US20040185497A1 - Method and kit for the screening, the detection and/or the quantification of transcriptional factors - Google Patents

Method and kit for the screening, the detection and/or the quantification of transcriptional factors Download PDF

Info

Publication number
US20040185497A1
US20040185497A1 US10/821,568 US82156804A US2004185497A1 US 20040185497 A1 US20040185497 A1 US 20040185497A1 US 82156804 A US82156804 A US 82156804A US 2004185497 A1 US2004185497 A1 US 2004185497A1
Authority
US
United States
Prior art keywords
transcriptional factor
binding
double
transcriptional
stranded dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/821,568
Inventor
Jose Remacle
Patricia Renard
Muriel Art
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/821,568 priority Critical patent/US20040185497A1/en
Publication of US20040185497A1 publication Critical patent/US20040185497A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds

Definitions

  • the present invention is related to a method and kit comprising reagents and media for the screening, the detection and/or the quantification of transcriptional factors or compounds binding said factors by non radioactive detection means.
  • Transcriptional factors are proteins that bind to specific sequences of DNA, called consensus sequences, and influence the transcription of the DNA into mRNA. Some of these factors directly participate in the transcription process by activating or inhibiting the transcription and regulate the synthesis of proteins needed by cells to function, to adapt, to respond or to differentiate. Some of these proteins have to be transcribed in a constitutive manner (essential role in cell functions) while others are only synthesized in response to specific stimuli or when the cells are for instance in pathological environment. External signals are sensed by receptors and transduced through the plasma membrane followed by cascades of enzymatic kinase reactions, resulting in a phosphorylation or dephosphorylation of the transcriptional factors which affects positively or negatively their binding to their consensus sequence.
  • a second largely used method is based on reporter genes (luciferase or .beta.-galactosidase genes) placed under the control of a promoter containing the consensus sequence.
  • This promoter can be artificial, made of several specific cis-elements and a TATA box, or natural, like the HIV long terminal repeat (LTR) element.
  • LTR HIV long terminal repeat
  • other transcription factors influence the expression level of the reporter gene.
  • the read-out is the enzymatic activity of luciferase, for instance, the results may be affected by interferences with downstream processes like general transcription or transduction machinery. This method is widely used provided the cells are efficiently transfected with the reporter plasmid.
  • the length of the nucleic acid probe ranges between 28 and 60 base pairs. This assay works with high concentration of factor in solution, but it is not at all sensitive for diagnostic assay in biological samples. Furthermore, probe excess has to be added in solution.
  • the probe, which binds to avidin on the support, is preferably a free probe which has a smaller size and thus a much higher diffuision rate, so that the level of binding of probe/factor complex is low.
  • the U.S. Pat. No. 5,747,253 describes a method for the identification of oligomers having a very high specific binding capacity for transcriptional factors. Synthesized oligonucleotides are first incubated with factors in solution in order to test their binding affinity to the factor, then assayed by attaching the oligonucleotide up to 25 bases to a support through a linker moiety present on the oligonucleotides. The reaction between the factor and the oligonucleotide is performed in solution, thereby limiting the sensitivity.
  • Magnetic microparticles can also be used to capture complexes formed between nucleic acids and proteins as proposed in document U.S. Pat. No. 5,939,261. The reaction is performed in solution thus leading to the already mentioned limitations.
  • the transcriptional factors are present in minute amounts and this is the reason why the EMSA based on the incubation of the large excess of radioactive labelled probes in solution is the standard assay in the laboratories.
  • the concentration of the transcriptional factor is below the dissociation constant since the factors are diluted during the preparation of cell lysates. For this reason, an excess of probes allows the displacement of the binding reaction towards the formation of the DNA-protein complex.
  • the low level of binding can be detected due to the high sensitivity of the P 32 radioactive measurement.
  • the present invention aims to provide a new and improved method and device for the screening, the detection (and possibly the quantification) of transcriptional factors or compounds binding said factors, preferably several of them being present in a biological sample, preferably by using non radioactive detection means.
  • Transcriptional factors are proteins which bind to specific sequences of double stranded DNA, called consensus sequences, and when activated either by themselves or with the help of other proteins or enzymes will modulate, either activate or repress, the transcription of the DNA.
  • the transcriptional factors are usually found in both active or inactive forms, the shift form one form to the other being usually reversible. They are composed of a DNA binding domain and a transactivating domain responsible for their activity and they can be part of a large protein complex which interacts with the transcriptional machinery for regulating its activity.
  • the following method according to the invention may also be used for the screening, detection and/or quantification of proteins which bind to specific double stranded DNA.
  • One such protein is the HIV integrase which recognizes the sequence 5′-GTGTGGAAAATCTCTAGCA-3′ (SEQ ID NO: 132) with a possible GT at the 3′ end which is cut by the enzyme.
  • the enzyme can be stabilized in its binding form using specific experimental conditions mainly the presence of Me ++ (Yi et al. Biochemistry 38, 8458, 1999).
  • Other viral proteins binding to DNA sequence are listed in table 1 and are also possibly detected by the present invention.
  • FIG. 1 is a schematic presentation of the procedure for an assay of a transcriptional factor according to the invention.
  • FIG. 2 represents a DNA-binding assay of 3 different transcription factors (NF ⁇ B, CREB and AP-1) measured simultaneously in the sane cell extracts in microwells.
  • Microwells contain a 100 bp DNA terminated by the sequence specific for either NF ⁇ B, CREB or AP-1, and the DNA-binding capacity of the transcription is detected respectively with anti-p65, anti phospho-CREB and anti-c-fos (for AP-1 assay).
  • the DNA-binding assay is performed on cell lysates coming either from cells left unstimulated, or stimulated with IL-1, with forskolin, with PMA+ionomycin, with IL-1 and forskolin, with IL-1 and PMA+ionomycin, with forskolin and PMA+ionomycin, and IL-1 and forskolin and PMA+ionomycin.
  • the results show the signal obtained for the assay of NF-KB (A), P-CREB (B) and c-fos (C) on the various cell extracts (NF-KB is strongly induced in Il-1 stimulated cells, P-CREB by forskolin stimulation and AP-1 by PMA).
  • FIG. 3 presents the sensitivity of the DNA-binding assay.
  • DNA-binding activity of purified NF ⁇ B (p50) was measured on microwells containing DNA probe specific for NF ⁇ B.
  • concentrations of p50 used in this assay range from 10 ⁇ 12 mole to 5 ⁇ 10 ⁇ 16 mole/well.
  • FIG. 4 presents the sensitivity of the DNA-binding assay. DNA-binding activity of stimulated cells and unstimulated cells for NF ⁇ B.
  • FIG. 5 presents the values obtained for the detection of NF ⁇ B present in cells stimulated or not with IL-1 on microarray by using DNA probes of different lengths containing a spotted consensus sequence for NF ⁇ B.
  • FIG. 6 presents the effect of various drugs on the DNA-binding activity of IL-1-induced NF ⁇ B.
  • the present invention is related to a screening and/or quantification method of one or more transcriptional factor(s) 1 present in a cell or a cell lysate (including nuclear lysate of a cell), said method described in the enclosed FIG. 1 comprising the steps of:
  • double-stranded DNA sequence(s) 2 binding to an insoluble solid support 3 , double-stranded DNA sequence(s) 2 at a concentration of at least about 0.01 pmole/cm 2 , preferably 0.1 pmole/cm 2 , of said solid support surface (step 1), said double-stranded DNA sequence 2 further comprising a specific nucleotide sequence able to bind specifically said transcriptional factor(s) 1 , putting into contact said transcriptional factor(s) 1 with said bound double-stranded DNA sequence(s) 2 , and
  • said signal is obtained by the following step:
  • the presence of the fixed transcriptional factor 1 is detected by using firstly a primary antibody 4 raised against the factor 1 (step 2) and then a secondary labelled antibody 5 (for example conjugated with an enzyme such as peroxidase) directed against the primary antibody 4 (step 3).
  • a primary antibody 4 raised against the factor 1 step 2
  • a secondary labelled antibody 5 for example conjugated with an enzyme such as peroxidase
  • step 4 The presence of the peroxidase is then advantageously assayed through the addition of a suitable substrate by a colorimetric detection of the reaction product in solution (step 4).
  • a colorimetric detection of the reaction product in solution step 4
  • Such non-radioactive method is rapid, more sensitive than gel retardation, and suits for large-scale screening or detection upon various solid supports.
  • nucleotide sequence of a double-stranded DNA sequence able to bind a transcriptional factor a nucleotide sequence which can be recognized specifically through biochemical interactions by said transcriptional factor(s).
  • the present invention is sensitive enough to be applied for the detection of transcriptional factors or proteins able to bind DNA sequence present in cell lysate (including nuclear lysate) or present in a body fluid.
  • cell lysate including nuclear lysate
  • the limit of detection was found to be of about 5 ⁇ 10 ⁇ 16 mole for NF ⁇ B assay. This sensitivity explains the possibility of using such invention for the detection of transcriptional factors naturally present in cell lysate.
  • the sensitivity obtained which is at least as good as the EMSA method (example 2), is a surprising finding since the DNA consensus is not in solution, but fixed on (bound to) a solid surface (where the reaction is slower than in solution) and the detection does not require the radioactive measurement but may be obtained by simple colorimetry.
  • the specific nucleotide sequence of the double-stranded DNA sequence(s) able to bind with the transcriptional factor(s) is located at a distance of at least 6.8 nm from the surface of the solid support.
  • the double-stranded DNA sequence may comprise a spacer of at least about 13.5 nm between the specific sequence and the surface of the solid support.
  • said spacer is a double-stranded DNA nucleotide sequence of at least 20 base pairs, preferably at least 50, 100, 150 or 250 base pairs.
  • Another aspect of the present invention is related to a screening, diagnostic and/or quantification kit comprising means and media for performing the method according to the invention.
  • the invention is related also to a screening and/or quantification kit or device including high throughput screening device, possibly comprising computer-controllable electromagnetic means and robots (such as high-throughput screening device) allowing the screening and detection upon any type of solid support 1 and used for the screening and/or quantification of transcriptional factor(s) (or compounds able to bind said transcriptional factor(s) or inhibit the binding of said transcriptional factor) to said specific nucleotide sequence comprised in the double-stranded DNA bound to the insoluble solid support at a concentration of at least about 0.01 pmole/cm 2 of solid support surface; said specific nucleotide sequence being located at a distance of at least about 6.8 nm from the surface of the solid support.
  • high throughput screening device possibly comprising computer-controllable electromagnetic means and robots (such as high-throughput screening device) allowing the screening and detection upon any type of solid support 1 and used for the screening and/or quantification of transcriptional factor(s) (or compounds able to bind said transcriptional factor(
  • the screening and/or quantification kit according to the invention comprises also means and media for detecting the signal resulting from the binding of the transcriptional factor(s) to the double-stranded DNA sequence(s), said signal being a non-radioactive resulting signal.
  • the method and kit according to the invention is also suitable for the (possibly simultaneous) screening and/or quantification of multiple different transcriptional factors present in a same biological sample (cell or cell lysate).
  • the method is especially well adapted for the detection of multiple transcriptional factors, on a same support (one biochips or one multiwell plate).
  • the detection of the different factors from a same sample can also be performed in wells of different plates.
  • he method according to the invention may comprise also the step of screening and/or quantifying compound(s) able to bind to said transcriptional factor(s) (or inhibit their binding) to the specific sequence, preferably by using steps, means and media such as the ones described in the U.S. Pat. No. 5,563,036.
  • the method according to the invention may also comprise the step of identification of at least one characteristic specific of a given transcriptional factor activation.
  • Some transcriptional factors can bind to their consensus DNA sequence without activating the transcriptional machinery. The activation is then associated with one or several specific changes, the most common one being the phosphorylation (or dephosphorylation) at specific amino acid(s) of the protein.
  • An example of such transcriptional factor is CREB, which is only active when phosphorylated (example 1).
  • the method according to the invention may also comprise the step of screening and/or quantifying known and unknown compound(s) able to modulate the activation of said transcriptional factor(s) in cells, tissues or organisms and detecting the residual activity of the transcriptional factor(s) in cell lysate.
  • External protein having at least in part the binding DNA domain can also be added to the incubation solution in order to determine its possible activation by cell lysate and to obtain a screening of compounds acting upon this activation. If a purified transcriptional factor is added to the cell lysate, its activation can be quantified by determination of one or several of its specific characteristics. Proteins acting as activators or inhibitors upon a transcriptional factor activation can also be added in the incubation medium and serve in a screening method of compounds acting upon these proteins.
  • the method may also comprise the step of forming a mixture by combining a labelled protein comprising a portion of the transcriptional factor with the specific nucleotide sequence being bound to the insoluble solid support. Thereafter, the method comprises the step of incubating said mixture in the conditions, whereby in the absence of the compound, the labelled protein binds to the nucleotide sequence, the step of separating from the solid support a fraction of said mixture, whereby the fraction comprises the labelled protein if said labelled protein is not bound to the sequence and the step of detecting the presence or absence of said labelled protein upon said solid support; wherein the absence of said detected label upon said solid support, means that the compound inhibits the binding of a transcriptional factor to the nucleotide sequence.
  • said method comprises also the step of recovering the detected unknown compound.
  • the solid support is preferably an array bearing at least 4, 10, 16, 25, 100, 1000, 10.000 or more spot/cm 2 of solid support surface, each spot containing at a specific location double-stranded DNA sequence(s) for the binding of transcriptional factor(s).
  • the double-stranded DNA sequence 2 is bound to a first member 6 of a binding pair such as biotin/streptavidin, hapten/receptor, antigen/antibody), able to interact with the second member 7 of said binding pair, bound to the surface of the solid support 3 .
  • a binding pair such as biotin/streptavidin, hapten/receptor, antigen/antibody
  • the double-stranded DNA sequence(s) could be covalently bound to the surface of the insoluble solid support.
  • the method according to the invention could comprise also the step of identification of transcriptional factor(s) and/or protein(s) which are part of their active complex.
  • the method according to the invention may also comprise the step of screening or detecting the “fixed” transcriptional factor(s) and possibly quantifying the presence of said “fixed” transcriptional factor(s) (and/or possibly quantifying the concentration of the transcriptional factor(s) present in a biological sample (cell or cell lysate)).
  • Said general method for detecting the DNA-binding capacity of transcriptional factors is enough sensitive, specific and valid for most (if not all) transcription factors. Unexpectedly, it is possible to improve said sensitive method, by increasing the size of the spacer between a consensus sequence on which the transcriptional factor will bind and by using a very high density of these nucleotide sequences attached on the solid support surface.
  • the method is so sensitive that it can be used for the detection of one factor present in a biological sample, but also for the detection of several factors by the use of multiple nucleotide sequences attached in distinctive spots on a solid surface such as biochips (microarrays).
  • the minimum spacer was found to be a nucleotide sequence, such as a DNA sequence, of 20 base pairs (bp), but said spacer may have between 50 and 250 base pairs according to the type of solid support and antibody used (Example 4).
  • the presence of the consensus nucleotide sequence at long distance from the solid support surface can be obtained similarly through the presence of a chemical spacer of at least 10 atoms, preferably of at least 44 atoms, more preferably of at least 50 atoms or more.
  • Said method, kit or device are suitable for testing the activity of pharmaceutical drugs or methods acting upon these transcriptional factors (i.e. as inhibitors and/or activators of their binding to the DNA) or on their regulatory processes: activation or repression.
  • the invention is also related to said compound identified or recovered and possibly integrated in a pharmaceutical composition for preventing or treating various symptoms or diseases.
  • Said screening, detection and/or quantification method and kit are suitable for detection and quantification of all the transcriptional factors for which the DNA binding sequence is known. These transcriptional factors and their properties are listed in the Web site “http://transfac.gbf.de/TRANSFAC/cl/cl.html” The most commonly tested factors are selected from the group consisting of NF ⁇ B, AP-1, CREB, SP-1, C/EBP, GR, HIF-1, Myc, NF-AT, Oct, TBP and CBF-1. A list of some transcriptional factors and their corresponding consensus (sequences SEQ ID No. 1 to 125) is given in table 1.
  • NF ⁇ B is an important ubiquitous transcriptional factor activated following cell stimulation, involved in the immune response to some viral and bacterial products, oxidative stresses or pro-inflammatory cytokines (Baeuerle, P. A. and Baichwal, V. R., Adv Immunol, 65, 111-37 (1997)).
  • AP1 is also dimeric transcriptional factor which is involved in many cell responses through activation of kinase cascade. This transcription factor is involved in a variety of biological processes like cell growth, differentiation, or apoptosis.
  • said detection and possibly quantification is obtained by the use of compounds that are able to specifically bind to the transcriptional factor fixed upon the double-stranded DNA, such as (preferably monoclonal) antibodies or specific hypervariable portions thereof (Fab′, Fab2′, etc.).
  • compounds that are able to specifically bind to the transcriptional factor fixed upon the double-stranded DNA such as (preferably monoclonal) antibodies or specific hypervariable portions thereof (Fab′, Fab2′, etc.).
  • said binding is followed by incubation (and washing) with labelled compounds able to react with the first compound binding to said transcriptional factor, preferably (monoclonal) antibodies directed against the anti-transcriptional factor antibodies or specific hypervariable portions thereof (Fab′, Fab2′, etc.).
  • Said last antibodies are preferably labelled with non radioactive markers allowing a detection, preferably by colorimetry, fluorescence, bioluminescence, electroluminescence or precipitation of a metal deposit (such as silver staining) as in example 3.
  • Other secondary binding proteins like protein A which bind to antibodies are also an embodiment of the method.
  • Said non radioactive test is preferably based upon a calorimetric assay resulting from an enzymatic activity such as described in the enclosed FIG. 1. If direct method such as mass spectrum analysis is sensitive enough it can be used for direct detection of the bound factor.
  • the selected antibody recognizes an epitope which is accessible when the factor is in its active form and bound to DNA.
  • the active and inactive forms of the factors differ in their phosphorylation state or by the presence of an inactivator protein.
  • the antibody has to recognize the active form.
  • the concentration of these transcription factors in a cell is very low and may reach the limit of the affinity coefficient of the antibodies.
  • An antibody with a high affinity i.e. with very low coefficient of dissociation
  • any other protein which has an affinity for the factor can be used for the detection.
  • the present invention also allows a differentiation between the DNA binding of the transcription factor and its activity. This activity is associated with one or several particular characteristics of the factors, the most common one being the phosphorylation at specific locations or the dissociation of inhibitory proteins. By using appropriate antibodies directed against these elements, it is possible to determine the amount of transcriptional factors in their active form.
  • CREB can bind to its DNA consensus sequence without being active. Its activation results from a specific phosphorylation at a serine group, making the P-CREB.
  • the present invention detects both the CREB binding and the P-CREB activation by using antibodies directed either against CREB or specific of the P-CREB (example 1).
  • the attached transcriptional factor can also be used to test for the presence of proteins which have affinity for the transcriptional factor.
  • the method comprises also the step of screening and/or quantifying known and unknown compound(s) able to modulate the activation of said transcriptional factor by modification of the level of specific characteristics of said factor.
  • binding is specific and if no other proteins are used on the nucleotide sequence binding on the surface, for example when the nucleotide sequences are directly linked to said surface, then a direct detection of protein will give an estimation and/or quantification of the bound factor.
  • a signal obtained in each well or for each spot of a biochip is recorded and the means of the signal are calculated for each identical consensus sequence.
  • two (and preferably three to five) identical spots are present on each array in order to correct variations that may occur at any step of the process.
  • the background values are wells or spots coated with a consensus sequence, in which binding buffer and lysis buffer is added instead of a cell extract or purified transcription factor (negative control).
  • a positive control is preferably added as a factor obtained in a pure active form and for which a consensus nucleotide sequence is attached to the surface of the solid support in the test.
  • Quantification has to take into account not only for the binding yield, but also the detection part of the process and the reading scale.
  • Internal or external standards using purified active transcriptional factor can be added to the sample at either step of the process in given amount as reference value to which the results will be compared. Validation of the use of these standards has to be performed earlier in order to validate their binding efficiency compared to the tested factors.
  • transcriptional factors binding or activity is especially useful since it gives a pattern of response of the cells or tissues to a particular biological situation, to molecules or drug action.
  • the transcriptional factors are activated by complex pathways which are related to each other.
  • a general screening analysis of different transcriptional factors will give a better view and help the interpretation of the studied effects.
  • solid supports such as a biochips can be inserted in a machine support connected to another chamber and automatic machine through the control of liquid solution based upon the use of microfluidic technology.
  • a machine support connected to another chamber and automatic machine through the control of liquid solution based upon the use of microfluidic technology.
  • it can be incubated, heated, washed and labelled by automates, even for previous steps (like a PCR amplification) or the following step (labelling and detection). All these steps can be performed upon the same solid support.
  • the solid support is preferably selected from the group consisting of glass, metallic supports, polymeric supports (preferably a polystyrene support activated with carboxyl or amino groups present on its surface) or any other support used in the microchips (or micro-arrays) technology (preferably activated glass bearing aldehyde groups), said support comprising also specific coatings, markers or devices (bar codes, electronic devices, etc.) for improving the assay.
  • polymeric supports preferably a polystyrene support activated with carboxyl or amino groups present on its surface
  • any other support used in the microchips (or micro-arrays) technology preferably activated glass bearing aldehyde groups
  • said support comprising also specific coatings, markers or devices (bar codes, electronic devices, etc.) for improving the assay.
  • glass presents many advantages (like being inert and having a low auto-fluorescence), other supports like polymers, with various chemically well-defined groups at their surface, allowing the binding of the nucleotide sequences are useful.
  • Miniaturization allows to perform one assay onto a surface (usually circular spots of about 0.1 to about 1 mm diameter).
  • a low density array, containing 20 to 400 spots is easily obtained with pins of 0.25 mm at low cost.
  • Higher density of spots going to 1,600 spots per cm2 can be obtained by reducing the size of the spots for example to 0.15 mm.
  • the advantages of this technology is the high number of data which can be obtained and analyzed simultaneously, the possibility to perform replicates and the small amount of biological sample necessary for the assay.
  • the arrays technology allows the simultaneous detection of different factors present in the same sample, which is possible due to the fact that several factors bind to their consensus sequence in the same reacting conditions. Solutions are available for example from Promega (Madison, Wis., USA) for the binding of several factors (Catalogue E3581). Conditions which allow the binding of the factors studied may be optimized by the person skilled in the art. Other binding assays involving DNA-DNA recognition, antigen-antibody or receptor-ligand recognition can be performed simultaneously on the same chips for other molecules.
  • the detection of the specific binding between the transcriptional factor and the double-stranded DNA sequence is obtained by any one of the methods described previously, or preferably by a method allowing a precipitation of a metal deposit (such as silver staining) at the location where the transcriptional factor has fixed (recognized) the double-stranded DNA sequence).
  • a metal deposit such as silver staining
  • nucleotide sequences bound to the solid support preferably microwell plates or microarray
  • the design of these sequences and binding conditions allow a very high sensitivity necessary for assays in biological samples.
  • Step 1 Binding of the Double Strand Oligonucleotidic Probe on Multi-well Plates
  • the spacer double strand nucleotide sequences were constructed from the following CMV sequence: 5′TGGCCAAGCGGCCTCTGATAACCAAGCCTGAGGTTATCAGTGTAATGAAGCGC CGCATTGAGGAGATCTGCATGAAGGTCTTTGCCCAGTACATTCTGGGGGCCGATC CTCTGAGAGTCTGCTCCTAGTGTGGATGACCTACGGGCCATCGCCGAGGAGTC AGATGAGGAAGAGGCTATTGTAGCCTACACTTTGGCCACCGCTGGTGTCAGCTCC TCTGATTCTCTGGTGTCACCCCCAGAGTCCCCTGTAC (SEQ ID NO: 146) acting as a spacer was linked to a) the NF ⁇ B consensus oligonucleotide 5′AGTTGAGGGGACTTTCCCAGGC-3′ (SEQ ID NO: 147) b) the CREB consensus oligonucleotide 5′ATTGCCTGACGTCAGAGCTAG-3′ (SEQ ID NO: 148) and c) the
  • the spacer was of 100 based pairs.
  • the CMV extremity is 5′ biotinylated, so that these probes can be linked to streptavidin-coated 96-wells plates: 2 pmoles of probes per well are incubated 1 h at 37° C. in 50 ⁇ l 10 mM phosphate buffer 150 mM NaCl (hereafter called PBS 150 ). Plates are then washed and the amount of DNA fixed on streptavidin-coated plates was quantified using the picogreen assay (Molecular Probes, OR, USA). One picomole of DNA was found to be fixed on the wells using DNA standard for calibration of the assay.
  • Step 2 Binding of the Transcription Factor on the Double Strand Probe
  • This assay was either performed with purified p50-p50 (Promega, Madison, Wis., USA), or with nuclear cell extracts from SV-40 transformed WI-38 fibroblasts (WI-38 VA13 cell line).
  • Cells were purchased from the ATCC and plated in 75 cm 2 flasks. They were serially cultivated in Minimum Essential Medium (Gibco, UK) supplemented with Na 2 SeO 3 10 ⁇ 7 M and antibiotics, in the presence of 10% fetal bovine serum. Cells were stimulated for 30 min with IL-1 (to activate NF ⁇ B), forskolin (to activate CREB), PMA+ionomycin (to activate AP-1) or left unstimulated.
  • IL-1 to activate NF ⁇ B
  • forskolin to activate CREB
  • PMA+ionomycin to activate AP-1
  • the pellet was resuspended in 100 ⁇ l of lysis buffer (hypotonic buffer containing 20% glycerol, 0.4 M NaCl, phosphatases and proteases inhibitors cocktail).
  • lysis buffer hypertonic buffer containing 20% glycerol, 0.4 M NaCl, phosphatases and proteases inhibitors cocktail.
  • the nuclear extract was agitated 30 min at 4° C., and then centrifuged for 10 min at maximal speed (13000 rpm) at 4° C.
  • Step 3 Binding of Anti-NF ⁇ B on the NF ⁇ B-DNA Complex
  • NF ⁇ B anti p65 (Santa Cruz #sc-372) or anti p50 (Santa Cruz #sc-7178)
  • CREB anti CREB (Rockland, #100-401-195) or anti phospho-CREB (Upstate Biotechnology 06-519).
  • AP-1 anti c-fos (Santa Cruz, #sc-7202) or anti c-jun (Biolabs #9164).
  • microwells are then washed 3 times with PBS 50 +0.1% Tween.
  • Step 4 Binding of Peroxidase-conjugated Anti-rabbit IgG
  • Step 5 Colorimetric Revelation
  • the results are expressed as the percentage of the signal obtained with the regular activator the transcription factor assayed (for example, the NF ⁇ B DNA-binding activity is expressed as the percentage of the NF ⁇ B DNA-binding activity measured in cells stimulated with IL-1 alone).
  • the sensitivity of the calorimetric DNA-binding assay with cell lysates is also very high, as shown in FIG. 3.
  • Cell extracts are coming either from unstimulated cells or from cells stimulated with IL-1 in order to proceed for the assay as described in the example 1.
  • concentrations ranged between 0.5 and 50 ⁇ g per well.
  • the assay was performed in parallel with EMSA, on the same protein extracts.
  • the results presented on FIG. 4 clearly show that the NF ⁇ B DNA-binding assay in microwells is more than 10 times more sensitive than the EMSA: 5 ⁇ g of proteins were required to detect a first detection signal by EMSA, but less than 0.5 ⁇ g of proteins was necessary for the microwell assay.
  • Step 1 Binding of the Probes on Glass
  • Activated glass slides bearing aldehyde groups were purchased from AAT (Belgium).
  • the slides were first incubated in 0.8 ml of a 50 ⁇ g/ml streptavidin solution in a 10 mM phosphate buffer (pH 7.4) containing 10 mM NaCi (PBS 10 buffer). After 1 h incubation at 20° C., the plates were washed 3 times for 2 min in PBS 150 containing 0.02% Tween 20 and then 2 times 2 min with water. The plates were then incubated for 2 h at 20° C. in 20 ml of PBS 150 solution containing 10% non fat dried milk and then washed 5 times 2 min in PBS 150 solution.
  • Step 2 Binding of Transcription Factor on the Double Strand Probe Fixed on Micro-array
  • This assay was performed with nuclear extracts from WI-38 VA 13 fibroblasts stimulated with IL-1 ⁇ or left unstimulated.
  • the cell extracts were prepared as described in the example 1.
  • the negative control was 20 ⁇ l of lysis buffer mixed with 30 ⁇ l of binding buffer.
  • 20 ⁇ l of p50 diluted in lysis buffer or 20 ⁇ l of nuclear cell extract are incubated with 30 ⁇ l of binding buffer (AAT, Namur, Belgium) per incubation chamber. After 1 h incubation at room temperature with a mild agitation (200 rpm on IKA MS2 vortex, Germany), the arrays were washed 3 times.
  • Steps 3, 4 and 5 Binding of Anti-NF ⁇ B on the NF ⁇ B-DNA Complex and Detection
  • the binding of the primary anti-NF ⁇ B (anti-p50) antibody was then used for reaction on the factor followed by a washing and an incubation with a secondary antibody.
  • the second antibody was gold-labelled. After 3 incubations of 10 min in a mixture of silver enhancer A, the slides were washed with water.
  • the consensus sequences were aminated by using a 5′ terminal aminated primer and amplified by PCR before being spotted directly on the aldehyde glass slides.
  • the detection method was then processed in the same way as here above.
  • Step 1 Binding of the Probes on Glass.
  • Step 2 Binding of NF ⁇ B on the Double Strand Probe Fixed on Micro-array
  • This assay was performed with whole cell lysates from WI-38 VA 13 fibroblasts stimulated with IL-10 (a NF ⁇ B activator) or 10 ⁇ g/ml of forskolin(to activate CREB).
  • the control was 20 ⁇ l of lysis buffer mixed with 30 ⁇ l of binding buffer.
  • the binding of the primary anti-NF ⁇ B and anti-PCREB antibodies was then used for reaction on the factors followed by a second gold labelled antibody and a calorimetric detection as in example 3.
  • the results with increasing spacer length for the NF ⁇ B is shown in FIG. 5.
  • the figure shows the total length of the fixed DNA probes.
  • the values for P-CREB with unstimulated cells were 5.5 and 4 respectively with no spacer and with a 100 base spacer.
  • the values for stimulated cells were respectively of 7 and 21 respectively with no spacer and a spacer of 100 bases pairs.
  • the DNA-binding colorimetric assay was used for screening of molecules, like drugs, that can interfere either directly with the DNA-binding capacity of a transcription factor or with the upstream cellular activation process of a transcription factor.
  • FIG. 6 several molecules known as drugs were screened for their eventual inhibitory effect on the DNA-binding capacity of 3 transcription factors.
  • 5 ⁇ g of nuclear extracts prepared as in example 1 from a) IL-1-stimulated fibroblasts or b) Forskolin-stimulated cells or c) PMA+ionomycin-stimulated cells were assayed respectively for the DNA-binding capacity of NF ⁇ B, CREB an AP-1, in the presence of absence of various veinotropic drugs at 10 ⁇ 4 M.
  • Epstein-Barr GGT TAG CAT ATG CTA ACC A (SEQ ID NO:126)
  • Herpes Simplex ATG CTA ATG ATA (SEQ ID NO:130)
  • HIV Integrase GTGTGGAAAATCTCTAGCA SEQ ID NO:132

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention is related to a screening, detection and/or quantification method of one or more transcriptional factor(s) (1) possibly present in a biological sample, said method comprising the steps of: possibly extracting and isolating said transcriptional factor (1) from said biological sample, putting into contact the transcriptional factor (1) with a double-stranded DNA sequence (2) bound to an insoluble solid support (3), and detecting and/or quantifying said fixed transcriptional factor (1), said double-stranded DNA sequence having a specific sequence able to be fixed by the transcriptional factor (1) and being preferably located at a distance of at least about 6.8 nm from the surface of the solid support (3), and said double-stranded DNA sequence being bound to the surface of the insoluble solid support (3) at a concentration of at least 0.01 pmole/cm2 of solid support surface (3). The present invention is also related to the kit comprising means and media for performing said method.

Description

    RELATED APPLICATIONS
  • This application is a Divisional of U.S. application Ser. No. 09/816,763 filed Mar. 23, 2001, which claims the benefit of European Patent Application No. 00870057.7 filed Mar. 24, 2000, both of which are expressly incorporated herein by reference in their entireties.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention is related to a method and kit comprising reagents and media for the screening, the detection and/or the quantification of transcriptional factors or compounds binding said factors by non radioactive detection means. [0003]
  • 2. Description of the Related Art [0004]
  • Transcriptional factors are proteins that bind to specific sequences of DNA, called consensus sequences, and influence the transcription of the DNA into mRNA. Some of these factors directly participate in the transcription process by activating or inhibiting the transcription and regulate the synthesis of proteins needed by cells to function, to adapt, to respond or to differentiate. Some of these proteins have to be transcribed in a constitutive manner (essential role in cell functions) while others are only synthesized in response to specific stimuli or when the cells are for instance in pathological environment. External signals are sensed by receptors and transduced through the plasma membrane followed by cascades of enzymatic kinase reactions, resulting in a phosphorylation or dephosphorylation of the transcriptional factors which affects positively or negatively their binding to their consensus sequence. [0005]
  • An example of drug acting indirectly on transcriptional factor is compactin, an inhibitor of HMG CoA reductase, which leads to an up-regulation of the transcription of the LDL receptor gene, permitting the clearance of cholesterol (U.S. Pat. No. 5,563,036). [0006]
  • There is a need for the detection and quantification of transcriptional factors (working as regulators and adaptators) for improving the diagnostic of pathologies or for developing drug affecting their activity. [0007]
  • Several methods are currently used to estimate the activation of transcriptional factors like NFκB. The most common method is to assay for their DNA-binding capacity by gel retardation, also called electrophoretic mobility shift assay (EMSA) (Schreck, R. et al, Nucleic Acids Res, 18(22), 6497-502 (1990)). This method is sensitive, but does not allow the simultaneously processing of numerous samples and requires particular precautions and equipments necessary for the handling of radioactivity. [0008]
  • A second largely used method is based on reporter genes (luciferase or .beta.-galactosidase genes) placed under the control of a promoter containing the consensus sequence. This promoter can be artificial, made of several specific cis-elements and a TATA box, or natural, like the HIV long terminal repeat (LTR) element. However, other transcription factors influence the expression level of the reporter gene. In addition, as the read-out is the enzymatic activity of luciferase, for instance, the results may be affected by interferences with downstream processes like general transcription or transduction machinery. This method is widely used provided the cells are efficiently transfected with the reporter plasmid. [0009]
  • Two other indirect methods are restricted to a few transcription factors. The first one uses antibodies raised specifically against the nuclear localizing sequence (NLS) of transcriptional factors like NFκB, a part of the protein which is masked by IκB when the transcription factor is inactivated (Zabel, U. et al., EMBO J., 12(1), 201-211 (1993)). The activation of NFκB can be visualized by immunofluorescence with this antibody. This method does not suit many samples analysis. [0010]
  • These various methods have been very helpful for fundamental research during these last 10 years, to unravel the molecular activation mechanisms of transcriptional factors like NFκB or API. Nevertheless, research has been hampered in this field by the fact that no convenient assay suitable for large scale screening procedure was available. [0011]
  • An assay for testing the inhibition by pharmacological agents of transcriptional factors binding to their specific sequence has been described in the patent U.S. Pat. No. 5,563,036. The potentially active agent is incubated with the radioactively labelled transcriptional factor and the inhibition of its binding to the specific sequence is then assayed. This sequence is conjugated to biotin capable of specific binding to avidin immobilized onto microwells. A factor bound to the sequence and bearing biotin will be captured by avidin-coated plates and measured. The labelled protein, the nucleic acid conjugate and the compound form a mixture that is incubated with the avidin immobilized on the solid substrate. The binding of the factor to its sequence is performed in solution for testing possible inhibition by a pharmaceutical agent present in solution. [0012]
  • In solution, the length of the nucleic acid probe ranges between 28 and 60 base pairs. This assay works with high concentration of factor in solution, but it is not at all sensitive for diagnostic assay in biological samples. Furthermore, probe excess has to be added in solution. The probe, which binds to avidin on the support, is preferably a free probe which has a smaller size and thus a much higher diffuision rate, so that the level of binding of probe/factor complex is low. [0013]
  • The U.S. Pat. No. 5,747,253 describes a method for the identification of oligomers having a very high specific binding capacity for transcriptional factors. Synthesized oligonucleotides are first incubated with factors in solution in order to test their binding affinity to the factor, then assayed by attaching the oligonucleotide up to 25 bases to a support through a linker moiety present on the oligonucleotides. The reaction between the factor and the oligonucleotide is performed in solution, thereby limiting the sensitivity. [0014]
  • Magnetic microparticles can also be used to capture complexes formed between nucleic acids and proteins as proposed in document U.S. Pat. No. 5,939,261. The reaction is performed in solution thus leading to the already mentioned limitations. [0015]
  • Gubler and Abarzua (Biotechniques, 18, 1008, 1011-4 (1995)) describe immobilized antibodies on the surface of wells to capture the transcriptional factor present in a solution. A biotinylated probe is added in the solution so that the active factors will be immobilized together with their probes that can then be detected with alkaline-phosphatase-streptavidin conjugate. However, all transcriptional factors either active or not will bind to the antibodies. There will be a competition for the binding to the antibodies. Results on cell extracts showed a sensitivity of 2 μg in the assay for the p53 protein. [0016]
  • Benotmane et al (Analytical Biochemistry 250, 185-185 (1997)) describe a protein-DNA binding of a recombinant protein at equilibrium, said recombinant protein, a fragment 6D3 of HLTF, having a DNA binding domain, the 6D3 portion of an helicase, linked to the glutathione S-transferase (GST). The binding coefficient and the dissociation coefficient in two experimental systems are determined by testing the binding of the biotinylated probe on a protein onto wells surface, or binding of the protein onto a consensus sequence of 27 base pairs fixed to the wells surface. In both cases they detect the protein-DNA binding. However they found a lower dissociation constant in the second test. There was no attempt to test the method on cell extract and it is difficult to assess the real sensitivity of the method given the fact that pure recombinant protein was used in this assay. [0017]
  • In cells or tissues, the transcriptional factors are present in minute amounts and this is the reason why the EMSA based on the incubation of the large excess of radioactive labelled probes in solution is the standard assay in the laboratories. In many cases, the concentration of the transcriptional factor is below the dissociation constant since the factors are diluted during the preparation of cell lysates. For this reason, an excess of probes allows the displacement of the binding reaction towards the formation of the DNA-protein complex. Secondly the low level of binding can be detected due to the high sensitivity of the P[0018] 32 radioactive measurement. These difficulties explain also why alternative assays also use radioactive labelling or are only valid when performed on purified proteins.
  • SUMMARY OF THE INVENTION
  • The present invention aims to provide a new and improved method and device for the screening, the detection (and possibly the quantification) of transcriptional factors or compounds binding said factors, preferably several of them being present in a biological sample, preferably by using non radioactive detection means. [0019]
  • Definition [0020]
  • Transcriptional factors are proteins which bind to specific sequences of double stranded DNA, called consensus sequences, and when activated either by themselves or with the help of other proteins or enzymes will modulate, either activate or repress, the transcription of the DNA. [0021]
  • The transcriptional factors are usually found in both active or inactive forms, the shift form one form to the other being usually reversible. They are composed of a DNA binding domain and a transactivating domain responsible for their activity and they can be part of a large protein complex which interacts with the transcriptional machinery for regulating its activity. [0022]
  • The following method according to the invention may also be used for the screening, detection and/or quantification of proteins which bind to specific double stranded DNA. One such protein is the HIV integrase which recognizes the [0023] sequence 5′-GTGTGGAAAATCTCTAGCA-3′ (SEQ ID NO: 132) with a possible GT at the 3′ end which is cut by the enzyme. The enzyme can be stabilized in its binding form using specific experimental conditions mainly the presence of Me++ (Yi et al. Biochemistry 38, 8458, 1999). Other viral proteins binding to DNA sequence are listed in table 1 and are also possibly detected by the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic presentation of the procedure for an assay of a transcriptional factor according to the invention. [0024]
  • FIG. 2 represents a DNA-binding assay of 3 different transcription factors (NFκB, CREB and AP-1) measured simultaneously in the sane cell extracts in microwells. Microwells contain a 100 bp DNA terminated by the sequence specific for either NFκB, CREB or AP-1, and the DNA-binding capacity of the transcription is detected respectively with anti-p65, anti phospho-CREB and anti-c-fos (for AP-1 assay). The DNA-binding assay is performed on cell lysates coming either from cells left unstimulated, or stimulated with IL-1, with forskolin, with PMA+ionomycin, with IL-1 and forskolin, with IL-1 and PMA+ionomycin, with forskolin and PMA+ionomycin, and IL-1 and forskolin and PMA+ionomycin. The results show the signal obtained for the assay of NF-KB (A), P-CREB (B) and c-fos (C) on the various cell extracts (NF-KB is strongly induced in Il-1 stimulated cells, P-CREB by forskolin stimulation and AP-1 by PMA). [0025]
  • FIG. 3 presents the sensitivity of the DNA-binding assay. DNA-binding activity of purified NFκB (p50) was measured on microwells containing DNA probe specific for NFκB. The concentrations of p50 used in this assay range from 10[0026] −12 mole to 5×10−16 mole/well.
  • FIG. 4 presents the sensitivity of the DNA-binding assay. DNA-binding activity of stimulated cells and unstimulated cells for NFκB. [0027]
  • FIG. 5 presents the values obtained for the detection of NFκB present in cells stimulated or not with IL-1 on microarray by using DNA probes of different lengths containing a spotted consensus sequence for NFκB. [0028]
  • FIG. 6 presents the effect of various drugs on the DNA-binding activity of IL-1-induced NFκB.[0029]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention is related to a screening and/or quantification method of one or more transcriptional factor(s) [0030] 1 present in a cell or a cell lysate (including nuclear lysate of a cell), said method described in the enclosed FIG. 1 comprising the steps of:
  • binding to an insoluble [0031] solid support 3, double-stranded DNA sequence(s) 2 at a concentration of at least about 0.01 pmole/cm2, preferably 0.1 pmole/cm2, of said solid support surface (step 1), said double-stranded DNA sequence 2 further comprising a specific nucleotide sequence able to bind specifically said transcriptional factor(s) 1, putting into contact said transcriptional factor(s) 1 with said bound double-stranded DNA sequence(s) 2, and
  • identifying and/or quantifying a signal resulting from the binding of said transcriptional factor(s) [0032] 1 to said double-stranded DNA sequence(s) 2.
  • Preferably, said signal is obtained by the following step: [0033]
  • after washing, the presence of the fixed [0034] transcriptional factor 1 is detected by using firstly a primary antibody 4 raised against the factor 1 (step 2) and then a secondary labelled antibody 5 (for example conjugated with an enzyme such as peroxidase) directed against the primary antibody 4 (step 3).
  • The presence of the peroxidase is then advantageously assayed through the addition of a suitable substrate by a colorimetric detection of the reaction product in solution (step 4). Such non-radioactive method is rapid, more sensitive than gel retardation, and suits for large-scale screening or detection upon various solid supports. [0035]
  • It is meant by “a specific nucleotide sequence of a double-stranded DNA sequence able to bind a transcriptional factor”, a nucleotide sequence which can be recognized specifically through biochemical interactions by said transcriptional factor(s). [0036]
  • The present invention is sensitive enough to be applied for the detection of transcriptional factors or proteins able to bind DNA sequence present in cell lysate (including nuclear lysate) or present in a body fluid. Unexpectedly, less than about 10[0037] −12 mole of transcriptional factor can be detected in 50 micro-liters in an assay using the method of the present invention and the limit of detection was found to be of about 5×10−16 mole for NFκB assay. This sensitivity explains the possibility of using such invention for the detection of transcriptional factors naturally present in cell lysate. The sensitivity obtained which is at least as good as the EMSA method (example 2), is a surprising finding since the DNA consensus is not in solution, but fixed on (bound to) a solid surface (where the reaction is slower than in solution) and the detection does not require the radioactive measurement but may be obtained by simple colorimetry.
  • Preferably, in the method according to the invention, the specific nucleotide sequence of the double-stranded DNA sequence(s) able to bind with the transcriptional factor(s) is located at a distance of at least 6.8 nm from the surface of the solid support. [0038]
  • According to a preferred embodiment of the present invention, the double-stranded DNA sequence may comprise a spacer of at least about 13.5 nm between the specific sequence and the surface of the solid support. [0039]
  • Preferably, said spacer is a double-stranded DNA nucleotide sequence of at least 20 base pairs, preferably at least 50, 100, 150 or 250 base pairs. [0040]
  • Another aspect of the present invention is related to a screening, diagnostic and/or quantification kit comprising means and media for performing the method according to the invention. [0041]
  • Preferably, the invention is related also to a screening and/or quantification kit or device including high throughput screening device, possibly comprising computer-controllable electromagnetic means and robots (such as high-throughput screening device) allowing the screening and detection upon any type of [0042] solid support 1 and used for the screening and/or quantification of transcriptional factor(s) (or compounds able to bind said transcriptional factor(s) or inhibit the binding of said transcriptional factor) to said specific nucleotide sequence comprised in the double-stranded DNA bound to the insoluble solid support at a concentration of at least about 0.01 pmole/cm2 of solid support surface; said specific nucleotide sequence being located at a distance of at least about 6.8 nm from the surface of the solid support.
  • The screening and/or quantification kit according to the invention comprises also means and media for detecting the signal resulting from the binding of the transcriptional factor(s) to the double-stranded DNA sequence(s), said signal being a non-radioactive resulting signal. [0043]
  • The method and kit according to the invention is also suitable for the (possibly simultaneous) screening and/or quantification of multiple different transcriptional factors present in a same biological sample (cell or cell lysate). The method is especially well adapted for the detection of multiple transcriptional factors, on a same support (one biochips or one multiwell plate). However, the detection of the different factors from a same sample can also be performed in wells of different plates. [0044]
  • he method according to the invention may comprise also the step of screening and/or quantifying compound(s) able to bind to said transcriptional factor(s) (or inhibit their binding) to the specific sequence, preferably by using steps, means and media such as the ones described in the U.S. Pat. No. 5,563,036. [0045]
  • The method according to the invention may also comprise the step of identification of at least one characteristic specific of a given transcriptional factor activation. Some transcriptional factors can bind to their consensus DNA sequence without activating the transcriptional machinery. The activation is then associated with one or several specific changes, the most common one being the phosphorylation (or dephosphorylation) at specific amino acid(s) of the protein. An example of such transcriptional factor is CREB, which is only active when phosphorylated (example 1). [0046]
  • The method according to the invention may also comprise the step of screening and/or quantifying known and unknown compound(s) able to modulate the activation of said transcriptional factor(s) in cells, tissues or organisms and detecting the residual activity of the transcriptional factor(s) in cell lysate. External protein having at least in part the binding DNA domain can also be added to the incubation solution in order to determine its possible activation by cell lysate and to obtain a screening of compounds acting upon this activation. If a purified transcriptional factor is added to the cell lysate, its activation can be quantified by determination of one or several of its specific characteristics. Proteins acting as activators or inhibitors upon a transcriptional factor activation can also be added in the incubation medium and serve in a screening method of compounds acting upon these proteins. [0047]
  • The method may also comprise the step of forming a mixture by combining a labelled protein comprising a portion of the transcriptional factor with the specific nucleotide sequence being bound to the insoluble solid support. Thereafter, the method comprises the step of incubating said mixture in the conditions, whereby in the absence of the compound, the labelled protein binds to the nucleotide sequence, the step of separating from the solid support a fraction of said mixture, whereby the fraction comprises the labelled protein if said labelled protein is not bound to the sequence and the step of detecting the presence or absence of said labelled protein upon said solid support; wherein the absence of said detected label upon said solid support, means that the compound inhibits the binding of a transcriptional factor to the nucleotide sequence. Preferably, said method comprises also the step of recovering the detected unknown compound. [0048]
  • According to the invention, the solid support is preferably an array bearing at least 4, 10, 16, 25, 100, 1000, 10.000 or more spot/cm[0049] 2 of solid support surface, each spot containing at a specific location double-stranded DNA sequence(s) for the binding of transcriptional factor(s).
  • According to a preferred embodiment of the present invention, the double-stranded [0050] DNA sequence 2 is bound to a first member 6 of a binding pair such as biotin/streptavidin, hapten/receptor, antigen/antibody), able to interact with the second member 7 of said binding pair, bound to the surface of the solid support 3.
  • Alternatively, the double-stranded DNA sequence(s) could be covalently bound to the surface of the insoluble solid support. [0051]
  • Alternatively, the method according to the invention could comprise also the step of identification of transcriptional factor(s) and/or protein(s) which are part of their active complex. [0052]
  • The method according to the invention may also comprise the step of screening or detecting the “fixed” transcriptional factor(s) and possibly quantifying the presence of said “fixed” transcriptional factor(s) (and/or possibly quantifying the concentration of the transcriptional factor(s) present in a biological sample (cell or cell lysate)). [0053]
  • The use of a [0054] consensus DNA sequence 2 already fixed on a solid support 3 allows the industrial production with reproducible and quality control of the kit or device containing such prepared support. It also simplifies the use of the kit since a biological sample (cell or cell lysate) can be incubated directly upon such prepared solid support surface without requiring the addition of any other reagent.
  • Said general method for detecting the DNA-binding capacity of transcriptional factors is enough sensitive, specific and valid for most (if not all) transcription factors. Unexpectedly, it is possible to improve said sensitive method, by increasing the size of the spacer between a consensus sequence on which the transcriptional factor will bind and by using a very high density of these nucleotide sequences attached on the solid support surface. The method is so sensitive that it can be used for the detection of one factor present in a biological sample, but also for the detection of several factors by the use of multiple nucleotide sequences attached in distinctive spots on a solid surface such as biochips (microarrays). [0055]
  • The minimum spacer was found to be a nucleotide sequence, such as a DNA sequence, of 20 base pairs (bp), but said spacer may have between 50 and 250 base pairs according to the type of solid support and antibody used (Example 4). The presence of the consensus nucleotide sequence at long distance from the solid support surface can be obtained similarly through the presence of a chemical spacer of at least 10 atoms, preferably of at least 44 atoms, more preferably of at least 50 atoms or more. [0056]
  • Said method, kit or device are suitable for testing the activity of pharmaceutical drugs or methods acting upon these transcriptional factors (i.e. as inhibitors and/or activators of their binding to the DNA) or on their regulatory processes: activation or repression. [0057]
  • The invention is also related to said compound identified or recovered and possibly integrated in a pharmaceutical composition for preventing or treating various symptoms or diseases. [0058]
  • Said screening, detection and/or quantification method and kit are suitable for detection and quantification of all the transcriptional factors for which the DNA binding sequence is known. These transcriptional factors and their properties are listed in the Web site “http://transfac.gbf.de/TRANSFAC/cl/cl.html” The most commonly tested factors are selected from the group consisting of NFκB, AP-1, CREB, SP-1, C/EBP, GR, HIF-1, Myc, NF-AT, Oct, TBP and CBF-1. A list of some transcriptional factors and their corresponding consensus (sequences SEQ ID No. 1 to 125) is given in table 1. [0059]
  • NFκB is an important ubiquitous transcriptional factor activated following cell stimulation, involved in the immune response to some viral and bacterial products, oxidative stresses or pro-inflammatory cytokines (Baeuerle, P. A. and Baichwal, V. R., Adv Immunol, 65, 111-37 (1997)). [0060]
  • AP1 is also dimeric transcriptional factor which is involved in many cell responses through activation of kinase cascade. This transcription factor is involved in a variety of biological processes like cell growth, differentiation, or apoptosis. [0061]
  • Preferably, said detection and possibly quantification is obtained by the use of compounds that are able to specifically bind to the transcriptional factor fixed upon the double-stranded DNA, such as (preferably monoclonal) antibodies or specific hypervariable portions thereof (Fab′, Fab2′, etc.). [0062]
  • According to a preferred embodiment of the present invention, said binding is followed by incubation (and washing) with labelled compounds able to react with the first compound binding to said transcriptional factor, preferably (monoclonal) antibodies directed against the anti-transcriptional factor antibodies or specific hypervariable portions thereof (Fab′, Fab2′, etc.). Said last antibodies are preferably labelled with non radioactive markers allowing a detection, preferably by colorimetry, fluorescence, bioluminescence, electroluminescence or precipitation of a metal deposit (such as silver staining) as in example 3. Other secondary binding proteins like protein A which bind to antibodies are also an embodiment of the method. Said non radioactive test is preferably based upon a calorimetric assay resulting from an enzymatic activity such as described in the enclosed FIG. 1. If direct method such as mass spectrum analysis is sensitive enough it can be used for direct detection of the bound factor. [0063]
  • The selected antibody recognizes an epitope which is accessible when the factor is in its active form and bound to DNA. Usually, the active and inactive forms of the factors differ in their phosphorylation state or by the presence of an inactivator protein. The antibody has to recognize the active form. The concentration of these transcription factors in a cell is very low and may reach the limit of the affinity coefficient of the antibodies. An antibody with a high affinity (i.e. with very low coefficient of dissociation) can highly increase the signal obtained. However, any other protein which has an affinity for the factor can be used for the detection. [0064]
  • Special applications are the use of specific antibodies directed against phospho-protein epitopes or against specific proteins which are part or can be attached to the transcriptional factor (see example 1). For NFκB, antibodies directed either against P-50 or P-65 allow to determine the pattern of association of proteins giving the NFκB activity. [0065]
  • The present invention also allows a differentiation between the DNA binding of the transcription factor and its activity. This activity is associated with one or several particular characteristics of the factors, the most common one being the phosphorylation at specific locations or the dissociation of inhibitory proteins. By using appropriate antibodies directed against these elements, it is possible to determine the amount of transcriptional factors in their active form. As an example, CREB can bind to its DNA consensus sequence without being active. Its activation results from a specific phosphorylation at a serine group, making the P-CREB. The present invention detects both the CREB binding and the P-CREB activation by using antibodies directed either against CREB or specific of the P-CREB (example 1). [0066]
  • The attached transcriptional factor can also be used to test for the presence of proteins which have affinity for the transcriptional factor. [0067]
  • The method comprises also the step of screening and/or quantifying known and unknown compound(s) able to modulate the activation of said transcriptional factor by modification of the level of specific characteristics of said factor. [0068]
  • If the binding is specific and if no other proteins are used on the nucleotide sequence binding on the surface, for example when the nucleotide sequences are directly linked to said surface, then a direct detection of protein will give an estimation and/or quantification of the bound factor. [0069]
  • A signal obtained in each well or for each spot of a biochip is recorded and the means of the signal are calculated for each identical consensus sequence. Usually, two (and preferably three to five) identical spots are present on each array in order to correct variations that may occur at any step of the process. The background values are wells or spots coated with a consensus sequence, in which binding buffer and lysis buffer is added instead of a cell extract or purified transcription factor (negative control). A positive control is preferably added as a factor obtained in a pure active form and for which a consensus nucleotide sequence is attached to the surface of the solid support in the test. [0070]
  • Quantification has to take into account not only for the binding yield, but also the detection part of the process and the reading scale. Internal or external standards using purified active transcriptional factor can be added to the sample at either step of the process in given amount as reference value to which the results will be compared. Validation of the use of these standards has to be performed earlier in order to validate their binding efficiency compared to the tested factors. [0071]
  • In the case of biological applications, comparison of transcriptional factors involved in the cell response can be quantified in comparison to transcriptional factors which are constitutively active (there are factors which regulate the expression of house keeping genes). The use of these “relative” quantification simplifies the assays, since all factors are treated in the same way during the various steps. [0072]
  • The simultaneous detection of several transcriptional factors binding or activity is especially useful since it gives a pattern of response of the cells or tissues to a particular biological situation, to molecules or drug action. The transcriptional factors are activated by complex pathways which are related to each other. A general screening analysis of different transcriptional factors will give a better view and help the interpretation of the studied effects. [0073]
  • Furthermore, solid supports such as a biochips can be inserted in a machine support connected to another chamber and automatic machine through the control of liquid solution based upon the use of microfluidic technology. By being inserted into such a microlaboratory system, it can be incubated, heated, washed and labelled by automates, even for previous steps (like a PCR amplification) or the following step (labelling and detection). All these steps can be performed upon the same solid support. [0074]
  • According to the invention, the solid support is preferably selected from the group consisting of glass, metallic supports, polymeric supports (preferably a polystyrene support activated with carboxyl or amino groups present on its surface) or any other support used in the microchips (or micro-arrays) technology (preferably activated glass bearing aldehyde groups), said support comprising also specific coatings, markers or devices (bar codes, electronic devices, etc.) for improving the assay. [0075]
  • If glass presents many advantages (like being inert and having a low auto-fluorescence), other supports like polymers, with various chemically well-defined groups at their surface, allowing the binding of the nucleotide sequences are useful. [0076]
  • Miniaturization allows to perform one assay onto a surface (usually circular spots of about 0.1 to about 1 mm diameter). A low density array, containing 20 to 400 spots is easily obtained with pins of 0.25 mm at low cost. Higher density of spots going to 1,600 spots per cm2 can be obtained by reducing the size of the spots for example to 0.15 mm. The advantages of this technology is the high number of data which can be obtained and analyzed simultaneously, the possibility to perform replicates and the small amount of biological sample necessary for the assay. [0077]
  • The arrays technology allows the simultaneous detection of different factors present in the same sample, which is possible due to the fact that several factors bind to their consensus sequence in the same reacting conditions. Solutions are available for example from Promega (Madison, Wis., USA) for the binding of several factors (Catalogue E3581). Conditions which allow the binding of the factors studied may be optimized by the person skilled in the art. Other binding assays involving DNA-DNA recognition, antigen-antibody or receptor-ligand recognition can be performed simultaneously on the same chips for other molecules. [0078]
  • The detection of the specific binding between the transcriptional factor and the double-stranded DNA sequence is obtained by any one of the methods described previously, or preferably by a method allowing a precipitation of a metal deposit (such as silver staining) at the location where the transcriptional factor has fixed (recognized) the double-stranded DNA sequence). [0079]
  • As only activated transcriptional factors are captured by the nucleotide sequences bound to the solid support (preferably microwell plates or microarray), the design of these sequences and binding conditions allow a very high sensitivity necessary for assays in biological samples. [0080]
  • The present invention will be described in more details in the following non limited examples in reference to the enclosed drawings. [0081]
  • EXAMPLE 1 Microwell Colorimetric DNA-binding Assay. (FIGS. 1 and 2)
  • Step 1: Binding of the Double Strand Oligonucleotidic Probe on Multi-well Plates [0082]
  • The spacer double strand nucleotide sequences were constructed from the following CMV sequence: 5′TGGCCAAGCGGCCTCTGATAACCAAGCCTGAGGTTATCAGTGTAATGAAGCGC CGCATTGAGGAGATCTGCATGAAGGTCTTTGCCCAGTACATTCTGGGGGCCGATC CTCTGAGAGTCTGCTCTCCTAGTGTGGATGACCTACGGGCCATCGCCGAGGAGTC AGATGAGGAAGAGGCTATTGTAGCCTACACTTTGGCCACCGCTGGTGTCAGCTCC TCTGATTCTCTGGTGTCACCCCCAGAGTCCCCTGTAC (SEQ ID NO: 146) acting as a spacer was linked to a) the [0083] NFκB consensus oligonucleotide 5′AGTTGAGGGGACTTTCCCAGGC-3′ (SEQ ID NO: 147) b) the CREB consensus oligonucleotide 5′ATTGCCTGACGTCAGAGAGCTAG-3′ (SEQ ID NO: 148) and c) the AP-1 consensus oligonucleotide 5′ CCGTTCCGGCTGACTCATCAAGCG-3′ (SEQ ID NO: 149). In the example the spacer was of 100 based pairs. The CMV extremity is 5′ biotinylated, so that these probes can be linked to streptavidin-coated 96-wells plates: 2 pmoles of probes per well are incubated 1 h at 37° C. in 50 μl 10 mM phosphate buffer 150 mM NaCl (hereafter called PBS150). Plates are then washed and the amount of DNA fixed on streptavidin-coated plates was quantified using the picogreen assay (Molecular Probes, OR, USA). One picomole of DNA was found to be fixed on the wells using DNA standard for calibration of the assay.
  • Step 2: Binding of the Transcription Factor on the Double Strand Probe [0084]
  • This assay was either performed with purified p50-p50 (Promega, Madison, Wis., USA), or with nuclear cell extracts from SV-40 transformed WI-38 fibroblasts (WI-38 VA13 cell line). Cells were purchased from the ATCC and plated in 75 cm[0085] 2 flasks. They were serially cultivated in Minimum Essential Medium (Gibco, UK) supplemented with Na2SeO3 10−7 M and antibiotics, in the presence of 10% fetal bovine serum. Cells were stimulated for 30 min with IL-1 (to activate NFκB), forskolin (to activate CREB), PMA+ionomycin (to activate AP-1) or left unstimulated.
  • The nuclear cell extracts were prepared as followed [0086]
  • cells were rinsed with cold PBS[0087] 150
  • cells were left swollen during 3 min in a cold hypotonic buffer (20 mM HEPES pH 7.4, 5 mM NaF, 1 mM Na[0088] 2MoO4, 0.1 mM EDTA).
  • Cells were scrapped in 0.5 ml of hypotonic buffer containing 0.2% nonidet P40 and immediately centrifuiged during 30 sec at maximal speed (13000 rpm). [0089]
  • The pellet was resuspended in 100 μl of lysis buffer (hypotonic buffer containing 20% glycerol, 0.4 M NaCl, phosphatases and proteases inhibitors cocktail). [0090]
  • The nuclear extract was agitated 30 min at 4° C., and then centrifuged for 10 min at maximal speed (13000 rpm) at 4° C. [0091]
  • The supernatant (=nuclear extract) was frozen at −80° C. and its proteic content was determined by the Bradford assay. [0092]
  • 20 μl of p50 diluted in lysis buffer or 20 μl of nuclear cell extract are incubated with 30 μl of binding buffer (AAT, Namur) in microwells coated either with the consensus oligonucleotide for NFκB, or with the consensus oligonucleotide for CREB, or with the consensus oligonucleotide for AP-1. After 2 h incubation at room temperature with a mild agitation (200 rpm on IKA MS2 vortex, Germany), microwells are washed 3 times with PBS[0093] 150 with 10 mM phosphate buffer 50 mM NaCl (hereafter called PBS50)+Tween 0.1%, and once with PBS50 alone.
  • Step 3: Binding of Anti-NFκB on the NFκB-DNA Complex [0094]
  • 100 μL of rabbit antibodies diluted 500 or 1000 times in 10 mM phosphate buffer 50 mM NaCl (hereafter called PBS[0095] 50) and 1% bovine serum albumine are incubated in each well for 1 h at room temperature. The different antibodies used are:
  • for NFκB: anti p65 (Santa Cruz #sc-372) or anti p50 (Santa Cruz #sc-7178) [0096]
  • for CREB: anti CREB (Rockland, #100-401-195) or anti phospho-CREB (Upstate Biotechnology 06-519). [0097]
  • for AP-1: anti c-fos (Santa Cruz, #sc-7202) or anti c-jun (Biolabs #9164). [0098]
  • The microwells are then washed 3 times with PBS[0099] 50+0.1% Tween.
  • Step 4: Binding of Peroxidase-conjugated Anti-rabbit IgG [0100]
  • 100 μL of diluted peroxidase-conjugated anti-rabbit IgG (#611-1302, Rockland, Gilbertsville, Pa., USA) diluted 1000 times in PBS[0101] 50 and 1% non fat dried milk are incubated in each well for 1 h at room temperature. Microwells are then washed with 200 μl PBS50+0.1% Tween.
  • Step 5: Colorimetric Revelation [0102]
  • 100 μl of tetramethylbenzidine (Biosource, Belgium) are incubated 10 min at room temperature before adding 100 μl of stopping solution (Biosource, Belgium) Optical density is then read at 450 or 405 nm, with an Ultramark microplate reader (Biorad, Calif., USA). [0103]
  • This procedure can be followed to quantitate the DNA-binding activity of different transcription factors in the same nuclear extract. In FIG. 2, the DNA binding activity of NFκB (a), CREB (b) and AP-1 (c) has been measured on the same samples following the procedure described here above. The samples are nuclear extracts of WI-38 VA13 cells left unstimulated or stimulated during 30 min with 5 ng/ml of IL-1 (a NFκB activator), 10 μg/ml of forskolin (a CREB activator), 0.1 μg/ml PMA+1 μM ionomycin (a cocktail known to activate AP-1), or the different combinations of these activators. The results are expressed as the percentage of the signal obtained with the regular activator the transcription factor assayed (for example, the NFκB DNA-binding activity is expressed as the percentage of the NFκB DNA-binding activity measured in cells stimulated with IL-1 alone). [0104]
  • The results clearly show that the calorimetric DNA-binding assay allows to measure simultaneously the DNA-binding activity of several transcription factors in the same biological sample. [0105]
  • EXAMPLE 2 Sensitivity of the DNA-binding Calorimetric Assay in Multiwells (FIGS. 3 and 4)
  • To estimate the sensitivity of the calorimetric DNA-binding assay described in example 1, the assay was performed with the NFκB specific probe first on various quantities of purified p50 (FIG. 3) and then on different quantities of nuclear cell lysates (FIG. 4). [0106]
  • Different quantities of purified p50 ranging from 10[0107] −13 M to 5×10−16 M were incubated in the microwells containing the NFκB specific probe, and the assay was realized as described in example 1, using anti-p50 antibody. The results presented in FIG. 3 clearly show that this assay is extremely sensitive as the DNA-binding activity of as low as 5×10−16 mole/well of purified p50 can be detected.
  • The sensitivity of the calorimetric DNA-binding assay with cell lysates is also very high, as shown in FIG. 3. Cell extracts are coming either from unstimulated cells or from cells stimulated with IL-1 in order to proceed for the assay as described in the example 1. In this experiment the concentrations ranged between 0.5 and 50 μg per well. The assay was performed in parallel with EMSA, on the same protein extracts. The results presented on FIG. 4 clearly show that the NFκB DNA-binding assay in microwells is more than 10 times more sensitive than the EMSA: 5 μg of proteins were required to detect a first detection signal by EMSA, but less than 0.5 μg of proteins was necessary for the microwell assay. [0108]
  • EXAMPLE 3 Microarray Assay for DNA-binding Activity of NF-KB CREB in Biological Samples
  • Step 1: Binding of the Probes on Glass [0109]
  • Activated glass slides bearing aldehyde groups were purchased from AAT (Belgium). [0110]
  • The slides were first incubated in 0.8 ml of a 50 μg/ml streptavidin solution in a 10 mM phosphate buffer (pH 7.4) containing 10 mM NaCi (PBS[0111] 10 buffer). After 1 h incubation at 20° C., the plates were washed 3 times for 2 min in PBS150 containing 0.02% Tween 20 and then 2 times 2 min with water. The plates were then incubated for 2 h at 20° C. in 20 ml of PBS150 solution containing 10% non fat dried milk and then washed 5 times 2 min in PBS150 solution.
  • Spotting was performed with the NFκB consensus probe or with the CREB consensus probe as in example 1. The capture probes were printed onto the microscopic slides with a home made robotic device. 250 μm pins from Genetix (UK) were used. The spots have an average of 400 μm in diameter and the volume dispensed is about 1 nl. The concentration of probes used was 3000 nmolar. Slides were incubated for 1 h at room temperature, washed twice for 2 min with PBS[0112] 50 containing 0.02% Tween 20 and then 3 times for 2 min in water.
  • Step 2: Binding of Transcription Factor on the Double Strand Probe Fixed on Micro-array [0113]
  • This assay was performed with nuclear extracts from WI-38 VA 13 fibroblasts stimulated with IL-1β or left unstimulated. The cell extracts were prepared as described in the example 1. The negative control was 20 μl of lysis buffer mixed with 30 μl of binding buffer. 20 μl of p50 diluted in lysis buffer or 20 μl of nuclear cell extract are incubated with 30 μl of binding buffer (AAT, Namur, Belgium) per incubation chamber. After 1 h incubation at room temperature with a mild agitation (200 rpm on IKA MS2 vortex, Germany), the arrays were washed 3 times. [0114]
  • [0115] Steps 3, 4 and 5: Binding of Anti-NFκB on the NFκB-DNA Complex and Detection
  • The binding of the primary anti-NFκB (anti-p50) antibody was then used for reaction on the factor followed by a washing and an incubation with a secondary antibody. In this case, the second antibody was gold-labelled. After 3 incubations of 10 min in a mixture of silver enhancer A, the slides were washed with water. [0116]
  • There was no signal for the negative control, while in nuclear cell extracts, activated NFκB is detectable in cell stimulated with IL-1, with a much higher intensity than in unstimulated. The results obtained with the nuclear cell extracts have been quantitated, using a calorimetric microarray reader including the quantification software (AAT, Namur, Belgium). The intensity of each spot was estimated by averaging the value of all pixels inside its boundaries. The value of the mean background around the spot was subtracted from the spot values. The value for the unstimulated cells was of 10 and the one for the stimulated cell were of 175 grey intensity. [0117]
  • As an alternative fixation of the probes, the consensus sequences were aminated by using a 5′ terminal aminated primer and amplified by PCR before being spotted directly on the aldehyde glass slides. The detection method was then processed in the same way as here above. [0118]
  • EXAMPLE 4 Influence of the Spacer on Microarray Assay of NFκB and CREB Assay on Biological Samples (FIG. 5)
  • Step 1: Binding of the Probes on Glass. [0119]
  • The binding of probes was obtained as described in the example 3 using the consensus sequence of NFκB or CREB alone or with a spacer of 50, 100, 150 and 250 bp constructed from the sequence given in example 1. [0120]
  • Step 2 :Binding of NFκB on the Double Strand Probe Fixed on Micro-array [0121]
  • This assay was performed with whole cell lysates from WI-38 VA 13 fibroblasts stimulated with IL-10 (a NFκB activator) or 10 μg/ml of forskolin(to activate CREB). The control was 20 μl of lysis buffer mixed with 30 μl of binding buffer. [0122]
  • [0123] Steps 3, 4 and 5: Binding of Antibodies and Detection
  • The binding of the primary anti-NFκB and anti-PCREB antibodies was then used for reaction on the factors followed by a second gold labelled antibody and a calorimetric detection as in example 3. The results with increasing spacer length for the NFκB is shown in FIG. 5. The figure shows the total length of the fixed DNA probes. The values for P-CREB with unstimulated cells were 5.5 and 4 respectively with no spacer and with a 100 base spacer. The values for stimulated cells were respectively of 7 and 21 respectively with no spacer and a spacer of 100 bases pairs. [0124]
  • EXAMPLE 5 Use of the DNA-binding Calorimetric Assay to Screen for DNA-binding Interacting Drugs (FIG. 6)
  • The DNA-binding colorimetric assay was used for screening of molecules, like drugs, that can interfere either directly with the DNA-binding capacity of a transcription factor or with the upstream cellular activation process of a transcription factor. [0125]
  • In FIG. 6, several molecules known as drugs were screened for their eventual inhibitory effect on the DNA-binding capacity of 3 transcription factors. 5 μg of nuclear extracts prepared as in example 1 from a) IL-1-stimulated fibroblasts or b) Forskolin-stimulated cells or c) PMA+ionomycin-stimulated cells were assayed respectively for the DNA-binding capacity of NFκB, CREB an AP-1, in the presence of absence of various veinotropic drugs at 10[0126] −4M.
  • The molecules were tested on the activation of the factors in the following way. Cells were incubated in the presence of the molecules at a concentration of 10[0127] −5M for one hour before the stimulation with IL-1, Forskolin or PMA+ionomycin. Nuclear extracts were prepared and the activity of the transcriptional factors measured as described in example 1.
    TABLE 1
    List of transcriptional factors and
    their consensus sequences
    Factor Consensus sequence SEQ ID NO
    AAF TTTCATATTACTCT (SEQ ID NO:1)
    AbdB AA(A/T)TTTTATTAC (SEQ ID NO:2)
    AhR TGCGTGAGAAGA (SEQ ID NO:3)
    Antp AA(A/T)TTTAATTAC (SEQ ID NO:4)
    Ap1 TGASTMA (SEQ ID NO:5)
    AP2 CCCMCNSSS (SEQ ID NO:6)
    AP3 TGTGGWWW (SEQ ID NO:7)
    AP4 YCAGCTGYGG (SEQ ID NO:8)
    AR AGAACANNNTGTTCT (SEQ ID NO:9)
    ARNt GTG (3′-half site) (SEQ ID NO:10)
    ARP-1 TGANCCCTTGACCCCT (SEQ ID NO:11)
    ATF TGACGYMR (SEQ ID NO:12)
    BGP1 GGGGGGGGGGGGGGGG (SEQ ID NO:13)
    BSAP GACGCANYGRWNNNMG (SEQ ID NO:14)
    CBF ACACCCAAATATGGCGAC (SEQ ID NO:15)
    C/EBP GTGGWWWC (SEQ ID NO:16)
    CF1 ANATGG (SEQ ID NO:17)
    COUP GTGTCAAAGCTCA (SEQ ID NO:18)
    CP1 YNNNNNNRRCCAATCANYK (SEQ ID NO:19)
    CP2 YAGYNNNRRCCAATCNNNR (SEQ ID NO:20)
    CTCF CCCTC (SEQ ID NO:21)
    DBP TGATTTTGT (SEQ ID NO:22)
    E2A RCAGNTG (SEQ ID NO:23)
    E2B TGCAAYAY (SEQ ID NO:24)
    E2F TTTTSSCGS (SEQ ID NO:25)
    E4F TGACGTAAC (SEQ ID NO:26)
    EGR-1 CGCCCSCGC (SEQ ID NO:27)
    EGR-2 CCGCCCCCGC (SEQ ID NO:28)
    ER AGGTCANNNTGACCT (SEQ ID NO:29)
    v-ErbA GTGTCAAAGGTCA (SEQ ID NO:30)
    ETF CAGCCCCCGCGCAGC (SEQ ID NO:31)
    Ets-1 SMGGAWGY (SEQ ID NO:32)
    F-ACT1 TGGCGA (SEQ ID NO:33)
    GAL 4 CGGN5(T/A)N5CCG (SEQ ID NO:34)
    GATA-1 WGATAR (SEQ ID NO:35)
    GATA-2 WGATAR (SEQ ID NO:36)
    GATA-3 WGATAR (SEQ ID NO:37)
    GCF SCGSSSC (SEQ ID NO:38)
    GHF-1 WTATYCAT (SEQ ID NO:39)
    GHF-5 WTATYCAT (SEQ ID NO:40)
    GHF-7 WTATYCAT (SEQ ID NO:41)
    GR AGAACANNNTGTTCT (SEQ ID NO:42)
    H1TF2 GCACCAATCACAGCGCGC (SEQ ID NO:43)
    H2RIIBP TCAGGTCACAGTGACCTGA (SEQ ID NO:44)
    H2TF1 TGGGGATTCCCCA (SEQ ID NO:45)
    H-APF-1 CTGGRAA (SEQ ID NO:46)
    HIF CTACGTGCT (SEQ ID NO:47)
    HNF-1 GTTAATNATTAAC (SEQ ID NO:48)
    vHNF-1 GTTAATNATTAAC (SEQ ID NO:49)
    HNF-3A TATTGAYTTWG (SEQ ID NO:50)
    HNF-3B TATTGAYTTWG (SEQ ID NO:51)
    HNF-3C TATTGAYTTWG (SEQ ID NO:52)
    HNF-4 KGCWARGKYCAY (SEQ ID NO:53)
    HSF NGAANNGAANNGAAN (SEQ ID NO:54)
    IAF GCCATCTGCT (SEQ ID NO:55)
    IRBP AGTGCACT (SEQ ID NO:56)
    IREBF-1 CGGGAAATGGAAACTG (SEQ ID NO:57)
    IRF AANNGA (SEQ ID NO:58)
    ISGF1 CTTTCAGTTT (SEQ ID NO:59)
    ISGF2 CTTTCTCTTT (SEQ ID NO:60)
    ISGF3 GCTTCAGTTT (SEQ ID NO:61)
    KBF-1 TGGGGATTCCCCA (SEQ ID NO:62)
    Ker1 GCCTGCAGGC (SEQ ID NO:63)
    LFB3 GTTAATNATTAAC (SEQ ID NO:64)
    LIT-1 GCGCCCTTTGGACCT (SEQ ID NO:65)
    LyF-1 YYTGGGAGR (SEQ ID NO:66)
    MBF-1 YTAAAAATAAYYY (SEQ ID NO:67)
    MBF-I TGCRCRC (SEQ ID NO:68)
    MBP-1 TGGGGATTCCCCA (SEQ ID NO:69)
    MCBF CATTCCT (SEQ ID NO:70)
    MEF-2 YTAWAAATAR (SEQ ID NO:71)
    MEP-1 TGCRCNC (SEQ ID NO:72)
    MR AGAACANNNNTGTTCT (SEQ ID NO:73)
    Myb YAACKG (SEQ ID NO:74)
    Myc CACGTG (SEQ ID NO:75)
    TCTCTTA (SEQ ID NO:150)
    MyoD CAACTGAC (SEQ ID NO:76)
    NF1 YGGMNNNNNGCCAA (SEQ ID NO:77)
    NF-AT GGAGGAAAAACTGTTTCAT (SEQ ID NO:78)
    NF-E2 TGACTCAG (SEQ ID NO:79)
    NF-D GATGGCGG (SEQ ID NO:80)
    NF-GMa GRGRGTTKCAY (SEQ ID NO:81)
    NF-GMb TCAGRTA (SEQ ID NO:82)
    NF-IL6 TKNNGNAAK (SEQ ID NO:83)
    NFκB GGGAMTNYCC (SEQ ID NO:84)
    NF-W1 GTTGCATC (SEQ ID NO:85)
    NF-W2 GTTGCATC (SEQ ID NO:86)
    NGF1-B AGGTCATGACCT (SEQ ID NO:87)
    Oct-1 ATGCAAAT (SEQ ID NO:88)
    Oct-2 ATGCAAAT (SEQ ID NO:89)
    Oct-4 ATGCWAAT (SEQ ID NO:90)
    Oct-6 ATGCAAAT (SEQ ID NO:91)
    P53 RRRC(A/T) (T/A)GYYY(N)0-13RRRC(A/T) (SEQ ID NO:92); (SEQ ID
    (T/A)GYYY NO: 133-SEQ ID NO: 145)
    Pax-1 CACCGTTCCGCTCTAGATATCTC (SEQ ID NO:93)
    PCF AGAAAGGGAAAGGA (SEQ ID NO:94)
    PEA3 AGGAAR (SEQ ID NO:95)
    PPAR AGGTCA (SEQ ID NO:96)
    PR AGAACANNNTGTTCT (SEQ ID NO:97)
    PRDI-BF1 AAGTGAAAGT (SEQ ID NO:98)
    PTF1 ATGGGANCTCAGCTGTGC (SEQ ID NO:99)
    Pu.I AGAGGAACT (SEQ ID NO:100)
    PuF GGGTGGG (SEQ ID NO:101)
    RAR AGGTCATGACCT (SEQ ID NO:102)
    RFX CCCCTAGCAACAGATG (SEQ ID NO:103)
    Runt YGYGGT (SEQ ID NO:104)
    RVF AAGATAAAACC (SEQ ID NO:105)
    RXR AGGTCA (in a Direct Repeat configuration) (SEQ ID NO:106)
    SIF CCCGTM (SEQ ID NO:107)
    Sp1 KRGGCTRRK (SEQ ID NO:108)
    SREBP1 ATCACGTGA (E-Box consensus binding) (SEQ ID NO:109) sequence)
    or ATCACCCCAC (non E-Box consensus (SEQ ID NO:110)
    bindingsequence)
    SRF GGATGTCCATATTAGGACATCT (SEQ ID NO:111)
    STAT TTCNNNGAA (SEQ ID NO:112)
    T3R AGGTCATGACCT (SEQ ID NO:113)
    TBP TATAAA (SEQ ID NO:114)
    TCF-1 MAMAG (SEQ ID NO:115)
    TCF-2α SAGGAAGY (SEQ ID NO:116)
    TEF-1 AAGYATGCA (SEQ ID NO:117)
    TEF-2 GGGTGTGG (SEQ ID NO:118)
    TGT3 AAGTGTTTGC (SEQ ID NO:119)
    TIN-1 AGGAAGTTCC (SEQ ID NO:120)
    USF CACGTG (SEQ ID NO:121)
    WT-ZFP CGCCCCCGC (SEQ ID NO:122)
    XF1/2 TCTTCTCACGCAACT (SEQ ID NO:123)
    XPF-1 CACCTGNNNNTTTCCC (SEQ ID NO:124)
    YB-1 ATTTTTCTGATTGGCCAAAG (SEQ ID NO:125)
  • List of Viral Proteins Binding to DNA [0128]
  • Epstein-Barr: GGT TAG CAT ATG CTA ACC A (SEQ ID NO:126) [0129]
  • Virus EBNA [0130]
  • (B958 strain) [0131]
  • Epstein-Barr [0132]
  • T TAG CAA TG (SEQ ID NO:127) [0133]
  • Virus BZLF [0134]
  • (B958 strain) [0135]
  • Human CBF-1 CGTGGGAA (EpsteinBarr Virus cis-element) (SEQ ID NO: 128) [0136]
  • Human Papilloma A CCG AAA ACG GTG T (SEQ ID NO: 129) [0137]
  • Herpes Simplex ATG CTA ATG ATA (SEQ ID NO:130) [0138]
  • [0139] Virus Type 1 VP16
  • HIV TAT GGG TCT CTC TGG TTA GAC CAG ATC TGA GCC TGG GAG CTC TCT GGC TAA CTA GGG AAC CCA (SEQ ID NO: 131) (TAR RNA SEQUENCE) [0140]
  • HIV Integrase GTGTGGAAAATCTCTAGCA (SEQ ID NO:132) [0141]
  • Abreviations: R=(A,g)—Y=(C,T)—M=(A,C)—K=(g,T)—S=(g,C)—H=(A,T,C)—B=(g,T,C)—D=(g,A,T)—N=(A,g,C,T)—V=(g,A,C)—X=(C,I)—W=(A,T)—0=Sme-dC—Q=5Br-dU—I=Inosine [0142]
  • 1 150 1 14 DNA Artificial Sequence Consensus sequence for transcriptional factor AAF 1 tttcatatta ctct 14 2 12 DNA Artificial Sequence Consensus sequence for transcriptional factor AbdB 2 aawttttatt ac 12 3 12 DNA Artificial Sequence Consensus sequence for transcriptional factor AhR 3 tgcgtgagaa ga 12 4 12 DNA Artificial Sequence Consensus sequence for transcriptional factor Antp 4 aawtttaatt ac 12 5 7 DNA Artificial Sequence Consensus sequence for transcriptional factor Ap1 5 tgastma 7 6 9 DNA Artificial Sequence Consensus sequence for transcriptional factor Ap2 6 cccmcnsss 9 7 8 DNA Artificial Sequence Consensus sequence for transcriptional factor Ap3 7 tgtggwww 8 8 10 DNA Artificial Sequence Consensus sequence for transcriptional factor Ap4 8 ycagctgygg 10 9 15 DNA Artificial Sequence Consensus sequence for transcriptional factor AR 9 agaacannnt gttct 15 10 3 DNA Artificial Sequence Consensus sequence for transcriptional factor ARNt 10 gtg 3 11 16 DNA Artificial Sequence Consensus sequence for transcriptional factor ARP-1 11 tgancccttg acccct 16 12 8 DNA Artificial Sequence Consensus sequence for transcriptional factor ATF 12 tgacgymr 8 13 16 DNA Artificial Sequence Consensus sequence for transcriptional factor BGP-1 13 gggggggggg gggggg 16 14 16 DNA Artificial Sequence Consensus sequence for transcriptional factor BSAP 14 gacgcanygr wnnnmg 16 15 18 DNA Artificial Sequence Consensus sequence for transcriptional factor CBF 15 acacccaaat atggcgac 18 16 8 DNA Artificial Sequence Consensus sequence for transcriptional factor C/EBR 16 gtggwwwc 8 17 6 DNA Artificial Sequence Consensus sequence for transcriptional factor CF1 17 anatgg 6 18 13 DNA Artificial Sequence Consensus sequence for transcriptional factor COUP 18 gtgtcaaagc tca 13 19 19 DNA Artificial Sequence Consensus sequence for transcriptional factor CP1 19 ynnnnnnrrc caatcanyk 19 20 19 DNA Artificial Sequence Consensus sequence for transcriptional factor CP2 20 yagynnnrrc caatcnnnr 19 21 5 DNA Artificial Sequence Consensus sequence for transcriptional factor CTCF 21 ccctc 5 22 9 DNA Artificial Sequence Consensus sequence for transcriptional factor DBP 22 tgattttgt 9 23 7 DNA Artificial Sequence Consensus sequence for transcriptional factor E2A 23 rcagntg 7 24 8 DNA Artificial Sequence Consensus sequence for transcriptional factor E2B 24 tgcaayay 8 25 9 DNA Artificial Sequence Consensus sequence for transcriptional factor E2F 25 ttttsscgs 9 26 9 DNA Artificial Sequence Consensus sequence for transcriptional factor E4F 26 tgacgtaac 9 27 9 DNA Artificial Sequence Consensus sequence for transcriptional factor EGR-1 27 cgcccscgc 9 28 10 DNA Artificial Sequence Consensus sequence for transcriptional factor EGR-2 28 ccgcccccgc 10 29 15 DNA Artificial Sequence Consensus sequence for transcriptional factor ER 29 aggtcannnt gacct 15 30 13 DNA Artificial Sequence Consensus sequence for transcriptional factor v-ErbA 30 gtgtcaaagg tca 13 31 15 DNA Artificial Sequence Consensus sequence for transcriptional factor ETF 31 cagcccccgc gcagc 15 32 8 DNA Artificial Sequence Consensus sequence for transcriptional factor Ets-1 32 smggawgy 8 33 6 DNA Artificial Sequence Consensus sequence for transcriptional factor F-ACT1 33 tggcga 6 34 17 DNA Artificial Sequence Consensus sequence for transcriptional factor GAL 4 34 cggnnnnnwn nnnnccg 17 35 6 DNA Artificial Sequence Consensus sequence for transcriptional factor GATA-1 35 wgatar 6 36 6 DNA Artificial Sequence Consensus sequence for transcriptional factor GATA-2 36 wgatar 6 37 6 DNA Artificial Sequence Consensus sequence for transcriptional factor GATA-3 37 wgatar 6 38 7 DNA Artificial Sequence Consensus sequence for transcriptional factor GCF 38 scgsssc 7 39 8 DNA Artificial Sequence Consensus sequence for transcriptional factor GHF-1 39 wtatycat 8 40 8 DNA Artificial Sequence Consensus sequence for transcriptional factor GHF-5 40 wtatycat 8 41 8 DNA Artificial Sequence Consensus sequence for transcriptional factor GHF-7 41 wtatycat 8 42 15 DNA Artificial Sequence Consensus sequence for transcriptional factor GR 42 agaacannnt gttct 15 43 18 DNA Artificial Sequence Consensus sequence for transcriptional factor H1TF2 43 gcaccaatca cagcgcgc 18 44 19 DNA Artificial Sequence Consensus sequence for transcriptional factor H2RIIBP 44 tcaggtcaca gtgacctga 19 45 13 DNA Artificial Sequence Consensus sequence for transcriptional factor H2TF1 45 tggggattcc cca 13 46 7 DNA Artificial Sequence Consensus sequence for transcriptional factor H-APF-1 46 ctggraa 7 47 9 DNA Artificial Sequence Consensus sequence for transcriptional factor HIF 47 ctacgtgct 9 48 13 DNA Artificial Sequence Consensus sequence for transcriptional factor HNF-1 48 gttaatnatt aac 13 49 13 DNA Artificial Sequence Consensus sequence for transcriptional factor vHNF-1 49 gttaatnatt aac 13 50 11 DNA Artificial Sequence Consensus sequence for transcriptional factor HNF-3A 50 tattgayttw g 11 51 11 DNA Artificial Sequence Consensus sequence for transcriptional factor HNF-3B 51 tattgayttw g 11 52 11 DNA Artificial Sequence Consensus sequence for transcriptional factor HNF-3C 52 tattgayttw g 11 53 12 DNA Artificial Sequence Consensus sequence for transcriptional factor HNF-4 53 kgcwargkyc ay 12 54 15 DNA Artificial Sequence Consensus sequence for transcriptional factor HSF 54 ngaanngaan ngaan 15 55 10 DNA Artificial Sequence Consensus sequence for transcriptional factor IAF 55 gccatctgct 10 56 8 DNA Artificial Sequence Consensus sequence for transcriptional factor IRBP 56 agtgcact 8 57 16 DNA Artificial Sequence Consensus sequence for transcriptional factor IREBF-1 57 cgggaaatgg aaactg 16 58 6 DNA Artificial Sequence Consensus sequence for transcriptional factor IRF 58 aannga 6 59 10 DNA Artificial Sequence Consensus sequence for transcriptional factor ISGF1 59 ctttcagttt 10 60 10 DNA Artificial Sequence Consensus sequence for transcriptional factor ISGF2 60 ctttctcttt 10 61 10 DNA Artificial Sequence Consensus sequence for transcriptional factor ISGF3 61 gcttcagttt 10 62 13 DNA Artificial Sequence Consensus sequence for transcriptional factor KBF-1 62 tggggattcc cca 13 63 10 DNA Artificial Sequence Consensus sequence for transcriptional factor Ker1 63 gcctgcaggc 10 64 13 DNA Artificial Sequence Consensus sequence for transcriptional factor LFB3 64 gttaatnatt aac 13 65 15 DNA Artificial Sequence Consensus sequence for transcriptional factor LIT-1 65 gcgccctttg gacct 15 66 9 DNA Artificial Sequence Consensus sequence for transcriptional factor LyF-1 66 yytgggagr 9 67 13 DNA Artificial Sequence Consensus sequence for transcriptional factor MBF-1 67 ytaaaaataa yyy 13 68 7 DNA Artificial Sequence Consensus sequence for transcriptional factor MBF-I 68 tgcrcrc 7 69 13 DNA Artificial Sequence Consensus sequence for transcriptional factor MBP-I 69 tggggattcc cca 13 70 7 DNA Artificial Sequence Consensus sequence for transcriptional factor MCBF 70 cattcct 7 71 10 DNA Artificial Sequence Consensus sequence for transcriptional factor MEF-2 71 ytawaaatar 10 72 7 DNA Artificial Sequence Consensus sequence for transcriptional factor MEP-1 72 tgcrcnc 7 73 16 DNA Artificial Sequence Consensus sequence for transcriptional factor MR 73 agaacannnn tgttct 16 74 6 DNA Artificial Sequence Consensus sequence for transcriptional factor Myb 74 yaackg 6 75 6 DNA Artificial Sequence Consensus sequence for transcriptional factor Myc 75 cacgtg 6 76 8 DNA Artificial Sequence Consensus sequence for transcriptional factor MyoD 76 caactgac 8 77 14 DNA Artificial Sequence Consensus sequence for transcriptional factor NF1 77 yggmnnnnng ccaa 14 78 19 DNA Artificial Sequence Consensus sequence for transcriptional factor NF-AT 78 ggaggaaaaa ctgtttcat 19 79 8 DNA Artificial Sequence Consensus sequence for transcriptional factor NF-E2 79 tgactcag 8 80 8 DNA Artificial Sequence Consensus sequence for transcriptional factor NF-D 80 gatggcgg 8 81 11 DNA Artificial Sequence Consensus sequence for transcriptional factor NF-GMa 81 grgrgttkca y 11 82 7 DNA Artificial Sequence Consensus sequence for transcriptional factor NF-GMb 82 tcagrta 7 83 9 DNA Artificial Sequence Consensus sequence for transcriptional factor NF-IL6 83 tknngnaak 9 84 10 DNA Artificial Sequence Consensus sequence for transcriptional factor NFkB 84 gggamtnycc 10 85 8 DNA Artificial Sequence Consensus sequence for transcriptional factor NF-W1 85 gttgcatc 8 86 8 DNA Artificial Sequence Consensus sequence for transcriptional factor NF-W2 86 gttgcatc 8 87 12 DNA Artificial Sequence Consensus sequence for transcriptional factor NGF1-B 87 aggtcatgac ct 12 88 8 DNA Artificial Sequence Consensus sequence for transcriptional factor Oct-1 88 atgcaaat 8 89 8 DNA Artificial Sequence Consensus sequence for transcriptional factor Oct-2 89 atgcaaat 8 90 8 DNA Artificial Sequence Consensus sequence for transcriptional factor Oct-4 90 atgcwaat 8 91 8 DNA Artificial Sequence Consensus sequence for transcriptional factor Oct-6 91 atgcaaat 8 92 20 DNA Artificial Sequence Consensus sequence for transcriptional factor P53 92 rrrcwwgyyy rrrcwwgyyy 20 93 23 DNA Artificial Sequence Consensus sequence for transcriptional factor Pax-1 93 caccgttccg ctctagatat ctc 23 94 14 DNA Artificial Sequence Consensus sequence for transcriptional factor PCF 94 agaaagggaa agga 14 95 6 DNA Artificial Sequence Consensus sequence for transcriptional factor PEA3 95 aggaar 6 96 6 DNA Artificial Sequence Consensus sequence for transcriptional factor PPAR 96 aggtca 6 97 15 DNA Artificial Sequence Consensus sequence for transcriptional factor PR 97 agaacannnt gttct 15 98 10 DNA Artificial Sequence Consensus sequence for transcriptional factor PRDI-BF1 98 aagtgaaagt 10 99 18 DNA Artificial Sequence Consensus sequence for transcriptional factor PTF1 99 atggganctc agctgtgc 18 100 9 DNA Artificial Sequence Consensus sequence for transcriptional factor PU.1 100 agaggaact 9 101 7 DNA Artificial Sequence Consensus sequence for transcriptional factor PuF 101 gggtggg 7 102 12 DNA Artificial Sequence Consensus sequence for transcriptional factor RAR 102 aggtcatgac ct 12 103 16 DNA Artificial Sequence Consensus sequence for transcriptional factor RFX 103 cccctagcaa cagatg 16 104 6 DNA Artificial Sequence Consensus sequence for transcriptional factor Runt 104 ygyggt 6 105 11 DNA Artificial Sequence Consensus sequence for transcriptional factor RVF 105 aagataaaac c 11 106 6 DNA Artificial Sequence Consensus sequence for transcriptional factor RXR 106 aggtca 6 107 6 DNA Artificial Sequence Consensus sequence for transcriptional factor SIF 107 cccgtm 6 108 9 DNA Artificial Sequence Consensus sequence for transcriptional factor Sp1 108 krggctrrk 9 109 9 DNA Artificial Sequence Consensus sequence for transcriptional factor SREBP1 109 atcacgtga 9 110 10 DNA Artificial Sequence Consensus sequence for transcriptional factor SREBP1 110 atcaccccac 10 111 22 DNA Artificial Sequence Consensus sequence for transcriptional factor SRF 111 ggatgtccat attaggacat ct 22 112 9 DNA Artificial Sequence Consensus sequence for transcriptional factor STAT 112 ttcnnngaa 9 113 12 DNA Artificial Sequence Consensus sequence for transcriptional factor T3R 113 aggtcatgac ct 12 114 6 DNA Artificial Sequence Consensus sequence for transcriptional factor TBP 114 tataaa 6 115 5 DNA Artificial Sequence Consensus sequence for transcriptional factor TCF-1 115 mamag 5 116 8 DNA Artificial Sequence Consensus sequence for transcriptional factor TCF-2 alpha 116 saggaagy 8 117 9 DNA Artificial Sequence Consensus sequence for transcriptional factor TEF-1 117 aagyatgca 9 118 8 DNA Artificial Sequence Consensus sequence for transcriptional factor TEF-2 118 gggtgtgg 8 119 10 DNA Artificial Sequence Consensus sequence for transcriptional factor TGT-3 119 aagtgtttgc 10 120 10 DNA Artificial Sequence Consensus sequence for transcriptional factor TIN-1 120 aggaagttcc 10 121 6 DNA Artificial Sequence Consensus sequence for transcriptional factor USF 121 cacgtg 6 122 9 DNA Artificial Sequence Consensus sequence for transcriptional factor WT-ZFP 122 cgcccccgc 9 123 15 DNA Artificial Sequence Consensus sequence for transcriptional factor XF1/2 123 tcttctcacg caact 15 124 16 DNA Artificial Sequence Consensus sequence for transcriptional factor XPF-1 124 cacctgnnnn tttccc 16 125 20 DNA Artificial Sequence Consensus sequence for transcriptional factor YB-1 125 atttttctga ttggccaaag 20 126 19 DNA Artificial Sequence Epstein-Barr Virus EBNA (B958 strain) viral protein 126 ggttagcata tgctaacca 19 127 9 DNA Artificial Sequence Epstein-Barr Virus BZLF (B958 strain) viral protein 127 ttagcaatg 9 128 8 DNA Artificial Sequence Human CBF-1 (Epstein-Barr Virus cis-element) viral protein 128 cgtgggaa 8 129 14 DNA Artificial Sequence Human Papilloma viral protein 129 accgaaaacg gtgt 14 130 12 DNA Artificial Sequence Herpes simplex virus type 1 VP16 viral protein 130 atgctaatga ta 12 131 60 DNA Artificial Sequence HIV TAT (TAR RA sequence) viral protein 131 gggtctctct ggttagacca gatctgagcc tgggagctct ctggctaact agggaaccca 60 132 19 DNA Artificial Sequence HIV integrase viral protein 132 gtgtggaaaa tctctagca 19 133 21 DNA Artificial Sequence consensus sequence for transcriptional factor p53 133 rrrcwwngyy yrrrcwwgyy y 21 134 22 DNA Artificial Sequence consensus sequence for transcriptional factor p53 134 rrrcwwnngy yyrrrcwwgy yy 22 135 23 DNA Artificial Sequence consensus sequence for transcriptional factor p53 135 rrrcwwnnng yyyrrrcwwg yyy 23 136 24 DNA Artificial Sequence consensus sequence for transcriptional factor p53 136 rrrcwwnnnn gyyyrrrcww gyyy 24 137 25 DNA Artificial Sequence consensus sequence for transcriptional factor p53 137 rrrcwwnnnn ngyyyrrrcw wgyyy 25 138 26 DNA Artificial Sequence consensus sequence for transcriptional factor p53 138 rrrcwwnnnn nngyyyrrrc wwgyyy 26 139 27 DNA Artificial Sequence consensus sequence for transcriptional factor p53 139 rrrcwwnnnn nnngyyyrrr cwwgyyy 27 140 28 DNA Artificial Sequence consensus sequence for transcriptional factor p53 140 rrrcwwnnnn nnnngyyyrr rcwwgyyy 28 141 29 DNA Artificial Sequence consensus sequence for transcriptional factor p53 141 rrrcwwnnnn nnnnngyyyr rrcwwgyyy 29 142 30 DNA Artificial Sequence consensus sequence for transcriptional factor p53 142 rrrcwwnnnn nnnnnngyyy rrrcwwgyyy 30 143 31 DNA Artificial Sequence consensus sequence for transcriptional factor p53 143 rrrcwwnnnn nnnnnnngyy yrrrcwwgyy y 31 144 32 DNA Artificial Sequence consensus sequence for transcriptional factor p53 144 rrrcwwnnnn nnnnnnnngy yyrrrcwwgy yy 32 145 33 DNA Artificial Sequence consensus sequence for transcriptional factor p53 145 rrrcwwnnnn nnnnnnnnng yyyrrrcwwg yyy 33 146 255 DNA CMV 146 tggccaagcg gcctctgata accaagcctg aggttatcag tgtaatgaag cgccgcattg 60 aggagatctg catgaaggtc tttgcccagt acattctggg ggccgatcct ctgagagtct 120 gctctcctag tgtggatgac ctacgggcca tcgccgagga gtcagatgag gaagaggcta 180 ttgtagccta cactttggcc accgctggtg tcagctcctc tgattctctg gtgtcacccc 240 cagagtcccc tgtac 255 147 22 DNA Artificial Sequence consensus sequence for transcriptional factor NFkB 147 agttgagggg actttcccag gc 22 148 23 DNA Artificial Sequence consensus sequence for transcriptional factor CREB 148 attgcctgac gtcagagagc tag 23 149 24 DNA Artificial Sequence consensus sequence for transcriptional factor AP-1 149 ccgttccggc tgactcatca agcg 24 150 7 DNA Artificial Sequence consensus sequence for transcriptional factor Myc 150 tctctta 7

Claims (35)

What is claimed is:
1. A screening and/or quantification method of one or more activated transcriptional factor(s) (1) present in a cell or cell lysate, said method comprising the steps of:
binding to an insoluble solid support (3) double-stranded DNA sequence(s) (2) at the concentration of at least 0.01 μmole/cm2 of said solid support surface, said double-stranded DNA sequence(s) comprising a specific sequence able to bind said transcriptional factor and being linked to a spacer having a length of at least 6.8 nm,
putting into contact said transcriptional factor (1) with said bound double-stranded DNA sequence(s) (2); and
identifying and/or quantifying a signal resulting from the binding of said transcriptional factor(s) (1) upon said double-stranded DNA sequence(s) (2) and resulting from one characteristic specific of the transcriptional factor activation.
2. The method according to the claim 1, wherein said characteristic specific of the transcriptional factor (1) activation is a phosphorylation or dephosphorylation of amino acids of the transcriptional factor (1).
3. The screening and,/ or quantification method according to the claim 1, wherein the characteristic specific of the transcriptional factor (1) activation is a binding of the transcriptional factor (1) to a protein which is part of its active complex.
4. The method according to the claim 3, wherein the protein is an activator or an inhibitor of the transcriptional factor (1) activation.
5. The method according to the claim 1, wherein the signal resulting from the binding of the transcriptional factor (1) upon the double-stranded DNA sequence(s) (2) and from at least one characteristic specific of the transcriptional factor (1) activation is detected by using
firstly a primary antibody (4) or an hypervariable portion thereof specific for the activated form of the transcriptional factor, and by
a secondary labelled antibody (5) directed against the primary antibody (4) or the specific hypervariable portion thereof.
6. The method of claim 5, wherein the secondary labelled antibody (5) is conjugated with an enzyme such as a peroxidase.
7. The method according to the claim 1, wherein the spacer corresponds to a double-stranded DNA sequence of at least 20 base pairs.
8. The method according to the claim 1, wherein the spacer corresponds to a chemical spacer of at least 10 atoms.
9. The method according to the claim 1, wherein the binding of the double-stranded DNA sequence(s) (2) to the insoluble solid support (3) is a covalent binding.
10. The method according to the claim 1, wherein the binding of the double-stranded DNA sequence(s) (2) to the insoluble solid support (3) is of non-covalent type and corresponds to a binding pair comprising a first element (6) and a second member (7), said first element being bound to the double-stranded DNA sequence, said second member (7) being bound to the surface of the solid support (3), said first element (6) being able to interact with said second member (7).
11. The method according to claim 10, wherein the binding pair is selected from the group consisting of biotin/streptavidin, hapten/receptor and antigen/antibody.
12. The method according to the claim 1, wherein the transcriptional factor is present in solution at a concentration lower than 20 nmolar (nM).
13. The method according to the claim 1, wherein the signal resulting from the binding of the transcriptional factor (1) upon the double-stranded DNA sequence(s) (2) and resulting from one characteristic specific of the transcriptional factor activation is a non radioactive resulting signal.
14. The method according to the claim 1, wherein the signal resulting from the binding of the transcriptional factor (1) upon the double-stranded DNA sequence(s) (2) and resulting from one characteristic specific of the transcriptional factor activation is obtained through an enzymatic reaction.
15. The method according to the claim 1, wherein multiple different transcriptional factors (1) are present in a same biological sample.
16. The method according to the claim 1, wherein the transcriptional factor (1) is selected from the group consisting of NF-KB, AP-1, CREB, SP-1, C/EBP, GR, HIF-1, Myc, NF-AT, Oct, TBP and CBF- 1 or factors listed in table 1.
17. The method according to the claim 1, for the screening and/or quantification of multiple different transcriptional factors (1) upon a same support (3).
18. The method according to the claim 1, wherein the solid support (3) is an array bearing upon at least 4 spots/cm2 of solid support surface, each spot containing double-stranded DNA sequence(s) (2) for the binding of transcriptional factor(s) (1).
19. The method according to the claim 1, wherein the double-stranded DNA sequence(s) fixed on the support surface contain in part or totally one or several of the consensus DNA sequences presented in the table 1.
20. The method according to the claim 1, wherein said transcriptional factor is the HIV integrase.
21. The method according to the claim 1, which further comprises the steps of screening, quantifying and/or recovering compounds able to bind to said transcriptional factor(s) or inhibit the binding of transcriptional factor(s) (1) to the specific sequence upon the double-stranded DNA sequence(s) (2) bound to said solid support (3).
22. The method according to the preceding claim 1, which further comprises the step of screening and/or quantifying a compound able to modulate the activity of said transcriptional factor by a modification of the level of the characteristic specific of the transcriptional factor activation.
23. The method according to the claim 1, which further comprises the steps of screening, quantifying and/or recovering compounds which modulate the binding and/or the activity of the said transcriptional factor(s) when they are put in contact with elements selected from the group consisting of cells, tissues or organisms.
24. The method according to the claim 1, which further comprises the steps of screening, quantifying and/or recovering compounds which modulate the activity of enzyme(s) or protein(s) acting on transcriptional factor(s) and then assayed for the activity of said transcriptional factor(s).
25. The method according to the claim 1, which further comprises the step of identification of transcriptional factor(s) and/or of peptides which are part of their active complex.
26. The method according to the claim 1, which further comprises the step of adding in the cell lysate an externally added transcriptional factor or a compound which is able to bind to a consensus sequence.
27. A kit for the screening and/or quantification of transcriptional factor(s) (1) or (a) compound(s) able to bind to said transcriptional factor(s) (1) or inhibit the binding of said transcriptional factor(s) to a specific nucleotide sequence, which comprises double-stranded DNA sequence(s) (2) bound to an insoluble solid support (3) via a spacer having a length of at least 6.8 nm, at a concentration of at least 0.01 pmole/cm2 of solid support surface (3) and a primary antibody or a specific hypervariable portion thereof, both being specific for the activated form of the transcriptional factor(s) (1) and possibly a second labelled antibody (5) directed against the primary antibody (4) or the specific hypervariable portion thereof.
28. The kit according to the claim 27, wherein said secondary labelled antibody (5) is conjugated with an enzyme such as a peroxidase.
29. The kit according to the claim 27, comprising a solid support bearing on its surface one or several double-stranded DNA consensus sequences at a concentration of at least 0.01 pmole/cm2 comprising in part or totally one or several of the consensus sequence(s) listed in table 1 allowing the binding of a transcriptional factor present in solution and its detection and/or quantification.
30. The kit according to the claim 27, wherein the solid support is an array having at least 4 spot/cm2 of solid support surface containing double-stranded DNA sequence(s) (2) for the binding of the transcriptional factor(s) (1).
31. The kit according to the claim 27, wherein said spacer is a double-stranded DNA nucleotide sequence of at least 20 base pairs.
32. The kit according to the claim 27, wherein said spacer is a double-stranded DNA nucleotide sequence of at least 40 base pairs.
33. The kit according to the claim 27, wherein the double-stranded DNA sequence (2) is bound to a first member (6) of a binding pair, able to interact with a second member (7) of the binding pair bound to the surface of the solid support (3).
34. The kit according to the claim 27, wherein the double-stranded DNA sequence (2) is covalently bound to the surface of the solid support.
35. The kit according to the claim 27, being a high-throughput screening device.
US10/821,568 2000-03-24 2004-04-08 Method and kit for the screening, the detection and/or the quantification of transcriptional factors Abandoned US20040185497A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/821,568 US20040185497A1 (en) 2000-03-24 2004-04-08 Method and kit for the screening, the detection and/or the quantification of transcriptional factors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00870057A EP1136567A1 (en) 2000-03-24 2000-03-24 Method and kit for the screening, the detection and /or the quantification of transcriptional factors
EP00870057.7 2000-03-24
US09/816,763 US7396643B2 (en) 2000-03-24 2001-03-23 Method for the screening, the detection and/or the quantification of transcriptional factors
US10/821,568 US20040185497A1 (en) 2000-03-24 2004-04-08 Method and kit for the screening, the detection and/or the quantification of transcriptional factors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/816,763 Division US7396643B2 (en) 2000-03-24 2001-03-23 Method for the screening, the detection and/or the quantification of transcriptional factors

Publications (1)

Publication Number Publication Date
US20040185497A1 true US20040185497A1 (en) 2004-09-23

Family

ID=8175725

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/816,763 Expired - Lifetime US7396643B2 (en) 2000-03-24 2001-03-23 Method for the screening, the detection and/or the quantification of transcriptional factors
US10/821,568 Abandoned US20040185497A1 (en) 2000-03-24 2004-04-08 Method and kit for the screening, the detection and/or the quantification of transcriptional factors
US12/166,092 Expired - Lifetime US7892818B2 (en) 2000-03-24 2008-07-01 Method and kit for the determination of cellular activation profiles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/816,763 Expired - Lifetime US7396643B2 (en) 2000-03-24 2001-03-23 Method for the screening, the detection and/or the quantification of transcriptional factors

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/166,092 Expired - Lifetime US7892818B2 (en) 2000-03-24 2008-07-01 Method and kit for the determination of cellular activation profiles

Country Status (7)

Country Link
US (3) US7396643B2 (en)
EP (2) EP1136567A1 (en)
JP (1) JP2003528624A (en)
AT (1) ATE299533T1 (en)
AU (1) AU2001248159A1 (en)
DE (1) DE60111927T2 (en)
WO (1) WO2001073115A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736780A1 (en) 2005-06-24 2006-12-27 Eppendorf Array Technologies S.A. Method and means for detecting and/or quantifying hierarchical molecular change of a cell in response to an external stimulus

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002232510A1 (en) * 2000-11-13 2002-05-21 Cistem Molecular Corporation Methods for determining the biological effects of compounds on gene expression
AU2002338624A1 (en) * 2001-03-30 2002-10-28 Clontech Laboratories, Inc. System and method for quantitating transcription factors
US7981842B2 (en) * 2001-06-08 2011-07-19 Panomics, Inc. Method for detecting transcription factor-protein interactions
US20040191815A1 (en) * 2003-01-15 2004-09-30 Motoki Kyo Array having oligonucleotides on a metal substrate
WO2004083431A1 (en) * 2003-03-19 2004-09-30 Zoegene Corporation Method of screening protein capable of controlling transcription reaction and method of assaying activity thereof
EP1632570A1 (en) * 2003-05-16 2006-03-08 Otsuka Pharmaceutical Co., Ltd. Transcription chip
CN1296491C (en) * 2004-01-08 2007-01-24 华中科技大学同济医学院 Active transcription factor detecting method and kit
JP4576945B2 (en) 2004-02-09 2010-11-10 ソニー株式会社 Detection surface for detecting interaction between substances, sensor chip, sensor device and detection method using the detection surface
DE102004023906A1 (en) * 2004-05-13 2005-12-22 GESELLSCHAFT FüR BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) Process for the preparation of chemical microarrays
EP1693466A1 (en) * 2005-02-16 2006-08-23 Eppendorf Array Technologies SA Method and kit to profile tumors by biomarker analyses including transcriptional factor assays
US7726135B2 (en) 2007-06-06 2010-06-01 Greencentaire, Llc Energy transfer apparatus and methods
US20090200005A1 (en) * 2008-02-09 2009-08-13 Sullivan Shaun E Energy transfer tube apparatus, systems, and methods
EP2389439A4 (en) * 2009-01-23 2013-02-13 Agency Science Tech & Res SINGLE NUCLEOTIDE POLYMORPHISM WITHIN AN INTRONIC p53 BINDING MOTIF OF THE PRKAG2 GENE
US20130338080A1 (en) * 2012-05-24 2013-12-19 The Trustees Of The University Of Pennsylvania Compositions and methods for treating an activated b-cell diffuse large b-cell lymphoma
EP2669291A1 (en) 2012-05-29 2013-12-04 Pierce Biotechnology, Inc. Modified Nucleotides Methods and Kits
US10822607B2 (en) * 2012-12-21 2020-11-03 Nanyang Technological University Site-specific induction of bimolecular quadruplex-duplex hybrids and methods of using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563036A (en) * 1994-04-29 1996-10-08 Tularik, Inc. Transcription factor-DNA binding assay
US5747253A (en) * 1991-08-23 1998-05-05 Isis Pharmaceuticals, Inc. Combinatorial oligomer immunoabsorbant screening assay for transcription factors and other biomolecule binding
US5770722A (en) * 1994-10-24 1998-06-23 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
US5846783A (en) * 1996-01-16 1998-12-08 Gull Laboratories Methods and apparatus for preparing, amplifying, and discriminating multiple analytes
US5939261A (en) * 1997-06-24 1999-08-17 Sarnoff Corporation Method for capturing a nucleic acid
US6326489B1 (en) * 1997-08-05 2001-12-04 Howard Hughes Medical Institute Surface-bound, bimolecular, double-stranded DNA arrays

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968602A (en) * 1986-03-05 1990-11-06 Molecular Diagnostics, Inc. Solution-phase single hybridization assay for detecting polynucleotide sequences
WO1989011548A1 (en) * 1988-05-20 1989-11-30 Cetus Corporation Immobilized sequence-specific probes
DE4312399A1 (en) * 1993-04-16 1994-10-20 Boehringer Mannheim Gmbh Method for determining the binding of a transcription factor to a nucleic acid
US5976795A (en) * 1996-01-31 1999-11-02 Iowa State University Research Foundation, Inc. Retrotransposon and methods
US5846683A (en) 1996-04-08 1998-12-08 Sharp Kabushiki Kaisha Toner producing method using recycled extra-fine toner particles
WO1998003652A2 (en) 1996-07-23 1998-01-29 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services P300/cbp-associated transcriptional co-factor p/caf and uses thereof
NL1003839C2 (en) * 1996-08-20 1998-02-26 Amsterdam Support Diagnostics Diagnostic test.
FR2760024B1 (en) * 1997-02-21 1999-05-14 Centre Nat Rech Scient PROCESS FOR CHARACTERIZING DUPLEX OF NUCLEIC ACID
EP1068356B8 (en) * 1998-04-03 2007-01-03 Adnexus Therapeutics, Inc. Addressable protein arrays
AU6169599A (en) 1998-10-09 2000-05-01 Xgene Corporation Method for determining transcription factor activity and its technical uses
JP2004510145A (en) * 2000-09-20 2004-04-02 モレキュラー・リフレクションズ Microfabricated ultrasound arrays for use as resonance sensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747253A (en) * 1991-08-23 1998-05-05 Isis Pharmaceuticals, Inc. Combinatorial oligomer immunoabsorbant screening assay for transcription factors and other biomolecule binding
US5563036A (en) * 1994-04-29 1996-10-08 Tularik, Inc. Transcription factor-DNA binding assay
US5770722A (en) * 1994-10-24 1998-06-23 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
US5846783A (en) * 1996-01-16 1998-12-08 Gull Laboratories Methods and apparatus for preparing, amplifying, and discriminating multiple analytes
US5939261A (en) * 1997-06-24 1999-08-17 Sarnoff Corporation Method for capturing a nucleic acid
US6326489B1 (en) * 1997-08-05 2001-12-04 Howard Hughes Medical Institute Surface-bound, bimolecular, double-stranded DNA arrays

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736780A1 (en) 2005-06-24 2006-12-27 Eppendorf Array Technologies S.A. Method and means for detecting and/or quantifying hierarchical molecular change of a cell in response to an external stimulus

Also Published As

Publication number Publication date
US7396643B2 (en) 2008-07-08
EP1266039A1 (en) 2002-12-18
EP1266039B1 (en) 2005-07-13
US20090082223A1 (en) 2009-03-26
US20020110814A1 (en) 2002-08-15
WO2001073115A1 (en) 2001-10-04
DE60111927T2 (en) 2006-05-24
DE60111927D1 (en) 2005-08-18
EP1136567A1 (en) 2001-09-26
JP2003528624A (en) 2003-09-30
US7892818B2 (en) 2011-02-22
AU2001248159A1 (en) 2001-10-08
ATE299533T1 (en) 2005-07-15

Similar Documents

Publication Publication Date Title
US7396643B2 (en) Method for the screening, the detection and/or the quantification of transcriptional factors
US20050003395A1 (en) Methods and compositions for high throughput identification of protein/nucleic acid binding pairs
US20090208927A1 (en) Methods of detecting sequence-specific DNA binding proteins
AU1050895A (en) Immobilized mismatch binding protein for detection or purification of mutations or polymorphisms
WO2002014550A9 (en) Transcription factor target gene discovery
EP1362122A2 (en) Microarrayed organization of transcription factor target genes
EP1550731A1 (en) A method for quantitative determination of multi-drug resistance in tumours
Jiang et al. Use of an array technology for profiling and comparing transcription factors activated by TNFα and PMA in HeLa cells
US7407748B2 (en) Method and kit for the determination of cellular activation profiles
US8841237B2 (en) Transcription chip
US20050037357A1 (en) Method for analyzing translation-controlled gene expression
US20070026408A1 (en) Materials and methods for analysis of atp-binding cassette transporter gene expression
EP1284421A1 (en) Method of constructing polynucleotide microarray, apparatus for the construction and polynucleotide microarray
Dorris et al. Oligonucleotide array technologies for gene expression profiling
WO1998037241A1 (en) Telomerase extension assay
WO2002077288A1 (en) Methods for identifying nucleic acid molecules of interest for use in hybridization arrays

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION