US20040204713A1 - Plating system for bone fixation and subsidence and method of implantation - Google Patents

Plating system for bone fixation and subsidence and method of implantation Download PDF

Info

Publication number
US20040204713A1
US20040204713A1 US10/755,080 US75508004A US2004204713A1 US 20040204713 A1 US20040204713 A1 US 20040204713A1 US 75508004 A US75508004 A US 75508004A US 2004204713 A1 US2004204713 A1 US 2004204713A1
Authority
US
United States
Prior art keywords
plate
bone
plating system
plate segment
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/755,080
Other versions
US7331961B2 (en
Inventor
M. Abdou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/683,325 external-priority patent/US7476228B2/en
Application filed by Individual filed Critical Individual
Priority to US10/755,080 priority Critical patent/US7331961B2/en
Publication of US20040204713A1 publication Critical patent/US20040204713A1/en
Priority to US11/899,084 priority patent/US20080058810A1/en
Application granted granted Critical
Publication of US7331961B2 publication Critical patent/US7331961B2/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8004Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7059Cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8605Heads, i.e. proximal ends projecting from bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/869Pins or screws or threaded wires; nuts therefor characterised by an open form, e.g. wire helix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • A61B2017/0256Joint distractors for the spine

Definitions

  • the present invention is directed at skeletal plating systems, components thereof, and method of implant placement. These systems are used to adjust, align and maintain the spatial relationship(s) of adjacent bones or bony fragments during healing and fusion after surgical reconstruction of skeletal segments.
  • Such systems may be comprised of bone distraction devices, skeletal plates, bone screws and/or bone cables, bone screw-to-plate locking mechanisms, and any additional instruments needed for implant placement.
  • Plates used to attach three or more vertebrae after removal of two or more discs are manufactured with an equal distance between screw holes in the vertical plane.
  • the distance between the pair of C3 (cervical bone #3) and the pair of C4 (cervical bone #4) screws is equal to the distance between the C4 and C5 (cervical bone #5) screws as well as the distance between the C5 and C6 (cervical bone #6) screws and so forth.
  • This not only ignores the known anatomical difference in size between bones at different levels but also fails to anticipate that a patient's unique pathology may require more extensive bony resection at one or more levels, further adding to these differences.
  • selection of a plate with a suitable total length may still produce improper fit at one or more levels.
  • Benzel U.S. Pat. Nos. 5,681,312, and 5,713,900
  • Foley Pat. Applic. Pub. No. US2001/0047172A1
  • Benzel U.S. Pat. Nos. 5,681,312, and 5,713,900
  • Foley Pat. Applic. Pub. No. US2001/0047172A1
  • bony subsidence can be expected to cause one end of the plate to migrate towards an adjacent, normal disc space. This is highly undesirable since, with progressive subsidence, the plate may overlap the disc space immediately above or below the fused segments and un-necessarily limit movement across a normal disc space.
  • accommodation of bone settling at the plate's end is a sub-optimal solution.
  • Yuan et al described a multi-segmental plate consisting of two sliding parts in U.S. Pat. No. 5616142. While intended to be absorbable, this design may permit excessive play between the sliding segment and encourage bone screw loosening. In addition, this device does not permit application and maintenance of a compressive force across the bony construct. Baccelli noted these deficiencies in U.S. Pat. No. 6,306,136 and proposed a rigid plate capable of maintaining bony compression. However, the latter plate did not permit subsidence.
  • the empty bone holes left by the removal of the distraction screws also act as stress concentration points within the vertebral bodies, as would any empty opening or crack within a rigid structural member, and predispose them to bone fracture and subsequent screw/plate migration. Improper plate placement and bony fractures can significantly increase the likelihood of construct failure and lead to severe chronic pain, neurological injury, and the need for surgical revision with a second procedure.
  • the new device should provide ease of use, reliable bone fixation, adjustable length, modular design, and the ability to accommodate and control bone settling.
  • the design should also maximize the likelihood of proper plate placement and avoid maneuvers that weaken the vertebral bodies. No current plating system addresses all of these concerns. Therefore, what is needed is a system and method that overcomes these significant problems found in the conventional systems as described above.
  • the present invention is that of a modular bone plate of adjustable length.
  • the current invention provides a bone plate that permits maintenance of a compression force while also accommodating bony subsidence, among other features.
  • a modular distraction screw is used for the bone work, including fusion, prior to plate placement. The distraction screw is placed as the first step of surgery when all relevant landmarks are still intact. After completion of the bone work, a proximal end of the distraction screw is detached, leaving a distal segment still implanted in the vertebral bodies above and below the newly fused disc space. The plate is guided to proper position along the upper and lower vertebra by the attached distal segments. The distal segments of the distraction screws are tightened onto the plate and the plate is held stationary while bone screws are placed.
  • the distal segments act as an anchor to guide the bone plate into the correct placement position and serve to hold the plate stationary while the plate's bone screws are placed. Since the distraction screws were placed with intact surgical landmarks, use of the distal segments to guide the plate significantly increases the likelihood of proper plate placement. In addition, the distal segments of the distraction screws serve as additional points of fixation for the plate and leave no empty bone holes which give rise to stress concentration points that further weaken the vertebral bodies.
  • the plate After the plate is attached to the upper and lower vertebras, the plate is set to the desired length and the two segments are locked together. If application of a compressive force is desired, the plate can be used to maintain the force across the vertebral bodies by simply locking the plate segments after applying compression. Occasionally, surgeons are confronted with a grossly unstable spine from the patient's unique pathology and choose to forgo subsidence in favor of a more fixed and rigid construct. In these situations, plate placement is essentially complete and requires no further steps. More commonly, subsidence is desired and release of a second locking screw permits the plate to accommodate bony subsidence. Unlike current plating systems which provide either a rigid plate or one capable of subsidence, the current invention permits either option by the simple turn of one screw. Further, when subsidence is chosen, this plate will not overlap the adjacent disc space with bone movement, since subsidence is accommodated at the level of settling bone and not at the plate's end.
  • Extension of the fusion at a later date is easily accomplished without plate removal.
  • An adapter is placed at either end of the plate that can couple with either a modified distraction screw or an additional bone plate.
  • Fusion extension is started by connecting a modified distraction screw to the coupler at-the end of the plate immediately adjacent to the disc to be removed.
  • a modular distraction screw is inserted into the adjacent vertebra and a discectomy and subsequent fusion are performed within the intervening disc space.
  • the modified distraction screw is removed leaving the bare coupler on the end of the plate.
  • the proximal segment of the distraction screw is also removed leaving the distal segment attached to the adjacent vertebral body.
  • An extension plate is used to span the space between the distal segment of the distraction screw on the adjacent vertebra and the end-coupler on the original plate. In this way, the fusion is extended and the newly fused segment is fixated without removal of the original plate. Further, the end-coupler can used to correct for any improper (“crooked”) placement of the original plate by rotating the extension plate into the true vertical.
  • plates used for multi-level procedures will have an expandable/subsidence mechanism overlying each disc space that is fused.
  • the plate is guided to proper position along the upper-most and lower-most vertebra by the attached distal segments—as described above for single level procedures.
  • the distal segments of the distraction screws are tightened onto the plate and the plate is held stationary while bone screws are placed into the upper and lower-most vertebras. In this way, the plate is fixed at each end.
  • fixation of the intervening vertebral levels may be started from either end of the plate. For illustration, fixation will be started inferiorly.
  • the plate segment intended to fixate the vertebra immediately superior to the lower-most vertebra is moved into optimal position.
  • this plate design permits the surgeon to choose the exact vertebral levels to fixed rigidly and those level that will be allowed to accommodate subsidence. Further, it permits the distance between the bone screws at different levels to be custom fit for the individual patient. These features are not shared by any currently available plating system.
  • multi-level plates will be designed without a sliding/subsidence mechanism at every level. Instead, one or more sliding/subsidence mechanism(s) will be used to affect two or more levels by use of a slotted borehole configuration between levels. At each end, however, the plate will remain rigidly fixed to bone. In this way, subsidence continues to be accommodated at the level of bony movement and the plate remains stationary at each end.
  • All embodiments of the multi-level plates will preferentially, but not necessarily, contain central channels to accommodate the distal segment of the modular distraction screw and end-couplers so that extension of the fusion at a future date remains possible.
  • the plating systems described in the present invention provide ease of use, reliable bone fixation, adjustable length, modular design, and the ability to accommodate and control bone settling. These designs will also maximize the likelihood of proper plate placement, avoid maneuvers that weaken the vertebral bodies, and provide a significant advantage over the current and prior art.
  • FIG. 1 is a partial side view of a disassembled distraction screw according to an embodiment of the invention
  • FIG. 2 is an assembled distraction screw and a cross sectional side view of the assembled distraction screw according to an embodiment of the invention
  • FIGS. 3A-3B are close up views of the connector portion of the elongated body of a distraction screw according to an embodiment of the invention.
  • FIGS. 4A-4B are partial views of a distraction screw removal tool according to an embodiment of the invention.
  • FIGS. 5A-5B are exploded perspective views of a bone plate according to alternative embodiments of the invention.
  • FIGS. 5C-5D are perspective views of a mounted bone plate according to alternative embodiments of the invention.
  • FIGS. 6A-6F are top, bottom, and side views of angled bracket plate components according to an embodiment of the invention.
  • FIG. 7A-7C are top, bottom, and side views of square bracket plate components according to an embodiment of the invention.
  • FIGS. 8A-8B are top views of a third plate component according to an embodiment of the invention.
  • FIGS. 9A-9B are perspective views of a modified distraction screw attached to a bone plate according to an embodiment of the invention.
  • FIG. 10A is a partial side view of a modified disassembled distraction screw according to an embodiment of the invention.
  • FIGS. 10B-10D are partial side views of a modified assembled distraction screw according to an embodiment of the invention.
  • FIG. 10E is a close up view of a modified distraction screw according to an embodiment of the invention.
  • FIG. 11A is a perspective view of an offset, modified distraction screw according to an embodiment of the invention.
  • FIG. 11B is a perspective view of an offset, modified distraction screw attached to a bone plate according to an embodiment of the invention.
  • FIG. 12A is an exploded perspective view of a bone plate according to an embodiment of the invention.
  • FIG. 12B is a top view of a first bone plate component according to an embodiment of the invention.
  • FIG. 12C is a bottom view of a first bone plate component according to an embodiment of the invention.
  • FIG. 12D is a top view of a second bone plate component according to an embodiment of the invention.
  • FIG. 12E is a bottom view of a second bone plate component according to an embodiment of the invention.
  • FIG. 13A is a sectional view of a bone plate according to an embodiment of the invention.
  • FIG. 13B is a close up sectional view of the locking mechanism of a bone plate according to an embodiment of the invention.
  • FIG. 14A is a perspective view of a mounted bone plate in an open position according to an embodiment of the invention.
  • FIG. 14B is a perspective view of a mounted bone plate in a closed position according to an embodiment of the invention.
  • FIG. 15A is an exploded perspective view of a jackscrew bone plate according to an embodiment of the invention.
  • FIG. 15B is a sectional view of a jack screw bone plate according to an embodiment of the invention.
  • FIG. 15C is a close up sectional view of the locking mechanism of a jack screw bone plate according to an embodiment of the invention.
  • FIGS. 16A-16B are top and bottom views of a bone plate component with an open central channel and an alternative end coupler for a modified distraction screw according to an embodiment of the invention.
  • FIGS. 17A-17B are top views of combined bone plates with slotted screw holes and sliding mechanisms according to alternative embodiments of the invention.
  • Certain embodiments as disclosed herein provide for a modular bone distraction screw and a modular bone fixation plate with an adjustable length to accommodate bone settling.
  • one plating system disclosed herein allows for compression to be set during placement of the plate and also allows subsidence of the bone while maintaining the initial compression.
  • FIG. 1 shows a modular distraction screw 110 , which comprises a distal segment 120 and a removable proximal 130 segment.
  • the distal segment 120 has a head portion 122 , and a threaded shank portion 124 , which can be securely fastened unto bone.
  • the proximal segment 130 comprises an elongated body 132 and deployable member 136 .
  • Elongated body 132 has a smooth-walled internal bore 134 extending through its full length and houses the deployable member 136 within the bore.
  • the deployable member 136 is adapted to be retractably deployed beyond the distal end of the internal bore 134 .
  • FIG. 2 shows the assembled distraction screw.
  • FIG. 3 illustrates distal segment 120 , which comprises a threaded shank portion 124 and a head portion 122 .
  • Threads 126 of the shank portion 124 are preferably self-tapping and/or self-drilling.
  • the shank 124 can be of variable lengths and diameter.
  • the outer diameter of the shank/threads is preferably equal to the widest point of head 122 .
  • the threads can be of any design that is well known to be applicable for screwing placement into mammalian bone.
  • Head 122 is circular with hollow central bore 1220 .
  • the upper aspect 1222 of the circular head is of uniform diameter but the lower portion 1223 of the head is of progressively greater diameter such that the head has a sloping side wall below edge 1224 .
  • Threads 1225 are located within bore 1220 and are complementary to threads 128 of deployable member 136 .
  • Head 122 has a plurality of slots 1226 which are engageable by projections 1322 of the distal aspect of elongated body 132 , as shown in FIG. 3A and FIG. 3B. Slots 1226 permit the head to collapse inward when centripetal force is applied to the outer wall of the head.
  • Deployable member 136 is advanced through bore 134 to engage distal segment 120 with the coupling of the complimentary threads 128 and 1225 .
  • the proximal head 1362 of member 136 permits application of rotational force to deployable member 136 (as shown in FIG. 2) further driving threads 128 and 1225 together and locking members 132 , 136 and distal segment 120 together. While depicted as a hex configuration, any engagable configuration may be used to drive deployable member 136 .
  • the coupled proximal segment 130 and distal segment 120 employing the above-described means of engagement provide a modular distraction screw.
  • the screw When fully assembled, the screw functions as a unitary device.
  • a wrench (not shown) is attached to the tool attachment portion 180 of elongated member 132 (FIG. 1), and the distraction screw is positioned at a site of a bone.
  • a rotational force is applied to portion 180 causing the proximal and distal segments to rotate in unison so that thread 126 of the distal segment 120 engages the underlying bone and shank 124 is advanced into the bone.
  • the proximal segment 130 is detached from distal segment 120 .
  • the distraction screw is disassembled into its components by applying a rotational force to head 1362 of member 136 in a direction opposite (usually counter-clock wise) to that required for screw assembly (usually clock-wise).
  • the distal segment is held stationary while threads 128 and 1225 are disengaged by applying a counter force to distal segment 120 using the proximal portion 180 of the elongated body 132 . In this way, the proximal segment 130 is removed leaving the distal segment 120 attached (implanted) to the bone structure.
  • the distal segment 120 provides enhanced structural integrity of the bone by reducing the stress concentration generally expected of an empty opening in a structural member. In addition, leaving the distal segment 120 attached to bone eliminates the robust bone bleeding encountered after removal of current, commercially-available distraction screws and obviates the need to fill the empty hole with a hemostatic agent.
  • the distal segment 120 also provides a point of anchoring for a skeletal plate and help insure proper plate placement. Since placement of the distraction screws is performed as the first step in the surgical procedure, the anatomical landmarks required to ensure proper alignment of the plate in the desired anatomical plane are still intact.
  • a conventional one-piece distraction can be used to distract the vertebra during discectomy. After the bone work is finished, the conventional distraction screw is removed leaving an empty bone hole. A distal segment 120 is placed into the empty bone hole and provides an anchor point for the skeletal plate.
  • FIGS. 5A and 5B show two vertebral bodies 2 and 4 and the plating system 8 of the present invention used to fixate them.
  • the plating system includes sliding plate segments 10 and 20 and a coupler means or a coupler segment 30 , which couples the sliding segments 10 and 20 and controls their movements.
  • FIGS. 6-7 show the top and mid-sectional views of the embodiment of the bone fixation plate.
  • the plate segments 10 and 20 may be curved in either the vertical or horizontal plane in order to conform to the shape of the bone it is designed to fixate.
  • plates designed to attach onto the anterior aspect of the cervical spine are preferentially, but not necessarily, convex in both the vertical and horizontal planes.
  • the plate surface immediately adjacent to the bone surface may contain one or more horizontal indentations 1200 in order to permit the placement of additional curvature in the vertical plane.
  • the plating system or any of its components can be made of any biologically adaptable or compatible materials.
  • Materials considered acceptable for biological implantation are well known and include, but are not limited to, stainless steel, titanium, combination metallic alloys, various plastics, resins, ceramics, biologically absorbable materials and the like. It would be understood by one of ordinary skill in the art that any system component can be made of any materials acceptable for biological implantation and capable of withstanding the torque required for insertion and the load encountered during use.
  • Any components may be further coated/made with osteo-conductive (such as deminerized bone matrix, hydroxyapatite, and the like) and/or osteo-inductive (such as Transforming Growth Factor “TGF-B, ” Platelet-Derived Growth Factor “PDGF,” Bone-Morphogenic Protein “BMP,” and the like) bio-active materials that promote bone formation.
  • osteo-conductive such as deminerized bone matrix, hydroxyapatite, and the like
  • osteo-inductive such as Transforming Growth Factor “TGF-B, ” Platelet-Derived Growth Factor “PDGF,” Bone-Morphogenic Protein “BMP,” and the like
  • sliding segment 10 has two boreholes 1110 which are formed through the plate to accommodate fastening elements, such as bone screw.
  • Each borehole may be oriented in the true vertical plane or form an angle with the vertical.
  • boreholes 1110 will preferentially, but not necessarily, be angled towards each other in the horizontal plane and away from the sliding end in the vertical plane.
  • the top opening of the boreholes may be flush with the plate surface or may be recessed.
  • the distance between the boreholes may also vary depending on the requirement of plate application and design.
  • a depression 1120 is present between the boreholes with slot 1130 along the depression.
  • slot 1130 is preferentially, but not necessarily, angled with the true vertical such that the top opening of slot 1130 is slightly smaller than the bottom opening.
  • Slot 1130 is adapted to accommodate or mate with screw head 122 of distal segment 120 of the distraction screw. While depicted as an elongated hole, slot 1130 may alternatively be a circular hole.
  • Plate segment 10 has three projections, consisting of two side projections 1140 , 1160 and a central projection 1150 . Two indentations 1180 and 1190 are formed between these three projections.
  • the inside wall of each projection 1140 and 1160 contain indentations 1142 and 1162 , respectively. While depicted as “V” shaped, these indentations may be made of any geometric configurations including, but not limited, square, oval, circular, and hybrid designs which are complimentary to the sliding portion of the other plate segment 20 .
  • the central projection 1150 has a partial thickness middle segment 1152 and two full side walls 1154 . An opening 1156 with internal threads 1158 is provided on segment 1152 . The top surface of middle segment 1152 is preferentially textured so as to permit superior contact with the undersurface of the complementary plate component.
  • the other end portion of the plate segment 10 has a projection 1170 , which is preferentially, but not necessarily, position in the midline of the plate segment.
  • the projection has a central hole 1172 with threads 1174 .
  • Spines 1176 may be placed along the top of the projection to mate with complimentary spines on the add-on attachments, as shown in FIG. 4. These spines may be placed on any one or combination of surfaces adjacent projection 1170 . These surfaces may be textured or left smooth.
  • FIGS. 6D, 6E, 6 F & 7 illustrate the complementary sliding plate segment 20 to sliding segment 10 .
  • two boreholes 210 are vertically formed through the plate to accommodate fastening elements.
  • these boreholes may be oriented in the true vertical plane or form an angle with it, may be flush with the plate surface or further recessed, and the distance between these holes may vary depending on the requirement of the plate application.
  • a depression 220 is formed between the boreholes with a slot 230 whose side walls 232 are preferentially angled with the true vertical such that the top opening of the slot is slightly smaller than the bottom opening.
  • Slot 230 is adapted to mate with and accommodate the distal segment of a distraction screw.
  • Sliding plate segment 20 has two projections 240 , 260 and central connection 250 .
  • Projection 240 has an extension 242 which is complementary to indentations 1142 of projections 1140 .
  • projection 260 has an extension 262 that is adapted to be received by indentations 1162 of projection 1160 .
  • Projections 240 and 260 may be of any geometric configuration and cross-section including, but not limited, square, oval, circular, truncated triangular, modified rectangular and hybrid designs that are complimentary to the corresponding sliding portions of the segment 10 . Further, projections 240 and 260 may be of differing designs that are complimental to projections 1140 and 1160 .
  • the central connection 250 has a partial thickness middle segment 252 and two side walls 254 .
  • An opening 256 with internal threads 258 is located on segment 252 . Openings 256 and 1156 may be aligned with the direction of bone subsidence.
  • plate segment 20 has a partial thickness projection 270 that is preferentially, but not necessarily, in the midline of the plate.
  • Projection 270 has a central hole 272 with threads 274 .
  • Spines 276 may be placed along the top of the projection to mate with complimentary spines of the add-on attachments. These spines may be placed on any one or combination of surfaces adjacent projection 270 . These surfaces may be textured or left smooth.
  • FIG. 8 illustrates top and oblique views of coupling means or segment 30 .
  • Two full thickness channels 310 and 320 are formed within segment 30 .
  • the channels are preferentially, but not necessarily, of different lengths and walls 312 and 322 of channels 310 and 320 are preferentially angled with the vertical plane.
  • the top surface of coupling segment 30 is smooth while the bottom surface is preferentially textured in the portion of the segment with the larger channel 320 .
  • the bottom of the segment with the smaller channel 310 is smooth.
  • Coupling segment 30 couples plate segments 10 and 20 as depicted in FIG. 5 with screws 40 and 41 . While not depicted, each screw has threads on which are complimentary to threads 158 of segment 10 and threads 258 of segment 20 .
  • the screws have top depressions 414 and 404 for engagement by a screwdriver or other driving instrument. While both screws are depicted as being identical, each may be of any of the many well known fastener designs and may be inserted using any complimentary driver
  • Projections 1150 and 250 of sliding plate segment 10 and 20 respectively may be of equal or different lengths. When unequal, central projection 1150 is made longer than projection 250 as a matter of preference. (Alternatively, the longer projection may be placed within segment 20 .) The longer channel 320 of segment 30 engages the longer central projection (element 1150 of segment 10 ) by screw 41 while the shorter channel 310 engages the shorter central projection (element 250 of segment 20 ) by screw 40 .
  • the bone screws and the screw for the coupler segment 30 may be of any of the many well known designs considered acceptable for implant attachment to the bony skeleton and made from any material intended for biological implantation.
  • any portion of the plating segments may be made of radiolucent materials (such as PEEK, PEAK, and the like) so that unfettered x-ray examination of the underlying bone can be performed in the post-operative period.
  • projections 1150 , 250 and segment 30 can be made from radiolucent materials so as to provide a window for x-ray examination of the bone without decreasing the overall strength of the plate.
  • the distal segments are left attached to the vertebra above and below the newly fused disc space.
  • the bone plate is fully assembled before implantation.
  • Screw 40 is fully seated at the outside edge 312 of channel 310 so that plate segment 20 and coupler segment 30 are fixed relative to one another.
  • screw 41 is partially seated on the outside edge 320 of channel 320 so that plate segment 10 and coupler segment 30 are free to slide relative to each other.
  • Slot 1130 and 230 are aligned with the distal segments 120 which are implemented on the bone structure following bone work upon which the heads 122 of distal segments 120 are snapped into the slots. As the head 122 spring back, the plate segments are held between the screw heads 122 and the underlying bone 2 and 4 .
  • FIGS. 4 a & 4 b illustrate a screw head remover 300 , which can be used to remove the plate segments.
  • the screw head remover applies a centripetal force to the side walls, causing them to move inward, and permitting plate removal.
  • the boreholes are moved into optimal position for bone screw placement.
  • a screw driver is used to drive distal segment 120 further into the bone, thereby holding the plate stationary. The bone screws are then easily placed into the underlying bone.
  • screw 41 is tightened. If desired, compression can be placed across the bony construct and maintained with closure of screw 41 .
  • the inferior surface of segment 30 around the longer channel 320 and the superior surface of projection 1150 is preferentially, but not necessarily, textured so as to promote greater frictional contact between segments 10 and 30 .
  • the plate is rigid. If accommodation of bony subsidence is desired, screw 40 is unlocked, permitting movement of segments 20 towards each other as bone settling occurs. The extent of subsidence permitted is governed by the length of channel 310 .
  • the modified distraction screw 500 comprises an elongated body 510 with an internal bore 512 extending through its entire length to distal end portion 516 .
  • the elongated body 510 houses a deployable member 530 , which is disposed within the internal bore 512 .
  • the deployable member 530 is adapted to be retractably deployed beyond the opening 516 of internal bore 512 .
  • Threads 532 are located on one end of member 530 and head 534 is formed on the other end.
  • Head 534 has diameter greater than that of the internal diameter of bore 512 .
  • Depression 536 is formed within head 534 so as to permit engagement and rotation of deployable member 530 with a complimentary screwdriver. While depicted as a hexagonal depression intended to receive an Allen's wrench, any alternative means and arrangements for engaging and rotating the deployable member 530 can be employed including.
  • the engageable surface may be placed on the outer surface of head 534 or extend from it.
  • spines Adjacent to distal end 516 of elongated body 510 , spines are placed which are adaptable to compliment and engage with spines 270 and 1176 of end coupler 270 and 1170 respectively.
  • the spines may be placed on any surfaces of the distal portion 516 of the elongated body 510 or both.
  • Threads 532 of deployable member 530 are engageable to threads 1174 of end coupler 1170 or threads 274 of end coupler 270 , thus firmly affixing the modified distraction screw to the plate.
  • the modified distraction screw and the modular distraction screw previously affixed to the adjacent vertebra are used to distract the vertebral bodies, permitting work on the intervening disc space.
  • the modular distraction screw is separated leaving the distal segment attached to vertebral body.
  • the modified distraction screw is removed leaving a bare end-coupler.
  • a separate plate is used to span the distance between the distal segment and the end coupler. In this way, the fusion is readily extended to an adjacent level.
  • FIG. 11A shows an offset modified distraction screw which may be used in this setting and FIG. 11B illustrates its placement.
  • the screw components are similar to those described above and as shown in FIG. 10.
  • FIGS. 12-16 A further embodiment of the present invention is illustrated in FIGS. 12-16.
  • the plating segments may be curved in either the vertical or horizontal plane, may contain one or more horizontal indentations in order to permit the placement of additional curvature in the vertical plane (not shown), and may be made of any biologically adaptable or compatible materials.
  • Each of the plate segments 140 and 150 possess two boreholes to accommodate bone fasteners, a central channel to couple with distal segment 120 of the modular distraction screw and an end-coupler.
  • a sliding end portion 80 of plate segment 140 is formed by two side projections 840 , 860 and a central opening 850 .
  • Projection 840 is an extension of the plate segment 80 with side indentation 842 .
  • Indentation 842 may be made of any geometric configurations including, but not limited, square, oval, circular, and hybrid designs which is complimentary to wall 942 of projection 940 of plate segment 150 .
  • Projection 860 has a top wall 862 , a side wall 864 and an inferior wall 866 . Preferably, both top and side walls are straight while the inferior wall is triangular.
  • any geometric configurations may be used for the walls of projection 860 as long as they compliment the interacting surface of slide portion 90 of plate segment 50 .
  • Top surface of wall 862 has opening 8620 which is key-hole shaped and composed of a larger, full thickness circular opening 8622 at one end and a partial thickness, slot 8624 .
  • the inferior surface of wall 862 has a partial thickness channel with opening 8622 at one end and a channel 8626 . The latter is set beneath slot 8624 , is of the same length as slot 8624 and of the same width as the diameter of opening 8622 .
  • the sliding end portion 90 of plate segment 50 is adapted to fit snuggly within central opening 850 and slidingly engages the inner walls of projections 840 and 860 of plate segment 140 .
  • the sliding end portion 90 is formed by projection 940 which has side walls 942 and 946 .
  • Wall 942 is depicted as projecting in a “>” fashion but any geometric configuration may be used that compliments surface 842 of plate segment 80 .
  • wall 946 is configured to compliment 860 of plate segment 80 .
  • wall 946 has sloping surface 9462 and the partial thickness projection 9464 which has upper wall 9470 and lateral wall 9472 .
  • the inferior aspect of wall 9472 is preferably slopped.
  • Partial thickness projection 9464 has channel 9465 and a cross-sectional exploded view is shown in FIG. 13B.
  • the width of channel 9465 is preferably equal to the diameter of opening 8622 of the plate segment 140 .
  • a central ridge 9466 is formed along the walls of channel 9465 which is preferably rectangular. Ridge 9466 does not extent to the bottom of channel 9465 , leaving channel 9467 beneath the ridge. Preferably, ridge 9466 does not extent to the top of channel 9465 , leaving another second channel 9468 above the ridge.
  • the width of the opening formed at the level of ridge 9466 is less than the width of opening 8622 .
  • Coupler means incorporates a bolt element 96 , which comprises a screw 960 and locking nut 980 .
  • Screw 960 has head 962 which is preferably square or hex shaped and fits snuggly beneath ridge 9466 and within channel 9465 .
  • the thickness of head 962 is sufficiently thin so as not to extent beyond the inferior surface of projection 9464 .
  • Shank 964 of screw 960 is circular and fits within the channel formed at the level of ridge 9466 .
  • the shank has a flat end and total length greater than the thickness of projection 9464 but less than the combined thickness of projection 9464 and channel 8626 .
  • Shank 964 also has threads 966 (not depicted) which engages nut 980 .
  • Nut 980 has a central full thickness bore 982 with threads 984 (not depicted) adapted to compliment and engage threads 966 .
  • the threads may be of any available and recognized thread design.
  • Nut 980 fits snuggly within opening 8622 of segment 140 , but has diameter greater than that of channel 8624 .
  • the top surface of nut 980 has indentations 986 which can be engaged by the driving tool.
  • FIGS. 14A and 14B illustrate the coupler means in the open and closed positions.
  • nut 980 of bolt element 96 is held within opening 8622 such that it cannot move relative to plate segment 140 .
  • the plate segments 140 and 150 can continue to move relative to one another in either direction.
  • nut 980 is rotated until edge 9466 rests tightly between nut 980 and head 962 .
  • the nut 980 also leaves opening 8622 and coming to rest within channel 8626 . In this way, bolt element 96 is fixed to plate segment 150 and freed from plate segment 140 .
  • compression may be applied across the fused disc space prior to locking nut 980 . Since bolt element 96 rests at the far end of opening 8620 , any applied compressive force is maintained with closure of the locking mechanism. After closure, plate segments 140 and 150 can only move towards each other, thus accommodating subsidence. The length of opening 8620 determines the amount of subsidence permitted.
  • each of the plate segments of the present invention have two boreholes to accommodate bone fasteners, a central channel to couple with distal segment 120 of the modular distraction screw and an end-coupler.
  • multilevel plates may be curved in either the vertical or horizontal plane, may contain one or more horizontal indentations in order to permit the placement of additional curvature in the vertical plane, and may be made of any biologically adaptable or compatible materials.
  • Each of the upper and lower ends of the plates will contain two boreholes to accommodate bone fasteners, a central slot to anchor the distal segment 120 of the modular distraction screw and an end-coupler to accommodate possible modular extension of the fusion at a later date.
  • FIG. 17 shows an exemplary embodiment of the multi-level plates, where one of the number of sliding mechanisms can be used at each level such that the total number of sliding mechanisms is equal to the number of discs removed and fused. Longer plates can be made by the sequential addition of other levels. While the illustrated plate present only one exemplary embodiment of the sliding mechanism and coupler means, it is understood that any of the previously discussed embodiments may be used in any combination to produce these plates. Further, different sliding mechanism designs can be used at different levels, if desired.
  • a segment 300 with two full thickness bore holes is placed between each of the sliding portions.
  • These boreholes may be oriented in the true vertical plane or form an angle with the vertical.
  • the boreholes will be angled towards each other in the plate's short axis (horizontal plane) and form a right angle with the body of the plate in the long axis (vertical plane).
  • the top opening of the boreholes may be flush with the plate surface or may be recessed.
  • the distance between the boreholes may also vary depending on the requirement of plate application and design.
  • Removal of two or more discs is accomplished by the step-wise removal of individual discs until all pathological levels have been addressed.
  • Modular distraction screws may be used at each vertebral level if desired, but their use is required only at the upper and lower-most vertebras while conventional distraction screws can be used at all intervening levels.
  • the proximal segments of the distraction screws are removed leaving the distal segments attached to the upper and lower-most vertebral bodies.
  • the distraction screw can be completely removed after the completion of the bone work.
  • the plate is guided to proper position along the upper-most and lower-most vertebra by the attached distal segments—as described above for single level procedures.
  • the distal segments of the distraction screws are tightened onto the plate after selection of optimal bone screw position.
  • the plate is held stationary while the bone screws are placed into the upper and lower-most vertebras and the plate is fixed at each end.
  • fixation of the intervening vertebral levels may be started from either end of the plate. For illustration, fixation will be started inferiorly.
  • the plate segment intended to fixate the vertebra immediately superior to the lower-most vertebra is moved into a desired position. The sliding mechanism between this segment and the plate segment attached to the lower-most vertebra is then locked.
  • bone screws are placed into the vertebra immediately superior to the lower-most vertebra. The process is repeated at each of the remaining vertebra. If compression is desired across the construct, it's applied across the upper and lower-most vertebras prior to placement of the bone screws into any of the intervening vertebra. Compression is maintained until all the vertebras have been fixed to the plate. Once all sliding mechanisms have been locked, the compression device may be released and the force will be maintained by the plate.
  • one or more sliding mechanisms can be used to accommodate boney subsidence at two or more fused levels. This is accomplished by using a slotted borehole between levels.
  • FIG. 17A illustrates this design feature in a two level plate in which only one sliding mechanism is employed. Again, the plate is placed after completion of the bone work and plate placement is started by fixation of the plate at each end using the distal segments of the distraction screws. The plate is set to the desired length and the sliding mechanism is locked. If desired, compression may be applied prior to closure of the mechanism. The bone screw is placed at the end of the slotted borehole immediately adjacent to the sliding mechanism and the subsidence screw is opened. In this way, the plate's adjustable length and subsidence can be accomplished using a single sliding mechanism. While the second embodiment of the sliding mechanism as well as the alternative embodiments of the end-coupler and central channel are illustrated, it is understood that any of the previously discussed embodiments may be used in any workable combination to produce these plates.
  • FIG. 17B demonstrates the other potential designs that can be used for a three level plate. Other possible variations that can be used in creating a other multi-level plating system. Longer plates can be made by the sequential addition of other levels.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)

Abstract

A bone plating system is provided that permits maintenance of a compression force while also accommodating bony subsidence, among other features. Methods of implantation are also provided that improve alignment and placement during implantation and avoid maneuvers that weaken the vertebral bodies. A modular distraction screw is placed during the initial stages of surgery when all relevant landmarks are still intact. After completion of the surgical bone work, a proximal end of the distraction screw is detached, leaving a protruding distal segment implanted in the centerline of the vertebral bodies above and below the newly fused disc space. A bone plate is guided into proper position relative to the upper and lower vertebra by attaching the bone plate to the protruding distal segments. The distal segments of the distraction screws are tightened onto the plate and the plate is held stationary while bone screws are placed. The bone plating system is also extendable, allowing additional bone plates to be placed and coupled with existing plate components to create a multi-level plating system. Additional bone plates may be placed contemporaneously or during a subsequent surgical procedure.

Description

    RELATED APPLICATION
  • The present application claims priority to co-pending U.S. provisional patent application serial No. 60/439,030 filed on Jan. 10, 2003, and is a continuation-in-part of co-pending U.S. patent application Ser. No. 10/683,325 filed on October 10, 2003, each of which is incorporated herein by reference in its entirety.[0001]
  • BACKGROUND
  • 1. Field of the Invention [0002]
  • The present invention is directed at skeletal plating systems, components thereof, and method of implant placement. These systems are used to adjust, align and maintain the spatial relationship(s) of adjacent bones or bony fragments during healing and fusion after surgical reconstruction of skeletal segments. Such systems may be comprised of bone distraction devices, skeletal plates, bone screws and/or bone cables, bone screw-to-plate locking mechanisms, and any additional instruments needed for implant placement. [0003]
  • 2. Related Art [0004]
  • Whether for degenerative disease, traumatic disruption, infection or neoplastic invasion, surgical reconstructions of the bony skeleton are common procedures in current medical practice. Regardless of anatomical region or the specifics of the reconstructive procedure, many surgeons employ an implantable skeletal plate to adjust, align and maintain the spatial relationship(s) of adjacent bones or bony fragments during postoperative healing. These plates are generally attached to the bony elements using bone screws or similar fasteners and act to share the load and support the bone as osteosynthesis progresses. [0005]
  • Available plating systems used to fixate the cervical spine possess several shortcomings in both design and implantation protocols. These plates are manufactured and provided to the surgeon in a range of sizes that vary by a fixed amount. This mandates that a large number of different size plates must be made and inventoried—adding to cost for manufacturer, vendor, and end user (hospitals). More importantly, the pre-manufactured sizes may not precisely fit all patients forcing surgeons to choose between a size too small or too large. [0006]
  • Plates used to attach three or more vertebrae after removal of two or more discs are manufactured with an equal distance between screw holes in the vertical plane. For example, the distance between the pair of C3 (cervical bone #3) and the pair of C4 (cervical bone #4) screws is equal to the distance between the C4 and C5 (cervical bone #5) screws as well as the distance between the C5 and C6 (cervical bone #6) screws and so forth. This not only ignores the known anatomical difference in size between bones at different levels but also fails to anticipate that a patient's unique pathology may require more extensive bony resection at one or more levels, further adding to these differences. Thus, selection of a plate with a suitable total length may still produce improper fit at one or more levels. [0007]
  • Current cervical plates are not modular, and will not permit addition of one plate to another for extension of the bony fusion at a future date. It is accepted that fusion of a specific spinal level will increase the load on, and the rate of degeneration of, the spinal segments immediately above and below the fused level. As the number of spinal fusion operations have increased, so have the number of patients who require extension of their fusion to adjacent levels. Currently, the original plate must be removed and replaced with a longer plate in order to fixate the additional fusion segment. This surgical procedure necessitates re-dissection through the prior, scarred operative field and substantially increases the operative risk to the patient. Further, since mis-alignment of the original plate along the vertical axis of the spine is common, proper implantation of the replacement plate often requires that the new bone screws be placed in different bone holes. The empty holes that result may act as stress concentration points within the vertebral bodies, as would any empty opening or crack within a rigid structural member, and lead to bone fracture and subsequent screw/plate migration. [0008]
  • Current plates may provide fixation that is too rigid. Since bone re-absorption at the bone/graft interface is the first phase of bone healing, fixation that is too rigid will not permit the bone fragments to settle and re-establish adequate contact after initial bone absorption. This process is known as “stress shielding” and will lead to separation of the bony fragments and significantly reduce the likelihood of bony fusion. Unsuccessful bone fusion may lead to construct failure and will frequently necessitate surgical revision with a second operative procedure. [0009]
  • Benzel (U.S. Pat. Nos. 5,681,312, and 5,713,900) and Foley (Pat. Applic. Pub. No. US2001/0047172A1) have independently proposed plating systems designed to accommodate bone settling. In either system, however, bony subsidence can be expected to cause one end of the plate to migrate towards an adjacent, normal disc space. This is highly undesirable since, with progressive subsidence, the plate may overlap the disc space immediately above or below the fused segments and un-necessarily limit movement across a normal disc space. Clearly, accommodation of bone settling at the plate's end is a sub-optimal solution. [0010]
  • Yuan et al described a multi-segmental plate consisting of two sliding parts in U.S. Pat. No. 5616142. While intended to be absorbable, this design may permit excessive play between the sliding segment and encourage bone screw loosening. In addition, this device does not permit application and maintenance of a compressive force across the bony construct. Baccelli noted these deficiencies in U.S. Pat. No. 6,306,136 and proposed a rigid plate capable of maintaining bony compression. However, the latter plate did not permit subsidence. [0011]
  • The implantation procedures of conventional plates in prior art practice have additional shortcomings. Distraction screws are used during disc removal and subsequent bone work and these screws are removed prior to bone plate placement. The empty bone holes created by removal of the distraction screws can interfere with proper placement of the bone screws used to anchor the plate and predispose to poor plate alignment along the long axis of the spine. This is especially problematic since the surgical steps that precede plate placement will distort the anatomical landmarks required to ensure proper plate alignment, leaving the surgeons with little guidance during plate implantation. For these reasons, bone plates are frequently placed “crooked” in the vertical plane and often predispose to improper bony alignment. Correct plate placement in the vertical plane is especially important in plates intended to accommodate bony subsidence, since the plate preferentially permits movement along its long axis. Thus, when the vertical axis of the plate and that of the spine are not properly aligned, the plate will further worsen the bony alignment as the vertebral bones subside. [0012]
  • The empty bone holes left by the removal of the distraction screws also act as stress concentration points within the vertebral bodies, as would any empty opening or crack within a rigid structural member, and predispose them to bone fracture and subsequent screw/plate migration. Improper plate placement and bony fractures can significantly increase the likelihood of construct failure and lead to severe chronic pain, neurological injury, and the need for surgical revision with a second procedure. [0013]
  • In view of the proceeding, it would be desirable to design an improved bone plating system and placement protocol. The new device should provide ease of use, reliable bone fixation, adjustable length, modular design, and the ability to accommodate and control bone settling. The design should also maximize the likelihood of proper plate placement and avoid maneuvers that weaken the vertebral bodies. No current plating system addresses all of these concerns. Therefore, what is needed is a system and method that overcomes these significant problems found in the conventional systems as described above. [0014]
  • SUMMARY
  • The present invention is that of a modular bone plate of adjustable length. The current invention provides a bone plate that permits maintenance of a compression force while also accommodating bony subsidence, among other features. A modular distraction screw is used for the bone work, including fusion, prior to plate placement. The distraction screw is placed as the first step of surgery when all relevant landmarks are still intact. After completion of the bone work, a proximal end of the distraction screw is detached, leaving a distal segment still implanted in the vertebral bodies above and below the newly fused disc space. The plate is guided to proper position along the upper and lower vertebra by the attached distal segments. The distal segments of the distraction screws are tightened onto the plate and the plate is held stationary while bone screws are placed. [0015]
  • The distal segments act as an anchor to guide the bone plate into the correct placement position and serve to hold the plate stationary while the plate's bone screws are placed. Since the distraction screws were placed with intact surgical landmarks, use of the distal segments to guide the plate significantly increases the likelihood of proper plate placement. In addition, the distal segments of the distraction screws serve as additional points of fixation for the plate and leave no empty bone holes which give rise to stress concentration points that further weaken the vertebral bodies. [0016]
  • After the plate is attached to the upper and lower vertebras, the plate is set to the desired length and the two segments are locked together. If application of a compressive force is desired, the plate can be used to maintain the force across the vertebral bodies by simply locking the plate segments after applying compression. Occasionally, surgeons are confronted with a grossly unstable spine from the patient's unique pathology and choose to forgo subsidence in favor of a more fixed and rigid construct. In these situations, plate placement is essentially complete and requires no further steps. More commonly, subsidence is desired and release of a second locking screw permits the plate to accommodate bony subsidence. Unlike current plating systems which provide either a rigid plate or one capable of subsidence, the current invention permits either option by the simple turn of one screw. Further, when subsidence is chosen, this plate will not overlap the adjacent disc space with bone movement, since subsidence is accommodated at the level of settling bone and not at the plate's end. [0017]
  • Extension of the fusion at a later date is easily accomplished without plate removal. An adapter is placed at either end of the plate that can couple with either a modified distraction screw or an additional bone plate. Fusion extension is started by connecting a modified distraction screw to the coupler at-the end of the plate immediately adjacent to the disc to be removed. A modular distraction screw is inserted into the adjacent vertebra and a discectomy and subsequent fusion are performed within the intervening disc space. After completion of the bone work, the modified distraction screw is removed leaving the bare coupler on the end of the plate. The proximal segment of the distraction screw is also removed leaving the distal segment attached to the adjacent vertebral body. An extension plate is used to span the space between the distal segment of the distraction screw on the adjacent vertebra and the end-coupler on the original plate. In this way, the fusion is extended and the newly fused segment is fixated without removal of the original plate. Further, the end-coupler can used to correct for any improper (“crooked”) placement of the original plate by rotating the extension plate into the true vertical. [0018]
  • The preceding discussion has focused on removal of one disc with fusion and plate fixation of the vertebral bodies above and below the evacuated disc space. However, “multi-level” procedures (that is, removal of two or more discs and fusion of three or more bones) can also be addressed with this system. Removal of two or more discs is accomplished by the step-wise removal of individual discs until all pathological levels have been addressed. Modular distraction screws may be used at each vertebral level if desired, but their use is required only at the upper and lower-most vertebras while conventional distraction screws can be used at all intervening levels. After completion of the bone work, the proximal segments of the distraction screws are removed leaving the distal segments attached to the upper and lower-most vertebral bodies. Regardless of the type of distraction screw used at the other levels, that screw is completely removed after the completion of the bone work. The empty bone holes left at these intervening level are far less important than those produced at the upper and lower-most vertebra, since the latter share a disproportionate share of the load. [0019]
  • In one embodiment of the present invention, plates used for multi-level procedures will have an expandable/subsidence mechanism overlying each disc space that is fused. The plate is guided to proper position along the upper-most and lower-most vertebra by the attached distal segments—as described above for single level procedures. The distal segments of the distraction screws are tightened onto the plate and the plate is held stationary while bone screws are placed into the upper and lower-most vertebras. In this way, the plate is fixed at each end. Depending on surgeon preference, fixation of the intervening vertebral levels may be started from either end of the plate. For illustration, fixation will be started inferiorly. The plate segment intended to fixate the vertebra immediately superior to the lower-most vertebra is moved into optimal position. The sliding mechanism between this segment and the plate segment attached to the lower-most vertebra is then locked, fixing these two segments together. Bone screws can then be easily and rapidly placed into the vertebra immediately superior to the lower-most vertebra. The process is repeated at each of the remaining vertebra. If compression is desired across the construct, it's applied across the upper and lower-most vertebras prior to placement of the bone screws into any of the intervening vertebra. Compression is maintained until all the vertebra have been fixed to the plate. Once all sliding mechanisms have been locked, the compression device may be released and the force will be maintained by the plate. If a rigid construct/plate is desired, then plate placement is complete. However, if subsidence is needed, the (subsidence) locking screw is opened at each level where bone subsidence is desired. In this way, this plate design permits the surgeon to choose the exact vertebral levels to fixed rigidly and those level that will be allowed to accommodate subsidence. Further, it permits the distance between the bone screws at different levels to be custom fit for the individual patient. These features are not shared by any currently available plating system. [0020]
  • In other embodiments, multi-level plates will be designed without a sliding/subsidence mechanism at every level. Instead, one or more sliding/subsidence mechanism(s) will be used to affect two or more levels by use of a slotted borehole configuration between levels. At each end, however, the plate will remain rigidly fixed to bone. In this way, subsidence continues to be accommodated at the level of bony movement and the plate remains stationary at each end. [0021]
  • All embodiments of the multi-level plates will preferentially, but not necessarily, contain central channels to accommodate the distal segment of the modular distraction screw and end-couplers so that extension of the fusion at a future date remains possible. [0022]
  • In other embodiments of the present invention, additional plate design, different locking mechanisms, and alternative end couplers are shown and described. Other embodiments, in addition to those illustrated, can also be used. [0023]
  • The plating systems described in the present invention provide ease of use, reliable bone fixation, adjustable length, modular design, and the ability to accommodate and control bone settling. These designs will also maximize the likelihood of proper plate placement, avoid maneuvers that weaken the vertebral bodies, and provide a significant advantage over the current and prior art. These and other features of the present invention will become more apparent from the following description of the embodiments and certain modifications thereof when taken with the accompanying drawings.[0024]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The details of the present invention, both as to its structure and operation, may be gleaned in part by study of the accompanying drawings, in which like reference numerals refer to like parts, and in which: [0025]
  • FIG. 1 is a partial side view of a disassembled distraction screw according to an embodiment of the invention; [0026]
  • FIG. 2 is an assembled distraction screw and a cross sectional side view of the assembled distraction screw according to an embodiment of the invention; [0027]
  • FIGS. 3A-3B are close up views of the connector portion of the elongated body of a distraction screw according to an embodiment of the invention; [0028]
  • FIGS. 4A-4B are partial views of a distraction screw removal tool according to an embodiment of the invention; [0029]
  • FIGS. 5A-5B are exploded perspective views of a bone plate according to alternative embodiments of the invention; [0030]
  • FIGS. 5C-5D are perspective views of a mounted bone plate according to alternative embodiments of the invention; [0031]
  • FIGS. 6A-6F are top, bottom, and side views of angled bracket plate components according to an embodiment of the invention; [0032]
  • FIG. 7A-7C are top, bottom, and side views of square bracket plate components according to an embodiment of the invention; [0033]
  • FIGS. 8A-8B are top views of a third plate component according to an embodiment of the invention; [0034]
  • FIGS. 9A-9B are perspective views of a modified distraction screw attached to a bone plate according to an embodiment of the invention; [0035]
  • FIG. 10A is a partial side view of a modified disassembled distraction screw according to an embodiment of the invention; [0036]
  • FIGS. 10B-10D are partial side views of a modified assembled distraction screw according to an embodiment of the invention; [0037]
  • FIG. 10E is a close up view of a modified distraction screw according to an embodiment of the invention; [0038]
  • FIG. 11A is a perspective view of an offset, modified distraction screw according to an embodiment of the invention; [0039]
  • FIG. 11B is a perspective view of an offset, modified distraction screw attached to a bone plate according to an embodiment of the invention; [0040]
  • FIG. 12A is an exploded perspective view of a bone plate according to an embodiment of the invention; [0041]
  • FIG. 12B is a top view of a first bone plate component according to an embodiment of the invention; [0042]
  • FIG. 12C is a bottom view of a first bone plate component according to an embodiment of the invention; [0043]
  • FIG. 12D is a top view of a second bone plate component according to an embodiment of the invention; [0044]
  • FIG. 12E is a bottom view of a second bone plate component according to an embodiment of the invention; [0045]
  • FIG. 13A is a sectional view of a bone plate according to an embodiment of the invention; [0046]
  • FIG. 13B is a close up sectional view of the locking mechanism of a bone plate according to an embodiment of the invention; [0047]
  • FIG. 14A is a perspective view of a mounted bone plate in an open position according to an embodiment of the invention; [0048]
  • FIG. 14B is a perspective view of a mounted bone plate in a closed position according to an embodiment of the invention; [0049]
  • FIG. 15A is an exploded perspective view of a jackscrew bone plate according to an embodiment of the invention; [0050]
  • FIG. 15B is a sectional view of a jack screw bone plate according to an embodiment of the invention; [0051]
  • FIG. 15C is a close up sectional view of the locking mechanism of a jack screw bone plate according to an embodiment of the invention; [0052]
  • FIGS. 16A-16B are top and bottom views of a bone plate component with an open central channel and an alternative end coupler for a modified distraction screw according to an embodiment of the invention; and [0053]
  • FIGS. 17A-17B are top views of combined bone plates with slotted screw holes and sliding mechanisms according to alternative embodiments of the invention.[0054]
  • DETAILED DESCRIPTION
  • Certain embodiments as disclosed herein provide for a modular bone distraction screw and a modular bone fixation plate with an adjustable length to accommodate bone settling. For example, one plating system disclosed herein allows for compression to be set during placement of the plate and also allows subsidence of the bone while maintaining the initial compression. [0055]
  • After reading this description it will become apparent to one skilled in the art how to implement the invention in various alternative embodiments and alternative applications. However, although various embodiments of the present invention will be described herein, it is understood that these embodiments are presented by way of example only, and not limitation. As such, this detailed description of various alternative embodiments should not be construed to limit the scope or breadth of the present invention as set forth in the appended claims. [0056]
  • FIG. 1 shows a [0057] modular distraction screw 110, which comprises a distal segment 120 and a removable proximal 130 segment. The distal segment 120 has a head portion 122, and a threaded shank portion 124, which can be securely fastened unto bone. The proximal segment 130 comprises an elongated body 132 and deployable member 136. Elongated body 132 has a smooth-walled internal bore 134 extending through its full length and houses the deployable member 136 within the bore. The deployable member 136 is adapted to be retractably deployed beyond the distal end of the internal bore 134. FIG. 2 shows the assembled distraction screw.
  • FIG. 3 illustrates [0058] distal segment 120, which comprises a threaded shank portion 124 and a head portion 122. Threads 126 of the shank portion 124 are preferably self-tapping and/or self-drilling. Depending on the particular application, the shank 124 can be of variable lengths and diameter. In one application, the outer diameter of the shank/threads is preferably equal to the widest point of head 122. One of ordinary skill in the art would understand that the threads can be of any design that is well known to be applicable for screwing placement into mammalian bone.
  • [0059] Head 122 is circular with hollow central bore 1220. The upper aspect 1222 of the circular head is of uniform diameter but the lower portion 1223 of the head is of progressively greater diameter such that the head has a sloping side wall below edge 1224. Threads 1225 are located within bore 1220 and are complementary to threads 128 of deployable member 136. Head 122 has a plurality of slots 1226 which are engageable by projections 1322 of the distal aspect of elongated body 132, as shown in FIG. 3A and FIG. 3B. Slots 1226 permit the head to collapse inward when centripetal force is applied to the outer wall of the head.
  • [0060] Deployable member 136 is advanced through bore 134 to engage distal segment 120 with the coupling of the complimentary threads 128 and 1225. The proximal head 1362 of member 136 permits application of rotational force to deployable member 136 (as shown in FIG. 2) further driving threads 128 and 1225 together and locking members 132, 136 and distal segment 120 together. While depicted as a hex configuration, any engagable configuration may be used to drive deployable member 136.
  • The coupled [0061] proximal segment 130 and distal segment 120 employing the above-described means of engagement provide a modular distraction screw. When fully assembled, the screw functions as a unitary device. In a surgical application, a wrench (not shown) is attached to the tool attachment portion 180 of elongated member 132 (FIG. 1), and the distraction screw is positioned at a site of a bone. A rotational force is applied to portion 180 causing the proximal and distal segments to rotate in unison so that thread 126 of the distal segment 120 engages the underlying bone and shank 124 is advanced into the bone.
  • After the distraction screw is used to perform the bone work, the [0062] proximal segment 130 is detached from distal segment 120. The distraction screw is disassembled into its components by applying a rotational force to head 1362 of member 136 in a direction opposite (usually counter-clock wise) to that required for screw assembly (usually clock-wise). The distal segment is held stationary while threads 128 and 1225 are disengaged by applying a counter force to distal segment 120 using the proximal portion 180 of the elongated body 132. In this way, the proximal segment 130 is removed leaving the distal segment 120 attached (implanted) to the bone structure.
  • As implanted, the [0063] distal segment 120 provides enhanced structural integrity of the bone by reducing the stress concentration generally expected of an empty opening in a structural member. In addition, leaving the distal segment 120 attached to bone eliminates the robust bone bleeding encountered after removal of current, commercially-available distraction screws and obviates the need to fill the empty hole with a hemostatic agent.
  • The [0064] distal segment 120 also provides a point of anchoring for a skeletal plate and help insure proper plate placement. Since placement of the distraction screws is performed as the first step in the surgical procedure, the anatomical landmarks required to ensure proper alignment of the plate in the desired anatomical plane are still intact.
  • Alternatively, a conventional one-piece distraction can be used to distract the vertebra during discectomy. After the bone work is finished, the conventional distraction screw is removed leaving an empty bone hole. A [0065] distal segment 120 is placed into the empty bone hole and provides an anchor point for the skeletal plate.
  • FIGS. 5A and 5B show two [0066] vertebral bodies 2 and 4 and the plating system 8 of the present invention used to fixate them. The plating system includes sliding plate segments 10 and 20 and a coupler means or a coupler segment 30, which couples the sliding segments 10 and 20 and controls their movements. FIGS. 6-7 show the top and mid-sectional views of the embodiment of the bone fixation plate.
  • The [0067] plate segments 10 and 20 may be curved in either the vertical or horizontal plane in order to conform to the shape of the bone it is designed to fixate. For example, plates designed to attach onto the anterior aspect of the cervical spine are preferentially, but not necessarily, convex in both the vertical and horizontal planes. Further, the plate surface immediately adjacent to the bone surface may contain one or more horizontal indentations 1200 in order to permit the placement of additional curvature in the vertical plane.
  • The plating system or any of its components can be made of any biologically adaptable or compatible materials. Materials considered acceptable for biological implantation are well known and include, but are not limited to, stainless steel, titanium, combination metallic alloys, various plastics, resins, ceramics, biologically absorbable materials and the like. It would be understood by one of ordinary skill in the art that any system component can be made of any materials acceptable for biological implantation and capable of withstanding the torque required for insertion and the load encountered during use. Any components may be further coated/made with osteo-conductive (such as deminerized bone matrix, hydroxyapatite, and the like) and/or osteo-inductive (such as Transforming Growth Factor “TGF-B, ” Platelet-Derived Growth Factor “PDGF,” Bone-Morphogenic Protein “BMP,” and the like) bio-active materials that promote bone formation. Further, any instrument or device used in implant placement may be made from any non-toxic material capable of withstanding the load encountered during use. Materials used in these instruments need not be limited to those acceptable for implantation, since these devices function to deliver the implatable segments but are not, in themselves, implanted. [0068]
  • As shown in FIGS. 5-7 sliding [0069] segment 10 has two boreholes 1110 which are formed through the plate to accommodate fastening elements, such as bone screw. Each borehole may be oriented in the true vertical plane or form an angle with the vertical. For use in the cervical spine, boreholes 1110 will preferentially, but not necessarily, be angled towards each other in the horizontal plane and away from the sliding end in the vertical plane. The top opening of the boreholes may be flush with the plate surface or may be recessed. The distance between the boreholes may also vary depending on the requirement of plate application and design. A depression 1120 is present between the boreholes with slot 1130 along the depression. The side walls 1132 of slot 1130 are preferentially, but not necessarily, angled with the true vertical such that the top opening of slot 1130 is slightly smaller than the bottom opening. Slot 1130 is adapted to accommodate or mate with screw head 122 of distal segment 120 of the distraction screw. While depicted as an elongated hole, slot 1130 may alternatively be a circular hole.
  • [0070] Plate segment 10 has three projections, consisting of two side projections 1140, 1160 and a central projection 1150. Two indentations 1180 and 1190 are formed between these three projections. The inside wall of each projection 1140 and 1160 contain indentations 1142 and 1162, respectively. While depicted as “V” shaped, these indentations may be made of any geometric configurations including, but not limited, square, oval, circular, and hybrid designs which are complimentary to the sliding portion of the other plate segment 20. The central projection 1150 has a partial thickness middle segment 1152 and two full side walls 1154. An opening 1156 with internal threads 1158 is provided on segment 1152. The top surface of middle segment 1152 is preferentially textured so as to permit superior contact with the undersurface of the complementary plate component.
  • The other end portion of the [0071] plate segment 10 has a projection 1170, which is preferentially, but not necessarily, position in the midline of the plate segment. The projection has a central hole 1172 with threads 1174. Spines 1176 may be placed along the top of the projection to mate with complimentary spines on the add-on attachments, as shown in FIG. 4. These spines may be placed on any one or combination of surfaces adjacent projection 1170. These surfaces may be textured or left smooth.
  • FIGS. 6D, 6E, [0072] 6F & 7 illustrate the complementary sliding plate segment 20 to sliding segment 10. Again, two boreholes 210 are vertically formed through the plate to accommodate fastening elements. As with sliding plate segment 10, these boreholes may be oriented in the true vertical plane or form an angle with it, may be flush with the plate surface or further recessed, and the distance between these holes may vary depending on the requirement of the plate application. A depression 220 is formed between the boreholes with a slot 230 whose side walls 232 are preferentially angled with the true vertical such that the top opening of the slot is slightly smaller than the bottom opening. Slot 230 is adapted to mate with and accommodate the distal segment of a distraction screw.
  • Sliding [0073] plate segment 20 has two projections 240, 260 and central connection 250. Projection 240 has an extension 242 which is complementary to indentations 1142 of projections 1140. Likewise, projection 260 has an extension 262 that is adapted to be received by indentations 1162 of projection 1160. Projections 240 and 260 may be of any geometric configuration and cross-section including, but not limited, square, oval, circular, truncated triangular, modified rectangular and hybrid designs that are complimentary to the corresponding sliding portions of the segment 10. Further, projections 240 and 260 may be of differing designs that are complimental to projections 1140 and 1160. The central connection 250 has a partial thickness middle segment 252 and two side walls 254. An opening 256 with internal threads 258 is located on segment 252. Openings 256 and 1156 may be aligned with the direction of bone subsidence.
  • On its opposite end, [0074] plate segment 20 has a partial thickness projection 270 that is preferentially, but not necessarily, in the midline of the plate. Projection 270 has a central hole 272 with threads 274. Spines 276 may be placed along the top of the projection to mate with complimentary spines of the add-on attachments. These spines may be placed on any one or combination of surfaces adjacent projection 270. These surfaces may be textured or left smooth.
  • FIG. 8 illustrates top and oblique views of coupling means or [0075] segment 30. Two full thickness channels 310 and 320 are formed within segment 30. The channels are preferentially, but not necessarily, of different lengths and walls 312 and 322 of channels 310 and 320 are preferentially angled with the vertical plane. The top surface of coupling segment 30 is smooth while the bottom surface is preferentially textured in the portion of the segment with the larger channel 320. The bottom of the segment with the smaller channel 310 is smooth. Coupling segment 30 couples plate segments 10 and 20 as depicted in FIG. 5 with screws 40 and 41. While not depicted, each screw has threads on which are complimentary to threads 158 of segment 10 and threads 258 of segment 20. The screws have top depressions 414 and 404 for engagement by a screwdriver or other driving instrument. While both screws are depicted as being identical, each may be of any of the many well known fastener designs and may be inserted using any complimentary driver.
  • [0076] Projections 1150 and 250 of sliding plate segment 10 and 20 respectively may be of equal or different lengths. When unequal, central projection 1150 is made longer than projection 250 as a matter of preference. (Alternatively, the longer projection may be placed within segment 20.) The longer channel 320 of segment 30 engages the longer central projection (element 1150 of segment 10) by screw 41 while the shorter channel 310 engages the shorter central projection (element 250 of segment 20) by screw 40.
  • The bone screws and the screw for the [0077] coupler segment 30 may be of any of the many well known designs considered acceptable for implant attachment to the bony skeleton and made from any material intended for biological implantation.
  • As an option, any portion of the plating segments may be made of radiolucent materials (such as PEEK, PEAK, and the like) so that unfettered x-ray examination of the underlying bone can be performed in the post-operative period. Thus, [0078] projections 1150, 250 and segment 30 can be made from radiolucent materials so as to provide a window for x-ray examination of the bone without decreasing the overall strength of the plate.
  • After completion of the bone work and detachment of the proximal portions of the distraction screws, the distal segments are left attached to the vertebra above and below the newly fused disc space. The bone plate is fully assembled before implantation. [0079] Screw 40 is fully seated at the outside edge 312 of channel 310 so that plate segment 20 and coupler segment 30 are fixed relative to one another. However, screw 41 is partially seated on the outside edge 320 of channel 320 so that plate segment 10 and coupler segment 30 are free to slide relative to each other. Slot 1130 and 230 are aligned with the distal segments 120 which are implemented on the bone structure following bone work upon which the heads 122 of distal segments 120 are snapped into the slots. As the head 122 spring back, the plate segments are held between the screw heads 122 and the underlying bone 2 and 4.
  • If the plate is poorly positioned because of bony irregularity, it can be removed to permit additional bone work. FIGS. 4[0080] a & 4 b illustrate a screw head remover 300, which can be used to remove the plate segments. When pushed onto head 122 of distal segment 120, the screw head remover applies a centripetal force to the side walls, causing them to move inward, and permitting plate removal. Alternatively, if the plate is well positioned, the boreholes are moved into optimal position for bone screw placement. A screw driver is used to drive distal segment 120 further into the bone, thereby holding the plate stationary. The bone screws are then easily placed into the underlying bone.
  • Once the plate segments are set to the desired length, screw [0081] 41 is tightened. If desired, compression can be placed across the bony construct and maintained with closure of screw 41. The inferior surface of segment 30 around the longer channel 320 and the superior surface of projection 1150 is preferentially, but not necessarily, textured so as to promote greater frictional contact between segments 10 and 30. At this point, the plate is rigid. If accommodation of bony subsidence is desired, screw 40 is unlocked, permitting movement of segments 20 towards each other as bone settling occurs. The extent of subsidence permitted is governed by the length of channel 310.
  • Extension of the fusion at a future date can be easily accomplished without plate removal. Incorporation of the vertebral body immediately above or below into the fusion mass is started by placement of a [0082] modular distraction screw 110 into that adjacent vertebra. A modified distraction screw is used to engage the end-coupler of the existing plate as shown in FIG. 10. As shown in FIGS. 9, 10 and 11, the modified distraction screw 500 comprises an elongated body 510 with an internal bore 512 extending through its entire length to distal end portion 516. The elongated body 510 houses a deployable member 530, which is disposed within the internal bore 512. The deployable member 530 is adapted to be retractably deployed beyond the opening 516 of internal bore 512. Threads 532 are located on one end of member 530 and head 534 is formed on the other end. Head 534 has diameter greater than that of the internal diameter of bore 512. Depression 536 is formed within head 534 so as to permit engagement and rotation of deployable member 530 with a complimentary screwdriver. While depicted as a hexagonal depression intended to receive an Allen's wrench, any alternative means and arrangements for engaging and rotating the deployable member 530 can be employed including. Likewise, the engageable surface may be placed on the outer surface of head 534 or extend from it.
  • Adjacent to [0083] distal end 516 of elongated body 510, spines are placed which are adaptable to compliment and engage with spines 270 and 1176 of end coupler 270 and 1170 respectively. The spines may be placed on any surfaces of the distal portion 516 of the elongated body 510 or both. Threads 532 of deployable member 530 are engageable to threads 1174 of end coupler 1170 or threads 274 of end coupler 270, thus firmly affixing the modified distraction screw to the plate. The modified distraction screw and the modular distraction screw previously affixed to the adjacent vertebra are used to distract the vertebral bodies, permitting work on the intervening disc space. When the discectomy and subsequent bone work are finished, the modular distraction screw is separated leaving the distal segment attached to vertebral body. The modified distraction screw is removed leaving a bare end-coupler. A separate plate is used to span the distance between the distal segment and the end coupler. In this way, the fusion is readily extended to an adjacent level.
  • Occasionally, placement of the plating segments might result in the end coupler being too close to the adjacent disc space such that placement of the modified distraction screw onto the coupler could hinder surgical access to the disc space. FIG. 11A shows an offset modified distraction screw which may be used in this setting and FIG. 11B illustrates its placement. The screw components are similar to those described above and as shown in FIG. 10. [0084]
  • A further embodiment of the present invention is illustrated in FIGS. 12-16. As in the embodiments described above, the plating segments may be curved in either the vertical or horizontal plane, may contain one or more horizontal indentations in order to permit the placement of additional curvature in the vertical plane (not shown), and may be made of any biologically adaptable or compatible materials. [0085]
  • Each of the [0086] plate segments 140 and 150 possess two boreholes to accommodate bone fasteners, a central channel to couple with distal segment 120 of the modular distraction screw and an end-coupler.
  • A sliding [0087] end portion 80 of plate segment 140 is formed by two side projections 840, 860 and a central opening 850. Projection 840 is an extension of the plate segment 80 with side indentation 842. Indentation 842 may be made of any geometric configurations including, but not limited, square, oval, circular, and hybrid designs which is complimentary to wall 942 of projection 940 of plate segment 150. Projection 860 has a top wall 862, a side wall 864 and an inferior wall 866. Preferably, both top and side walls are straight while the inferior wall is triangular. One of ordinary skill in the art would recognize that any geometric configurations may be used for the walls of projection 860 as long as they compliment the interacting surface of slide portion 90 of plate segment 50. Top surface of wall 862 has opening 8620 which is key-hole shaped and composed of a larger, full thickness circular opening 8622 at one end and a partial thickness, slot 8624. The inferior surface of wall 862 has a partial thickness channel with opening 8622 at one end and a channel 8626. The latter is set beneath slot 8624, is of the same length as slot 8624 and of the same width as the diameter of opening 8622.
  • As shown in FIG. 12, the sliding [0088] end portion 90 of plate segment 50 is adapted to fit snuggly within central opening 850 and slidingly engages the inner walls of projections 840 and 860 of plate segment 140. The sliding end portion 90 is formed by projection 940 which has side walls 942 and 946. Wall 942 is depicted as projecting in a “>” fashion but any geometric configuration may be used that compliments surface 842 of plate segment 80. Likewise, wall 946 is configured to compliment 860 of plate segment 80. Preferably, wall 946 has sloping surface 9462 and the partial thickness projection 9464 which has upper wall 9470 and lateral wall 9472. The inferior aspect of wall 9472 is preferably slopped. Partial thickness projection 9464 has channel 9465 and a cross-sectional exploded view is shown in FIG. 13B. The width of channel 9465 is preferably equal to the diameter of opening 8622 of the plate segment 140. A central ridge 9466 is formed along the walls of channel 9465 which is preferably rectangular. Ridge 9466 does not extent to the bottom of channel 9465, leaving channel 9467 beneath the ridge. Preferably, ridge 9466 does not extent to the top of channel 9465, leaving another second channel 9468 above the ridge. The width of the opening formed at the level of ridge 9466 is less than the width of opening 8622.
  • [0089] Plate segments 140 and 150 are coupled in assembly with channel 9465 and opening 8620 overlapping each other by a suitable coupler means. Coupler means incorporates a bolt element 96, which comprises a screw 960 and locking nut 980. Screw 960 has head 962 which is preferably square or hex shaped and fits snuggly beneath ridge 9466 and within channel 9465. The thickness of head 962 is sufficiently thin so as not to extent beyond the inferior surface of projection 9464. Shank 964 of screw 960 is circular and fits within the channel formed at the level of ridge 9466. The shank has a flat end and total length greater than the thickness of projection 9464 but less than the combined thickness of projection 9464 and channel 8626. Shank 964 also has threads 966 (not depicted) which engages nut 980. Nut 980 has a central full thickness bore 982 with threads 984 (not depicted) adapted to compliment and engage threads 966. The threads may be of any available and recognized thread design. Nut 980 fits snuggly within opening 8622 of segment 140, but has diameter greater than that of channel 8624. Preferably, the top surface of nut 980 has indentations 986 which can be engaged by the driving tool.
  • FIGS. 14A and 14B illustrate the coupler means in the open and closed positions. When open, [0090] nut 980 of bolt element 96 is held within opening 8622 such that it cannot move relative to plate segment 140. However, since the bolt element 96 is not fixed to plate segment 150, the plate segments 140 and 150 can continue to move relative to one another in either direction. When the plate is set to the desired length, nut 980 is rotated until edge 9466 rests tightly between nut 980 and head 962. The nut 980 also leaves opening 8622 and coming to rest within channel 8626. In this way, bolt element 96 is fixed to plate segment 150 and freed from plate segment 140. If desired, compression may be applied across the fused disc space prior to locking nut 980. Since bolt element 96 rests at the far end of opening 8620, any applied compressive force is maintained with closure of the locking mechanism. After closure, plate segments 140 and 150 can only move towards each other, thus accommodating subsidence. The length of opening 8620 determines the amount of subsidence permitted.
  • As shown in the drawings, each of the plate segments of the present invention have two boreholes to accommodate bone fasteners, a central channel to couple with [0091] distal segment 120 of the modular distraction screw and an end-coupler. These features have been described above and will not be illustrated further.
  • The plating system of the present invention can be applied, by way of a multilevel plating configuration to fixate three or more bones after the removal of two or more discs. As in the embodiments previously illustrated for single level plate, “multilevel” plates may be curved in either the vertical or horizontal plane, may contain one or more horizontal indentations in order to permit the placement of additional curvature in the vertical plane, and may be made of any biologically adaptable or compatible materials. Each of the upper and lower ends of the plates will contain two boreholes to accommodate bone fasteners, a central slot to anchor the [0092] distal segment 120 of the modular distraction screw and an end-coupler to accommodate possible modular extension of the fusion at a later date.
  • FIG. 17 shows an exemplary embodiment of the multi-level plates, where one of the number of sliding mechanisms can be used at each level such that the total number of sliding mechanisms is equal to the number of discs removed and fused. Longer plates can be made by the sequential addition of other levels. While the illustrated plate present only one exemplary embodiment of the sliding mechanism and coupler means, it is understood that any of the previously discussed embodiments may be used in any combination to produce these plates. Further, different sliding mechanism designs can be used at different levels, if desired. [0093]
  • With the exception of the two ends, a [0094] segment 300 with two full thickness bore holes is placed between each of the sliding portions. These boreholes may be oriented in the true vertical plane or form an angle with the vertical. The boreholes will be angled towards each other in the plate's short axis (horizontal plane) and form a right angle with the body of the plate in the long axis (vertical plane). The top opening of the boreholes may be flush with the plate surface or may be recessed. The distance between the boreholes may also vary depending on the requirement of plate application and design.
  • Removal of two or more discs is accomplished by the step-wise removal of individual discs until all pathological levels have been addressed. Modular distraction screws may be used at each vertebral level if desired, but their use is required only at the upper and lower-most vertebras while conventional distraction screws can be used at all intervening levels. After completion of the bone work, the proximal segments of the distraction screws are removed leaving the distal segments attached to the upper and lower-most vertebral bodies. At other disc levels, the distraction screw can be completely removed after the completion of the bone work. [0095]
  • The plate is guided to proper position along the upper-most and lower-most vertebra by the attached distal segments—as described above for single level procedures. The distal segments of the distraction screws are tightened onto the plate after selection of optimal bone screw position. In this way, the plate is held stationary while the bone screws are placed into the upper and lower-most vertebras and the plate is fixed at each end. Depending on surgeon preference, fixation of the intervening vertebral levels may be started from either end of the plate. For illustration, fixation will be started inferiorly. The plate segment intended to fixate the vertebra immediately superior to the lower-most vertebra is moved into a desired position. The sliding mechanism between this segment and the plate segment attached to the lower-most vertebra is then locked. Once these segments are immobilized, bone screws are placed into the vertebra immediately superior to the lower-most vertebra. The process is repeated at each of the remaining vertebra. If compression is desired across the construct, it's applied across the upper and lower-most vertebras prior to placement of the bone screws into any of the intervening vertebra. Compression is maintained until all the vertebras have been fixed to the plate. Once all sliding mechanisms have been locked, the compression device may be released and the force will be maintained by the plate. [0096]
  • Alternatively, one or more sliding mechanisms can be used to accommodate boney subsidence at two or more fused levels. This is accomplished by using a slotted borehole between levels. FIG. 17A illustrates this design feature in a two level plate in which only one sliding mechanism is employed. Again, the plate is placed after completion of the bone work and plate placement is started by fixation of the plate at each end using the distal segments of the distraction screws. The plate is set to the desired length and the sliding mechanism is locked. If desired, compression may be applied prior to closure of the mechanism. The bone screw is placed at the end of the slotted borehole immediately adjacent to the sliding mechanism and the subsidence screw is opened. In this way, the plate's adjustable length and subsidence can be accomplished using a single sliding mechanism. While the second embodiment of the sliding mechanism as well as the alternative embodiments of the end-coupler and central channel are illustrated, it is understood that any of the previously discussed embodiments may be used in any workable combination to produce these plates. [0097]
  • FIG. 17B demonstrates the other potential designs that can be used for a three level plate. Other possible variations that can be used in creating a other multi-level plating system. Longer plates can be made by the sequential addition of other levels. [0098]
  • While the particular systems and methods herein shown and described in detail are fully capable of attaining the above described objects of this invention, it is to be understood that the description and drawings presented herein represent a presently preferred embodiment of the invention and are therefore representative of the subject matter which is broadly contemplated by the present invention. It is further understood that the scope of the present invention fully encompasses other embodiments that may become obvious to those skilled in the art and that the scope of the present invention is accordingly limited by nothing other than the appended claims. [0099]

Claims (32)

What is claimed is:
1. A plating system for bone fixation for mammalian bone structures, comprising:
(a) a first plate segment and a second plate segment, each of the segments adapted to be affixed onto a bone structure with another bone structure in an aligned spatial relationship;
(b) a coupler means (coupling segment) being securable to the first plate segment and the second plate segment, the coupler means being selectively adjustable to define the movement (compression and subsidence) of the bone structures in the aligned spatial relationship.
2. The plating system of claim 1 wherein the coupler means is selectively adjustable to enable compression and subsidence of the bone structures in the aligned spatial relationship.
3. The plating system of claim 1 wherein the plates are slidably engaged substantially in the aligned spatial relationship.
4. The plating system of claim 1 wherein each of the plates has a projection portion and a receiving channel for complemental placement of the projection portion of one plate segment into the receiving channel of another plate segment.
5. The plating system of claim 1 wherein the first plate segment has at least one projection portion and the second plate segment has at least one receiving channel to receive the projection portion of first plate segment.
6. The plating system of claim 5 wherein the projection portion has a generally elongated body with cross-section shape selected from the shapes of a triangle, truncated triangle, rectangle, modified rectangle, and a trapezoid.
7. The plating system of claim 1 wherein the coupler means is selectively engaged with first plate segment and the second plate segment to secure one or both the plate segments to define the movement of the bone structures in the aligned spatial relationship.
8. The plating system of claim 1 wherein the coupler means comprises an elongated element and a plurality of fasteners for selectively engaging the plating segments.
9. The plating system of claim 8 wherein the coupler means has an opening to receive at least one fastener passing therethrough to engage one or both of the plate segments.
10. The plating system of claim 1 wherein the coupler means comprises stepped channel openings formed on the first plate segment and the second plate segment and arranged in a substantially overlapping relationship and defining an internal travel pathway between the first and the second plate segments; a bolt element having a threaded shank portion passing through the stepped channel openings with locking mechanisms at the ends of the shank to secure the plate segments;
and a frictional element fitted in the internal travel pathway and engageable by the threaded shank portion to couple the bolt element to either the first plate segment or the second plate segment.
11. The plating system of claim 10 wherein the frictional element has threads cooperating with and carried by the threaded shank portion of the bolt element to effect the selective engagement of the first plate segment or the second plate segment.
12. The plating system of claim 10 wherein the bolt element and the of the openings of the stepped channels are of substantially similar width.
13. The plating system of claim 10 wherein at least a portion of the frictional element and the internal travel pathway are of substantially similar width.
14. The plating system of claim 10 wherein the channel of the first plate segment has an enlarged opening defining a keyhole shape adapted to accept the locking mechanism including of the bolt element passing therethrough between a first position outside the channel opening of the first plate segment to affix the spatial relationship of the plate segments in compression and a second position of the retainer within the internal travel pathway and enabling the relative movement of the first plate segment and the second plate segment for bone subsidence.
15. The plating system of claim 1 wherein the plate segments each has at least one opening to accommodate a bone screw for securing the plate segments onto the bone structures.
16. The plating system of claim 1 wherein the plate segments each has at least one opening to receive a portion of a distraction screw implanted at a predetermined landmark of the bone structure.
17. The plating system of claim 1 wherein the mammalian bone structure is a cancellous bone or cortical bone.
18. The plating system of claim 1, wherein at least a portion of the plating segments is constructed of a biologically adaptable or biologically compatible material.
19. The plating system of claim 18 wherein the biologically adaptable or biologically compatible material is selected from the group of materials consisting of stainless steel, titanium, combination metallic alloys, plastics, ceramics, osteo-conductive materials, and bio-active materials.
20. The plating system of claim 19 wherein the osteo-conductive material is a deminerized bone matrix, a hyroxyapatite, a transforming growth factor, platelet-derived growth factor or a bone-morphogenic protein.
21. The plating system of claim 1, wherein each of the plate segments has curved surfaces to conform to the surface contours of the bone structures.
22. The plating system of claim 1 wherein each of the plate further comprises an end coupler adaptable to be engaged by a distraction screw.
23. The plating system of claim 22 wherein the end coupler includes means for engagement with the distraction screw comprising interfitting threads or complemental spines.
24. A modular plating system for bone fixation for mammalian bone structures comprising:
(a) a plurality of plate segments, each of the segments adapted to be affixed onto a bone structure with another bone structure in an aligned spatial relationship; and
(b) a coupler means (coupling segment) being securable to at least two of the plate segments and selectively adjustable to define the movement (compression and subsidence) of the bone structures in the aligned spatial relationship.
25. A method for fixating mammalian bone structures comprising the steps of:
(a) implanting a first prosthetic device and a second prosthetic device at predefined locations along the anatomically desired plane of the bone structures;
(b) securing a first plate segment and a second plate segment onto the first and the second prosthetic devices, respectively; and
(c) attaching a coupler to the first plate segment and the second plate segment, wherein the coupler is selectively adjustable to define movement of the bone structures in the aligned spatial relationship.
26. The method of claim 25, further comprising securing the first plate segment and the second plate segment to the bone structures.
27. The method of claim 25 wherein each prosthetic device includes a portion of a distraction screw.
28. The method of claim 25 wherein the anatomically desired plane of the bone structures comprises the centerline of the bone structures.
29. The method of claim 25 wherein the securing step further comprises:
compressing a portion of the prosthetic device;
placing a portion of each plate segment between the bone structure and the compressed portion of the prosthetic device; and
decompressing the portion of the prosthetic device to secure the plate segment between the bone structure and the prosthetic device.
30. The method of claim 25 wherein the coupler is adjustable to maintain compression of the bone structures.
31. The method of claim 25 wherein the coupler is adjustable to allow subsidence of the bone structures.
32. A method for fixating mammalian bone structures comprising the steps of:
(a) on at least two mammalian bone structures respectively position a first distraction screw and a second distraction screw, each of the distraction screws comprises a proximal segment having an elongated body with an internal bore extending through the length of the elongated body; an deployable member disposed within the internal bore of the elongated body and adapted to be retractably deployed outside the internal bore and a prosthetic device including a head portion and a threaded shank portion and being detachably coupled to the elongated body;
(b) rotatably manipulating the distraction screws to effect the threading and affixation of the shank portions of the prosthetic devices onto the mammalian bone structures;
(c) detaching the elongated member segments from the prosthetic devices on the respective mammalian bone structures; and
(d) securing onto the first prosthetic device and the second prosthetic device respectively a first plate segment and a second plate segment, each of the segments being aligned in a spatial relationship and securing a coupler means. (coupling segment) to the first plate segment and the second plate segment, the coupler means being selectively adjustable to define the movement (compression and subsidence) of the bone structures in the aligned spatial relationship.
US10/755,080 2003-01-10 2004-01-10 Plating system for bone fixation and subsidence and method of implantation Expired - Lifetime US7331961B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/755,080 US7331961B2 (en) 2003-01-10 2004-01-10 Plating system for bone fixation and subsidence and method of implantation
US11/899,084 US20080058810A1 (en) 2003-01-10 2007-09-04 Bone screw systems and methods of use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US43903003P 2003-01-10 2003-01-10
US10/683,325 US7476228B2 (en) 2002-10-11 2003-10-10 Distraction screw for skeletal surgery and method of use
US10/755,080 US7331961B2 (en) 2003-01-10 2004-01-10 Plating system for bone fixation and subsidence and method of implantation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/683,325 Continuation-In-Part US7476228B2 (en) 2002-10-11 2003-10-10 Distraction screw for skeletal surgery and method of use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/899,084 Continuation US20080058810A1 (en) 2003-01-10 2007-09-04 Bone screw systems and methods of use

Publications (2)

Publication Number Publication Date
US20040204713A1 true US20040204713A1 (en) 2004-10-14
US7331961B2 US7331961B2 (en) 2008-02-19

Family

ID=32713415

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/755,080 Expired - Lifetime US7331961B2 (en) 2003-01-10 2004-01-10 Plating system for bone fixation and subsidence and method of implantation
US11/899,084 Abandoned US20080058810A1 (en) 2003-01-10 2007-09-04 Bone screw systems and methods of use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/899,084 Abandoned US20080058810A1 (en) 2003-01-10 2007-09-04 Bone screw systems and methods of use

Country Status (2)

Country Link
US (2) US7331961B2 (en)
WO (1) WO2004062482A2 (en)

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106924A1 (en) * 2001-02-15 2004-06-03 Ralph James D. Longitudinal plate assembly having an adjustable length
US20040133207A1 (en) * 2002-10-11 2004-07-08 Abdou M. Samy Distraction screw for skeletal surgery and method of use
US20050004573A1 (en) * 2003-04-18 2005-01-06 M. Samy Abdou Bone fixation system and method of implantation
US20050177163A1 (en) * 2003-12-29 2005-08-11 Abdou M. S. Plating system for bone fixation and method of implantation
WO2005102193A2 (en) * 2004-04-19 2005-11-03 Acumed, Llc Placement of fasteners into bone
US20050273120A1 (en) * 2004-05-03 2005-12-08 Abdou M S Devices and methods for the preservation of spinal prosthesis function
US20050288669A1 (en) * 2004-06-14 2005-12-29 Abdou M S Occipito fixation system and method of use
US20060074488A1 (en) * 2004-08-23 2006-04-06 Abdou M S Bone fixation and fusion device
US20060084844A1 (en) * 2004-10-19 2006-04-20 Nehls Daniel G Retractor and distractor system for use in anterior cervical disc surgery
US20060111728A1 (en) * 2004-10-05 2006-05-25 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
US20060149262A1 (en) * 2002-12-19 2006-07-06 Per-Ingvar Branemark Fixture
US20060167457A1 (en) * 2005-01-21 2006-07-27 Loubert Suddaby Orthopedic fusion plate having both active and passive subsidence controlling features
US20060229615A1 (en) * 2005-02-18 2006-10-12 Abdou M S Devices and methods for dynamic fixation of skeletal structure
US20070106383A1 (en) * 2005-10-03 2007-05-10 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
US20070123881A1 (en) * 2005-10-26 2007-05-31 Ralph James D Off-set bone plates
US20070162016A1 (en) * 2005-10-25 2007-07-12 Matityahu Amir M Bone fastening assembly and bushing and screw for use therewith
US20070173843A1 (en) * 2005-12-22 2007-07-26 Matityahu Amir M Drug delivering bone plate and method and targeting device for use therewith
US20070213729A1 (en) * 2006-03-08 2007-09-13 Sdgi Holdings, Inc. Flexible bone plates and methods for dynamic spinal stabilization
US20070233070A1 (en) * 2006-03-01 2007-10-04 Sdgi Holdings, Inc. Low profile spinal rod connector system
US20070233083A1 (en) * 2005-12-19 2007-10-04 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
US20070250167A1 (en) * 2003-04-21 2007-10-25 Rsb Spine Llc Spine implants
US20070276490A1 (en) * 2006-05-15 2007-11-29 Mateyka Richard J Dynamic Spinal Plate Implant and Method of Use
US20080021470A1 (en) * 2003-10-02 2008-01-24 Zimmer Spine, Inc. Anterior cervical plate
US20080033438A1 (en) * 2006-08-04 2008-02-07 Roy Frizzell Cervical Saddle Plate
US20080058810A1 (en) * 2003-01-10 2008-03-06 Abdou M S Bone screw systems and methods of use
US20080108998A1 (en) * 2006-11-02 2008-05-08 Warsaw Orthopedic Inc. Uni-directional ratcheting bone plate assembly
US20080306550A1 (en) * 2007-06-07 2008-12-11 Matityahu Amir M Spine repair assembly
US20090076509A1 (en) * 2007-09-13 2009-03-19 Stryker Spine Dynamic cervical plate
US20090248023A1 (en) * 2008-03-31 2009-10-01 Cochlear Limited Mechanical fixation system for a prosthetic device
US20090299369A1 (en) * 2008-06-02 2009-12-03 Skeletal Dynamics Llc Hybrid Orthopedic Implant
US7704271B2 (en) 2005-12-19 2010-04-27 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
US7857833B2 (en) 2005-10-06 2010-12-28 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
US20110184414A1 (en) * 2010-01-27 2011-07-28 Jonas Andermahr System and Method for Minimally Invasive Clavicle Plate Application
US20110218534A1 (en) * 2010-03-08 2011-09-08 Bernard Prandi Adjustable-angle radius plate
US20110218533A1 (en) * 2010-03-08 2011-09-08 Bernard Prandi Radius-plate assembly
US20110268303A1 (en) * 2010-04-29 2011-11-03 Cochlear Limited Bone conduction device having limited range of travel
US8172855B2 (en) 2004-11-24 2012-05-08 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
US8262710B2 (en) 2006-10-24 2012-09-11 Aesculap Implant Systems, Llc Dynamic stabilization device for anterior lower lumbar vertebral fusion
US8303630B2 (en) 2006-07-27 2012-11-06 Samy Abdou Devices and methods for the minimally invasive treatment of spinal stenosis
US20130012992A1 (en) * 2009-10-26 2013-01-10 Nasser Ani Apparatus for compressing or decompressing a spinal disc and method of use thereof
US8425574B2 (en) 2002-07-22 2013-04-23 Acumed, Llc Bone fixation with a bone plate attached to a fastener assembly
US8668723B2 (en) 2011-07-19 2014-03-11 Neurostructures, Inc. Anterior cervical plate
US8715285B2 (en) 2005-05-13 2014-05-06 Biomet Microfixation, Llc Pectus bar stabilizer
US8870920B2 (en) 2005-10-07 2014-10-28 M. Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US8876874B2 (en) 2006-08-21 2014-11-04 M. Samy Abdou Bone screw systems and methods of use
US20150134015A1 (en) * 2011-12-12 2015-05-14 Extremity Medical, Llc Devices and methods for bone fixation using axial implants
US9486250B2 (en) 2014-02-20 2016-11-08 Mastros Innovations, LLC. Lateral plate
US9615931B2 (en) * 2015-03-20 2017-04-11 Globus Medical, Inc. Surgical plate systems
US9629664B2 (en) 2014-01-20 2017-04-25 Neurostructures, Inc. Anterior cervical plate
US9743968B2 (en) 2013-11-14 2017-08-29 Zimmer Biomet CMF and Thoracic, LLC Locking mechanism for pectus bar
US9867714B1 (en) 2011-09-23 2018-01-16 Samy Abdou Spinal fixation devices and methods of use
US10111757B2 (en) 2012-10-22 2018-10-30 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US20190061337A1 (en) * 2017-08-24 2019-02-28 Universal Engraving, Inc. Apparatus and method for adjusting graphic arts die plate on carrier
US10512547B2 (en) 2017-05-04 2019-12-24 Neurostructures, Inc. Interbody spacer
US10517656B2 (en) * 2011-06-17 2019-12-31 Biedermann Technologies Gmbh & Co. Kg Modular bone plate and member of such a modular bone plate
US10543107B2 (en) 2009-12-07 2020-01-28 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10548740B1 (en) 2016-10-25 2020-02-04 Samy Abdou Devices and methods for vertebral bone realignment
US10617455B2 (en) 2017-03-08 2020-04-14 Zimmer Biomet CMF and Thoracic, LLC Pectus bar support devices and methods
US10695105B2 (en) 2012-08-28 2020-06-30 Samy Abdou Spinal fixation devices and methods of use
US10722279B2 (en) 2017-02-10 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Stabilizer holder and inserter tool and methods
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10980641B2 (en) 2017-05-04 2021-04-20 Neurostructures, Inc. Interbody spacer
US11006982B2 (en) 2012-02-22 2021-05-18 Samy Abdou Spinous process fixation devices and methods of use
US11026802B2 (en) 2003-04-21 2021-06-08 Rsb Spine Llc Bone plate stabilization system and method for its use
US11071629B2 (en) 2018-10-13 2021-07-27 Neurostructures Inc. Interbody spacer
US11076892B2 (en) 2018-08-03 2021-08-03 Neurostructures, Inc. Anterior cervical plate
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11304817B2 (en) 2020-06-05 2022-04-19 Neurostructures, Inc. Expandable interbody spacer
US20220133499A1 (en) * 2020-11-05 2022-05-05 Warsaw Orthopedic, Inc. Expandable inter-body device, expandable plate system, and associated methods
US11382761B2 (en) 2020-04-11 2022-07-12 Neurostructures, Inc. Expandable interbody spacer
US11612499B2 (en) 2021-06-24 2023-03-28 Warsaw Orthopedic, Inc. Expandable interbody implant
US11617658B2 (en) 2020-11-05 2023-04-04 Warsaw Orthopedic, Inc. Expandable inter-body device, system and method
US11638653B2 (en) 2020-11-05 2023-05-02 Warsaw Orthopedic, Inc. Surgery instruments with a movable handle
US11717419B2 (en) 2020-12-10 2023-08-08 Neurostructures, Inc. Expandable interbody spacer
US11806250B2 (en) 2018-02-22 2023-11-07 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
US11963881B2 (en) 2020-11-05 2024-04-23 Warsaw Orthopedic, Inc. Expandable inter-body device, system, and method
US12121453B2 (en) 2020-11-05 2024-10-22 Warsaw Orthopedic, Inc. Dual wedge expandable implant with eyelets, system, and method of use

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9615866B1 (en) 2004-10-18 2017-04-11 Nuvasive, Inc. Surgical fixation system and related methods
US7621914B2 (en) * 2004-10-28 2009-11-24 Biodynamics, Llc Adjustable bone plate
EP1861028A2 (en) * 2005-03-07 2007-12-05 Samy M. Abdou Occipital fixation system
WO2007056516A2 (en) * 2005-11-09 2007-05-18 Abdou M S Bone fixation systems and methods of implantation
US7695473B2 (en) * 2006-01-18 2010-04-13 Biodynamics Llc Adjustable bone plate
WO2009055537A1 (en) 2007-10-23 2009-04-30 K2M, Inc. Dynamic cervical plate
US20090306779A1 (en) * 2008-06-05 2009-12-10 Alphatec Spine, Inc. Modular anterior locking interbody cage
US20100087858A1 (en) * 2008-09-18 2010-04-08 Abdou M Samy Dynamic connector for spinal stabilization and method of use
US8246664B2 (en) * 2009-02-24 2012-08-21 Osteomed Llc Multiple bone fusion plate
US8529608B2 (en) * 2009-04-28 2013-09-10 Osteomed Llc Bone plate with a transfixation screw hole
USD734853S1 (en) 2009-10-14 2015-07-21 Nuvasive, Inc. Bone plate
US10342583B2 (en) 2010-10-01 2019-07-09 K2M, Inc. Dynamic plate with inserts
US9095387B2 (en) 2011-04-13 2015-08-04 Globus Medical, Inc. Spine stabilization
US9907582B1 (en) 2011-04-25 2018-03-06 Nuvasive, Inc. Minimally invasive spinal fixation system and related methods
US8771324B2 (en) 2011-05-27 2014-07-08 Globus Medical, Inc. Securing fasteners
US11123117B1 (en) 2011-11-01 2021-09-21 Nuvasive, Inc. Surgical fixation system and related methods
US9028498B2 (en) 2013-03-14 2015-05-12 Innovasis, Inc. Modular bone fixation plate assembly
US9579128B2 (en) 2013-07-19 2017-02-28 K2M, Inc. Translational plate and compressor instrument
US9468479B2 (en) 2013-09-06 2016-10-18 Cardinal Health 247, Inc. Bone plate
US10194960B1 (en) 2015-12-03 2019-02-05 Nuvasive, Inc. Spinal compression instrument and related methods

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487742A (en) * 1990-03-08 1996-01-30 Sofamore Danek Group Transverse fixation device for a spinal osteosynthesis system
US5616142A (en) * 1994-07-20 1997-04-01 Yuan; Hansen A. Vertebral auxiliary fixation device
US5681311A (en) * 1994-09-15 1997-10-28 Smith & Nephew, Inc. Osteosynthesis apparatus
US5681313A (en) * 1995-02-06 1997-10-28 Karl Leibinger Medizintechnik Gmbh & Co. Kg Device for the extension of bones
US5704936A (en) * 1992-04-10 1998-01-06 Eurosurgical Spinal osteosynthesis device
US5707372A (en) * 1996-07-11 1998-01-13 Third Millennium Engineering, Llc. Multiple node variable length cross-link device
US5709686A (en) * 1995-03-27 1998-01-20 Synthes (U.S.A.) Bone plate
US5713900A (en) * 1996-05-31 1998-02-03 Acromed Corporation Apparatus for retaining bone portions in a desired spatial relationship
US5716357A (en) * 1993-10-08 1998-02-10 Rogozinski; Chaim Spinal treatment and long bone fixation apparatus and method
US5735853A (en) * 1994-06-17 1998-04-07 Olerud; Sven Bone screw for osteosynthesis
US5904683A (en) * 1998-07-10 1999-05-18 Sulzer Spine-Tech Inc. Anterior cervical vertebral stabilizing device
US5954722A (en) * 1997-07-29 1999-09-21 Depuy Acromed, Inc. Polyaxial locking plate
US5964763A (en) * 1997-02-14 1999-10-12 Incavo; Stephen J. Incrementally adjustable tibial osteotomy fixation device and method
US6139316A (en) * 1999-01-26 2000-10-31 Sachdeva; Rohit C. L. Device for bone distraction and tooth movement
US6306136B1 (en) * 1997-07-28 2001-10-23 Dimso (Distribution Medicales Du Sud-Ouest) Implant, in particular front cervical plate
US6331179B1 (en) * 2000-01-06 2001-12-18 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6402756B1 (en) * 2001-02-15 2002-06-11 Third Millennium Engineering, Llc Longitudinal plate assembly having an adjustable length
US20020183755A1 (en) * 2001-06-04 2002-12-05 Michelson Gary K. Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US824983A (en) * 1905-07-11 1906-07-03 Stephen T Lockwood Screw.
US2248054A (en) * 1939-06-07 1941-07-08 Becker Joseph Screw driver
US2329398A (en) * 1941-01-23 1943-09-14 Bernard A Duffy Screw driver
US2370407A (en) * 1944-01-05 1945-02-27 Zimmer Mfg Company Screw driver
US2574352A (en) * 1947-09-17 1951-11-06 Roy W Senter Nut placing slotted-socket wrench
US3236141A (en) * 1963-11-05 1966-02-22 Robert D Smith Screw
US3604487A (en) * 1969-03-10 1971-09-14 Richard S Gilbert Orthopedic screw driving means
US3659595A (en) * 1969-10-22 1972-05-02 Edward J Haboush Compensating plates for bone fractures
US4399813A (en) * 1981-01-22 1983-08-23 Barber Forest C Apparatus and method for removing a prosthesis embedded in skeletal bone
US4877020A (en) * 1984-11-30 1989-10-31 Vich Jose M O Apparatus for bone graft
US4903692A (en) * 1989-05-08 1990-02-27 Reese Hewitt W Bone clamp installation tool
US5252016A (en) * 1989-11-13 1993-10-12 Isolink Inc. Fixing element for low strength materials
US5275601A (en) * 1991-09-03 1994-01-04 Synthes (U.S.A) Self-locking resorbable screws and plates for internal fixation of bone fractures and tendon-to-bone attachment
JP2664614B2 (en) * 1992-02-20 1997-10-15 ジ・ベ・エス ソシエテ アノニム Cervical spine correction, fixation, clamping and retraction devices
US5484440A (en) * 1992-11-03 1996-01-16 Zimmer, Inc. Bone screw and screwdriver
US5352231A (en) * 1992-11-23 1994-10-04 Danek Medical, Inc. Nut starter wrench for orthopedic fixation system
US5545164A (en) * 1992-12-28 1996-08-13 Advanced Spine Fixation Systems, Incorporated Occipital clamp assembly for cervical spine rod fixation
US5354292A (en) * 1993-03-02 1994-10-11 Braeuer Harry L Surgical mesh introduce with bone screw applicator for the repair of an inguinal hernia
US5531745A (en) * 1993-03-11 1996-07-02 Danek Medical, Inc. System for stabilizing the spine and reducing spondylolisthesis
EP0650344B1 (en) * 1993-05-11 1998-02-18 Synthes AG, Chur Osteo-synthetic securing component and manipulation aid therefor
US5534027A (en) * 1993-06-21 1996-07-09 Zimmer, Inc. Method for providing a barrier to the advancement of wear debris in an orthopaedic implant assembly
US5439339A (en) * 1993-12-01 1995-08-08 Hi-Shear Corporation Externally threaded interference fit fastener with oppositely threaded puller
US6033170A (en) * 1995-01-03 2000-03-07 Gold; Peter Screw head nail
DE19509332C1 (en) * 1995-03-15 1996-08-14 Harms Juergen Anchoring element
US5591166A (en) * 1995-03-27 1997-01-07 Smith & Nephew Richards, Inc. Multi angle bone bolt
US5520690A (en) * 1995-04-13 1996-05-28 Errico; Joseph P. Anterior spinal polyaxial locking screw plate assembly
WO1997019646A1 (en) * 1995-11-30 1997-06-05 Synthes Ag Chur Bone-fixing device
US5586674A (en) * 1995-12-13 1996-12-24 Nachbauer; Armand E. Golf club cover holding device for attachment to a golf bag
US5649931A (en) * 1996-01-16 1997-07-22 Zimmer, Inc. Orthopaedic apparatus for driving and/or removing a bone screw
DE29606468U1 (en) * 1996-04-09 1997-08-07 Waldemar Link GmbH & Co, 22339 Hamburg Spinal fixator
AT403002B (en) * 1996-05-29 1997-10-27 Mke Metall Kunststoffwaren FILM OR MEMBRANE FOR COVERING BONE DEFECTS, METHOD FOR PRODUCING THE FILM AND NAIL FOR FIXING THE POSITION OF SUCH A FILM
US5681312A (en) * 1996-05-31 1997-10-28 Acromed Corporation Spine construct with band clamp
CA2259656C (en) * 1996-07-09 2007-01-23 Synthes (U.S.A.) Device for bone surgery
US6436100B1 (en) * 1998-08-07 2002-08-20 J. Lee Berger Cannulated internally threaded bone screw and reduction driver device
ATE320223T1 (en) * 1998-09-11 2006-04-15 Synthes Ag ANGLE ADJUSTABLE FIXATION SYSTEM FOR THE SPINE
US5971987A (en) * 1998-09-18 1999-10-26 Ethicon, Inc. Biocompatible absorbable polymer fastener and driver for use in surgical procedures
US6059786A (en) * 1998-10-22 2000-05-09 Jackson; Roger P. Set screw for medical implants
WO2000064359A1 (en) * 1999-04-28 2000-11-02 Harrington James Frederick Jr Modular anterior cervical plate
US7094239B1 (en) * 1999-05-05 2006-08-22 Sdgi Holdings, Inc. Screws of cortical bone and method of manufacture thereof
CA2373719A1 (en) * 1999-05-14 2000-11-23 Synthes (U.S.A.) Bone fixation device with a rotation joint
DE10005385A1 (en) * 2000-02-07 2001-08-09 Ulrich Gmbh & Co Kg Pedicle screw
US6309391B1 (en) * 2000-03-15 2001-10-30 Sdgi Holding, Inc. Multidirectional pivoting bone screw and fixation system
US6251112B1 (en) * 2000-04-18 2001-06-26 Roger P. Jackson Thin profile closure cap for open ended medical implant
US6645207B2 (en) * 2000-05-08 2003-11-11 Robert A. Dixon Method and apparatus for dynamized spinal stabilization
US6361258B1 (en) * 2000-07-06 2002-03-26 Gary V. Heesch Permanently placeable fasteners, inserter head for fastener placement and related methods
US6533787B1 (en) * 2000-07-31 2003-03-18 Sdgi Holdings, Inc. Contourable spinal staple with centralized and unilateral prongs
US6663631B2 (en) * 2000-12-01 2003-12-16 Charles A. Kuntz Method and device to correct instability of hinge joints
CA2434455A1 (en) * 2001-01-12 2002-07-18 Depuy Acromed, Inc. Polyaxial screw with improved locking
US6702817B2 (en) * 2001-01-19 2004-03-09 Aesculap Ag & Co. Kg Locking mechanism for a bone screw
US6451021B1 (en) * 2001-02-15 2002-09-17 Third Millennium Engineering, Llc Polyaxial pedicle screw having a rotating locking element
US6666867B2 (en) * 2001-02-15 2003-12-23 Fast Enetix, Llc Longitudinal plate assembly having an adjustable length
US6641583B2 (en) * 2001-03-29 2003-11-04 Endius Incorporated Apparatus for retaining bone portions in a desired spatial relationship
US6599290B2 (en) * 2001-04-17 2003-07-29 Ebi, L.P. Anterior cervical plating system and associated method
US7041105B2 (en) * 2001-06-06 2006-05-09 Sdgi Holdings, Inc. Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments
DE10136129A1 (en) * 2001-07-27 2003-02-20 Biedermann Motech Gmbh Bone screw and fastening tool for this
DE10152094C2 (en) * 2001-10-23 2003-11-27 Biedermann Motech Gmbh Bone fixation device
US6679883B2 (en) * 2001-10-31 2004-01-20 Ortho Development Corporation Cervical plate for stabilizing the human spine
US6827722B1 (en) * 2001-12-11 2004-12-07 Biomet, Inc. Method and apparatus for use of a guide wire capturing surgical instrument
US7232441B2 (en) * 2002-02-13 2007-06-19 Cross Medicalproducts, Inc. Occipital plate and rod system
US7476228B2 (en) * 2002-10-11 2009-01-13 Abdou M Samy Distraction screw for skeletal surgery and method of use
WO2004062482A2 (en) * 2003-01-10 2004-07-29 Abdou Samy M Plating system for bone fixation and subsidence and method of implantation
WO2004093702A2 (en) * 2003-04-18 2004-11-04 Abdou Samy M Bone fixation system and method of implantation
US6945975B2 (en) * 2003-07-07 2005-09-20 Aesculap, Inc. Bone fixation assembly and method of securement
US7635366B2 (en) * 2003-12-29 2009-12-22 Abdou M Samy Plating system for bone fixation and method of implantation
US7578834B2 (en) * 2004-05-03 2009-08-25 Abdou M S Devices and methods for the preservation of spinal prosthesis function
EP1758511A4 (en) * 2004-06-14 2008-12-03 M S Abdou Occipital fixation system and method of use
US7641690B2 (en) * 2004-08-23 2010-01-05 Abdou M Samy Bone fixation and fusion device
EP1814474B1 (en) * 2004-11-24 2011-09-14 Samy Abdou Devices for inter-vertebral orthopedic device placement
US7862588B2 (en) * 2005-02-18 2011-01-04 Samy Abdou Devices and methods for dynamic fixation of skeletal structure
EP1861028A2 (en) * 2005-03-07 2007-12-05 Samy M. Abdou Occipital fixation system
US7909871B2 (en) * 2005-10-03 2011-03-22 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US8870920B2 (en) * 2005-10-07 2014-10-28 M. Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
WO2007056516A2 (en) * 2005-11-09 2007-05-18 Abdou M S Bone fixation systems and methods of implantation

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487742A (en) * 1990-03-08 1996-01-30 Sofamore Danek Group Transverse fixation device for a spinal osteosynthesis system
US5704936A (en) * 1992-04-10 1998-01-06 Eurosurgical Spinal osteosynthesis device
US5716357A (en) * 1993-10-08 1998-02-10 Rogozinski; Chaim Spinal treatment and long bone fixation apparatus and method
US5735853A (en) * 1994-06-17 1998-04-07 Olerud; Sven Bone screw for osteosynthesis
US5616142A (en) * 1994-07-20 1997-04-01 Yuan; Hansen A. Vertebral auxiliary fixation device
US5681311A (en) * 1994-09-15 1997-10-28 Smith & Nephew, Inc. Osteosynthesis apparatus
US5681313A (en) * 1995-02-06 1997-10-28 Karl Leibinger Medizintechnik Gmbh & Co. Kg Device for the extension of bones
US5709686A (en) * 1995-03-27 1998-01-20 Synthes (U.S.A.) Bone plate
US5713900A (en) * 1996-05-31 1998-02-03 Acromed Corporation Apparatus for retaining bone portions in a desired spatial relationship
US5707372A (en) * 1996-07-11 1998-01-13 Third Millennium Engineering, Llc. Multiple node variable length cross-link device
US5964763A (en) * 1997-02-14 1999-10-12 Incavo; Stephen J. Incrementally adjustable tibial osteotomy fixation device and method
US6306136B1 (en) * 1997-07-28 2001-10-23 Dimso (Distribution Medicales Du Sud-Ouest) Implant, in particular front cervical plate
US5954722A (en) * 1997-07-29 1999-09-21 Depuy Acromed, Inc. Polyaxial locking plate
US5904683A (en) * 1998-07-10 1999-05-18 Sulzer Spine-Tech Inc. Anterior cervical vertebral stabilizing device
US6139316A (en) * 1999-01-26 2000-10-31 Sachdeva; Rohit C. L. Device for bone distraction and tooth movement
US6331179B1 (en) * 2000-01-06 2001-12-18 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6402756B1 (en) * 2001-02-15 2002-06-11 Third Millennium Engineering, Llc Longitudinal plate assembly having an adjustable length
US20020183755A1 (en) * 2001-06-04 2002-12-05 Michelson Gary K. Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof

Cited By (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106924A1 (en) * 2001-02-15 2004-06-03 Ralph James D. Longitudinal plate assembly having an adjustable length
US8425574B2 (en) 2002-07-22 2013-04-23 Acumed, Llc Bone fixation with a bone plate attached to a fastener assembly
US20040133207A1 (en) * 2002-10-11 2004-07-08 Abdou M. Samy Distraction screw for skeletal surgery and method of use
US20090177238A1 (en) * 2002-10-11 2009-07-09 Abdou M Samy Distraction screw for skeletal surgery and method of use
US7476228B2 (en) 2002-10-11 2009-01-13 Abdou M Samy Distraction screw for skeletal surgery and method of use
US20060149262A1 (en) * 2002-12-19 2006-07-06 Per-Ingvar Branemark Fixture
US7331962B2 (en) * 2002-12-19 2008-02-19 Pios Biotech Ab Fixture
US20080058810A1 (en) * 2003-01-10 2008-03-06 Abdou M S Bone screw systems and methods of use
US20050004573A1 (en) * 2003-04-18 2005-01-06 M. Samy Abdou Bone fixation system and method of implantation
US7291152B2 (en) 2003-04-18 2007-11-06 Abdou M Samy Bone fixation system and method of implantation
US9278009B2 (en) * 2003-04-21 2016-03-08 Rsb Spine Llc Spine implants
US11026802B2 (en) 2003-04-21 2021-06-08 Rsb Spine Llc Bone plate stabilization system and method for its use
US20070250167A1 (en) * 2003-04-21 2007-10-25 Rsb Spine Llc Spine implants
US20080021470A1 (en) * 2003-10-02 2008-01-24 Zimmer Spine, Inc. Anterior cervical plate
US7635366B2 (en) 2003-12-29 2009-12-22 Abdou M Samy Plating system for bone fixation and method of implantation
US20050177163A1 (en) * 2003-12-29 2005-08-11 Abdou M. S. Plating system for bone fixation and method of implantation
WO2005102193A3 (en) * 2004-04-19 2006-05-18 Acumed Llc Placement of fasteners into bone
WO2005102193A2 (en) * 2004-04-19 2005-11-03 Acumed, Llc Placement of fasteners into bone
US20050273120A1 (en) * 2004-05-03 2005-12-08 Abdou M S Devices and methods for the preservation of spinal prosthesis function
US7578834B2 (en) 2004-05-03 2009-08-25 Abdou M S Devices and methods for the preservation of spinal prosthesis function
US7618443B2 (en) 2004-06-14 2009-11-17 Abdou M Samy Occipito fixation system and method of use
US20050288669A1 (en) * 2004-06-14 2005-12-29 Abdou M S Occipito fixation system and method of use
US7641690B2 (en) 2004-08-23 2010-01-05 Abdou M Samy Bone fixation and fusion device
US20060074488A1 (en) * 2004-08-23 2006-04-06 Abdou M S Bone fixation and fusion device
US10470892B2 (en) 2004-08-23 2019-11-12 Samy Abdou Bone fixation and fusion device
US9060873B2 (en) 2004-08-23 2015-06-23 M. Samy Abdou Bone fixation and fusion device
US8292896B2 (en) 2004-10-05 2012-10-23 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
US8673013B2 (en) 2004-10-05 2014-03-18 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US7951153B2 (en) 2004-10-05 2011-05-31 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US20060111728A1 (en) * 2004-10-05 2006-05-25 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
US20060084844A1 (en) * 2004-10-19 2006-04-20 Nehls Daniel G Retractor and distractor system for use in anterior cervical disc surgery
US7494463B2 (en) 2004-10-19 2009-02-24 Nehls Daniel G Retractor and distractor system for use in anterior cervical disc surgery
US8974461B2 (en) 2004-11-24 2015-03-10 M. Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US10918498B2 (en) 2004-11-24 2021-02-16 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US8172855B2 (en) 2004-11-24 2012-05-08 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
US11992423B2 (en) 2004-11-24 2024-05-28 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US10188529B2 (en) 2004-11-24 2019-01-29 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US20060167457A1 (en) * 2005-01-21 2006-07-27 Loubert Suddaby Orthopedic fusion plate having both active and passive subsidence controlling features
US7591840B2 (en) 2005-01-21 2009-09-22 Loubert Suddaby Orthopedic fusion plate having both active and passive subsidence controlling features
US8398689B2 (en) 2005-02-18 2013-03-19 Samy Abdou Devices and methods for dynamic fixation of skeletal structure
US8845701B2 (en) 2005-02-18 2014-09-30 Samy Abdou Devices and methods for dynamic fixation of skeletal structure
US8845696B1 (en) 2005-02-18 2014-09-30 Samy Abdou Devices and methods for dynamic fixation of skeletal structure
US8308776B2 (en) 2005-02-18 2012-11-13 Samy Abdou Devices and methods for dynamic fixation of skeletal structure
US20060229615A1 (en) * 2005-02-18 2006-10-12 Abdou M S Devices and methods for dynamic fixation of skeletal structure
US7862588B2 (en) 2005-02-18 2011-01-04 Samy Abdou Devices and methods for dynamic fixation of skeletal structure
US9138272B2 (en) 2005-05-13 2015-09-22 Biomet Microfixation, Llc Pectus bar stabilizer
US9668792B2 (en) 2005-05-13 2017-06-06 Zimmer Biomet CMF and Thoracic, LLC Pectus bar stabilizer
US8715285B2 (en) 2005-05-13 2014-05-06 Biomet Microfixation, Llc Pectus bar stabilizer
US20070106383A1 (en) * 2005-10-03 2007-05-10 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
US7909871B2 (en) 2005-10-03 2011-03-22 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US7857833B2 (en) 2005-10-06 2010-12-28 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
US8870920B2 (en) 2005-10-07 2014-10-28 M. Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US20070162016A1 (en) * 2005-10-25 2007-07-12 Matityahu Amir M Bone fastening assembly and bushing and screw for use therewith
US20110152945A1 (en) * 2005-10-25 2011-06-23 Anthem Orthopaedics, Llc Bone fastening assembly
US7951179B2 (en) 2005-10-25 2011-05-31 Anthem Orthopaedics Llc Bone attachment screw
US8617223B2 (en) 2005-10-25 2013-12-31 Anthem Orthopaedics, Llc Bone fastening assembly
US20070123881A1 (en) * 2005-10-26 2007-05-31 Ralph James D Off-set bone plates
US8845688B2 (en) 2005-12-19 2014-09-30 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US8002802B2 (en) * 2005-12-19 2011-08-23 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US8545538B2 (en) 2005-12-19 2013-10-01 M. Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US20100318128A1 (en) * 2005-12-19 2010-12-16 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US20070233083A1 (en) * 2005-12-19 2007-10-04 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
US7704271B2 (en) 2005-12-19 2010-04-27 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
US8100952B2 (en) 2005-12-22 2012-01-24 Anthem Orthopaedics Llc Drug delivering bone plate and method and targeting device for use therewith
US20070173843A1 (en) * 2005-12-22 2007-07-26 Matityahu Amir M Drug delivering bone plate and method and targeting device for use therewith
US7699874B2 (en) * 2006-03-01 2010-04-20 Warsaw Orthopedic, Inc. Low profile spinal rod connector system
US20070233070A1 (en) * 2006-03-01 2007-10-04 Sdgi Holdings, Inc. Low profile spinal rod connector system
US20070213729A1 (en) * 2006-03-08 2007-09-13 Sdgi Holdings, Inc. Flexible bone plates and methods for dynamic spinal stabilization
US7998179B2 (en) 2006-03-08 2011-08-16 Warsaw Orthopedic, Inc. Flexible bone plates and methods for dynamic spinal stabilization
US20100076495A1 (en) * 2006-03-08 2010-03-25 Lindemann Gary S Flexible bone plates and methods for dynamic spinal stabilization
US7641675B2 (en) 2006-03-08 2010-01-05 Warsaw Orthopedic, Inc. Flexible bone plates and methods for dynamic spinal stabilization
US20070276490A1 (en) * 2006-05-15 2007-11-29 Mateyka Richard J Dynamic Spinal Plate Implant and Method of Use
US8303630B2 (en) 2006-07-27 2012-11-06 Samy Abdou Devices and methods for the minimally invasive treatment of spinal stenosis
US20080033438A1 (en) * 2006-08-04 2008-02-07 Roy Frizzell Cervical Saddle Plate
US8876874B2 (en) 2006-08-21 2014-11-04 M. Samy Abdou Bone screw systems and methods of use
US8262710B2 (en) 2006-10-24 2012-09-11 Aesculap Implant Systems, Llc Dynamic stabilization device for anterior lower lumbar vertebral fusion
US8206390B2 (en) 2006-11-02 2012-06-26 Warsaw Orthopedic, Inc. Uni-directional ratcheting bone plate assembly
US20080108998A1 (en) * 2006-11-02 2008-05-08 Warsaw Orthopedic Inc. Uni-directional ratcheting bone plate assembly
US9072548B2 (en) * 2007-06-07 2015-07-07 Anthem Orthopaedics Llc Spine repair assembly
US20080306550A1 (en) * 2007-06-07 2008-12-11 Matityahu Amir M Spine repair assembly
US20090076509A1 (en) * 2007-09-13 2009-03-19 Stryker Spine Dynamic cervical plate
US8401213B2 (en) 2008-03-31 2013-03-19 Cochlear Limited Snap-lock coupling system for a prosthetic device
US20090248023A1 (en) * 2008-03-31 2009-10-01 Cochlear Limited Mechanical fixation system for a prosthetic device
US20090248085A1 (en) * 2008-03-31 2009-10-01 Cochlear Limited Tissue injection fixation system for a prosthetic device
US20090245554A1 (en) * 2008-03-31 2009-10-01 Cochlear Limited Snap-Lock Coupling System for a Prosthetic Device
US8852251B2 (en) * 2008-03-31 2014-10-07 Cochlear Limited Mechanical fixation system for a prosthetic device
US20090299369A1 (en) * 2008-06-02 2009-12-03 Skeletal Dynamics Llc Hybrid Orthopedic Implant
US20130012992A1 (en) * 2009-10-26 2013-01-10 Nasser Ani Apparatus for compressing or decompressing a spinal disc and method of use thereof
US10945861B2 (en) 2009-12-07 2021-03-16 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10857004B2 (en) 2009-12-07 2020-12-08 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10610380B2 (en) 2009-12-07 2020-04-07 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10543107B2 (en) 2009-12-07 2020-01-28 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US11918486B2 (en) 2009-12-07 2024-03-05 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US20110184414A1 (en) * 2010-01-27 2011-07-28 Jonas Andermahr System and Method for Minimally Invasive Clavicle Plate Application
US9757172B2 (en) 2010-01-27 2017-09-12 DePuy Synthes Products, Inc. System and method for minimally invasive clavicle plate application
US9486262B2 (en) * 2010-01-27 2016-11-08 DePuy Synthes Products, Inc. System and method for minimally invasive clavicle plate application
US20110218534A1 (en) * 2010-03-08 2011-09-08 Bernard Prandi Adjustable-angle radius plate
US8579898B2 (en) 2010-03-08 2013-11-12 Memometal Technologies Adjustable-angle radius plate
US20110218533A1 (en) * 2010-03-08 2011-09-08 Bernard Prandi Radius-plate assembly
US8419776B2 (en) 2010-03-08 2013-04-16 Memometal Technologies Radius-plate assembly
US8894650B2 (en) 2010-03-08 2014-11-25 Memometal Technologies Radius plate assembly
US8594356B2 (en) * 2010-04-29 2013-11-26 Cochlear Limited Bone conduction device having limited range of travel
US20110268303A1 (en) * 2010-04-29 2011-11-03 Cochlear Limited Bone conduction device having limited range of travel
US10517656B2 (en) * 2011-06-17 2019-12-31 Biedermann Technologies Gmbh & Co. Kg Modular bone plate and member of such a modular bone plate
US11478283B2 (en) 2011-07-19 2022-10-25 Howmedica Osteonics Corp. Anterior cervical plate
US9113964B2 (en) 2011-07-19 2015-08-25 Howmedica Osteonics Corp. Anterior cervical plate
US9918749B2 (en) 2011-07-19 2018-03-20 Howmedica Osteonics Corp. Anterior cervical plate
US10912591B2 (en) 2011-07-19 2021-02-09 Howmedica Osteonics Corp. Anterior cervical plate
US8668723B2 (en) 2011-07-19 2014-03-11 Neurostructures, Inc. Anterior cervical plate
US9101407B2 (en) 2011-07-19 2015-08-11 Howmedica Osteonics Corp. Anterior cervical plate
US11324608B2 (en) 2011-09-23 2022-05-10 Samy Abdou Spinal fixation devices and methods of use
US9901458B1 (en) 2011-09-23 2018-02-27 Samy Abdou Spinal fixation devices and methods of use
US9867714B1 (en) 2011-09-23 2018-01-16 Samy Abdou Spinal fixation devices and methods of use
US11517449B2 (en) 2011-09-23 2022-12-06 Samy Abdou Spinal fixation devices and methods of use
US10575961B1 (en) 2011-09-23 2020-03-03 Samy Abdou Spinal fixation devices and methods of use
US12029456B2 (en) 2011-12-12 2024-07-09 Extremity Medical, Llc Devices and methods for bone fixation using axial implants
US9498265B2 (en) * 2011-12-12 2016-11-22 Extremity Medical, Llc Devices and methods for bone fixation using axial implants
US20170071642A1 (en) * 2011-12-12 2017-03-16 Extremity Medical, Llc Devices and methods for bone fixation using axial implants
US11197698B2 (en) * 2011-12-12 2021-12-14 Extremity Medical, Llc Devices and methods for bone fixation using axial implants
US10226286B2 (en) * 2011-12-12 2019-03-12 Extremity Medical, Llc Devices and methods for bone fixation using axial implants
US20150134015A1 (en) * 2011-12-12 2015-05-14 Extremity Medical, Llc Devices and methods for bone fixation using axial implants
US11006982B2 (en) 2012-02-22 2021-05-18 Samy Abdou Spinous process fixation devices and methods of use
US11839413B2 (en) 2012-02-22 2023-12-12 Samy Abdou Spinous process fixation devices and methods of use
US10695105B2 (en) 2012-08-28 2020-06-30 Samy Abdou Spinal fixation devices and methods of use
US11559336B2 (en) 2012-08-28 2023-01-24 Samy Abdou Spinal fixation devices and methods of use
US10111757B2 (en) 2012-10-22 2018-10-30 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US11918483B2 (en) 2012-10-22 2024-03-05 Cogent Spine Llc Devices and methods for spinal stabilization and instrumentation
US9743968B2 (en) 2013-11-14 2017-08-29 Zimmer Biomet CMF and Thoracic, LLC Locking mechanism for pectus bar
US9629664B2 (en) 2014-01-20 2017-04-25 Neurostructures, Inc. Anterior cervical plate
US9486250B2 (en) 2014-02-20 2016-11-08 Mastros Innovations, LLC. Lateral plate
US9775652B2 (en) 2014-02-20 2017-10-03 Mastros Innovations, Llc Lateral plate
US9615931B2 (en) * 2015-03-20 2017-04-11 Globus Medical, Inc. Surgical plate systems
US11246718B2 (en) 2015-10-14 2022-02-15 Samy Abdou Devices and methods for vertebral stabilization
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10548740B1 (en) 2016-10-25 2020-02-04 Samy Abdou Devices and methods for vertebral bone realignment
US11058548B1 (en) 2016-10-25 2021-07-13 Samy Abdou Devices and methods for vertebral bone realignment
US11752008B1 (en) 2016-10-25 2023-09-12 Samy Abdou Devices and methods for vertebral bone realignment
US11259935B1 (en) 2016-10-25 2022-03-01 Samy Abdou Devices and methods for vertebral bone realignment
US10722279B2 (en) 2017-02-10 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Stabilizer holder and inserter tool and methods
US11633218B2 (en) 2017-02-10 2023-04-25 Zimmer Biomet CMF and Thoracic, LLC Pectus bar and stabilizer devices and methods
US11432858B2 (en) 2017-02-10 2022-09-06 Zimmer Biomet CMF and Thoracic, LLC Stabilizer holder and inserter tool and methods
US10820931B2 (en) 2017-02-10 2020-11-03 Zimmer Biomet CMF and Thoracic, LLC Pectus bar and stabilizer devices and methods
US10617455B2 (en) 2017-03-08 2020-04-14 Zimmer Biomet CMF and Thoracic, LLC Pectus bar support devices and methods
US11364059B2 (en) 2017-03-08 2022-06-21 Zimmer Biomet CMF and Thoracic, LLC Pectus bar support devices and methods
US10980641B2 (en) 2017-05-04 2021-04-20 Neurostructures, Inc. Interbody spacer
US10512547B2 (en) 2017-05-04 2019-12-24 Neurostructures, Inc. Interbody spacer
US20190061337A1 (en) * 2017-08-24 2019-02-28 Universal Engraving, Inc. Apparatus and method for adjusting graphic arts die plate on carrier
US10800158B2 (en) * 2017-08-24 2020-10-13 Universal Engraving, Inc. Apparatus and method for adjusting graphic arts die plate on carrier
US11806250B2 (en) 2018-02-22 2023-11-07 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
US12036132B2 (en) 2018-02-22 2024-07-16 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
US11076892B2 (en) 2018-08-03 2021-08-03 Neurostructures, Inc. Anterior cervical plate
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11071629B2 (en) 2018-10-13 2021-07-27 Neurostructures Inc. Interbody spacer
US11382761B2 (en) 2020-04-11 2022-07-12 Neurostructures, Inc. Expandable interbody spacer
US11304817B2 (en) 2020-06-05 2022-04-19 Neurostructures, Inc. Expandable interbody spacer
US11617658B2 (en) 2020-11-05 2023-04-04 Warsaw Orthopedic, Inc. Expandable inter-body device, system and method
US11963881B2 (en) 2020-11-05 2024-04-23 Warsaw Orthopedic, Inc. Expandable inter-body device, system, and method
US11969196B2 (en) 2020-11-05 2024-04-30 Warsaw Orthopedic, Inc. Expandable inter-body device, system, and method
US20220133499A1 (en) * 2020-11-05 2022-05-05 Warsaw Orthopedic, Inc. Expandable inter-body device, expandable plate system, and associated methods
US11833059B2 (en) * 2020-11-05 2023-12-05 Warsaw Orthopedic, Inc. Expandable inter-body device, expandable plate system, and associated methods
US11638653B2 (en) 2020-11-05 2023-05-02 Warsaw Orthopedic, Inc. Surgery instruments with a movable handle
US12053392B2 (en) * 2020-11-05 2024-08-06 Warsaw Orthopedic, Inc. Expandable inter-body device, expandable plate system, and associated methods
US12121453B2 (en) 2020-11-05 2024-10-22 Warsaw Orthopedic, Inc. Dual wedge expandable implant with eyelets, system, and method of use
US11717419B2 (en) 2020-12-10 2023-08-08 Neurostructures, Inc. Expandable interbody spacer
US11612499B2 (en) 2021-06-24 2023-03-28 Warsaw Orthopedic, Inc. Expandable interbody implant

Also Published As

Publication number Publication date
WO2004062482A2 (en) 2004-07-29
US20080058810A1 (en) 2008-03-06
WO2004062482A3 (en) 2005-07-28
US7331961B2 (en) 2008-02-19

Similar Documents

Publication Publication Date Title
US7331961B2 (en) Plating system for bone fixation and subsidence and method of implantation
US7291152B2 (en) Bone fixation system and method of implantation
US7635366B2 (en) Plating system for bone fixation and method of implantation
US7476228B2 (en) Distraction screw for skeletal surgery and method of use
US8882843B2 (en) Interbody spinal fusion implant having a trailing end with at least one stabilization element
US20130197588A1 (en) Bone fixation systems and methods of implantation
US7468069B2 (en) Static anterior cervical plate
AU2010275475B2 (en) Bone plate screw-blocking systems and methods
US8568453B2 (en) Spinal stabilization systems and methods of use
US7618418B2 (en) Plate system for minimally invasive support of the spine
US8231680B2 (en) Anterior cervical instrumentation systems, methods and devices
EP1677711B1 (en) Facet joint replacement
US7625375B2 (en) Systems and techniques for stabilizing the spine and placing stabilization systems
US20170020579A1 (en) Lateral plate
US20070173842A1 (en) Device and Method for the Placement of Spinal Fixators
US20060149255A1 (en) Spinal implant kit
AU2005306975A1 (en) Spinal plate system and method of use
JP2004537354A (en) Spinal stabilization system and method
JP2003503155A (en) Spinal column interbody cage
WO2008100239A2 (en) Improved static anterior cervical plate

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 12