US20040145346A1 - Charge control circuit and method for charging multiple battery cells - Google Patents

Charge control circuit and method for charging multiple battery cells Download PDF

Info

Publication number
US20040145346A1
US20040145346A1 US10/351,114 US35111403A US2004145346A1 US 20040145346 A1 US20040145346 A1 US 20040145346A1 US 35111403 A US35111403 A US 35111403A US 2004145346 A1 US2004145346 A1 US 2004145346A1
Authority
US
United States
Prior art keywords
cells
circuit
battery
recited
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/351,114
Other versions
US6774606B1 (en
Inventor
John Hall
Stanley Canter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Priority to US10/351,114 priority Critical patent/US6774606B1/en
Assigned to BOEING COMPANY, THE reassignment BOEING COMPANY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CANTER, STANLEY, HALL, JOHN C.
Publication of US20040145346A1 publication Critical patent/US20040145346A1/en
Application granted granted Critical
Publication of US6774606B1 publication Critical patent/US6774606B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates generally to power storage systems for satellites, and more particularly to a method and apparatus for charging battery cells and controlling the state of charge of the battery cells during charging.
  • Lithium ion batteries are a desirable source for storing power in various types of systems such as satellite systems.
  • a number of battery cells are typically used together to obtain the desired voltage. Maintaining a predetermined state of charge on the batteries is important to maintain the useful life of the battery.
  • a parallel series single battery bus 10 has a plurality of battery cells 12 coupled together in parallel strings 14 .
  • each parallel string has eight cells.
  • Each of the strings 14 is coupled in series.
  • a DC-to-DC converter 16 is coupled in series with the plurality of series connected strings 14 .
  • each string would be provided with its own power supply for topping off the charge therein.
  • One problem with such a configuration is that the number of charge balancing circuits required for such a configuration (one for each cell) increases the cost and mass of the system. In satellite systems in particular, reducing cost and mass is an important priority.
  • Another problem with such a configuration is the number of charge balancing circuits make the system intrinsically less reliable. Also, each of the charge balancing circuits must be tied to a common reference voltage which in practice may be difficult to accomplish.
  • Serial parallel battery bus 20 includes a plurality of series coupled string 22 of cells 24 .
  • Each of the series coupled strings 22 has a DC-to-DC converter that couples each of the strings 22 to the common bus 28 .
  • the series parallel bus 24 requires an eight-fold increase in DC-to-DC converters.
  • the total mass of eight smaller converters is significantly greater than the mass of the single converter shown in FIG. 1.
  • Another disadvantage of this approach is that each cell must be equipped with a charge balancing circuit.
  • the electrical connection of eight cells in the parallel series array of FIG. 1 leads to the requirement for twenty-four circuits.
  • series parallel topology requires eight times as many circuits. That is, 192 charge balancing circuits are required in the embodiment of FIG. 2.
  • the present invention provides a system suitable for multiple cells of a battery system that reduces the overall mass of the system be reducing the number of charge balancing circuits required.
  • a charging circuit has a plurality of parallel strings of series connected battery cells.
  • a plurality of virtual cells are formed in parallel from at least two cells from two different parallel strings.
  • a plurality of charge balancing units are each respectively coupled to one of the plurality of virtual cells.
  • the virtual cell configuration is when the discharging of the cells is required before recharging to the same state of charge.
  • a method of charging a battery system comprises a method of charging a battery system includes providing a plurality of strings of series connected battery cells, forming a plurality of virtual cells by coupling battery cells in parallel from at least two different strings of the plurality of parallel strings, discharging each of the battery cells in the virtual cells to a predetermined substantially equal state of charge, and charging each of the battery cells.
  • One advantage of the invention is that the reliability and mass of the overall system is greatly reduced due to the reduced number of charging circuits required.
  • the configuration of the present invention overcomes the major drawbacks of the parallel series in series parallel connections described above in FIGS. 1 and 2.
  • FIG. 1 is a schematic view of a parallel series single battery bus according to the prior art.
  • FIG. 2 is a series parallel multiple battery bus formed according to the prior art.
  • FIG. 3 is a high level block diagrammatic view of a battery circuit formed according to the present invention.
  • FIG. 4 is a schematic view of a battery circuit according to the present invention.
  • FIG. 5 is a detailed schematic view of a virtual cell charge management topology of FIG. 4.
  • the present invention is described with respect to a charge control circuit for a satellite. However, the present invention may also be used to charge various types of systems including electric vehicles.
  • Electrical system 42 includes a battery circuit 44 and a controller 46 that control the charging and discharging of the battery circuit.
  • the controller 46 is preferably microprocessor-based and may perform various functions other than battery controlling circuits such as other functions in the telemetry command and control of satellite 40 .
  • Electrical system 42 may also include solar arrays 48 . Solar arrays 48 may provide energy to recharge the battery circuit 44 .
  • Battery circuit 44 includes a plurality of battery blocks 50 that are each coupled to a main bus 52 .
  • the controller 46 may be a discharge converter that at minimum controls a portion of the method for charging the cells within each battery block.
  • Each battery block 50 has a plurality of cells as will be further described below in FIG. 5.
  • Main bus 52 is also coupled to a charger 54 that is used to charge the cells within battery block according to the method described below.
  • Charger 54 may be coupled to the main bus 52 with a fuse 56 .
  • a voltage sensor 58 is also coupled to main bus 52 to help determine the state of charge of each of the battery blocks 50 .
  • Discharge converter controller 46 is selectively coupled to the main bus 52 using a relay 60 .
  • Relay 60 may be a solid state device or an electro-mechanical solenoid operated device.
  • Battery circuit 44 includes a charge balancing unit 62 .
  • Charge balancing unit 62 is selectively coupled to each battery block 50 through an enabling switch 64 .
  • Charge balancing unit 62 may comprise a plurality of individual units, one for each virtual cell described below in FIG. 5.
  • Charge balancing unit 62 may be a resistive circuit such as a resistor.
  • a main bus enable switch 66 is used to selectively couple discharge converter controller 46 to the main bus 52 .
  • Switch 66 may comprise a relay or the like.
  • each battery block has a plurality of parallel series coupled cells 70 .
  • Each cell has a positive terminal 70 a and a negative terminal 70 b.
  • the uppermost cell has a positive terminal 70 a electrically coupled to main bus 72 and the lowermost cell has a negative terminal 70 b coupled to a common ground.
  • the length of the string of cells 70 depends on the particular application. As illustrated, four strings 72 of parallel cells are provided. Thus, two charge balancing circuits per row are contemplated. If an alternative power source is available, all the cells in a virtual cell may be coupled to the same charge balancing circuit.
  • each of the cells in a row i.e., one from each of the strings 72 , are connected in parallel. That is, each of the positive terminals 70 a is connected to a first node N 1 .
  • Each negative terminal 70 b is connected to a second common node N 2 .
  • a first diode 74 having an anode 74 a and a cathode 74 c couple the positive terminal 70 a and the common node N 1 . That is, anode 74 a is coupled to positive terminal 70 a and cathode 74 c is coupled to node N 1 .
  • a second diode 76 having anode 76 a and cathode 76 c is used to couple negative terminal 70 b to common node N 2 . That is, cathode 76 c is coupled to negative terminal 70 b and anode 76 a is coupled to node N 2 .
  • current flow to charge balancing unit 62 (to discharge the cells) is controlled.
  • Charge balancing unit 62 is coupled between common node N 1 and common node N 2 (in parallel with the battery cells).
  • Enabling switch 64 couples and decouples the charge balancing unit 62 from node N 1 .
  • each of the cells 70 , diodes 74 and 76 are electrically coupled in the same manner, i.e., in parallel for charging purposes.
  • the combination of cell 70 in this manner forms a virtual cell 73 .
  • the organization of cells in this manner can be thought of as rows of cells one from each column of strings 72 .
  • one half of the battery is disconnected from the main bus through switch 66 .
  • Each of the series strings in battery blocks 50 is depleted through charge balancing unit 62 through closed enabling switches 64 . Once each of the strings is depleted, they are then charged using charger 54 in the offline condition. The battery blocks 50 are then coupled back to the main bus 52 through switch 66 .
  • This sequence would take place for various groupings of battery blocks throughout the system such as a satellite.
  • the charge balancing unit is a floating unit which is easier to implement. The diodes prevent the interaction between the series connected cells and the virtual cells as formed.
  • One advantage of this is evident when used with lithium is that battery reconditioning is formed by reaching the low voltage limit versus the high voltage limit that is common in other charging schemes.

Abstract

An electrical system has a battery circuit that includes a plurality of battery blocks. Each of the battery blocks has a plurality of parallel strings of battery cells connected thereto. A plurality of virtual cells is formed during charging by parallel coupling one cell from each string in parallel using diode.

Description

    TECHNICAL FIELD
  • The present invention relates generally to power storage systems for satellites, and more particularly to a method and apparatus for charging battery cells and controlling the state of charge of the battery cells during charging. [0001]
  • BACKGROUND ART
  • Lithium ion batteries are a desirable source for storing power in various types of systems such as satellite systems. For a large storage system a number of battery cells are typically used together to obtain the desired voltage. Maintaining a predetermined state of charge on the batteries is important to maintain the useful life of the battery. [0002]
  • In FIG. 1, a parallel series [0003] single battery bus 10 has a plurality of battery cells 12 coupled together in parallel strings 14. As illustrated, each parallel string has eight cells. Each of the strings 14 is coupled in series. A DC-to-DC converter 16 is coupled in series with the plurality of series connected strings 14. Typically, each string would be provided with its own power supply for topping off the charge therein. One problem with such a configuration is that the number of charge balancing circuits required for such a configuration (one for each cell) increases the cost and mass of the system. In satellite systems in particular, reducing cost and mass is an important priority. Another problem with such a configuration is the number of charge balancing circuits make the system intrinsically less reliable. Also, each of the charge balancing circuits must be tied to a common reference voltage which in practice may be difficult to accomplish.
  • Referring now to FIG. 2, a series [0004] parallel battery bus 20. Serial parallel battery bus 20 includes a plurality of series coupled string 22 of cells 24. Each of the series coupled strings 22 has a DC-to-DC converter that couples each of the strings 22 to the common bus 28. The series parallel bus 24 requires an eight-fold increase in DC-to-DC converters. However, due to the redundancy requirements of satellite systems, the total mass of eight smaller converters is significantly greater than the mass of the single converter shown in FIG. 1. Another disadvantage of this approach is that each cell must be equipped with a charge balancing circuit. The electrical connection of eight cells in the parallel series array of FIG. 1 leads to the requirement for twenty-four circuits. In FIG. 2, series parallel topology requires eight times as many circuits. That is, 192 charge balancing circuits are required in the embodiment of FIG. 2.
  • Another disadvantage of the parallel series array is apparent in that a short circuit condition in an individual cell may lead to the failure of the entire parallel array. On the other hand, the series parallel array intrinsically provides fault isolation. Because lithium ion technology for satellite systems is relatively new, it may be easy to conclude that for reliability considerations, the series parallel system may be more reliable. [0005]
  • It would therefore be desirable to provide an improved charging circuit that reduces the overall mass and cost of the prior art circuit shown in FIGS. 1 and 2. [0006]
  • SUMMARY OF THE INVENTION
  • The present invention provides a system suitable for multiple cells of a battery system that reduces the overall mass of the system be reducing the number of charge balancing circuits required. [0007]
  • In one aspect of the invention, a charging circuit has a plurality of parallel strings of series connected battery cells. A plurality of virtual cells are formed in parallel from at least two cells from two different parallel strings. A plurality of charge balancing units are each respectively coupled to one of the plurality of virtual cells. The virtual cell configuration is when the discharging of the cells is required before recharging to the same state of charge. [0008]
  • In a further aspect of the invention, a method of charging a battery system comprises a method of charging a battery system includes providing a plurality of strings of series connected battery cells, forming a plurality of virtual cells by coupling battery cells in parallel from at least two different strings of the plurality of parallel strings, discharging each of the battery cells in the virtual cells to a predetermined substantially equal state of charge, and charging each of the battery cells. [0009]
  • One advantage of the invention is that the reliability and mass of the overall system is greatly reduced due to the reduced number of charging circuits required. The configuration of the present invention overcomes the major drawbacks of the parallel series in series parallel connections described above in FIGS. 1 and 2. [0010]
  • Other aspects and advantages of the present invention will become apparent upon the following detailed description and appended claims, and upon reference to the accompanying drawings.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of a parallel series single battery bus according to the prior art. [0012]
  • FIG. 2 is a series parallel multiple battery bus formed according to the prior art. [0013]
  • FIG. 3 is a high level block diagrammatic view of a battery circuit formed according to the present invention. [0014]
  • FIG. 4 is a schematic view of a battery circuit according to the present invention. [0015]
  • FIG. 5 is a detailed schematic view of a virtual cell charge management topology of FIG. 4. [0016]
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • In the following figures the same reference numerals will be used to identify the same components. [0017]
  • The present invention is described with respect to a charge control circuit for a satellite. However, the present invention may also be used to charge various types of systems including electric vehicles. [0018]
  • Referring now to FIG. 3, a [0019] satellite 40 is illustrated having an electrical system 42 according to the present invention. Electrical system 42 includes a battery circuit 44 and a controller 46 that control the charging and discharging of the battery circuit. The controller 46 is preferably microprocessor-based and may perform various functions other than battery controlling circuits such as other functions in the telemetry command and control of satellite 40. Electrical system 42 may also include solar arrays 48. Solar arrays 48 may provide energy to recharge the battery circuit 44.
  • Referring now to FIG. 4, a portion of [0020] battery circuit 44 is illustrated. Battery circuit 44 includes a plurality of battery blocks 50 that are each coupled to a main bus 52. In this example, the controller 46 may be a discharge converter that at minimum controls a portion of the method for charging the cells within each battery block. Each battery block 50 has a plurality of cells as will be further described below in FIG. 5. Main bus 52 is also coupled to a charger 54 that is used to charge the cells within battery block according to the method described below. Charger 54 may be coupled to the main bus 52 with a fuse 56. A voltage sensor 58 is also coupled to main bus 52 to help determine the state of charge of each of the battery blocks 50. Discharge converter controller 46 is selectively coupled to the main bus 52 using a relay 60. Relay 60 may be a solid state device or an electro-mechanical solenoid operated device.
  • It should be noted that while three battery blocks are illustrated, various numbers of battery blocks may be implemented according to the desired voltage at the [0021] main bus 52.
  • [0022] Battery circuit 44 includes a charge balancing unit 62. Charge balancing unit 62 is selectively coupled to each battery block 50 through an enabling switch 64. Charge balancing unit 62 may comprise a plurality of individual units, one for each virtual cell described below in FIG. 5. Charge balancing unit 62 may be a resistive circuit such as a resistor.
  • A main bus enable [0023] switch 66 is used to selectively couple discharge converter controller 46 to the main bus 52. Switch 66 may comprise a relay or the like.
  • Referring now to FIG. 5, [0024] battery block 50 is illustrated in further detail. As described above, each battery block has a plurality of parallel series coupled cells 70. Each cell has a positive terminal 70 a and a negative terminal 70 b. Thus, the uppermost cell has a positive terminal 70 a electrically coupled to main bus 72 and the lowermost cell has a negative terminal 70 b coupled to a common ground. The length of the string of cells 70 depends on the particular application. As illustrated, four strings 72 of parallel cells are provided. Thus, two charge balancing circuits per row are contemplated. If an alternative power source is available, all the cells in a virtual cell may be coupled to the same charge balancing circuit.
  • For charging purposes, each of the cells in a row, i.e., one from each of the [0025] strings 72, are connected in parallel. That is, each of the positive terminals 70 a is connected to a first node N1. Each negative terminal 70 b is connected to a second common node N2. A first diode 74 having an anode 74 a and a cathode 74 c couple the positive terminal 70 a and the common node N1. That is, anode 74 a is coupled to positive terminal 70 a and cathode 74 c is coupled to node N1. A second diode 76 having anode 76 a and cathode 76 c is used to couple negative terminal 70 b to common node N2. That is, cathode 76 c is coupled to negative terminal 70 b and anode 76 a is coupled to node N2. By orienting the diodes 74 and 76 in the illustrated position, current flow to charge balancing unit 62 (to discharge the cells) is controlled. Charge balancing unit 62 is coupled between common node N1 and common node N2 (in parallel with the battery cells). Enabling switch 64 couples and decouples the charge balancing unit 62 from node N1. It should be noted that each of the cells 70, diodes 74 and 76 are electrically coupled in the same manner, i.e., in parallel for charging purposes. The combination of cell 70 in this manner forms a virtual cell 73. The organization of cells in this manner can be thought of as rows of cells one from each column of strings 72.
  • In operation, one half of the battery is disconnected from the main bus through [0026] switch 66. Each of the series strings in battery blocks 50 is depleted through charge balancing unit 62 through closed enabling switches 64. Once each of the strings is depleted, they are then charged using charger 54 in the offline condition. The battery blocks 50 are then coupled back to the main bus 52 through switch 66. This sequence would take place for various groupings of battery blocks throughout the system such as a satellite. It should be noted that the charge balancing unit is a floating unit which is easier to implement. The diodes prevent the interaction between the series connected cells and the virtual cells as formed. One advantage of this is evident when used with lithium is that battery reconditioning is formed by reaching the low voltage limit versus the high voltage limit that is common in other charging schemes.
  • While the invention has been described in connection with one or more embodiments, it should be understood that the invention is not limited to those embodiments. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the appended claims. [0027]

Claims (22)

What is claimed is:
1. A battery circuit comprising:
a plurality of parallel strings of series connected battery cells;
a plurality of virtual cells formed by coupling battery cells in parallel from at least two different strings of the plurality of parallel strings; and
a plurality of charge balancing circuits each coupled to a respective one of the plurality of virtual cells.
2. A circuit as recited in claim 1 wherein the plurality of charge balancing circuits comprises a resistive circuit.
3. A circuit as recited in claim 1 further comprising a charger coupled to said plurality of virtual cells.
4. A circuit as recited in claim 1 wherein the plurality of strings comprise at least three strings.
5. A circuit as recited in claim 1 wherein the plurality of battery cells comprise lithium ion cells.
6. A circuit as recited in claim 1 wherein each of the plurality of virtual cells comprise a first common node and a second common node.
7. A circuit as recited in claim 1 wherein each battery cell comprises a positive terminal and a negative terminal, said positive terminal electrically coupled to said first common node and said negative terminal is electrically coupled to said second common node.
8. A circuit as recited in claim 7 wherein said virtual cell comprising a first diode comprising a first anode and a first cathode, and a second diode comprising a second anode and a second cathode, wherein said first anode is coupled to said positive terminal and said first cathode is coupled to said first common node, wherein said second anode is coupled to said second common node and said second cathode is coupled to said negative terminal.
9. A circuit as recited in claim 1 further comprising a discharge converter coupled to said battery cells.
10. A circuit as recited in claim 9 further comprising a voltage sensor for monitoring the voltage of the cells, said discharge converter controlling said discharging in response to said voltage.
11. A circuit as recited in claim 10 further comprising a switch selectively coupling said discharge converter to said battery cells.
12. A circuit as recited in claim 1 further comprising a switch selectively coupling said charge balancing circuit to said virtual cells.
13. An electrical system comprising:
a main bus;
a charger coupled to the main bus; and
a battery circuit comprising,
a plurality of parallel strings of series connected battery cells;
a plurality of virtual cells formed by coupling battery cells in parallel from at least two different strings of the plurality of parallel strings; and
a plurality of charge balancing circuits each selectively coupled to a respective one of the plurality of virtual cells.
14. A satellite comprising an electrical system formed according to claim 13.
15. A circuit as recited in claim 13 wherein each of the plurality of virtual cells comprise a first common node and a second common node, wherein each battery cell comprises a positive terminal and a negative terminal, said positive terminal electrically coupled to said first common node and said negative terminal is electrically coupled to said second common node.
16. A circuit as recited in claim 15 wherein said virtual cell comprising a first diode comprising a first anode and a first cathode, and a second diode comprising a second anode and a second cathode, wherein said first anode is coupled to said positive terminal and said first cathode is coupled to said first common node, wherein said second anode is coupled to said second common node and said second cathode is coupled to said negative terminal.
17. A circuit as recited in claim 13 further comprising a discharge converter coupled to said battery cells and a voltage sensor for monitoring the voltage of the cells, said discharge converter controlling said discharging in response to said voltage.
18. A method of charging a battery system comprising:
providing a plurality of strings of series connected battery cells;
forming a plurality of virtual cells by coupling battery cells in parallel from at least two different strings of the plurality of parallel strings;
discharging each of the battery cells in the virtual cells to a predetermined substantially equal state of charge; and
charging each of the battery cells.
19. A method as recited in claim 18 further comprising monitoring a battery string voltage and discharging said battery string in response to the battery string voltage.
20. A method as recited in claim 18 wherein discharging comprises selectively coupling the virtual cells to a charge balancing circuit.
21. A method as recited in claim 18 wherein discharging comprises discharging a portion of the plurality of strings.
22. A method as recited in claim 18 wherein charging comprises monitoring a battery cell voltage and charging each of the battery cells in response to the battery cell voltage.
US10/351,114 2003-01-24 2003-01-24 Charge control circuit and method for charging multiple battery cells Expired - Fee Related US6774606B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/351,114 US6774606B1 (en) 2003-01-24 2003-01-24 Charge control circuit and method for charging multiple battery cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/351,114 US6774606B1 (en) 2003-01-24 2003-01-24 Charge control circuit and method for charging multiple battery cells

Publications (2)

Publication Number Publication Date
US20040145346A1 true US20040145346A1 (en) 2004-07-29
US6774606B1 US6774606B1 (en) 2004-08-10

Family

ID=32735728

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/351,114 Expired - Fee Related US6774606B1 (en) 2003-01-24 2003-01-24 Charge control circuit and method for charging multiple battery cells

Country Status (1)

Country Link
US (1) US6774606B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060097696A1 (en) * 2004-11-10 2006-05-11 Eaglepicher Technologies, Llc Method and system for cell equalization with isolated charging sources
WO2007033791A2 (en) * 2005-09-21 2007-03-29 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Charging method for extending a battery service life and device for carrying out said method
US20090267565A1 (en) * 2004-11-10 2009-10-29 Eaglepicher Technologies, Llc Method and system for cell equalization with charging sources and shunt regulators
US20090309544A1 (en) * 2004-11-10 2009-12-17 Eaglepicher Technologies, Llc Method and system for cell equalization with switched charging sources
DE102011014133A1 (en) * 2011-03-15 2012-09-20 Maximilian Heindl Method for varying e.g. voltage at connection terminals of series circuit of battery cells of heterogeneous battery arrangement in electric car, involves varying configuration of series circuit for adjustment of voltage and impedance
EP2315336A4 (en) * 2008-08-13 2016-04-20 Mitsubishi Heavy Ind Ltd Electricity storage system
WO2017144975A1 (en) * 2016-02-23 2017-08-31 Revision Military S.A.R.L. Dual bus battery balancing system
US10003194B2 (en) 2014-10-24 2018-06-19 Enphase Energy, Inc. Parallel battery system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114247A1 (en) 2010-03-15 2011-09-22 Brusa Elektronik Ag Balancing the states of charge of charge accumulators
US10138551B2 (en) 2010-07-29 2018-11-27 GES Associates LLC Substrate processing apparatuses and systems
US8922063B2 (en) 2011-04-27 2014-12-30 Green Charge Networks, Llc Circuit for rendering energy storage devices parallelable
US8823338B2 (en) 2012-01-31 2014-09-02 Green Charge Networks Llc Universal single-stage power converter
US8897041B2 (en) 2012-01-31 2014-11-25 Green Charge Networks Llc Universal power conversion methods and systems
CN104617621B (en) * 2015-01-28 2017-01-18 杭州高特电子设备股份有限公司 Improved battery pack maintaining method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369546B1 (en) * 2001-03-23 2002-04-09 The Boeing Company Distributed converter and method for equalizing lithium-ion batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369546B1 (en) * 2001-03-23 2002-04-09 The Boeing Company Distributed converter and method for equalizing lithium-ion batteries

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825629B2 (en) 2004-11-10 2010-11-02 EaglePicher Technologies Method and system for cell equalization with charging sources and shunt regulators
US20090267565A1 (en) * 2004-11-10 2009-10-29 Eaglepicher Technologies, Llc Method and system for cell equalization with charging sources and shunt regulators
US20090309544A1 (en) * 2004-11-10 2009-12-17 Eaglepicher Technologies, Llc Method and system for cell equalization with switched charging sources
US7821230B2 (en) 2004-11-10 2010-10-26 EaglePicher Technologies Method and system for cell equalization with switched charging sources
US7928691B2 (en) * 2004-11-10 2011-04-19 EaglePicher Technologies Method and system for cell equalization with isolated charging sources
US20060097696A1 (en) * 2004-11-10 2006-05-11 Eaglepicher Technologies, Llc Method and system for cell equalization with isolated charging sources
WO2007033791A3 (en) * 2005-09-21 2007-08-16 Zsw Charging method for extending a battery service life and device for carrying out said method
WO2007033791A2 (en) * 2005-09-21 2007-03-29 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Charging method for extending a battery service life and device for carrying out said method
EP2315336A4 (en) * 2008-08-13 2016-04-20 Mitsubishi Heavy Ind Ltd Electricity storage system
DE102011014133A1 (en) * 2011-03-15 2012-09-20 Maximilian Heindl Method for varying e.g. voltage at connection terminals of series circuit of battery cells of heterogeneous battery arrangement in electric car, involves varying configuration of series circuit for adjustment of voltage and impedance
US10003194B2 (en) 2014-10-24 2018-06-19 Enphase Energy, Inc. Parallel battery system
WO2017144975A1 (en) * 2016-02-23 2017-08-31 Revision Military S.A.R.L. Dual bus battery balancing system
GB2564043A (en) * 2016-02-23 2019-01-02 Revision Military Sarl Dual bus battery balancing system
US10319981B2 (en) 2016-02-23 2019-06-11 Revision Military S.A.R.L. Dual bus battery balancing system
GB2564043B (en) * 2016-02-23 2022-02-23 Galvion Power Systems Inc Dual bus battery balancing system

Also Published As

Publication number Publication date
US6774606B1 (en) 2004-08-10

Similar Documents

Publication Publication Date Title
US5898291A (en) Battery cell bypass topology
US6774606B1 (en) Charge control circuit and method for charging multiple battery cells
US6599655B2 (en) Procedure for performing battery reconditioning on a space vehicle designed with one battery
KR102224017B1 (en) Battery management system and battery cell array
EP2452391B1 (en) Series-parallel battery system with buffer resistor
US6043629A (en) Modular control electronics for batteries
US4616170A (en) Arrangement and method for operating an electrochemical storage device
US6781343B1 (en) Hybrid power supply device
US5283512A (en) Charge balancing of batteries during charging
EP1698003A4 (en) Battery energy storage modules
KR101839032B1 (en) Battery Balancing System
US6741437B2 (en) Safety device for electrical storage cell battery and battery equipped with the device
JP2011524155A (en) Power supply unit, method of charging storage battery of power supply unit, and lightweight electric vehicle with power supply unit
US5993993A (en) Unregulated spacecraft electrical bus
SE439405B (en) METHOD OF CHARGING AN ELECTRIC ACCUMULATOR BATTERY BY SOLAR PANELS CONTAINING SOLAR CELLS, AND DEVICE FOR CHARGING ACCORDING TO THE METHOD
RU2585171C1 (en) Method for operating nickel-hydrogen batteries of modular power supply system (versions)
JP2001008373A (en) Battery unit and charging method of battery
US9759780B2 (en) System for power balance monitoring in an energy storage battery
CN109997288A (en) Adaptive switched twin voltage battery
RU2621694C9 (en) Method for operating nickel-hydrogen accumulator batteries of aircraft electric power system
RU2586172C2 (en) Method of controlling parameters of nickel-hydrogen accumulator batteries in power supply system of spacecraft (versions)
KR101846989B1 (en) Active Balancing Circuit Of Multicell Battery
CN110444824B (en) Battery pack structure reconstruction device and method
US20220416313A1 (en) Power supply module for nanosatellite systems
Koo et al. Lithium-ion battery design for the hybrid satellite in the geostationary orbit

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOEING COMPANY, THE, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HALL, JOHN C.;CANTER, STANLEY;REEL/FRAME:013708/0192;SIGNING DATES FROM 20021223 TO 20030118

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20160810