US20040197331A1 - Induction of cytotoxic T-lymphocyte responses - Google Patents
Induction of cytotoxic T-lymphocyte responses Download PDFInfo
- Publication number
- US20040197331A1 US20040197331A1 US10/743,398 US74339803A US2004197331A1 US 20040197331 A1 US20040197331 A1 US 20040197331A1 US 74339803 A US74339803 A US 74339803A US 2004197331 A1 US2004197331 A1 US 2004197331A1
- Authority
- US
- United States
- Prior art keywords
- antigen
- composition
- protein
- carcinoma
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 title claims abstract description 128
- 230000004044 response Effects 0.000 title claims abstract description 75
- 230000006698 induction Effects 0.000 title description 46
- 102000036639 antigens Human genes 0.000 claims abstract description 258
- 108091007433 antigens Proteins 0.000 claims abstract description 258
- 239000000427 antigen Substances 0.000 claims abstract description 254
- 239000000203 mixture Substances 0.000 claims abstract description 215
- 238000009472 formulation Methods 0.000 claims abstract description 133
- 238000000034 method Methods 0.000 claims abstract description 86
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 49
- 241001465754 Metazoa Species 0.000 claims abstract description 47
- 239000003599 detergent Substances 0.000 claims abstract description 40
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 39
- 239000007764 o/w emulsion Substances 0.000 claims abstract description 22
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 22
- 230000003308 immunostimulating effect Effects 0.000 claims abstract description 15
- 230000001939 inductive effect Effects 0.000 claims abstract description 7
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 claims description 69
- 108090000623 proteins and genes Proteins 0.000 claims description 47
- 102000004169 proteins and genes Human genes 0.000 claims description 44
- 239000003921 oil Substances 0.000 claims description 43
- 235000019198 oils Nutrition 0.000 claims description 43
- 201000009030 Carcinoma Diseases 0.000 claims description 42
- 229920000053 polysorbate 80 Polymers 0.000 claims description 38
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 claims description 34
- 206010028980 Neoplasm Diseases 0.000 claims description 32
- 229940032094 squalane Drugs 0.000 claims description 32
- 108010042708 Acetylmuramyl-Alanyl-Isoglutamine Proteins 0.000 claims description 31
- BSOQXXWZTUDTEL-ZUYCGGNHSA-N muramyl dipeptide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@@H](O)[C@@H]1NC(C)=O BSOQXXWZTUDTEL-ZUYCGGNHSA-N 0.000 claims description 29
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 claims description 28
- 229920001983 poloxamer Polymers 0.000 claims description 25
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 claims description 18
- 229920000136 polysorbate Polymers 0.000 claims description 18
- 241000725303 Human immunodeficiency virus Species 0.000 claims description 16
- 201000001441 melanoma Diseases 0.000 claims description 16
- 241000701022 Cytomegalovirus Species 0.000 claims description 15
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 15
- 229920002359 Tetronic® Polymers 0.000 claims description 14
- 206010022000 influenza Diseases 0.000 claims description 13
- CBFCDTFDPHXCNY-UHFFFAOYSA-N icosane Chemical compound CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 claims description 12
- 201000004792 malaria Diseases 0.000 claims description 12
- 201000011510 cancer Diseases 0.000 claims description 11
- 241000725643 Respiratory syncytial virus Species 0.000 claims description 10
- XOJVVFBFDXDTEG-UHFFFAOYSA-N pristane Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 claims description 10
- 241001529453 unidentified herpesvirus Species 0.000 claims description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 9
- 241000282412 Homo Species 0.000 claims description 9
- 102000001301 EGF receptor Human genes 0.000 claims description 8
- 108060006698 EGF receptor Proteins 0.000 claims description 8
- 229920001213 Polysorbate 20 Polymers 0.000 claims description 8
- 101800001271 Surface protein Proteins 0.000 claims description 8
- 241000700605 Viruses Species 0.000 claims description 8
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 claims description 8
- 108010068327 4-hydroxyphenylpyruvate dioxygenase Proteins 0.000 claims description 7
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 claims description 7
- 108010069621 Epstein-Barr virus EBV-associated membrane antigen Proteins 0.000 claims description 7
- 108091006027 G proteins Proteins 0.000 claims description 7
- 102000030782 GTP binding Human genes 0.000 claims description 7
- 108091000058 GTP-Binding Proteins 0.000 claims description 7
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 claims description 7
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 claims description 7
- 102100022430 Melanocyte protein PMEL Human genes 0.000 claims description 7
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 claims description 7
- 102100034256 Mucin-1 Human genes 0.000 claims description 7
- 101710141454 Nucleoprotein Proteins 0.000 claims description 7
- 108700020796 Oncogene Proteins 0.000 claims description 7
- 102000043276 Oncogene Human genes 0.000 claims description 7
- 101710192036 Sporozoite surface protein 2 Proteins 0.000 claims description 7
- 208000006454 hepatitis Diseases 0.000 claims description 7
- 231100000283 hepatitis Toxicity 0.000 claims description 7
- 208000005252 hepatitis A Diseases 0.000 claims description 7
- 108700025694 p53 Genes Proteins 0.000 claims description 7
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 claims description 7
- 102000016914 ras Proteins Human genes 0.000 claims description 7
- 108010014186 ras Proteins Proteins 0.000 claims description 7
- 108010083021 Epstein-Barr virus glycoprotein 85 Proteins 0.000 claims description 6
- 208000005176 Hepatitis C Diseases 0.000 claims description 6
- 229920002046 Pluronic® L 62 LF Polymers 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 6
- 231100000252 nontoxic Toxicity 0.000 claims description 6
- 230000003000 nontoxic effect Effects 0.000 claims description 6
- 210000002307 prostate Anatomy 0.000 claims description 6
- KMXFZRSJMDYPPG-UHFFFAOYSA-N tetratetracontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC KMXFZRSJMDYPPG-UHFFFAOYSA-N 0.000 claims description 6
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 claims description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 5
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 claims description 5
- 230000000890 antigenic effect Effects 0.000 claims description 5
- 208000002672 hepatitis B Diseases 0.000 claims description 5
- 208000015181 infectious disease Diseases 0.000 claims description 5
- IZWSFJTYBVKZNK-UHFFFAOYSA-N lauryl sulfobetaine Chemical compound CCCCCCCCCCCC[N+](C)(C)CCCS([O-])(=O)=O IZWSFJTYBVKZNK-UHFFFAOYSA-N 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 229920002523 polyethylene Glycol 1000 Polymers 0.000 claims description 5
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 claims description 5
- 229940068968 polysorbate 80 Drugs 0.000 claims description 5
- 229940031439 squalene Drugs 0.000 claims description 5
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 claims description 5
- 229960000502 poloxamer Drugs 0.000 claims description 4
- 206010059313 Anogenital warts Diseases 0.000 claims description 3
- 101000767631 Human papillomavirus type 16 Protein E7 Proteins 0.000 claims description 3
- 241001631646 Papillomaviridae Species 0.000 claims description 3
- 229920001214 Polysorbate 60 Polymers 0.000 claims description 3
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 208000024891 symptom Diseases 0.000 claims description 3
- 235000015112 vegetable and seed oil Nutrition 0.000 claims description 3
- 239000008158 vegetable oil Substances 0.000 claims description 3
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 claims description 2
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 2
- 102100033270 Cyclin-dependent kinase inhibitor 1 Human genes 0.000 claims description 2
- 101000773083 Homo sapiens 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 claims description 2
- 241000701806 Human papillomavirus Species 0.000 claims description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 2
- 201000010881 cervical cancer Diseases 0.000 claims description 2
- 239000004006 olive oil Substances 0.000 claims description 2
- 235000008390 olive oil Nutrition 0.000 claims description 2
- 206010060862 Prostate cancer Diseases 0.000 claims 6
- 201000001514 prostate carcinoma Diseases 0.000 claims 5
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 claims 2
- 102000001109 Leukocyte L1 Antigen Complex Human genes 0.000 claims 2
- 108010069316 Leukocyte L1 Antigen Complex Proteins 0.000 claims 2
- 230000000241 respiratory effect Effects 0.000 claims 2
- 101000596404 Homo sapiens Neuronal vesicle trafficking-associated protein 1 Proteins 0.000 claims 1
- 101000891649 Homo sapiens Transcription elongation factor A protein-like 1 Proteins 0.000 claims 1
- 101100540311 Human papillomavirus type 16 E6 gene Proteins 0.000 claims 1
- 101000954519 Human papillomavirus type 18 Protein E6 Proteins 0.000 claims 1
- 102000007066 Prostate-Specific Antigen Human genes 0.000 claims 1
- 108010072866 Prostate-Specific Antigen Proteins 0.000 claims 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims 1
- 230000003292 diminished effect Effects 0.000 abstract description 2
- 241000699670 Mus sp. Species 0.000 description 72
- 210000004027 cell Anatomy 0.000 description 54
- 239000002671 adjuvant Substances 0.000 description 36
- 230000003053 immunization Effects 0.000 description 34
- 108010005774 beta-Galactosidase Proteins 0.000 description 33
- 238000002649 immunization Methods 0.000 description 33
- 235000018102 proteins Nutrition 0.000 description 26
- 238000000338 in vitro Methods 0.000 description 25
- 210000004989 spleen cell Anatomy 0.000 description 22
- 239000012981 Hank's balanced salt solution Substances 0.000 description 21
- 239000000839 emulsion Substances 0.000 description 19
- 229940037003 alum Drugs 0.000 description 18
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 18
- 239000002953 phosphate buffered saline Substances 0.000 description 18
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 16
- 102100026189 Beta-galactosidase Human genes 0.000 description 15
- 210000001744 T-lymphocyte Anatomy 0.000 description 15
- 108010058846 Ovalbumin Proteins 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- 239000012636 effector Substances 0.000 description 13
- 241000282693 Cercopithecidae Species 0.000 description 12
- 229960005486 vaccine Drugs 0.000 description 12
- 238000001727 in vivo Methods 0.000 description 11
- 229940092253 ovalbumin Drugs 0.000 description 11
- 230000037452 priming Effects 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 230000024932 T cell mediated immunity Effects 0.000 description 9
- 230000005875 antibody response Effects 0.000 description 9
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 230000008348 humoral response Effects 0.000 description 7
- 239000002502 liposome Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000036755 cellular response Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 210000004988 splenocyte Anatomy 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 102000000588 Interleukin-2 Human genes 0.000 description 5
- 108010002350 Interleukin-2 Proteins 0.000 description 5
- 150000001413 amino acids Chemical group 0.000 description 5
- 230000009089 cytolysis Effects 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000013613 expression plasmid Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 210000004881 tumor cell Anatomy 0.000 description 5
- 238000011740 C57BL/6 mouse Methods 0.000 description 4
- 108010070675 Glutathione transferase Proteins 0.000 description 4
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 4
- 206010046865 Vaccinia virus infection Diseases 0.000 description 4
- 230000000259 anti-tumor effect Effects 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 230000001900 immune effect Effects 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 230000002147 killing effect Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 230000004614 tumor growth Effects 0.000 description 4
- 208000007089 vaccinia Diseases 0.000 description 4
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 4
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 3
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- YVGGHNCTFXOJCH-UHFFFAOYSA-N DDT Chemical compound C1=CC(Cl)=CC=C1C(C(Cl)(Cl)Cl)C1=CC=C(Cl)C=C1 YVGGHNCTFXOJCH-UHFFFAOYSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 3
- 206010053613 Type IV hypersensitivity reaction Diseases 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 239000012894 fetal calf serum Substances 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 238000011081 inoculation Methods 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- -1 (e.g. Proteins 0.000 description 2
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 2
- 208000003950 B-cell lymphoma Diseases 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 101150013359 E7 gene Proteins 0.000 description 2
- 229930182566 Gentamicin Natural products 0.000 description 2
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 206010018691 Granuloma Diseases 0.000 description 2
- 208000031886 HIV Infections Diseases 0.000 description 2
- 208000037357 HIV infectious disease Diseases 0.000 description 2
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 2
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 2
- 101000957351 Homo sapiens Myc-associated zinc finger protein Proteins 0.000 description 2
- 102100038750 Myc-associated zinc finger protein Human genes 0.000 description 2
- 102000047918 Myelin Basic Human genes 0.000 description 2
- 101710107068 Myelin basic protein Proteins 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108090000190 Thrombin Proteins 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 241000700618 Vaccinia virus Species 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 210000004520 cell wall skeleton Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 2
- 230000001461 cytolytic effect Effects 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 230000016784 immunoglobulin production Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 230000002934 lysing effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 230000003393 splenic effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000005951 type IV hypersensitivity Effects 0.000 description 2
- 208000027930 type IV hypersensitivity disease Diseases 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- BRZYSWJRSDMWLG-DJWUNRQOSA-N (2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-[(1r)-1-hydroxyethyl]oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H]([C@@H](C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-DJWUNRQOSA-N 0.000 description 1
- YHQZWWDVLJPRIF-JLHRHDQISA-N (4R)-4-[[(2S,3R)-2-[acetyl-[(3R,4R,5S,6R)-3-amino-4-[(1R)-1-carboxyethoxy]-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]amino]-3-hydroxybutanoyl]amino]-5-amino-5-oxopentanoic acid Chemical compound C(C)(=O)N([C@@H]([C@H](O)C)C(=O)N[C@H](CCC(=O)O)C(N)=O)C1[C@H](N)[C@@H](O[C@@H](C(=O)O)C)[C@H](O)[C@H](O1)CO YHQZWWDVLJPRIF-JLHRHDQISA-N 0.000 description 1
- XBZYWSMVVKYHQN-MYPRUECHSA-N (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-hydroxy-2,2,6a,6b,9,12a-hexamethyl-9-[(sulfooxy)methyl]-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid Chemical compound C1C[C@H](O)[C@@](C)(COS(O)(=O)=O)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CCC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C XBZYWSMVVKYHQN-MYPRUECHSA-N 0.000 description 1
- JMTMSDXUXJISAY-UHFFFAOYSA-N 2H-benzotriazol-4-ol Chemical class OC1=CC=CC2=C1N=NN2 JMTMSDXUXJISAY-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- XJQRWGXKUSDEFI-ACZMJKKPSA-N Asp-Glu-Asn Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O XJQRWGXKUSDEFI-ACZMJKKPSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- OBMZMSLWNNWEJA-XNCRXQDQSA-N C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 Chemical compound C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 OBMZMSLWNNWEJA-XNCRXQDQSA-N 0.000 description 1
- 238000011735 C3H mouse Methods 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 208000000907 Condylomata Acuminata Diseases 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 238000011765 DBA/2 mouse Methods 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- PVBBEKPHARMPHX-DCAQKATOSA-N Glu-Gln-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CCC(O)=O PVBBEKPHARMPHX-DCAQKATOSA-N 0.000 description 1
- ILWHFUZZCFYSKT-AVGNSLFASA-N Glu-Lys-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O ILWHFUZZCFYSKT-AVGNSLFASA-N 0.000 description 1
- SYAYROHMAIHWFB-KBIXCLLPSA-N Glu-Ser-Ile Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O SYAYROHMAIHWFB-KBIXCLLPSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 206010053759 Growth retardation Diseases 0.000 description 1
- 101710178376 Heat shock 70 kDa protein Proteins 0.000 description 1
- SGLXGEDPYJPGIQ-ACRUOGEOSA-N His-Phe-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC2=CC=CC=C2)C(=O)O)NC(=O)[C@H](CC3=CN=CN3)N SGLXGEDPYJPGIQ-ACRUOGEOSA-N 0.000 description 1
- 108010048209 Human Immunodeficiency Virus Proteins Proteins 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 241000341655 Human papillomavirus type 16 Species 0.000 description 1
- 101100156155 Human papillomavirus type 16 E7 gene Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- ZZHGKECPZXPXJF-PCBIJLKTSA-N Ile-Asn-Phe Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 ZZHGKECPZXPXJF-PCBIJLKTSA-N 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 1
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 1
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- 241000186781 Listeria Species 0.000 description 1
- DEFGUIIUYAUEDU-ZPFDUUQYSA-N Lys-Asn-Ile Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O DEFGUIIUYAUEDU-ZPFDUUQYSA-N 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 101150076359 Mhc gene Proteins 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 241000187481 Mycobacterium phlei Species 0.000 description 1
- 108700020354 N-acetylmuramyl-threonyl-isoglutamine Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 101710176384 Peptide 1 Proteins 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- FHJQROWZEJFZPO-SRVKXCTJSA-N Pro-Val-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H]1CCCN1 FHJQROWZEJFZPO-SRVKXCTJSA-N 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 108010073443 Ribi adjuvant Proteins 0.000 description 1
- 241001222774 Salmonella enterica subsp. enterica serovar Minnesota Species 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- WLJPJRGQRNCIQS-ZLUOBGJFSA-N Ser-Ser-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(O)=O WLJPJRGQRNCIQS-ZLUOBGJFSA-N 0.000 description 1
- 108700027479 Syntex adjuvant formulation Proteins 0.000 description 1
- VULNJDORNLBPNG-SWRJLBSHSA-N Thr-Glu-Trp Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)N)O VULNJDORNLBPNG-SWRJLBSHSA-N 0.000 description 1
- MROIJTGJGIDEEJ-RCWTZXSCSA-N Thr-Pro-Pro Chemical compound C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 MROIJTGJGIDEEJ-RCWTZXSCSA-N 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- VENKIVFKIPGEJN-NHCYSSNCSA-N Val-Met-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N VENKIVFKIPGEJN-NHCYSSNCSA-N 0.000 description 1
- DVLWZWNAQUBZBC-ZNSHCXBVSA-N Val-Thr-Pro Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](C(C)C)N)O DVLWZWNAQUBZBC-ZNSHCXBVSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- UZQJVUCHXGYFLQ-AYDHOLPZSA-N [(2s,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-4-[(2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,5-dihydroxy-6-(hy Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@]([C@@]3(CC[C@H]2[C@@]1(C=O)C)C)(C)CC(O)[C@]1(CCC(CC14)(C)C)C(=O)O[C@H]1[C@@H]([C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O[C@H]4[C@@H]([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O)[C@H](O)[C@@H](CO)O4)O)[C@H](O)[C@@H](CO)O3)O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UZQJVUCHXGYFLQ-AYDHOLPZSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 208000025009 anogenital human papillomavirus infection Diseases 0.000 description 1
- 201000004201 anogenital venereal wart Diseases 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 108010077245 asparaginyl-proline Proteins 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 231100000001 growth retardation Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000009215 host defense mechanism Effects 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 210000004201 immune sera Anatomy 0.000 description 1
- 229940042743 immune sera Drugs 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000002998 immunogenetic effect Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000000568 immunological adjuvant Substances 0.000 description 1
- 230000002434 immunopotentiative effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 229960003971 influenza vaccine Drugs 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- GZQKNULLWNGMCW-PWQABINMSA-N lipid A (E. coli) Chemical compound O1[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H]1OC[C@@H]1[C@@H](O)[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O1 GZQKNULLWNGMCW-PWQABINMSA-N 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 201000006512 mast cell neoplasm Diseases 0.000 description 1
- 208000006971 mastocytoma Diseases 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 125000001446 muramyl group Chemical group N[C@@H](C=O)[C@@H](O[C@@H](C(=O)*)C)[C@H](O)[C@H](O)CO 0.000 description 1
- 229940055036 mycobacterium phlei Drugs 0.000 description 1
- YDLYQMBWCWFRAI-UHFFFAOYSA-N n-Hexatriacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC YDLYQMBWCWFRAI-UHFFFAOYSA-N 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 108010012581 phenylalanylglutamate Proteins 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009696 proliferative response Effects 0.000 description 1
- 108010004914 prolylarginine Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- PXLIDIMHPNPGMH-UHFFFAOYSA-N sodium chromate Chemical compound [Na+].[Na+].[O-][Cr]([O-])(=O)=O PXLIDIMHPNPGMH-UHFFFAOYSA-N 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 229940038774 squalene oil Drugs 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 208000008732 thymoma Diseases 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- OLTHARGIAFTREU-UHFFFAOYSA-N triacontane Natural products CCCCCCCCCCCCCCCCCCCCC(C)CCCCCCCC OLTHARGIAFTREU-UHFFFAOYSA-N 0.000 description 1
- 230000004565 tumor cell growth Effects 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000012646 vaccine adjuvant Substances 0.000 description 1
- 229940124931 vaccine adjuvant Drugs 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/002—Protozoa antigens
- A61K39/015—Hemosporidia antigens, e.g. Plasmodium antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/21—Retroviridae, e.g. equine infectious anemia virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55566—Emulsions, e.g. Freund's adjuvant, MF59
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/572—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/58—Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
- A61K2039/585—Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/90—Other properties not specified above
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/20011—Papillomaviridae
- C12N2710/20034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16111—Human Immunodeficiency Virus, HIV concerning HIV env
- C12N2740/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- Cytotoxic T-lymphocytes are believed to be the major host defense mechanism in response to a variety of viral infections and neoplastic or cancerous growth. These cells eliminate infected or transformed cells by recognizing antigen fragments in association with various molecules (termed class I MHC molecules) on the infected or transformed cells. CTLs may be induced experimentally by cytoplasmic loading of certain soluble antigens within specific cells. Immunization with the soluble antigen alone is generally insufficient for specific cytotoxic T-lymphocyte induction.
- CTL response may be induced involves the use of recombinant engineering techniques to incorporate critical components of an antigen in question into the genome of a benign infectious agent.
- the aim of such a strategy is to generate antigen-specific cytotoxic T-lymphocyte responses to the desired epitope by subjecting the host to a mild, self-limiting infection.
- Chimeric vectors have been described using vaccinia, polio, adeno- and retro-viruses, as well as bacteria such as Listeria and BCG.
- Takahashi et al. 85 Proc. Natl. Acad. Sci., USA 3105, 1988 describe use of recombinant vaccinia virus expressing the HIV gp160 envelope gene as a potential tool for induction of cytotoxic T-lymphocytes.
- a second method by which a cell mediated response may be induced involves the use of adjuvants. While the art appears replete with discussion of the use of adjuvants it is unclear in such art whether cell mediated immunity was induced and whether such cell mediated immunity included a cytotoxic T-lymphocyte response. The following, however, are representative of, various publications in this area.
- Vaccines 223, 1987 describe use of SAF-1 which includes TWEEN 80, PLURONIC L121, and squalene or Squalane, with or without muramyl dipeptide, and suggest that their data indicate that the formulation with muramyl dipeptide will be useful for human and veterinary vaccines.
- Booster shots of the adjuvant were provided without the muramyl dipeptide.
- the muramyl dipeptide is said to increase antibody production significantly over use of the adjuvant without muramyl dipeptide.
- Cell mediated immunity was measured as delayed type hypersensitivity by skin tests to determine T-helper cell induction. Such hypersensitivity was stronger and more sustained when muramyl dipeptide was provided in the adjuvant.
- immunological preparations include liposomes (Allison et al., U.S. Pat. Nos. 4,053,585, and 4,117,113); cyclic peptides (Dreesman et al., U.S. Pat. No. 4,778,784); Freunds Complete Adjuvant (Asherson et al., 22 Immunology 465, 1972; Berman et al., 2 International J.
- Applicant has discovered a safe and advantageous method and compositions by which CTL responses may be induced in humans and domesticated or agriculturally important animals.
- the method involves the use of an antigen formulation which has little or no toxicity to animals, and lacks an immunostimulating peptide, (e.g., muramyl dipeptide) the presence of which would decrease the desired cellular response.
- an immunostimulating peptide e.g., muramyl dipeptide
- the methodology is simple to use and does not require extensive in vivo work to alter existing cells by recombinant DNA techniques to make them more antigenic. This discovery is surprising since it was unexpected that such a CTL response could be induced by use of such an antigen formulation lacking immunostimulating peptides or their equivalent.
- Applicant's findings allow the use of such antigen formulations in a broad spectrum of disease states, or as a prophylactic agent.
- such antigen formulation administration can be used for the treatment of viral diseases in which a CTL response is important, for example, in the treatment of HIV infection or influenza; it can also be extended to use in treatment of bacterial infections, cancer, parasitic infections, and the like.
- the antigen formulation combined with a suitable antigen is useful in prevention of infection by viruses responsible for the aforementioned viral diseases, particularly the prophylaxis of HIV infection, and also for prophylaxis of patients at risk of cancer, for example, after resection of a primary tumor.
- the invention features a method for inducing a CTL response in a human or domesticated (e.g., a cat or dog) or agriculturally important animal (e.g., a horse, cow or pig) to an antigen other than B-cell lymphoma antigen or egg albumin.
- the method includes the steps of providing the antigen to which the CTL response is desired, and providing a non-toxic antigen formulation which comprises, consists, or consists essentially of, a stabilizing detergent, a micelle-forming agent, and a biodegradable and biocompatible oil.
- This antigen formulation preferably lacks any immunostimulating peptide component, or has sufficiently low levels of such a component that the desired cellular response is not diminished.
- This formulation is preferably provided as a stable oil-in-water emulsion. That is, each of the various components are chosen such that the emulsion will remain in an emulsion state for a period of at least one month, and preferably for more than one year, without phase separation.
- the antigen and antigen formulation are mixed together to form a mixture (preferably by microfluidization), and that mixture administered to the animal in an amount sufficient to induce CTL response in the animal. Such administration is required only once.
- stabilizing detergent is meant a detergent that allows the components of the emulsion to remain as a stable emulsion.
- Such detergents include polysorbate, 80 (TWEEN), (Sorbitan-mono-9-octadecenoate-poly(oxy-1,2-ethanediyl; manufactured by ICI Americas, Wilmington, Del.), TWEEN 40, TWEEN 20, TWEEN 60, Zwittergent 3-12, TEEPOL HB7, and SPAN 85. These detergents are usually provided in an amount of approximately 0.05 to 0.5%, preferably at about 0.2%.
- micelle-forming agent an agent which is able to stabilize the emulsion formed with the other components such that a micelle-like structure is formed. Such agents preferably cause some irritation at the site of injection in order to recruit macrophages to enhance the cellular response.
- examples of such agents include polymer surfactants described by BASF Wyandotte publications, e.g., Schmolka, 54 J. Am. Oil. Chem. Soc. 110, 1977′, and Hunter et al., 129 J. Immunol 1244, 1981, both hereby incorporated by reference, PLURONIC L62LF, L101, and L64, PEG1000, and TETRONIC 1501, 150R1, 701, 901, 1301, and 130R1.
- the agent is chosen to have a hydrophile-lipophile balance (HLB) of between 0 and 2, as defined by Hunter and Bennett, 133 Journal of Immunology 3167, 1984.
- HLB hydrophile-lipophile balance
- the agent is preferably provided in an amount between 0.5 and 10%, most preferably in an amount between 1.25 and 5%.
- the oil is chosen to promote the retention of the antigen in oil-in-water emulsion, i.e., to provide a vehicle for the desired antigen, and preferably has a melting temperature of less than 65° C. such that emulsion is formed either at room temperature (about 20° C. to 25° C.), or once the temperature of the emulsion is brought down to room temperature.
- oils include squalene, Squalane, EICOSANE, tetratetracontane, glycerol, and peanut oil or other vegetable oils.
- the oil is preferably provided in an amount between 1 and 10%, most preferably between 2.5 and 5%. It is important that the oil is biodegradable and biocompatible so that the body can break down the oil over time, and so that no adverse affects, such as granulomas, are evident upon use of the oil.
- a peptide component especially a muramyl dipeptide (MDP) be lacking.
- MDP muramyl dipeptide
- Such a peptide will interfere with induction of a CTL response if it provided in an amount greater than about 20 micrograms per normal human formulation administration. It is preferred that such peptides be completely absent from the antigen formulation, despite their apparent stimulation of the humoral compartment of the immune system. That is, applicant has found that, although such peptides may enhance the humoral response, they are disadvantageous when a cytotoxic T-lymphocyte response is desired.
- the antigen formulation is formed from only two of the above three components and used with any desired antigen (which term includes proteins, polypeptides, and fragments thereof which are immunogenic) except egg albumin (or other albumins, e.g., HSA, BSA and ovalbumin), to induce a CTL response in the above animals or humans.
- any desired antigen which term includes proteins, polypeptides, and fragments thereof which are immunogenic
- egg albumin or other albumins, e.g., HSA, BSA and ovalbumin
- the present formulation both includes a micelle-forming agent, and has no peptides, cell wall skeletons, or bacterial cell components.
- the present formulation also induces a CTL response which either does not occur with the prior formulations, or is significantly enhanced compared to those formulations.
- non-toxic is meant that little or no side effect of the antigen formulation is observed in the treated animal or human.
- Those of ordinary skill in the medical or veterinary arts will recognize that this term has a broad meaning. For example, in a substantially healthy animal or human only slight toxicity may be tolerated, whereas in a human suffering from an imminently disease substantially more toxicity may be tolerated.
- the antigen formulation consists essentially of two or three of the detergent, agent, and oil; the method consists essentially of a single administration of the mixture (antigen plus antigen formulation) to the human or the animal; the human or animal is infected with a virus and suffers one or more symptoms (as generally defined by medical doctors in the relevant field), of infection from the virus; and the antigen formulation is non-toxic to the human or animal.
- the antigen is chosen from antigenic portions of the HIV antigens: gp160, gag, pol, Nef, Tat, and Rev; the malaria antigens: CS protein and Sporozoite surface protein 2; the Hepatitis B surface antigens: Pre-S1, Pre-S2, HBc Ag, and HBe Ag; the influenza antigens: HA, NP and NA; Hepatitis A surface antigens; Hepatitis C surface antigens; the Herpes virus antigens: EBV gp340, EBV gp85, HSV gB, HSV gD, HSV gH, HSV early protein product, human papillomavirus antigens (e.g., HPV antigens, such as L1, E4, E6, E7 antigens, in particular the E6 and E7 antigens from HPV16 and 18, the two most common HPV types associated with cervical carcinoma, E4 and L1 specific antigen (PSA), prostate specific membrane associated
- HPV antigens such as
- the invention features a composition comprising, consisting, or consisting essentially of an antigen mixed with an antigen formulation described above, and the antigen is chosen from those antigenic portions listed above.
- the invention features methods of treating a patient infected with HIV virus, suffering from malaria, suffering from influenza, suffering from hepatitis, suffering from a cancer, infected with herpes virus, suffering from cervical cancer, suffering from condyloma acuminata (genital warts), or infected with respiratory syncytial virus, by administering a composition including an appropriate antigen (e.g., selected from those listed above) mixed with one of the above antigen formulations.
- an appropriate antigen e.g., selected from those listed above
- antigens and treatments are only exemplary of antigens which may be used in the subject antigen formulations.
- FIGS. 1A-1C and 4 A- 4 C are graphical presentations of data comparing CTL induction by various ovalbumin formulations; E:T represents effector to target ratio in all Figures.
- FIGS. 2A and 2B are graphical presentations of data comparing CTL induction by various ⁇ -galactosidase formulations
- FIG. 3 is a graphical presentation of data comparing CTL induction by ovalbumin in a liposome and in an antigen formulation
- FIGS. 5 and 6 are graphical presentations of data showing the effect of CD4 and CD8 cell depletion on CTL induction
- FIG. 7 is a graphical representation of data showing CTL induction by gp120
- FIG. 8 is a graphical representation of data showing CTL induction by a mixture of pluronic and TWEEN and an antigen
- FIG. 9 is a graphical representation of data showing CTL induction with a mixture of squalane and pluronic and an antigen
- FIG. 10 is a graphical representation of data showing CTL induction by a mixture of squalane and pluronic and an antigen
- FIG. 11 is a graphical representation of the effect of OVA with various antigen formulations on CTL response
- FIG. 12 is a graphical representation of the induction of anti-gp120IIIb antibodies in monkeys with various antigen formulations
- FIG. 13 depicts antitumor activity of HOPE2 cells ten days after a single immunization of soluble E7 protein in adjuvant
- FIG. 14 depicts antitumor activity of HOPE2 cells at days 10, 19 after two immunizations with soluble E7 protein in adjuvant.
- Antigen formulations useful in this invention are generally described above. Those of ordinary skill in this art will recognize that equivalent Formulations are readily prepared and can be expected to have equivalent properties in induction of a CTL response. Such Formulations are readily tested for their properties using techniques equivalent to those described in the examples below.
- an antigen formulation composed of about 2.5% squalane, 5% pluronic acid, and TWEEN 80 in a phosphate buffered saline.
- an emulsion of the AF included:15 mg squalane, 37.5 mg Poloxamer 401 (PLURONIC L121), 6 mg polysorbate 80 (TWEEN 80), 0.184 mg potassium chloride, 0.552 mg potassium phosphate monobasic, 7.36 mg. sodium chloride, 3.3 mg sodium phosphate dibasic (anhydrous), per 1 ml water, pH 7.4.
- This emulsion was microfluidized using standard technique (Microfluidics Model M110F) with a back-pressure module at 11-14,000 psi *with gradual return to atmosphere pressure, cooling and packing in wet ice.
- Example 11 which relates to papillomavirus antigen formulations uses an antigen formulation referred to as AF3.75.
- This composition comprises squalane, Tween 80, and pluronic L121 dissolved in phosphate buffered saline at pH 7.4 to form a crude oil-in-water emulsion containing final concentrations of 15% (wt/vol) squalane, 0.6% Tween 80, and 3.75% pluronic L121.
- the emulsion is then cycled through a microfluidizer multiple times at a reduced temperature to obtain a stable homogeneous emulsion with a mean particle size ranging from 100 to 300 nm.
- the AF is diluted 1:3 with antigen (1 part AF and 2 parts antigen) prior to use.
- Another preferred antigen formulation is identical to AF3.75 except that it contains 1.5% pluronic L121.
- antigen was mixed with the microfluidized squalane (S), pluronic (P) and TWEEN 80 (T) mixture to achieve a final concentration of 0.2% TWEEN 80, 1.25% pluronic and 5% squalane respectively.
- Squalane-TWEEN 80, pluronic-TWEEN 80 or Squalane-pluronic were prepared at the same concentration as for the three components mixture.
- Pluronic, Squalane or TWEEN 80 was also prepared individually to determine the effect of individual component on the CTL induction.
- TWEEN 20, TWEEN 40 or Zwittergent for TWEEN 80 were also made to determine the effect of various TWEEN derivative on the, CTL induction in the ova system.
- Substitutions of Squalane in the three component formulation were made with Eicosone or Triacontone and substitution for the co-polymer pluronic in the same three components formulation were made by PEG 1000, Pleuronic L62LF, and the Tetronics 1501 and 150R1.
- various analogs in various combinations were mixed and tested for ova specific CTL induction. They are a mixture of cholesterol—TWEEN 80, Squalane—TWEEN 20, Pristane—TWEEN 80 or olive oil—TWEEN 80.
- micro-fluidized mixture of Squalane-TWEEN 80 was mixed with dextrose to a final concentration of 5%.
- combinations of excipients were mixed in a micro-fluidizer to made a stable emulsion.
- soluble antigen be mixed with microfluidized excipients to obtain a stable homogeneous emulsion with particle sizes ranging from about 100 to 300 nm.
- two components formulations were mixed with various concentration of MDP for CTL and humoral response inductions. Table 1 describes a comprehensive list of various formulations used in this study.
- Syntex adjuvant formulation (microfluidized; SAFM) was used as an adjuvant control and consists of two parts.
- Part I consists of phosphate buffered saline containing a final concentration of 5% Squalane, 1.25% pluronic and 0.2% TWEEN 80 (vehicle or I-SAF).
- Part II consists of N-Acetylmuramyl-L-Threonyl-D-Isoglutamine (Thr-MDP), a derivative of mycobacterium cell wall component.
- antigen is mixed with microfluidized vehicle (part I) to obtain a homogeneous emulsion.
- MDP is added to made SAFm, and vortexed briefly.
- mice were also immunized with soluble antigens mixed with alum according to the manufacturer's, manual (Pierce Chemical, Rockford, Ill.) or with Complete Freund's Adjuvant (CFA).
- CFA Complete Freund's Adjuvant
- This antigen formulation is used for induction of cytotoxic T-lymphocyte responses in mice.
- mice Those of ordinary skill in the art will recognize that such a mouse model is indicative that equivalent experiments or treatments will similarly induce cytotoxic T-lymphocyte responses in humans, domesticated, or agricultural animals.
- the amount of antigen formulation and antigen useful to produce the desired cellular response may be determined empirically by standard procedures, well known to those of ordinary skill in the art, without undue experimentation. Thus, if desired to minimize the side effects of treatment with such a mixture those of ordinary skill in the art may determine a minimum level of such a mixture for administration to a human, domesticated, or agricultural animal in order to elicit a CTL response, and thereby induce immunity to a desired antigen. In normal use, such a mixture will be injected by any one of a number of standard procedures, but particularly preferred is an intramuscular injection at a location which will allow the emulsion to remain in a stable form for a period of several days or several weeks.
- mice Female C57BL/6 (H-2 b ) and BALB/c (H-2 d ) mice were purchased from Harlen Sprague (San Diego, Calif.).
- Ovalbumin (ova, Grade VII; Sigma Chemical Co., St. Louis, Mo.) was used in the native form.
- ⁇ -galactosidase ( ⁇ -gal, Grade VIII; BRL) was used in the native form and after boiling in 1 M NaOH for 2 min to give an alkali digest.
- Recombinant gp120 was purchased from American Biotechnology.
- the tumor cells used were the Ia lines EL4 (C57BL/6, H-2 b thymoma) and P815 (DBA/2, H-2 d mastocytoma). Derivation of the ova-producing EL4 transfectant, EG7-ova, is described previously by Moore et al., 54 Cell 777, 1988.
- the ⁇ -gal-producing transfectant, P13.1 was derived by electroporation of 10 7 P815 cells in 1 ml of phosphate buffered saline (PBS) with 10 mg of PstI linearized pCH110 (Pharmacia LKB Biotechnology Inc., Piscataway, N.J.) and 1 mg of PvuI linearized pSV2 neo (Southern et al., 1 J. Mol. Appl. Genet. 327, 1982) followed by selection in 400 ⁇ g/ml of the antibiotic G418.
- PBS phosphate buffered saline
- the C 3-4 transfectant was derived from the BALB/c hybridoma Igm 662 by transfecting with a plasmid encoding the ⁇ -gal gene fused to the third and fourth exon of IgM heavy chain (Rammensee et al., 30 Immunogenetics 296, 1989).
- the gp160IIIb expressing 3T3 fibroblast, 15-12, was provided by Dr. Germain of NIH (Bethesda, Md.).
- the K b transfected L cell line was provided by Dr. Carbone, Monash University, Australia.
- the D d and L d transfected L cell lines were provided by Dr. Ted Hensen, Washington University, St. Louis.
- mice were immunized intravenously with a 200 ⁇ l suspension of 25 ⁇ 10 6 splenocytes, after a cytoplasmic loading as described by Moore et. al. supra, and Carbone et al., J. Exp. Med. 169:603, 1989).
- 30 ⁇ g of each protein antigen was injected per mouse in the footpad and the tailbase subcutaneously. Each injection consists of 67 ⁇ l of microfluidized antigen formulation (made following standard procedures) and 30 ⁇ g of protein antigen in a final volume of 200 ⁇ l.
- mice were immunized with soluble antigens in CFA, or in alum in a total volume of 200 ⁇ l.
- mAbs monoclonal antibodies
- RL.172 anti-CD4
- mAbs 3.168 anti-CD8
- the mAb RL.172 and mAb 3.168 were obtained from Dr. Jonathan Sprent at Scripps Clinic and Research Foundation, La Jolla, Calif.
- Spleen cells (30 ⁇ 10 6 ) from normal or immunized mice which had been primed at least 21 days earlier were incubated with 1.5 ⁇ 10 6 15-12 cells (treated with 200 ug of mitomycin C for 45 minutes per 10 8 cells), or with 500 ⁇ g of 18IIIb peptide containing the dominant CTL epitope in Balb/c mice in complete IMDM media (Irvine Scientific, Santa Ana, Calif.) containing 10% pre-screened FCS (ICN Flow; ICN Biochemicals, Inc., Costa. Mesa, Calif.), 2 mM glutamine, gentamycin and 2 ⁇ 10 ⁇ 5 M 2-mercaptoethanol.
- spleen cells were cultured in complete IMDM containing 5% ConA supernatant.
- Target cells (1 ⁇ 10 6 ) were labeled with 100 ⁇ Ci [ 51 Cr] sodium chromate for 60 min.
- 50 ⁇ l of a 1 mg/ml peptide solution in HBSS was added during the targets labeling with 51 Cr.
- 10 4 labeled targets and serial dilutions of effector cells were incubated in 200 ⁇ l of RP10 for 4 h at 37 C.
- Spontaneous release in the absence of cytotoxic T-lymphocyte (CTL) was ⁇ 25% of maximal release by detergent in all experiments.
- CTL cytotoxic T-lymphocyte
- Synthetic peptides corresponding to amino acid sequences 253-276 (Sequence Listing No. 1: EQLESIINFEKLTEWTSSNVMEER; where the standard one letter code is used to represent each amino acid) of ovalbumin (ova 253-276), amino acid sequences 84-102 of myelin basic protein (MBP 84-102) (Sequence Listing No. 2: DENPVVHFFKNIVTPRTPP), and synthetic peptides corresponding to amino acid sequences 308-322 (18IIIb sequence) of gp120IIIb, were assembled by solid phase peptide synthesis using an Applied Biosystems 430A synthesizer.
- peptides were desalted on a Sephadex G-25 column, and samples of the peptides then HPLC purified by reverse phase chromatography on a Vydac preparative C-18 column. Purified peptides (98%) were solubilized in HBSS at a final concentration of 10 mg/ml and diluted to the desired concentration in the complete media.
- Protein samples e.g., ⁇ -galactosidase
- 1 N NaOH e.g., 1 N NaOH
- boiled for 2 minutes e.g., 1 N NaOH
- resulting peptide fragments were separated from the reactants using a C-18.
- SEP-PAK apparatus Waters
- eluted with 95% acetonitrile and lyophilized e.g., 95% acetonitrile and lyophilized.
- mice immunized with spleen cells loaded cytoplasmically with soluble ova were primed for ova specific, class I restricted CTL response.
- the ova-expressing EL4 transfectant EG7-ova was employed for in vitro stimulation of in vivo primed splenic lymphocytes and also used as target for ova specific CTL mediated killing.
- C57BL/6 mice were immunized once with various amounts of ova (30 ⁇ g-1 mg per mouse) with or without an antigen formulation. Mice were injected subcutaneously and in the tailbase. Spleen cells were taken from the immunized mice at least two weeks after the immunizations and in vitro stimulated with the EG7-ova transfectants. An ova concentration as low as 30 ⁇ g was as effective as a 1 mg dose. Therefore, the CTL studies were routinely performed with spleen cells from 30 ⁇ g ova-primed mice. After five days of in vitro culture with EG7-ova, priming was assessed by the presence of ova specific effectors capable of lysing EG7-ova.
- FIG. 2B demonstrates that 30 ⁇ g of ⁇ -galactosidase in AF induced strong specific CTL response against transfectant.
- E:T effector-to-target
- ⁇ -gal-AF immunized mice showed about 80% of specific C 3-4 killing.
- effectors isolated from ⁇ -gal in HBSS immunized mice at the same E:T ratio (FIG. 2A). Since neither EL4 nor P815 expresses class II MHC gene products and the lysis shows syngeneic restriction, these ova and ⁇ -gal specific effectors are class I MHC restricted.
- mice were immunized with soluble ova encapsuled in two types of liposomes, one of which was a pH sensitive liposome.
- spleen cells were stimulated in vitro, as described above, and tested against 51 Cr-labeled EG7-ova or EL4.
- FIG. 3 shows a representative result demonstrating that ova in liposome could not prime mice for substantial CTL induction. Similar results were observed when ova was immunized in alum.
- ova-AF primed CTL with a similar, specificity to those primed by transfectants, or by cytoplasmically loaded ova (FIGS. 1A, 1B and 1 C).
- ova-AF primed effector cells effectively lysed EG7-ova, and an untransfected EL4 cells coated with 50 ⁇ g/10 8 cells of ova peptide, but did not lyse EL4 cells coated with 50 ⁇ g/10 8 cells of MBP peptide.
- That soluble protein antigens in AF induce CD8 + effector T cells was shown as follows. Splenocytes from immunized mice were cultured for five days with irradiated transfectants in vitro. Thereafter, cells were harvested and depleted of CD4 + or CD8 + T cells by using monoclonal anti-CD4 or anti-CD8 antibodies plus complement. Depleted populations were then tested against 51 Cr-EG7-ova in the ova system or 51 Cr-P13.1 in the ⁇ -gal system. The data shown in FIG. 4 indicates that, in the ova system, depletion of CD8 + T cells abrogated cytolytic activity conferred by the whole effector cell population. However, depletion of CD4 + T cell population did not have any effect on the lysis of EG7-ova.
- CD4 + or CD8 + populations were depleted from spleens of ova-AF immunized mice and from naive mice. These treated populations were then stimulated in vitro with EG7-ova alone, or in a combination of CD4 + and CD8 + T cells from ova-AF immunized mice, or in various combination of CD4 + or CD8 + T cells from ova-AF immunized mice with the CD4 + or CD8 + cells from naive mice.
- FIG. 5 shows that primed CD8 + cells are essential for the manifestation of a secondary CTL response in vitro. These data also indicate that for the effective secondary CTL response in vitro, CD4 + T cells are required. CD4 + cells are not needed for priming. Similarly, CD8 + T cells were required for the manifestation of B-gal specific secondary CTL response in vitro.
- the above examples demonstrate the effect of the antigen formulation on the induction of class I restricted CTL responses against soluble protein antigens.
- the antigen formulation mediated soluble antigen induced CTL priming, and is similar in activity to that induced by transfectants and by splenocytes cytoplasmically loaded with soluble ova or ⁇ -gal.
- EG7-ova, cytoplasmically loaded ova splenocytes, and ova-AF induced (a) class I restricted CD8 + CTL; (b) CTL that recognize target sensitized with ova 253-276 synthetic peptide; and (c) long lived CTL after only one immunization.
- the gp160 IIIB expressing cell line (15-12) was produced in the Balb/c fibroblast-derived 3T3 cell line. It was obtained from Drs. Ron Germain and Jay Berzofsky, National Institute of Health, Bethesda, M.D.
- the gp160 expressing cell line was employed for in vitro stimulation of in vivo primed splenic lymphocytes, and also used as target for gp160 specific CTL induction.
- Balb/c mice were immunized once with 10 ⁇ g of gp160 per mouse with or without AF. Mice were injected at footpads and tailbase subcutaneously.
- Spleen cells were taken from the immunized mice after two weeks of immunizations and in vitro stimulated with irradiated gp160 transfectants. After five days of culture in vitro, priming was assessed by the presence of specific effectors capable of lysing gp160 transfectants, and not the untransfected cell lines. The results are shown in FIG. 7, where CTL response is potentiated with AF and gp120.
- mice were immunized with ovalbumin in a microfluidized formulation of various combinations of two of the three components presented in the AF above.
- Two component combinations used were as follows; Squalane/TWEEN in PBS, Squalane/Pluronic in PBS or Pluronic/TWEEN in PBS.
- Another set of groups were included where mice were immunized with ova formulated in a one component system i.e., Squalane in PBS, Pluronic in PBS or TWEEN in PBS only.
- the above three component antigen formulation was modified to exclude one component at a time, constituting PBS in its place.
- the above antigen formulations consist of: 0.300 g TWEEN 80 (Aldrich, Wis.) 1.875 g Pluronic L121 (BASF, NJ), and 7.5 g Squalane (Aldrich, Wis.), brought to 50 ml with PBS.
- Squalane/TWEEN 0.300 g TWEEN 80, and 7.5 g Squalane, brought to 50 ml with PBS.
- Pluronic/TWEEN 1.875 g Pluronic L121, and 0.300 g TWEEN 80, brought to 50 ml with PBS.
- Pluronic/Squalane 1.875 g Pluronic L121, and 7.5 g Squalane, brought to 50 ml with PBS.
- Ovalbumin (Sigma, MO) was weighted and brought to a 0.3 mg/ml solution in HBSS (Whittaker, Supra). The stock 0.3 mg/ml solution was combined with the two component formulation in the following amounts: 5 parts Ovalbumin 0.3 mg/ml solution, 3.3 parts 2 component formulation, and 1.7 parts HBSS.
- Each mouse received 200 ⁇ l of one formulation containing 30 ⁇ l of OVA by injection in both hind footpads and any remaining solution was injected subcutaneously at the tail base. Mice were allowed to rest for two to four weeks prior to spleen harvest.
- mice were also immunized with ova-SAFm (containing 70 ⁇ g of MDP) or ova-alum as adjuvant controls.
- ova-SAFm containing 70 ⁇ g of MDP
- ova-alum as adjuvant controls.
- mice were immunized with spleen cells cytoplasmically loaded with soluble ova.
- Other combinations and substitutes were also used, and the results are presented in Table 1.
- mice were immunized once. Two weeks after the immunization, spleen cells were mixed with irradiated EG7-ova (the ova expressing EL4 cells) for five days and tested against 51 Cr-EG7-ova or 51 Cr-EL4 cells.
- the results demonstrate that 30 ⁇ g of ova in combination with STP or ST primes class I restricted CTL response in mice.
- the priming-of-ova specific CTL by ova in STP or by ova in ST appears to be better than that induced by spleen cells cytoplasmically loaded with soluble ova. Ova in PT or in SP could induce ova specific CTL responses in mice but inconsistently and poorly.
- mice Unlike SAFm, the addition of MDP to ST formulation did not compromise the ova specific CTL induction in mice (Table 2). No ova specific CTL induction occurred when mice were immunized with ova mixed with the individual components, S, P or T nor when mice were immunized with ova-SAFm or ova-alum. Mice immunized with as much as 1 mg ova in (a) HBSS, in (b) SAFm or (c) absorbed to alum did not prime ova specific CTL.
- mice were immunized three times at 2 week intervals with 30 ⁇ g of ova in HBSS, STP, ST, PT or SP.
- mice were also immunized with ova-SAFm, as SAFm is known to induce a strong antibody response.
- mice were bled and the sera tested for ova specific antibody response. The results are shown in Table 3. They indicate that mice immunized with ova in STP, ST or in SAFm display similar anti-ova responses after two immunizations.
- mice responded/ 1/dilution formulation # mice injected sera titer HBSS 0/3 ⁇ 1/20, ⁇ 1/20, ⁇ 1/20 STP 3/3 ⁇ 1/4860, >1/4860, ⁇ 1/4860 ST 3/3 >1/4860, >1/4860, >14860 PT NA NA, NA, NA SP NA NA, NA, NA SAF-M 3/3 1/4860, 1/4860, 1/4860
- HIV gp120 IIIB was used as a second antigen system to determine CTL induction in STP, ST or in MP-T.
- Mice were immunized with 1 ⁇ g of gp120 IIIb in HBSS, STP, PT or in ST.
- mice were immunized with 1 ⁇ g of gp120IIIb in SAFM or CFA (Complete Freund's Adjuvant) or in RIBI adjuvant system containing MPL (monophoshoryl lipid A) and TDM (trehalose dimycolite).
- mice Three weeks after the immunization, spleen cells were prepared and stimulated in vitro with mitomycin treated transfectant of culture, the resultant effector cells were tested against vaccinia:gp160 IIIB, or parental vaccinia infected P815 cells as targets.
- the results demonstrate that the gp120-Squalane-TWEEN 80 formulation and not gp120-Squalane-TWEEN 80 pluronic formulation or gp120-HBSS induced gp120 specific CTL response in mice (Table 4).
- mice were immunized with 1 ⁇ g of gp120IIIb three times at two-week intervals. The animals were bled and tested for the presence of IgG antibodies detecting gp120IIIb in a solid phase ELISA assay. The results demonstrate that gp120-ST is a better immunogen than gp120-HBSS, gp120SAFm (Table 5), or gp120-STP.
- mice responded/ 1/dilution formulation # mice injected sera titer HBSS 0/3 ⁇ 1/20, ⁇ 1/20, ⁇ 1/20 STP 1/3 ⁇ 1/20, >1/4860, ⁇ 1/20 ST 3/3 >1/4860, >1/4860, >1/4860 PT 3/3 >1/4860, >1/4860, >1/4860 SP 2/3 ⁇ 1/20, 1/540, 1/540 Saf-M 2/3 1/180, >1/4860, 1/540
- monkeys immunized with gp120-STP or gp120-SAFm induced similar responses in monkeys.
- One monkey immunized with gp120-ST did not induce a strong anti-gp120 response after two immunizations.
- the HPV 16 E7 gene was cloned from a plasmid obtained from Dr. Karen Vousden (Ludwig Institute) encoding the E7 gene derived from the carcinoma cell line CaSki.
- the coding regions were amplified by PCR using primers that encode the 5′ and 3′ ends of the genes flanked by Bam HI and Sal I cloning sites.
- the E7 PCR product was ligated into the pGEX—4T-1 expression vector (Pharmacia Biotech) resulting in the pGEX.E7 expression plasmid.
- E. coli strain XL1—blue (strata-gene) was transfected with the pGEX.E7 expression plasmid.
- the sequence of the E7 was obtained from the plasmids of the, resulting colonies and was identical to the E7 sequence obtained from CaSki cells.
- the pGEX.E7 bacterial expression plasmid encodes a glutathione-S-transferase (GST) fusion protein consisting of the GST at the amino-terminus, a thrombin protease cleavage site and the E7 protein at the carboxy-terminus.
- GST glutathione-S-transferase
- E7 protein was produced and purified as described in the product information literature from the manufacturer of the pGEX-4T-1 vector (Pharmacia Biotech). Briefly, bacteria containing the pGEX.E7 expression plasmid was induced to express the fusion protein by the addition of isopropyl b-D-thiogalactosidase to the culture medium. The cells were harvested and lysed by mild sonication.
- the lysate was applied to Glutathione Sepharose 4B (Pharmacia Biotech). After the fusion protein bound to the matrix, the resin was washed to remove non-specifically bound proteins. The bound fusion protein was digested with thrombin to release the E7 protein from the GST fusion partner.
- the E7 protein preparation was analyzed by SDS-PAGE and the E7 protein concentration was determined by Bradford analysis (BioRad). 9 mg soluble E7 protein was obtained per liter of bacterial culture.
- Coding sequences for the HPV16 E7 protein have been inserted into the IDEC proprietary eukaryotic expression plasmid INPEP4. Within this vector, E7 expression is controlled by the Cytomegalovirus promoter/enhancer transcriptional elements. In addition, the first three nucleotides of the E7 coding sequence have been removed and replaced with an immunoglobulin light chain leader sequence placed immediately upstream and in frame with the E7 coding region. Following transfection into the mouse cell line X21 individual G418 resistant clones were examined by northern blot analyses for E7 message production. Every clone displayed detectable E7 message. Western blot analysis of cell lysates from the two of those clones, 4E7 and 1C7, (HOPE1 and HOPE2 respectively) were then performed and demonstrated E7 protein production.
- mice of C3H background (H2 k/k , Harlan Sprague Dawley) were used in these studies. Animals were maintained according to “Guide for the Care and Use of Laboratory Animals” (DHHS Publication No. NIH 86-23, Bethesda, Md.:NIH, 1985), and received food and water ad libitum.
- the E7 transfectant cell line HOPE2H2 k/k was used in these studies. The tumor cell line was maintained by serial passage in vitro.
- This cell line has been shown to maintain E7 cytoplasmic antigen expression, as detected by western blot analysis, following repeated in vitro passages. Tumors were initiated in syngeneic C3H mice by subcutaneous injection of 150,000 in vitro passaged cells.
- Tumors were measured in 2 perpendicular directions at biweekly intervals. Tumor volume (V) was calculated according to the following formula:
- V ( mm 3 ) ( L ⁇ W 2 ) divided by 2
- Data in Table 6 are presented as tumor Mice (number of tumor bearing animals over the total number of animals injected).
- Data in FIGS. 13 and 14 are presented as median tumor size (mm 3 ) of each treatment or control group. Each treatment group was compared to a control group that did not receive therapy. Therapy began 10 days after incoculation of HOPE2 cells, when a majority of the tumors were palpable (approx. 50-75 mm 3 ). Therapy was initiated by immunization of mice with soluble E7 protein in AF3.75 (defined previously) or Alum adjuvants (subcutaneously in a total volume of 0.2 ml).
- AF3.75 was mixed for 60 seconds with E7 protein in Hanks Balanced Salt Solution (HBSS) such that each mouse received either 30 ug or 90 ug E7 protein 0.2 ml.
- HBSS Hanks Balanced Salt Solution
- Alum Pieris Chemical Co.
- E7 protein was mixed with E7 protein, according to instructions by the manufacture, such that each animal received 90 ug E7 protein in 0.2 ml per mouse.
- Animals in a second treatment group received a second immunization 9 days later (19 days after tumor cell inoculation).
- Booster Immunization were prepared immediately before inoculation, as described above.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Communicable Diseases (AREA)
- Hematology (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Methods and compositions useful for inducing a cytotoxic T lymphocyte response (CTL) in a human or domesticated or agriculturally important animal. The method includes the steps of providing the antigen to which the CTL response is desired and providing a microfluidized antigen formulation which comprises, consists, or consists essentially of two or more of a stabilizing detergent, a micelle-forming agent, and an oil. This antigen formulation is preferably lacking, in an immunostimulating peptide component, or has sufficiently low levels of such a component that the desired CTL response is not diminished. This formulation is provided as a stable oil-in-water emulsion.
Description
- This application is a continuation-in-part of pending U.S. application Ser. No. 08/351,001, filed Dec. 7, 1994, which is a continuation-in-part of pending U.S. Ser. No. 08/919,787 filed Jul. 24, 1992, which is a continuation-in-part of U.S. Ser. No. 07/735,069, filed Jul. 25, 1991, entitled “Induction of Cytotoxic T-Lymphocyte Responses,” by Syamal Raychaudhuri and William H. Rastetter (now abandoned). All of these applications are incorporated by reference in their entirety. This invention relates to methods and compositions useful for inducing cytotoxic T-cell mediated responses in humans, and domesticated or agricultural animals.
- Cytotoxic T-lymphocytes (CTLs) are believed to be the major host defense mechanism in response to a variety of viral infections and neoplastic or cancerous growth. These cells eliminate infected or transformed cells by recognizing antigen fragments in association with various molecules (termed class I MHC molecules) on the infected or transformed cells. CTLs may be induced experimentally by cytoplasmic loading of certain soluble antigens within specific cells. Immunization with the soluble antigen alone is generally insufficient for specific cytotoxic T-lymphocyte induction.
- One method by which CTL response may be induced involves the use of recombinant engineering techniques to incorporate critical components of an antigen in question into the genome of a benign infectious agent. The aim of such a strategy is to generate antigen-specific cytotoxic T-lymphocyte responses to the desired epitope by subjecting the host to a mild, self-limiting infection. Chimeric vectors have been described using vaccinia, polio, adeno- and retro-viruses, as well as bacteria such as Listeria and BCG. For example, Takahashi et al. 85Proc. Natl. Acad. Sci., USA 3105, 1988 describe use of recombinant vaccinia virus expressing the HIV gp160 envelope gene as a potential tool for induction of cytotoxic T-lymphocytes.
- A second method by which a cell mediated response may be induced involves the use of adjuvants. While the art appears replete with discussion of the use of adjuvants it is unclear in such art whether cell mediated immunity was induced and whether such cell mediated immunity included a cytotoxic T-lymphocyte response. The following, however, are representative of, various publications in this area.
- Stover et al., 351Nature 456, 1991 (not admitted to be prior art to the present application) describes a CTL response to β-galactosidase using recombinant BCG containing a β-galactosidase gene. No such response was detected using incomplete Freund's adjuvant and β-galactosidase.
- Mitchell et al., 8J. Clinical Oncology 856, 1990 (which is not admitted to be prior art to the present invention) describe treatment of metatastic melanoma patients with an adjuvant termed “DETOX” and allogeneic melanoma lysates administered five times over a period of six weeks. In a small portion of the patients an increase in cytolytic T-cells was observed. The authors describe a need to enhance the level of cytotoxic T-lymphocyte production, and suggest a combined therapy of adjuvant with Interleukin-2, as well as a pretreatment with cyclophosphamide to diminish the level of tumor specific T-suppressor cells that might exist. DETOX includes detoxified endotoxin (monophosphoryl lipid A) from Salmonella minnesota, cell wall skeletons of Mycobacterium phlei, squalene oil and emulsifier.
- Allison and Gregoriadis, 11Immunology Today 427, 1990 (which is not admitted to be prior art to the present invention) note that the only adjuvant “autho-present invention) note that the only adjuvant “authorized for use” in human vaccines is aluminum salts (alum) which does not consistently elicit cell mediated immunity. Allison and Gregoriadis state “[t]here is, therefore, a need to develop adjuvants with the efficacy of Freund's complete adjuvant but without its various side effects such as granulomas.” They go on to state that three possible strategies exist, for example, the use of liposomes; the use of adjuvants, termed immunostimulating complexes (ISCOMs, which include saponin or Quil A (a triterpenoid with two carbohydrate chains), cholesterol, and phosphatidyl choline) which are authorized for use in an influenza vaccine for horses (Morein et al., Immunological Adjuvants and Vaccines, Plenum Press, 153); and the use of an emulsion (SAF) of squalene or Squalane (with or without a pluronic agent) and muramyl dipeptide (MDP). SAF is said to elicit a cell mediated immunity in mice, although it “has long been thought that subunit antigens cannot elicit cytotoxic T-cell (CTL) responses.”
- Takahashi et al., 344Nature 873, 1990, describe class II restricted helper and cytotoxic T-lymphocyte induction by use of ISCOMs with a single subcutaneous immunization in mice. They state that Freund's adjuvant, incomplete Freund's adjuvant, and phosphate buffered saline did not induce cytotoxic T-lymphocyte activity against the targets in which they were interested. They state that, in contrast to results with other forms of exogenous soluble protein antigen, they have shown that it is possible to prime antigen specific MHC class I restricted CD8+ CD4− CTL by immunization with exogenous intact protein using ISCOMs. They also state that the experiments described suggest that it may be possible to elicit human CTL by using ISCOMs containing HIV proteins, and that ISCOM-based vaccines may achieve the long sought goal of induction of both CTL and antibodies by a purified protein.
- Byars and Allison, 5Vaccines 223, 1987 describe use of SAF-1 which includes TWEEN 80, PLURONIC L121, and squalene or Squalane, with or without muramyl dipeptide, and suggest that their data indicate that the formulation with muramyl dipeptide will be useful for human and veterinary vaccines. Booster shots of the adjuvant were provided without the muramyl dipeptide. The muramyl dipeptide is said to increase antibody production significantly over use of the adjuvant without muramyl dipeptide. Cell mediated immunity was measured as delayed type hypersensitivity by skin tests to determine T-helper cell induction. Such hypersensitivity was stronger and more sustained when muramyl dipeptide was provided in the adjuvant. Similar adjuvants are described by Allison et al., U.S. Pat. No. 4,770,874 (where it is stated that the combination of muramyl dipeptide and pluronic polyol is essential to elicit a powerful cell mediated and humoral response against egg albumin); Allison et al., U.S. Pat. No. 4,772,466; Murphy-Corb et al., 246 Science 1293, 1989 (where it is stated that the use of combined adjuvants with muramyl dipeptide might enhance induction of both humoral and cellular arms of the immune response); Allison and Byars, 87 Vaccines 56, 1987 (where it is stated that cell mediated immunity is elicited by SAF (with muramyl dipeptide) as shown by delayed type hypersensitivity, by proliferative responses of T-cells to antigen, by production of Interleukin-2, and by specific genetically restricted lysis of target cells bearing the immunizing antigen); Allison and Byars, Immunopharmacology of Infectious Diseases: vaccine Adjuvants and Modulators of Non-Specific Resistance 191-201, 1987; Morgan et al., 29 J. Medical Virology 74, 1989; Kenney et al., 121 J. Immunological Methods 157, 1989; Allison and Byars, 95 J. Immunological Methods 157, 1986 (where aluminum salts and mineral oil emulsions were shown to increase antibody formation, but not cell mediated immunity; and muramyl dipeptide formulations were shown to elicit cell mediated immunity); Byars et al., 8 Vaccine 49, 1990 (not admitted to be prior art to the present application, where it is stated that their adjuvant formulation markedly increases humoral responses, and to a lesser degree enhances cell mediated reactions to influenzae haemagglutinin antigen); Allison and Byars, 28 Molecular Immunology 279, 1991 (not admitted to be prior art to the present application; which states that the function of the muramyl dipeptide is to induce expression of cytokines and increase expression of major histocompatibility (MHC) genes; and that better antibody and cellular responses were obtained than with other adjuvants, and that it is hoped to ascertain whether similar strategies are efficacious in humans); Allison and Byars, Technology Advances in Vaccine Development 401, 1988 (which describes cell mediated immunity using SAF); Epstein et al., 4 Advance Drug Delivery Reviews 223, 1990 (which provides an overview of various adjuvants used in preparation of vaccines); Allison and Byars, 95 J. Immunological Methods 157, 1986 (which states that the addition of the muramyl dipeptide to the adjuvant markedly augments cell mediated responses to a variety of antigens, including monoclonal immunoglobulins and virus antigens); and Morgan et al., 29 J. Medical Virology 74, 1989 (which describes use of SAF-1 for preparation of a vaccine for Epstein-Barr virus).
- Kwak et al.,Idiotype Networks in Biology and Medicine, Elsevier Science Publishers, p. 163, 1990 (not admitted to be prior art to the present application) describe use of SAF without muramyl dipeptide as an adjuvant for a B-cell lymphoma idiotype in a human. Specifically, an emulsion of Pluronic L121, Squalane, and 0.4% TWEEN-80 in phosphate buffered saline was administered with the idiotype. They state that “[a]ddition of an adjuvant should further augment . . . humoral responses, and may facilitate induction of cellular responses as well.
- Other immunological preparations include liposomes (Allison et al., U.S. Pat. Nos. 4,053,585, and 4,117,113); cyclic peptides (Dreesman et al., U.S. Pat. No. 4,778,784); Freunds Complete Adjuvant (Asherson et al., 22Immunology 465, 1972; Berman et al., 2 International J. Cancer 539, 1967; Allison, 18 Immunopotentiation 73, 1973; and Allison, Non-Specific Factors Influencing Host Resistance 247, 1973); ISCOMs (Letvin et al., 87 Vaccines 209, 1987); adjuvants containing non-ionic block polymer agents formed with mineral oil, a surface active agent and TWEEN 80 (Hunter and Bennett, 133 J. Immunology 3167, 1984; and Hunter et al., 127 J. Immunology 1244, 1981); adjuvants composed of mineral oil and emulsifying agent with or without killed mycobacteria (Sanchez-Pescador et al., 141 J. Immunology 1720, 1988); and other adjuvants such as a lipophilic derivative of muramyl tripeptide, and a muramyl dipeptide covalently conjugated to recombinant protein (id.).
- Applicant has discovered a safe and advantageous method and compositions by which CTL responses may be induced in humans and domesticated or agriculturally important animals. The method involves the use of an antigen formulation which has little or no toxicity to animals, and lacks an immunostimulating peptide, (e.g., muramyl dipeptide) the presence of which would decrease the desired cellular response. In addition, the methodology is simple to use and does not require extensive in vivo work to alter existing cells by recombinant DNA techniques to make them more antigenic. This discovery is surprising since it was unexpected that such a CTL response could be induced by use of such an antigen formulation lacking immunostimulating peptides or their equivalent. Applicant's findings allow the use of such antigen formulations in a broad spectrum of disease states, or as a prophylactic agent. For example, such antigen formulation administration can be used for the treatment of viral diseases in which a CTL response is important, for example, in the treatment of HIV infection or influenza; it can also be extended to use in treatment of bacterial infections, cancer, parasitic infections, and the like. As a prophylactic agent, the antigen formulation combined with a suitable antigen is useful in prevention of infection by viruses responsible for the aforementioned viral diseases, particularly the prophylaxis of HIV infection, and also for prophylaxis of patients at risk of cancer, for example, after resection of a primary tumor.
- Thus, in a first aspect the invention features a method for inducing a CTL response in a human or domesticated (e.g., a cat or dog) or agriculturally important animal (e.g., a horse, cow or pig) to an antigen other than B-cell lymphoma antigen or egg albumin. The method includes the steps of providing the antigen to which the CTL response is desired, and providing a non-toxic antigen formulation which comprises, consists, or consists essentially of, a stabilizing detergent, a micelle-forming agent, and a biodegradable and biocompatible oil. This antigen formulation preferably lacks any immunostimulating peptide component, or has sufficiently low levels of such a component that the desired cellular response is not diminished. This formulation is preferably provided as a stable oil-in-water emulsion. That is, each of the various components are chosen such that the emulsion will remain in an emulsion state for a period of at least one month, and preferably for more than one year, without phase separation. In the method the antigen and antigen formulation are mixed together to form a mixture (preferably by microfluidization), and that mixture administered to the animal in an amount sufficient to induce CTL response in the animal. Such administration is required only once.
- By “stabilizing detergent” is meant a detergent that allows the components of the emulsion to remain as a stable emulsion. Such detergents include polysorbate, 80 (TWEEN), (Sorbitan-mono-9-octadecenoate-poly(oxy-1,2-ethanediyl; manufactured by ICI Americas, Wilmington, Del.),
TWEEN 40,TWEEN 20,TWEEN 60, Zwittergent 3-12, TEEPOL HB7, andSPAN 85. These detergents are usually provided in an amount of approximately 0.05 to 0.5%, preferably at about 0.2%. - By “micelle-forming agent” is meant an agent which is able to stabilize the emulsion formed with the other components such that a micelle-like structure is formed. Such agents preferably cause some irritation at the site of injection in order to recruit macrophages to enhance the cellular response. Examples of such agents include polymer surfactants described by BASF Wyandotte publications, e.g., Schmolka, 54J. Am. Oil. Chem. Soc. 110, 1977′, and Hunter et al., 129 J. Immunol 1244, 1981, both hereby incorporated by reference, PLURONIC L62LF, L101, and L64, PEG1000, and TETRONIC 1501, 150R1, 701, 901, 1301, and 130R1. The chemical structures of such agents are well known in the art. Preferably, the agent is chosen to have a hydrophile-lipophile balance (HLB) of between 0 and 2, as defined by Hunter and Bennett, 133 Journal of Immunology 3167, 1984. The agent is preferably provided in an amount between 0.5 and 10%, most preferably in an amount between 1.25 and 5%.
- The oil is chosen to promote the retention of the antigen in oil-in-water emulsion, i.e., to provide a vehicle for the desired antigen, and preferably has a melting temperature of less than 65° C. such that emulsion is formed either at room temperature (about 20° C. to 25° C.), or once the temperature of the emulsion is brought down to room temperature. Examples of such oils include squalene, Squalane, EICOSANE, tetratetracontane, glycerol, and peanut oil or other vegetable oils. The oil is preferably provided in an amount between 1 and 10%, most preferably between 2.5 and 5%. It is important that the oil is biodegradable and biocompatible so that the body can break down the oil over time, and so that no adverse affects, such as granulomas, are evident upon use of the oil.
- It is important in the above formulation that a peptide component, especially a muramyl dipeptide (MDP) be lacking. Such a peptide will interfere with induction of a CTL response if it provided in an amount greater than about 20 micrograms per normal human formulation administration. It is preferred that such peptides be completely absent from the antigen formulation, despite their apparent stimulation of the humoral compartment of the immune system. That is, applicant has found that, although such peptides may enhance the humoral response, they are disadvantageous when a cytotoxic T-lymphocyte response is desired.
- In other related aspects, the antigen formulation is formed from only two of the above three components and used with any desired antigen (which term includes proteins, polypeptides, and fragments thereof which are immunogenic) except egg albumin (or other albumins, e.g., HSA, BSA and ovalbumin), to induce a CTL response in the above animals or humans.
- Applicant believes that the above formulations are significantly advantageous over prior formulations (including ISCOMs, DETOX, and SAF) for use in humans. Unlike such formulations, the present formulation both includes a micelle-forming agent, and has no peptides, cell wall skeletons, or bacterial cell components. The present formulation also induces a CTL response which either does not occur with the prior formulations, or is significantly enhanced compared to those formulations.
- By “non-toxic” is meant that little or no side effect of the antigen formulation is observed in the treated animal or human. Those of ordinary skill in the medical or veterinary arts will recognize that this term has a broad meaning. For example, in a substantially healthy animal or human only slight toxicity may be tolerated, whereas in a human suffering from an imminently disease substantially more toxicity may be tolerated.
- In preferred embodiments, the antigen formulation consists essentially of two or three of the detergent, agent, and oil; the method consists essentially of a single administration of the mixture (antigen plus antigen formulation) to the human or the animal; the human or animal is infected with a virus and suffers one or more symptoms (as generally defined by medical doctors in the relevant field), of infection from the virus; and the antigen formulation is non-toxic to the human or animal.
- In other preferred embodiments, the antigen is chosen from antigenic portions of the HIV antigens: gp160, gag, pol, Nef, Tat, and Rev; the malaria antigens: CS protein and Sporozoite surface protein 2; the Hepatitis B surface antigens: Pre-S1, Pre-S2, HBc Ag, and HBe Ag; the influenza antigens: HA, NP and NA; Hepatitis A surface antigens; Hepatitis C surface antigens; the Herpes virus antigens: EBV gp340, EBV gp85, HSV gB, HSV gD, HSV gH, HSV early protein product, human papillomavirus antigens (e.g., HPV antigens, such as L1, E4, E6, E7 antigens, in particular the E6 and E7 antigens from HPV16 and 18, the two most common HPV types associated with cervical carcinoma, E4 and L1 specific antigen (PSA), prostate specific membrane associated antigen, cytomegalovirus gB, cytomegalovirus gH, and IE protein gP72; the respiratory syncytial virus antigens: F protein, G protein, and N protein; and the tumor antigens carcinoma CEA, carcinoma associated mucin, carcinoma mutated EGF receptor, carcinoma P21, carcinoma P53, melanoma MPG, melanoma p97, MAGE-1 and MAGE-3, gp100, MART-1, carcinoma Neu oncogene product, carcinoma p53 gene product, called gp75, melanoma antigen gp75, and mutated p21 ras protein presented in a variety of malignant tumors.
- In related aspect, the invention features a composition comprising, consisting, or consisting essentially of an antigen mixed with an antigen formulation described above, and the antigen is chosen from those antigenic portions listed above.
- In other related aspects, the invention features methods of treating a patient infected with HIV virus, suffering from malaria, suffering from influenza, suffering from hepatitis, suffering from a cancer, infected with herpes virus, suffering from cervical cancer, suffering from condyloma acuminata (genital warts), or infected with respiratory syncytial virus, by administering a composition including an appropriate antigen (e.g., selected from those listed above) mixed with one of the above antigen formulations. These antigens and treatments are only exemplary of antigens which may be used in the subject antigen formulations.
- Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.
- The drawings will first briefly be described.
- FIGS. 1A-1C and4A-4C are graphical presentations of data comparing CTL induction by various ovalbumin formulations; E:T represents effector to target ratio in all Figures.
- FIGS. 2A and 2B are graphical presentations of data comparing CTL induction by various β-galactosidase formulations;
- FIG. 3 is a graphical presentation of data comparing CTL induction by ovalbumin in a liposome and in an antigen formulation;
- FIGS. 5 and 6 are graphical presentations of data showing the effect of CD4 and CD8 cell depletion on CTL induction;
- FIG. 7 is a graphical representation of data showing CTL induction by gp120;
- FIG. 8 is a graphical representation of data showing CTL induction by a mixture of pluronic and TWEEN and an antigen;
- FIG. 9 is a graphical representation of data showing CTL induction with a mixture of squalane and pluronic and an antigen;
- FIG. 10 is a graphical representation of data showing CTL induction by a mixture of squalane and pluronic and an antigen;
- FIG. 11 is a graphical representation of the effect of OVA with various antigen formulations on CTL response;
- FIG. 12 is a graphical representation of the induction of anti-gp120IIIb antibodies in monkeys with various antigen formulations;
- FIG. 13 depicts antitumor activity of HOPE2 cells ten days after a single immunization of soluble E7 protein in adjuvant; and
- FIG. 14 depicts antitumor activity of HOPE2 cells at
days 10, 19 after two immunizations with soluble E7 protein in adjuvant. - Antigen formulations useful in this invention are generally described above. Those of ordinary skill in this art will recognize that equivalent Formulations are readily prepared and can be expected to have equivalent properties in induction of a CTL response. Such Formulations are readily tested for their properties using techniques equivalent to those described in the examples below.
- There follow examples of the invention with the use of an antigen formulation (AF) composed of about 2.5% squalane, 5% pluronic acid, and
TWEEN 80 in a phosphate buffered saline. Specifically, an emulsion of the AF included:15 mg squalane, 37.5 mg Poloxamer 401 (PLURONIC L121), 6 mg polysorbate 80 (TWEEN 80), 0.184 mg potassium chloride, 0.552 mg potassium phosphate monobasic, 7.36 mg. sodium chloride, 3.3 mg sodium phosphate dibasic (anhydrous), per 1 ml water, pH 7.4. This emulsion was microfluidized using standard technique (Microfluidics Model M110F) with a back-pressure module at 11-14,000 psi *with gradual return to atmosphere pressure, cooling and packing in wet ice. - Example 11 which relates to papillomavirus antigen formulations uses an antigen formulation referred to as AF3.75. This composition comprises squalane,
Tween 80, and pluronic L121 dissolved in phosphate buffered saline at pH 7.4 to form a crude oil-in-water emulsion containing final concentrations of 15% (wt/vol) squalane, 0.6% Tween 80, and 3.75% pluronic L121. The emulsion is then cycled through a microfluidizer multiple times at a reduced temperature to obtain a stable homogeneous emulsion with a mean particle size ranging from 100 to 300 nm. The AF is diluted 1:3 with antigen (1 part AF and 2 parts antigen) prior to use. - Another preferred antigen formulation is identical to AF3.75 except that it contains 1.5% pluronic L121.
- In other examples, antigen was mixed with the microfluidized squalane (S), pluronic (P) and TWEEN 80 (T) mixture to achieve a final concentration of 0.2
% TWEEN 80, 1.25% pluronic and 5% squalane respectively. To determine the sub-components necessary for an antigen specific immune response induction, Squalane-TWEEN 80, pluronic-TWEEN 80 or Squalane-pluronic were prepared at the same concentration as for the three components mixture. Pluronic, Squalane orTWEEN 80 was also prepared individually to determine the effect of individual component on the CTL induction. Substitutions ofTWEEN 20,TWEEN 40 or Zwittergent forTWEEN 80 were also made to determine the effect of various TWEEN derivative on the, CTL induction in the ova system. Substitutions of Squalane in the three component formulation were made with Eicosone or Triacontone and substitution for the co-polymer pluronic in the same three components formulation were made byPEG 1000, Pleuronic L62LF, and the Tetronics 1501 and 150R1. As two component formulations, various analogs in various combinations were mixed and tested for ova specific CTL induction. They are a mixture of cholesterol—TWEEN 80, Squalane—TWEEN 20, Pristane—TWEEN 80 or olive oil—TWEEN 80. For a stabilization study, the micro-fluidized mixture of Squalane-TWEEN 80 was mixed with dextrose to a final concentration of 5%. In all cases the combinations of excipients were mixed in a micro-fluidizer to made a stable emulsion. For immunization purposes, it is preferable that soluble antigen be mixed with microfluidized excipients to obtain a stable homogeneous emulsion with particle sizes ranging from about 100 to 300 nm. In some experiments, two components formulations were mixed with various concentration of MDP for CTL and humoral response inductions. Table 1 describes a comprehensive list of various formulations used in this study.TABLE 1 Effect of various substitution in three or two component systems percent kill at E:T 100:1 Substitution in three component formulations STP 84 Tween 40(T) 66 Tween 20(T) 48 T1501(P) 0 T150R1(P) 0 Pluronic L62LF(P) 47 Eicosane(S) * PEG1000(P) * Triacontane(S) * Zwittergent(T) * Substitution in two component formulations ST 76 PT 45 SP 26 Cholesterol(S) + Tween 800 Squalane + Tween 29(T) 65 Pristane(S) + Tween 8042 Olive Oil(S) + Tween 8069 1 component formulation Pluronic L121 0 Squalane 0 Tween 800 Squalane + Tween 80 + 5% dextrose86 - Syntex adjuvant formulation (microfluidized; SAFM) was used as an adjuvant control and consists of two parts. Part I consists of phosphate buffered saline containing a final concentration of 5% Squalane, 1.25% pluronic and 0.2% TWEEN 80 (vehicle or I-SAF). Part II consists of N-Acetylmuramyl-L-Threonyl-D-Isoglutamine (Thr-MDP), a derivative of mycobacterium cell wall component. For immunization purposes, antigen is mixed with microfluidized vehicle (part I) to obtain a homogeneous emulsion. MDP is added to made SAFm, and vortexed briefly. The MDP concentration in the mixture was varied to determine if there was an optimum concentration for CTL induction. As an adjuvant control, mice were also immunized with soluble antigens mixed with alum according to the manufacturer's, manual (Pierce Chemical, Rockford, Ill.) or with Complete Freund's Adjuvant (CFA).
- This antigen formulation is used for induction of cytotoxic T-lymphocyte responses in mice. Those of ordinary skill in the art will recognize that such a mouse model is indicative that equivalent experiments or treatments will similarly induce cytotoxic T-lymphocyte responses in humans, domesticated, or agricultural animals. The amount of antigen formulation and antigen useful to produce the desired cellular response may be determined empirically by standard procedures, well known to those of ordinary skill in the art, without undue experimentation. Thus, if desired to minimize the side effects of treatment with such a mixture those of ordinary skill in the art may determine a minimum level of such a mixture for administration to a human, domesticated, or agricultural animal in order to elicit a CTL response, and thereby induce immunity to a desired antigen. In normal use, such a mixture will be injected by any one of a number of standard procedures, but particularly preferred is an intramuscular injection at a location which will allow the emulsion to remain in a stable form for a period of several days or several weeks.
- Methods
- The following materials and methods were used in the examples provided below unless otherwise noted:
- Mice
- Female C57BL/6 (H-2b) and BALB/c (H-2d) mice were purchased from Harlen Sprague (San Diego, Calif.).
- Antigens
- Ovalbumin (ova, Grade VII; Sigma Chemical Co., St. Louis, Mo.) was used in the native form. β-galactosidase, (β-gal, Grade VIII; BRL) was used in the native form and after boiling in 1 M NaOH for 2 min to give an alkali digest. Recombinant gp120 was purchased from American Biotechnology.
- Tumor Cells and Transfectants
- The tumor cells used were the Ia lines EL4 (C57BL/6, H-2b thymoma) and P815 (DBA/2, H-2d mastocytoma). Derivation of the ova-producing EL4 transfectant, EG7-ova, is described previously by Moore et al., 54 Cell 777, 1988. The β-gal-producing transfectant, P13.1, was derived by electroporation of 107 P815 cells in 1 ml of phosphate buffered saline (PBS) with 10 mg of PstI linearized pCH110 (Pharmacia LKB Biotechnology Inc., Piscataway, N.J.) and 1 mg of PvuI linearized pSV2 neo (Southern et al., 1 J. Mol. Appl. Genet. 327, 1982) followed by selection in 400 μg/ml of the antibiotic G418. The C3-4 transfectant was derived from the BALB/c hybridoma Igm 662 by transfecting with a plasmid encoding the β-gal gene fused to the third and fourth exon of IgM heavy chain (Rammensee et al., 30 Immunogenetics 296, 1989). The gp160IIIb expressing 3T3 fibroblast, 15-12, was provided by Dr. Germain of NIH (Bethesda, Md.). The Kb transfected L cell line was provided by Dr. Carbone, Monash University, Australia. The Dd and Ld transfected L cell lines were provided by Dr. Ted Hensen, Washington University, St. Louis.
- Immunization
- Mice were immunized intravenously with a 200 μl suspension of 25×106 splenocytes, after a cytoplasmic loading as described by Moore et. al. supra, and Carbone et al., J. Exp. Med. 169:603, 1989). For ova-antigen formulation or β-gal-antigen formulation immunization, 30 μg of each protein antigen was injected per mouse in the footpad and the tailbase subcutaneously. Each injection consists of 67 μl of microfluidized antigen formulation (made following standard procedures) and 30 μg of protein antigen in a final volume of 200 μl. The final volume was made up with HBSS, see, Whittaker manual (Welkersville, Md.). MDP was provided in concentrations between 0 and 300 μg. Where stated, mice were immunized with soluble antigens in CFA, or in alum in a total volume of 200 μl.
- In Vitro Stimulation of Effector Populations
- Spleen cells (30×106) from normal or immunized mice which had been primed at least 14 days earlier were incubated with 1.5×106 EG7-ova (irradiated with 20,000 rad) for ova responses or 1.5×106 C3-4 cells (irradiated with 20,000 rad) for β-gal response in 24 well plates at 37° C. in 7% CO2/air. All the tissue cultures were performed in a complete medium consisting of IMDM medium, see, Whittaker Manual (Welkersville, Md.) supplemented with 10% fetal calf serum (FCS), 2 mM glutamine, gentamycin and 2×10−5 M 2-mercaptoethanol. For the in vitro depletion experiments, in vivo primed or in vitro stimulated spleen cells were treated with monoclonal antibodies (mAbs) RL.172 (anti-CD4) or mAbs 3.168 (anti-CD8) for removal of CD4+ or CD8+T cells (Sarmiento et al., 125 J. Immunol. 2665, 1980, and Ceredig et al., 314 Nature 98, 1985). The mAb RL.172 and mAb 3.168 were obtained from Dr. Jonathan Sprent at Scripps Clinic and Research Foundation, La Jolla, Calif.
- Spleen cells (30×106) from normal or immunized mice which had been primed at least 21 days earlier were incubated with 1.5×106 15-12 cells (treated with 200 ug of mitomycin C for 45 minutes per 108 cells), or with 500 μg of 18IIIb peptide containing the dominant CTL epitope in Balb/c mice in complete IMDM media (Irvine Scientific, Santa Ana, Calif.) containing 10% pre-screened FCS (ICN Flow; ICN Biochemicals, Inc., Costa. Mesa, Calif.), 2 mM glutamine, gentamycin and 2×10−5 M 2-mercaptoethanol. For in vitro stimulation with peptides, spleen cells were cultured in complete IMDM containing 5% ConA supernatant.
- For depletion experiments, in vivo primed or in vitro stimulated spleen cells were treated with mAbs RL.172 (anti-CD4) or mAbs 3.168 (anti-CD8) in presence of low tox. Rabbit complement (Cederlane Laboratories, Ltd., Hornby Ontario, Canada) for removal of CD4+ or CD8+ T cells (22, 23). The Ab RL.172 and mAb 3.168 were a gift from Dr. Jonathan Sprent at Scripps Clinic and Research Foundation, La Jolla, Calif.
- Cytoxicity Assay
- Target cells (1×106) were labeled with 100 μCi [51Cr] sodium chromate for 60 min. For peptide pulsed targets, 50 μl of a 1 mg/ml peptide solution in HBSS was added during the targets labeling with 51Cr. After washing, 104 labeled targets and serial dilutions of effector cells were incubated in 200 μl of RP10 for 4 h at 37 C. 100 μl of supernatant was collected and the specific lysis was determined as: Percent specific lysis=100×{(release by CTL−spontaneous release)/(maximal release−spontaneous release)}. Spontaneous release in the absence of cytotoxic T-lymphocyte (CTL) was <25% of maximal release by detergent in all experiments.
- Determination of Antibody Responses in Mice and Monkeys
- Each well of 96-well, U bottomed plates (Costar, Cambridge, Mass.) were coated with 150 ng of ova or gp120 in 50 ul of HBSS and incubated overnight at 4° C. For the determination of anti-gp120 and anti-ova antibody responses in mice, plates were blocked with 1% BSA for 1 hr. Serially diluted sera were added in 25 μl volume per well and incubated for 2 hrs. Plates were washed and 50 μl of 1:1000 dilution of goat anti-mouse IgG conjugated to HRPO (SBT, Alabama) in 1% BSA were added per well. After 1 hr of incubation, plates were washed and 100 μl of substrate was added per well. The OD405 was taken after 10 to 15 minutes. For the determination of monkey anti-gp120 antibody response, all the steps were the same except both the blocking of plates and the dilution of sera were done in 5% normal goat serum in Hank's balanced salt solution.
- Peptide Synthesis
- Synthetic peptides corresponding to amino acid sequences 253-276 (Sequence Listing No. 1: EQLESIINFEKLTEWTSSNVMEER; where the standard one letter code is used to represent each amino acid) of ovalbumin (ova 253-276), amino acid sequences 84-102 of myelin basic protein (MBP 84-102) (Sequence Listing No. 2: DENPVVHFFKNIVTPRTPP), and synthetic peptides corresponding to amino acid sequences 308-322 (18IIIb sequence) of gp120IIIb, were assembled by solid phase peptide synthesis using an Applied Biosystems 430A synthesizer. Amino acids were coupled via pre-formed symmetric anhydrides with the exception of asparagine, glutamine and arginine which were coupled as hydroxybenzotriazole esters. Coupling efficiency was monitored by ninhydrin reaction following the method of Kaiser et al. 34Anal. Biochem. 595, 1970. The peptides were released from the support with HF following the “low-high” procedure described by Tam, et al. 21 J. Am. Chem. Soc. 6442, 1983, and the peptides extracted from the resin with 10% acetic acid. After lyophilization, peptides were desalted on a Sephadex G-25 column, and samples of the peptides then HPLC purified by reverse phase chromatography on a Vydac preparative C-18 column. Purified peptides (98%) were solubilized in HBSS at a final concentration of 10 mg/ml and diluted to the desired concentration in the complete media.
- CNBr Digest
- Samples of protein (e.g., β-galactosidase) were treated with 100 fold molar excess of cyanogen bromide in a solution of 100 mM trifluoroacetic acid. The reaction was allowed to proceed for 18 hours at room temperature (about 20° C.) with rotation. Following the prescribed reaction time, the peptide fragments were separated from the reactant using a SEP-PAK C-18 apparatus (Waters), eluted with 95% acetonitrile, and lyophilized.
- Alkaline Digest
- Protein samples (e.g., β-galactosidase) were treated with 1 N NaOH and boiled for 2 minutes, and the resulting peptide fragments were separated from the reactants using a C-18. SEP-PAK apparatus (Waters), and eluted with 95% acetonitrile and lyophilized.
- Moore et al., 113UCLA Symp. Mol. Cell. Biol. 1989 and Carbone and Bevan, 171 J. Exp. Medicine 377, 1990, demonstrate that mice immunized with spleen cells loaded cytoplasmically with soluble ova, were primed for ova specific, class I restricted CTL response. The ova-expressing EL4 transfectant EG7-ova was employed for in vitro stimulation of in vivo primed splenic lymphocytes and also used as target for ova specific CTL mediated killing. This study also demonstrated that CD8+ effectors induced by EG7-ova transfectant or by spleen cells cytoplasmically loaded with ova, recognize a determinant mapped by the peptide ova 258-276 in the context of H-2 Kb, lyse EG7-ova, and also kill EL4 cells coated with ova 258-276. Thus, in order to assess whether an endogenous class I restricted CD8+ T cell pathway can be induced by a soluble antigen, the above system was used to determine whether certain antigen formulations can be used to drive soluble antigen into a class I restricted pathway.
- a) ova
- C57BL/6 mice were immunized once with various amounts of ova (30 μg-1 mg per mouse) with or without an antigen formulation. Mice were injected subcutaneously and in the tailbase. Spleen cells were taken from the immunized mice at least two weeks after the immunizations and in vitro stimulated with the EG7-ova transfectants. An ova concentration as low as 30 μg was as effective as a 1 mg dose. Therefore, the CTL studies were routinely performed with spleen cells from 30 μg ova-primed mice. After five days of in vitro culture with EG7-ova, priming was assessed by the presence of ova specific effectors capable of lysing EG7-ova.
- Mice injected with soluble ova in HBSS as high as 1 mg, showed no evidence of CTL priming (FIG. 1A). However mice immunized with 30 μg ova in the antigen formulation described above (shown as AF in the figures) showed a significant transfectant specific CTL response (FIG. 1C). Furthermore, the extent of EG7-ova killing by the ova-AF immunized spleen cells was comparable to that of ova-loaded spleen cells immunized mice (FIG. 1B).
- That the specificity of CTL priming in vivo was antigen specific was shown by the lack of spleen cells from β-galactosidase immunized mice to manifest secondary CTL response in vitro when stimulated with EG7-ova. No ova specific CTL induction was observed.
- b) β-galactosidase
- Similar results were obtained using another soluble protein antigen, β-gal. For assaying β-gal-specific CTL response, the target used was BALB/c derived β-gal-expressing C3-4 transfectant. Immunization of BALB/c mice with soluble β-gal gave background CTL response. Therefore, for the determination of specific CTL response, harvesting was postponed for at least eight weeks before spleen lymphocytes were harvested, and cultured for five days in the presence of irradiated C3-4 transfectants.
- FIG. 2B demonstrates that 30 μg of β-galactosidase in AF induced strong specific CTL response against transfectant. At an effector-to-target (E:T).ratio of 3:1, β-gal-AF immunized mice showed about 80% of specific C3-4 killing. However, only 20% killing of the same target was achieved with effectors isolated from β-gal in HBSS immunized mice at the same E:T ratio (FIG. 2A). Since neither EL4 nor P815 expresses class II MHC gene products and the lysis shows syngeneic restriction, these ova and β-gal specific effectors are class I MHC restricted.
- To demonstrate the usefulness of the antigen formulation mice were immunized with soluble ova encapsuled in two types of liposomes, one of which was a pH sensitive liposome. One week later, spleen cells were stimulated in vitro, as described above, and tested against51Cr-labeled EG7-ova or EL4. FIG. 3 shows a representative result demonstrating that ova in liposome could not prime mice for substantial CTL induction. Similar results were observed when ova was immunized in alum.
- Carbone and Bevan, supra, demonstrated that CTL induced in C57BL/6 mice by EG7-ova transfectant, and by cytoplasmically ova-loaded splenocytes recognize EL4 cells coated with the peptide ova 258-276. To determine whether soluble ovalbumin in AF induces similar CTL responses, spleen cells were prepared from immunized mice and stimulated in vitro with EG7-ova. The effectors were tested against EL4 cells coated with the peptide ova 253-276, or with a control peptide derived from myelin basic protein (MBP 84-102). The results demonstrate that ova-AF primed CTL with a similar, specificity to those primed by transfectants, or by cytoplasmically loaded ova (FIGS. 1A, 1B and1C). ova-AF primed effector cells effectively lysed EG7-ova, and an untransfected EL4 cells coated with 50 μg/108 cells of ova peptide, but did not lyse EL4 cells coated with 50 μg/108 cells of MBP peptide.
- In the β-galactosidase system, Carbone and Bevan, supra, indicated that β-gal expressing transfectant and splenocytes cytoplasmically loaded with soluble β-galactosidase, induced CTL which lysed β-gal expressing transfectant and nontransfectant P815 cells coated with alkali digested β-galactosidase. Soluble β-galactosidase induces CTL having, similar specificity when immunized in AF (FIG. 2).
- That soluble protein antigens in AF induce CD8+ effector T cells was shown as follows. Splenocytes from immunized mice were cultured for five days with irradiated transfectants in vitro. Thereafter, cells were harvested and depleted of CD4+ or CD8+ T cells by using monoclonal anti-CD4 or anti-CD8 antibodies plus complement. Depleted populations were then tested against 51Cr-EG7-ova in the ova system or 51Cr-P13.1 in the β-gal system. The data shown in FIG. 4 indicates that, in the ova system, depletion of CD8+ T cells abrogated cytolytic activity conferred by the whole effector cell population. However, depletion of CD4+ T cell population did not have any effect on the lysis of EG7-ova.
- Similarly, in the β-gal system, depletion of CD8+ T cells abrogated the cytolytic activity of β-galantigen formulation immunized spleen cells.
- To demonstrate that ova-AF primes CD8+ T cell populations in vivo, and is critical for in vitro secondary response, CD4+ or CD8+ populations were depleted from spleens of ova-AF immunized mice and from naive mice. These treated populations were then stimulated in vitro with EG7-ova alone, or in a combination of CD4+ and CD8+ T cells from ova-AF immunized mice, or in various combination of CD4+ or CD8+ T cells from ova-AF immunized mice with the CD4+ or CD8+ cells from naive mice. FIG. 5 shows that primed CD8+ cells are essential for the manifestation of a secondary CTL response in vitro. These data also indicate that for the effective secondary CTL response in vitro, CD4+ T cells are required. CD4+ cells are not needed for priming. Similarly, CD8+ T cells were required for the manifestation of B-gal specific secondary CTL response in vitro.
- The above examples demonstrate the effect of the antigen formulation on the induction of class I restricted CTL responses against soluble protein antigens. The antigen formulation mediated soluble antigen induced CTL priming, and is similar in activity to that induced by transfectants and by splenocytes cytoplasmically loaded with soluble ova or β-gal. In the ovalbumin system, EG7-ova, cytoplasmically loaded ova splenocytes, and ova-AF induced: (a) class I restricted CD8+ CTL; (b) CTL that recognize target sensitized with ova 253-276 synthetic peptide; and (c) long lived CTL after only one immunization. In the β-galactosidase system, the β-gal-AF induced CTL that recognize β-gal expressing transfectant C3-4, and also the untransfected P815 cells sensitized with alkali digested β-gal. This is analogous to what was observed with CTL induced by immunization with spleen cells cytoplasmically loaded with β-galactosidase. The induction of ova-specific CTL by antigen formulation is unique because neither ova encapsulated in a pH sensitive liposome, nor in alum, could induce CTL priming in vivo.
- These examples indicate that the antigen formulation used above, and its equivalents, are useful in human therapy and in vaccine development for the induction of CTL in various cancers and viral diseases.
- This is a specific example to show the use of the above AF on producing class I restricted CTL priming by soluble gp120 from HIV.
- The gp160 IIIB expressing cell line (15-12) was produced in the Balb/c fibroblast-derived 3T3 cell line. It was obtained from Drs. Ron Germain and Jay Berzofsky, National Institute of Health, Bethesda, M.D. The gp160 expressing cell line was employed for in vitro stimulation of in vivo primed splenic lymphocytes, and also used as target for gp160 specific CTL induction. Balb/c mice were immunized once with 10 μg of gp160 per mouse with or without AF. Mice were injected at footpads and tailbase subcutaneously. Spleen cells were taken from the immunized mice after two weeks of immunizations and in vitro stimulated with irradiated gp160 transfectants. After five days of culture in vitro, priming was assessed by the presence of specific effectors capable of lysing gp160 transfectants, and not the untransfected cell lines. The results are shown in FIG. 7, where CTL response is potentiated with AF and gp120.
- The following example demonstrates the use of antigen formulations of this invention with use of only one or two components. These examples demonstrate that CTL-responses can be induced with only two of the above three components.
- To determine whether all the above-noted components are necessary for antigen specific CTL induction, mice were immunized with ovalbumin in a microfluidized formulation of various combinations of two of the three components presented in the AF above. Two component combinations used were as follows; Squalane/TWEEN in PBS, Squalane/Pluronic in PBS or Pluronic/TWEEN in PBS. Another set of groups were included where mice were immunized with ova formulated in a one component system i.e., Squalane in PBS, Pluronic in PBS or TWEEN in PBS only. The above three component antigen formulation was modified to exclude one component at a time, constituting PBS in its place.
- The above antigen formulations consist of: 0.300 g TWEEN 80 (Aldrich, Wis.) 1.875 g Pluronic L121 (BASF, NJ), and 7.5 g Squalane (Aldrich, Wis.), brought to 50 ml with PBS.
- The two-component formulations were:
- Squalane/TWEEN: 0.300
g TWEEN 80, and 7.5 g Squalane, brought to 50 ml with PBS. - Pluronic/TWEEN: 1.875 g Pluronic L121, and 0.300
g TWEEN 80, brought to 50 ml with PBS. - Pluronic/Squalane: 1.875 g Pluronic L121, and 7.5 g Squalane, brought to 50 ml with PBS.
- The samples were then processed through a micro-fluidizer, model 110T, Microfluidics corp, and bottled and stored at 4° C. until use.
- Ovalbumin (Sigma, MO) was weighted and brought to a 0.3 mg/ml solution in HBSS (Whittaker, Supra). The stock 0.3 mg/ml solution was combined with the two component formulation in the following amounts: 5 parts Ovalbumin 0.3 mg/ml solution, 3.3
parts 2 component formulation, and 1.7 parts HBSS. - The formulation was vortexed and kept on ice until injected. All solutions were combined just prior to injection.
- Each mouse received 200 μl of one formulation containing 30 μl of OVA by injection in both hind footpads and any remaining solution was injected subcutaneously at the tail base. Mice were allowed to rest for two to four weeks prior to spleen harvest.
- Two weeks after immunizations, spleen cells were prepared and in vitro stimulated with irradiated EG7-OVA. After five days of culture, the presence of OVA specific CTL was measured by testing against51Cr-EG7-OVA or 51Cr-EL4 in a 4 hour 51Cr release assay. The data shown in FIGS. 8-10 demonstrate that Ovalbumin formulated in microfluidized two component system can prime OVA specific CTLs in vivo.
- We further evaluated the relative contribution of the individual components for their ability to induce CTL when combined with protein antigens. For immunization purposes soluble antigen was mixed with microfluidized excipients to obtain a stable homogeneous emulsion with particle sizes ranging from 250-300 nm. To further define the components of squalane-Tween 80-pluronic (STP) formulation responsible for CTL induction, we immunized mice with ova in squalane-Tween 80 (ST) mixture, pluronic-Tween 80 (PT) mixture or squalane-pluronic (SP) mixture and as a control, in squalane (S),
Tween 80. (T) or pluronic (P). Mice were also immunized with ova-SAFm (containing 70 μg of MDP) or ova-alum as adjuvant controls. For a positive control, mice were immunized with spleen cells cytoplasmically loaded with soluble ova. Other combinations and substitutes were also used, and the results are presented in Table 1. - For the detection of CTL priming studies, mice were immunized once. Two weeks after the immunization, spleen cells were mixed with irradiated EG7-ova (the ova expressing EL4 cells) for five days and tested against51Cr-EG7-ova or 51Cr-EL4 cells. The results (FIG. 11) demonstrate that 30 μg of ova in combination with STP or ST primes class I restricted CTL response in mice. The priming-of-ova specific CTL by ova in STP or by ova in ST appears to be better than that induced by spleen cells cytoplasmically loaded with soluble ova. Ova in PT or in SP could induce ova specific CTL responses in mice but inconsistently and poorly. Unlike SAFm, the addition of MDP to ST formulation did not compromise the ova specific CTL induction in mice (Table 2). No ova specific CTL induction occurred when mice were immunized with ova mixed with the individual components, S, P or T nor when mice were immunized with ova-SAFm or ova-alum. Mice immunized with as much as 1 mg ova in (a) HBSS, in (b) SAFm or (c) absorbed to alum did not prime ova specific CTL.
TABLE 2 Induction of ova specific CTL response is not blocked by ST + MDP % cytotoxicity in mice immunized with* ova-ST- ova-ST- MDP MDP ova- 300 μg 72 μg Stimulator Target** ET HBSS ova-ST mouse mouse EG7-ova EG7-ova 100:1 0 100 82 76 33:1 0 86 67 62 11:1 0 33 39 25 3:1 0 6 13 3 1:1 0 0 0 0 3:1 0 0 0 0 - Mice were immunized three times at 2 week intervals with 30 μg of ova in HBSS, STP, ST, PT or SP. As a positive control, mice were also immunized with ova-SAFm, as SAFm is known to induce a strong antibody response. Seven days after the second and third immunizations, mice were bled and the sera tested for ova specific antibody response. The results are shown in Table 3. They indicate that mice immunized with ova in STP, ST or in SAFm display similar anti-ova responses after two immunizations.
TABLE 3 Induction of anti-ova antibody response 30 μg ova/ animal # mice responded/ 1/dilution formulation # mice injected sera titer HBSS 0/3 <1/20, <1/20, <1/20 STP 3/3 <1/4860, >1/4860, <1/4860 ST 3/3 >1/4860, >1/4860, >14860 PT NA NA, NA, NA SP NA NA, NA, NA SAF- M 3/3 1/4860, 1/4860, 1/4860 - HIV gp120 IIIB was used as a second antigen system to determine CTL induction in STP, ST or in MP-T. Mice were immunized with 1 μg of gp120 IIIb in HBSS, STP, PT or in ST. As a control, mice were immunized with 1 μg of gp120IIIb in SAFM or CFA (Complete Freund's Adjuvant) or in RIBI adjuvant system containing MPL (monophoshoryl lipid A) and TDM (trehalose dimycolite). Three weeks after the immunization, spleen cells were prepared and stimulated in vitro with mitomycin treated transfectant of culture, the resultant effector cells were tested against vaccinia:gp160 IIIB, or parental vaccinia infected P815 cells as targets. The results demonstrate that the gp120-Squalane-
TWEEN 80 formulation and not gp120-Squalane-TWEEN 80 pluronic formulation or gp120-HBSS induced gp120 specific CTL response in mice (Table 4).TABLE 4 Induction of gp120 specific CTL response in mice % cytotoxicity in mice immunized with* gp120- gp120- gp120- Stimulator Target** E-T HBSS ST STP 18IIIb/IL2 vac:gp120 100:1 23 42 NA*** 33:1 23 38 NA 11:1 0 0 NA 3:1 0 35 NA 18IIIb/IL2 15-12 100:1 0 50 0 33:1 0 35 11:1 0 27 0 3:1 0 18 18IIIb/IL2 3T3 + 18IIIb 100:1 0 59 13 33:1 0 59 2 11:1 0 57 0 3:1 0 29 0 15-12 vac:gp120 100:1 35 84 NA 33:1 19 65 NA 11:1 12 37 NA 3:1 0 22 NA 1:1 0 0 NA - For the induction of gp120 specific humoral responses, mice were immunized with 1 μg of gp120IIIb three times at two-week intervals. The animals were bled and tested for the presence of IgG antibodies detecting gp120IIIb in a solid phase ELISA assay. The results demonstrate that gp120-ST is a better immunogen than gp120-HBSS, gp120SAFm (Table 5), or gp120-STP.
TABLE 5 Induction of anti-gp120 antibody response 1 μg gp120/ animal # mice responded/ 1/dilution formulation # mice injected sera titer HBSS 0/3 <1/20, <1/20, <1/20 STP 1/3 <1/20, >1/4860, <1/20 ST 3/3 >1/4860, >1/4860, >1/4860 PT 3/3 >1/4860, >1/4860, >1/4860 SP 2/3 <1/20, 1/540, 1/540 Saf- M 2/3 1/180, >1/4860, 1/540 - Monkeys (two per group) were immunized with gp120-SAFm, gp120-SPT, gp120-ST, or gp120-HBSS. As a control, a group of monkeys were immunized with recombinant vaccinia containing gp160 IIIb. Monkeys were immunized at two week intervals and bled two weeks and three weeks after the second immunization. Pre- and immune sera from each monkey was serially diluted and assayed for anti-gp120 activity in an ELISA as described in the materials and methods. The data (FIG. 12) indicate that monkeys immunized with gp120-STP or gp120-SAFm induced similar responses in monkeys. One monkey immunized with gp120-ST, induced anti-gp120 response similar to the gp120-SAFm or gp120′-SPT immunized group. One monkey immunized with gp120-ST did not induce a strong anti-gp120 response after two immunizations.
- 1. Generation of Recombinant HPV 16 E7 Protein for Immunization
- a) PCR and Cloning of the E7 Gene
- The HPV 16 E7 gene was cloned from a plasmid obtained from Dr. Karen Vousden (Ludwig Institute) encoding the E7 gene derived from the carcinoma cell line CaSki. The coding regions were amplified by PCR using primers that encode the 5′ and 3′ ends of the genes flanked by Bam HI and Sal I cloning sites. The E7 PCR product was ligated into the pGEX—4T-1 expression vector (Pharmacia Biotech) resulting in the pGEX.E7 expression plasmid.E. coli strain XL1—blue (strata-gene) was transfected with the pGEX.E7 expression plasmid. The sequence of the E7 was obtained from the plasmids of the, resulting colonies and was identical to the E7 sequence obtained from CaSki cells.
- b) Production of Purification of Bacterially-Expressed E7
- The pGEX.E7 bacterial expression plasmid encodes a glutathione-S-transferase (GST) fusion protein consisting of the GST at the amino-terminus, a thrombin protease cleavage site and the E7 protein at the carboxy-terminus. E7 protein was produced and purified as described in the product information literature from the manufacturer of the pGEX-4T-1 vector (Pharmacia Biotech). Briefly, bacteria containing the pGEX.E7 expression plasmid was induced to express the fusion protein by the addition of isopropyl b-D-thiogalactosidase to the culture medium. The cells were harvested and lysed by mild sonication. The lysate was applied to Glutathione Sepharose 4B (Pharmacia Biotech). After the fusion protein bound to the matrix, the resin was washed to remove non-specifically bound proteins. The bound fusion protein was digested with thrombin to release the E7 protein from the GST fusion partner.
- The E7 protein preparation was analyzed by SDS-PAGE and the E7 protein concentration was determined by Bradford analysis (BioRad). 9 mg soluble E7 protein was obtained per liter of bacterial culture.
- 2. Generation of the X21 E7 Transfectant
- Coding sequences for the HPV16 E7 protein (see above) have been inserted into the IDEC proprietary eukaryotic expression plasmid INPEP4. Within this vector, E7 expression is controlled by the Cytomegalovirus promoter/enhancer transcriptional elements. In addition, the first three nucleotides of the E7 coding sequence have been removed and replaced with an immunoglobulin light chain leader sequence placed immediately upstream and in frame with the E7 coding region. Following transfection into the mouse cell line X21 individual G418 resistant clones were examined by northern blot analyses for E7 message production. Every clone displayed detectable E7 message. Western blot analysis of cell lysates from the two of those clones, 4E7 and 1C7, (HOPE1 and HOPE2 respectively) were then performed and demonstrated E7 protein production.
- 3. In Vivo Activity of E7/AF Soluble Antigen Immunization
- Female mice of C3H background (H2k/k, Harlan Sprague Dawley) were used in these studies. Animals were maintained according to “Guide for the Care and Use of Laboratory Animals” (DHHS Publication No. NIH 86-23, Bethesda, Md.:NIH, 1985), and received food and water ad libitum. The E7 transfectant cell line HOPE2H2k/k) was used in these studies. The tumor cell line was maintained by serial passage in vitro.
- This cell line has been shown to maintain E7 cytoplasmic antigen expression, as detected by western blot analysis, following repeated in vitro passages. Tumors were initiated in syngeneic C3H mice by subcutaneous injection of 150,000 in vitro passaged cells.
- Tumors were measured in 2 perpendicular directions at biweekly intervals. Tumor volume (V) was calculated according to the following formula:
- V(mm 3)=(L×W 2) divided by 2
- where:
- L=longest axis measurement in mm
- w=perpendicular axis (mm)
- Data in Table 6 are presented as tumor Mice (number of tumor bearing animals over the total number of animals injected). Data in FIGS. 13 and 14 are presented as median tumor size (mm3) of each treatment or control group. Each treatment group was compared to a control group that did not receive therapy. Therapy began 10 days after incoculation of HOPE2 cells, when a majority of the tumors were palpable (approx. 50-75 mm3). Therapy was initiated by immunization of mice with soluble E7 protein in AF3.75 (defined previously) or Alum adjuvants (subcutaneously in a total volume of 0.2 ml). Directly before immunization, AF3.75 was mixed for 60 seconds with E7 protein in Hanks Balanced Salt Solution (HBSS) such that each mouse received either 30 ug or 90 ug E7 protein 0.2 ml. Alum (Pierce Chemical Co.) was mixed with E7 protein, according to instructions by the manufacture, such that each animal received 90 ug E7 protein in 0.2 ml per mouse. Animals in a second treatment group received a second immunization 9 days later (19 days after tumor cell inoculation). Booster Immunization were prepared immediately before inoculation, as described above.
- In this example (Table 6: Xp 1233), 41 days after tumor cell inoculation only 4/8 and 5/8 of mice receiving a single injection of soluble E7 in AF3.75 (30 ug or 90 ug respectively) had measurable tumors. In contrast, all of the mice immunized with E7 protein in Alum (8/8) had actively growing tumors. Additionally, as shown in FIG. 13, significant inhibition of tumor growth was observed only in treatment groups immunized with E7 protein in AF3.75 as compared to control (untreated) or Alum treatment groups. Inhibition of tumor growth (FIG. 13) or increased tumor regression rates (Table 6 was not observed in mice that received a single injection of E7 in Alum.
- Similar results were also observed using treatment groups that received two immunizations at
days 10 and 19 after tumor challenge (Table 6 and FIG. 14), although some tumor growth retardation was observed with mice receiving two injections of E7 in Alum. - The results indicate that significant antitumor activity as measured by a decreased number of tumor bearing mice and inhibition of tumor growth was observed following immunization of soluble E7 in AF3.75. In contrast, all animals immunized with either a single or double injection of soluble E7 protein in Alum had growing tumors. In summary, immunization with soluble E7 protein in AF3.75 resulted in a significant inhibition of tumor cell growth that was not observed using soluble E7 immunization in Alum.
TABLE 6 Antitumor activity of soluble E7 immunization in adjuvant Tumor Animalsa Exp. # Treatment Dose (ug/mouse) Day 41 223 Control — 7/8 223 E7 in AF3.75 30 ug × 1b 4/8 223 E7 in AF3.75 90 ug × 1 5/8 223 E7 in Alum 90 ug × 1 8/8 223 E7 in AF3.75 30 ug × 2c 3/8 223 E7 in AF3.75 90 ug × 2 1/4 223 E7 in Alum 90 ug × 2 8/8 - Other embodiments are within the following claims.
-
1 2 1 24 PRT Artificial Sequence Description of Artificial Sequence Synthetic peptide 1 Glu Gln Leu Glu Ser Ile Ile Asn Phe Glu Lys Leu Thr Glu Trp Thr 1 5 10 15 Ser Ser Asn Val MetGlu Glu Arg 202 19 PRT Artificial Sequence Description of Artificial Sequence Synthetic peptide 2 Asp Glu Asn Pro Val Val His Phe Phe Lys Asn Ile Val Thr Pro Arg 1 5 10 15 Thr Pro Pro
Claims (85)
1. A composition comprising an antigen mixed with a microfluidized antigen formulation comprising:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil, said antigen formulation being formulated as a stable oil-in-water emulsion, said antigen formulation being substantially free of immunostimulating peptides and wherein said composition upon administration to an animal selected from the group consisting of humans, domesticated animals and agricultural animals is capable of inducing a specific cytotoxic T-lymphocyte response against the antigen contained in the composition.
2. The composition of claim 1 , wherein said antigen is chosen from antigenic portions of the HIV antigens: gp160, gag, pol, Nef, Tat, and Rev; the malaria antigens: CS protein and Sporozoite surface protein 2; the Hepatitis B surface antigens: Pre-S1, Pre-S2, HBc Ag, and HBe Ag; the influenza antigens: HA, NP and NA; Hepatitis A surface antigens; Hepatitis C surface antigens, the Herpes virus antigens: EBV gp340, EBV gp85, HSV gB, HSV gD, HSV gH, HSV early protein product, cytomegalovirus gB, cytomegalovirus gH, and IE protein gp72; the respiratory syncytial virus antigens: F protein, G protein, and N protein; and the tumor antigens: carcinoma CEA, carcinoma mutated EGF receptor, prostate carcinoma specific antigen (PSA), prostate specific membrane associated antigen, carcinoma associated mucin, carcinoma P21, carcinoma P53, melanoma MPG, melanoma p97, MAGE-1, MAGE-3, gp100, MART-1, melanoma antigen gp75 carcinoma Neu oncogene product, carcinoma p53 gene product, and mutated p21 ras protein.
3. A composition comprising an antigen mixed with a microfluidized antigen formulation comprising:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil, said antigen formulation being formulated as a stable oil-in-water emulsion, said antigen formulation lacking immunostimulating peptides and wherein said composition upon administration to an animal selected from the group consisting of humans, domesticated animals and agricultural animals is capable of inducing a specific cytotoxic T-lymphocyte response against the antigen contained in the composition.
4. The composition of claim 3 , wherein said antigen formulation consists essentially of said detergent, agent, and oil.
5. The composition of claim 3 , wherein said antigen formulation is non-toxic to said human or domesticated or agricultural animal.
6. The composition of claim 3 , wherein said antigen is chosen from the HIV antigens: gp160, gag, pol, Nef, Tat, and Rev; the malaria antigens: Cs protein and Sporozoite surface protein 2; the Hepatitis B surface antigens: Pre-S1, Pre-S2, HBc Ag, and HBe Ag; the influenza antigens: HA, NP and NA; Hepatitis A surface antigens; Hepatitis C surface antigens; the Herpes virus antigens. EBV gp340, EBV gp85, HSV gB, HSV gD, HSV gH, HSV early protein product, cytomegalovirus gB, cytomegalovirus gH, and IE protein gp72; the respiratory syncytial virus antigens: F protein, G protein, and N—protein; and the tumor antigens: carcinoma CEA, carcinoma mutated EGF receptor, prostate carcinoma specific antigen (PSA), prostate specific membrane associated antigen, carcinoma associated mucin, carcinoma P21, carcinoma P53, melanoma MPG, melanoma p97, MAGE-1, MAGE-3, gp100, MART-1, carcinoma Neu oncogene product, carcinoma p53 gene product, and mutated p21 ras protein.
7. A method for inducing a cytotoxic T-lymphocyte response in an animal selected from the group consisting of humans, domesticated animals and agricultural animals, comprising:
administering to said animal an admixture comprising an antigen and a microfluidized antigen formulation, said antigen formulation comprising:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil, said antigen formulation lacking an immunostimulating peptide component, said antigen formulation being formulated as a stable oil-in-water emulsion; wherein said admixture is administered to said animal in an amount sufficient to induce a cytotoxic T-lymphocyte response in said animal which is specific for the antigen contained in said admixture.
8. The method of claim 7 , wherein said antigen formulation consists essentially of said detergent, agent, and oil.
9. The method of claim 7 , wherein said method consists essentially of a single administration of said mixture to said human or said animal.
10. The method of claim 7 , wherein said human or said animal is infected with a virus or suffers one or more symptoms of infection from said virus.
11. The method of claim 7 , wherein said antigen formulation is non-toxic to said human or said animal.
12. The method of claim 7 , wherein said antigen is chose from the HIV antigens: gp160, gag, pol, Nef, Tat, and Rev; the malaria antigens: CS protein and Sporozoite surface protein 2; the Hepatitis B surface antigens: Pre-S1, Pre-S2, HBc Ag, and HBe Ag; the influenza antigens: HA, NP and HA; Hepatitis A surface antigens; Hepatitis C surface antigens; the Herpes virus antigens: EBV gp340, EBV gp85, HSV gB, HSV gD, HSV gH, HSV early protein product, cytomegalovirus gB, cytomegalovirus gH, and IE protein gP72; the respiratory syncytial virus antigens: F protein, G protein, and N protein; and the tumor antigens: carcinoma CEA, carcinoma associated mucin, carcinoma P21, carcinoma P53, melanoma MPG, melanoma p97, MAGE-1, MAGE-3, gp100, MART-1, carcinoma mutated EGF receptor, prostate carcinoma specific antigen (PSA), prostate specific membrane associated an tigen, and carcinoma Neu oncogene product, carcinoma *mutated EGF receptor, carcinoma p53 gene product, and mutated p21 ras protein.
13. A method of treating a patient infected with HIV virus, comprising administering a composition comprising an HIV antigen mixed with a microfluidized antigen formulation comprising:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation lacking an immuno-stimulating peptide component, and being formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient to induce a cytotoxic T-lymphocyte response in said patient.
14. The method of claim 13 , wherein said HIV antigen is selected from gp160, gag, pol, Nef, Tat, and Rev. 77
15. A method of treating a patient suffering from malaria, comprising administering a microfluidized composition comprising a malaria-associated antigen mixed with an antigen formulation comprising:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
c) a biodegradable and biocompatible oil,
said antigen formulation lacking an immunostimulating peptide component, and being, formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient to induce a cytotoxic T-lymphocyte response in said patient.
16. The method of claim 15 , wherein said malaria-associated antigen is selected from CS protein, and Sporozoite surface protein 2.
17. A method of treating a patient suffering from influenza, comprising administering a composition comprising an influenza-associated antigen mixed with a microfluidized antigen formulation comprising:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation lacking an immunostimulating peptide component, and being formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient to induce a cytotoxic T-lymphocyte response in said patient.
18. The method of claim 17 , wherein said influenza-associated antigen is selected from HA, NP, and NA.
19. A method of treating a patient suffering from hepatitis, comprising administering a com position comprising a hepatitis-associated antigen mixed with a microfluidized antigen formulation comprising:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation lacking an immunostimulating peptide component, and being formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient to induce a cytotoxic T-lymphocyte response in said patient.
20. The method of claim 19 , wherein said hepatitis-associated antigen is selected from hepatitis A surface antigen, Pre-S1, Pre-S2, HBc Ag, and HBe Ag.
21. A method of treating a patient suffering from a cancer, comprising administering a composition comprising a cancer-associated antigen mixed with a microfluidized antigen formulation comprising:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation lacking an immunostimulating peptide component, and being formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient-to induce a cytotoxic T-lymphocyte response in said patient.
22. A method of claim 21 , wherein said cancer-associated antigen is selected from Carcinoma CEA, Carcinoma associated mucin, P21, carcinoma P53, melanoma MPG, melanoma p97, MAGE-1, MAGE-3, gp100, MART-1, carcinoma mutated EGF receptor, and carcinoma Neu oncogene product, carcinoma p53 gene product, and mutated p21 ras protein.
23. A method of treating a patient infected with herpes virus, comprising administering a composition comprising a herpes antigen mixed with a microfluidized antigen formulation comprising:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation lacking an immunostimulating peptide component, and being formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient to induce a cytotoxic T-lymphocyte response in said patient.
24. The method of claim 23 , wherein said herpes virus antigen is selected from EBV gp340, EBV gp85, HSV gB, HSV gD, HSV gH, HSV early protein product, cytomegalovirus gB, cytomegalovirus gH and IE protein gP72.
25. A method of treating a patient infected with respiratory syncytial virus, comprising administering a composition comprising a respiratory syncytial antigen mixed with a microfluidized antigen formulation comprising:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation lacking an immunostimulating peptide component, and being formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient to induce a cytotoxic T-lymphocyte response in said patient.
26. The method of claim 25 wherein said Respiratory Syncytial virus antigen is selected from F protein, G protein, and N protein.
27. A method for inducing a cytotoxic T-lymphocyte response in a human or domesticated or agricultural animal, comprising the steps of:
administering a mixture of an antigen mixed with a microfluidized antigen formulation consisting essentially of two of:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation being formulated as a stable oil-in-water emulsion;
wherein said mixture is administered to said human or animal in an amount sufficient to induce a cytotoxic T-lymphocyte response in said human or animal.
28. The method of claim 27 , wherein said human or domesticated or agricultural animal is infected with a virus and suffers one or more symptoms of infection from said virus.
29. The method of claim 27 , wherein said antigen formulation is non-toxic to said human or domesticated or agricultural animal.
30. The method of claim 27 , wherein said antigen is chosen from antigenic portions of the HIV antigens: gp160, gag, pol, Nef, Tat, and Rev; the malaria anti-gens: CS protein and Sporozoite surface protein 2; the Hepatitis B surface-antigens: Pre-S1, Pre-S2, HBc Ag, and HBe Ag; the influenza antigens: HA, NP and NA; Hepatitis A surface antigens; Hepatitis C surface antigens, the Herpes virus antigens: EBV gp340, FBV gp85, HSV gB, HSV gD, HSV gH, HSV early protein product, cytomegalovirus gB., cytomegalovirus gH, and IE protein gp72; the respiratory syncytial virus antigens: F protein, G protein, and N protein; and the tumor antigens carcinoma CEA, prostate carcinoma specific antigen (PSA), prostate specific membrane associated antigen, carcinoma associated mucin, carcinoma P21, carcinoma P53, melanoma MPG, melanoma p97, MAGE-1, MAGE-3, gp100, MART-1, carcinoma Neu oncogene product, carcinoma mutated EGF receptor, carcinoma p53 gene product, and mutated p21 ras protein.
31. A method of treating a patient infected with HIV virus, comprising administering a composition comprising an HIV antigen mixed with a microfluidized antigen formulation consisting essentially of two of:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation being formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient to induce a cytotoxic T-lymphocyte response in said patient.
32. The method of claim 31 , wherein said HIV antigen is selected from gp160, gag, pol, Nef, Tat, and Rv.
33. A method of treating a patient suffering from malaria, comprising administering a composition comprising a malaria-associated antigen mixed with a microfluidized antigen formulation consisting essentially of two of:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation being formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient to induce a cytotoxic T-lymphocyte response in said patient.
34. The method of claim 33 , wherein said malaria-associated antigen is selected from CS protein, and Sporozoite surface protein 2.
35. A method of treating a patient suffering from influenza, comprising administering a composition comprising an influenza-associated antigen mixed with a microfluidized antigen formulation consisting essentially of two of:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation being formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient to induce a cytotoxic T-lymphocyte response in said patient.
36. The method of claim 35 , wherein said influenza-associated antigen is selected from HA, NP, and NA.
37. A method of treating a patient suffering from hepatitis, comprising administering a composition comprising a hepatitis-associated antigen mixed with a microfluidized antigen formulation consisting essentially of two of:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation being formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient to induce a cytotoxic T-lymphocyte response in said patient.
38. The method of claim 37 , wherein said hepatitis-associated antigen is selected from hepatitis A surface antigen, Hepatitis C surface antigen, Pre-S1, Pre-S2, HBc Ag, and HBe Ag.
39. A method of treating a patient suffering from a cancer, comprising administering a composition comprising a cancer-associated antigen mixed with a microfluidized antigen formulation consisting essentially of two of:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation being formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient to induce a cytotoxic T-lymphocyte response in said patient.
40. The method of claim 39 , wherein said cancer-associated antigen is selected from Carcinoma CEA, prostate carcinoma specific antigen (PSA) prostate specific membrane associated antigen, Carcinoma associated mucin, P21, carcinoma P53, melanoma MPG, melanoma p97, MAGE-1, MAGE-3, gp100, MART-1, carcinoma Neu oncogene product, carcinoma mutated EGF receptor, carcinoma p53 gene product, and mutated p21 ras protein.
41. A method of treating a patient infected with herpes virus, comprising administering a composition comprising a herpes antigen mixed with a microfluidized antigen formulation consisting essentially of two of:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation being formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient to induce a cytotoxic T-lymphocyte response in said patient.
42. The method of claim 41 , wherein said herpes virus antigen is selected from EBV gp340, EBV gp85, HSV gB, HSV gD, HSV gH, HSV early protein product, cytomegalovirus gB, cytomegalovirus gH and IE protein gP72.
43. A method of treating a patient infected with respiratory syncytial virus, comprising administering a respiratory syncytial antigen mixed with a microfluidized antigen formulation consisting essentially of two of:
(a) a stabilizing detergent,
(b) a micelle-forming agent, and
(c) a biodegradable and biocompatible oil,
said antigen formulation being formulated as a stable oil-in-water emulsion; wherein said composition is administered to said patient in an amount sufficient to induce a cytotoxic T-lymphocyte response in said patient.
44. The method of claim 43 wherein said Respiratory Syncytial virus antigen is selected from F protein, G protein, and N protein.
45. The method of any of claims 25-44 wherein said antigen formulation consists essentially of said detergent and said micelle-forming agent.
46. The method of any of claims 25-44 wherein said antigen formulation consists essentially of said detergent and said oil.
47. The method of any of claims 25-44 wherein said antigen formulation consists essentially of said oil and said micelle-forming agent.
48. The composition of claim 6 wherein said papillomavirus antigen is selected from the group consisting of the HPV16 E6 antigen, HPV16 E7 antigen, HPV18 E6 antigen, HPV18 E7 antigen, HPV6 E4 antigen, HPV6 L1 antigen, HPV11 E4 antigen and HPV11 L1 antigen.
49. A method for treating cervical cancer comprising administering an effective amount of a human papillomavirus antigen formulation according to claim 48 .
50. A method for treating condyloma acuminata comprising administering an effective amount of a papillomavirus antigen formulation according to claim 48 .
51. A method for treating prostate cancer comprising administering a composition according to claim 6 wherein the antigen is the prostate specific antigen.
52. The composition of claim 1 wherein the stabilizing detergent is selected from the group consisting of polysorbate 80, Tween 20, Tween 40, Tween 60, Zwittergent 3-12, Teepol HB7 and Span 85.
53. The composition of claim 1 wherein said detergent is provided in an amount ranging from approximately 0.05 to 0.5%.
54. The composition of claim 53 wherein said amount of detergent is about 0.2%.
55. The composition of claim 1 wherein said micelle-forming agent comprises a hydrophile-lipophile balance of between 0 and 2.
56. The composition of claim 1 wherein said micelle-forming agent is selected from the group consisting of poloxamer 401, Pluronic L62LF, Pluronic L101, Pluronic L64, PEG1000, Tetronic 1501, Tetronic 150R1, Tetronic 701, Tetronic 901, Tetronic 1301, and Tetronic 130R1.
57. The composition of claim 1 wherein the amount of said micelle-forming agent ranges from between 0.5 to 10%.
58. The composition of claim 57 wherein the amount of said micelle-forming agent ranges from between 1.25 and 5%.
59. The composition of claim 1 wherein the oil exhibits a melting temperature less than 60° C.
60. The composition of claim 59 wherein the oil is selected from the group consisting of squalene, squalane, eicosane, tetratetracontane, pristane, glycerol, and vegetable oils.
61. The composition of claim 1 wherein the amount of the oil ranges from between 1 and 10%.
62. The composition of claim 61 wherein the amount of the oil ranges from between 2.5 and 5%.
63. The composition of claim 1 which comprises less than 20 micrograms of muramyl dipeptide.
64. The composition of claim 63 does not comprise any muramyl dipeptide.
65. The composition of claim 1 wherein the detergent is polysorbate 80, and the micelle-forming agent is poloxamer 401.
66. The composition of claim 65 wherein the oil is squalane.
67. The composition of claim 1 wherein the detergent is selected from the group consisting of Tween 20, Tween 40 and Tween 80; the oil is selected from the group consisting of squalane, eicosane, and pristane and the micelle-forming agent is selected from the group consisting of Pluronic L62LF and polyoxamer 401.
68. The method of claim 7 wherein the detergent is selected from the group consisting of polysorbate 80, Tween 20, Tween 40, Tween 60, Zwittergent 3-12, Teepol HB7 and Span 85.
69. The method of claim 7 wherein said detergent is provided in an amount ranging from approximately 0.05 to 0.5%.
70. The method of claim 69 wherein the amount of detergent is about 0.2%.
71. The method of claim 7 wherein said micelle-forming agent comprise a hydrophile-lipophile balance of between 0 and-2.
72. The method of claim 7 wherein said micelle-forming agent is selected from the group consisting polyoxamer 401, Pluronic-L62LF, Pluronic L101, Pluronic L64, PEG1000, Tetronic 1501, Tetronic 150R1, Tetronic 701, Tetronic 901, Tetronic 1301 and Tetronic 130R1.
73. The method of claim 7 wherein the amount of said micelle-forming agent ranges from between 0.5 to 10%.
74. The method of claim 71 wherein the amount of said micelle-forming agent ranges from between 1.25 and 5%.
75. The method of claim 7 wherein the oil exhibits a melting temperature of less than 60° C.
76. The method of claim 7 wherein the oil is selected from the group consisting of squalene, eicosane, tetratetracontane, glycerol, pristane, and vegetable oils.
77. The method of claim 7 wherein the amount of oil ranges from between land 10%.
78. The method of claim 77 wherein the amount of oil ranges from between 2.5 and 5%.
79. The method of claim 7 wherein the admixture comprises less than 20 micrograms of muramyl dipeptide.
80. The method of clam 7 wherein the admixture does not contain any muramyl dipeptides.
81. The method of claim 7 wherein the detergent is polysorbate 80 and the micelle-forming agent is poloxamer 401.
82. The method of claim 81 wherein the oil is squalane.
83. The method of claim 7 wherein the detergent is selected from the group consisting of Tween 20, Tween 40 and Tween 80, the oil is selected from the group consisting of squalane, eicosane, olive oil and pristane and the micelle-forming agent is selected from the group consisting of polyoxamer 401, and Pluronic L62LF.
84. The method of claim 7 wherein the particle sizes in the admixture range from 100 to 300 nm.
85. The composition of claim 1 wherein the particle sizes in the composition range from 100 to 300 nm.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/743,398 US20040197331A1 (en) | 1991-07-25 | 2003-12-23 | Induction of cytotoxic T-lymphocyte responses |
US11/175,213 US20060057162A1 (en) | 1991-07-25 | 2005-07-07 | Induction of cytotoxic T-lymphocyte responses |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US73506991A | 1991-07-25 | 1991-07-25 | |
US07/919,787 US5585103A (en) | 1991-07-25 | 1992-07-24 | Induction of cytotoxic T-lymphocyte responses |
US08/351,001 US5709860A (en) | 1991-07-25 | 1994-12-07 | Induction of cytotoxic T-lymphocyte responses |
US47667495A | 1995-06-07 | 1995-06-07 | |
US09/024,220 US6197311B1 (en) | 1991-07-25 | 1998-02-17 | Induction of cytotoxic T-lymphocyte responses |
US09/740,003 US6733763B2 (en) | 1991-07-25 | 2000-12-20 | Induction of cytotoxic T-lymphocyte responses |
US10/743,398 US20040197331A1 (en) | 1991-07-25 | 2003-12-23 | Induction of cytotoxic T-lymphocyte responses |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/740,003 Continuation US6733763B2 (en) | 1991-07-25 | 2000-12-20 | Induction of cytotoxic T-lymphocyte responses |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/175,213 Continuation US20060057162A1 (en) | 1991-07-25 | 2005-07-07 | Induction of cytotoxic T-lymphocyte responses |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040197331A1 true US20040197331A1 (en) | 2004-10-07 |
Family
ID=27502813
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/024,220 Expired - Lifetime US6197311B1 (en) | 1991-07-25 | 1998-02-17 | Induction of cytotoxic T-lymphocyte responses |
US09/740,003 Expired - Fee Related US6733763B2 (en) | 1991-07-25 | 2000-12-20 | Induction of cytotoxic T-lymphocyte responses |
US10/743,398 Abandoned US20040197331A1 (en) | 1991-07-25 | 2003-12-23 | Induction of cytotoxic T-lymphocyte responses |
US11/175,213 Abandoned US20060057162A1 (en) | 1991-07-25 | 2005-07-07 | Induction of cytotoxic T-lymphocyte responses |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/024,220 Expired - Lifetime US6197311B1 (en) | 1991-07-25 | 1998-02-17 | Induction of cytotoxic T-lymphocyte responses |
US09/740,003 Expired - Fee Related US6733763B2 (en) | 1991-07-25 | 2000-12-20 | Induction of cytotoxic T-lymphocyte responses |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/175,213 Abandoned US20060057162A1 (en) | 1991-07-25 | 2005-07-07 | Induction of cytotoxic T-lymphocyte responses |
Country Status (1)
Country | Link |
---|---|
US (4) | US6197311B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2422809A1 (en) * | 2005-04-15 | 2012-02-29 | Merial Limited | Novel vaccine formulations |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6197311B1 (en) * | 1991-07-25 | 2001-03-06 | Idec Pharmaceuticals Corporation | Induction of cytotoxic T-lymphocyte responses |
ZA988461B (en) * | 1997-09-18 | 1999-03-30 | Idec Pharma Corp | Synergistic composition and methods for treating neoplastic or cancerous growths and for restoring or boosting hematopoiesis |
US20090181078A1 (en) | 2006-09-26 | 2009-07-16 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
TR201807756T4 (en) | 2006-09-26 | 2018-06-21 | Infectious Disease Res Inst | Vaccine composition containing synthetic adjuvant. |
EP2437753B1 (en) | 2009-06-05 | 2016-08-31 | Infectious Disease Research Institute | Synthetic glucopyranosyl lipid adjuvants and vaccine compositions containing them |
AU2012243039B2 (en) | 2011-04-08 | 2017-07-13 | Immune Design Corp. | Immunogenic compositions and methods of using the compositions for inducing humoral and cellular immune responses |
CN104363892A (en) | 2012-02-07 | 2015-02-18 | 传染性疾病研究院 | Improved adjuvant formulations comprising tlr4 agonists and methods of using the same |
RS57420B1 (en) | 2012-05-16 | 2018-09-28 | Immune Design Corp | Vaccines for hsv-2 |
CA2909221A1 (en) | 2013-04-18 | 2014-10-23 | Immune Design Corp. | Gla monotherapy for use in cancer treatment |
US9463198B2 (en) | 2013-06-04 | 2016-10-11 | Infectious Disease Research Institute | Compositions and methods for reducing or preventing metastasis |
IL314130A (en) | 2016-05-16 | 2024-09-01 | Access To Advanced Health Inst | Formulation containing tlr agonist and methods of use |
BR112018074352B1 (en) | 2016-06-01 | 2021-11-30 | Infectious Disease Research Institute | NANOALUME PARTICLES CONTAINING A SIZING AGENT |
CN111315406A (en) | 2017-09-08 | 2020-06-19 | 传染病研究所 | Liposome formulations comprising saponins and methods of use thereof |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3083142A (en) * | 1958-02-27 | 1963-03-26 | Glaxo Group Ltd | Improved swine erysipelas vaccine |
US3790665A (en) * | 1968-02-23 | 1974-02-05 | Haver Lockhart Labor Inc | Injectable adjuvant,method of preparing same and compositions including such adjuvant |
US3919411A (en) * | 1972-01-31 | 1975-11-11 | Bayvet Corp | Injectable adjuvant and compositions including such adjuvant |
US4053585A (en) * | 1974-06-25 | 1977-10-11 | National Research Development Corporation | Immunological preparations |
US4117113A (en) * | 1974-06-25 | 1978-09-26 | National Research Development Corporation | Immunological preparations |
US4770874A (en) * | 1983-08-22 | 1988-09-13 | Syntex (U.S.A.) Inc. | Polyoxypropylene-polyoxyethylene block polymer based adjuvants |
US4772466A (en) * | 1983-08-22 | 1988-09-20 | Syntex (U.S.A.) Inc. | Vaccines comprising polyoxypropylene-polyoxyethylene block polymer based adjuvants |
US4778784A (en) * | 1987-01-07 | 1988-10-18 | Baylor College Of Medicine | Cyclic peptide and method of use for inducing an immunological response to hepatitis B virus |
US4877611A (en) * | 1986-04-15 | 1989-10-31 | Ribi Immunochem Research Inc. | Vaccine containing tumor antigens and adjuvants |
US4963354A (en) * | 1987-01-21 | 1990-10-16 | Genentech, Inc. | Use of tumor necrosis factor (TNF) as an adjuvant |
US5114708A (en) * | 1985-06-18 | 1992-05-19 | Emory University | Method for stimulating growth in animals |
US5234683A (en) * | 1985-06-18 | 1993-08-10 | Emory University | Method of stimulating the immune system |
US5585103A (en) * | 1991-07-25 | 1996-12-17 | Idec Pharmaceutical Corporation | Induction of cytotoxic T-lymphocyte responses |
US5695770A (en) * | 1991-07-25 | 1997-12-09 | Idec Pharmaceuticals Corporation | Induction of cytotoxic T-lymphocyte responses |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4606918A (en) | 1983-08-22 | 1986-08-19 | Syntex (U.S.A.) Inc. | Polyoxypropylene-polyoxyethylene block polymer based adjuvants |
EP0382271B1 (en) | 1989-02-04 | 1994-12-21 | Akzo Nobel N.V. | Tocols as adjuvant in vaccine |
HU212924B (en) | 1989-05-25 | 1996-12-30 | Chiron Corp | Adjuvant formulation comprising a submicron oil droplet emulsion |
AU654970B2 (en) | 1990-09-28 | 1994-12-01 | Smithkline Beecham Biologicals (Sa) | Derivatives of gp160 and vaccines based on gp160 or a derivative thereof, containing an adjuvant |
WO1992011291A1 (en) | 1990-12-20 | 1992-07-09 | Smithkline Beecham Biologicals (S.A.) | Vaccines based on hepatitis b surface antigen |
GB9105992D0 (en) | 1991-03-21 | 1991-05-08 | Smithkline Beecham Biolog | Vaccine |
US6197311B1 (en) * | 1991-07-25 | 2001-03-06 | Idec Pharmaceuticals Corporation | Induction of cytotoxic T-lymphocyte responses |
ZA988461B (en) * | 1997-09-18 | 1999-03-30 | Idec Pharma Corp | Synergistic composition and methods for treating neoplastic or cancerous growths and for restoring or boosting hematopoiesis |
-
1998
- 1998-02-17 US US09/024,220 patent/US6197311B1/en not_active Expired - Lifetime
-
2000
- 2000-12-20 US US09/740,003 patent/US6733763B2/en not_active Expired - Fee Related
-
2003
- 2003-12-23 US US10/743,398 patent/US20040197331A1/en not_active Abandoned
-
2005
- 2005-07-07 US US11/175,213 patent/US20060057162A1/en not_active Abandoned
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3083142A (en) * | 1958-02-27 | 1963-03-26 | Glaxo Group Ltd | Improved swine erysipelas vaccine |
US3790665A (en) * | 1968-02-23 | 1974-02-05 | Haver Lockhart Labor Inc | Injectable adjuvant,method of preparing same and compositions including such adjuvant |
US3919411A (en) * | 1972-01-31 | 1975-11-11 | Bayvet Corp | Injectable adjuvant and compositions including such adjuvant |
US4053585A (en) * | 1974-06-25 | 1977-10-11 | National Research Development Corporation | Immunological preparations |
US4117113A (en) * | 1974-06-25 | 1978-09-26 | National Research Development Corporation | Immunological preparations |
US4770874A (en) * | 1983-08-22 | 1988-09-13 | Syntex (U.S.A.) Inc. | Polyoxypropylene-polyoxyethylene block polymer based adjuvants |
US4772466A (en) * | 1983-08-22 | 1988-09-20 | Syntex (U.S.A.) Inc. | Vaccines comprising polyoxypropylene-polyoxyethylene block polymer based adjuvants |
US5114708A (en) * | 1985-06-18 | 1992-05-19 | Emory University | Method for stimulating growth in animals |
US5234683A (en) * | 1985-06-18 | 1993-08-10 | Emory University | Method of stimulating the immune system |
US4877611A (en) * | 1986-04-15 | 1989-10-31 | Ribi Immunochem Research Inc. | Vaccine containing tumor antigens and adjuvants |
US4778784A (en) * | 1987-01-07 | 1988-10-18 | Baylor College Of Medicine | Cyclic peptide and method of use for inducing an immunological response to hepatitis B virus |
US4963354A (en) * | 1987-01-21 | 1990-10-16 | Genentech, Inc. | Use of tumor necrosis factor (TNF) as an adjuvant |
US5585103A (en) * | 1991-07-25 | 1996-12-17 | Idec Pharmaceutical Corporation | Induction of cytotoxic T-lymphocyte responses |
US5695770A (en) * | 1991-07-25 | 1997-12-09 | Idec Pharmaceuticals Corporation | Induction of cytotoxic T-lymphocyte responses |
US5709860A (en) * | 1991-07-25 | 1998-01-20 | Idec Pharmaceuticals Corporation | Induction of cytotoxic T-lymphocyte responses |
US6270769B1 (en) * | 1991-07-25 | 2001-08-07 | Idec Pharmaceuticals Corporation | Induction of cytotoxic T-lymphocyte responses |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2422809A1 (en) * | 2005-04-15 | 2012-02-29 | Merial Limited | Novel vaccine formulations |
Also Published As
Publication number | Publication date |
---|---|
US6733763B2 (en) | 2004-05-11 |
US6197311B1 (en) | 2001-03-06 |
US20020039582A1 (en) | 2002-04-04 |
US20060057162A1 (en) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5695770A (en) | Induction of cytotoxic T-lymphocyte responses | |
US6270769B1 (en) | Induction of cytotoxic T-lymphocyte responses | |
US20060057162A1 (en) | Induction of cytotoxic T-lymphocyte responses | |
KR100478617B1 (en) | Induction of cytotoxic t-lymphocyte responses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BIOGEN IDEC INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:IDEC PHARMACEUTICALS CORPORATION;REEL/FRAME:015044/0873 Effective date: 20031112 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |