are thereafter subjected to reduction with a suitable reducing agent, preferably hydrogen, under reducing conditions, to thereby provide a reduced sorbent composition comprising a reduced-valence noble metal having a valence which is less than that of the unreduced noble metal. Reduction can be carried out at a temperature in the range of from about 100° F. to about 1500° F. and at a pressure in the range of from about 15 pounds per square inch absolute (psia) to about 1,500 psia. Such reduction is carried out for a time period sufficient to achieve the desired level of noble metal reduction. Such reduction can generally be achieved in a time period in the range of from about 0.01 hour to about 20 hours. [0038]
  • In accordance with a third embodiment of the present invention, a desulfurization process is provided which employs the novel sorbent composition described herein. [0039]
  • The hydrocarbon-containing fluid feed employed in the desulfurization process of this embodiment of the present invention is preferably a sulfur-containing hydrocarbon fluid, more preferably, gasoline or diesel fuel, most preferably cracked-gasoline or diesel fuel. [0040]
  • The hydrocarbon-containing fluid described herein as suitable feed in the process of the present invention comprises a quantity of olefins, aromatics, sulfur, as well as paraffins and naphthenes. The amount of olefins in gaseous cracked-gasoline is generally in the range of from about 10 to about 35 weight percent olefins based on the total weight of the gaseous cracked-gasoline. For diesel fuel there is essentially no olefin content. The amount of aromatics in gaseous cracked-gasoline is generally in the range of from about 20 to about 40 weight percent aromatics based on the total weight of the gaseous cracked-gasoline. The amount of aromatics in gaseous diesel fuel is generally in the range of from about 10 to about 90 weight percent aromatics based on the total weight of the gaseous diesel fuel. The amount of sulfur in the hydrocarbon-containing fluid, preferably cracked-gasoline or diesel fuel, suitable for use in a process of the present invention can be in the range of from about 100 parts per million sulfur by weight of the cracked-gasoline to about 10,000 parts per million sulfur by weight of the cracked-gasoline and from about 100 parts per million sulfur by weight of the diesel fuel to about 50,000 parts per million sulfur by weight of the diesel fuel prior to the treatment of such hydrocarbon-containing fluid with the process of the present invention. The amount of sulfur in the desulfurized hydrocarbon-containing fluid following treatment in accordance with the process of the present invention is less than about 100 parts per million (ppm) sulfur by weight of hydrocarbon-containing fluid, preferably less than about 90 ppm sulfur by weight of hydrocarbon-containing fluid, and more preferably less than about 80 ppm sulfur by weight of hydrocarbon-containing fluid. [0041]
  • As used herein, the term “gasoline” denotes a mixture of hydrocarbons boiling in the range of from about 100° F. to about 400° F., or any fraction thereof. Examples of suitable gasoline include, but are not limited to, hydrocarbon streams in refineries such as naphtha, straight-run naphtha, coker naphtha, catalytic gasoline, visbreaker naphtha, alkylate, isomerate, reformate, and the like and combinations thereof. [0042]
  • As used herein, the term “cracked-gasoline” denotes a mixture of hydrocarbons boiling in the range of from about 100° F. to about 400° F., or any fraction thereof, that are products from either thermal or catalytic processes that crack larger hydrocarbon molecules into smaller molecules. Examples of suitable thermal processes include, but are not limited to, coking, thermal cracking, visbreaking and the like and combinations thereof. Examples of suitable catalytic cracking processes include, but are not limited to fluid catalytic cracking, heavy oil cracking, and the like and combinations thereof. Thus, examples of suitable cracked-gasoline include, but are not limited to, coker gasoline, thermally cracked gasoline, visbreaker gasoline, fluid catalytically cracked gasoline, heavy oil cracked gasoline, and the like and combinations thereof. In some instances, the cracked-gasoline may be fractionated and/or hydrotreated prior to desulfurization when used as a hydrocarbon-containing fluid in a process of the present invention. [0043]
  • As used herein, the term “diesel fuel” denotes a mixture of hydrocarbons boiling in the range of from about 300° F. to about 750° F., or any fraction thereof. Examples of suitable diesel fuels include, but are not limited to, light cycle oil, kerosene, jet fuel, straight-run diesel, hydrotreated diesel, and the like and combinations thereof. [0044]
  • As used herein, the term “sulfur” denotes sulfur in any form such as elemental sulfur or a sulfur compound normally present in a hydrocarbon-containing fluid such as cracked gasoline or diesel fuel. Examples of sulfur which can be present during a process of the present invention, usually contained in a hydrocarbon-containing fluid, include, but are not limited to, hydrogen sulfide, carbonyl sulfide (COS), carbon disulfide (CS[0045] 2), mercaptans (RSH), organic sulfides (R-S-R), organic disulfides (R-S-S-R), thiophene, substituted thiophenes, organic trisulfides, organic tetrasulfides, benzothiophene, alkyl thiophenes, alkyl benzothiophenes, alkyl dibenzothiophenes, and the like and combinations thereof as well as the heavier molecular weights of same which are normally present in a diesel fuel of the types contemplated for use in a process of the present invention, wherein each R can be an alkyl or cycloalkyl or aryl group containing one carbon atom to ten carbon atoms.
  • As used herein, the term “fluid” denotes gas, liquid, vapor, and combinations thereof. [0046]
  • As used herein, the term “gaseous” denotes that state in which the hydrocarbon-containing fluid, such as cracked-gasoline or diesel fuel, is primarily in a gas or vapor phase. [0047]
  • The desulfurizing of the hydrocarbon-containing fluid is carried out in a desulfurization zone under a set of conditions that includes total pressure, temperature, weight hourly space velocity, and hydrogen flow. These conditions are such that the sorbent composition can desulfurize the hydrocarbon-containing fluid to produce a desulfurized hydrocarbon-containing fluid and a sulfurized sorbent composition. [0048]
  • In desulfurizing the hydrocarbon-containing fluid, it is preferred that the hydrocarbon-containing fluid, preferably cracked-gasoline or diesel fuel, be in a gas or vapor phase. However, in the practice of the present invention it is not essential that the hydrocarbon-containing fluid be totally in a gas or vapor phase. [0049]
  • In desulfurizing the hydrocarbon-containing fluid, the total pressure can be in the range of from about 15 pounds per square inch absolute (psia) to about 1500 psia. However, it is presently preferred that the total pressure be in a range of from about 50 psia to about 500 psia. In general, the temperature should be sufficient to keep the hydrocarbon-containing fluid in essentially a vapor or gas phase. While such temperatures can be in the range of from about 100° F. to about 1000° F., it is presently preferred that the temperature be in the range of from about 400° F. to about 800° F. when treating a cracked-gasoline and in the range of from about 500° F. to about 900° F. when treating a diesel fuel. [0050]
  • Weight hourly space velocity (WHSV) is defined as the numerical ratio of the rate at which a hydrocarbon-containing fluid is charged to the desulfurization zone in pounds per hour at standard condition of temperature and pressure (STP) divided by the pounds of sorbent composition contained in the desulfurization zone to which the hydrocarbon-containing fluid is charged. In the practice of the present invention, such WHSV should be in the range of from about 0.5 hr[0051] −1 to about 50 hr−1, preferably in the range of from about 1 hr−1 to about 20 hr−1. The desulfurizing (i.e., desulfurization) of the hydrocarbon-containing fluid should be conducted for a time sufficient to affect the removal of at least a substantial portion sulfur from such hydrocarbon-containing fluid.
  • In desulfurizing the hydrocarbon-containing fluid, it is presently preferred that an agent be employed which interferes with any possible chemical or physical reacting of the olefinic and aromatic compounds in the hydrocarbon-containing fluid which is being treated with a sorbent composition of the present invention. Preferably, such agent is hydrogen. Hydrogen flow in the desulfurization zone is generally such that the mole ratio of hydrogen to hydrocarbon-containing fluid is the range of from about 0.1 to about 10, preferably in the range of from about 0.2 to about 3. [0052]
  • If desired, during the desulfurizing of the hydrocarbon-containing fluid according to the process of the present invention, a diluent such as methane, carbon dioxide, flue gas, nitrogen and the like and combinations thereof can be used. Thus, it is not essential to the practice of a process of the present invention that a high purity hydrogen be employed in achieving the desired desulfurization of a hydrocarbon-containing fluid such as cracked-gasoline or diesel fuel. [0053]
  • It is presently preferred, when the desulfurization zone is in a fluidized bed reactor system, that a sorbent composition be used having a mean particle size, as described herein, in the range of from about 1 micrometer to about 500 micrometers. Preferably, such sorbent composition has a mean particle size in the range of from about 10 micrometers to about 300 micrometers When a fixed bed reactor system is employed as the desulfurization zone of the present invention, the sorbent composition should generally have a particulate size in the range of from about {fraction (1/32)} inch to about ½ inch diameter, preferably in the range of from about {fraction (1/32)} inch to about ¼ inch diameter. It is further presently preferred to use a sorbent composition having a surface area in the range of from about 1 square meter per gram to about 1000 square meters per gram (m[0054] 2/g), preferably in the range of from about 1 m2/g to about 800 m2/g.
  • After sulfur removal in the desulfurization zone, the desulfurized hydrocarbon-containing fluid and sulfurized sorbent composition can then be separated by any manner or method known in the art that can separate a solid from a fluid, preferably a solid from a gas. Examples of suitable separating means for separating solids and gases include, but are not limited to, cyclonic devices, settling chambers, impingement devices, filters, and combinations thereof. The desulfurized hydrocarbon-containing fluid, preferably desulfurized gaseous cracked-gasoline or desulfurized gaseous diesel fuel, can then be recovered and preferably liquefied. liquefaction of such desulfurized hydrocarbon-containing fluid can be accomplished by any manner or method known in the art. [0055]
  • The sulfurized sorbent is then regenerated in a regeneration zone under a set of conditions that includes temperature, total pressure, and sulfur removing agent partial pressure. The regenerating is carried out at a temperature generally in the range of from about 100° F. to about 1500° F., preferably in the range of from about 800° F. to about 1200° F. Total pressure is generally in the range of from about 25 pounds per square inch absolute (psia) to about 500 psia. The sulfur removing agent partial pressure is generally in the range of from about 1 percent to about 100 percent of the total pressure. [0056]
  • The sulfur removing agent, i.e., regenerating agent, is a composition(s) that helps to generate gaseous sulfur-containing compounds and oxygen-containing compounds such as sulfur dioxide, as well as to burn off any remaining hydrocarbon deposits that might be present. The preferred sulfur removing agent, i.e., regenerating agent, suitable for use in the regeneration zone is oxygen or an oxygen-containing gas(es) such as air. Such regeneration is carried out for a time sufficient to achieve the desired level of regeneration. Such regeneration can generally be achieved in a time period in the range of from about 0.1 hour to about 24 hours, preferably in the range of from about 0.5 hour to about 3 hours. [0057]
  • In carrying out the process of the present invention, a stripper zone can be inserted before and/or after, preferably before, regenerating the sulfurized sorbent composition in the regeneration zone. Such stripper zone, preferably utilizing a stripping agent, will serve to remove a portion, preferably all, of any hydrocarbon(s) from the sulfurized sorbent composition. Such stripper zone can also serve to remove oxygen and sulfur dioxide from the system prior to introduction of the regenerated sorbent composition into the activation zone. Such stripping employs a set of conditions that includes total pressure, temperature, and stripping agent partial pressure. [0058]
  • Preferably, the stripping, when employed, is carried out at a total pressure in the range of from about 25 pounds per square inch absolute (psia) to about 500 psia. The temperature for such stripping can be in the range of from about 100° F. to about 1000° F. Such stripping is carried out for a time sufficient to achieve the desired level of stripping. Such stripping can generally be achieved in a time period in the range of from about 0.1 hour to about 4 hours, preferably in the range of from about 0.3 hour to about 1 hour. The stripping agent is a composition(s) that helps to remove a hydrocarbon(s) from the sulfurized sorbent composition. Preferably, the stripping agent is nitrogen. [0059]
  • After regeneration, and optionally stripping, the desulfurized sorbent composition is then subjected to reducing, i.e., activating, in an activation zone with a reducing agent, preferably hydrogen, so that at least a portion of the unreduced noble metal incorporated on, in, or with the sorbent composition is reduced to thereby provide a reduced sorbent composition comprising a reduced-valence noble metal. Such reduced-valence noble metal is incorporated on, in, or with such sorbent composition in an amount that provides for the removal of sulfur from the hydrocarbon-containing fluid according to a process of the present invention. [0060]
  • In general, when practicing the process of the present invention, the reducing, i.e., activating, of the desulfurized sorbent composition is carried out at a temperature in the range of from about 100° F. to about 1500° F. and at a pressure in the range of from about 15 pounds per square inch absolute (psia) to about 1500 psia. Such reduction is carried out for a time sufficient to achieve the desired level of noble metal reduction. Such reduction can generally be achieved in a time period in the range of from about 0.01 hour to about 20 hours. [0061]
  • Following the reducing, i.e., activating, of the regenerated, desulfurized sorbent composition, at least a portion of the resulting reduced (i.e., activated) sorbent composition can be returned to the desulfurization zone. [0062]
  • When carrying out the desulfurization process of the present invention, the steps of desulfurizing, regenerating, reducing (i.e., activating), and optionally stripping before and/or after such regenerating, can be accomplished in a single zone or vessel or in multiple zones or vessels. The desulfurization zone can be any zone wherein desulfurizing a hydrocarbon-containing fluid such as cracked-gasoline, diesel fuel or the like can take place. The regeneration zone can be any zone wherein regenerating or desulfurizing a sulfurized sorbent composition can take place. The activation zone can be any zone wherein reducing, i.e., activating, a regenerated, desulfurized sorbent composition can take place. Examples of suitable zones are fixed bed reactors, moving bed reactors, fluidized bed reactors, transport reactors, reactor vessels and the like. [0063]
  • When carrying out the process of the present invention in a fixed bed reactor system, the steps of desulfurizing, regenerating, reducing, and optionally stripping before and/or after such regenerating are accomplished in a single zone or vessel. When carrying out the process of the present invention in a fluidized bed reactor system, the steps of desulfurizing, regenerating, reducing, and optionally stripping before and/or after such regenerating are accomplished in multiple zones or vessels. [0064]
  • When the desulfurized hydrocarbon-containing fluid resulting from the practice of a process of the present invention is a desulfurized cracked-gasoline, such desulfurized cracked-gasoline can be used in the formulation of gasoline blends to provide gasoline products suitable for commercial consumption and can also be used where a cracked-gasoline containing low levels of sulfur is desired. [0065]
  • When the desulfurized hydrocarbon-containing fluid resulting from the practice of a process of the present invention is a desulfurized diesel fuel, such desulfurized diesel fuel can be used in the formulation of diesel fuel blends to provide diesel fuel products suitable for commercial consumption and can also be used where a diesel fuel containing low levels of sulfur is desired. [0066]
  • The following example is presented to further illustrate this invention and is not to be construed as unduly limiting the scope of this invention. [0067]
  • EXAMPLE
  • This example demonstrates that a noble metal-promoted sorbent composition comprising a reduced-valence noble metal, zinc oxide, alumina, and silica is effective to desulfurize cracked-gasoline. [0068]
  • Batch 1 of the support for the inventive sorbent was made by mixing 22.0 lbs. of distilled water and 315.79 grams of acetic acid in a Cowles dissolver to create a water/acid solution. A 6.375 lb. quantity of aluminum hydroxide powder (Disperal Alumina Powder, available from CONDEA Vista Company, Houston, Tex.) was added to the water/acid solution and mixed for 30 minutes to create an alumina slurry. A 20.02 lb. quantity of diatomaceous earth (Celite™ Filter Cell, available from Mansville Sale Corporation, Lampoc, Calif.) and a 25.03 lb. quantity of zinc oxide powder (available from Zinc Corporation, Monaca, Pa.) were mixed together for 15 minutes to create powdered mixture. The powdered mixture was slowly added to the alumina slurry over a period of about 15 minutes and then mixed for about 25 minutes to create a sorbent base slurry. [0069]
  • The sorbent base slurry was then formed into sorbent base particulate using a counter-current spray drier (Niro Atomizer Model 68, available from Niro Atomizer Inc., Columbia, Md.). The sorbent base slurry was charged to the spray drier wherein it was contacted in a particulating chamber with air flowing through the chamber. The air flowing through the chamber had an inlet temperature of approximately 320° C. and an outlet temperature of approximately 140° C., and operated to partially dry the sorbent base slurry into a sorbent base particulate. The sorbent base particulate was then further dried in an oven by ramping the oven temperature at 3° C./min to 150° C. and holding at 150° C. for 1 hour. The dried sorbent base particulate was then calcined by ramping the oven temperature at 5° C./min to 635° C. and holding at 635° C. for 1 hour. [0070]
  • Batches 2, 3, and 4 of the sorbent support were made using the same process as Batch 1, except the powdered mixture and alumina slurry were mixed for 30 minutes, rather than 25 minutes, to make the sorbent base slurry. The sorbent base particulate of Batches 1-4 were then mixed together prior to impregnation with the noble metal promoter. [0071]
  • A 90 gram quantity of the mixed sorbent base particulate of Batches 1-4 was then impregnated with 27 grams of a tetraamine platinum (II) nitrate solution (containing 2% Pt) using incipient wetness techniques and dried for 30 minutes using a blow drier. The impregnated sorbent was then put in an oven and further dried by ramping the oven temperature at 2° C./min to 120° C. and holding at 120° C. for 1 hour. The dried sorbent was then calcined by ramping the oven temperature at 2° C./min to 510° C. and holding at 510° C. for 1 hour. The resulting noble metal-promoted sorbent contained about 0.6 wt. % platinum. [0072]
  • The platinum-promoted sorbent was then sieved to provide a 10 gram quantity of platinum-promoted sorbent which passed through the 50 mesh sieve but was retained above the 230 mesh sieve (i.e., −50/+230 mesh). The 10 gram quantity of platinum-promoted sorbent was placed in a reactor (1 inch I.D. fluidized bed reactor with clam shell heater) and heated to 700° F. in flowing nitrogen at a rate of 150 cc/min for a period of 30 minutes. The nitrogen was then turned off and hydrogen was charged to the 700° F. reactor at a rate of 300 cc/min for 75 minutes to reduce the platinum-promoted sorbent. [0073]
  • Catalytically cracked gasoline (CCG) having a sulfur content of 345 ppmw was then charged to the 728° F. reactor at a rate of 13.4 ml/hr. Simultaneously with the CCG, nitrogen and hydrogen were charged to the reactor at 150 cc/min and 150 cc/min, respectively. After 1 hour, a 9.54 gram effluent sample was taken from the 749° F. reactor and designated Sample 1 A. After 2 hours, a 10.21 gram effluent sample was taken from the 759° F. reactor and designed Sample 2A. After 3 hours, a 13.35 gram effluent sample was taken from the 739° F. reactor and designated Sample 3A. After 4 hours, a 12.41 gram effluent sample was taken from the 714° F. reactor and designated Sample 4A. [0074]
  • The CCG and hydrogen flow to the reactor was then terminated and the reactor temperature was reduced to about 230° C. The reactor temperature was then increased to 900° F. in flowing nitrogen at 240 cc/min over a period of 45 minutes. The platinum-promoted sorbent was then oxidized by charging air to the 907° F. reactor at 60 cc/min for 75 minutes. The air was then turned off and the reactor temperature was reduced to, and maintained at, 700° F. for 20 minutes. Hydrogen was then charged to the 720° F. reactor at a rate of 300 cc/min for 83 minutes to reduce the platinum-promoted sorbent. CCG having a sulfur content of 345 ppmw was then charged to the 720° F. reactor at a rate of 13.4 ml/hr, along with nitrogen and hydrogen flowing at a rate of 240 cc/min and 300 cc/min, respectively. After 1 hour, a 7.7 gram effluent sample was taken from the 759° F. reactor and designated Sample 1 B. After 2 hours, a 15.72 gram effluent sample was taken from the 767° F. reactor and designated Sample 2B. After 3 hours, a 11.04 gram effluent sample was taken from the 768° F. reactor and designated Sample 3B. After 4 hours, a 9.47 gram effluent sample was taken from the 766° F. reactor and designated Sample 4B. The CCG and hydrogen flow to the reactor was then terminated and the reactor temperature was reduced to about 230° C. [0075]
  • Samples 1A-4A (Cycle A) and 1B-4B (Cycle B) were then analyzed for sulfur content using x-ray fluorescence. The results are summarized in Table 1. [0076]
    TABLE 1
    Desulfurization of CCG Containing
    345 ppmw Sulfur with Reduced-Valence Platinum-Promoted Sorbent
    Cycle A Cycle B
    Sample (ppmw Sulfur) (ppmw Sulfur)
    1 5 5
    2 <5 10
    3 10 15
    4 45 15
  • As can readily be seen from Table 1, the reduced-valence noble metal-promoted sorbent composition of the present invention is effective for removing sulfur from catalytically cracked gasoline. [0077]
  • Reasonably variations, modifications, and adaptations can be made within the scope of this disclosure and the appended claims without departing from the scope of this invention. [0078]

Claims (51)

1. A sorbent composition suitable for removing sulfur from a hydrocarbon-containing fluid, said sorbent composition comprising:
a reduced-valence noble metal;
zinc oxide; and
a carrier.
2. A sorbent composition in accordance with claim 1 wherein said reduced-valence noble metal has a valence which is less than the valence of the metal of the reduced-valence noble metal in its common oxidized state.
3. A sorbent composition in accordance with claim 2 wherein said reduced-valence noble metal is present in the range of from about 0.01 to about 25 weight percent.
4. A sorbent composition in accordance with claim 3 wherein said zinc oxide is present in the range of from about 10 to about 90 weight percent.
5. A sorbent composition in accordance with claim 4 wherein said carrier comprises an inorganic carrier.
6. A sorbent composition in accordance with claim 5 wherein said inorganic carrier is selected from the group consisting of silica, silica gel, alumina, diatomaceous earth, expanded perlite, kieselguhr, silica-alumina, titania, zirconia, zinc aluminate, zinc titanate, zinc silicate, magnesium aluminate, magnesium titanate, synthetic zeolites, natural zeolites, and combinations of two or more thereof.
7. A sorbent composition in accordance with claim 6 wherein said inorganic carrier comprises a silica compound and an alumina compound.
8. A sorbent composition in accordance with claim 7 wherein said silica compound is present in an amount in the range of from about 5 to about 85 weight percent and wherein said alumina compound is present in an amount in the range of from about 1 to about 30 weight percent.
9. A sorbent composition in accordance with claim 8 wherein said reduced-valence noble metal is selected from the group consisting of platinum, palladium, rhodium, ruthenium, osminium, iridium, and combinations thereof.
10. A sorbent composition in accordance with claim 1 wherein said reduced-valence noble metal has a valence of less than 2.
11. A sorbent composition in accordance with claim 10 wherein said reduced-valence noble metal is present in an amount in the range of from about 0.1 to about 10 weight percent and wherein said zinc oxide is present in an amount in the range of from about 15 to about 80 weight percent.
12. A sorbent composition in accordance with claim 11 wherein said carrier comprises a silica compound and an alumina compound.
13. A sorbent composition in accordance with claim 12 wherein said alumina compound is present in an amount in the range of from about 5 to about 20 weight percent and wherein said silica compound is present in an amount in the range of from about 10 percent to about 60 weight percent.
14. A sorbent composition in accordance with claim 1 wherein said reduced-valence noble metal has a valence of zero.
15. A sorbent composition in accordance with claim 14 wherein said reduced-valence noble metal comprises platinum.
16. A sorbent composition in accordance with claim 1 wherein said sorbent composition is a particulate in the form of a microsphere having a mean particle size in the range of from about 1 micrometer to about 500 micrometers.
17. Canceled.
18. Canceled.
19. Canceled.
20. Canceled.
21. Canceled.
22. Canceled.
23. Canceled.
24. Canceled.
25. Canceled.
26. Canceled.
27. Canceled.
28. Canceled.
29. Canceled.
30. Canceled.
31. Canceled.
32. Canceled.
33. Canceled.
34. A process for removing sulfur from a hydrocarbon-containing fluid stream, said process comprising the steps of:
(a) contacting said hydrocarbon-containing fluid stream with a sorbent composition comprising a reduced-valence noble metal and a support in a desulfurization zone under conditions such that there is formed a desulfurized fluid stream and a sulfurized sorbent;
(b) separating said desulfurized fluid stream from said sulfurized sorbent;
(c) regenerating at least a portion of the separated sulfurized sorbent in a regeneration zone so as to remove at least a portion of the sulfur therefrom and provide a desulfurized sorbent;
(d) reducing said desulfurized sorbent in an activation zone to provide a reduced sorbent composition which will affect the removal of sulfur from said hydrocarbon-containing fluid stream when contacted with the same; and
(e) returning at least a portion of said reduced sorbent composition to said desulfurization zone.
35. A process in accordance with claim 34 wherein said support comprises zinc oxide, alumina, and silica.
36. A process in accordance with claim 35 wherein said sorbent composition comprises said reduced-valence noble metal in an amount in the range of from about 0.01 to about 25 weight percent, said zinc oxide in an amount in the range of from about 10 to about 90 weight percent, said alumina in an amount in the range of from about 1 to about 30 weight percent, and said silica in an amount in the range of from about 5 to about 85 weight percent.
37. A process in accordance with claim 36 wherein said reduced-valence noble metal component comprises platinum.
38. A process in accordance with claim 34 wherein said contacting is carried out at a temperature in the range of from about 100° F. to about 1000° F. and a pressure in the range of from about 15 to about 1500 psia.
39. A process in accordance with claim 34 wherein said regeneration is carried out at a temperature in the range of from about 100° F. to about 1500° F. and a pressure in the range of from about 25 to about 500 psia.
40. A process in accordance with claim 39 wherein there is employed air as a regeneration agent in said regeneration zone.
41. A process in accordance with claim 34 wherein said desulfurized sorbent is subjected to reduction with hydrogen in said activation zone, said activation zone being maintained at a temperature in the range of from about 100° F. to about 1500° F. and a pressure in the range of from about 15 to about 1500 psia.
42. A process in accordance with claim 34 wherein the separated sulfurized sorbent is stripped prior to introduction to said regeneration zone.
43. A process in accordance with claim 34 wherein said desulfurized sorbent is stripped prior to introduction into said activation zone.
44. A process in accordance with claim 34 wherein said reduced-valence noble metal has a valence of less than 2.
45. A process in accordance with claim 34 wherein said reduced-valence noble metal has a valence of zero.
46. A process in accordance with claim 45 wherein said reduced-valence noble metal compound comprises platinum.
47. A process in accordance with claim 34 wherein said hydrocarbon-containing fluid stream is cracked-gasoline.
48. A process in accordance with claim 34 wherein said hydrocarbon-containing fluid stream is diesel.
49. The product produced by the process of claim 47.
50. The product produced by the process of claim 48.
51. A sorbent composition suitable for removing sulfur from a hydrocarbon-containing fluid, said sorbent composition comprising:
a reduced-valence noble metal;
zinc oxide; and
a carrier;
wherein said reduced-valence noble metal is present in the range of from about 1.01 to about 25 weight percent.
US10/864,202 2001-10-12 2004-06-09 Desulfurization and novel sorbent for same Abandoned US20040222133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/864,202 US20040222133A1 (en) 2001-10-12 2004-06-09 Desulfurization and novel sorbent for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/976,195 US6803343B2 (en) 2001-10-12 2001-10-12 Desulfurization and novel sorbent for same
US10/864,202 US20040222133A1 (en) 2001-10-12 2004-06-09 Desulfurization and novel sorbent for same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/976,195 Continuation US6803343B2 (en) 2001-10-12 2001-10-12 Desulfurization and novel sorbent for same

Publications (1)

Publication Number Publication Date
US20040222133A1 true US20040222133A1 (en) 2004-11-11

Family

ID=25523845

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/976,195 Expired - Lifetime US6803343B2 (en) 2001-10-12 2001-10-12 Desulfurization and novel sorbent for same
US10/864,202 Abandoned US20040222133A1 (en) 2001-10-12 2004-06-09 Desulfurization and novel sorbent for same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/976,195 Expired - Lifetime US6803343B2 (en) 2001-10-12 2001-10-12 Desulfurization and novel sorbent for same

Country Status (1)

Country Link
US (2) US6803343B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100062925A1 (en) * 2008-09-11 2010-03-11 China Petroleum & Chemical Corporation Method of inhibiting in situ silicate formation in desulfurization sorbents

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7427581B2 (en) * 1999-12-14 2008-09-23 China Petroleum & Chemical Corporation Desulfurization process and novel bimetallic sorbent systems for same
EP1337606A4 (en) * 2000-09-11 2005-01-19 Res Triangle Inst Process for desulfurizing hydrocarbon fuels and fuel components
US20030114299A1 (en) * 2001-11-28 2003-06-19 Khare Gyanesh P. Desulfurization and novel sorbent for same
AU2003299027A1 (en) * 2002-09-23 2004-04-08 Shell Internationale Research Maatschappij B.V. Catalyst particles and its use in desulphurisation
DE10361503A1 (en) * 2003-12-23 2005-07-28 Basf Ag Process for the preparation of an ethylamine
CN101119796B (en) * 2005-01-06 2010-11-17 研究三角协会 Zinc oxide based adsorption agent and method of making and using same
US20060277820A1 (en) * 2005-06-13 2006-12-14 Puri Suresh K Synergistic deposit control additive composition for gasoline fuel and process thereof
US20060277819A1 (en) * 2005-06-13 2006-12-14 Puri Suresh K Synergistic deposit control additive composition for diesel fuel and process thereof
US8222180B2 (en) * 2005-08-01 2012-07-17 Indian Oil Corporation Limited Adsorbent composition for removal of refractory sulphur compounds from refinery streams and process thereof
US7682424B2 (en) * 2008-01-31 2010-03-23 Conocophillips Company Contaminant removal from a gas stream
DE102009029567A1 (en) 2008-10-02 2010-04-08 Basf Se Process for depleting sulfur and / or sulfur-containing compounds from a biochemically produced organic compound
RU2517639C2 (en) * 2008-12-31 2014-05-27 Чайна Петролеум & Кемикал Корпорейшн Adsorbent, method for production thereof and method of removing sulphur from cracked petrol or diesel fuel
WO2013065007A1 (en) 2011-11-03 2013-05-10 Indian Oil Corporation Ltd. Nano structured adsorbent for removal of sulphur from diesel and gasoline like fuels and process for preparing the same
CN116408104A (en) * 2021-12-29 2023-07-11 中国石油天然气股份有限公司 Adsorption desulfurization catalyst and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654317A (en) * 1985-07-03 1987-03-31 Northwestern University Dispersion enhanced metal/zeolite catalysts
US5439583A (en) * 1984-10-31 1995-08-08 Chevron Research And Technology Company Sulfur removal systems for protection of reforming crystals
US5776331A (en) * 1995-06-07 1998-07-07 Phillips Petroleum Company Process to remove sulfur using zinc containing sorbent subjected to steam treatment
US5792438A (en) * 1996-08-20 1998-08-11 The Sulfatreat Company Process and composition for increasing the reactivity of sulfur scavenging iron oxides
US5914292A (en) * 1994-03-04 1999-06-22 Phillips Petroleum Company Transport desulfurization process utilizing a sulfur sorbent that is both fluidizable and circulatable and a method of making such sulfur sorbent
US5935420A (en) * 1996-08-23 1999-08-10 Exxon Research And Engineering Co. Desulfurization process for refractory organosulfur heterocycles
US6068824A (en) * 1993-02-04 2000-05-30 Nippon Shokubai Co., Ltd. Adsorbent for nitrogen oxides and method for removal of nitrogen oxides by use thereof
US6649043B1 (en) * 1996-08-23 2003-11-18 Exxonmobil Research And Engineering Company Regeneration of hydrogen sulfide sorbents

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254766B1 (en) * 1999-08-25 2001-07-03 Phillips Petroleum Company Desulfurization and novel sorbents for same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439583A (en) * 1984-10-31 1995-08-08 Chevron Research And Technology Company Sulfur removal systems for protection of reforming crystals
US4654317A (en) * 1985-07-03 1987-03-31 Northwestern University Dispersion enhanced metal/zeolite catalysts
US6068824A (en) * 1993-02-04 2000-05-30 Nippon Shokubai Co., Ltd. Adsorbent for nitrogen oxides and method for removal of nitrogen oxides by use thereof
US5914292A (en) * 1994-03-04 1999-06-22 Phillips Petroleum Company Transport desulfurization process utilizing a sulfur sorbent that is both fluidizable and circulatable and a method of making such sulfur sorbent
US5776331A (en) * 1995-06-07 1998-07-07 Phillips Petroleum Company Process to remove sulfur using zinc containing sorbent subjected to steam treatment
US5792438A (en) * 1996-08-20 1998-08-11 The Sulfatreat Company Process and composition for increasing the reactivity of sulfur scavenging iron oxides
US5935420A (en) * 1996-08-23 1999-08-10 Exxon Research And Engineering Co. Desulfurization process for refractory organosulfur heterocycles
US6649043B1 (en) * 1996-08-23 2003-11-18 Exxonmobil Research And Engineering Company Regeneration of hydrogen sulfide sorbents

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100062925A1 (en) * 2008-09-11 2010-03-11 China Petroleum & Chemical Corporation Method of inhibiting in situ silicate formation in desulfurization sorbents
US7951740B2 (en) 2008-09-11 2011-05-31 China Petroleum & Chemical Corporation Method of inhibiting in situ silicate formation in desulfurization sorbents

Also Published As

Publication number Publication date
US6803343B2 (en) 2004-10-12
US20030070966A1 (en) 2003-04-17

Similar Documents

Publication Publication Date Title
US6955752B2 (en) Desulfurization and novel sorbents for same
AU768728B2 (en) Desulfurization and novel sorbents for same
AU767207B2 (en) Desulfurization process and novel bimetallic sorbent systems for same
CA2370627C (en) Sorbent composition, process for producing same and use in desulfurization
US6914033B2 (en) Desulfurization and novel compositions for same
US6992041B1 (en) Deep desulfurization catalyst, method for preparing the same and method for desulfurization using the same
US20060081499A1 (en) Desulfurization and novel sorbent for same
AU2001265256A1 (en) Desulfurization and sorbents for same
US6803343B2 (en) Desulfurization and novel sorbent for same
US7105140B2 (en) Desulfurization compositions
US20040007498A1 (en) Desulfurization and novel compositions for same
US20030047489A1 (en) Desulfurization and novel sorbent for same
US20030166465A1 (en) Desulfurization process and novel bimetallic sorbent systems for same
US20040178117A1 (en) Desulfurization and novel compositions for same
WO2002018517A1 (en) Desulfurization and novel sorbents for same
US20030118495A1 (en) Desulfurization and novel sorbent for same
US20040040890A1 (en) Desulfurization and novel compositions for same
US7220704B2 (en) Desulfurization and novel compositions for same
US20030183802A1 (en) Desulfurization and novel compositions for same
US20030183803A1 (en) Desulfurization and novel compositions for same
US20040038816A1 (en) Desulfurization and novel compositions for same
US20040040887A1 (en) Desulfurization and novel compositions for same
US20040007130A1 (en) Desulfurization and novel compositions for same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION