US20040175774A1 - Method for predicting the sensitivity to chemotherapy - Google Patents

Method for predicting the sensitivity to chemotherapy Download PDF

Info

Publication number
US20040175774A1
US20040175774A1 US10/487,932 US48793204A US2004175774A1 US 20040175774 A1 US20040175774 A1 US 20040175774A1 US 48793204 A US48793204 A US 48793204A US 2004175774 A1 US2004175774 A1 US 2004175774A1
Authority
US
United States
Prior art keywords
gsh
amino
tumor
gst
cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/487,932
Inventor
Camilla Fowst
Geroni Rosa
Tursi Margaret
Vreeland Franzanne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfizer Italia SRL
Pharmacia and Upjohn Co
Original Assignee
Pharmacia Italia SpA
Pharmacia and Upjohn Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pharmacia Italia SpA, Pharmacia and Upjohn Co filed Critical Pharmacia Italia SpA
Assigned to PHARMACIA & UPJOHN COMPANY, PHARMACIA ITALIA S.P.A. reassignment PHARMACIA & UPJOHN COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TURSI, JENNIFER MARGARET, FOWST, CAMILLA, GERONI, MARIA CRISTINA ROSI, VREELAND, FRANZANNE
Publication of US20040175774A1 publication Critical patent/US20040175774A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57488Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/9116Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • G01N2333/91165Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5) general (2.5.1)
    • G01N2333/91171Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5) general (2.5.1) with definite EC number (2.5.1.-)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to the field of cancer treatment and, more particularly, it relates to a method for predicting the sensitivity towards chemotherapy of a patient, by measuring glutathione (GSH) or GSH-related enzyme glutathione-S-transferase (GST) blood levels of the said patient undergoing chemotherapeutic treatment.
  • GSH glutathione
  • GST GSH-related enzyme glutathione-S-transferase
  • GSH glutathione
  • GST glutathione
  • alkylating agents e.g. melphalan, chlorambucil, cyclophosphamide, ifosfamide mustards, BCNU
  • platinum complexes e.g. cisplatin, carboplatin and oxaliplatin
  • anthracyclines e.g. doxorubicin, epirubicin, idarubicin and daunorubicin
  • GSH and GST are ubiquitously present in several human tissues such as, for instance, blood cells, plasma, serum circulating blasts and pathologic (tumor) tissues.
  • GST and most prominently GST- ⁇ , are present at high levels in a preponderance of tumor types. Increased levels of GSH and activity of GST in comparison to normal tissues has been found in several tumor types comprising, for instance, gastrointestinal tumors, uterine and ovarian cancers, head and neck cancer, lung carcinomas, sarcomas, liver tumors and haematological tumors [ Cancer Res. 49:5225-5229 (1989); Clinical Reviews in Biochemistry and Molecular Biology 27(4.5):337-386 (1992)].
  • GSH plays a crucial protective role against cellular injury produced by a number of toxic insults.
  • Preclinical and clinical studies have established a correlation between GSH/GST over expression and cancer or cancer response to chemotherapy.
  • FIG. 1 correlation between GST activity in tumor tissue and GSH levels in matched whole blood specimens from lung cancer patients.
  • FIG. 2 correlation between GST activity in tumor tissue and GSH levels in matched whole blood specimens from head and neck cancer patients.
  • a method for predicting the sensitivity towards chemotherapy of a patient in need thereof which comprises obtaining a blood sample from the patient and detecting the presence of blood glutathione (GSH) as a surrogate marker for glutathione-S-transferase (GST) activity in tumor tissues.
  • GSH blood glutathione
  • GST glutathione-S-transferase
  • GSH blood glutathione
  • GST glutathione-S-transferase
  • a suitable and effective chemotherapeutic treatment might comprise the administration of an antitumor agent which is effective in the treatment of those tumors over expressing GSH/GST.
  • a suitable therapy could thus comprise the administration to a patient in need thereof, of the proper amounts of the compound PNU 166196, for instance according to the administration schedule reported in the international patent application WO 02/28389 (claiming priority from U.S. Ser. No. 09/676,770, filed on Oct. 2, 2000) in the name of the Applicant itself and herewith incorporated by reference.
  • the above method for predicting the sensitivity towards chemotherapy could be advantageously used in several tumor forms including, for instance, gastrointestinal tumors, uterine and ovarian cancers, head and neck cancer, lung carcinomas, sarcomas, liver tumors, pancreatic cancer, breast cancer, prostate cancer, melanoma and haematological tumors.
  • the said tumor is selected from lung, head and neck cancer.
  • the above method may also be applied to select the proper antitumor therapy as a second line therapy, for instance once a previous chemotherapy treatment, for example a first-line chemotherapy treatment with conventional antitumor agents, e.g. alkylating agents, platinum derivatives or anthracyclines, failed to give the expected results because of the occurrence, among other effects, of the aforementioned resistance effects.
  • conventional antitumor agents e.g. alkylating agents, platinum derivatives or anthracyclines
  • any commercially available kit for detecting GSH levels in blood samples may be conveniently employed.
  • FIGS. 1 and 2 clearly show the above correlations between GSH levels in blood of lung cancer patients and head and neck cancer patients, with the GST activities in tumor tissues of the said patients.
  • Tissue and blood samples from 29 patients with lung cancer (NSCLC) and 23 patients with head and neck cancer (SCC) were enrolled, as per the following table I.
  • NSCLC lung cancer
  • SCC head and neck cancer
  • TABLE I Patient series Principal characteristics Head and neck cancer Lung cancer No. 23 29 Age 56 (29-72) 67 (28-80) Sex 16 m - 7 f 24 m - 5 f Tumor type SCC 26 (NSCLC) 2 (lung adenocarcinoma) 1 (spino cell.)
  • Tissue from primary or relapsed tumor A sample (E 200 mg) of tumor tissue adjacent to the sample submitted for histological examination was collected from each patient. Tissue samples were put immediately in crushed ice. Samples were frozen in liquid nitrogen within 30 minutes (max 1 hour) from the excision.
  • Blood (before treatment of the primary tumor or at time of failure). Blood (15 ml) was collected in a pre-chilled syringe and processed as follows.
  • GSH quantity GSH level in cytosol and whole blood samples was measured by a commercially available GSH assay kit (Cayman, Ann Arbor, Mich., USA). This kit utilizes an enzymatic recycling method based on the reaction between GSH and DTNB that produces a yellow coloured compound (TNB). The rate of TNB production is directly proportional to the concentration of GSH in the sample. Measurement of the absorbance of TNB at 405 nm provides an accurate estimation of GSH in the sample.
  • GST glutathione S-transferase
  • GST activity of all samples was compared with a standard (cytosol of human placenta) and was measured as U*/mg prot for cytosol sample.
  • the calibration curve ranges between 0.6-40 nmol/ml.
  • Samples and deproteinated samples are stable up to 6 months if stored at ⁇ 80° C. and ⁇ 20° C., respectively.
  • Activity assay kit is based on an enzymatic reaction between GST and CDNB, that is a specific substrate of the enzyme. Accordingly the specificity of the method used is largely demonstrated in literature (Habig W. H., 1974; Smith D. B., 1988). We therefore did not perform further confirmatory experiments.
  • the calibration curve ranges between 0.01-0.4 dA/min
  • the evaluated methods are reliable and robust for routine use in tissue extracts (GST activity) and in whole blood (GSH level).
  • TABLE IV GST activity in cancer tissue vs. whole blood GSH levels Tumor Spearman Correlation p value Lung 0.53 0.004 Head and neck 0.89 ⁇ 0.0001

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Herewith described is a novel method for predicting the sensitivity towards chemotherapy, of a patient in need thereof, which comprises obtaining a blood sample from the patient and detecting the levels of blood glutathione (GSH) as a surrogate marker for glutathione-S-transferase (GST) activity in tumor tissues.

Description

  • The present invention relates to the field of cancer treatment and, more particularly, it relates to a method for predicting the sensitivity towards chemotherapy of a patient, by measuring glutathione (GSH) or GSH-related enzyme glutathione-S-transferase (GST) blood levels of the said patient undergoing chemotherapeutic treatment. [0001]
  • The levels of glutathione (GSH) or (GST) are known in the art to be correlated with the response to cytotoxic antitumor treatments since high levels of GSH or GST confer resistance to several antitumor drugs such as, for instance, alkylating agents (e.g. melphalan, chlorambucil, cyclophosphamide, ifosfamide mustards, BCNU), platinum complexes (e.g. cisplatin, carboplatin and oxaliplatin) and anthracyclines (e.g. doxorubicin, epirubicin, idarubicin and daunorubicin) [[0002] Biochem. Pharmacol 35: 3405-3409 (1986)].
  • Both GSH and GST are ubiquitously present in several human tissues such as, for instance, blood cells, plasma, serum circulating blasts and pathologic (tumor) tissues. [0003]
  • See, for general references to GSH and GST, [0004] Cancer Res. 54: 4313-4320 (1994); Brit. J. Cancer 72(2): 324-326 (1995); Drug Discovery Today 3:113-121 (1998).
  • GST, and most prominently GST-π, are present at high levels in a preponderance of tumor types. Increased levels of GSH and activity of GST in comparison to normal tissues has been found in several tumor types comprising, for instance, gastrointestinal tumors, uterine and ovarian cancers, head and neck cancer, lung carcinomas, sarcomas, liver tumors and haematological tumors [[0005] Cancer Res. 49:5225-5229 (1989); Clinical Reviews in Biochemistry and Molecular Biology 27(4.5):337-386 (1992)].
  • GSH plays a crucial protective role against cellular injury produced by a number of toxic insults. Preclinical and clinical studies have established a correlation between GSH/GST over expression and cancer or cancer response to chemotherapy. [0006]
  • Alterations of the GSH-based detoxification system (consisting of GSH and GSH related enzymes, GSTs) have been also associated with varying responsiveness to several antineoplastic agents. [0007]
  • So far, because of the low rate of responsiveness to conventional chemotherapy in those tumors over expressing GSH/GST, the identification of new markers predicting sensitivity to therapy is of utmost importance. [0008]
  • Of additional importance was the requirement to identify these new predictive markers from a relatively non-invasive source, for instance blood or blood component, to allow these predictive markers to be readily analyzed for the evaluation of chemotherapy sensitivity.[0009]
  • We have now found that GST activity in tumor tissues is strongly correlated with blood GSH levels, hence indicating blood GSH levels as a possible surrogate marker for GST activity in tumor tissues. [0010]
  • FIG. 1: correlation between GST activity in tumor tissue and GSH levels in matched whole blood specimens from lung cancer patients. [0011]
  • FIG. 2: correlation between GST activity in tumor tissue and GSH levels in matched whole blood specimens from head and neck cancer patients.[0012]
  • Therefore, it is a first object of the present invention a method for predicting the sensitivity towards chemotherapy of a patient in need thereof, which comprises obtaining a blood sample from the patient and detecting the presence of blood glutathione (GSH) as a surrogate marker for glutathione-S-transferase (GST) activity in tumor tissues. [0013]
  • According to the method of the invention, it is thus possible to identify whether a given tumor is associated with GSH/GST over expression, hence allowing the selection of the most suitable antitumor therapy. [0014]
  • It is therefore a further object of the invention a method for selecting the proper chemotherapeutic treatment for a patient in need thereof, which first comprises predicting his sensitivity towards chemotherapy by obtaining a blood sample from the patient, detecting the presence of blood glutathione (GSH) as a surrogate marker for glutathione-S-transferase (GST) activity in tumor tissues, determining whether the blood GSH levels fall within a range indicative of a potential for the patient to exhibit de novo or later progression to resistance to chemotherapeutic agents, and selecting a suitable and effective chemotherapeutic treatment. [0015]
  • In other words, once the blood levels of GSH being thus detected are so high to indicate, for the patient, the possibility of exhibiting resistance to conventional chemotherapeutic agents, for instance alkylating agents, anthracyclines or platinum complexes, a suitable and effective chemotherapeutic treatment, based on the above GSH levels, might comprise the administration of an antitumor agent which is effective in the treatment of those tumors over expressing GSH/GST. [0016]
  • In this respect, the compound N-(5-{[(5-{[(5-{[(2-{[amino(imino)methyl]amino}ethyl) amino]carbonyl}-1-methyl-1H-pyrrol-3-yl)amino]carbonyl}-1-methyl-1H-pyrrol-3-yl) amino]carbonyl}-1-methyl-1H-pyrrol-3-yl)-4-[(2-bromoacryloyl)amino]-1-methyl-1H-pyrrole-2-carboxamide (internal code PNU 166196), and pharmaceutically acceptable salts thereof, recently appeared to be effective in the treatment of a tumor known to be poorly responsive or resistant to conventional antitumor therapies and described in the literature as potentially over-expressing GSH/GST. [0017]
  • For a general reference to the above compound of formula [0018]
    Figure US20040175774A1-20040909-C00001
  • and to its effectiveness against tumors over expressing GSH/GST system, see the international patent application WO 98/04524 and WO 01/85144 (filed on Apr. 19, 2001 and claiming priority from UK patent application No. 0011059.3, filed on May 8, 2000), both in the name of the Applicant itself and herewith incorporated by reference. [0019]
  • Preferably, a suitable therapy could thus comprise the administration to a patient in need thereof, of the proper amounts of the compound PNU 166196, for instance according to the administration schedule reported in the international patent application WO 02/28389 (claiming priority from U.S. Ser. No. 09/676,770, filed on Oct. 2, 2000) in the name of the Applicant itself and herewith incorporated by reference. [0020]
  • According to a preferred embodiment of the invention, the above method for predicting the sensitivity towards chemotherapy could be advantageously used in several tumor forms including, for instance, gastrointestinal tumors, uterine and ovarian cancers, head and neck cancer, lung carcinomas, sarcomas, liver tumors, pancreatic cancer, breast cancer, prostate cancer, melanoma and haematological tumors. [0021]
  • Even more preferably, the said tumor is selected from lung, head and neck cancer. [0022]
  • In addition, the above method may also be applied to select the proper antitumor therapy as a second line therapy, for instance once a previous chemotherapy treatment, for example a first-line chemotherapy treatment with conventional antitumor agents, e.g. alkylating agents, platinum derivatives or anthracyclines, failed to give the expected results because of the occurrence, among other effects, of the aforementioned resistance effects. [0023]
  • Several methods are known in the art for the assay of GSH and related kits are commercially available. [0024]
  • According to the present invention, therefore, any commercially available kit for detecting GSH levels in blood samples may be conveniently employed. [0025]
  • In this respect, it is a further object of the invention the use of a kit for determining blood GSH levels as a surrogate marker for GST activity in tumor tissues. [0026]
  • With the aim of illustrating the present invention, without posing any limitation to it, the following experimental part is now given. [0027]
  • Experimental Part
  • The following experimental part was used to demonstrate the strong correlation existing between the GSH levels in blood versus the GST activity in tumor tissues, so as to render GSH detection in blood as a surrogate marker for GST levels in tumor tissues. [0028]
  • As formerly indicated, FIGS. 1 and 2 clearly show the above correlations between GSH levels in blood of lung cancer patients and head and neck cancer patients, with the GST activities in tumor tissues of the said patients. [0029]
  • Tissue and blood samples from 29 patients with lung cancer (NSCLC) and 23 patients with head and neck cancer (SCC) were enrolled, as per the following table I. [0030]
    TABLE I
    Patient series
    Principal
    characteristics Head and neck cancer Lung cancer
    No. 23 29
    Age 56 (29-72) 67 (28-80)
    Sex 16 m - 7 f 24 m - 5 f
    Tumor type SCC 26 (NSCLC)
     2 (lung adenocarcinoma)
     1 (spino cell.)
  • Sampling Modalities
  • Tissue from primary or relapsed tumor. A sample ([0031] E 200 mg) of tumor tissue adjacent to the sample submitted for histological examination was collected from each patient. Tissue samples were put immediately in crushed ice. Samples were frozen in liquid nitrogen within 30 minutes (max 1 hour) from the excision.
  • Blood (before treatment of the primary tumor or at time of failure). Blood (15 ml) was collected in a pre-chilled syringe and processed as follows. [0032]
  • 3 ml were dispensed in K[0033] 3EDTA (or ACD-solution A) tubes and stored at −20° C. (whole blood).
  • Analytical Methods
  • GSH quantity GSH level in cytosol and whole blood samples was measured by a commercially available GSH assay kit (Cayman, Ann Arbor, Mich., USA). This kit utilizes an enzymatic recycling method based on the reaction between GSH and DTNB that produces a yellow coloured compound (TNB). The rate of TNB production is directly proportional to the concentration of GSH in the sample. Measurement of the absorbance of TNB at 405 nm provides an accurate estimation of GSH in the sample. [0034]
  • Before assaying, samples were deproteinated with 10% metaphosphoric acid (MPA) to avoid interferences due to sulfhydryl groups on the proteins in the assay. 50 μl of the deproteinated sample (whole or diluted 1:3 with kit Wash Buffer) were assayed in duplicate according to manufacturer's instructions. GSH concentration was measured by comparison with a standard curve obtained by plotting the absorbance at 25 min vs. GSH concentration (nmol/ml). Cytosol GSH levels were normalised for protein content (nmol/mg). [0035]
  • GST activity. 10 μl of cytosol was analysed by a commercially available assay kit (Novagen, Darmstadt, Germany) according to manufacture's instructions. The kit is designed in order to perform a colorimetric-enzymatic assay of glutathione S-transferase (GST). The sample is combined with 1-chloro-2,4-dinitrobenzene (CDNB) substrate in the supplied reaction buffer and the absorbance of the reaction is monitored at λ=340 nm. The rate of change in A[0036] 340 is proportional to the amount of GST activity in the sample. The absorbance at 340 nm was monitored every 30 sec. over a period of 5 min for cytosol samples.
  • GST activity of all samples was compared with a standard (cytosol of human placenta) and was measured as U*/mg prot for cytosol sample. [0037]
  • *U=(dA/min of 10 μl placenta)/mg prot of placenta [0038]
  • Assay Validation
  • The validation of the methods was planned taking into account: sensitivity, specificity, precision (intra-assay, inter-assay, inter-batch), calibration range, reagent stability, and analyte stability in different storage conditions. [0039]
  • GSH [0040]
  • The analytical sensitivity (evaluated as the mean+3 SD of 8 replicates of the zero standard) was 0.33 nmol/ml. [0041]
  • Functional sensitivity was evaluated by plotting the imprecision profile of the method. [0042]
  • The minimum concentration with a coefficient of variation (C.V.) less then 10% was 0.4 nmol/ml. [0043]
  • Assay kit is based on a reaction between GST-reductase and DTNB that reacts with all groups—SH contained in the sample. A high specificity is expected since:—all thiol protein groups are removed by deproteination;—GST-reductase is a specific enzyme for GSH substrate;—the reaction is monitored at λ=405 that is specific for GSH. No further confirmation experiments were thus performed. [0044]
  • Precision was evaluated by analysing, for 5 consecutive runs, a duplicate of whole blood. We obtained an inter-assay C.V. below 12% while the intra-assay C.V. was below 5% of variability (tables 5 and 6). [0045]
  • The calibration curve ranges between 0.6-40 nmol/ml. [0046]
  • All reagents must be stored at +4° C. until expiration date indicated by manufacturers. [0047]
  • After opening, reagents are stable for 2 weeks at +4° C. [0048]
  • Samples and deproteinated samples are stable up to 6 months if stored at −80° C. and −20° C., respectively. [0049]
  • GST Activity [0050]
  • Analytical sensitivity was evaluated by 8 replicates of the zero standard and resulted 0.0055 U/ml. [0051]
  • Functional sensitivity was evaluated on 8 replicates of low activity sample. Since C.V. of replicates was less than 10% (9.2%) the corresponding mean activity level (0.008 U of activity) was considered as functional sensitivity. [0052]
  • Activity assay kit is based on an enzymatic reaction between GST and CDNB, that is a specific substrate of the enzyme. Accordingly the specificity of the method used is largely demonstrated in literature (Habig W. H., 1974; Smith D. B., 1988). We therefore did not perform further confirmatory experiments. [0053]
  • Accuracy was evaluated with dilution test of a cytosol sample. Recovery was between 112% and 133%. [0054]
  • Precision was evaluated on 2 cytosol samples with two different activity levels. Four replicates of the samples were assayed on 5 different runs. Inter and intra-assay C.V. were respectively under 9% of variability in high activity level sample and under 14% of variability in low activity level sample. [0055]
  • The calibration curve ranges between 0.01-0.4 dA/min [0056]
  • All reagents must be stored at −20° C. until expiration date indicated by manufacturers. Samples are stable up to 6 months if stored at −80° C. [0057]
  • Results
  • GSH levels were measured in whole blood from 29 patients with lung cancer and 23 with head and neck cancer. Mean level in blood is 516 nmol/ml (S.D.=117) in lung cancer and 428 nmol/ml (S.D.=97) in head and neck cancer. [0058]
    TABLE II
    GSH levels
    Summary Statistics Whole blood (nmol/ml)
    Overall mean 477
    median 458
    10°-90°% 350-620
    n  52
    paired Wilcoxon test <0.0001 (0.0001)
    Lung cancer mean 516
    median 494
    10°-90°% 383-681
    n  29
    paired Wilcoxon test  0.0004 (0.0001)
    Head and neck cancer mean 428
    median 426
    10°-90°% 317-566
    n  23
    paired Wilcoxon test   0.03 (0.0532)
  • GST Activity
  • Total GST activity was measured in cytosol but not in plasma sample, because of low levels of the GST enzymes in this matrix. In fact we tested 21 plasma samples of 29 available lung cancer patients and 15 plasma samples of 23 available head and neck cancer patients. GST activity was close to sensibility threshold of the method being not detectable in 11/21 lung and 3/15 head and neck samples. [0059]
  • GST activity was measured in 29 tissue samples of lung cancer and in 22 of head and neck cancer. Mean activity is 1.72 U/Mg (S.D.=0.89) in lung cancer tissue. In head and neck, mean activity is 2.61 U/mg (S.D.=1.74). [0060]
    TABLE III
    GST activity
    Summary Statistics Cancer tissue U/mg
    Overall mean 2.1
    median 1.72
    10°-90°% 1.06-3.31
    n 51
    paired Wilcoxon test <0.0001 (0.0001)
    Lung cancer mean 1.72
    median 1.37
    10°-90°% 0.87-2.97
    n 29
    paired Wilcoxon test  0.0002 (0.0001)
    Head and neck cancer mean 2.61
    median 2.49
    10°-90°% 1.11-3.42
    n 22
    paired Wilcoxon test   0.02 (0.0789)
  • CONCLUSIONS
  • The evaluated methods are reliable and robust for routine use in tissue extracts (GST activity) and in whole blood (GSH level). [0061]
  • A highly significant positive correlation was found between whole blood GSH and tissue GST activity. [0062]
  • In particular, the GST activity in cancer tissue vs. GSH level in whole blood resulted to be correlated in lung cancer (r0.53, p=0.003, FIG. 1) and in head and neck cancer (r=0.89, p<0.0001; FIG. 2). [0063]
    TABLE IV
    GST activity in cancer tissue vs. whole blood GSH levels
    Tumor Spearman Correlation p value
    Lung 0.53 0.004
    Head and neck 0.89 <0.0001
  • The above results clearly provide evidence that the GSH levels in blood samples of a cancer patient can be used as a surrogate marker for GST activities in tumor tissues, thus allowing to predict whether the patient responsiveness to chemotherapy is associated with GSH/GST system over expression. [0064]

Claims (13)

1. A method for predicting the sensitivity towards chemotherapy, of a patient in need thereof, which comprises obtaining a blood sample from the patient and detecting the presence of blood glutathione (GSH) as a surrogate marker for glutathione-S-transferase (GST) activity in tumor tissues.
2. The method of claim 1 which allows predicting whether the given tumor is associated with GST over expression.
3. The method of claim 2 wherein the tumor is selected from the group consisting of gastrointestinal tumors, uterine and ovarian cancers, head and neck cancer, lung carcinomas, sarcomas, liver tumors, pancreatic cancer, breast cancer, prostate cancer, melanoma and haematological tumors.
4. The method of claim 3 wherein the tumor is selected from head, neck and lung cancer.
5. A method for selecting the proper chemotherapeutic treatment for a patient in need thereof, which first comprises predicting his sensitivity towards chemotherapy by obtaining a blood sample from the patient, detecting the levels of blood glutathione (GSH) as a surrogate marker for glutathione-S-transferase (GST) activity in tumor tissues, determining whether the blood GSH levels fall within a range indicative of a potential for the patient to exhibit de novo or later progression to resistance to anticancer chemotherapeutic agents, and selecting a suitable and effective chemotherapeutic treatment based on the above GSH levels.
6. The method of claim 5 for selecting the proper chemotherapeutic treatment for a patient suffering of a tumor selected from the group consisting of gastrointestinal tumors, uterine and ovarian cancers, head and neck cancer, lung carcinomas, sarcomas, liver tumors, pancreatic cancer, breast cancer, prostate cancer, melanoma and haematological tumors
7. The method of claim 6 wherein the tumor is selected from head, neck and lung cancer.
8. The method of claim 5 which, based on the blood GSH levels, allows to select the proper chemotherapeutic treatment which may comprise the administration to the patient in need thereof of the compound N-(5-{[(5-{[(5-{[(2-{[amino(imino)methyl]amino} ethyl)amino]carbonyl}-1-methyl-1H-pyrrol-3-yl)amino] carbonyl}-1-methyl-1H-pyrrol-3-yl)amino]carbonyl}-1-methyl-1H-pyrrol-3-yl)-4-[(2-bromoacryloyl)amino]-1-methyl-1H-pyrrole-2-carboxamide (internal code PNU 166196) or a pharmaceutically acceptable salt thereof or, alternatively, of a conventional antitumor agent.
9. The method of claim 8 wherein the conventional antitumor agent is selected from the group consisting of alkylating agents, anthracyclines and platinum derivatives.
10. A method for treating a patient suffering from a tumor over-expressing the GSH/GST system, which first comprises predicting his sensitivity towards chemotherapy by obtaining a blood sample from the patient, detecting the levels of blood GSH as a surrogate marker for GST activity in tumor tissues, determining whether the GSH levels fall within a range indicative of a potential for the patient to exhibit de novo or later progression to resistance to chemotherapeutic agents, and selecting a suitable and effective chemotherapeutic treatment based on the above GSH/GST levels which treatment may comprise the administration of an effective amount of N-(5-{[(5-{[(5-{[(2-{[amino(imino)methyl]amino} ethyl)amino]carbonyl}-1-methyl-1H-pyrrol-3-yl)amino]carbonyl}-1-methyl-1H-pyrrol-3-yl)amino]carbonyl}-1-methyl-1H-pyrrol-3-yl)-4-[(2-bromoacryloyl)amino]-1-methyl-1H-pyrrole-2-carboxamide (internal code PNU 166196), or of a pharmaceutically acceptable salt thereof.
11. The method of claim 10 wherein the tumor is selected from the group consisting of gastrointestinal tumors, uterine and ovarian cancers, head and neck cancer, lung carcinomas, sarcomas, liver tumors, pancreatic cancer, breast cancer, prostate cancer, melanoma and haematological tumors.
12. The method of claim 11 wherein the tumor is selected from head, neck and lung cancer.
13. Use of a kit for determining blood GSH levels as a surrogate marker for GST activity in tumor tissues.
US10/487,932 2001-09-26 2002-09-19 Method for predicting the sensitivity to chemotherapy Abandoned US20040175774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/962,611 US6969592B2 (en) 2001-09-26 2001-09-26 Method for predicting the sensitivity to chemotherapy
PCT/EP2002/010647 WO2003029825A2 (en) 2001-09-26 2002-09-19 Method for predicting the sensitivity to chemotherapy

Publications (1)

Publication Number Publication Date
US20040175774A1 true US20040175774A1 (en) 2004-09-09

Family

ID=25506133

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/962,611 Expired - Fee Related US6969592B2 (en) 2001-09-26 2001-09-26 Method for predicting the sensitivity to chemotherapy
US10/487,932 Abandoned US20040175774A1 (en) 2001-09-26 2002-09-19 Method for predicting the sensitivity to chemotherapy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/962,611 Expired - Fee Related US6969592B2 (en) 2001-09-26 2001-09-26 Method for predicting the sensitivity to chemotherapy

Country Status (5)

Country Link
US (2) US6969592B2 (en)
EP (1) EP1430306A2 (en)
JP (1) JP2005504322A (en)
CA (1) CA2459194A1 (en)
WO (1) WO2003029825A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0418022A (en) * 2003-12-22 2007-04-17 Novartis Ag biomarkers for proliferative disease sensitivity to mtor inhibitors
US20110263442A1 (en) * 2008-10-29 2011-10-27 Jan Akervall Method of using biomarkers
JP5830249B2 (en) * 2010-03-31 2015-12-09 シスメックス株式会社 Method for determining sensitivity of cancer cells to anthracycline anticancer drugs and computer program
JP5758690B2 (en) * 2011-04-27 2015-08-05 シスメックス株式会社 Response determination method for combined chemotherapy, response determination program, and response determination device
RU2746503C1 (en) * 2017-11-20 2021-04-14 Медибикон Инк. Method for obtaining and analysis of fluorescent compounds in plasma
CN111480080B (en) * 2017-11-28 2023-09-19 塞尔吐温株式会社 Method for improving therapeutic cell quality by real-time glutathione measurement
CN112611727A (en) * 2020-11-27 2021-04-06 江西乐成生物医疗有限公司 Glutathione transferase detection kit, preparation method and application

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE468642B (en) 1985-07-16 1993-02-22 Erba Farmitalia POLY-4-AMINOPYRROL-2-CARBOXAMIDE DERIVATIVES AND PROCEDURES FOR THEIR PREPARATION AND A PHARMACEUTICAL COMPOSITION
GB8612218D0 (en) 1986-05-20 1986-06-25 Erba Farmitalia Site specific alkylating agents
ES2036553T3 (en) 1986-10-07 1993-06-01 Boehringer Mannheim Italia S.P.A. PHARMACEUTICAL COMPOSITIONS THAT HAVE ANTINEOPLASTIC ACTIVITY.
US5599903A (en) * 1992-04-03 1997-02-04 Terrapin Technologies, Inc. Glutathione analogs and paralog panels comprising glutathione mimics
GB8906709D0 (en) 1989-03-23 1989-05-10 Creighton Andrew M Acryloyl substituted pyrrole derivatives
JP2919867B2 (en) 1989-09-27 1999-07-19 千寿製薬株式会社 Antitumor agent
IT1272234B (en) 1994-05-02 1997-06-16 Consiglio Nazionale Ricerche GLUTATIONIC DERIVATIVES OF ANTHRACYCLINES AND PROCEDURE TO OBTAIN THEM.
GB9416005D0 (en) 1994-08-08 1994-09-28 Erba Carlo Spa Peptidic compounds analogous to distamycin a and process for their preparation
US5880097A (en) 1996-01-04 1999-03-09 Terrapin Techologies, Inc. Tethered prodrugs
CA2244139C (en) 1996-02-02 2005-06-07 Pharmacia & Upjohn S.P.A. Distamycin derivatives, process for preparing them, and their use as antitumor and antiviral agents
GB9610079D0 (en) 1996-05-14 1996-07-17 Pharmacia Spa Distamycin deriratives process for preparing them and their use as antitumor and antiviral agents
GB9615692D0 (en) 1996-07-25 1996-09-04 Pharmacia Spa Acryloyl substituted distamycin derivatives, process for preparing them, and their use as antitumor and antiviral agents
GB9623522D0 (en) 1996-11-11 1997-01-08 Pharmacia & Upjohn Spa Benzoheterocycle distamycin derivatives process for preparing them and their use as antitumour and antiviral agents
GB9727524D0 (en) 1997-12-31 1998-02-25 Pharmacia & Upjohn Spa Synergistic antitumor composition containing a biologically active ureido compound
GB9806689D0 (en) 1998-03-27 1998-05-27 Pharmacia & Upjohn Spa Acryloyl derivatives analogous to distamycin,process for preparing them,and their use as antitumour and antiviral agents
GB9806692D0 (en) 1998-03-27 1998-05-27 Pharmacia & Upjohn Spa Benzoheterocyclic distamycin derivatives, process for preparing them and their use as antitumour agents
GB9816652D0 (en) 1998-07-30 1998-09-30 Pharmacia & Upjohn Spa Sulfurated distamycin derivatives process for preparing them and their use as antitumor agents
GB9816653D0 (en) 1998-07-30 1998-09-30 Pharmacia & Upjohn Spa Oxidised sulfurated distamycin derivatives process for preparing them and their use as antitumor agents
GB9928703D0 (en) 1999-12-03 2000-02-02 Pharmacia & Upjohn Spa Acryloyl peptidic derivatives,process for their preparation and their use as antitumour agents
GB0011059D0 (en) 2000-05-08 2000-06-28 Pharmacia & Upjohn Spa Use of substituted acryloyl distamycin derivatives in the treatment of tumours associated with high levels of glutathione
US6576612B1 (en) * 2000-10-02 2003-06-10 Pharmacia Italia S.P.A. Antitumor therapy comprising distamycin derivatives
US6756063B2 (en) * 2001-03-29 2004-06-29 Zoltan Laboratories, Llc Methods and compositions for the treatment of human and animal cancers
US7202282B2 (en) 2002-04-22 2007-04-10 University Of Florida Microemulsions for selective molecular separation

Also Published As

Publication number Publication date
CA2459194A1 (en) 2003-04-10
EP1430306A2 (en) 2004-06-23
WO2003029825A3 (en) 2003-12-11
US20030096325A1 (en) 2003-05-22
JP2005504322A (en) 2005-02-10
WO2003029825A2 (en) 2003-04-10
US6969592B2 (en) 2005-11-29

Similar Documents

Publication Publication Date Title
Gamcsik et al. Glutathione levels in human tumors
Zamanova et al. Carbonic anhydrases as disease markers
US10101331B2 (en) Methods of evaluating patients using E-cadherin or vimentin
WO2007047796A2 (en) Tissue-and serum-derived glycoproteins and methods of their use
EP2302388A1 (en) COP1 molecules and uses thereof
Farmer et al. What is the significance of increases in background levels of carcinogen-derived protein and DNA adducts? Some considerations for incremental risk assessment
JP2016500821A (en) Methylglyoxal as a cancer marker
US6969592B2 (en) Method for predicting the sensitivity to chemotherapy
JP2008530575A (en) Method for determining responsiveness to CHK1 inhibitor
Siwińska et al. Evaluation of podocin in urine in horses using qualitative and quantitative methods
Ferruzzi et al. Blood glutathione as a surrogate marker of cancer tissue glutathione S-transferase activity in non-small cell lung cancer and squamous cell carcinoma of the head and neck
JP2020522501A (en) Prediction method of cancer treatment results by T-DM1
Verpooten et al. Immunoassay in urine of a specific marker for proximal tubular S3 segment
JP4944446B2 (en) Effectiveness prediction method of anticancer drug treatment
Kurebayashi et al. Establishment of enzyme-linked immunosorbent assays for thymidylate synthase and dihydropyriminide dehydrogenase in cancer tissues
KR102177280B1 (en) Biomarker composition for diagnosing acute myocardial infarction comprising homocysteine sulfinic acid or cysteic acid
CA2084825A1 (en) Glutathione-s-transferase mu as a measure of drug resistance
Thomassen et al. Effect of sample fractionation and normalization when immunoblotting for human muscle Na+/K+-ATPase subunits and glycogen synthase
CA2286458C (en) Method of detecting procarboxypeptidase a and carboxypeptidase a levels in biological fluids
Spiess et al. Protein thiol oxidation in murine airway epithelial cells in response to naphthalene or diethyl maleate
KR102346864B1 (en) Biomarker composition for diagnosing or prognostic analysis of bladder cancer, kit comprising the same and method for diagnosing bladder cancer using the same
CN110678203A (en) Prediction of therapeutic effect of gastric cancer
KR100996994B1 (en) Method for diagnosis of post-operative recurrence in patients with hepatocellular carcinoma
WO2024061920A1 (en) Method for assessing the activity of nicotinamide n-methyltransferase
JP2009521925A (en) Phosphorylated COP1 molecule and uses thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: PHARMACIA ITALIA S.P.A., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VREELAND, FRANZANNE;FOWST, CAMILLA;GERONI, MARIA CRISTINA ROSI;AND OTHERS;REEL/FRAME:015380/0035;SIGNING DATES FROM 20040127 TO 20040210

Owner name: PHARMACIA & UPJOHN COMPANY, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VREELAND, FRANZANNE;FOWST, CAMILLA;GERONI, MARIA CRISTINA ROSI;AND OTHERS;REEL/FRAME:015380/0035;SIGNING DATES FROM 20040127 TO 20040210

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION