US20040167102A1 - Isoprenoid analog compounds and methods of making and use thereof - Google Patents
Isoprenoid analog compounds and methods of making and use thereof Download PDFInfo
- Publication number
- US20040167102A1 US20040167102A1 US10/780,391 US78039104A US2004167102A1 US 20040167102 A1 US20040167102 A1 US 20040167102A1 US 78039104 A US78039104 A US 78039104A US 2004167102 A1 US2004167102 A1 US 2004167102A1
- Authority
- US
- United States
- Prior art keywords
- compound
- compounds
- enzyme
- alkanoyl
- aryl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 129
- 238000000034 method Methods 0.000 title claims abstract description 30
- 150000003505 terpenes Chemical class 0.000 title description 15
- 150000003839 salts Chemical class 0.000 claims abstract description 18
- 230000013823 prenylation Effects 0.000 claims abstract description 17
- 102000004357 Transferases Human genes 0.000 claims abstract description 14
- 108090000992 Transferases Proteins 0.000 claims abstract description 14
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 12
- 201000011510 cancer Diseases 0.000 claims abstract description 12
- 241000124008 Mammalia Species 0.000 claims abstract description 7
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 5
- -1 2-methoxycarboxy phenyl Chemical group 0.000 claims description 45
- 102000004169 proteins and genes Human genes 0.000 claims description 29
- 108090000623 proteins and genes Proteins 0.000 claims description 29
- 102000004190 Enzymes Human genes 0.000 claims description 23
- 108090000790 Enzymes Proteins 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 23
- 125000001424 substituent group Chemical group 0.000 claims description 18
- 125000003118 aryl group Chemical group 0.000 claims description 15
- 125000000623 heterocyclic group Chemical group 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 12
- 238000011282 treatment Methods 0.000 claims description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 10
- 125000001589 carboacyl group Chemical group 0.000 claims description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 9
- 125000001624 naphthyl group Chemical group 0.000 claims description 9
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 8
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 claims description 8
- 125000004423 acyloxy group Chemical group 0.000 claims description 7
- 239000003814 drug Substances 0.000 claims description 7
- 230000002401 inhibitory effect Effects 0.000 claims description 7
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 5
- 230000006126 farnesylation Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000005792 Geraniol Substances 0.000 claims description 4
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 claims description 4
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 4
- 238000003745 diagnosis Methods 0.000 claims description 4
- 229940113087 geraniol Drugs 0.000 claims description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 3
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 claims description 3
- 230000006130 geranylgeranylation Effects 0.000 claims description 3
- 235000020938 metabolic status Nutrition 0.000 claims description 3
- 125000000027 (C1-C10) alkoxy group Chemical group 0.000 claims description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 claims description 2
- FZKCAHQKNJXICB-UHFFFAOYSA-N 2,1-benzoxazole Chemical compound C1=CC=CC2=CON=C21 FZKCAHQKNJXICB-UHFFFAOYSA-N 0.000 claims description 2
- 239000003085 diluting agent Substances 0.000 claims description 2
- 239000012634 fragment Substances 0.000 claims description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 claims description 2
- 238000013160 medical therapy Methods 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 125000001475 halogen functional group Chemical group 0.000 claims 2
- 238000002560 therapeutic procedure Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 14
- 230000015572 biosynthetic process Effects 0.000 abstract description 11
- 239000000543 intermediate Substances 0.000 abstract description 8
- 238000003786 synthesis reaction Methods 0.000 abstract description 8
- 230000000903 blocking effect Effects 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 description 27
- 239000007788 liquid Substances 0.000 description 14
- 239000000758 substrate Substances 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 12
- 102000016914 ras Proteins Human genes 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 10
- 238000001727 in vivo Methods 0.000 description 10
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- VWFJDQUYCIWHTN-YFVJMOTDSA-N 2-trans,6-trans-farnesyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-YFVJMOTDSA-N 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 8
- 239000003826 tablet Substances 0.000 description 8
- VWFJDQUYCIWHTN-UHFFFAOYSA-N Farnesyl pyrophosphate Natural products CC(C)=CCCC(C)=CCCC(C)=CCOP(O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-UHFFFAOYSA-N 0.000 description 7
- 239000002775 capsule Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 125000004030 farnesyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 108091005629 prenylated proteins Proteins 0.000 description 7
- 108010014186 ras Proteins Proteins 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 239000002552 dosage form Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000001575 pathological effect Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- OINNEUNVOZHBOX-QIRCYJPOSA-K 2-trans,6-trans,10-trans-geranylgeranyl diphosphate(3-) Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O OINNEUNVOZHBOX-QIRCYJPOSA-K 0.000 description 5
- OINNEUNVOZHBOX-XBQSVVNOSA-N Geranylgeranyl diphosphate Natural products [P@](=O)(OP(=O)(O)O)(OC/C=C(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C)O OINNEUNVOZHBOX-XBQSVVNOSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 235000018417 cysteine Nutrition 0.000 description 5
- 235000011180 diphosphates Nutrition 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 231100000252 nontoxic Toxicity 0.000 description 5
- 230000003000 nontoxic effect Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 150000001204 N-oxides Chemical class 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 4
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 description 4
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 125000001072 heteroaryl group Chemical group 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 235000019359 magnesium stearate Nutrition 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- OJISWRZIEWCUBN-QIRCYJPOSA-N (E,E,E)-geranylgeraniol Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CO OJISWRZIEWCUBN-QIRCYJPOSA-N 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 108010006731 Dimethylallyltranstransferase Proteins 0.000 description 3
- 102000005454 Dimethylallyltranstransferase Human genes 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 102000004895 Lipoproteins Human genes 0.000 description 3
- 108090001030 Lipoproteins Proteins 0.000 description 3
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 3
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 0 [1*]CC/C(C)=C/CC/C(C)=C/C[2*] Chemical compound [1*]CC/C(C)=C/CC/C(C)=C/C[2*] 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 150000001413 amino acids Chemical group 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 150000003620 farnesol derivatives Chemical class 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 125000002686 geranylgeranyl group Chemical group [H]C([*])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 229960004844 lovastatin Drugs 0.000 description 3
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 3
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000008108 microcrystalline cellulose Substances 0.000 description 3
- 229940016286 microcrystalline cellulose Drugs 0.000 description 3
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 3
- 125000002950 monocyclic group Chemical group 0.000 description 3
- 125000002757 morpholinyl group Chemical group 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 230000001323 posttranslational effect Effects 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 238000006268 reductive amination reaction Methods 0.000 description 3
- 125000006413 ring segment Chemical group 0.000 description 3
- 210000003491 skin Anatomy 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- CRDAMVZIKSXKFV-YFVJMOTDSA-N (2-trans,6-trans)-farnesol Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CO CRDAMVZIKSXKFV-YFVJMOTDSA-N 0.000 description 2
- 239000000260 (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol Substances 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- GWIAAIUASRVOIA-UHFFFAOYSA-N 2-aminonaphthalene-1-sulfonic acid Chemical class C1=CC=CC2=C(S(O)(=O)=O)C(N)=CC=C21 GWIAAIUASRVOIA-UHFFFAOYSA-N 0.000 description 2
- DQNAQOYOSRJXFZ-UHFFFAOYSA-N 5-Amino-1-naphthalenesulfonic acid Chemical compound C1=CC=C2C(N)=CC=CC2=C1S(O)(=O)=O DQNAQOYOSRJXFZ-UHFFFAOYSA-N 0.000 description 2
- XFJBGINZIMNZBW-CRAIPNDOSA-N 5-chloro-2-[4-[(1r,2s)-2-[2-(5-methylsulfonylpyridin-2-yl)oxyethyl]cyclopropyl]piperidin-1-yl]pyrimidine Chemical compound N1=CC(S(=O)(=O)C)=CC=C1OCC[C@H]1[C@@H](C2CCN(CC2)C=2N=CC(Cl)=CN=2)C1 XFJBGINZIMNZBW-CRAIPNDOSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 2
- LVRCEUVOXCJYSV-UHFFFAOYSA-N CN(C)S(=O)=O Chemical compound CN(C)S(=O)=O LVRCEUVOXCJYSV-UHFFFAOYSA-N 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XXIKYCPRDXIMQM-UHFFFAOYSA-N Isopentenyl acetate Chemical compound CC(C)=CCOC(C)=O XXIKYCPRDXIMQM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 102000019337 Prenyltransferases Human genes 0.000 description 2
- 108050006837 Prenyltransferases Proteins 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 235000019693 cherries Nutrition 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 125000000151 cysteine group Chemical class N[C@@H](CS)C(=O)* 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229940061607 dibasic sodium phosphate Drugs 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229930002886 farnesol Natural products 0.000 description 2
- 229940043259 farnesol Drugs 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- HIGQPQRQIQDZMP-DHZHZOJOSA-N geranyl acetate Chemical compound CC(C)=CCC\C(C)=C\COC(C)=O HIGQPQRQIQDZMP-DHZHZOJOSA-N 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 125000001041 indolyl group Chemical group 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 108091005573 modified proteins Proteins 0.000 description 2
- 102000035118 modified proteins Human genes 0.000 description 2
- 229940045641 monobasic sodium phosphate Drugs 0.000 description 2
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 2
- 235000019799 monosodium phosphate Nutrition 0.000 description 2
- 239000006225 natural substrate Substances 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 125000004193 piperazinyl group Chemical group 0.000 description 2
- 125000003386 piperidinyl group Chemical group 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000009145 protein modification Effects 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- 125000003226 pyrazolyl group Chemical group 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 125000000335 thiazolyl group Chemical group 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- CRDAMVZIKSXKFV-UHFFFAOYSA-N trans-Farnesol Natural products CC(C)=CCCC(C)=CCCC(C)=CCO CRDAMVZIKSXKFV-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- 125000004306 triazinyl group Chemical group 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 239000008215 water for injection Substances 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- KJTLQQUUPVSXIM-ZCFIWIBFSA-N (R)-mevalonic acid Chemical class OCC[C@](O)(C)CC(O)=O KJTLQQUUPVSXIM-ZCFIWIBFSA-N 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- KKHFRAFPESRGGD-UHFFFAOYSA-N 1,3-dimethyl-7-[3-(n-methylanilino)propyl]purine-2,6-dione Chemical compound C1=NC=2N(C)C(=O)N(C)C(=O)C=2N1CCCN(C)C1=CC=CC=C1 KKHFRAFPESRGGD-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006039 1-hexenyl group Chemical group 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- FMKGJQHNYMWDFJ-CVEARBPZSA-N 2-[[4-(2,2-difluoropropoxy)pyrimidin-5-yl]methylamino]-4-[[(1R,4S)-4-hydroxy-3,3-dimethylcyclohexyl]amino]pyrimidine-5-carbonitrile Chemical compound FC(COC1=NC=NC=C1CNC1=NC=C(C(=N1)N[C@H]1CC([C@H](CC1)O)(C)C)C#N)(C)F FMKGJQHNYMWDFJ-CVEARBPZSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000006040 2-hexenyl group Chemical group 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000006041 3-hexenyl group Chemical group 0.000 description 1
- 238000004679 31P NMR spectroscopy Methods 0.000 description 1
- 125000006042 4-hexenyl group Chemical group 0.000 description 1
- 125000006043 5-hexenyl group Chemical group 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- WHPYMUDWUBAFPV-LZIJJKMGSA-K CC(=O)OB[Na].CC(=O)OOC(C)=O.COC(=O)C1=C(N)C=CC=C1.[H]C(=O)/C(C)=C/CC/C(C)=C/COC(C)=O.[H]N(C/C(C)=C/CC/C(C)=C/CO)C1=C(C(=O)OC)C=CC=C1.[H]N(C/C(C)=C/CC/C(C)=C/COC(C)=O)C1=C(C(=O)OC)C=CC=C1.[H]N(C/C(C)=C/CC/C(C)=C/COP(=O)([O-])OP(=O)([O-])[O-])C1=C(C(=O)OC)C=CC=C1.[NH4+].[NH4+].[NH4+] Chemical compound CC(=O)OB[Na].CC(=O)OOC(C)=O.COC(=O)C1=C(N)C=CC=C1.[H]C(=O)/C(C)=C/CC/C(C)=C/COC(C)=O.[H]N(C/C(C)=C/CC/C(C)=C/CO)C1=C(C(=O)OC)C=CC=C1.[H]N(C/C(C)=C/CC/C(C)=C/COC(C)=O)C1=C(C(=O)OC)C=CC=C1.[H]N(C/C(C)=C/CC/C(C)=C/COP(=O)([O-])OP(=O)([O-])[O-])C1=C(C(=O)OC)C=CC=C1.[NH4+].[NH4+].[NH4+] WHPYMUDWUBAFPV-LZIJJKMGSA-K 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 108010007508 Farnesyltranstransferase Proteins 0.000 description 1
- 102000007317 Farnesyltranstransferase Human genes 0.000 description 1
- 238000007309 Fischer-Speier esterification reaction Methods 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 101000824514 Homo sapiens CAAX prenyl protease 2 Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 101150100348 Icmt gene Proteins 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical group C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical group OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical group CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000238367 Mya arenaria Species 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010055078 Rab geranylgeranyltransferase Proteins 0.000 description 1
- 102100027609 Rho-related GTP-binding protein RhoD Human genes 0.000 description 1
- 229910018162 SeO2 Inorganic materials 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 229940123468 Transferase inhibitor Drugs 0.000 description 1
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000002618 bicyclic heterocycle group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000006189 buccal tablet Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000001669 calcium Chemical class 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007958 cherry flavor Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 229940127113 compound 57 Drugs 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 125000000332 coumarinyl group Chemical class O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 125000003074 decanoyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000006612 decyloxy group Chemical group 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 150000002031 dolichols Chemical class 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 150000002085 enols Chemical group 0.000 description 1
- ZTWTYVWXUKTLCP-UHFFFAOYSA-L ethenyl-dioxido-oxo-$l^{5}-phosphane Chemical compound [O-]P([O-])(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-L 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- HIGQPQRQIQDZMP-UHFFFAOYSA-N geranil acetate Natural products CC(C)=CCCC(C)=CCOC(C)=O HIGQPQRQIQDZMP-UHFFFAOYSA-N 0.000 description 1
- XWRJRXQNOHXIOX-UHFFFAOYSA-N geranylgeraniol Natural products CC(C)=CCCC(C)=CCOCC=C(C)CCC=C(C)C XWRJRXQNOHXIOX-UHFFFAOYSA-N 0.000 description 1
- OJISWRZIEWCUBN-UHFFFAOYSA-N geranylnerol Natural products CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCO OJISWRZIEWCUBN-UHFFFAOYSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Chemical group OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000005908 glyceryl ester group Chemical group 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 125000000268 heptanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003104 hexanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000005935 hexyloxycarbonyl group Chemical group 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 230000006122 isoprenylation Effects 0.000 description 1
- 125000005928 isopropyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(OC(*)=O)C([H])([H])[H] 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229930182817 methionine Chemical group 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000001402 nonanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 125000002801 octanoyl group Chemical group C(CCCCCCC)(=O)* 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000007968 orange flavor Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 125000001148 pentyloxycarbonyl group Chemical group 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000001844 prenyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 125000001325 propanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 125000004742 propyloxycarbonyl group Chemical group 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 125000004621 quinuclidinyl group Chemical group N12C(CC(CC1)CC2)* 0.000 description 1
- 108700022202 rab7 GTP-Binding Proteins Proteins 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000007892 solid unit dosage form Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 239000003558 transferase inhibitor Substances 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 125000003774 valeryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000028973 vesicle-mediated transport Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/0019—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
- A61K49/0021—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
- C07F9/09—Esters of phosphoric acids
- C07F9/098—Esters of polyphosphoric acids or anhydrides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
- C07F9/09—Esters of phosphoric acids
- C07F9/113—Esters of phosphoric acids with unsaturated acyclic alcohols
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/38—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
- C07F9/3804—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
- C07F9/3839—Polyphosphonic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/38—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
- C07F9/40—Esters thereof
- C07F9/4003—Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
- C07F9/4015—Esters of acyclic unsaturated acids
Definitions
- Prenylation of proteins is a common form of post-translational processing found in many biological systems. For example, at least 300 human proteins are prenylated and many of these proteins play critical roles in essential signal transduction pathways. Mevalonic acid derivatives, known collectively as isoprenoids, are known to be central to mammalian metabolism, but the smaller intermediates in this pathway were viewed primarily as precursors to larger compounds such as steroids and dolichols. Not until 1989 was the presence of prenylated cysteines demonstrated in mammalian cells. The number of prenylated proteins continues to grow, with sequences for at least 300 prenylated proteins now recognized in humans corresponding to about 1% of the total cellular protein by mass.
- U.S. Pat. Nos. 5,998,204 and 6,197,928 are of general interest and relate to fluorescent protein sensors for detection of analytes, for example, localization sequences for prenylation or for insertion into a plasma membrane ([CaaX] CAAX (SEQ ID NO:51).
- the present invention provides analog compounds of key intermediates of isoprenoid biosynthesis and metabolism. These analogs can be prepared through chemical synthesis and can function as alternate substrates for enzymes involved in post-translation processing in either in vitro or in vivo.
- the compounds of the invention can be potent prenylation process inhibitor compounds which can also have improved stability, improved spectral detectability, or both.
- the compounds of the invention are also useful as probes for studying the prenylation process and related processes.
- X is independently —NR a —, O, or S;
- R 1 is a detectable group
- R 2 is independently
- each R a is independently hydrogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkanoyl, (C 1 -C 10 )alkanoyloxy, (C 1 -C 10 )alkoxycarbonyl, or —CH 2 —O—(C 1 -C 10 )alkanoyl;
- n is independently 1, 2, or 3;
- the invention also provides a pharmaceutical composition
- a pharmaceutical composition comprising a compound of formula I and a pharmaceutically acceptable diluent or carrier.
- the invention also provides a method of treating cancer, comprising administering to a mammal afflicted with cancer, an amount of a compound of the invention effective to treat the cancer.
- the invention also provides a method of inhibiting a prenylation transferase or synthase enzyme comprising contacting the enzyme in vivo or in vitro with an effective amount of a compound of the invention.
- the invention also provides a method of accessing the metabolic status of an enzyme, such as a prenylation transferase enzyme, comprising:
- the invention also provides a compound of the invention for use in medical therapy or diagnosis, for example, treating cancer.
- the invention also provides for the use of a compound of the invention for the manufacture of a medicament useful for the treatment of cancer.
- the invention also provides for the use of a compound of the invention for the manufacture of a medicament useful for inhibiting prenylation transferase or synthase enzymes in a mammal.
- the invention also provides processes and intermediates disclosed herein that are useful for preparing compounds of the invention. Some compounds of the formula I are useful as intermediates in preparing other compounds of formula I.
- FIG. 1 schematically illustrates isoprenoid biosynthesis and protein prenylation routes in embodiments of the present invention.
- FIG. 2 schematically illustrates normal RAS farnesylation in embodiments of the present invention.
- FIG. 3 schematically illustrates an FTPase mediated reaction of Ras with a vinyl phosphonate in embodiments of the present invention.
- alkyl, alkoxy, etc. denote both straight and branched groups; but reference to an individual radical such as “propyl” embraces only the straight chain radical, a branched chain isomer such as “isopropyl” being specifically referred to.
- alkyl can be partially unsaturated, the alkyl chain may comprise one or more (e.g. 1, 2, 3, or 4) double or triple bonds in the chain.
- Aryl denotes a phenyl radical or an ortho-fused bicyclic carbocyclic radical having about nine to ten ring atoms in which at least one ring is aromatic.
- Het is a four-(4), five-(5), six-(6), or seven-(7) membered saturated or unsaturated heterocyclic ring having 1, 2, 3, or 4 heteroatoms selected from the group consisting of oxy, thio, sulfinyl, sulfonyl, and nitrogen, which ring is optionally fused to a benzene ring, or any cyclic heterocycle group which may be monocyclic or multi-cyclic.
- Het includes “heteroaryl,” which encompasses a radical attached via a ring carbon of a monocyclic aromatic ring containing five or six ring atoms consisting of carbon and 1, 2, 3, or 4 heteroatoms each selected from the group consisting of non-peroxide oxy, thio, and N(X) wherein X is absent or is H, O, C 1-4 alkyl, phenyl or benzyl, as well as a radical of an ortho-fused bicyclic heterocycle of about eight to ten ring atoms derived therefrom, particularly a benz-derivative or one derived by fusing a propylene, trimethylene, or tetramethylene diradical thereto.
- heterocycle refers to a monovalent saturated or partially unsaturated cyclic non-aromatic group which contains at least one heteroatom, preferably 1 to 4 heteroatoms, selected from nitrogen (NR x , wherein R x is hydrogen, alkyl, or a direct bond at the point of attachment of the heterocycle group), sulfur, phosphorus, and oxygen within at least one cyclic ring and which may be monocyclic or multi-cyclic.
- heterocycle groups preferably contain from 3 to 10 atoms.
- the point of attachment of the heterocycle group may be a carbon or nitrogen atom.
- heterocycle groups fused to an aryl or heteroaryl group, provided the point of attachment is on a non-aromatic heteroatom-containing ring.
- Representative heterocycle groups include, by way of example, pyrrolidinyl, piperidinyl, piperazinyl, imidazolidinyl, morpholinyl, indolin-3-yl, 2-imidazolinyl, 1,2,3,4-tetrahydroisoquinolin-2-yl, quinuclidinyl and the like.
- “Optional” or “optionally” mean that the subsequently described event or condition may but need not occur, and that the description includes instances where the event or condition occurs and instances in which it does not.
- “optionally substituted” means that the named substituent may be present but need not be present, and the description includes situations where the named substituent is included and situations where the named substituent is not included.
- the compounds of the present invention are generally named according to the IUPAC or CAS nomenclature system. Abbreviations which are well known to one of ordinary skill in the art may be used (e.g. “Ph” for phenyl, “Me” for methyl, “Et” for ethyl, “h” for hour or hours and “rt” for room temperature).
- detecttable group refers to any known fluorophore substituent, for example, fluorescent groups including, but not limited to, anthranilic acid compounds, aminonaphthalenesulfonic acid compounds, coumarin compounds, and like groups or compounds and as illustrated herein.
- treatment refers to any treatment of a pathologic condition in a mammal, particularly a human, and includes:
- therapeutically effective amount refers to that amount of a compound of the invention which is sufficient to effect treatment, as defined above, when administered to a mammal in need of such treatment.
- the therapeutically effective amount will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.
- salts includes, but is not limited to, salts well known to those skilled in the art, for example, mono-salts (e.g. alkali metal and ammonium salts) and poly salts (e.g. di- or tri-salts,) of the compounds of the invention.
- Pharmaceutically acceptable salts of compounds of formula I are where, for example, an exchangeable group, such as hydrogen in —OH, —NH—, or —P( ⁇ O)(OH)—, is replaced with a pharmaceutically acceptable cation (e.g. a sodium, potassium, or ammonium ion) and can be conveniently be prepared from a corresponding compound of formula I by, for example, reaction with a suitable base.
- salts are organic acid addition salts formed with acids which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, ⁇ -ketoglutarate, and ⁇ -glycerophosphate.
- Suitable inorganic salts may also be formed, including hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts.
- salts may be obtained using standard procedures well known in the art, for example, by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion.
- a sufficiently basic compound such as an amine
- a suitable acid affording a physiologically acceptable anion.
- Alkali metal for example, sodium, potassium or lithium
- alkaline earth metal for example, calcium
- (C 1 -C 10 )alkyl can be methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, hexyl, heptyl, octyl, nonyl, or decyl;
- (C 1 -C 10 )alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 3-pentoxy, hexyloxy, heptyloxy, octyloxy, nonyloxy or decyloxy;
- (C 2 -C 6 )alkenyl can be vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl,
- (C 1 -C 6 )alkyl can be methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, or hexyl.
- (C 1 -C 6 )alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 3-pentoxy, or hexoxy.
- a specific compound of formula I is the formula II:
- R 1 is a 2-methoxycarboxy phenyl detectable group
- R 2 is diphosphate ester
- n 1 to 3
- X is NH; or a pharmaceutically acceptable salt thereof.
- n 0 to 3
- R is (C 1 -C 10 )alkyl, for example, methyl; or a pharmaceutically acceptable salt thereof.
- a specific value for R 1 is a detectable group, such as a known fluorophore substituent.
- R 1 is an aryl group, such as phenyl, naphthyl, or anthracenyl, which aryl group is optionally substituted with one or more substituents independently selected from —COOR b , —S(O) n NR b R b , halo, cyano, nitro, aryl, heterocycle, (C 2 -C 6 )alkenyl, —C( ⁇ O)NR b R b , —OC( ⁇ O)NR b R b , —NR b R b , or —S(O) n R b , where each R b is independently hydrogen, (C 1 -C 10 )alkyl, or (C 1 -C 10 )alkanoyl.
- substituents independently selected from —COOR b , —S(O) n NR b R b , halo, cyano, nitro, aryl, heterocycle, (C 2
- R 1 is Het, for example a heterocycle or heteroaryl, such as anthranil or quinoline, which Het is optionally substituted with one or more substituents independently selected from —COOR b , —S(O) n NR b R b , halo, cyano, nitro, aryl, heterocycle, (C 2 -C 6 )alkenyl, —C( ⁇ O)NR b R b , —OC( ⁇ O)NR b R b , —NR b R b , or —S(O) n R b , where each R b is independently hydrogen, (C 1 -C 10 )alkyl, or (C 1 -C 10 )alkanoyl.
- substituents independently selected from —COOR b , —S(O) n NR b R b , halo, cyano, nitro, aryl, heterocycle, (C 2 -C 6
- R 1 Another specific value for R 1 is substituted phenyl.
- R 1 Another specific value for R 1 is phenyl substituted with a —COOR b .
- R 1 Another specific value for R 1 is 2-methoxycarboxy phenyl.
- R 1 Another specific value for R 1 is substituted naphthyl.
- R 1 Another specific value for R 1 is naphthyl substituted with a —S(O) n NR b R b .
- R 1 Another specific value for R 1 is naphthyl substituted at the 5-position with a —S(O) n NR b R b substituent.
- R 1 Another specific value for R 1 is 5-N,N′-dimethylaminosulfonyl naphthy-1-yl.
- a specific value for R 2 is OH.
- R 2 Another specific value for R 2 is —O—P( ⁇ O)(—OR a ) 2 .
- R 2 Another specific value for R 2 is —O—P( ⁇ O)(—OR a )—O—P( ⁇ O)(—OR a ) 2 .
- R 2 Another specific value for R 2 is —CH 2 —O—P( ⁇ O)(—OR a ) 2 .
- R 2 Another specific value for R 2 is —CH 2 —O—P( ⁇ O)(—OR a )—O—P( ⁇ O)(—OR a ) 2 .
- R 2 Another specific value for R 2 is —CH 2 —P( ⁇ O)(—OR a ) 2 .
- R 2 Another specific value for R 2 is —CH ⁇ —P( ⁇ O)(—OR a ) 2 ⁇ 2 .
- R 2 Another specific value for R 2 is —CH 2 —P( ⁇ O)(—OR a )—O—P( ⁇ O)(—OR a ) 2 .
- R 2 Another specific value for R 2 is —CH ⁇ CH ⁇ —P( ⁇ O)(—OR a ) 2 ⁇ .
- R 2 Another specific value for R 2 is —CH ⁇ C ⁇ —P( ⁇ O)(—OR a ) 2 ⁇ 2 .
- a specific value for R a is hydrogen.
- R a is —C( ⁇ O)—CH 3 .
- R a Another specific value for R a is —CH 3 .
- R a Another specific value for R a is —CH 2 —O—(C 1 -C 6 )alkanoyl.
- a specific value for R b is hydrogen.
- R b Another specific value for R b is —CH 3 .
- n 1
- n is 2.
- n is 3.
- a specific value for X is —NR a —.
- a specific value for X is —NH—.
- a specific value for X is —N(CH 3 )—.
- a specific value for X is —O—.
- a specific value for X is —S—.
- a specific value for a protein conjugate of the present invention is a protein linked to a fluorescent fragment of a compound of the invention, for example, the Ras adduct of the compound of formula I, such as compounds of the formula II or III.
- the invention provides a pharmaceutical composition, comprising an effective amount of a compound of formula I as described hereinabove; or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier.
- the present compositions are preferably presented in a form suitable for absorption by the gastro-intestinal tract.
- the compounds of formula I can be formulated as pharmaceutical compositions and administered to a mammalian host, such as a human patient in a variety of forms adapted to a selected route of administration, i.e., by oral, parenteral, intravenous, intramuscular, topical, or subcutaneous routes.
- a mammalian host such as a human patient
- the present compounds may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet.
- the active compound may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
- Such compositions and preparations should contain at least 0.1% of active compound.
- the percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form.
- the amount of active compound in such therapeutically useful compositions is such that an effective dosage level will be obtained.
- the tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose or aspartame or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added.
- a liquid carrier such as a vegetable oil or a polyethylene glycol.
- any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed.
- the active compound may be incorporated into sustained-release preparations and devices.
- the active compound may also be administered intravenously or intraperitoneally by infusion or injection.
- Solutions of the active compound or its salts can be prepared in water, optionally mixed with a nontoxic surfactant.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes.
- the liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions or by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization.
- the preferred methods of preparation are vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.
- the present compounds may be applied in pure form, i.e., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.
- Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like.
- Useful liquid carriers include water, alcohols or glycols or water-alcohol/glycol blends, in which the present compounds can be dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants.
- Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use.
- the resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers.
- Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.
- Examples of useful dermatological compositions which can be used to deliver the compounds of the invention to the skin are disclosed in Jacquet et al. (U.S. Pat. No. 4,608,392), Geria (U.S. Pat. No. 4,992,478), Smith et al. (U.S. Pat. No. 4,559,157) and Wortzman (U.S. Pat. No. 4,820,508).
- compositions may also be prepared in suitable forms for absorption through the mucous membranes of the nose and throat or bronchial tissues and may conveniently take the form of powder or liquid sprays or inhalants, lozenges, throat paints, etc.
- the preparations may be presented as individual capsules, in liquid or semi-solid form, or may be used as drops, etc.
- Topical applications may be formulated in hydrophobic or hydrophilic bases as ointments, creams, lotions, paints, powders, etc.
- composition may, for example, be formulated as an intra-mammary preparation in either long acting or quick-release bases.
- Useful dosages of the compounds of the invention can be determined by comparing their in vitro activity, and in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949.
- the concentration of the compound(s) of the invention in a liquid composition will be from about 0.1-25 wt-%, preferably from about 0.5-10 wt-%.
- concentration in a semi-solid or solid composition such as a gel or a powder will be about 0.1-5 wt-%, preferably about 0.5-2.5 wt-%.
- compositions per unit dosage may contain from 0.1% to 99% of active material (compound I or salts thereof), the preferred range being from about 10-60%.
- the composition will generally contain from about 15 mg to about 1,500 mg by weight of active ingredient based upon the total weight of the composition; however, in general, it is preferable to employ a dosage amount in the range of from about 250 mg to 1,000 mg.
- the unit dosage is usually the pure compound in a slightly acidified sterile water solution or in the form of a soluble powder intended for solution.
- Single dosages for injection, infusion or ingestion may be administered, i.e., 1-3 times daily, to yield levels of about 0.5-50 mg/kg, for adults.
- the present invention provides chemical syntheses of fluorescent analogs of farnesol (FOH), farnesyl pyrophosphate (FPP), geranylgeraniol (GGOH), and geranylgeranyl pyrophosphate (GGPP). These analogs can be designed to display minimal differences from the natural substrates to maximize the possibility that they can be incorporated into various lipoproteins.
- FOH farnesol
- FPP farnesyl pyrophosphate
- GGOH geranylgeraniol
- GGPP geranylgeranyl pyrophosphate
- the present invention suggests in vitro testing of the compounds of the present invention with prenyl transferases and their protein substrates to demonstrate inhibition of modified proteins. For example, experiments with isolated Ras proteins, normal isoprenoid substrates, and farnesyl protein transferase should give unprenylated proteins.
- the present invention suggests in vitro testing of the compounds of the present invention with prenyl transferases and their protein substrates to demonstrate formation of unnaturally modified proteins.
- prenyl transferases and their protein substrates For example, experiments with isolated Ras proteins and farnesyl protein transferase should give “farnesylated” proteins carrying fluorescent labels and provide protein standards for in vivo experiments.
- the present invention suggests in vivo testing of the compounds of the present invention in cell lines to determine if the fluorescent isoprenoid analogs serve as inhibitors for the enzymes that convert proteins to prenylated lipoproteins, ultimately resulting in the accumulation of unmodified proteins and reduction in prenylated proteins in living cells. These experiments can be accomplished in normal culture media or with cells depleted of natural isoprenoids (e.g., by treatment with lovastatin).
- the present invention suggests in vivo testing of the compounds of the present invention in cell lines to determine if the fluorescent isoprenoid analogs serve as substrates for the enzymes that convert proteins to prenylated lipoproteins, ultimately providing fluorescent prenylated proteins in living cells. These experiments can be done in normal culture media or with cells depleted of natural isoprenoids (e.g., by treatment with lovastatin).
- the present invention provides chemical synthesis of analogs of the natural isoprenoids doubly modified to re-direct post-translational processing and label the resulting proteins with fluorescent tags.
- the present invention provides a method for the analysis of cellular traffic in prenylated proteins, for example, using confocal microscopy to monitor localization of prenylated proteins carrying fluorescent labels. These experiments can be done initially under conditions as natural as possible and then in the presence of representative FPTase inhibitors or alternative substrates designed to redirect post-translational processing.
- a first prenyl transferase is the enzyme farnesyl protein transferase (FTase or FPTase) recognizes a carboxyl terminal amino acid sequence described as a “—CAAX box,” where C is cysteine, A is any aliphatic amino acid, and X is serine, methionine, glutamine, or alanine.
- FPTase transfers a farnesyl group from farnesyl pyrophosphate (FPP) to the sulfhydryl group of the cysteine.
- the resultant protein is further processed by proteolytic cleavage of the three C-terminal amino acids in a reaction catalyzed by the protease RCE1, and then methylation of the newly freed carboxyl group through reaction catalyzed by the enzyme Icmt.
- the net effect of these transformations is transformation of a hydrophilic protein found primarily in the cytosol to a hydrophobic protein found primarily in association with a lipid membrane.
- a second prenyl transferase (GGTase or GGPTase I) is closely related to FPTase in its structure and substrate specificity.
- This enzyme transfers a geranylgeranyl group from geranylgeranyl pyrophosphate (GGPP) to a cysteine sulfhydryl group in proteins bearing a —CAAX box where the terminal amino acid is a leucine. It is highly selective for transfer of a geranylgeranyl group but also will bind FPP and catalyze transfer of a farnesyl group to some substrates.
- a third enzyme known to transfer prenyl groups to proteins is geranylgeranyl transferase II (GGTase II or GGPTase II) also referred to as Rab geranylgeranyl transferase.
- GGTTase II geranylgeranyl transferase II
- Rab geranylgeranyl transferase Rab geranylgeranyl transferase.
- FIG. 2 shows schematically the overall mechanism of RAS farnesylation involves FPTase catalyzed nucleophilic attack of the —SH group of the cysteine in the —CAAX box on the C-1 position of farnesyl pyrophosphate. Whether by an S N 1 or S N 2 mechanism, or some intermediate variant possible only in the enzyme's active site, this results in displacement of pyrophosphate and formation of a new covalent bond between RAS and the farnesyl group.
- a inhibition strategy for interrupting this process is one using compound analogs where a phosphate group is not readily lost. For example, various farnesylphosphonates, wherein a carbon-phosphorus bond joins the phosphoryl group to the farnesyl chain, incorporate this essential property along with a highly desirable similarity to the natural substrate.
- FIG. 3 shows schematically an example of a reaction with certain other analog compounds which afford an unnaturally modified Ras protein and which analog compound products or adducts may be unable to undergo retro-conjugate addition and therefore have greater stability and utility for inhibiting transferase enzymes and for probing the mechanism of various transferase enzymes and processes.
- Fischer esterification of commercial anthranilic acid provides the corresponding amino ester 54.
- Reductive amination of amine 54 with aldehyde 55 derived from SeO 2 oxidation of geranyl acetate and subsequent MnO 2 oxidation, gave the desired amine 56 and subsequent cleavage of the acetate gave the famesol analog 57.
- the resulting farnesol analog (57) has a much greater degree of metabolic stability compared to other previously prepared analogs since this compound employs an amine linkage to bind an anthranilic acid to the terpenoid chain.
- Compound 57 is highly fluorescent and it readily penetrates cell membranes to afford fluorescent cells.
- Compound 58 can be used in enzyme experiments with FPTase and Ras in order to obtain standard Ras proteins labeled with the fluorescent isoprenoid analog.
- compound 62 can be used with GGPTase I or II and proteins such as Rho B to obtain other protein standards. Protein standards obtained from in vitro experiments can then be used to analyze cell lysates for the formation of analogous proteins through in vivo experiments.
- a second family of isoprenoid analogs can be prepared as shown below and have useful fluorescent properties based on aminonaphthalenesulfonic acids related to the dansyl group.
- Commercial 5-aminonaphthalene sulfonic acid (63) is first protected as its Boc derivative 64, and then converted to the N,N-dimethylsulfonamide (66) via the corresponding sulfonyl chloride (65).
- reductive amination is conducted with amine 67 and the aldehyde (68), derived from oxidation of prenyl acetate, affords the famesol analog 69.
- the corresponding alcohol (70) can be used directly in whole cell experiments, and converted to the corresponding pyrophosphate (71) for either in vitro or in vivo use.
- the geranylgeraniol analog 73, as well as its pyrophosphate 74, can be obtained through parallel reactions if the geranyl acetate derivative 55 is used in the reductive amination, for example, to afford amine 72.
- naphthalene-based analogs include the dansyl-like compounds which can provide prenylated proteins with fluorescent properties that differ from those of the anthranilate-based compounds.
- One of ordinary skill in the art would expect an absorption maximum at about 340 nm but an emission maximum of about 540 nm for dansyl derivatives.
- the dansyl-based compounds can serve as substrates, it might be possible to construct farnesol analogs with one set of spectral properties (e.g., based on anthranilate derivatives) and geranylgeraniol derivatives with a second set of properties (e.g., based on the larger dansyl group).
- the availability of fluorescent derivatives of both isoprenoid series as metabolic probes enables one to establish the ratio of farnesylation to geranylgeranylation under different conditions.
- Novel Phosphonylphosphinyl Analogs of Biochemically interesting Diphosphates—Synthesis And Properties of P—C—P—C— Analogs Of Isopentenyl Diphosphate And Dimethylallyl Diphosphate. McClard, R. W.; Fujita, T. S.; Stremler, K. E.; Poulter, C. D. J. Am. Chem. Soc. 1987, 109, 5544-5545.
- Novel famesol and geranylgeraniol analogues A potential new class of anticancer agents directed against protein prenylation. Gibbs, B. S.; Zahn, T. J.; Mu, Y. Q.; Sebolt-Leopold, J. S.; Gibbs, R. A. J. Med. Chem. 1999, 42, 3800-3808.
- RhoB Alteration is Necessary for Apoptotic and Antineoplastic Responses to Farnesyltransferase Inhibitors. Liu, A.; Du, W.; Liu, J. P.; Jessell, T. M.; Prendergast, G. C. Mol. Cell. Biol. 2000, 20, 6105-6113.
- Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules.
- Antitumor Efficacy of a Novel Class of Nonthiol-containing Peptidomimetic Inhibitors of Farnesyltransferase and Geranylgeranyltrasferase I Combination Therapy with the Cytotoxic Agents Cisplatin, Taxol, and Gemcitabine.
- Cdk Inhibitors Roscovitine and Olomoucine, Synergize with Farnesyltrasferase Inhibitor (FTI) to Induce Efficient Apoptosis of Human Cancer Cell Lines.
- FTI Farnesyltrasferase Inhibitor
- Farnesyl Pyrophosphate Synthase is the Molecular Target of Nitrogen-Containing Bisphosphonates. VanBeek, E.; Pieterman, E.; Cohen, L.; Lowik, C.; Papapoulous, S. Biochem. Biophys. Res. Commun. 1999, 264, 108-111.
- HMG CoA Reductase Inhibitor-Induced Myotoxicity Pravastatin and Lovastatin Inhibit the Geranylgeranylation of Low-Molecular Weight Proteins in Neonatal Rat Muscle Cell Culture. Flint, O. P.; Masters, B. A.; Gregg, R. E.; Durham, S. K. Toxicol. Appl. Pharmacol. 1997, 145, 99-110.
- Nitrogen-Containing Bisphosphonates Inhibit the Mevalonate Pathway and Prevent Post-Translational Prenylation of GTP-Binding Proteins, Inducing Ras. Luckman, S. P.; Hughes, D. E.; Coxon, F. P.; Russell, R. G. G.; Rogers, M. J. J. Bone Miner. Res. 1998, 13, 581-589.
- Intramolecular Fluorescence Enhancement A Continuous Assay of RAS Farnesyl: Protein Transferase. Pompliano, D. L.; Gomez, R. P.; Anthony, N. J. J. Am. Chem. Soc. 1992, 114, 7945-7946.
- dually acylated NH2-terminal domain of gi 1 alpha is sufficient to target a green flourescent protein reporter to the caveolin-enriched plasma membrane domians. Palmitoylation of caveolin-1 is required for the recognition to dually acylated g-protein alpha subunits in vivo. Galbiati, F.; Volonte, D.; Meani, D.; Milligan, G.; Lublin, D. M.; Lisanti, M. P.; Parenti, M. J. Biol. Chem. 1999, 274, 5843-5850.
- Targeted inactivation of the isoprenylcysteine carboxymethyltransferase gene causes mislocation of K-Ras in mammalian cells. Bergo, M. O.; Leung, G. K.; Ambroziack, P.; Otto, J. C.; Casey, P. J.; Young, S. G. J. Biol. Chem. 2000, 275, 17605-17610.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
wherein X, R1, R2, and n have any of the values defined in the specification, and their pharmaceutically acceptable salts. The compounds are useful, for example, for blocking prenylation transferase enzymes, for probing or diagnosing protein prenylation processes, and for treating cancer in a mammal. The invention also provides pharmaceutical compositions, processes for preparing compounds of formula I, and intermediates useful for the synthesis of compounds of formula I.
Description
- This application is a divisional under 37 C.F.R. 1.53(b) of U.S. patent application Ser. No. 10/116,737 filed Apr. 3, 2002, which claimed priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application Serial No. 60/281,170, filed Apr. 3, 2001, which applications are incorporated by reference and made a part hereof.
- Prenylation of proteins is a common form of post-translational processing found in many biological systems. For example, at least 300 human proteins are prenylated and many of these proteins play critical roles in essential signal transduction pathways. Mevalonic acid derivatives, known collectively as isoprenoids, are known to be central to mammalian metabolism, but the smaller intermediates in this pathway were viewed primarily as precursors to larger compounds such as steroids and dolichols. Not until 1989 was the presence of prenylated cysteines demonstrated in mammalian cells. The number of prenylated proteins continues to grow, with sequences for at least 300 prenylated proteins now recognized in humans corresponding to about 1% of the total cellular protein by mass. These include all of the known monomeric and trimeric G proteins, proteins which play central roles in a variety of signal transduction processes that regulate cell growth. Therefore, inhibition or modification of protein prenylation processes is a promising area for the development of new therapeutic agents and treatment methods, for example, anticancer agents and cancer treatments. Additionally, diagnosis or treatment regimes directed toward inhibition or modification of protein prenylation processes can be improved and refined with the help of enhanced means and methods of detecting changes in vivo or in vitro in the prenylation process.
- Goody reported the preparation of detectable terpenoid analog compounds as substrates for GGPTase II in vitro. (Angew. Chem., Int. Ed. Eng., 1999, 38, 509-512; See also J. Davisson, et al. J. Org. Chem. 1986, 51, 4768-4779.) However, potential biologic and chemical instability considerations of these compounds may limit their utility, for example, in in vivo experiments where intracellular esterases can cleave the anthranilic ester linkage to the component parts thereby liberating a fluorescent anthranilic acid.
- Other publications of interest are listed in the references section below.
- U.S. Pat. Nos. 5,998,204 and 6,197,928 are of general interest and relate to fluorescent protein sensors for detection of analytes, for example, localization sequences for prenylation or for insertion into a plasma membrane ([CaaX] CAAX (SEQ ID NO:51).
- Thus, there is a continuing need for compounds which can inhibit the prenylation process, and have improved stability, improved spectral detectability, or both.
- The present invention provides analog compounds of key intermediates of isoprenoid biosynthesis and metabolism. These analogs can be prepared through chemical synthesis and can function as alternate substrates for enzymes involved in post-translation processing in either in vitro or in vivo. The compounds of the invention can be potent prenylation process inhibitor compounds which can also have improved stability, improved spectral detectability, or both. The compounds of the invention are also useful as probes for studying the prenylation process and related processes.
-
- wherein:
- X is independently —NRa—, O, or S;
- R1 is a detectable group;
- R2 is independently
- OH,
- (C1-C10)alkanoyloxy,
- —O—P(═O)(—ORa)2,
- —O—P(═O)(—ORa)—O—P(═O)(—ORa)2,
- —CH2—O—P(═O)(—ORa)2,
- —CH2—O—P(═O)(—ORa)—O—P(═O)(—ORa)2,
- —CH2—P(═O)(—ORa)2,
- —CH{—P(═O)(—ORa)2}2,
- —CH2—P(═O)(—ORa)—O—P(═O)(—ORa)2,
- —CH═CH {—P(═O)(—ORa)2}, or
- —CH═C {—P(═O)(—ORa)2}2;
- each Ra is independently hydrogen, (C1-C10)alkyl, (C1-C10)alkanoyl, (C1-C10)alkanoyloxy, (C1-C10)alkoxycarbonyl, or —CH2—O—(C1-C10)alkanoyl;
- n is independently 1, 2, or 3;
- or a pharmaceutically acceptable salt thereof.
- The invention also provides a pharmaceutical composition comprising a compound of formula I and a pharmaceutically acceptable diluent or carrier.
- The invention also provides a method of treating cancer, comprising administering to a mammal afflicted with cancer, an amount of a compound of the invention effective to treat the cancer.
- The invention also provides a method of inhibiting a prenylation transferase or synthase enzyme comprising contacting the enzyme in vivo or in vitro with an effective amount of a compound of the invention.
- The invention also provides a method of accessing the metabolic status of an enzyme, such as a prenylation transferase enzyme, comprising:
- contacting the enzyme with an effective amount of a mixture of a farnesol analog compound of the invention and a geraniol or geranylgeraniol analog compound of the invention, and as described herein; and
- measuring the relative ratio, or levels, of farnesylation to geranylgeranylation of the farnesol and geraniol or geranylgeraniol analog compounds accomplished by the enzyme, and wherein the ratio correlates with the metabolic status of the enzyme.
- The invention also provides a compound of the invention for use in medical therapy or diagnosis, for example, treating cancer.
- The invention also provides for the use of a compound of the invention for the manufacture of a medicament useful for the treatment of cancer.
- The invention also provides for the use of a compound of the invention for the manufacture of a medicament useful for inhibiting prenylation transferase or synthase enzymes in a mammal.
- The invention also provides processes and intermediates disclosed herein that are useful for preparing compounds of the invention. Some compounds of the formula I are useful as intermediates in preparing other compounds of formula I.
- FIG. 1 schematically illustrates isoprenoid biosynthesis and protein prenylation routes in embodiments of the present invention.
- FIG. 2 schematically illustrates normal RAS farnesylation in embodiments of the present invention.
- FIG. 3 schematically illustrates an FTPase mediated reaction of Ras with a vinyl phosphonate in embodiments of the present invention.
- The following definitions are used, unless otherwise described: halo is fluoro, chloro, bromo, or iodo. Alkyl, alkoxy, etc. denote both straight and branched groups; but reference to an individual radical such as “propyl” embraces only the straight chain radical, a branched chain isomer such as “isopropyl” being specifically referred to. When alkyl can be partially unsaturated, the alkyl chain may comprise one or more (e.g. 1, 2, 3, or 4) double or triple bonds in the chain.
- “Aryl” denotes a phenyl radical or an ortho-fused bicyclic carbocyclic radical having about nine to ten ring atoms in which at least one ring is aromatic.
- “Het” is a four-(4), five-(5), six-(6), or seven-(7) membered saturated or unsaturated heterocyclic ring having 1, 2, 3, or 4 heteroatoms selected from the group consisting of oxy, thio, sulfinyl, sulfonyl, and nitrogen, which ring is optionally fused to a benzene ring, or any cyclic heterocycle group which may be monocyclic or multi-cyclic. Het includes “heteroaryl,” which encompasses a radical attached via a ring carbon of a monocyclic aromatic ring containing five or six ring atoms consisting of carbon and 1, 2, 3, or 4 heteroatoms each selected from the group consisting of non-peroxide oxy, thio, and N(X) wherein X is absent or is H, O, C1-4alkyl, phenyl or benzyl, as well as a radical of an ortho-fused bicyclic heterocycle of about eight to ten ring atoms derived therefrom, particularly a benz-derivative or one derived by fusing a propylene, trimethylene, or tetramethylene diradical thereto.
- The term “heterocycle” refers to a monovalent saturated or partially unsaturated cyclic non-aromatic group which contains at least one heteroatom, preferably 1 to 4 heteroatoms, selected from nitrogen (NRx, wherein Rx is hydrogen, alkyl, or a direct bond at the point of attachment of the heterocycle group), sulfur, phosphorus, and oxygen within at least one cyclic ring and which may be monocyclic or multi-cyclic. Such heterocycle groups preferably contain from 3 to 10 atoms. The point of attachment of the heterocycle group may be a carbon or nitrogen atom. This term also includes heterocycle groups fused to an aryl or heteroaryl group, provided the point of attachment is on a non-aromatic heteroatom-containing ring. Representative heterocycle groups include, by way of example, pyrrolidinyl, piperidinyl, piperazinyl, imidazolidinyl, morpholinyl, indolin-3-yl, 2-imidazolinyl, 1,2,3,4-tetrahydroisoquinolin-2-yl, quinuclidinyl and the like.
- The terms “include”, “for example”, “such as”, and the like are used illustratively and are not intended to limit the present invention.
- The indefinite articles “a” and “an” mean “at least one” or “one or more” when used in this application, including the claims, unless specifically indicated otherwise.
- “Optional” or “optionally” mean that the subsequently described event or condition may but need not occur, and that the description includes instances where the event or condition occurs and instances in which it does not. For example, “optionally substituted” means that the named substituent may be present but need not be present, and the description includes situations where the named substituent is included and situations where the named substituent is not included.
- The compounds of the present invention are generally named according to the IUPAC or CAS nomenclature system. Abbreviations which are well known to one of ordinary skill in the art may be used (e.g. “Ph” for phenyl, “Me” for methyl, “Et” for ethyl, “h” for hour or hours and “rt” for room temperature).
- Specific and preferred values listed below for radicals, substituents, and ranges, are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents. The compounds of the invention include compounds of formula I having any combination of the values, specific values, more specific values, and preferred values described herein.
- The term “detectable group” refers to any known fluorophore substituent, for example, fluorescent groups including, but not limited to, anthranilic acid compounds, aminonaphthalenesulfonic acid compounds, coumarin compounds, and like groups or compounds and as illustrated herein.
- The term “treatment” refers to any treatment of a pathologic condition in a mammal, particularly a human, and includes:
- (i) preventing the pathologic condition from occurring in a subject which may be predisposed to the condition but has not yet been diagnosed with the condition and, accordingly, the treatment constitutes prophylactic treatment for the disease condition;
- (ii) inhibiting the pathologic condition, i.e., arresting its development;
- (iii) relieving the pathologic condition, i.e., causing regression of the pathologic condition; or
- (iv) relieving the conditions mediated by the pathologic condition.
- The term “therapeutically effective amount” refers to that amount of a compound of the invention which is sufficient to effect treatment, as defined above, when administered to a mammal in need of such treatment. The therapeutically effective amount will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.
- The term “pharmaceutically acceptable salts” includes, but is not limited to, salts well known to those skilled in the art, for example, mono-salts (e.g. alkali metal and ammonium salts) and poly salts (e.g. di- or tri-salts,) of the compounds of the invention. Pharmaceutically acceptable salts of compounds of formula I are where, for example, an exchangeable group, such as hydrogen in —OH, —NH—, or —P(═O)(OH)—, is replaced with a pharmaceutically acceptable cation (e.g. a sodium, potassium, or ammonium ion) and can be conveniently be prepared from a corresponding compound of formula I by, for example, reaction with a suitable base. In cases where compounds are sufficiently basic or acidic to form stable nontoxic acid or base salts, administration of the compounds as salts may be appropriate. Examples of pharmaceutically acceptable salts are organic acid addition salts formed with acids which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, α-ketoglutarate, and α-glycerophosphate. Suitable inorganic salts may also be formed, including hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts. Pharmaceutically acceptable salts may be obtained using standard procedures well known in the art, for example, by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion. Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example, calcium) salts of carboxylic acids can also be made.
- It will be appreciated by those skilled in the art that compounds of the invention having a chiral center may exist in and be isolated in optically active and racemic forms. Some compounds may exhibit polymorphism. It is to be understood that the present invention encompasses any racemic, optically-active, polymorphic, or stereoisomeric form, or mixtures thereof, of a compound of the invention, which possess the useful properties described herein, it being well known in the art how to prepare optically active forms (for example, by resolution of the racemic form by recrystallization techniques, by synthesis from optically-active starting materials, by chiral synthesis, or by chromatographic separation using a chiral stationary phase) and how to determine transferase inhibitory activity using the standard tests described herein, or using other similar tests which are well known in the art. In particular, it is understood that compounds of formula I, such as R1, R2, or substituents thereon, can exist in the corresponding tautomeric “enol” form, and that such tautomers are included as compounds of the invention.
- Specific and preferred values listed below for radicals, substituents and ranges, are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents.
- Specifically, (C1-C10)alkyl can be methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, hexyl, heptyl, octyl, nonyl, or decyl; (C1-C10)alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 3-pentoxy, hexyloxy, heptyloxy, octyloxy, nonyloxy or decyloxy; (C2-C6)alkenyl can be vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl; (C1-C10)alkanoyl can be acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl, or decanoyl; (C1-C10)alkoxycarbonyl can be methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, hexyloxycarbonyl, heptyloxycarbonyl, octyloxycarbonyl, nonyloxycarbonyl or decyloxycarbonyl; (C1-C10)alkanoyloxy can be formyloxy, acetoxy, propanoyloxy, butanoyloxy, isobutanoyloxy, pentanoyloxy, hexanoyloxy, heptanoyloxy, octanoyloxy, nonanoyloxy, or decanoyloxy; aryl can be phenyl, indenyl, naphthyl, or anthracenyl; heterocycle can benztriazolyl, triazinyl, oxazoyl, isoxazolyl, oxazolidinoyl, isoxazolidinoyl, thiazolyl, isothiazoyl, pyrazolyl, imidazolyl, pyrrolyl, pyrazinyl, pyridinyl, morpholinyl, quinolinyl, isoquinolinyl, indolyl, pyrimidinyl, piperidinyl, pyrrolidinyl, morpholinyl, thiomorpholinyl, or piperazinyl; and heteroaryl can be, for example, furyl, imidazolyl, triazolyl, triazinyl, oxazoyl, isoxazoyl, thiazolyl, isothiazoyl, pyrazolyl, pyrrolyl, pyrazinyl, tetrazolyl, 1-methyl-1H-tetrazol-5-yl, pyridyl, (or its N-oxide), thienyl, pyrimidinyl (or its N-oxide), indolyl, isoquinolyl (or its N-oxide) or quinolyl (or its N-oxide).
- Specific and preferred values listed below for radicals, substituents, and ranges, are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents.
- Specifically, (C1-C6)alkyl can be methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, or hexyl.
- Specifically, (C1-C6)alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 3-pentoxy, or hexoxy.
-
- where R1 is a 2-methoxycarboxy phenyl detectable group, R2 is diphosphate ester, n=1 to 3, and X is NH; or a pharmaceutically acceptable salt thereof.
-
- where n=0 to 3, and R is (C1-C10)alkyl, for example, methyl; or a pharmaceutically acceptable salt thereof.
- A specific value for R1 is a detectable group, such as a known fluorophore substituent.
- A specific value for R1 is an aryl group, such as phenyl, naphthyl, or anthracenyl, which aryl group is optionally substituted with one or more substituents independently selected from —COORb, —S(O)nNRbRb, halo, cyano, nitro, aryl, heterocycle, (C2-C6)alkenyl, —C(═O)NRbRb, —OC(═O)NRbRb, —NRbRb, or —S(O)nRb, where each Rb is independently hydrogen, (C1-C10)alkyl, or (C1-C10)alkanoyl.
- Another specific value for R1 is Het, for example a heterocycle or heteroaryl, such as anthranil or quinoline, which Het is optionally substituted with one or more substituents independently selected from —COORb, —S(O)nNRbRb, halo, cyano, nitro, aryl, heterocycle, (C2-C6)alkenyl, —C(═O)NRbRb, —OC(═O)NRbRb, —NRbRb, or —S(O)nRb, where each Rb is independently hydrogen, (C1-C10)alkyl, or (C1-C10)alkanoyl.
- Another specific value for R1 is substituted phenyl.
- Another specific value for R1 is phenyl substituted with a —COORb.
- Another specific value for R1 is 2-methoxycarboxy phenyl.
- Another specific value for R1 is substituted naphthyl.
- Another specific value for R1 is naphthyl substituted with a —S(O)nNRbRb.
- Another specific value for R1 is naphthyl substituted at the 5-position with a —S(O)nNRbRb substituent.
- Another specific value for R1 is 5-N,N′-dimethylaminosulfonyl naphthy-1-yl.
- A specific value for R2 is OH.
- Another specific value for is (C1-C10)alkanoyloxy.
- Another specific value for R2 is —O—P(═O)(—ORa)2.
- Another specific value for R2 is —O—P(═O)(—ORa)—O—P(═O)(—ORa)2.
- Another specific value for R2 is —CH2—O—P(═O)(—ORa)2.
- Another specific value for R2 is —CH2—O—P(═O)(—ORa)—O—P(═O)(—ORa)2.
- Another specific value for R2 is —CH2—P(═O)(—ORa)2.
- Another specific value for R2 is —CH{—P(═O)(—ORa)2}2.
- Another specific value for R2 is —CH2—P(═O)(—ORa)—O—P(═O)(—ORa)2.
- Another specific value for R2 is —CH═CH{—P(═O)(—ORa)2}.
- Another specific value for R2 is —CH═C{—P(═O)(—ORa)2}2.
- A specific value for Ra is hydrogen.
- A specific value for Ra is —C(═O)—CH3.
- Another specific value for Ra is —CH3.
- Another specific value for Ra is —CH2—O—(C1-C6)alkanoyl.
- A specific value for Rb is hydrogen.
- Another specific value for Rb is —CH3.
- A specific value for n is 1.
- Another specific value for n is 2.
- Another specific value for n is 3.
- A specific value for X is —NRa—.
- A specific value for X is —NH—.
- A specific value for X is —N(CH3)—.
- A specific value for X is —O—.
- A specific value for X is —S—.
- A specific value for a protein conjugate of the present invention is a protein linked to a fluorescent fragment of a compound of the invention, for example, the Ras adduct of the compound of formula I, such as compounds of the formula II or III.
- Processes and novel intermediates useful for preparing compounds of formula I are provided as further embodiments of the invention and are illustrated by the following procedures in which the meanings of the generic radicals are as given above unless otherwise qualified. Compounds of formula I and preceding intermediates wherein R1, R2, and n have any of the values, specific values, or preferred values defined herein, can be prepared in accordance with the preparative schemes described below.
- The invention provides a pharmaceutical composition, comprising an effective amount of a compound of formula I as described hereinabove; or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier. The present compositions are preferably presented in a form suitable for absorption by the gastro-intestinal tract.
- The compounds of formula I can be formulated as pharmaceutical compositions and administered to a mammalian host, such as a human patient in a variety of forms adapted to a selected route of administration, i.e., by oral, parenteral, intravenous, intramuscular, topical, or subcutaneous routes. Thus, the present compounds may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet. For oral therapeutic administration, the active compound may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 0.1% of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form. The amount of active compound in such therapeutically useful compositions is such that an effective dosage level will be obtained.
- The tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose or aspartame or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac or sugar and the like. A syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed. In addition, the active compound may be incorporated into sustained-release preparations and devices.
- The active compound may also be administered intravenously or intraperitoneally by infusion or injection. Solutions of the active compound or its salts can be prepared in water, optionally mixed with a nontoxic surfactant. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- The pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes. In all cases, the ultimate dosage form should be sterile, fluid and stable under the conditions of manufacture and storage. The liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions or by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.
- For topical administration, the present compounds may be applied in pure form, i.e., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.
- Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like. Useful liquid carriers include water, alcohols or glycols or water-alcohol/glycol blends, in which the present compounds can be dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants. Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use. The resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers.
- Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user. Examples of useful dermatological compositions which can be used to deliver the compounds of the invention to the skin are disclosed in Jacquet et al. (U.S. Pat. No. 4,608,392), Geria (U.S. Pat. No. 4,992,478), Smith et al. (U.S. Pat. No. 4,559,157) and Wortzman (U.S. Pat. No. 4,820,508).
- The present compositions may also be prepared in suitable forms for absorption through the mucous membranes of the nose and throat or bronchial tissues and may conveniently take the form of powder or liquid sprays or inhalants, lozenges, throat paints, etc. For medication of the eyes or ears, the preparations may be presented as individual capsules, in liquid or semi-solid form, or may be used as drops, etc. Topical applications may be formulated in hydrophobic or hydrophilic bases as ointments, creams, lotions, paints, powders, etc.
- For veterinary medicine, the composition may, for example, be formulated as an intra-mammary preparation in either long acting or quick-release bases.
- Useful dosages of the compounds of the invention can be determined by comparing their in vitro activity, and in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949.
- Generally, the concentration of the compound(s) of the invention in a liquid composition, such as a lotion, will be from about 0.1-25 wt-%, preferably from about 0.5-10 wt-%. The concentration in a semi-solid or solid composition such as a gel or a powder will be about 0.1-5 wt-%, preferably about 0.5-2.5 wt-%.
- The compositions per unit dosage, whether liquid or solid may contain from 0.1% to 99% of active material (compound I or salts thereof), the preferred range being from about 10-60%. The composition will generally contain from about 15 mg to about 1,500 mg by weight of active ingredient based upon the total weight of the composition; however, in general, it is preferable to employ a dosage amount in the range of from about 250 mg to 1,000 mg. In parenteral administration the unit dosage is usually the pure compound in a slightly acidified sterile water solution or in the form of a soluble powder intended for solution. Single dosages for injection, infusion or ingestion may be administered, i.e., 1-3 times daily, to yield levels of about 0.5-50 mg/kg, for adults.
- The ability of a compound of the invention to function as a transferase inhibitor or blocker can be demonstrated using the test methods described below, or using other tests which are well known in the art. Representative compounds of formula I can be readily evaluated as inhibitors the above mentioned transferases by, for example, relative IC50 analysis.
- The present invention provides chemical syntheses of fluorescent analogs of farnesol (FOH), farnesyl pyrophosphate (FPP), geranylgeraniol (GGOH), and geranylgeranyl pyrophosphate (GGPP). These analogs can be designed to display minimal differences from the natural substrates to maximize the possibility that they can be incorporated into various lipoproteins.
- The present invention suggests in vitro testing of the compounds of the present invention with prenyl transferases and their protein substrates to demonstrate inhibition of modified proteins. For example, experiments with isolated Ras proteins, normal isoprenoid substrates, and farnesyl protein transferase should give unprenylated proteins.
- The present invention suggests in vitro testing of the compounds of the present invention with prenyl transferases and their protein substrates to demonstrate formation of unnaturally modified proteins. For example, experiments with isolated Ras proteins and farnesyl protein transferase should give “farnesylated” proteins carrying fluorescent labels and provide protein standards for in vivo experiments.
- The present invention suggests in vivo testing of the compounds of the present invention in cell lines to determine if the fluorescent isoprenoid analogs serve as inhibitors for the enzymes that convert proteins to prenylated lipoproteins, ultimately resulting in the accumulation of unmodified proteins and reduction in prenylated proteins in living cells. These experiments can be accomplished in normal culture media or with cells depleted of natural isoprenoids (e.g., by treatment with lovastatin).
- The present invention suggests in vivo testing of the compounds of the present invention in cell lines to determine if the fluorescent isoprenoid analogs serve as substrates for the enzymes that convert proteins to prenylated lipoproteins, ultimately providing fluorescent prenylated proteins in living cells. These experiments can be done in normal culture media or with cells depleted of natural isoprenoids (e.g., by treatment with lovastatin).
- The present invention provides chemical synthesis of analogs of the natural isoprenoids doubly modified to re-direct post-translational processing and label the resulting proteins with fluorescent tags.
- The present invention provides a method for the analysis of cellular traffic in prenylated proteins, for example, using confocal microscopy to monitor localization of prenylated proteins carrying fluorescent labels. These experiments can be done initially under conditions as natural as possible and then in the presence of representative FPTase inhibitors or alternative substrates designed to redirect post-translational processing.
- The following discussion, figures, and examples further describe and exemplify making and using the present invention.
- Three prenylation motifs are known and each is recognized by a specific prenyl transferase. A first prenyl transferase is the enzyme farnesyl protein transferase (FTase or FPTase) recognizes a carboxyl terminal amino acid sequence described as a “—CAAX box,” where C is cysteine, A is any aliphatic amino acid, and X is serine, methionine, glutamine, or alanine. FPTase transfers a farnesyl group from farnesyl pyrophosphate (FPP) to the sulfhydryl group of the cysteine. The resultant protein is further processed by proteolytic cleavage of the three C-terminal amino acids in a reaction catalyzed by the protease RCE1, and then methylation of the newly freed carboxyl group through reaction catalyzed by the enzyme Icmt. The net effect of these transformations is transformation of a hydrophilic protein found primarily in the cytosol to a hydrophobic protein found primarily in association with a lipid membrane.
- A second prenyl transferase (GGTase or GGPTase I) is closely related to FPTase in its structure and substrate specificity. This enzyme transfers a geranylgeranyl group from geranylgeranyl pyrophosphate (GGPP) to a cysteine sulfhydryl group in proteins bearing a —CAAX box where the terminal amino acid is a leucine. It is highly selective for transfer of a geranylgeranyl group but also will bind FPP and catalyze transfer of a farnesyl group to some substrates.
- A third enzyme known to transfer prenyl groups to proteins is geranylgeranyl transferase II (GGTase II or GGPTase II) also referred to as Rab geranylgeranyl transferase. Until very recently this enzyme was thought to have an absolute specificity for GGPP and not bind FPP, but this has now been questioned. Its protein substrates differ significantly from those of GGPTase I in that two cysteine residues are required at, or adjacent to, the carboxyl terminus in amino acid sequences such as —XXCC, —XCXC, or —CCXX. Finally, short peptides bearing these sequences are not substrates for this enzyme, while short sequences with the —CAAX box do serve as substrates for FPTase and/or GGPTase I.
- FIG. 2 shows schematically the overall mechanism of RAS farnesylation involves FPTase catalyzed nucleophilic attack of the —SH group of the cysteine in the —CAAX box on the C-1 position of farnesyl pyrophosphate. Whether by an SN 1 or SN 2 mechanism, or some intermediate variant possible only in the enzyme's active site, this results in displacement of pyrophosphate and formation of a new covalent bond between RAS and the farnesyl group. A inhibition strategy for interrupting this process is one using compound analogs where a phosphate group is not readily lost. For example, various farnesylphosphonates, wherein a carbon-phosphorus bond joins the phosphoryl group to the farnesyl chain, incorporate this essential property along with a highly desirable similarity to the natural substrate.
- FIG. 3 shows schematically an example of a reaction with certain other analog compounds which afford an unnaturally modified Ras protein and which analog compound products or adducts may be unable to undergo retro-conjugate addition and therefore have greater stability and utility for inhibiting transferase enzymes and for probing the mechanism of various transferase enzymes and processes.
- Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments which are given for illustration of the invention and are not intended to be limiting thereof.
- PREPARATION OF FLUORESCENT ANALOG COMPOUNDS
-
- Compound 57 is highly fluorescent and it readily penetrates cell membranes to afford fluorescent cells. Compound 58 can be used in enzyme experiments with FPTase and Ras in order to obtain standard Ras proteins labeled with the fluorescent isoprenoid analog. Similarly compound 62 can be used with GGPTase I or II and proteins such as Rho B to obtain other protein standards. Protein standards obtained from in vitro experiments can then be used to analyze cell lysates for the formation of analogous proteins through in vivo experiments. Compound 581H NMR(D2O) δ 7.6 (1H), 7.2 (1H), 6.4 (2H), 5.4 (1H), 5.2 (1H), 4.4 (2H), 3.6 (3H), 3.4 (2H), 2.0 (2H), 1.8 (2H), 1.6 (3H), 1.4 (3H); and 31P NMR −6.9 (d, 1P) −9.75 (d, 1P).
- PREPARATION OF FLUORESCENT ANALOG COMPOUNDS
- A second family of isoprenoid analogs can be prepared as shown below and have useful fluorescent properties based on aminonaphthalenesulfonic acids related to the dansyl group. Commercial 5-aminonaphthalene sulfonic acid (63) is first protected as its Boc derivative 64, and then converted to the N,N-dimethylsulfonamide (66) via the corresponding sulfonyl chloride (65). After cleavage of the Boc group, reductive amination is conducted with amine 67 and the aldehyde (68), derived from oxidation of prenyl acetate, affords the famesol analog 69. The corresponding alcohol (70) can be used directly in whole cell experiments, and converted to the corresponding pyrophosphate (71) for either in vitro or in vivo use. The geranylgeraniol analog 73, as well as its pyrophosphate 74, can be obtained through parallel reactions if the geranyl acetate derivative 55 is used in the reductive amination, for example, to afford amine 72. Compound (73)1H NMR(CDCl3) δ 8.20 (dd, 1H, J=6.23, 1.16 Hz), 8.12 (d, 1H, J=7.68 Hz), 8.09 (d, 1H, J=7.85 Hz), 7.49 (dd, 1H, J=7.30, 0.93 Hz), 7.46 (dd, 1H, J=8.80, 1.53 Hz), 6.68 (d, 1H, J=7.71 Hz), 5.48 (dt, 1H, J=5.81, 1.1 Hz), 5.38 (dt, 1H, J=68, 1.11 Hz), 4.15 (d, 1H, J=7.05 Hz), 4.10 (d, 1H, J=7.55 Hz), 3.82 (s, 2H), 2.82 (s, 6H), 2.24 (dd, 2H, J=14.48, 7.11 Hz), 2.09 (t, 2H, 7.78 Hz), 1.76 (s, 3H), 1.68 (s, 3H); 13C NMR(CDCl3) δ 144.1, 139.1, 133.1, 131.8, 130.3, 130.1, 128.9, 126.3, 126.0, 124.4, 123.8, 122.5, 114.1, 105.8, 59.3, 51.9, 39.1, 37.4(2C), 26.0, 16.2, 14.9; and High Resolution Mass Spectra m/z obsd. 403.2059 (M+H)+, calcd for C22H31N2O3S 403.2055.
- Advantages of naphthalene-based analogs include the dansyl-like compounds which can provide prenylated proteins with fluorescent properties that differ from those of the anthranilate-based compounds. One of ordinary skill in the art would expect an absorption maximum at about 340 nm but an emission maximum of about 540 nm for dansyl derivatives. In addition, if the dansyl-based compounds can serve as substrates, it might be possible to construct farnesol analogs with one set of spectral properties (e.g., based on anthranilate derivatives) and geranylgeraniol derivatives with a second set of properties (e.g., based on the larger dansyl group). The availability of fluorescent derivatives of both isoprenoid series as metabolic probes enables one to establish the ratio of farnesylation to geranylgeranylation under different conditions.
- The following illustrate representative pharmaceutical dosage forms, containing a compound of formula I (‘Compound X’), for therapeutic or prophylactic use in humans.
(i) Tablet 1 mg/tablet ‘Compound X’ 100.0 Lactose 77.5 Povidone 15.0 Croscarmellose sodium 12.0 Microcrystalline cellulose 92.5 Magnesium stearate 3.0 300.0 (ii) Tablet 2 mg/tablet ‘Compound X’ 20.0 Microcrystalline cellulose 410.0 Starch 50.0 Sodium starch glycolate 15.0 Magnesium stearate 5.0 500.0 (iii) Capsule mg/capsule ‘Compound X’ 10.0 Colloidal silicon dioxide 1.5 Lactose 465.5 Pregelatinized starch 120.0 Magnesium stearate 3.0 600.0 (iv) Injection 1 (1 mg/ml) mg/ml ‘Compound X’ (free acid form) 1.0 Dibasic sodium phosphate 12.0 Monobasic sodium phosphate 0.7 Sodium chloride 4.5 1.0 N Sodium hydroxide solution q.s. (pH adjustment to 7.0-7.5) Water for injection q.s. ad 1 mL (v) Injection 2 (10 mg/ml) mg/ml ‘Compound X’ (free acid form) 10.0 Monobasic sodium phosphate 0.3 Dibasic sodium phosphate 1.1 Polyethylene glycol 400 200.0 01 N Sodium hydroxide solution q.s. (pH adjustment to 7.0-7.5) Water for injection q.s. ad 1 mL (vi) Aerosol mg/can ‘Compound X’ 20.0 Oleic acid 10.0 Trichloromonofluoromethane 5,000.0 Dichlorodifluoromethane 10,000.0 Dichlorotetrafluoroethane 5,000.0 - The above formulations may be obtained by conventional procedures well known in the pharmaceutical art. Although specific quantities of “Compound X” are shown in the above illustrative examples, it is to be understood that the compounds can be present in any ratio provided the final formulation possesses the desired formulation properties.
- All publications, patents, and patent documents are incorporated by reference herein in their entirety. The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.
- Inhibition of Farnesyltransferase with A-176120, a Novel and Potent Farnesyl Pyrophosphate Analogue. Tahir, S. K.; Gu, W. Z.; Zhang, H. C.; Leal, J.; Lee, J. Y.; Kover, P.; Saeed, B.; Cherian, S. P.; Devine, E.; Cohen, J.; Warner, R.; Wang, Y. C.; Stout, D.; Arendsen, D. L.; Rosenberg, S.; Ng, S.C.Eur. J. Cancer, 2000, 36, 1161-1170.
- Farnesyl Diphosphate-Based Inhibitors of RAS Farnesyl-Protein Transferase. Patel, D. V.; Schmidt, R. J.; Biller, S. A.; Gordon, E. M.; Robinson, S. S.; Manne, V.J. Med. Chem. 1995, 38, 2906-2921.
- Cocrystal Structure of Protein Farnesyltransferase Complexed With A Farnesyl Diphosphate Substrate. Long, S. B.; Casey, P. J.; Beese, L. S. Biochemistry, 1998, 37, 9612-9618.
- On the Stereochemical Course of Human Protein-Farnesyl Transferase. Mu, Y. -Q.; Omer, C. A.; Gibbs, R. A.J. Am. Chem. Soc. 1996, 118, 1817-1823.
- Synthesis And Conformational Analysis of DI-C-13-Labeled Farnesyl Diphosphate Analogs. Zahn, T. J.; Ksebati, M. B.; Gibbs, R. A.Tetrahedron Lett. 1998, 39, 3991-3994. Evaluation of isoprenoid conformation in solution and in the active site of protein-farnesyl transferase using carbon-13 labeling in conjunction with solution- and solid-state NMR. Zahn T. J.; Eilers, M.; Guo, Z. M.; Ksebati, M. B.; Simon, M.; Scholten, J. D.; Smith, S. O.; Gibbs, R. A. J. Am. Chem. Soc. 2000, 122, 7153-7164.
- Preparation of (2E,6E)-10,11-Dihydrofarnesol Via A (Bisphenyl)Dithioacetal Reduction. Mechelke, M. F.; Wiemer, D. F.Tetrahedron Lett. 1998, 39, 9609-9612.
- Stereochemical Analysis of the Reaction Catalyzed By Yeast Protein Farnesyltransferase. Edelstein, R. L.; Weller, V. A.; Distefano, M. D.; Tung, J. S.J. Org. Chem. 1998, 63, 5298-5299.
- Synthesis of Farnesol Analogues Through Cu(I)-Mediated Displacements of Allylic THP Ethers By Grignard Reagents. Mechelke, M. F.; Wiemer, D. F.J. Org. Chem. 1999, 64, 4821-4829.
- Novel Phosphonylphosphinyl (P—C—P—C—) Analogs of Biochemically Interesting Diphosphates—Synthesis And Properties of P—C—P—C— Analogs Of Isopentenyl Diphosphate And Dimethylallyl Diphosphate. McClard, R. W.; Fujita, T. S.; Stremler, K. E.; Poulter, C. D.J. Am. Chem. Soc. 1987, 109, 5544-5545.
- Steady-State Kinetic Mechanism of RAS Farnesyl-Protein Transferase. Pompliano, D. L.; Rands, E.; Schaber, M. D.; Mosser, S. D.; Anthony, N. J.; Gibbs, J. B.Biochemistry 1992, 31, 3800-3807.
- A PD(0)-Catalyzed Route To 13-Methylidenefarnesyl Diphosphate. Gibbs, R. A.; Krishnan, U.Tetrahedron Lett. 1994, 35, 2509-2512.
- Cuprate-Mediated Synthesis And Biological Evaluation of Cyclopropyl- and Tert-Butylfarnesyl Diphosphate Analogs. Mu, Y.; Gibbs, R. A.; Eubanks, L. M.; Poulter, C. D.J. Org. Chem. 1996, 61, 8010-8015.
- Farnesyl-Derived Inhibitors of RAS Farnesyl Transferase. Kang, M. S.; Stemerick, D. M.; Zwolshen, J. H.; Harry, B. S.; Sunkara, P. S.; Harrison, B. L.Biochem. Biophys. Res. Comm. 1995, 217, 245-249. f) Synthesis of Pyrophosphonic Acid Analogs of Farnesyl Pyrophosphate. Valentijn, A. R. P. M.; van den Berg, O.; van der Marel, G. A.; Cohen, L. H.; van Boom, J. H. Tetrahedron, 1995, 51, 2099-2108.
- Photoactive Analogs of Farnesyl Pyrophosphate Containing Benzoylbenzoate Esters: Synthesis and Application to Photoaffinity Labeling of Yeast Protein Farnesyltransferase. Gaon, I.; Turek, T. C.; Weller, V. A.; Edelstein, R. L.; Singh, S. K.; Distefano, M. D.J. Org. Chem. 1996, 61, 7738-7745.
- Stereochemistry-Dependent Inhibition of RAS Farnesylation By Farnesyl Phosphonic Acids. Hohl, R. J.; Lewis, K. A.; Cermak, D. M.; Wiemer, D. F.Lipids, 1998, 33, 39-46.
- Phosphonate and Bisphosphonate Analogs of Farnesyl Pyrophosphate As Potential Inhibitors of Farnesyl Protein Transferase. Holstein, S. A.; Cermak, D. M.; Wiemer, D. F.; Lewis, K.; Hohl, R. J.Bioorganic & Medicinal Chemistry 1998, 6, 687-694.
- Synthesis of Nonracemic Dimethyl Alpha-(Hydroxyfarnesyl)Phosphonates Via Oxidation of Dimethyl Farnesylphosphonate With (Camphorsulfonyl)Oxaziridines. Cermak, D. M.; Du, Y.; Wiemer, D. F.J. Org. Chem. 1999, 64, 388-393.
- Novel famesol and geranylgeraniol analogues: A potential new class of anticancer agents directed against protein prenylation. Gibbs, B. S.; Zahn, T. J.; Mu, Y. Q.; Sebolt-Leopold, J. S.; Gibbs, R. A.J. Med. Chem. 1999, 42, 3800-3808.
- Design and synthesis of a transferable farnesyl pyrophosphate analogue to Ras by protein farnesyltransferase. Chehade, K. A. H.; Andres, D. A.; Morimoto, H.; Spielmann, H. P.J. Org. Chem. 2000, 65, 388-393.
- Phase I and Pharmacokinetic Study of Farnesyl Protein Transferase Inhibitor R115777 in Advanced Cancer. Zujewski, J.; Horak, I. D.; Bol, C. J.; Woestenborghs, R.; Bowden, C.; End, D. W.; Piotrovsky, V. K.; Chiao, J.; Belly, R. T.; Todd, A.; Kopp, W. C.; Kohler, D. R.; Chow, C.; Noone, M.; Hakim, F. T.; Larkin, G.; Gress, R. E.; Nussenblatt, R. B.; Kremer, A. B.; Cowan, K. H.J. Clin. Oncol.2000, 18, 927-941.
- Clinical and Biological Activity of the Farnesyltransferase Inhibitor R115777 in Adults with Refractory and Relapsed Acute Leukemias: A Phase I Clinical-Laboratory Correlative Trial. Karp, J. E.; Lancet, J. E.; Kaufmann, S. H.; End, D. W.; Wright, J. J.; Bol, K.; Horak, I.; Tidwell, M. L.; Leisveld, J.; Kottke, T. J.; Ange, D.; Buddharaju, L.; Gojo, I.; Highsmith, W. E.; Belly, R. T.; Hohl, R. J.; Rybak, M. E.; Thibault, A.; and Rosenblatt, J.Blood. 2001, 97, 3361-3369.
- A Phase I Trial of the Farnesyl Transferase Inhibitor SCH66336: Evidence for Biological and Clinical Activity. Adjei, A. A.; Erlichman, C.; Davis, J. N.; Cutler, D. L.; Sloan, J. A.; Marks, R. S.; Hanson, L. J.; Svingen, P. A.; Atherton, P.; Bishop, W. R.; Kirschmeier, P.; Kaufman, S. H.Cancer Res.2000, 60, 1871-1877.
- Discovery and structure-activity relationships of imidazole-containing tetrahydrobenzodiazepine inhibitors of farnesyltransferase. Ding, C. Z.; Batorsky, R.; Bhide, R.; Chao, H. G. J.; Cho, Y.; Chong, S.; Gullo-Brown, J.; Guo, P.; Kim, S. H.; Lee, F.; Leftheris, K.; Miller, A.; Mitt, T.; Patel, M.; Penhallow, B. A.; Ricca, C.; Rose, W. C.; Schmidt, R.; Slusarchyk, W. A.; Vite, G.; Yan, N.; Manne, V.; Hunt, J. T.J. Med. Chem. 1999, 42, 5241-5253.
- Discovery of (R)-7-cyano-2,3,4,5-tetrahydro-1-(1H-imidazol-4-ylmethyl)-3-(phenylmethyl)-4-(2-thienylsulfonyl)-1H-1,4-benzodiazepine (BMS-214662), a farnesyltransferase inhibitor with potent preclinical antitumor activity. Hunt, J. T. et al.J. Med. Chem. 2000, 43, 3587-3595.
- Discovery of a Series of Cyclohexylethylamine-Containing Protein Farnesyltransferase Inhibitors Exhibiting Potent Cellular Activity. Henry, K. J; Wasicak, J.; Tasker, A. S.; Cohen, J.; Ewing, P.; Mitten, M.; Larsen, J. J.; Klavin, D. M.; Swenson, R.; Ng, S. C.; Saeed, B.; Cherian, S.; Sham, H.; Rosenberg, S.J. Med. Chem. 1999, 42, 4844-4852.
- A Peptidomimetic Inhibitor of Farnesyl:Protein Transferase Blocks the Anchorage-Dependent and -Independent Growth of Human Tumor Cell Lines. Sepp-Lorenzino, L.; Ma, Z.; Rands, E.; Kohl, N. E.; Gibbs, J. B., Oliff, A.; Rosen, N.Cancer Research, 1995, 55, 5302-5309.
- Geranylgeranylated RhoB Mediates Suppression of Human Tumor Cell Growth By Farnesyltransferase Inhibitors. Du, W.; Prendergast, G. C.Cancer Res. 1999, 59, 5492-5496.
- Both Farnesylated and Geranylgeranylated RhoB Inhibit Malignant Transformation and Suppress Human Tumor Growth in Nude Mice. Chen, Z.; Sun, J.; Pradines, A.; Favre, G.; Adnane, J.; Sebti, S. M.J. Biol. Chem. 2000, 275, 17974-17978.
- RhoB Alteration is Necessary for Apoptotic and Antineoplastic Responses to Farnesyltransferase Inhibitors. Liu, A.; Du, W.; Liu, J. P.; Jessell, T. M.; Prendergast, G. C.Mol. Cell. Biol. 2000, 20, 6105-6113.
- Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. Ashar, H. R.; James, L.; Gray, K.; Carr, D.; Black, S.; Armstrong, L.; Bishop, W. R.; Kirschmeier, P. J. Biol. Chem. 2000, 275, 30451-30457.
- Farnesyl Transferase Inhibitors Cause Enhanced Mitotic Sensitivity to Taxol and Epothilones. Moasser, M. M.; Sepp-Lorenzino, L.; Kohl, N. E.; Oliff, A.; Balog, A.; Su, D. S.; Danishefsky, S. J.; Rosen, N.Proc. Natl. Acad.Sci. USA, 1998, 20, 139-148.
- Antitumor Efficacy of a Novel Class of Nonthiol-containing Peptidomimetic Inhibitors of Farnesyltransferase and Geranylgeranyltrasferase I: Combination Therapy with the Cytotoxic Agents Cisplatin, Taxol, and Gemcitabine. Sun, J.; Blaskovich, M. A.; Knowles, D.; Qian, Y.; Ohkanada, J.; Bailey, R. D.; Hamilton, A. D.; Sebti, S. M.Cancer Res. 1999, 59, 4919-4926.
- The Phosphoinositide 3-OH Kinase/AKT2 Pathway as a Critical Target for Farnesyltransferase-Induced Apoptosis. Jiang, K.; Coppola, D.; Crespo, N. C.; Nicosia, S. V.; Hamilton, A. D.; Sebti, S. M.; Cheng, J. Q.Mol. Cell. Biol. 2000, 20, 139-148.
- Cdk Inhibitors, Roscovitine and Olomoucine, Synergize with Farnesyltrasferase Inhibitor (FTI) to Induce Efficient Apoptosis of Human Cancer Cell Lines. Edamatsu, H.; Gau, C. L.; Nemoto, T.; Guo, L.; Tamanoi, F.Oncogene, 2000, 19, 3059-3068.
- Inhibition of Protein Geranylgeranylation Causes a Superinduction of Nitric-oxide Synthase-2 by Interleukin-1β in Vascular Smooth Muscle Cells. Finder, J. D.; Litz, J. L.; Blaskovich, M. A.; McGuire, T. F.; Qian, Y.; Hamilton, A. D.; Davies, P.; Sebti, S. M.J. Biol. Chem. 1997, 272, 13484-13488.
- Farnesyl Pyrophosphate Synthase is the Molecular Target of Nitrogen-Containing Bisphosphonates. VanBeek, E.; Pieterman, E.; Cohen, L.; Lowik, C.; Papapoulous, S.Biochem. Biophys. Res. Commun. 1999, 264, 108-111.
- HMG CoA Reductase Inhibitor-Induced Myotoxicity: Pravastatin and Lovastatin Inhibit the Geranylgeranylation of Low-Molecular Weight Proteins in Neonatal Rat Muscle Cell Culture. Flint, O. P.; Masters, B. A.; Gregg, R. E.; Durham, S. K.Toxicol. Appl. Pharmacol. 1997, 145, 99-110.
- Nitrogen-Containing Bisphosphonates Inhibit the Mevalonate Pathway and Prevent Post-Translational Prenylation of GTP-Binding Proteins, Inducing Ras. Luckman, S. P.; Hughes, D. E.; Coxon, F. P.; Russell, R. G. G.; Rogers, M. J.J. Bone Miner. Res. 1998, 13, 581-589.
- Preparation of diterpenoid derivatives as inhibitors of prenyl-protein transferase. Anthony, N. J.; Gomez, R. P.; Omer, U.S. Pat. No. 5,574,025, 1996. (CA 125: 86936.)
- Intramolecular Fluorescence Enhancement: A Continuous Assay of RAS Farnesyl: Protein Transferase. Pompliano, D. L.; Gomez, R. P.; Anthony, N. J.J. Am. Chem. Soc. 1992, 114, 7945-7946.
- 2-(Acyloxy)ethylphosphonate Analogues of Prenyl Pyrophosphates: Synthesis and Biological Characterization. Cermak, D. M.; Wiemer, D. F.; Lewis, K.; Hohl, R. J.Bioorg. Med. Chem. 2000, 8, 2729-2737.
- Lewis, K., Du, Y., Yang, L., Wiemer, D. F. Hohl, R. J. Effect of Combinations of Lovastatin and Specific Protein Isoprenylation Inhibitors on RAS and Mitogen Activated Protein (MAP) Kinase Activities. In Preparation.
- Chemo-enzymatic synthesis of fluorescent Rab 7 proteins: Tools to study vesicular trafficking in cells. Owen D J, Goody R S, et al.,Angew. Chem., Int. Ed. Eng. 1999, 38, 509-512.
- Phosphorylation of Isoprenoid Alcohols. Jo Davisson, V.; Woodside, A. B.; Neal, T. R.; Stremler, K. E.; Muehlbacher, M.; Poulter, C. D.J. Org. Chem. 1986, 51, 4768-4779.
- Synthesis and DNA-Binding Properties of a Cisplatin Analog Containing a Tethered Dansyl Goup. Hartwig, J. F.; Pil, P. M.; Lippard, S. J.J. Am. Chem. Soc. 1992, 114, 8292-8293, and references cited therein.
- The Dansyl Group as a Molecular Probe for the Histochemical Localization of a Synthetic Fibronectin-Related Peptide. Yamamoto, Y.; Katow, H.; Sofuku, S.Chemistry Letters 1994, 8, 1379-1382.
- Enzymatic modification of proteins with a geranylgeranyl isorenoid. Casey P. J.; Thissen, J. A.; Moomaw, J. F.Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 8631-8635.
- The dually acylated NH2-terminal domain of gi 1 alpha is sufficient to target a green flourescent protein reporter to the caveolin-enriched plasma membrane domians. Palmitoylation of caveolin-1 is required for the recognition to dually acylated g-protein alpha subunits in vivo. Galbiati, F.; Volonte, D.; Meani, D.; Milligan, G.; Lublin, D. M.; Lisanti, M. P.; Parenti, M.J. Biol. Chem. 1999, 274, 5843-5850.
- Regulation of insulin stimulated GLUT4 translocation by Munc 18c in 3T3L1 adipocytes. Thurmond, D. C.; Ceresa, B. P.; Okada, S.; Elmendorf, J. S.; Coker, K.; Pessin, J. E.J. Biol. Chem. 1998, 273, 33876-33883.
- Inhibition of hydroxymethylglutaryl coenzyme A reductase activity induces a paradoxical increase in DNA synthesis in myeloid leukemia cells. Hohl, R. J.; Larson, R. A.; Mannickarottu, V.; Yachnin, S.Blood 1991, 77, 1064-1070.
- Stereoelectronic Effects in Biomolecules. Gorenstein, D. G.Chem. Rev. 1987, 87, 1047-1077. b) Stereoelectronic Effects on the Conformation and Kinetics of Nucleophilic Displacement-Reactions in Epimeric 6-Membered Ring Phosphonate Diesters. Chang, J. W. A.; Gorenstein, D. G. Tetrahedron, 1987, 43, 5187-5196.
- Targeted inactivation of the isoprenylcysteine carboxymethyltransferase gene causes mislocation of K-Ras in mammalian cells. Bergo, M. O.; Leung, G. K.; Ambroziack, P.; Otto, J. C.; Casey, P. J.; Young, S. G.J. Biol. Chem. 2000, 275, 17605-17610.
- Mutational and Biochemical Analysis of Plasma Membrane Targeting Mediated by the Farnesylated, Polybasic Carboxy Terminus of K-ras4B. Roy, M. O.; Leventis, R.; Silvius, J. R.Biochemistry 2000, 39, 8298-8307.
Claims (41)
1. A compound of formula I:
wherein:
X is independently O or S;
R1 is a detectable group;
R2 is independently
OH,
(C1-C10)alkanoyloxy,
—O—P(═O)(—ORa)2,
—O—P(═O)(—ORa)—O—P(═O)(—ORa)2,
—CH2—O—P(═O)(—ORa)2,
—CH2—O—P(═O)(—ORa)—O—P(═O)(—ORa)2,
—CH2—P(═O)(—ORa)2,
—CH{—P(═O)(—ORa)2}2,
—CH2—P(═O)(—ORa)—O—P(═O)(—ORa)2,
—CH═CH{—P(═O)(—ORa)2}, or
—CH═C{—P(═O)(—ORa)2}2;
each Ra is independently hydrogen, (C1-C10)alkyl, (C1-C10)alkanoyl, (C1-C10)alkanoyloxy, (C1-C10)alkoxycarbonyl, or —CH2—O—(C1-C10)alkanoyl;
n is independently 1, 2, or 3;
or a pharmaceutically acceptable salt thereof.
2. The compound of claim 1 wherein the detectable group is aryl or Het, optionally substituted with one or more substituents independently selected from —COORb, —S(O)nNRbRb, halo, cyano, nitro, aryl, heterocycle, (C1-C10)alkoxy, (C2-C6)alkenyl, —C(═O)NRbRb, —OC(═O)NRbRb, —NRbRb, or —S(O)nRb, where each Rb is independently hydrogen, (C1-C10)alkyl, or (C1-C10)alkanoyl.
3. The compound of claim 2 wherein aryl or Het is phenyl, indenyl, naphthyl, anthracenyl, or anthranil, which aryl or Het is optionally substituted with one or more substituents independently selected from —COORb, —S(O)nNRbRb, halo, cyano, nitro, aryl, heterocycle, (C2-C6)alkenyl, —C(═O)NRbRb, —OC(═O)NRbRb, —NRbRb, or —S(O)nRb, where each Rb is independently hydrogen, (C1-C10)alkyl, or (C1-C10)alkanoyl.
4. The compound of claim 1 wherein R1 is substituted phenyl.
5. The compound of claim 1 wherein R1 is phenyl substituted with —COORb.
6. The compound of claim 1 wherein R1 is 2-methoxycarboxy phenyl.
7. The compound of claim 1 wherein R1 is substituted naphthyl.
8. The compound of claim 1 wherein R1 is naphthyl substituted with a —S(O)nNRbRb.
9. The compound of claim 1 wherein R1 is naphthyl substituted at the 5-position with a —S(O)nNRbRb substituent.
10. The compound of claim 1 wherein R1 is 5-N,N′—dimethylaminosulfonyl naphthy-1-yl.
11. The compound of claim 1 wherein R2 is OH.
12. The compound of claim 1 wherein R2 is (C1-C10)alkanoyloxy.
13. The compound of claim 1 wherein R2 is —O—P(═O)(—ORa)2.
14. The compound of claim 1 wherein R2 is —O—P(═O)(—ORa)—O—P(═O)(—ORa)2.
15. The compound of claim 1 wherein R2 is —CH2—O—P(═O)(—ORa)2.
16. The compound of claim 1 wherein R2 is —CH2—O—P(═O)(—ORa)—O—P(═O)(—ORa)2.
17. The compound of claim 1 wherein R2 is —CH2—P(═O)(—ORa)2.
18. The compound of claim 1 wherein R2 is —CH{—P(═O)(—ORa)2}2.
19. The compound of claim 1 wherein R2 is —CH2—P(═O)(—ORa)—O—P(═O)(—ORa)2.
20. The compound of claim 1 wherein R2 is —CH═CH{—P(═O)(—ORa)2}.
21. The compound of claim 1 wherein R2 is —CH═C {—P(═O)(—ORa)2}2.
22. The compound of claim 1 wherein Ra is hydrogen.
23. The compound of claim 1 wherein Ra is —C(═O)—CH3.
24. The compound of claim 1 wherein Ra is —CH3.
25. The compound of claim 1 wherein Ra is —CH2—O—(C1-C6)alkanoyl.
26. The compound of claim 2 wherein Rb is hydrogen.
27. The compound of claim 2 wherein Rb is —CH3.
28. The compound of claim 1 wherein n is 1.
29. The compound of claim 1 wherein n is 2.
30. The compound of claim 1 wherein n is 3.
31. The compound of claim 1 wherein X is —O—.
32. The compound of claim 1 wherein X is —S—.
33. A pharmaceutical composition comprising a compound as described in claim 1 and a pharmaceutically acceptable diluent or carrier.
34. A method of treating cancer, comprising administering to a mammal afflicted with cancer, an amount of a compound as described in claim 1 effective to treat said cancer.
35. A method of inhibiting a prenylation transferase enzyme or synthase enzyme comprising contacting the enzyme with an effective amount of a compound as described in claim 1 .
36. A method of accessing the metabolic status of an enzyme comprising:
contacting the enzyme with an effective amount of a mixture of a farnesol analog compound and a geraniol or geranylgeraniol analog compound as described in claim 1; and
measuring the relative ratio of farnesylation to geranylgeranylation of the famesol and the geraniol or geranylgeraniol analog compounds accomplished by the enzyme.
37. A compound as described in claim 1 for use in medical therapy or diagnosis.
38. The compound of claim 37 wherein the therapy or diagnosis is treating cancer.
39. The use of a compound as described in claim 1 for the manufacture of a medicament useful for the treatment of cancer.
40. The use of a compound as described in claim 1 for the manufacture of a medicament useful for inhibiting prenylation transferase enzymes in a mammal.
41. A protein conjugate comprising a protein linked to a fluorescent fragment of a compound of claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/780,391 US20040167102A1 (en) | 2001-04-03 | 2004-02-17 | Isoprenoid analog compounds and methods of making and use thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28117001P | 2001-04-03 | 2001-04-03 | |
US10/116,737 US6727234B2 (en) | 2001-04-03 | 2002-04-03 | Isoprenoid analog compounds and methods of making and use thereof |
US10/780,391 US20040167102A1 (en) | 2001-04-03 | 2004-02-17 | Isoprenoid analog compounds and methods of making and use thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/116,737 Division US6727234B2 (en) | 2001-04-03 | 2002-04-03 | Isoprenoid analog compounds and methods of making and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040167102A1 true US20040167102A1 (en) | 2004-08-26 |
Family
ID=26814564
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/116,737 Expired - Fee Related US6727234B2 (en) | 2001-04-03 | 2002-04-03 | Isoprenoid analog compounds and methods of making and use thereof |
US10/780,391 Abandoned US20040167102A1 (en) | 2001-04-03 | 2004-02-17 | Isoprenoid analog compounds and methods of making and use thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/116,737 Expired - Fee Related US6727234B2 (en) | 2001-04-03 | 2002-04-03 | Isoprenoid analog compounds and methods of making and use thereof |
Country Status (1)
Country | Link |
---|---|
US (2) | US6727234B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060052347A1 (en) * | 2004-08-25 | 2006-03-09 | Wiemer David F | Geranylgeranyl pyrophosphate synthase inhibitors |
US20070134596A1 (en) * | 2005-12-08 | 2007-06-14 | Adrian Lungu | Photosensitive printing element having nanoparticles and method for preparing the printing element |
US9745331B2 (en) | 2012-07-05 | 2017-08-29 | University Of Iowa Research Foundation | Therapeutic bisphosphonates |
US10814006B2 (en) | 2015-07-14 | 2020-10-27 | University Of Iowa Research Foundation | Fluorescent prodrugs |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6727234B2 (en) * | 2001-04-03 | 2004-04-27 | University Of Iowa Research Foundation | Isoprenoid analog compounds and methods of making and use thereof |
US20050009772A1 (en) * | 2003-05-06 | 2005-01-13 | The Regents Of The University Of California | Methods and compositions for the treatment of glaucoma and other retinal diseases |
ES2410587T3 (en) * | 2004-01-22 | 2013-07-02 | University Of Miami | Topical formulations of coenzyme Q10 and methods of use |
HUE029021T2 (en) | 2005-06-21 | 2017-02-28 | Xoma (Us) Llc | IL-1beta binding antibodies and fragments thereof |
CA2673592C (en) * | 2006-12-20 | 2014-03-25 | Xoma Technology Ltd. | Methods for the treatment of il-1.beta. related diseases |
EP2136787B1 (en) | 2007-03-22 | 2019-08-21 | Berg LLC | Topical formulations having enhanced bioavailability |
DK2391650T3 (en) | 2007-12-20 | 2015-01-12 | Xoma Us Llc | Methods of treating gout |
CN103462896A (en) | 2008-04-11 | 2013-12-25 | 细胞研究有限公司 | Methods and use of inducing apoptosis in cancer cells |
AU2009256072B2 (en) * | 2008-06-06 | 2015-05-28 | Xoma (Us) Llc | Methods for the treatment of rheumatoid arthritis |
WO2010028273A1 (en) | 2008-09-05 | 2010-03-11 | Xoma Technology Ltd. | Methods for improvement of beta cell function |
WO2010132479A2 (en) | 2009-05-11 | 2010-11-18 | Cytotech Labs, Llc | Methods for the diagnosis of metabolic disorders using epimetabolic shifters, multidimensional intracellular molecules, or environmental influencers |
FR2951549B1 (en) | 2009-10-15 | 2013-08-23 | Olivier Schussler | PROCESS FOR OBTAINING IMPLANTABLE MEDICAL BIOPROTHESES |
SG10202010355PA (en) | 2010-03-12 | 2020-11-27 | Berg Llc | Intravenous formulations of coenzyme q10 (coq10) and methods of use thereof |
CN102883748A (en) | 2010-05-07 | 2013-01-16 | 爱克索马技术有限公司 | Methods of treating IL-1 beta-related conditions |
CA2832324C (en) | 2011-04-04 | 2022-03-15 | Berg Llc | Methods of treating central nervous system tumors |
EA201490047A1 (en) | 2011-06-17 | 2014-08-29 | Берг Ллк | INHALATION PHARMACEUTICAL COMPOSITIONS |
JP6320300B2 (en) | 2011-12-19 | 2018-05-09 | ゾーマ (ユーエス) リミテッド ライアビリティ カンパニー | Methods for treating acne |
KR102279451B1 (en) | 2013-04-08 | 2021-07-19 | 버그 엘엘씨 | Treatment of cancer using coenzyme q10 combination therapies |
EP3013925B1 (en) * | 2013-06-28 | 2019-08-07 | Castrol Limited | Lubricating compositions containing isoprene based components |
KR102370843B1 (en) | 2013-09-04 | 2022-03-04 | 버그 엘엘씨 | Methods of treatment of cancer by continuous infusion of coenzyme q10 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5574025A (en) * | 1994-10-26 | 1996-11-12 | Merck & Co., Inc. | Inhibitors of prenyl-protein transferases |
US6727234B2 (en) * | 2001-04-03 | 2004-04-27 | University Of Iowa Research Foundation | Isoprenoid analog compounds and methods of making and use thereof |
-
2002
- 2002-04-03 US US10/116,737 patent/US6727234B2/en not_active Expired - Fee Related
-
2004
- 2004-02-17 US US10/780,391 patent/US20040167102A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5574025A (en) * | 1994-10-26 | 1996-11-12 | Merck & Co., Inc. | Inhibitors of prenyl-protein transferases |
US6727234B2 (en) * | 2001-04-03 | 2004-04-27 | University Of Iowa Research Foundation | Isoprenoid analog compounds and methods of making and use thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060052347A1 (en) * | 2004-08-25 | 2006-03-09 | Wiemer David F | Geranylgeranyl pyrophosphate synthase inhibitors |
US7268124B2 (en) | 2004-08-25 | 2007-09-11 | University Of Iowa Research Foundation | Geranylgeranyl pyrophosphate synthase inhibitors |
US20070134596A1 (en) * | 2005-12-08 | 2007-06-14 | Adrian Lungu | Photosensitive printing element having nanoparticles and method for preparing the printing element |
US9745331B2 (en) | 2012-07-05 | 2017-08-29 | University Of Iowa Research Foundation | Therapeutic bisphosphonates |
US10814006B2 (en) | 2015-07-14 | 2020-10-27 | University Of Iowa Research Foundation | Fluorescent prodrugs |
Also Published As
Publication number | Publication date |
---|---|
US6727234B2 (en) | 2004-04-27 |
US20030022869A1 (en) | 2003-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6727234B2 (en) | Isoprenoid analog compounds and methods of making and use thereof | |
Saperstein et al. | Design of a selective insulin receptor tyrosine kinase inhibitor and its effect on glucose uptake and metabolism in intact cells | |
Coxon et al. | Recent advances in understanding the mechanism of action of bisphosphonates | |
Rogers et al. | Biochemical and molecular mechanisms of action of bisphosphonates | |
US7888335B2 (en) | Mitoquinone derivatives used as mitochondrially targeted antioxidants | |
Biller et al. | Squalene synthase inhibitors | |
US5574025A (en) | Inhibitors of prenyl-protein transferases | |
US8378100B2 (en) | Phosphonate derivatives as autotaxin inhibitors | |
US20060229278A1 (en) | Mitoquinone derivatives used as mitochondrially targeted antioxidants | |
AU2004266988B2 (en) | Mitoquinone derivatives used as mitochondrially targeted antioxidants | |
EP0534546A1 (en) | Farnesyl pyrophosphate analogs | |
JP2002519305A (en) | Compositions and methods for inhibiting bone resorption | |
JPH06279311A (en) | Activation agent for protein kinase c isozyme | |
CN102985432A (en) | Derivative of AMP to treat cardiac diseases | |
EP0609440B1 (en) | Phosphorus-substituted isoprenoid derivative | |
HU201085B (en) | Process for producing phosphor-containing compounds and pharmaceutical compositions containing them as active components | |
ES2517840T3 (en) | Geranylgeranyl pyrophosphate synthase inhibitors | |
JP6706799B2 (en) | Novel bisphosphonic acid derivative and its use | |
JP3518611B2 (en) | Methods for treating diseases associated with protein isoprenylation | |
US20180362559A1 (en) | Bone active nitrogen-containing bisphosphonates with a near infrared fluorescent label | |
Troutman et al. | Synthesis of acyloxymethyl ester prodrugs of the transferable protein farnesyl transferase substrate farnesyl methylenediphosphonate | |
JP6226974B2 (en) | Bisphosphonate for treatment | |
US6284910B1 (en) | Farnesyl pyrophosphate analogs | |
AU2014256956A1 (en) | Methods to modulate Rac1 import and to treat pulmonary fibrosis | |
AU2005215886B2 (en) | Glimepiride- and insulin-induced glycosylphosphatidylinositol-specific phospholipase C regulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |