US20040217892A1 - Method for reducing spikes in a digital-to-analog converter - Google Patents

Method for reducing spikes in a digital-to-analog converter Download PDF

Info

Publication number
US20040217892A1
US20040217892A1 US10/604,896 US60489603A US2004217892A1 US 20040217892 A1 US20040217892 A1 US 20040217892A1 US 60489603 A US60489603 A US 60489603A US 2004217892 A1 US2004217892 A1 US 2004217892A1
Authority
US
United States
Prior art keywords
digital
voltage signal
analog converter
digit
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/604,896
Other versions
US6819277B1 (en
Inventor
Jen-Yi Hu
Wein-Town Sun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AU Optronics Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Assigned to AU OPTRONICS CORP. reassignment AU OPTRONICS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HU, JEN-YI, SUN, WEIN-TOWN
Publication of US20040217892A1 publication Critical patent/US20040217892A1/en
Application granted granted Critical
Publication of US6819277B1 publication Critical patent/US6819277B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/68Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits
    • H03M1/682Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits both converters being of the unary decoded type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/76Simultaneous conversion using switching tree
    • H03M1/765Simultaneous conversion using switching tree using a single level of switches which are controlled by unary decoded digital signals

Definitions

  • the invention relates to a method for reducing spikes in a digital-to-analog converter, and more particularly, to a method for setting a digit circuit that corresponds to a predetermined bit of the digital voltage signal with least signal variation closest to an output module for reducing spikes in a digital-to-analog converter.
  • LCD liquid crystal display devices
  • LTPS LCD Low-temperature Poly Silicon LCD
  • the spikes are generally generated from the power source.
  • DC/DC converter for suppressing effects of spike noise Tateishi et al. disclose an AC/DC transformer for erasing spikes.
  • display systems for achieving advantages of power saving, integrity, and cost effectiveness, more LCD systems adopt the digital type of input data so that the digital-to-analog converter should be involved in the data driver. Therefore, the quality of the LCD system relies on the transformation process in the digital-to-analog converter. During the transformation process, spikes generated in the digital-to-analog converter are significantly related to the quality of display since the spikes would lead to the unstable displaying and redundant power consumption.
  • FIG. 1 is a schematic diagram of an R-string digital-to-analog converter 10 according to the prior art.
  • the digital-to-analog converter 10 is a 3-to-3 R-string digital-to-analog converter 10 for transforming a 6-bit digital voltage signal into an analog voltage signal.
  • the digital-to-analog converter 10 includes a receiving circuit 12 , six digit circuits 14 - 19 , a reference circuit 20 , and an output module 22 .
  • the receiving circuit 12 is used for receiving the 6-bit digital voltage signal, and for respectively being electrically connected to the six digit circuits 14 - 19 .
  • the reference circuit 20 is used to provide nine different reference voltages for the six digit circuits 14 - 19 .
  • the nine different reference voltages are respectively 0V, 0.5V, 1V, 1.5V, 2V, 2.5V, 3V, 3.5V, and 4V.
  • the six digit circuits 14 - 19 include a first digit circuit 14 to a sixth digit circuit 19 , and the six digit circuits 14 - 19 (the first digit circuit 14 to the sixth digit circuit 19 ) respectively correspond to six bits of the digital voltage signal (a first bit to a sixth bit).
  • the first digit circuit 14 corresponds to the first bit of the digital voltage signal.
  • each digit circuit includes a plurality of transistors.
  • the fourth digit circuit 17 to the sixth digit circuit 19 respectively include sixteen PMOS transistors or NMOS transistors
  • the first digit circuit 14 to the third digit circuit 16 respectively include eight PMOS transistors or NMOS transistors
  • the six digit circuits combined with resistors as shown in FIG. 1 can operate a voltage-separating function and transform the digital voltage signal into an analog voltage signal corresponding to the digital voltage signal. Afterwards, after a related current will flow to the output module 22 , the output module 22 can output the transformed analog voltage signal to a data line.
  • the magnitude of the analog voltage signal determines the light intensity of a pixel in a panel.
  • the output module 22 further includes a loading resistor 24 , which is an essential element for the digital-to-analog converter 10 , used for impedance matching.
  • the third digit circuit 16 (corresponding to the third bit of the digital voltage signal is closest to the output module 22 .
  • the composition and arrangement of the PMOS transistors and the NMOS transistors are predetermined and unchangeable.
  • the fourth digit circuit 17 corresponding to the fourth bit of the digital voltage signal includes eight PMOS transistors and eight NMOS transistors, and the arrangement of the PMOS transistors and the NMOS transistors in the fourth digit circuit 17 should conform to the embodiment shown in FIG. 1.
  • the first digit circuit 14 to the third digit circuit 16 (corresponding to the first bit to the third bit of the digital voltage signal) respectively includes four PMOS transistors and four NMOS transistors, however, the arrangements of the first digit circuit 14 to the third digit circuit 16 are different.
  • FIG. 2 is a simulation diagram of the outputted analog voltage signal of the prior-art R-string digital-to-analog converter 10 shown in FIG. 1.
  • the horizontal axis represents variation of time, and the vertical axis represents variation of an output voltage.
  • the value of the analog voltage signal can reflect serious spike interference, and the maximum spike value can reach 3V, which is even larger than the original value of the analog voltage signal.
  • the minimum spike value is 0.6V. Therefore, the above-mentioned spike interference may cause unstable displaying detected by bare eyes and significantly redundant power consumption.
  • the spikes mainly come from the loading resistor 24 included in the output module 22 .
  • the loading resistor 24 is essential and unchangeable for the digital-to-analog converter 10 . Therefore, we have to find out a new method without modifying the loading resistor 24 to reduce spikes.
  • a method for transforming a digital voltage signal into an analog voltage signal to reduce spikes by utilizing a digital-to-analog converter comprises a plurality of digit circuits, wherein each digit circuit respectively corresponds to a bit of the digital voltage signal.
  • the method comprises: receiving the digital voltage signal; setting the digit circuit corresponding to a predetermined bit of the digital voltage signal closest to an output module; and outputting an analog voltage signal corresponding to the digital voltage signal; wherein the predetermined bit of the digital voltage signal is the bit with least signal variation among the bits of the digital voltage signal.
  • a digital-to-analog converter for transforming a digital voltage signal into an analog voltage signal.
  • the digital-to-analog converter comprises: a receiving circuit for receiving the digital voltage signal; a plurality of digit circuits electrically connected to the receiving circuit for transforming the digital voltage signal into an analog voltage signal corresponding to the digital voltage signal, each digit circuit corresponding to a bit of the digital voltage signal; and an output module electrically connected to a digit circuit that corresponds to a bit with least signal variation among the bits of the digital voltage signal for outputting the transformed analog voltage signal, the output module comprising a loading resistor for impedance matching.
  • FIG. 1 is a schematic diagram of an R-string digital-to-analog converter according to the prior art.
  • FIG. 2 is a simulation diagram of the outputted analog voltage signal of the R-string digital-to-analog converter shown in FIG. 1.
  • FIG. 3 is a schematic diagram of an R-string digital-to-analog converter according to the present invention.
  • FIG. 4 is a list diagram of a detailed embodiment of the structure shown in FIG. 3.
  • FIG. 5 is a simulation diagram of the outputted analog voltage signal of the R-string digital-to-analog converter shown in FIG. 3.
  • a digital image as a gray-scaled image, is composed of a plurality of signals of various frequencies, and the differences among those frequencies generally conform to a certain rule.
  • the digital image such as the gray-scaled image
  • the discovery is the most important base for the characteristics of the present invention.
  • FIG. 3 is a schematic diagram of an R-string digital-to-analog converter 30 according to the present invention.
  • the digital-to-analog converter 30 is a 3-to-3 R-string digital-to-analog converter 30 for transforming a 6-bit digital voltage signal into an analog voltage signal.
  • the digital-to-analog converter 30 includes a receiving circuit 32 , six digit circuits 34 - 39 , a reference circuit 40 , and an output module 42 .
  • the receiving circuit 32 is used to receive the 6-bit digital voltage signal and the receiving circuit 32 is electrically connected to the six digit circuits 34 - 39 .
  • the reference circuit 40 is used to provide nine different reference voltage 40 a - 40 i , and the nine different reference voltages 40 a - 40 i are respectively 0V, 0.5V, 1V, 1.5V, 2V, 2.5V, 3V, 3.5V, and 4V.
  • the first digit circuit 34 to the sixth digit circuits 39 respectively corresponds to the first bit to the sixth bit of the digital voltage signal, and each digit circuit includes a plurality of transistors.
  • the fourth digit circuit 37 to the sixth digit circuits 39 respectively includes sixteen PMOS transistors or NMOS transistors (NMOS), and the first digit circuit 34 to the third digit circuit 36 (corresponding to the first bit to the third bit of the digital voltage signal) respectively includes eight PMOS transistors or NMOS transistors.
  • the major difference of the R-string digital-to-analog converter 30 of the present embodiment and the prior-art R-string the digital-to-analog converter 10 shown in FIG. 1 is the arrangement of the digit circuits.
  • the R-string digital-to-analog converter 30 shown in FIG. 3 is restricted to set the first digit circuit 34 (corresponding to the first bit of the digital voltage signal) closest to the output module 42 , and the first bit of the digital voltage signal is determined to be a bit with least signal variation among the six bits of the digital voltage signal.
  • the fourth digit circuit 37 to the sixth digit circuits 39 (corresponding to the fourth bit to the sixth bit of the digital voltage signal) will first determine two voltages, DACN and DACP.
  • the relation between the two voltages (DACN and DACP) and the fourth bit to the sixth bit of the digital voltage signal can refer to FIG. 4, which is a list diagram of a detailed embodiment of the structure shown in FIG. 3. As shown in FIG. 4,
  • the output module 42 can be used to output the transformed analog voltage signal to a data line. Similar to the prior-art structure shown in FIG. 1, in the R-string digital-to-analog converter 30 of the present invention, the output module 42 also includes an indispensable loading resistor 44 for impedance matching.
  • the first digit circuit 34 which corresponds to the first bit with least signal variation among the six bits of the digital voltage signal, is closest to the output module 42 .
  • the composition and arrangement of the PMOS transistors and the NMOS transistors are predetermined and unchangeable.
  • the fourth digit circuit 37 corresponding to the fourth bit of the digital voltage signal includes eight PMOS transistors and eight NMOS transistors, and the arrangement of the PMOS transistors and the NMOS transistors in the fourth digit circuit 37 should conform to the embodiment shown in FIG. 3. Compared with the embodiment shown in FIG.
  • the arrangements of transistors of the first digit circuit 34 to the sixth digit circuit 39 shown in FIG. 3 is respectively the same as the arrangements of the first digit circuit 14 to the sixth digit circuit 19 shown in FIG. 1.
  • arrangement of the PMOS transistors (P) and the NMOS transistors (N) in the first digit circuit 34 can be represented as “NNNNPPPP”, which is the same as that in the first digit circuit 14 shown in FIG. 1.
  • NNNPPPPPP the positions of the first digit circuit 14 and the third digit circuit 19 shown in FIG. 1 to achieve the present invention. Therefore, the first digit circuit 34 , which corresponds to the first bit with least signal variation among the six bits of the digital voltage signal, is closest to the output module 42 .
  • FIG. 5 is a simulation diagram of the outputted analog voltage signal of the R-string digital-to-analog converter 30 shown in FIG. 3.
  • the horizontal axis represents variation of time, and the vertical axis represents variation of an output voltage.
  • the value of the analog voltage signal can reflect serious spike interference, and the maximum spike value is 0.5V, which is much smaller than the maximum spike value shown in FIG. 2. Due to that the simulation results can truthfully reflect the real performances of the circuitry, the reduced spike magnitude means a great improvement for display quality by the present invention.
  • the loading resistor is essential and unchangeable for the digital-to-analog converter. Therefore, the present invention can provide an arrangement without modifying the loading resistor to effectively reduce spikes. That is, we can eliminate unstable displaying and redundant power consumption without the need of additional installation of electric devices.

Abstract

A method is used for reducing spikes in a digital-to-analog converter (DAC), which includes a plurality of digit circuits for transforming a digital voltage signal into an analog voltage signal. The method includes receiving the digital voltage signal,setting the digit circuit corresponding to a predetermined bit of the digital voltage signal closest to an output module, and outputting an analog voltage signal corresponding to the digital voltage signal, wherein the predetermined bit of the digital voltage signal is the bit with least signal variation among the bits of the digital voltage signal.

Description

    BACKGROUND OF INVENTION
  • 1. Field of the Invention [0001]
  • The invention relates to a method for reducing spikes in a digital-to-analog converter, and more particularly, to a method for setting a digit circuit that corresponds to a predetermined bit of the digital voltage signal with least signal variation closest to an output module for reducing spikes in a digital-to-analog converter. [0002]
  • 2. Description of the Prior Art [0003]
  • Liquid display devices(LCD), which are thin, flat panel display devices, can be found in a plethora of electronic goods, ranging from notebook computers and digital cameras to flight avionics and medical diagnostic tools. LCDs offer crisp, high-resolution images, and have the primary advantage of offering relatively low power-consumption rates while still maintaining good color contrast and screen refresh rates. In recent years, the newly developed low-temperature Poly Silicon LCD (LTPS LCD) can directly attach the driving circuit on the glass substrate so that the quantity of the driving circuits can be reduced, the package/material cost can be downsized, and the reliability and compactness of the commercialized products can be significantly increased. [0004]
  • In an electric circuit, the spikes are generally generated from the power source. In U.S. Pat. No. 6,348,783, “DC/DC converter for suppressing effects of spike noise”, Tateishi et al. disclose an AC/DC transformer for erasing spikes. Regarding display systems, for achieving advantages of power saving, integrity, and cost effectiveness, more LCD systems adopt the digital type of input data so that the digital-to-analog converter should be involved in the data driver. Therefore, the quality of the LCD system relies on the transformation process in the digital-to-analog converter. During the transformation process, spikes generated in the digital-to-analog converter are significantly related to the quality of display since the spikes would lead to the unstable displaying and redundant power consumption. Therefore, effective spike reduction in the digital-to-analog converter becomes a crucial topic for display systems. Nowadays, the type of the digital-to-analog converter in the display system includes the R-string digital-to-analog converter (R-string DAC), the C-string digital-to-analog converter (C-string DAC), and the mixed-type digital-to-analog converter. The R-string digital-to-analog converter most seriously suffers from the spikes. Please refer to FIG. 1, which is a schematic diagram of an R-string digital-to-[0005] analog converter 10 according to the prior art. The digital-to-analog converter 10 is a 3-to-3 R-string digital-to-analog converter 10 for transforming a 6-bit digital voltage signal into an analog voltage signal. As shown in FIG .1, the digital-to-analog converter 10 includes a receiving circuit 12, six digit circuits 14-19, a reference circuit 20, and an output module 22. The receiving circuit 12 is used for receiving the 6-bit digital voltage signal, and for respectively being electrically connected to the six digit circuits 14-19. The reference circuit 20 is used to provide nine different reference voltages for the six digit circuits 14-19. The nine different reference voltages are respectively 0V, 0.5V, 1V, 1.5V, 2V, 2.5V, 3V, 3.5V, and 4V. The six digit circuits 14-19 include a first digit circuit 14 to a sixth digit circuit 19, and the six digit circuits 14-19 (the first digit circuit 14 to the sixth digit circuit 19) respectively correspond to six bits of the digital voltage signal (a first bit to a sixth bit). For example the first digit circuit 14 corresponds to the first bit of the digital voltage signal. In addition, each digit circuit includes a plurality of transistors. For instance, the fourth digit circuit 17 to the sixth digit circuit 19 (respectively corresponding to the fourth bit to the sixth bit of the digital voltage signal) respectively include sixteen PMOS transistors or NMOS transistors, and the first digit circuit 14 to the third digit circuit 16 (respectively corresponding to the first bit to the third bit of the digital voltage signal) respectively include eight PMOS transistors or NMOS transistors When being implemented, the six digit circuits combined with resistors as shown in FIG. 1 can operate a voltage-separating function and transform the digital voltage signal into an analog voltage signal corresponding to the digital voltage signal. Afterwards, after a related current will flow to the output module 22, the output module 22 can output the transformed analog voltage signal to a data line. Therefore, the magnitude of the analog voltage signal determines the light intensity of a pixel in a panel. In addition, as shown in FIG. 1, the output module 22 further includes a loading resistor 24, which is an essential element for the digital-to-analog converter 10, used for impedance matching.
  • Please continue to refer to FIG. 1. In the prior-art digital-to-[0006] analog converter 10, the third digit circuit 16 (corresponding to the third bit of the digital voltage signal is closest to the output module 22. Actually, according to the prior art, there is no rule to determine which digit circuit should be closet to the output module 22 or farthest from the output module 22. Please notice that, in the R-string digital-to-analog converter 10, the composition and arrangement of the PMOS transistors and the NMOS transistors are predetermined and unchangeable. For instance, the fourth digit circuit 17corresponding to the fourth bit of the digital voltage signal includes eight PMOS transistors and eight NMOS transistors, and the arrangement of the PMOS transistors and the NMOS transistors in the fourth digit circuit 17 should conform to the embodiment shown in FIG. 1. Please notice that the first digit circuit 14 to the third digit circuit 16 (corresponding to the first bit to the third bit of the digital voltage signal) respectively includes four PMOS transistors and four NMOS transistors, however, the arrangements of the first digit circuit 14 to the third digit circuit 16 are different.
  • Please refer to FIG. 2, which is a simulation diagram of the outputted analog voltage signal of the prior-art R-string digital-to-[0007] analog converter 10 shown in FIG. 1. The horizontal axis represents variation of time, and the vertical axis represents variation of an output voltage. As shown in FIG. 2, the value of the analog voltage signal can reflect serious spike interference, and the maximum spike value can reach 3V, which is even larger than the original value of the analog voltage signal. Moreover, the minimum spike value is 0.6V. Therefore, the above-mentioned spike interference may cause unstable displaying detected by bare eyes and significantly redundant power consumption. After detailed analyses for the R-string digital-to-analog converter 10 shown in FIG. 1, we found that the spikes mainly come from the loading resistor 24 included in the output module 22. However, the loading resistor 24 is essential and unchangeable for the digital-to-analog converter 10. Therefore, we have to find out a new method without modifying the loading resistor 24 to reduce spikes.
  • SUMMARY OF INVENTION
  • It is therefore a primary objective of the claimed invention to provide a method for reducing spikes in the digital-to-analog converter to solve the above-mentioned problems. [0008]
  • In the claimed invention, based on the structure of an R-string digital-to-analog converter, we disclose an arrangement to set a digit circuit that corresponds to a predetermined bit of the digital voltage signal with least signal variation closest to an output module for reducing spikes in a digital-to-analog converter. Therefore, we can eliminate unstable displaying and redundant power consumption without the need of additional installation of electric devices. [0009]
  • According to the claimed invention, a method for transforming a digital voltage signal into an analog voltage signal to reduce spikes by utilizing a digital-to-analog converter is disclosed. The digital-to-analog converter comprises a plurality of digit circuits, wherein each digit circuit respectively corresponds to a bit of the digital voltage signal. The method comprises: receiving the digital voltage signal; setting the digit circuit corresponding to a predetermined bit of the digital voltage signal closest to an output module; and outputting an analog voltage signal corresponding to the digital voltage signal; wherein the predetermined bit of the digital voltage signal is the bit with least signal variation among the bits of the digital voltage signal. [0010]
  • According to the claimed invention, a digital-to-analog converter for transforming a digital voltage signal into an analog voltage signal is disclosed. The digital-to-analog converter comprises: a receiving circuit for receiving the digital voltage signal; a plurality of digit circuits electrically connected to the receiving circuit for transforming the digital voltage signal into an analog voltage signal corresponding to the digital voltage signal, each digit circuit corresponding to a bit of the digital voltage signal; and an output module electrically connected to a digit circuit that corresponds to a bit with least signal variation among the bits of the digital voltage signal for outputting the transformed analog voltage signal, the output module comprising a loading resistor for impedance matching. [0011]
  • These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment, which is illustrated in the various figures and drawings.[0012]
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic diagram of an R-string digital-to-analog converter according to the prior art. [0013]
  • FIG. 2 is a simulation diagram of the outputted analog voltage signal of the R-string digital-to-analog converter shown in FIG. 1. [0014]
  • FIG. 3 is a schematic diagram of an R-string digital-to-analog converter according to the present invention. [0015]
  • FIG. 4 is a list diagram of a detailed embodiment of the structure shown in FIG. 3. [0016]
  • FIG. 5 is a simulation diagram of the outputted analog voltage signal of the R-string digital-to-analog converter shown in FIG. 3.[0017]
  • DETAILED DESCRIPTION
  • First of all, a digital image, as a gray-scaled image, is composed of a plurality of signals of various frequencies, and the differences among those frequencies generally conform to a certain rule. During the forming process of the digital image, such as the gray-scaled image, we found that there is a bit of the digital voltage signal having with least signal variation (logic value varied from 0 to 1 or from 1 to 0) along the time (horizontal) axis. The discovery is the most important base for the characteristics of the present invention. Please refer to FIG. 3, which is a schematic diagram of an R-string digital-to-[0018] analog converter 30 according to the present invention. The digital-to-analog converter 30 is a 3-to-3 R-string digital-to-analog converter 30 for transforming a 6-bit digital voltage signal into an analog voltage signal. As shown in FIG. 3, the digital-to-analog converter 30 includes a receiving circuit 32, six digit circuits 34-39, a reference circuit 40, and an output module 42. The receiving circuit 32 is used to receive the 6-bit digital voltage signal and the receiving circuit 32 is electrically connected to the six digit circuits 34-39. The reference circuit 40 is used to provide nine different reference voltage 40 a-40 i, and the nine different reference voltages 40 a-40 i are respectively 0V, 0.5V, 1V, 1.5V, 2V, 2.5V, 3V, 3.5V, and 4V. The first digit circuit 34 to the sixth digit circuits 39 (in the six digit circuits 34-39) respectively corresponds to the first bit to the sixth bit of the digital voltage signal, and each digit circuit includes a plurality of transistors. For instance, the fourth digit circuit 37 to the sixth digit circuits39 (corresponding to the fourth bit to the sixth bit of the digital voltage signal) respectively includes sixteen PMOS transistors or NMOS transistors (NMOS), and the first digit circuit 34 to the third digit circuit 36 (corresponding to the first bit to the third bit of the digital voltage signal) respectively includes eight PMOS transistors or NMOS transistors. Please notice that the major difference of the R-string digital-to-analog converter 30 of the present embodiment and the prior-art R-string the digital-to-analog converter 10 shown in FIG. 1 is the arrangement of the digit circuits. According to the characteristics of the present invention, the R-string digital-to-analog converter 30 shown in FIG. 3 is restricted to set the first digit circuit 34 (corresponding to the first bit of the digital voltage signal) closest to the output module 42, and the first bit of the digital voltage signal is determined to be a bit with least signal variation among the six bits of the digital voltage signal.
  • When the 6-bit digital voltage signal is transmitted to the R-string digital-to-[0019] analog converter 30 from the receiving circuit 32, combined with the nine reference voltages 40 a-40 i provided by the reference circuit 40,the fourth digit circuit 37 to the sixth digit circuits 39 (corresponding to the fourth bit to the sixth bit of the digital voltage signal) will first determine two voltages, DACN and DACP. The relation between the two voltages (DACN and DACP) and the fourth bit to the sixth bit of the digital voltage signal can refer to FIG. 4, which is a list diagram of a detailed embodiment of the structure shown in FIG. 3. As shown in FIG. 4, there is a difference of 0.5V between the two voltages, DACN and DACP, and the voltage DACN is determined by the reference voltages 40b-40i(0.5V-4V), while the voltage DACP is determined by the reference voltages 40a-40h (0V-3.5V). Afterwards, by the operation of the resistors shown in FIG. 3, each resistor close to the third digit circuit 36 will have a voltage drop (0.5V/8=0.04V). Therefore, the first digit circuit 34 to the third digit circuit 36 corresponding to the first bit to the third bit of the digital voltage signal will determine a route to pass a voltage to the output module 42. The output module 42 can be used to output the transformed analog voltage signal to a data line. Similar to the prior-art structure shown in FIG. 1, in the R-string digital-to-analog converter 30 of the present invention, the output module 42 also includes an indispensable loading resistor 44 for impedance matching.
  • Please continue to refer to FIG. 3. In the digital-to-[0020] analog converter 30, the first digit circuit 34, which corresponds to the first bit with least signal variation among the six bits of the digital voltage signal, is closest to the output module 42. In addition, in the R-string digital-to-analog converter 30, the composition and arrangement of the PMOS transistors and the NMOS transistors are predetermined and unchangeable. For instance, the fourth digit circuit 37 corresponding to the fourth bit of the digital voltage signal includes eight PMOS transistors and eight NMOS transistors, and the arrangement of the PMOS transistors and the NMOS transistors in the fourth digit circuit 37 should conform to the embodiment shown in FIG. 3. Compared with the embodiment shown in FIG. 1, the arrangements of transistors of the first digit circuit 34 to the sixth digit circuit 39 shown in FIG. 3 is respectively the same as the arrangements of the first digit circuit 14 to the sixth digit circuit 19 shown in FIG. 1. For instance, arrangement of the PMOS transistors (P) and the NMOS transistors (N) in the first digit circuit 34 can be represented as “NNNNPPPP”, which is the same as that in the first digit circuit 14 shown in FIG. 1. In other words, we exchange the positions of the first digit circuit 14 and the third digit circuit 19 shown in FIG. 1 to achieve the present invention. Therefore, the first digit circuit 34, which corresponds to the first bit with least signal variation among the six bits of the digital voltage signal, is closest to the output module 42.
  • Please refer to FIG. 5, which is a simulation diagram of the outputted analog voltage signal of the R-string digital-to-[0021] analog converter 30 shown in FIG. 3. The horizontal axis represents variation of time, and the vertical axis represents variation of an output voltage. As shown in FIG. 5, the value of the analog voltage signal can reflect serious spike interference, and the maximum spike value is 0.5V, which is much smaller than the maximum spike value shown in FIG. 2. Due to that the simulation results can truthfully reflect the real performances of the circuitry, the reduced spike magnitude means a great improvement for display quality by the present invention. According to the above-mentioned problem, the loading resistor is essential and unchangeable for the digital-to-analog converter. Therefore, the present invention can provide an arrangement without modifying the loading resistor to effectively reduce spikes. That is, we can eliminate unstable displaying and redundant power consumption without the need of additional installation of electric devices.
  • Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims. [0022]

Claims (8)

1. A method for transforming a digital voltage signal into an analog voltage signal to reduce spikes by utilizing a digital-to-analog converter, the digital-to-analog converter comprising a plurality of digit circuits, the method comprising:
receiving the digital voltage signal;
setting the digit circuit corresponding to a predetermined bit of the digital voltage signal closest to an output module; and
outputting an analog voltage signal corresponding to the digital voltage signal;
wherein the predetermined bit of the digital voltage signal is the bit with least signal variation among the bits of the digital voltage signal.
2. The method of claim 1, wherein each digit circuit comprises a plurality of transistors.
3. The method of claim 1, wherein the digital-to-analog converter is an R-string digital-to-analog converter.
4. The method of claim 1, wherein the output module of the digital-to-analog converter comprises a loading resistor for impedance matching.
5. A digital-to-analog converter for transforming a digital voltage signal into an analog voltage signal, the digital-to-analog converter comprising:
a receiving circuit for receiving the digital voltage signal;
a plurality of digit circuits electrically connected to the receiving circuit for transforming the digital voltage signal into an analog voltage signal corresponding to the digital voltage signal; and
an output module comprising a loading resistor for impedance matching electrically connected to the digit circuits;
wherein one of the digit circuits with least signal variation among the bits of the digital voltage signal for outputting the transformed analog voltage signal is closest to the output module.
6. The digital-to-analog converter of claim 5, wherein each digit circuit comprises a plurality of transistors.
7. The digital-to-analog converter of claim 5 being an R-string digital-to-analog converter.
8. The digital-to-analog converter of claim 5 further comprising a reference circuit electrically connected to the plurality of digit circuits for providing a reference voltage for the plurality of digit circuits.
US10/604,896 2003-05-02 2003-08-25 Method for reducing spikes in a digital-to-analog converter Expired - Lifetime US6819277B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW092112076 2003-05-02
TW92112076A 2003-05-02
TW092112076A TWI221055B (en) 2003-05-02 2003-05-02 Method for reducing spikes in a DAC

Publications (2)

Publication Number Publication Date
US20040217892A1 true US20040217892A1 (en) 2004-11-04
US6819277B1 US6819277B1 (en) 2004-11-16

Family

ID=33308938

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/604,896 Expired - Lifetime US6819277B1 (en) 2003-05-02 2003-08-25 Method for reducing spikes in a digital-to-analog converter

Country Status (2)

Country Link
US (1) US6819277B1 (en)
TW (1) TWI221055B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1903684A1 (en) * 2006-09-22 2008-03-26 Samsung SDI Co., Ltd. Driving circuit and organic light emitting diode display device thereof
EP1921751A1 (en) * 2006-11-09 2008-05-14 Samsung SDI Co., Ltd. Data driver and organic light emitting diode display device thereof
US20080111839A1 (en) * 2006-11-09 2008-05-15 Park Yong-Sung Driving circuit and organic light emitting diode display device including the same
US20080218456A1 (en) * 2007-03-08 2008-09-11 Park Yong-Sung Driving circuit and organic light emitting display using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1490974A4 (en) * 2001-11-30 2006-02-22 Second Sight Medical Prod Inc Floating gate digital-to-analog converter
US7262727B1 (en) * 2006-06-12 2007-08-28 Chunghwa Picture Tubes, Ltd. Digital-to-analog data converter and method for conversion thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146882A (en) * 1976-08-24 1979-03-27 Intel Corporation Digital-to-analog converter employing two levels of decoding
US5274373A (en) * 1991-05-21 1993-12-28 Mitsubishi Denki Kabushiki Kaisha Digital analog converter
US5831566A (en) * 1996-05-07 1998-11-03 Vlsi Technology, Inc. Low voltage digital-to-analog converter
US5969657A (en) * 1997-07-22 1999-10-19 Analog Devices, Inc. Digital to analog converter
US6567026B1 (en) * 2000-06-22 2003-05-20 Analog Devices, Inc. Voltage scaling digital-to- analog converter with impedance strings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146882A (en) * 1976-08-24 1979-03-27 Intel Corporation Digital-to-analog converter employing two levels of decoding
US5274373A (en) * 1991-05-21 1993-12-28 Mitsubishi Denki Kabushiki Kaisha Digital analog converter
US5831566A (en) * 1996-05-07 1998-11-03 Vlsi Technology, Inc. Low voltage digital-to-analog converter
US5969657A (en) * 1997-07-22 1999-10-19 Analog Devices, Inc. Digital to analog converter
US6567026B1 (en) * 2000-06-22 2003-05-20 Analog Devices, Inc. Voltage scaling digital-to- analog converter with impedance strings

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1903684A1 (en) * 2006-09-22 2008-03-26 Samsung SDI Co., Ltd. Driving circuit and organic light emitting diode display device thereof
US20080074446A1 (en) * 2006-09-22 2008-03-27 Park Yong-Sung Driving circuit and organic light emitting diode display device thereof
US7868855B2 (en) * 2006-09-22 2011-01-11 Samsung Mobile Display Co., Ltd. Driving circuit and organic light emitting diode display device thereof
EP1921751A1 (en) * 2006-11-09 2008-05-14 Samsung SDI Co., Ltd. Data driver and organic light emitting diode display device thereof
US20080111839A1 (en) * 2006-11-09 2008-05-15 Park Yong-Sung Driving circuit and organic light emitting diode display device including the same
US20080111772A1 (en) * 2006-11-09 2008-05-15 Park Yong-Sung Data driver and organic light emitting diode display device thereof
US8378948B2 (en) 2006-11-09 2013-02-19 Samsung Display Co., Ltd. Driving circuit and organic light emitting diode display device including the same
US20080218456A1 (en) * 2007-03-08 2008-09-11 Park Yong-Sung Driving circuit and organic light emitting display using the same
US8054256B2 (en) * 2007-03-08 2011-11-08 Samsung Mobile Display Co., Ltd. Driving circuit and organic light emitting display using the same

Also Published As

Publication number Publication date
TWI221055B (en) 2004-09-11
US6819277B1 (en) 2004-11-16
TW200425620A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
US6384806B1 (en) Digital driver circuit for electro-optical device and electro-optical device having the digital driver circuit
JP4758332B2 (en) Liquid crystal display
US6236393B1 (en) Interface circuit and liquid crystal driving circuit
US8730223B2 (en) Source driver and display device having the same
US7239300B2 (en) Driving apparatus and display module
US20060103620A1 (en) Driver chip for a display device and display device having the same
US6344850B1 (en) Image data reconstructing device and image display device
US10796654B2 (en) Switching circuit, control circuit, display device, gate driving circuit and method
EP0768671A2 (en) Circuits, systems and methods for reducing power loss during transfer of data across a conductive line
JPH1068931A (en) Active matrix type liquid crystal display device
US10217431B2 (en) Display apparatus and method of driving the same
US6795050B1 (en) Liquid crystal display device
Sung et al. 10‐bit source driver with resistor‐resistor‐string digital‐to‐analog converter
JPH07199866A (en) Liquid crystal display device
US20110032245A1 (en) Source driver
US20080122875A1 (en) Liquid crystal display device and driving circuit and driving method of the same
US20040212578A1 (en) Display device
US6819277B1 (en) Method for reducing spikes in a digital-to-analog converter
KR100594655B1 (en) Line driver circuit, electro-optic device, and display device
US20080278090A1 (en) Reset Circuit for Power-On and Power-Off
JP2002341832A (en) Liquid crystal display device, liquid crystal driver, reference pulse generating circuit, pulse generating method and analog voltage outputting method
JP2002372957A (en) Line driving circuit, electrooptical device and display device
US7050033B2 (en) Low power source driver for liquid crystal display
JP2000131670A (en) Liquid crystal display device
US20030112071A1 (en) Driving method and related apparatus for improving power efficiency of an operational transconductance amplifier

Legal Events

Date Code Title Description
AS Assignment

Owner name: AU OPTRONICS CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HU, JEN-YI;SUN, WEIN-TOWN;REEL/FRAME:013898/0695

Effective date: 20030825

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12