US20040211648A1 - Multi-cell reciprocating conveyor slat and method of manufacture and non-continuous guide structure - Google Patents

Multi-cell reciprocating conveyor slat and method of manufacture and non-continuous guide structure Download PDF

Info

Publication number
US20040211648A1
US20040211648A1 US10/847,887 US84788704A US2004211648A1 US 20040211648 A1 US20040211648 A1 US 20040211648A1 US 84788704 A US84788704 A US 84788704A US 2004211648 A1 US2004211648 A1 US 2004211648A1
Authority
US
United States
Prior art keywords
slat
side portion
reciprocating
conveyor system
top portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/847,887
Inventor
Jan Verhaeghe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/847,887 priority Critical patent/US20040211648A1/en
Publication of US20040211648A1 publication Critical patent/US20040211648A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G25/00Conveyors comprising a cyclically-moving, e.g. reciprocating, carrier or impeller which is disengaged from the load during the return part of its movement
    • B65G25/04Conveyors comprising a cyclically-moving, e.g. reciprocating, carrier or impeller which is disengaged from the load during the return part of its movement the carrier or impeller having identical forward and return paths of movement, e.g. reciprocating conveyors
    • B65G25/06Conveyors comprising a cyclically-moving, e.g. reciprocating, carrier or impeller which is disengaged from the load during the return part of its movement the carrier or impeller having identical forward and return paths of movement, e.g. reciprocating conveyors having carriers, e.g. belts
    • B65G25/065Reciprocating floor conveyors

Definitions

  • the invention relates to a reciprocating floor assembly, wherein the floor comprises adjacent reciprocating slats that can be moved relative to one another in such a manner as to move a load or object disposed on the floor.
  • Reciprocating floor assemblies are particularly valued in the trucking, waste hauling, and shipping industries, where such reciprocating floors are used to load and unload cargo or transported commodities to assist personnel performing the loading or unloading operations or even to entirely obviate the need for such assistance in operations such as dumping transported waste.
  • conventional reciprocating slat conveyors include at least three groups of slats, which can be separately shifted relative to one another and driven in succession in one direction by means of a suitable driving means over a predetermined stroke length. In a returning stroke, the slats are withdrawn non-uniformly to an initial starting position to repeat the cycle, each cycle incrementally advancing the load in a desired direction.
  • Such reciprocating floor assemblies are shown in, for example, EP 0 721 901 A1 issued to Cargo Handling Systems B.V., incorporated herein by reference, and U.S. Pat. No. 5,638,943 issued to Foster.
  • Conventional slats for such systems are taught in, for example, U.S. Pat. Nos. 5,447,222, 6,013,585, and 6,019,215 issued to Raymond K. Foster.
  • These patents disclose, as shown in FIG. 1 of this application, a conveyor slat 10 having an upper portion and laterally spaced apart depending leg portions 24, 26, each with a laterally outwardly directed flange 28, 30.
  • These conveyor slats are provided on guide beams 12 having narrow mounting portions and wider upper portions. Inwardly directed flanges are disposed at the bottom of depending legs 24, 26 in a position corresponding to the narrowed portion of the guide beams.
  • a further object of the invention is to provide a reciprocating slat conveyor system which includes the pultruded slots of the inventor.
  • the present invention provides a slat for a reciprocating slat conveyor system comprising:
  • a slat body including a top portion, a first side portion, and a second side portion, the first and second side portions depending downwardly from opposite lengthwise sides of said top portion;
  • first side portion and second side portion each include projections extending toward an opposing side portion
  • top portion of the slat body comprises a plurality of closed cells, and wherein a bottom of the top portion, the first side portion, said second side portion, and the projections comprise an open cell.
  • the invention provides a continuous profile molding method for manufacturing a slat for a reciprocating slat conveyor system comprising the steps of:
  • thermoplastic or thermosetting resin onto said fibers
  • thermosetting resin moving the fibers bearing the thermosetting resin through a die, wherein the fibers bearing the thermo plastic or thermosetting resin are heated to a temperature sufficient to melt the resin and are compressed to form the slat body.
  • a reciprocating slat conveyor system having a plurality of adjacent conveyor slats mounted to be selectively reciprocated endwise, comprising:
  • a plurality of elongated slat bodies extending in and reciprocatingly moving in a first direction, the elongated slat bodies including a top portion, a first side portion, and a second side portion, the first and second side portions depending downwardly from opposite lengthwise sides of the top portion, wherein the first side portion and second side portion each include projections extending toward an opposing side portion, wherein the top portion of the slat body comprises a plurality of closed cells, and wherein a bottom of the top portions, the first side portion the second side portion, and the projections comprise an open cell; and
  • a plurality of guide blocks mounted to a top surface of cross members extending in a second direction perpendicular to said first direction.
  • FIG. 1 shows a cross-sectional view of a conventional reciprocating conveyor slat of the prior art
  • FIG. 2 shows a top-view of a conventional reciprocating conveyor slat continuous guide structure
  • FIG. 3 shows a cross-sectional view of the conventional reciprocating conveyor slat continuous guide structure of FIG. 2;
  • FIG. 4 shows an isometric view of a conventional reciprocating conveyor slat continuous guide structure and slat;
  • FIG. 5 shows another isometric view of a conventional reciprocating conveyor slat continuous guide structure and slat;
  • FIG. 6 shows a cross-sectional view of a multi-cell reciprocating conveyor slat and non-continuous guide structure in accord with the invention
  • FIG. 7 shows a side-view of a multi-cell reciprocating conveyor slat and guide non-continuous structure in accord with the invention
  • FIG. 8 shows another cross-sectional view of a multi-cell reciprocating conveyor slat, slat seal, and non-continuous guide structure in accord with the invention
  • FIG. 9 shows a cross-sectional view of a trailer-based reciprocating conveyor system utilizing the multi-cell reciprocating conveyor slats and non-continuous guide structures in accord with the invention
  • FIG. 10 shows a magnified view of the multi-cell reciprocating conveyor slats and non-continuous guide structures of FIG. 9;
  • FIG. 11 shows an isometric view of a drive system implementable with the invention
  • FIG. 12 shows an assembled view of a drive system of FIG. 10 implementable with the invention.
  • FIG. 13 shows one aspect of the attachment of the components of the reciprocating floor system in accord with the invention.
  • FIGS. 6-8 show a slat 600 for a reciprocating slat conveyor system.
  • Slat 600 has an elongated slat body extending in a direction perpendicular to the plane of the Figure, including a top portion 610 , a first side portion 620 and a second side portion 630 , each depending downwardly from opposite lengthwise sides of top portion 610 .
  • First and second side portions 620 , 630 each include projections 640 extending toward an opposing side portion.
  • the top portion 610 of slat 600 comprises, in accord with the invention, a plurality of closed cells 650 .
  • a seal 675 may be provided between adjacent slats on one or even both sides of the slat 600 .
  • Various configurations of seals are known in the art and any are suitable for use in combination with the slat 600 of the invention.
  • slat 600 top portion 610 comprises two closed cells 650 extending along at least substantially an entire length of the slat, although the closed cells 650 may be formed so as to extend along only a portion of slat 600 .
  • the closed cells 650 may be distributed, uniformly or otherwise, across a length of the slat 600 .
  • the closed cells 650 may comprise multiple tiers, such as one upper closed cell 650 extending across the slat on an upper part of top portion 610 and two other closed cells 650 disposed beneath the upper closed cell or the reverse.
  • the closed cells 650 collectively comprise at least half of an interior volume of the slat 600 top portion 610 .
  • this relationship is not mandatory and the volume of the closed cells 650 may comprise anywhere from about 2% to 95% of the volume of the slat 600 top portion, as determined by the slat top portion outer dimensions.
  • the actual volume of the closed cells 650 depends, in part, upon the material of the slat 600 and distribution and structure of reinforcing means, if any, and could even occur above or below the above ranges with suitable selection of materials, arrangement of supporting structures, and intended application, such as light duty applications.
  • the closed cells 650 may be pressurized, wherein the degree of allowable pressurization depends on the both the material of slat 600 , method of forming slat 600 , and distribution and structure of reinforcing means, if any. Excess pressurization, if any, is generally below 5 psi, but can be larger or smaller in accord with the above design parameters. Further, the closed cells may be wholly or partially filled with a material, such as but not limited to foam (e.g., polyurethane foam), balsa wood, insulation, or thermoplastic materials, to provide desired structural properties (e.g., static rigidity or stiffness) and material properties (e.g., dynamic rigidity or vibration reduction).
  • foam e.g., polyurethane foam
  • balsa wood e.g., balsa wood, insulation, or thermoplastic materials
  • the guide member or glider block 700 illustrated in FIGS. 6-8 includes a head portion 710 and a neck portion 720 , wherein the head portion 710 possesses a greater lateral dimension than the neck portion 720 .
  • the head portion 710 is configured for insertion into the open cell 660 .
  • the neck portion 720 is configured to pass between the opposing projections 640 .
  • the glider block must possess a relatively low coefficient of friction (e.g., below about 0.3) relative to the slat 600 so as to minimize parasitic losses.
  • both the glider block and the slat are formed from polypropylene having a coefficient of friction between about 0.10 and 0.30.
  • Other materials may be used, such as but not limited to polyethylene, Ultra High Molecular Weight Polyethylene (UHMWPE), polyolefins, or acetal resin.
  • the conveyor slats 600 and/or glider block 700 may be provided with reinforcing members.
  • the slat 600 reinforcing members include ribs 670 disposed between adjacent closed cells 650 .
  • the reinforcing members may also comprise longitudinally extending reinforcing fibers, z-axis reinforcing fibers, y-axis reinforcement fibers, and/or a continuous z-stitch or a discontinuous z-stitch fibers.
  • the floor slat 600 may accordingly comprise glass fibers (unidirectional/mat/stitched) in thermoset resin to form a single matrix.
  • the slat 600 is formed using a pre-mix of continuous glass and thermoplastic fibers/fabrics in a resin, which would be pulled through at least one of a heated and/or chilled die.
  • the impregnated fabric would be melted and molded into a hard, cured shape, as the glass the thermoplastic weld or polymerize together.
  • This process is in contrast to the conventional process of using a glass or thermoplastic fabric, passing it through a resin bath or resin injection, usually with a reacting medium, and then through a heated die (and/or chilled die) resulting to produce a cured shape.
  • the glider block 700 of the present invention eliminates the continuous blocks and channels of conventional reciprocating conveyor arrangements in favor of discontinuous guide block or glider block 700 mounted along cross members 750 disposed, in turn, upon chassis beam 760 .
  • Glider blocks 700 extend from one side of the cross member 750 to the opposite side thereof and are attached to a top surface thereof by a suitable attachment means, such as but not limited to welding, frictional engagement, adhesives or epoxies, and mechanical fasteners such as screws, bolts, rivets, and clamps.
  • the conveyor slats 600 are intermittently supported by the guide blocks 700 , but are otherwise unsupported between cross members 750 , thereby providing a meaningful weight reduction without unduly compromising structural support of the slats and associated loads.
  • Slats 600 may be formed by pultrusion, a conventionally known process practiced in various forms for decades.
  • the above noted slats may be formed by a continuous profile extrusion process, wherein one or more extruders, known to those skilled in the art, containing one or more-resins and/or additives or thermoplastics are used to force a molten resin through a die the shape of the required cross-section. As the material leaves the die, the material is cooled and the extrusion is cut into slats when sufficiently cooled.
  • Polyethylene and polypropylene are commonly used resins suitable for use in the slats.
  • thermoplastic or thermoset compound wherein a thermoplastic or thermoset compound is heated to plasticity at a controlled temperature and then forced under pressure through a nozzle into sprues, runners, gates, and/or cavities of a mold, wherein the resin undergoes rapid solidification, may also be used.
  • the mold is then opened and the finished slat ejected.
  • One exemplary process by which the slats 600 of the invention may be formed include DOW Plastic's FULCRUMTM technology, based on ISOPLAST, an engineering thermoplastic polyurethane, and a new pultrusion process, wherein reversal of the polymerization process in the melt stage yields equivalent mechanical properties similar to thermoset composites and enhances toughness and damage tolerance while simultaneously permitting processing of profiles at very high speeds, as known to those skilled in the art (FULCRUM is a trademark of The Dow Chemical Co.). Other variations on the pultrusion, expultrusion, extrusion, co-extrusion, and similar forming processes are considered applicable to the present invention.
  • the glider block 700 may be formed, such as by extruded polyethylene, in consistent profile and then machined to remove material to form the glider blocks 700 depicted in FIGS. 6-8, wherein the glider blocks 700 are spaced at intervals corresponding to desired positions of the floor slats 600 .
  • one glider block 700 is disposed along the top of each cross-member 750 and each glider block is substantially the width of the corresponding cross-member.
  • FIG. 9 shows a cross-sectional view of a trailer-based reciprocating conveyor system utilizing the multi-cell reciprocating conveyor slats 600 and guide structures 700 in accord with the invention.
  • FIG. 10 provides a magnified view of one section of FIG. 9, showing in more detail the multi-cell reciprocating conveyor slat 600 and guide structure 700 .
  • FIGS. 11 and 12 illustrate an embodiment of a drive system advantageously used in accord with the invention.
  • Other conventional drive systems may also advantageously be used in combination with the inventive slat and glider block of the present invention.
  • FIG. 13 shows one aspect of the attachment of the components of the reciprocating floor system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reciprocating Conveyors (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

A pultruded slat for a reciprocating slat conveyor system comprises a slat body including a top portion, a first side portion, and a second side portion, the first and second side portions depending downwardly from opposite lengthwise sides of the top portion; wherein the first side portion and second side portion each include projections extending toward an opposing side portion, wherein the top portion of the slat body comprises a plurality of closed cells, and wherein a bottom of the top portion, the first side portion, the second side portion, and the projections comprise an open cell.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. provisional application serial No. 60/631,702, filed Mar. 6, 2002.[0001]
  • FIELD OF INVENTION
  • The invention relates to a reciprocating floor assembly, wherein the floor comprises adjacent reciprocating slats that can be moved relative to one another in such a manner as to move a load or object disposed on the floor. [0002]
  • BACKGROUND OF THE INVENTION
  • Reciprocating floor assemblies are particularly valued in the trucking, waste hauling, and shipping industries, where such reciprocating floors are used to load and unload cargo or transported commodities to assist personnel performing the loading or unloading operations or even to entirely obviate the need for such assistance in operations such as dumping transported waste. To accomplish this feat, conventional reciprocating slat conveyors include at least three groups of slats, which can be separately shifted relative to one another and driven in succession in one direction by means of a suitable driving means over a predetermined stroke length. In a returning stroke, the slats are withdrawn non-uniformly to an initial starting position to repeat the cycle, each cycle incrementally advancing the load in a desired direction. Such reciprocating floor assemblies are shown in, for example, EP 0 721 901 A1 issued to Cargo Handling Systems B.V., incorporated herein by reference, and U.S. Pat. No. 5,638,943 issued to Foster. Conventional slats for such systems are taught in, for example, U.S. Pat. Nos. 5,447,222, 6,013,585, and 6,019,215 issued to Raymond K. Foster. These patents disclose, as shown in FIG. 1 of this application, a [0003] conveyor slat 10 having an upper portion and laterally spaced apart depending leg portions 24, 26, each with a laterally outwardly directed flange 28, 30. These conveyor slats are provided on guide beams 12 having narrow mounting portions and wider upper portions. Inwardly directed flanges are disposed at the bottom of depending legs 24, 26 in a position corresponding to the narrowed portion of the guide beams.
  • In conventional reciprocating floor systems, such as provided in U.S. Pat. No. 5,638,943, the [0004] longitudinal guide beams 155 which help guide and align corresponding floor slat members during reciprocating movement rest on and are secured to ribs 126, 128, 130 of the mounting frame members 116, 118, as shown in FIGS. 2 and 3. U.S. Pat. No. 4,679,686, also issued to Foster, shows guide beams 12 extending across upper surface of transverse I-beams 14, as shown in FIG. 4 herein. This configuration is also taught by U.S. Pat. No. 6,257,396 issued to Quaeck, which shows in attached FIG. 5 that the beams 12, 13 having bearing strips 14, 15 are disposed to traverse cross beams 10, 11.
  • A need exists for continued improvements in load distribution and weight minimization of such structures. [0005]
  • SUMMARY OF INVENTION
  • It is accordingly one object of the present invention to provide improved pultruded slats for such conveyor systems. [0006]
  • A further object of the invention is to provide a reciprocating slat conveyor system which includes the pultruded slots of the inventor. [0007]
  • Other objects and advantages of the invention will become apparent as the description proceeds. [0008]
  • In satisfaction of the foregoing objects and advantages, the present invention provides a slat for a reciprocating slat conveyor system comprising: [0009]
  • a slat body including a top portion, a first side portion, and a second side portion, the first and second side portions depending downwardly from opposite lengthwise sides of said top portion; [0010]
  • wherein the first side portion and second side portion each include projections extending toward an opposing side portion, [0011]
  • wherein the top portion of the slat body comprises a plurality of closed cells, and wherein a bottom of the top portion, the first side portion, said second side portion, and the projections comprise an open cell. [0012]
  • In a further embodiment, the invention provides a continuous profile molding method for manufacturing a slat for a reciprocating slat conveyor system comprising the steps of: [0013]
  • arranging a plurality of fibers into a shape of at least a top portion of a lengthwise slat body, the slat body comprising a top portion, a first side portion, and a second side portion, the first and second side portions depending downwardly from opposite lengthwise sides of the top portion; wherein the first side portion and second side portion each include projections extending toward an opposing side portion, wherein the top portion of the slat body comprises a plurality of closed cells, wherein a bottom of the top portion, the first side portion, the second side portion, and the projections comprise an open cell; [0014]
  • applying a thermoplastic or thermosetting resin onto said fibers; and [0015]
  • moving the fibers bearing the thermosetting resin through a die, wherein the fibers bearing the thermo plastic or thermosetting resin are heated to a temperature sufficient to melt the resin and are compressed to form the slat body. [0016]
  • Also provided is a reciprocating slat conveyor system having a plurality of adjacent conveyor slats mounted to be selectively reciprocated endwise, comprising: [0017]
  • a plurality of elongated slat bodies extending in and reciprocatingly moving in a first direction, the elongated slat bodies including a top portion, a first side portion, and a second side portion, the first and second side portions depending downwardly from opposite lengthwise sides of the top portion, wherein the first side portion and second side portion each include projections extending toward an opposing side portion, wherein the top portion of the slat body comprises a plurality of closed cells, and wherein a bottom of the top portions, the first side portion the second side portion, and the projections comprise an open cell; and [0018]
  • a plurality of guide blocks mounted to a top surface of cross members extending in a second direction perpendicular to said first direction.[0019]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Reference is now mode to the drawings accompanying the application wherein: [0020]
  • FIG. 1 shows a cross-sectional view of a conventional reciprocating conveyor slat of the prior art; [0021]
  • FIG. 2 shows a top-view of a conventional reciprocating conveyor slat continuous guide structure; [0022]
  • FIG. 3 shows a cross-sectional view of the conventional reciprocating conveyor slat continuous guide structure of FIG. 2; [0023]
  • FIG. 4 shows an isometric view of a conventional reciprocating conveyor slat continuous guide structure and slat; [0024]
  • FIG. 5 shows another isometric view of a conventional reciprocating conveyor slat continuous guide structure and slat; [0025]
  • FIG. 6 shows a cross-sectional view of a multi-cell reciprocating conveyor slat and non-continuous guide structure in accord with the invention; [0026]
  • FIG. 7 shows a side-view of a multi-cell reciprocating conveyor slat and guide non-continuous structure in accord with the invention; [0027]
  • FIG. 8 shows another cross-sectional view of a multi-cell reciprocating conveyor slat, slat seal, and non-continuous guide structure in accord with the invention; [0028]
  • FIG. 9 shows a cross-sectional view of a trailer-based reciprocating conveyor system utilizing the multi-cell reciprocating conveyor slats and non-continuous guide structures in accord with the invention; [0029]
  • FIG. 10 shows a magnified view of the multi-cell reciprocating conveyor slats and non-continuous guide structures of FIG. 9; [0030]
  • FIG. 11 shows an isometric view of a drive system implementable with the invention; [0031]
  • FIG. 12 shows an assembled view of a drive system of FIG. 10 implementable with the invention; and [0032]
  • FIG. 13 shows one aspect of the attachment of the components of the reciprocating floor system in accord with the invention. [0033]
  • DESECRIPTION OF THE INVENTION
  • FIGS. 6-8 show a slat [0034] 600 for a reciprocating slat conveyor system. Slat 600 has an elongated slat body extending in a direction perpendicular to the plane of the Figure, including a top portion 610, a first side portion 620 and a second side portion 630, each depending downwardly from opposite lengthwise sides of top portion 610. First and second side portions 620, 630 each include projections 640 extending toward an opposing side portion. The top portion 610 of slat 600 comprises, in accord with the invention, a plurality of closed cells 650. A bottom 615 of top portion 610 and inner sides 625, 635 of the first and second side portions 620, 630, respectively, define an open cell 660. A seal 675 may be provided between adjacent slats on one or even both sides of the slat 600. Various configurations of seals are known in the art and any are suitable for use in combination with the slat 600 of the invention.
  • As illustrated in FIGS. 6 and 8, [0035] slat 600 top portion 610 comprises two closed cells 650 extending along at least substantially an entire length of the slat, although the closed cells 650 may be formed so as to extend along only a portion of slat 600. Instead of continuous closed cells 650 traversing a length, or substantially all of a length, of slat 600, the closed cells 650 may be distributed, uniformly or otherwise, across a length of the slat 600. In various configurations contemplated by the present invention, the closed cells 650 may comprise multiple tiers, such as one upper closed cell 650 extending across the slat on an upper part of top portion 610 and two other closed cells 650 disposed beneath the upper closed cell or the reverse.
  • It is generally preferred that the closed [0036] cells 650 collectively comprise at least half of an interior volume of the slat 600 top portion 610. However, this relationship is not mandatory and the volume of the closed cells 650 may comprise anywhere from about 2% to 95% of the volume of the slat 600 top portion, as determined by the slat top portion outer dimensions. The actual volume of the closed cells 650 depends, in part, upon the material of the slat 600 and distribution and structure of reinforcing means, if any, and could even occur above or below the above ranges with suitable selection of materials, arrangement of supporting structures, and intended application, such as light duty applications. In one aspect, the closed cells 650 may be pressurized, wherein the degree of allowable pressurization depends on the both the material of slat 600, method of forming slat 600, and distribution and structure of reinforcing means, if any. Excess pressurization, if any, is generally below 5 psi, but can be larger or smaller in accord with the above design parameters. Further, the closed cells may be wholly or partially filled with a material, such as but not limited to foam (e.g., polyurethane foam), balsa wood, insulation, or thermoplastic materials, to provide desired structural properties (e.g., static rigidity or stiffness) and material properties (e.g., dynamic rigidity or vibration reduction).
  • The guide member or glider block [0037] 700 illustrated in FIGS. 6-8 includes a head portion 710 and a neck portion 720, wherein the head portion 710 possesses a greater lateral dimension than the neck portion 720. The head portion 710 is configured for insertion into the open cell 660. The neck portion 720 is configured to pass between the opposing projections 640. The glider block must possess a relatively low coefficient of friction (e.g., below about 0.3) relative to the slat 600 so as to minimize parasitic losses. In one preferred aspect, both the glider block and the slat are formed from polypropylene having a coefficient of friction between about 0.10 and 0.30. Other materials may be used, such as but not limited to polyethylene, Ultra High Molecular Weight Polyethylene (UHMWPE), polyolefins, or acetal resin.
  • The conveyor slats [0038] 600 and/or glider block 700 may be provided with reinforcing members. In one aspect of the invention, the slat 600 reinforcing members include ribs 670 disposed between adjacent closed cells 650. The reinforcing members may also comprise longitudinally extending reinforcing fibers, z-axis reinforcing fibers, y-axis reinforcement fibers, and/or a continuous z-stitch or a discontinuous z-stitch fibers. The floor slat 600 may accordingly comprise glass fibers (unidirectional/mat/stitched) in thermoset resin to form a single matrix. In another aspect of the invention, the slat 600 is formed using a pre-mix of continuous glass and thermoplastic fibers/fabrics in a resin, which would be pulled through at least one of a heated and/or chilled die. In the die(s), the impregnated fabric would be melted and molded into a hard, cured shape, as the glass the thermoplastic weld or polymerize together. This process is in contrast to the conventional process of using a glass or thermoplastic fabric, passing it through a resin bath or resin injection, usually with a reacting medium, and then through a heated die (and/or chilled die) resulting to produce a cured shape.
  • The [0039] glider block 700 of the present invention eliminates the continuous blocks and channels of conventional reciprocating conveyor arrangements in favor of discontinuous guide block or glider block 700 mounted along cross members 750 disposed, in turn, upon chassis beam 760. Glider blocks 700 extend from one side of the cross member 750 to the opposite side thereof and are attached to a top surface thereof by a suitable attachment means, such as but not limited to welding, frictional engagement, adhesives or epoxies, and mechanical fasteners such as screws, bolts, rivets, and clamps. The conveyor slats 600 are intermittently supported by the guide blocks 700, but are otherwise unsupported between cross members 750, thereby providing a meaningful weight reduction without unduly compromising structural support of the slats and associated loads.
  • Slats [0040] 600 may be formed by pultrusion, a conventionally known process practiced in various forms for decades. The above noted slats may be formed by a continuous profile extrusion process, wherein one or more extruders, known to those skilled in the art, containing one or more-resins and/or additives or thermoplastics are used to force a molten resin through a die the shape of the required cross-section. As the material leaves the die, the material is cooled and the extrusion is cut into slats when sufficiently cooled. Polyethylene and polypropylene are commonly used resins suitable for use in the slats. Injection molding, wherein a thermoplastic or thermoset compound is heated to plasticity at a controlled temperature and then forced under pressure through a nozzle into sprues, runners, gates, and/or cavities of a mold, wherein the resin undergoes rapid solidification, may also be used. The mold is then opened and the finished slat ejected.
  • One exemplary process by which the [0041] slats 600 of the invention may be formed include DOW Plastic's FULCRUM™ technology, based on ISOPLAST, an engineering thermoplastic polyurethane, and a new pultrusion process, wherein reversal of the polymerization process in the melt stage yields equivalent mechanical properties similar to thermoset composites and enhances toughness and damage tolerance while simultaneously permitting processing of profiles at very high speeds, as known to those skilled in the art (FULCRUM is a trademark of The Dow Chemical Co.). Other variations on the pultrusion, expultrusion, extrusion, co-extrusion, and similar forming processes are considered applicable to the present invention.
  • In one aspect, the [0042] glider block 700 may be formed, such as by extruded polyethylene, in consistent profile and then machined to remove material to form the glider blocks 700 depicted in FIGS. 6-8, wherein the glider blocks 700 are spaced at intervals corresponding to desired positions of the floor slats 600. In a preferred aspect of the invention, one glider block 700 is disposed along the top of each cross-member 750 and each glider block is substantially the width of the corresponding cross-member.
  • FIG. 9 shows a cross-sectional view of a trailer-based reciprocating conveyor system utilizing the multi-cell [0043] reciprocating conveyor slats 600 and guide structures 700 in accord with the invention. FIG. 10 provides a magnified view of one section of FIG. 9, showing in more detail the multi-cell reciprocating conveyor slat 600 and guide structure 700.
  • FIGS. 11 and 12 illustrate an embodiment of a drive system advantageously used in accord with the invention. Other conventional drive systems may also advantageously be used in combination with the inventive slat and glider block of the present invention. [0044]
  • FIG. 13 shows one aspect of the attachment of the components of the reciprocating floor system. [0045]
  • The drive system, as well as other aspects of reciprocating conveyor systems considered applicable to the invention, are generally described in the European Patent Application EP 0 721 901 A1, published Jul. 17, 1996, applied for by Cargo Handling Systems, B.V., which is incorporated herein by reference in its entirety. [0046]
  • In accord with the above inventive reciprocating slat conveyor system components and system, an improved load distribution and a reduction in parts and weight is realized over the conventional reciprocating slat conveyor systems. [0047]

Claims (19)

What is claimed:
1. A slat for a reciprocating slat conveyor system comprising:
a slat body including a top portion, a first side portion, and a second side portion, said first and second side portions depending downwardly from opposite lengthwise sides of said top portion;
wherein said first side portion and second side portion each include projections extending toward an opposing side portion,
wherein said top portion of said slat body comprises a plurality of closed cells,
wherein a bottom of said top portion, said first side portion, said second side portion, and said projections comprise an open cell.
2. A slat for a reciprocating slat conveyor system according to claim 1, wherein said top portion of said slat body comprises two closed cells extending along at least substantially an entire length of said slat.
3. A slat for a reciprocating slat conveyor system according to claim any of claims 1-2, wherein said top portion of said slat body comprises two closed cells extending along a portion of said slat.
4. A slat for a reciprocating slat conveyor system according to claim any of claims 1-3, wherein said top portion of said slat body comprises a plurality of closed cells dispersed along a length of said slat.
5. A slat for a reciprocating slat conveyor system according to any of claims 1-4, wherein said top portion of said slat body comprises a plurality of closed cells evenly dispersed along a length of said slat.
6. A slat for a reciprocating slat conveyor system according to any of claims 1-5, wherein said plurality of closed cells collectively comprise at least half of an interior volume of said top portion of said slat.
7. A slat for a reciprocating slat conveyor system according to any of claims 1-6, wherein said plurality of closed cells are pressurized.
8. A slat for a reciprocating slat conveyor system according to any one of claims 1-7, wherein said top portion comprises reinforcing members.
9. A slat for a reciprocating slat conveyor system according to claim 8, wherein said reinforcing members comprise longitudinally extending reinforcing fibers.
10. A slat for a reciprocating slat conveyor system according to claim 8, wherein said reinforcing members comprise at least one of z-axis reinforcing fibers and y-axis fibers.
11. A slat for a reciprocating slat conveyor system according to claim 8, wherein said reinforcing members comprise at least one of a continuous z-stitch or a discontinuous z-stitch.
12. A slat for a reciprocating slat conveyor system according to claim 1, further comprising a guide block configured for lengthwise insertion and sliding movement within said open cell, said guide block disposed on top of a cross-member.
13. A slat for a reciprocating slat conveyor system according to claim 12, wherein a width of said guide block is substantially equal to a width of said cross-member along a direction perpendicular to a direction of reciprocating movement of a slat.
14. A continuous profile molding method for manufacturing a slat for a reciprocating slat conveyor system comprising the steps of:
arranging a plurality of fibers into a shape of at least a top portion of a lengthwise slat body, said slat body comprising a top portion, a first side portion, and a second side portion, said first and second side portions depending downwardly from opposite lengthwise sides of said top portion; wherein said first side portion and second side portion each include projections extending toward an opposing side portion, wherein said top portion of said slat body comprises a plurality of closed cells, wherein a bottom of said top portion, said first side portion, said second side portion, and said projections comprise an open cell;
applying a thermoplastic or thermosetting resin onto said fibers;
moving said fibers bearing said thermoplastic or thermosetting resin through a die, wherein said fibers bearing said thermoplastic or thermosetting resin are heated to a temperature sufficient to melt said resin and are compressed to form said slat body.
15. A continuous profile molding method for manufacturing a slat for a reciprocating slat conveyor system according to claim 14, wherein said arranging step comprises arranging at least one of a plurality of lengthwise fibers and z-fibers.
16. A reciprocating slat conveyor system having a plurality of adjacent conveyor slats mounted to be selectively reciprocated endwise, comprising:
a plurality of elongated slat bodies extending in and reciprocatingly moving in a first direction, said elongated slat bodies including a top portion, a first side portion, and a second side portion, said first and second side portions depending downwardly from opposite lengthwise sides of said top portion, wherein said first side portion and second side portion each include projections extending toward an opposing side portion, wherein said top portion of said slat body comprises a plurality of closed cells, and wherein a bottom of said top portion, said first side portion, said second side portion, and said projections comprise an open cell;
a plurality of guide blocks mounted to a top surface of cross members extending in a second direction perpendicular to said first direction.
17. A reciprocating slat conveyor system according to claim 16, wherein said guide blocks extend in a first direction to cover a respective portion of a cross member.
18. A reciprocating slat conveyor system according to claim 17, wherein said guide blocks are attached to a cross member by a mechanical fastener.
19. A reciprocating slat conveyor system according to claim 17, further comprising a drive system.
US10/847,887 2002-03-06 2004-05-19 Multi-cell reciprocating conveyor slat and method of manufacture and non-continuous guide structure Abandoned US20040211648A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/847,887 US20040211648A1 (en) 2002-03-06 2004-05-19 Multi-cell reciprocating conveyor slat and method of manufacture and non-continuous guide structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US36170202P 2002-03-06 2002-03-06
US10/229,292 US6739447B2 (en) 2002-03-06 2002-08-28 Multi-cell reciprocating conveyor slat and method of manufacture and non-continuous guide structure
US10/847,887 US20040211648A1 (en) 2002-03-06 2004-05-19 Multi-cell reciprocating conveyor slat and method of manufacture and non-continuous guide structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/229,292 Division US6739447B2 (en) 2002-03-06 2002-08-28 Multi-cell reciprocating conveyor slat and method of manufacture and non-continuous guide structure

Publications (1)

Publication Number Publication Date
US20040211648A1 true US20040211648A1 (en) 2004-10-28

Family

ID=27791396

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/229,292 Expired - Fee Related US6739447B2 (en) 2002-03-06 2002-08-28 Multi-cell reciprocating conveyor slat and method of manufacture and non-continuous guide structure
US10/847,887 Abandoned US20040211648A1 (en) 2002-03-06 2004-05-19 Multi-cell reciprocating conveyor slat and method of manufacture and non-continuous guide structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/229,292 Expired - Fee Related US6739447B2 (en) 2002-03-06 2002-08-28 Multi-cell reciprocating conveyor slat and method of manufacture and non-continuous guide structure

Country Status (1)

Country Link
US (2) US6739447B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090145726A1 (en) * 2005-03-24 2009-06-11 Bosch Projects (Pty) Ltd. Method and apparatus for transporting a product within a diffuser
WO2024010444A1 (en) * 2022-07-08 2024-01-11 Cargo Mac B.V. Reciprocating slat conveyor
NL2032431B1 (en) * 2022-07-08 2024-01-23 Cargo Mac B V Reciprocating slat conveyor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1019901C2 (en) * 2002-02-05 2003-08-07 Cargo Floor B V Support / guide for reciprocating shelves of the floor of loading / unloading areas.
US6942089B2 (en) * 2002-05-29 2005-09-13 Keith Investments, Llc Sealless reciprocating slat conveyor having vertically installable components
NL1026018C1 (en) * 2003-10-16 2005-04-20 Hyva Internat B V Loading device for a container of a vehicle.
US6848569B1 (en) * 2004-01-14 2005-02-01 Keith Investments, Llc Reciprocating slat conveyor with fixed and movable slats
EP1588958A3 (en) * 2004-04-22 2006-03-22 uni-chains A/S Clean Belt
NL1028144C2 (en) 2005-01-28 2006-07-31 Cargo Floor B V Loading floor.
US20060182576A1 (en) * 2005-01-31 2006-08-17 Foster Raymond K Clean out apparatus for reciprocating slat conveyor
US7185755B1 (en) * 2006-01-18 2007-03-06 Keith Investments, Llc Slat conveyor having conveying slats and lifting/holding slats
US7501355B2 (en) 2006-06-29 2009-03-10 Applied Materials, Inc. Decreasing the etch rate of silicon nitride by carbon addition
US9452889B2 (en) 2008-12-10 2016-09-27 Hallco Industries Inc. Bearingless reciprocating slat-type conveyor assemblies
DE102011001850A1 (en) * 2011-04-06 2012-10-11 WESTERIA Fördertechnik GmbH Thrust plate for lorry for loading material, has struts designed as hollow sections and movable using actuators, and reinforcing element longitudinally extending inside sections, where inner space of sections is set with filling body
US10059527B1 (en) 2016-02-04 2018-08-28 Hallco Industries, Inc. Raised reciprocating slat-type conveyor with floor pan
IT201600105300A1 (en) * 2016-10-19 2018-04-19 Manz Italy Srl METHOD AND PROCESSING APPARATUS
DE102016123190B3 (en) * 2016-12-01 2017-12-21 Michael Sipple Moving floor conveyor
WO2019177463A1 (en) * 2018-03-16 2019-09-19 Cargo Mac B.V. Reciprocating slat conveyor
NL2020600B1 (en) * 2018-03-16 2019-09-26 Cargo Mac B V Reciprocating slat conveyor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679688A (en) * 1983-09-13 1987-07-14 Soederholm Jan Package for risk samples
US5447222A (en) * 1994-09-15 1995-09-05 Foster; Raymond K. Plastic floor slat for reciprocating conveyor
US5560472A (en) * 1995-05-24 1996-10-01 Gist; Richard T. Walking floors
US5727672A (en) * 1997-04-02 1998-03-17 Foster; Raymond Keith Pultruded conveyor slats
US5838943A (en) * 1996-03-26 1998-11-17 Advanced Micro Devices, Inc. Apparatus for speculatively storing and restoring data to a cache memory
US6013585A (en) * 1998-03-17 2000-01-11 Raymond Keith Foster Pultruded conveyor slat and pultrusion method
US6019215A (en) * 1997-04-02 2000-02-01 Foster; Raymond Keith Reciprocating slat conveyors with pressure seals
US6257396B1 (en) * 1996-12-06 2001-07-10 Manfred W. Quaeck Sealless, particulate impervious reciprocating conveyor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679686A (en) * 1982-02-08 1987-07-14 Foster Raymond K Bearing system for reciprocating floor conveyor
US5638943A (en) * 1995-11-29 1997-06-17 Foster; Raymond Keith Drive assembly for reciprocating slat conveyor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679688A (en) * 1983-09-13 1987-07-14 Soederholm Jan Package for risk samples
US5447222A (en) * 1994-09-15 1995-09-05 Foster; Raymond K. Plastic floor slat for reciprocating conveyor
US5560472A (en) * 1995-05-24 1996-10-01 Gist; Richard T. Walking floors
US5838943A (en) * 1996-03-26 1998-11-17 Advanced Micro Devices, Inc. Apparatus for speculatively storing and restoring data to a cache memory
US6257396B1 (en) * 1996-12-06 2001-07-10 Manfred W. Quaeck Sealless, particulate impervious reciprocating conveyor
US5727672A (en) * 1997-04-02 1998-03-17 Foster; Raymond Keith Pultruded conveyor slats
US6019215A (en) * 1997-04-02 2000-02-01 Foster; Raymond Keith Reciprocating slat conveyors with pressure seals
US6013585A (en) * 1998-03-17 2000-01-11 Raymond Keith Foster Pultruded conveyor slat and pultrusion method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090145726A1 (en) * 2005-03-24 2009-06-11 Bosch Projects (Pty) Ltd. Method and apparatus for transporting a product within a diffuser
US8088226B2 (en) 2005-03-24 2012-01-03 Bosch Projects (Pty) Ltd Method and apparatus for transporting a product within a diffuser
WO2024010444A1 (en) * 2022-07-08 2024-01-11 Cargo Mac B.V. Reciprocating slat conveyor
NL2032431B1 (en) * 2022-07-08 2024-01-23 Cargo Mac B V Reciprocating slat conveyor

Also Published As

Publication number Publication date
US20030168318A1 (en) 2003-09-11
US6739447B2 (en) 2004-05-25

Similar Documents

Publication Publication Date Title
US6739447B2 (en) Multi-cell reciprocating conveyor slat and method of manufacture and non-continuous guide structure
US6659020B1 (en) Extrusion
US5845588A (en) Plastic pallet
US9290211B2 (en) Bonding with adhesive beads or plots
US10220578B2 (en) Fiber composite material component, and method for producing a fiber composite material component
US20200114617A1 (en) Extruded molds and methods for manufacturing composite truck panels
JPH0811425B2 (en) Tubular pultruded parts with uniform wall thickness
US20040118739A1 (en) Top frame assembly
EP2116452B1 (en) Connection between a base element and a side wall of a box body for an automobile
KR102462010B1 (en) Roof lack and method for manufacturing roof lack
EP1332988B1 (en) Support/guide for reciprocally movable slats of the floor of loading/unloading spaces
US6805233B2 (en) Conveyor slat of a fiber reinforced thermoplastic material
EP2116454B1 (en) Base element for a vehicle, such as a lorry trailer, semi-trailer or trailer
EP2123542B1 (en) Floor element for a vehicle, such as a lorry, semi-trailer or trailer
EP2748096B1 (en) Base for an elevator car
US11718238B2 (en) Roof rail with divider wall configured to resist clamping force
US11795983B2 (en) Pultruded telescoping arm device
EP2116455B1 (en) Floor element in white and floor element and method for producing a floor element for a vehicle, such as a heavy goods vehicle, semi-trailer or trailer
EP2116462B9 (en) Side wall element and connection between a side wall element and a base element of a box body for an automobile
EP2123543A1 (en) Floor element for a vehicle, such as a lorry trailer, semi-trailer or trailer
DE10234036A1 (en) Support for automatic rising-shelf unit for small parts used in e.g. automobile industry, comprises non-metallic composites with fiber-reinforced plastic corner profiles
EP2116457A1 (en) Base element and connection between a base element and a side wall for a vehicle, such as a lorry trailer, semi-trailer or trailer
AU763581B2 (en) Extrusion
CA2452587A1 (en) Conveyor slat of a fibre reinforced thermoplastic material
EP2116458A1 (en) Box body for a vehicle, such as a lorry trailer, semi-trailer or trailer

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE