US20040163756A1 - Cuffed hose and method of manufacture - Google Patents
Cuffed hose and method of manufacture Download PDFInfo
- Publication number
- US20040163756A1 US20040163756A1 US10/782,439 US78243904A US2004163756A1 US 20040163756 A1 US20040163756 A1 US 20040163756A1 US 78243904 A US78243904 A US 78243904A US 2004163756 A1 US2004163756 A1 US 2004163756A1
- Authority
- US
- United States
- Prior art keywords
- hose
- reinforcing rod
- length
- mandrel
- accordance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 36
- 230000003014 reinforcing Effects 0.000 claims abstract description 120
- 239000000463 material Substances 0.000 claims abstract description 106
- 230000001070 adhesive Effects 0.000 claims description 74
- 239000000853 adhesive Substances 0.000 claims description 74
- 239000002965 rope Substances 0.000 claims description 40
- 238000004804 winding Methods 0.000 claims description 10
- 210000001699 lower leg Anatomy 0.000 description 12
- 239000004800 polyvinyl chloride Substances 0.000 description 12
- 229920000915 polyvinyl chloride Polymers 0.000 description 12
- 230000001808 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- 230000002787 reinforcement Effects 0.000 description 6
- 229920000459 Nitrile rubber Polymers 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000000875 corresponding Effects 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 241000206607 Porphyra umbilicalis Species 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000001627 detrimental Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/11—Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall
- F16L11/115—Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall having reinforcements not embedded in the wall
Abstract
Description
- The present invention relates to composite hoses, more particularly to rubber and plastic hoses comprising an outer helically extending reinforcement layer. The hose is constructed to provide for easier coupling of the hose ends and any desired fittings.
- Hoses manufactured with outer helical PVC, nylon, or other plastic-like polymer rod reinforcements are known in the art. Such hoses are also known as drop hoses. Drop hoses are mainly used for the transfer of various fluids, such as gasoline, petroleum based products, chemicals, food products, etc., in tank truck applications. Drop hoses, and similar corrugated hoses, are made by several different manufacturing methods, including those disclosed by U.S. Pat. Nos. 4,383,555, 4,471,813, 4,304,266, 4,012,272, and 3,938,929 and disclosed in WO97/24543. The hose ends are generally later coupled with cam and groove fittings and band clamps.
- Because of the need for a tight fit between a fitting and the hose, the outside diameter of a fitting shank and the inside diameter of the hose are almost identical; the shank is usually a bit larger than the hose ID. The slightly larger shank OD results in deformation of those portions of the hose that are in contact with the shank. Thus a certain force is required to insert the fitting shank into the hose. The force required to insert the shank into the hose increases if the hose is reinforced with a rigid, non-deformable material such as the outer helical PVC rod. To provide the necessary force or to reduce the required force, it is known in the art to apply lubricants to hose, to attempt to soft the PVC prior to insertion in the hose, or apply greater force to the fitting to ensure a proper insertion. All of these methods are time and labor consuming and may be detrimental to the hose or the fitting.
- The configuration of the outer corrugations can also make the insertion of the fittings into the hose bore difficult and make it difficult to install the band clamps over the plastic spiral wire and achieve a leak proof connection without band distortion and damage to the hose or fitting. Over the years, aids have been developed to overcome these situations. One such aid is to place a piece of rope between the outer corrugations of the cover to achieve a flat surface at each end of the hose that will make it easier to install the band clamps and prevent distortion. Another aid is the use of a “banding coil.” A banding coil is a separate spring or coil made out of a plastic-like material that is either screwed or wrapped on the cover and fills the corrugations created by the outer helical wire at each end of the hose. The result achieved by the banding coil is the same as the rope, which is to end up with a flatter surface to install the band clamps. Another aid is the use of a rubber-like sleeve that is slipped over the ends of the hose that also attempts to create a flatter surface.
- The present invention of forming a drop hose with soft cuffed ends eliminates the known problem in the art and eliminates the use of external aids as described above in coupling this type of hose. Many other advantages also arise from the present invention, including easier insertion of the fitting into the hose, reduced labor in coupling the hose, better coupling retention, and a likely reduction of necessary inventory for hose distributors.
- Corrugated rubber or plastic hose with cuffed ends are disclosed in the following patents. U.S. Pat. No. 4,099,744 discloses a hose end formed flat with no corrugations. U.S. Pat. Nos. 5,398,977, 5,497,810, and EP 330894 disclose a plastic cuff inserted over the corrugations. U.S. Pat. No. 3,640,312, discloses an extruded hose end formed without corrugations and U.S. Pat. Nos. 4,456,034, 4,996,741, 4,996,20, 4,295,496, and 4,669,508 all disclose extruded or rubber corrugated hoses with non-corrugated ends which are internally reinforced by helically extending wires placed within the extruded or preformed corrugations. However, the corrugations of these hoses are formed by the extruded layers or by internal helical means, differing from the external helical reinforcing means of the conventional drop hoses. It is the presence of the external helical reinforcing means of the drop hoses which has created the need for the external aids and high force required to apply fittings to the drop hoses.
- However, in the drop hose of the present invention, the corrugations are solely formed by the helically extending outer reinforcement, and the base hose material has a constant internal diameter. While forming cuffs on hose ends is known in the art and the need for a constant outer diameter at the end of drop hoses to provide the hose with fittings has long been recognized in the art, as evidenced by the numerous types of aids used with conventional drop hose ends, forming a drop hose with cuffed ends in the manner of the present invention has not been appreciated or recognized. The present invention is directed toward a solution of a long felt problem in the art and provides the many benefits listed above.
- The present invention is directed towards an improved flexible hose. The hose is comprised of at least a flexible material and a reinforcing rod positioned externally of the flexible material. Terminal ends define both the flexible material and the reinforcing rod. At least one terminal end of the reinforcing rod is located short of the terminal ends of the flexible material, so that the non-reinforced end of the flexible material forms a soft cuff adapted to be received by a hose fitting.
- Also disclosed is an improved method of manufacturing the flexible hose of the present invention. The hose is formed by rotating a mandrel while feeding a length of material onto the mandrel to build a hose length on the mandrel, feeding a second length of material in the form of a reinforcing rod onto the mandrel to form a helical reinforcing rod on the hose length and curing the hose length. The improvement in the method of forming the inventive hose is characterized by, prior to feeding the reinforcing rod onto the mandrel, modifying the hose length to create non-adhesive regions.
- Another aspect of manufacturing the inventive hose includes applying a third material to the hose length to create the non-adhesive regions.
- Another aspect of manufacturing the inventive hose lies in the method of applying the reinforcing rod onto the mandrel in the locations of the non-adhesive region. The speed at which the mandrel rotates as the reinforcing rod is feed onto the mandrel at the non-adhesive regions may be reduced, creating a winding with a greater pitch in the non-adhesive regions. Or the tension of the reinforcing rod may be reduced as the reinforcing rod is feed onto the mandrel at the non-adhesive regions.
- Also disclosed is a hose length. The hose length is comprised of at least one elastomeric layer and a reinforcing rod helically wound externally of the elastomeric laver. Periodically spaced along the hose length are non-adhesive regions.
- Another aspect of the disclosed hose length is that the reinforcing rod is not adhered to the elastomeric layer in the non-adhesive region.
- Another aspect of disclosed hose length lies in the application of the reinforcing rod on the elastomeric layer in the locations of the non-adhesive region. The reinforcing rod may be wound onto the elastomeric layer with a reduced pitch than in the adhesive regions. Or the tension of the reinforcing rod may be reduced in the non-adhesive regions.
- The invention will be described by way of example and with reference to the accompanying drawings in which:
- FIG. 1 illustrates the inventive hose;
- FIG. 2 is a cross-sectional view of the hose;
- FIG. 3 illustrates the method of manufacturing the inventive hose;
- FIG. 4 illustrates a portion of the hose during manufacture.
- The
hose 10 of the present invention is illustrated in FIG. 1. Thehose 10 has an external reinforcingrod 12 helically wound about aflexible hose base 14. The reinforcingrod 12 has aterminal end 16 located a distance from theterminal end 18 of thehose base 14, creating asoft hose cuff 20. Thehose 10 has a constant internal diameter (see FIG. 2), and a minimum and maximum outer diameter created by the corrugation effect of the reinforcingrod 12 and theflexible hose base 14 between the windings of the reinforcingrod 12. Since thesoft cuff 20 is an extension of theflexible hose base 14, thecuff 20 has an outer diameter corresponding to the minimum outer diameter of thehose 10. - An exemplary construction of the
hose 10 is illustrated in the cross-sectional view of FIG. 2. Theflexible hose base 14 is constructed from abase layer 22, two reinforcingplies outer cover layer 28. Thehose base 14 may be provided with a number of layers differing from the illustrated two reinforcinglayers base layer 22. The number and type of layers comprising theflexible hose base 14 is dependant upon the desired hose properties as determined by the end use of thehose 10. - The
base layer 22 is constructed of conventional natural or synthetic thermoelastic vulcanizable material used in the manufacture of hoses. The reinforcing layers 24, 26 are also formed of conventional hose reinforcing materials. Thecover layer 28 is formed from a thermoplastic or thermoelastic vulcanizable material that is capable of bonding to thebase layer 22 and to the reinforcingrod 12 during curing of thehose 10. Examples of typical materials for the base and coverlayers base layer 22 and a nitrile rubber/PVC blend for thecover layer 28. The reinforcingrod 12 is formed from a material that is more rigid and/or has a higher mechanical strength than thecover layer 28, such as polyvinylchloride. The reinforcingrod 12 may also have an internal reinforcing wire. - The manufacture of the
hose 10 is achieved by spirally winding the various hose layers 12, 22, 24, 26, 28, onto amandrel 30, see FIG. 3, to produce ahose length 32 which is then cut into short lengths to produce the inventive soft-cuff hose 10. More details concerning one method of manufacturing thehose length 32 are disclosed in U.S. Pat. No. 4,856,720, which is incorporated herein by reference. In this method of manufacturing, thehose length 32 is built upon a long, straightcircular mandrel 30 that is fixed torotating drives 34 at each end of themandrel 30. Themandrel 30 is supported byroller bearings 36 at approximately every fifteen feet. Parallel to themandrel 30 is atrolley 38 equipped withmaterial applicators 40. Thematerial applicators 40 are bobbins provided with thedifferent materials 42 used in the manufacture of thehose length 32. including rubber, fabric, wire helix, PVC rod, curing tape, and rope. - The
materials 42 used to construct thehose length 32 are applied spirally onto the rotatingmandrel 30 as thetrolley 38 moves parallel to themandrel 30. Thehose length 32 is constructed in this manner by applying one layer ofmaterial 42 over the proceeding layer. Usually thetrolley 38 will apply a layer in a first direction and the next layer in the opposite direction for symmetry and design purposes. For the illustratedhose length 32, thebase rubber layer 22 is first applied to therotating mandrel 30, followed by the reinforcinglayers cover layer 28. At this point in the construction of thehose length 32, a basic softwall rubber hose has been constructed on the mandrel. - To transform the softwall
rubber hose length 32 into the helically reinforced, soft cuffedhose 10 of the present invention the following further steps are taken. Atpre-selected regions 46 along the softwallrubber hose length 32, amaterial 44 is applied to render the pre-selected region non-adhesive to further layers applied to thehose length 32 in the pre-selected region. Thepre-selected positions 46 along thehose length 32 are at locations corresponding to the lengths of theindividual hoses 10 to be produced. For example, if twenty foot hoses 10 (including the cuffed ends) with sixinch cuffs 20 at each terminal end are desired, a pre-selectednon-adhesive region 46 is prepared along thehose length 32 for a length of twelve inches every nineteen feet. So for the entire mandrel length, the first six inches of thehose length 32 is rendered non-adhesive and then thetrolley 38, applying anon-adhesive material 44, is moved nineteen feet further along themandrel 30 from the position of the firstnon-adhesive region 46. Thenon-adhesive material 44 is then applied to the softwallrubber hose length 32 for a length of twelve inches to produce two six inch cuffs 20. The steps of moving thetrolley 38 nineteen feet and applying twelve inches ofnon-adhesive material 44 is repeated along the length of themandrel 30. Thenon-adhesive material 44 may be formed from any non-adhesive material that prohibits theouter rubber layer 28 from curing to the reinforcingrod 12. Such materials include, but are not limited to, nylon tape, film, or sheets, polyester tape, film or sheets, pre-cured rubber tape, film, or sheets, metallic film or sheets, Teflon film or sheets, or a liquid non-adhesion material. - After the
non-adhesive material 44 is applied in the pre-selected positions, using thetrolley 38, the reinforcingrod 12 is applied to therotating mandrel 30 and onto the softwallrubber hose length 32. The reinforcingrod 12 is applied with a constant pitch except over thepre-selected region 46 where thenon-adhesive material 44 has been applied, see FIG. 4. As thetrolley 38 moves past thepre-selected regions 46 where thenon-adhesive material 44 is applied, the speed at which themandrel 30 rotates is reduced, while the trolley speed is maintained, thus increasing the pitch at which therod 12 is applied to themandrel 30. As illustrated, thehose length 32 on themandrel 40 has a variably pitched reinforcingrod 12. - After the variably pitched reinforcing
rod 12 has been applied, arope 48 is inserted in the spaces formed between the windings of therod 12. Therope 48 is applied in the same manner as the reinforcingrod 12, with an increased pitch at thepre-selected areas 46 where asoft cuff 20 is to be formed on thefinished hose 10. The diameter of therope 48 is sized to maintain the desired pitching of the reinforcingrod 12 on thehose length 32. Therope 48 also acts as a mold to hold the hose layers 22, 24, 26, 28 and therod 12 in place during the curing of thehose length 32. Therope 48 selected may be a conventional braided rope or a smooth rope; any conventional non-adhesive, flexible cord-type material may be used. - The
hose length 32 is cured to vulcanize thelayers various layers rod 12 and thehose cover layer 28. Therod 12 adheres to thecover layer 28 along thehose length 32, except where thenon-adhesive material 44 has been applied. After thehose length 32 has been cured, therope 48 is removed. After being removed from themandrel 30, thehose length 32 is then cut into the desired final hose lengths. Preferably, the cuts are centered in thepre-selected regions 46 to produce twosoft cuffs 20. The cuts may also be at one of the edges of thepre-selected region 46 if it is desired to form ahose 10 with only a singlecuffed end 30. The portion of the reinforcingrod 12 that is not bonded to theouter cover layer 28 due to the presence of thenonadhesive material 44 is also removed. As a final step, if required, thenon-adhesive material 44 is removed from the hose cuffs 20. - Due to the curing of the
hose length 32 with therope 48 being wound between the pitched helical windings of the reinforcingrod 12, and the tension force used to wind therope 48 onto themandrel 30, theflexible hose base 14 creates an indented imprint between the windings of therod 12. The imprint from therope 48 also extends into thesoft cuff 20, creating aslight indent 50 in thesoft cuff 30. Theimprint indent 50 in thecuff 30 does not adversely affect the seal needed in applying a fitting to thehose cuff 30. If therope 48 has a braided or textured pattern, then the indented imprint will be also have a braided or textured pattern. - As noted above, the
hose 10 is manufactured by spirally winding the hose layers 12, 22, 24, 26, 28, onto amandrel 30 to produce ahose length 32 which is then cut into short lengths with at least one softcuffed end 30. The hose layers 12, 12, 24, 26, 28 may be applied to themandrel 30 by means other than the illustrated travelingtrolley 38 andmaterial applicator 40. Thelayers rotating mandrel 30 past astationary material applicator 40. Thelayers stationary mandrel 30. - Additionally, after the
pre-selected region 46 has been modified to render that portion of thehose length 32 non-adhesive, the reinforcingrod 12 and supportingrope 48 may be applied by methods other than varying the pitch of therod 12 and therope 48. The reinforcingrod 12 may be applied at a constant pitch for theentire hose length 32, but with a reduced tension in the pre-selectednon-adhesive regions 46. Therope 48, likewise, would then be applied at a constant pitch but with reduced tension in the pre-selected regions. The reduced tension of therod 12 andrope 48 prevent the creation of multiple indents in the createdsoft cuff 20. - Since the
inventive hose 10 has aterminal end 18 defined by a substantially constant inside and outside diameter for a defined length, it is easier to install any desired fittings to the cuffed hose end without the difficulties experienced with non-cuffed hoses and without needing to use known fitting aids as previously discussed.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/782,439 US20040163756A1 (en) | 2002-03-08 | 2004-02-19 | Cuffed hose and method of manufacture |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/070,983 US6907906B1 (en) | 1999-10-20 | 1999-10-20 | Cuffed hose and method of manufacture |
US10/782,439 US20040163756A1 (en) | 2002-03-08 | 2004-02-19 | Cuffed hose and method of manufacture |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US10/070,983 Division US6907906B1 (en) | 1999-10-20 | 1999-10-20 | Cuffed hose and method of manufacture | |
PCT/US1999/024649 Division WO2001029474A1 (en) | 1999-10-20 | 1999-10-20 | Cuffed hose and method of manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040163756A1 true US20040163756A1 (en) | 2004-08-26 |
Family
ID=32867443
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/070,983 Expired - Fee Related US6907906B1 (en) | 1999-10-20 | 1999-10-20 | Cuffed hose and method of manufacture |
US10/782,439 Abandoned US20040163756A1 (en) | 2002-03-08 | 2004-02-19 | Cuffed hose and method of manufacture |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/070,983 Expired - Fee Related US6907906B1 (en) | 1999-10-20 | 1999-10-20 | Cuffed hose and method of manufacture |
Country Status (1)
Country | Link |
---|---|
US (2) | US6907906B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080203624A1 (en) * | 2007-02-27 | 2008-08-28 | Smiths Group Plc | Tubing Manufacture |
EP2824374A3 (en) * | 2013-07-12 | 2015-04-22 | EX-O-FLEX Gesellschaft für Kunststofformung GmbH | Radially reinforced plastic hose and method for producing the same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1726253A4 (en) * | 2004-03-18 | 2009-07-29 | Olympus Corp | Insertion device |
JP4250131B2 (en) * | 2004-09-16 | 2009-04-08 | カナフレックスコーポレーション株式会社 | Drainage pipe repair method |
WO2008014441A2 (en) * | 2006-07-27 | 2008-01-31 | Allan Stikeleather | Metallic strip and methods and structures incorporating the same |
US7614428B2 (en) * | 2006-12-27 | 2009-11-10 | Veyance Technologies, Inc. | Power steering hose design for performance in high pressure and low to high volumeric expansion environments |
US8936047B2 (en) | 2010-06-07 | 2015-01-20 | Kongsberg Actuation Systems Ii, Inc. | Reinforced hose assembly |
JP2012026524A (en) * | 2010-07-26 | 2012-02-09 | Kanaflex Corporation | Pipeline regeneration pipe |
US9909699B2 (en) * | 2011-03-17 | 2018-03-06 | Jay G. Bernhardt | Garden hose with spiral guard |
US9625066B2 (en) * | 2014-03-27 | 2017-04-18 | Steward Plastics, Inc. | Helically wound plastic tubing with variable profile thickness and methods of making the same |
US20220339854A1 (en) * | 2021-04-21 | 2022-10-27 | Steward Plastics, Inc. | Helically wound tubing with exposed conductors |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2032753A (en) * | 1934-01-25 | 1936-03-03 | John W James | Flexible hose guard |
US3640312A (en) * | 1969-06-27 | 1972-02-08 | Acme Hamilton Mfg Corp | Flexible corrugated tubing having improved performance characteristics |
US3938929A (en) * | 1972-11-27 | 1976-02-17 | Creators Limited | Flexible plastics hose making apparatus |
US4012272A (en) * | 1975-08-22 | 1977-03-15 | Larkin Hall Tiner | Apparatus for making reinforced flexible hose |
US4099744A (en) * | 1975-07-03 | 1978-07-11 | Automation Industries, Inc. | Snap-in swivel end fitting |
US4196031A (en) * | 1978-03-10 | 1980-04-01 | Titeflex Corporation | Method of making a preformed semirigid plastic hose wrapped with a wire spiral |
US4295496A (en) * | 1980-02-19 | 1981-10-20 | The Gates Rubber Company | Hose with internal insert member |
US4304266A (en) * | 1980-03-24 | 1981-12-08 | Automation Industries, Inc. | Smooth bore flexible hose |
US4383555A (en) * | 1976-04-20 | 1983-05-17 | Plastiflex Company International | Helically wound hose from co-extruded profile with reinforcing ribs interlocked at adjacent convolutions |
US4456034A (en) * | 1980-02-19 | 1984-06-26 | Bixby Guy T | Formable hose |
US4471813A (en) * | 1980-04-04 | 1984-09-18 | Dayco Corporation | Hose construction |
US4577543A (en) * | 1983-08-18 | 1986-03-25 | American Hospital Supply Corporation | Construction of a monolithic reinforced catheter with flexible portions |
US4669508A (en) * | 1985-10-31 | 1987-06-02 | The Gates Rubber Company | Formable and curve shape retentive hose |
US4856720A (en) * | 1977-05-04 | 1989-08-15 | The Goodyear Tire & Rubber Company | Helical winding apparatus |
US4966202A (en) * | 1988-11-14 | 1990-10-30 | Dayco Products, Inc. | Shape retention hose construction |
US4966741A (en) * | 1988-11-14 | 1990-10-30 | Dayco Products, Inc. | Method of making shape retention hose construction |
US5398977A (en) * | 1993-05-06 | 1995-03-21 | Dayco Products, Inc. | Concentric hose coupling with cuff assembly surrounding an end of the outer hose |
US5485870A (en) * | 1994-12-05 | 1996-01-23 | Kraik; Newell P. | Wire wrapped composite spiral hose and method |
US5792401A (en) * | 1983-12-12 | 1998-08-11 | Burnham; Warren R. | Method for making a tubular product |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US325591A (en) * | 1885-09-01 | Self and daniel m | ||
US289381A (en) * | 1883-12-04 | Hose-protector | ||
US289854A (en) * | 1883-12-11 | Hose or tubing | ||
US726730A (en) * | 1902-02-17 | 1903-04-28 | Goodrich Co B F | Wire-covered hose. |
US1249038A (en) * | 1917-01-30 | 1917-12-04 | Clifford R Dabney | Hose-protector. |
US1551893A (en) * | 1924-04-17 | 1925-09-01 | Frank A Mcdonald | Flexible nozzle |
US1746719A (en) * | 1925-08-19 | 1930-02-11 | Steeldraulic Brake Corp | Flexible conduit |
US1748774A (en) * | 1926-08-21 | 1930-02-25 | Langdon C Kellogg | Shower-bath-brush connection |
US1779592A (en) * | 1929-02-04 | 1930-10-28 | Howard W Goodall | Metal-covered rubber-fabric hose |
US1816740A (en) * | 1929-10-29 | 1931-07-28 | Thermoid Rubber Company | Flexible armored hose |
FR1467950A (en) | 1965-12-23 | 1967-02-03 | Novo Ets | Pipes for connecting appliances for domestic use using gaseous fuels |
GB1239387A (en) | 1967-07-22 | 1971-07-14 | ||
US3794080A (en) * | 1972-08-18 | 1974-02-26 | Becton Dickinson Co | Corrugated flexible hose |
US3847184A (en) * | 1972-10-05 | 1974-11-12 | A God | Metal pipe with spaced flexible portions |
JPS5940002Y2 (en) * | 1976-12-28 | 1984-11-12 | ||
IT1146125B (en) | 1979-12-25 | 1986-11-12 | Vitebskij Tech I Legkoj Promy | FILTER SLEEVE AND PROCEDURE FOR ITS MANUFACTURE |
US4578855A (en) * | 1982-07-21 | 1986-04-01 | Eagle-Picher Industries, Inc. | Article and method for connecting a remote air cleaner to a carburetor or an engine fuel metering device or system |
US4852564A (en) * | 1984-06-28 | 1989-08-01 | Sheridan Catheter Corp. | Flexible connectors for medico-surgical tubes |
US4722367A (en) * | 1986-05-02 | 1988-02-02 | Atlantic Richfield Company | Modular vortex spoiler system for pipelines |
DE3806643A1 (en) | 1988-03-02 | 1989-09-14 | Witzenmann Metallschlauchfab | CONNECTING ARRANGEMENT FOR A METAL HOSE WITH SCREW-SHAPED WAVE OR WINDING |
US4971121A (en) * | 1989-08-31 | 1990-11-20 | Dover Corporation | Fluid dispensing nozzle construction, bellows-like tube therefor and methods of making the same |
DE9002309U1 (en) | 1990-02-23 | 1990-06-07 | Chr. Berghoefer Gmbh & Co. Kg Metallschlauch- Und Kompensatorenfabrik, 3500 Kassel, De | |
DE4341383A1 (en) * | 1992-12-18 | 1994-06-23 | Volkswagen Ag | Convoluted flexible element for vehicle exhaust gas system |
GB9515012D0 (en) | 1995-07-21 | 1995-09-20 | Dunlop Ltd | Improvements in and relating to reinforced hose |
EP0871830A1 (en) | 1996-01-03 | 1998-10-21 | Flexfab Horizons International, Inc. | Lightweight hose with a helically-wound reinforcing member and method for making the same |
JP3104962B2 (en) * | 1996-02-16 | 2000-10-30 | タイガースポリマー株式会社 | Wear-resistant composite hose |
US5938587A (en) * | 1996-04-25 | 1999-08-17 | Modified Polymer Components, Inc. | Flexible inner liner for the working channel of an endoscope |
-
1999
- 1999-10-20 US US10/070,983 patent/US6907906B1/en not_active Expired - Fee Related
-
2004
- 2004-02-19 US US10/782,439 patent/US20040163756A1/en not_active Abandoned
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2032753A (en) * | 1934-01-25 | 1936-03-03 | John W James | Flexible hose guard |
US3640312A (en) * | 1969-06-27 | 1972-02-08 | Acme Hamilton Mfg Corp | Flexible corrugated tubing having improved performance characteristics |
US3938929A (en) * | 1972-11-27 | 1976-02-17 | Creators Limited | Flexible plastics hose making apparatus |
US4099744A (en) * | 1975-07-03 | 1978-07-11 | Automation Industries, Inc. | Snap-in swivel end fitting |
US4012272A (en) * | 1975-08-22 | 1977-03-15 | Larkin Hall Tiner | Apparatus for making reinforced flexible hose |
US4383555A (en) * | 1976-04-20 | 1983-05-17 | Plastiflex Company International | Helically wound hose from co-extruded profile with reinforcing ribs interlocked at adjacent convolutions |
US4856720A (en) * | 1977-05-04 | 1989-08-15 | The Goodyear Tire & Rubber Company | Helical winding apparatus |
US4196031A (en) * | 1978-03-10 | 1980-04-01 | Titeflex Corporation | Method of making a preformed semirigid plastic hose wrapped with a wire spiral |
US4295496A (en) * | 1980-02-19 | 1981-10-20 | The Gates Rubber Company | Hose with internal insert member |
US4456034A (en) * | 1980-02-19 | 1984-06-26 | Bixby Guy T | Formable hose |
US4304266A (en) * | 1980-03-24 | 1981-12-08 | Automation Industries, Inc. | Smooth bore flexible hose |
US4471813A (en) * | 1980-04-04 | 1984-09-18 | Dayco Corporation | Hose construction |
US4577543A (en) * | 1983-08-18 | 1986-03-25 | American Hospital Supply Corporation | Construction of a monolithic reinforced catheter with flexible portions |
US5792401A (en) * | 1983-12-12 | 1998-08-11 | Burnham; Warren R. | Method for making a tubular product |
US4669508A (en) * | 1985-10-31 | 1987-06-02 | The Gates Rubber Company | Formable and curve shape retentive hose |
US4966202A (en) * | 1988-11-14 | 1990-10-30 | Dayco Products, Inc. | Shape retention hose construction |
US4966741A (en) * | 1988-11-14 | 1990-10-30 | Dayco Products, Inc. | Method of making shape retention hose construction |
US5398977A (en) * | 1993-05-06 | 1995-03-21 | Dayco Products, Inc. | Concentric hose coupling with cuff assembly surrounding an end of the outer hose |
US5497810A (en) * | 1993-05-06 | 1996-03-12 | Dayco Products, Inc. | Hose assembly and method of making the same |
US5485870A (en) * | 1994-12-05 | 1996-01-23 | Kraik; Newell P. | Wire wrapped composite spiral hose and method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080203624A1 (en) * | 2007-02-27 | 2008-08-28 | Smiths Group Plc | Tubing Manufacture |
EP2824374A3 (en) * | 2013-07-12 | 2015-04-22 | EX-O-FLEX Gesellschaft für Kunststofformung GmbH | Radially reinforced plastic hose and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
US6907906B1 (en) | 2005-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040163756A1 (en) | Cuffed hose and method of manufacture | |
US2430081A (en) | Method of making flexible tubes | |
AU639266B2 (en) | Flexible hose construction and method of making the same | |
US5894865A (en) | Flexible hose construction and method of making the same | |
CA1089781A (en) | Reinforced flexible duct with integral molded liner and machine and methode for making | |
US20080233318A1 (en) | Flexible composite tubular assembly with high insulation properties and method for making same | |
US20080041483A1 (en) | Duct and method of construction | |
US5391334A (en) | Method for producing reinforced hose | |
CA1067430A (en) | High-pressure filament reinforced hose having integral filament-bound couplings and method of making same | |
US3296047A (en) | Method of producing reinforced flexible hose | |
US5091026A (en) | Method for continuously vulcanizing a self-molding hose | |
US3189053A (en) | Flexible hose | |
EP1226382B1 (en) | Cuffed hose and method of manufacture | |
JP4615882B2 (en) | Rubber molded body and apparatus for producing the same | |
JP2858691B2 (en) | Spiral reinforced hose and method of manufacturing the same | |
US2984262A (en) | Continuous wrapped hose and method of making the same | |
CA2059024A1 (en) | Hest shrinkable plastic hose and method for manufacturing | |
WO2003035364A3 (en) | Method and device for producing a reinforced socket on an extruded thermoplastic tube by radial extrusion of a thermoplastic material | |
JP5834318B2 (en) | Fiber reinforced rubber member | |
US6319350B1 (en) | Method of manufacture for flexible hose | |
JP3904699B2 (en) | Twin hose and manufacturing method thereof | |
JP2005265055A (en) | Rubber shaped body and method for manufacturing the same | |
KR100459911B1 (en) | Fabricating method for flexible double pipe of high strength and controllable weight | |
JP5044744B2 (en) | Method for manufacturing flexible laminated hose | |
EP0481766B1 (en) | Power transmission belt, method and apparatus for making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VEYANCE TECHNOLOGIES, INC., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE GOODYEAR TIRE & RUBBER COMPANY;REEL/FRAME:019690/0178 Effective date: 20070731 Owner name: VEYANCE TECHNOLOGIES, INC.,OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE GOODYEAR TIRE & RUBBER COMPANY;REEL/FRAME:019690/0178 Effective date: 20070731 |
|
AS | Assignment |
Owner name: LEHMAN COMMERCIAL PAPER INC., AS COLLATERAL AGENT, Free format text: SECURITY AGREEMENT;ASSIGNOR:VEYANCE TECHNOLOGIES, INC.;REEL/FRAME:020035/0484 Effective date: 20070731 Owner name: JPMORGAN CHASE BANK, N.A., TEXAS Free format text: SECURITY AGREEMENT;ASSIGNOR:VEYANCE TECHNOLOGIES, INC.;REEL/FRAME:020035/0550 Effective date: 20070731 Owner name: JPMORGAN CHASE BANK, N.A.,TEXAS Free format text: SECURITY AGREEMENT;ASSIGNOR:VEYANCE TECHNOLOGIES, INC.;REEL/FRAME:020035/0550 Effective date: 20070731 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |