US20040140068A1 - Feeding arrangement for feeding of chips to chip bins - Google Patents

Feeding arrangement for feeding of chips to chip bins Download PDF

Info

Publication number
US20040140068A1
US20040140068A1 US10/475,378 US47537803A US2004140068A1 US 20040140068 A1 US20040140068 A1 US 20040140068A1 US 47537803 A US47537803 A US 47537803A US 2004140068 A1 US2004140068 A1 US 2004140068A1
Authority
US
United States
Prior art keywords
chips
liquid
chip
treatment vessel
lock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/475,378
Inventor
Vidar Snekkenes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metso Fiber Karlstad AB
Original Assignee
Kvaerner Pulping AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=20284000&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040140068(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kvaerner Pulping AB filed Critical Kvaerner Pulping AB
Assigned to KVAERNER PULPING AB reassignment KVAERNER PULPING AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SNEKKENES, VIDAR
Publication of US20040140068A1 publication Critical patent/US20040140068A1/en
Priority to US10/979,004 priority Critical patent/US7229524B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C7/00Digesters
    • D21C7/06Feeding devices
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • D21C1/02Pretreatment of the finely-divided materials before digesting with water or steam
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/22Other features of pulping processes
    • D21C3/24Continuous processes

Definitions

  • the present invention relates to a feed arrangement according to the preamble of claim 1 .
  • NCG-gases Non-Condensable Gases
  • Another solution for minimizing the volumes of weak gases is to control the flow of chips through the chip bin such that a stable plug flow is obtained through the chip bin and in which steam is added to the chip bin in a controlled manner so that only the chips in the lower part of the bin are heated.
  • This technique is known as “cold-top” control and is used in feed arrangements marketed by Kvaerner Pulping AB under the name DUALSTEAMTM bin.
  • the main object of the invention is to obtain a chip bin for the presteaming of chips in which the risks of leakage of weak gases are minimized and which is not associated with the drawbacks of the prior art.
  • Another object is simultaneously to minimize the quantity of air which is transported down into the chip bin and which has to be evacuated during the presteaming. If this quantity of free air and air bound in the chips can be reduced, then the volumes of weak gases can be drastically reduced.
  • a further object is simultaneously to be able to evict the chip moisture from the chips, which chip moisture is undesirable in the subsequent digestion process. If a substantial quantity of chip moisture can already be expelled in the feed-in to the chip bin, then the steam supply does not need to be governed by this requirement and can be made more effective. If the chip moisture can instead be replaced with useful treatment chemicals, then these can be left in the chips.
  • Yet another object is to enable use of the steam which is obtained directly following the decompression of drawn-off digestion liquor from the digester, even if this steam contains a lot of NCG-gases. If the leak-tightness of the chip bin can be guaranteed, at the same time as presteaming is conducted without the blow-through of steam, using “cold-top” regulation as it is known, then this energy-optimal method for recovering heat from the digestion process can be used under controlled forms and with the least possible risks.
  • a further object is to be able to allow a pretreating impregnation of the chips with suitable treatment chemicals.
  • FIG. 1 shows in diagrammatic representation a feed arrangement according to the invention for feeding chips to chip bins in the production of cellulose pulp in continuous digesters;
  • FIG. 2 shows a variant of the invention having two liquid locks in series in the feed-in to the chip bin
  • FIG. 3 shows a third variant having an oblique feed screw
  • FIG. 4 shows in diagrammatic representation approximate proportions by volume of the component parts of the chips (not compressed)
  • FIG. 1 a diagrammatic representation is shown of a chip bin 1 to which cut chips are conveyed by means of a conveyor belt 2 from a chip store (not shown).
  • the chips at this stage have a temperature equivalent to the environment, anything from a few degrees below zero to 20-30° C. (during the warm season).
  • the chips are heated in the chip bin to a level above 80° C., preferably around 100° C., which calls for substantial quantities of steam.
  • the heating with steam serves a number of purposes, firstly to raise the temperature of the chips, but also to expel air and heat bound chip moisture and, to a certain extent, drive off this chip moisture.
  • FIG. 4 a diagrammatic representation is shown of the volume shares of what normally accompanies the chips to the chip bin if the chips are not actively compressed.
  • the free air i.e. the air lying around and between the chip fragments, constitutes as much as 2 ⁇ 3. Even though active compression of the chips might be achieved, only a minor reduction of the free air is obtainable.
  • the wood content accounts for 1 ⁇ 3, chip moisture 1 ⁇ 3 and air bound in the chip fragment 1 ⁇ 3.
  • the heating in the chip bin 1 is effected with a number of distribution devices for the addition of steam.
  • a lower distribution pipe 4 b and a plurality of upper distribution nozzles 4 a arranged all around the lower part of the chip bin are used.
  • the quantity of steam which is supplied is regulated by means of the valve 5 as a function of the detected temperature in the chip bin, measured by means of the measuring device 6 .
  • a so-called “cold-top” regulation is able to be obtained, so that a successive heating of the chip is obtained down through the chip bin.
  • the chips in the upper part of the chip bin can then be kept at a temperature substantially below 80° C., preferably below 50° C.
  • a feed arrangement having a venting facility via a pump 20 and a regulated inflow of fresh air via the control valve 21 .
  • the control valve 21 is expediently a one-way valve which opens for fresh air in the event of a certain underpressure in the chip bin. A certain controlled ventilation flow, so-called “sweep air”, can thereby be obtained in the upper part of the chip bin.
  • an overpressure control can also be installed, in which overpressure in the chip bin can be ventilated away via a safety system or in certain cases to an outlet on the roof of the plant. Normally, this overpressure can be led off via a pipe system connected to the suction side of the pump 20 , thereby dealing with the excess quantities of gas which the pump 20 does not have the capacity to manage.
  • the pump 20 is dimensioned, however, such that it is capable of conducting obtained quantities of gas to a destruction h controlled “cold-top” regulation of the chip bin, the pump will always, however, cope with the air quantities which ventilate the chip bin.
  • the chips After the chips have been heated to a suitable temperature and the majority of the air and chip moisture has been driven off, the chips are fed out from the bottom of the chip bin with a suitable discharge device 10 , preferably a feed screw, and onward to a low-pressure feeder 11 (lock device) forming part of a feed arrangement to the high-pressure feeder 12 .
  • the low-pressure feeder feeds the chips to a downpipe, where the chips are mixed together with a preliminary transport/digestion liquid.
  • the chip mixture is then fed to a conventional high-pressure feeder (also referred to as “pocket feeder”) provided with bins which, as they rotate, can be filled with the chip mixture (normally from above) from the low-pressure system and, after 90-degree rotation, expose the bin, filled with the chip mixture, to the high-pressure circuit 13 , which feeds the chip mixture under high pressure to a top separator 15 disposed in the top of a continuous digester 16 .
  • the chips are separated from the transport liquid, which transport liquid is fed back to the inlet side of the high-pressure feeder within the high-pressure circuit.
  • steam for the heating of the chip bin is obtained by warm black liquor at or close to boiling temperature, typically 140°-160° C., being drawn off from the digester via a drain sieve 17 , after which it is decompressed in a cyclone 18 .
  • the steam 19 is tapped from the top of the cyclone and the black liquor BL is passed on to the evaporation unit in the usual manner.
  • the steam can, however, be produced differently, for example by heating pure water by means of a heat exchanger, so that pure steam for the chip bin can be obtained.
  • At least one liquid lock 30 is arranged between the chip feed 2 and the upper part of the chip bin.
  • the chips are fed down to the liquid lock and form a chip level over a first liquid surface 33 in the liquid lock 30 . Owing to the natural weight of the chips, the chips are fed towards the bottom of the liquid lock.
  • the liquid lock in FIG. 1 is U-shaped with a feed screw 35 driven by a motor 36 disposed in the second outlet branch. The feed screw catches the chips advanced by the chip column in the inlet branch and, under rotation from the feed screw, the chips are fed up to and past the second liquid surface 34 in the liquid lock. After the chips have been drained of the liquid from the liquid lock, the chips tumble down to the chip bin 1 via the downpipe 37 .
  • the liquid lock has the effect that all the free air surrounding and between the chip fragments can be driven off, at the same time as a certain part of the air bound in the chips is able to be driven off before the chips reach the chip bin and this without the need to use any compression equivalent to the solution in U.S. Pat. No. 4,096,027, which latter solution can only at best attain 20-30% of the capacity of the water lock to evacuate air.
  • FIG. 2 a variant is shown having two liquid locks in series. With a plurality of locks in series a successive heating can be used, with liquid at 50 degrees in the last lock and liquid with a temperature lower, or possibly just 5-10 degrees higher, than the chips in the first lock.
  • a suitable liquid can be black release liquor which provides an initial impregnation of the chips. Since most chip moisture is driven off in the first liquid lock, the liquid in the liquid lock can also be circulated in counter-current between the liquid locks.
  • Liquids other than black liquor can, of course, be used in digestion processes where this might be profitable.
  • impregnation liquids with a certain polysulphide, anthraquinone, white liquor or sulphur component may be used.
  • FIG. 3 a further variant is shown having a liquid lock with an oblique feed screw (only the shaft shown).
  • the invention results in the chips being able to receive an initial heating to a moderate temperature even whilst they are in the liquid lock.
  • the steam does not therefore need to be used to raise the temperature of the chips from the ambient temperature (a few degrees below zero to 20-30° C.) right up to a required temperature of around 100° C.
  • Normally there are large quantities of black liquor at a pulp mill kept at temperatures of around 70-90° C., so that the total utilization of energy at the pulp mill is improved.
  • One of the most important distinguishing features is, however, that the quantity of air which is drawn with the chips into the chip bin is reduced to a minimum.
  • the invention can be varied in a number of ways within the scope of the appended patent claims.
  • the chips can be fed through the chip bin using the natural weight of the chips, thereby allowing the feed screw to be dispensed with.
  • feed screw it is expediently designed with drainage ducts and holes in its thread flanks.
  • the feed screw can also be combined with drainage walls in the outlet branch of the liquid lock.
  • Feed screws can also be replaced with other transport devices, such as open belt/chain conveyors with carriers.
  • New liquid can expediently be supplied to the liquid lock such that this supply interacts with stratification effects owing to density differences between expelled chip moisture and liquid lock liquid (black liquor), in which case continuous/intermittent drawing-off of expelled chip moisture can be implemented.
  • the invention can be used with steam of different grades of NCG-content, i.e. everything from totally pure steam (produced from heated-up pure water) to the steam which is obtained directly upon the decompression of digestion liquid from a digester.

Landscapes

  • Paper (AREA)

Abstract

The invention relates to a feed arrangement for feeding chips to chip bins (1) in the production of cellulose pulp in continuous digesters (16), in which the chip bin is constituted by a greatment vessel having a top and a bottom, in which the chips are fed into the top (13) of the treatment vessel and fed out via the bottom of the treatment vessel using suitable lock members (10, 11). Distribution devices (4 a, 4 b) for the addition of steam are disposed in the treatment vessel so as to heat the chips to a level above 80° C., preferably around 100° C., when the chips are fed out via the bottom of the treatment vessel. By virtue of the fact that the chips are fed into the treatment vessel via at least one liquid lock (30) and the treatment vessel is otherwise sealed off, the quantity of driven-off gases from the chip bin is reduced to a minimum, at the same time as an effective utilization of available energy is obtained.

Description

  • The present invention relates to a feed arrangement according to the preamble of [0001] claim 1.
  • PRIOR ART
  • In connection with cut chips having to be fed into continuous digesters, in which digesters the chips are digested in order to obtain chemical cellulose pulp, the chips have to undergo a number of treatment stages. [0002]
  • The chips which are obtained following chipping take up a large volume in which the chip fragments only occupy ⅓ and the remaining ⅔ are air. In the actual chip fragment, only ⅓ is constituted by wood and the remaining part of the chip is constituted by chip moisture, ⅓, and air, ⅓. [0003]
  • Neither the air nor the chip moisture are desirable in the digestion process and are required to be expelled as much as possible. Just before the digestion, air and the chip moisture are thus replaced with treatment liquids necessary for the dissolution of the chip fragment. At the same time, it is desirable to heat the chips to the required process temperature, expediently to a level of around 100° C., since the chips will eventually reach temperatures of around 140-160° C. during the digestion. This calls for very large quantities of steam, since firstly a correct chip temperature has to be obtained with the aid of the steam and secondly bound air needs to be driven off with the steam, but also bound chip moisture has to be heated. [0004]
  • In certain older conventional feed arrangements atmospheric chip bins have been used, in which the chips are preheated with steam in order to expel the air. From these feed arrangements, very large volumes of drawn-off air are then obtained, which are contaminated with turpentine and other explosive gases, the latter referred to as NCG-gases (NCG=Non-Condensable Gases). [0005]
  • In U.S. Pat. No. 4,096,027 a solution is shown in which the chips are fed to the chip bin via an oblique screw. The chips are packed in the screw, whereupon a plug is formed which will prevent too much air from being transported into the chip bin. In this solution also, large quantities of free air are carried along with the chip fragments and also the air bound in the chips. [0006]
  • In U.S. Pat. No. 4,927,312 another variant is shown in which the feed-in to the chip bin is provided with swing doors which are regulated such that a certain quantity of chips lies on top of the swing doors in order to prevent toxic gases from reaching the environment. [0007]
  • In U.S. Pat. No. 5,766,418 a further solution is shown in which a physical restriction in the inlet will act against the chips such that a plug is formed. [0008]
  • In U.S. Pat. No. 6,143,134 yet another variant is shown in which a plug-forming inlet is provided with deflection plates which are individually controlled such that the chips can leave the stopper in various radial directions over the interior of the chip bin. [0009]
  • The prior art has identified the problem of wanting to minimize the leakage of harmful/toxic gases which arise during presteaming with hot steam. Yet there are large quantities of air left in the chips which are fed into the chip bin, thereby creating large volumes of the harmful gases which must be taken care of. [0010]
  • In the known chip bins in which steam is blown through [0011]
    Figure US20040140068A1-20040722-P00999
    and large quantities of weak gases are generated, there is a need for either very pure steam or special feed arrangements which are capable of handling these gases. The weak gases have the peculiarity that they easily acquire a very explosive composition. Given a 10% TRS content, a very explosive gas is obtained if the oxygen has a 15-20% share. Normally, when presteaming takes place in chip bins, residual gases with oxygen components of 18-20% are obtained, so that either every effort must be made to have a very high flow of pure steam (in order to restrict the TRS content), thereby generating large volumes of these weak gases, or alternatively these gases have to be treated with the great care which is demanded. In the latter case, no emissions can be tolerated from the chip bin, since the obtained weak gases are directly harmful to persons working in the vicinity of the chip bin.
  • Another solution for minimizing the volumes of weak gases is to control the flow of chips through the chip bin such that a stable plug flow is obtained through the chip bin and in which steam is added to the chip bin in a controlled manner so that only the chips in the lower part of the bin are heated. This technique is known as “cold-top” control and is used in feed arrangements marketed by Kvaerner Pulping AB under the name DUALSTEAM™ bin. [0012]
  • A number of very expensive solutions have been proposed in order to reduce the explosiveness and toxicity of the weak gases. In WO 96/32531 and U.S. Pat. No. 6,176,971, for example, various feed arrangements are shown in which digestion liquor drawn off from the digester generates pure steam from ordinary water. The use of totally pure steam for presteaming the chips reduces the TRS content in the weak gases, since the steam used is totally free from any TRS content. These feed arrangements inevitably give rise, however, to energy losses and the [0013]
    Figure US20040140068A1-20040722-P00999
    cost of process equipment.
  • Proposals which actively reduce the free and bound quantity of air which is transported and which allow a leak-tight feed arrangement to be obtained have not been presented in any known feed arrangement for feeding chips to chip bins. In reality, the use of chip plugs as stoppers to prevent gas leakage is an impossibility bearing in mind the degree of packing and characteristics of the chips, in which at least ⅓ of the actual chips is constituted by air. [0014]
  • Already in SE-C-63003 from the year 1924 (inventor T. Molin), a feed arrangement for displacing the chip moisture (the wood's primary water) was shown. This paid no regard, however, to its potential for use as the inlet into the steaming operation. Instead, it was stated that this liquid-lock-resembling displacement feed arrangement should be preceded by a steam-preheating operation, and so there are no proposals for solving the problem at issue. Instead, the need to expel the chip moisture from the chips just before they are digested is clearly identified. [0015]
  • Surprisingly enough, there have been no better feed arrangements put forward than chip-plug-forming feed arrangements to the chip bin. Instead, attempts have been made to circumvent the problems with harmful gases by trying to generate purer steam from the digestion process, which was realised at the expense of high investment costs and reduced utilization of the thermal capacity. [0016]
  • The Purpose and Object of the Invention [0017]
  • The main object of the invention is to obtain a chip bin for the presteaming of chips in which the risks of leakage of weak gases are minimized and which is not associated with the drawbacks of the prior art. [0018]
  • Another object is simultaneously to minimize the quantity of air which is transported down into the chip bin and which has to be evacuated during the presteaming. If this quantity of free air and air bound in the chips can be reduced, then the volumes of weak gases can be drastically reduced. [0019]
  • A further object is simultaneously to be able to evict the chip moisture from the chips, which chip moisture is undesirable in the subsequent digestion process. If a substantial quantity of chip moisture can already be expelled in the feed-in to the chip bin, then the steam supply does not need to be governed by this requirement and can be made more effective. If the chip moisture can instead be replaced with useful treatment chemicals, then these can be left in the chips. [0020]
  • Yet another object is to enable use of the steam which is obtained directly following the decompression of drawn-off digestion liquor from the digester, even if this steam contains a lot of NCG-gases. If the leak-tightness of the chip bin can be guaranteed, at the same time as presteaming is conducted without the blow-through of steam, using “cold-top” regulation as it is known, then this energy-optimal method for recovering heat from the digestion process can be used under controlled forms and with the least possible risks. [0021]
  • A further object is to be able to allow a pretreating impregnation of the chips with suitable treatment chemicals.[0022]
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows in diagrammatic representation a feed arrangement according to the invention for feeding chips to chip bins in the production of cellulose pulp in continuous digesters; [0023]
  • FIG. 2 shows a variant of the invention having two liquid locks in series in the feed-in to the chip bin; [0024]
  • FIG. 3 shows a third variant having an oblique feed screw; [0025]
  • FIG. 4 shows in diagrammatic representation approximate proportions by volume of the component parts of the chips (not compressed)[0026]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • In FIG. 1 a diagrammatic representation is shown of a [0027] chip bin 1 to which cut chips are conveyed by means of a conveyor belt 2 from a chip store (not shown). The chips at this stage have a temperature equivalent to the environment, anything from a few degrees below zero to 20-30° C. (during the warm season). Normally the chips are heated in the chip bin to a level above 80° C., preferably around 100° C., which calls for substantial quantities of steam. The heating with steam serves a number of purposes, firstly to raise the temperature of the chips, but also to expel air and heat bound chip moisture and, to a certain extent, drive off this chip moisture.
  • In FIG. 4 a diagrammatic representation is shown of the volume shares of what normally accompanies the chips to the chip bin if the chips are not actively compressed. The free air, i.e. the air lying around and between the chip fragments, constitutes as much as ⅔. Even though active compression of the chips might be achieved, only a minor reduction of the free air is obtainable. In the actual chip fragment, which constitutes the remaining ⅓, the wood content accounts for ⅓, chip moisture ⅓ and air bound in the chip fragment ⅓. [0028]
  • The heating in the [0029] chip bin 1 is effected with a number of distribution devices for the addition of steam. In the embodiment shown, a lower distribution pipe 4 b and a plurality of upper distribution nozzles 4 a arranged all around the lower part of the chip bin are used. The quantity of steam which is supplied is regulated by means of the valve 5 as a function of the detected temperature in the chip bin, measured by means of the measuring device 6. Through correct controlling, a so-called “cold-top” regulation is able to be obtained, so that a successive heating of the chip is obtained down through the chip bin. The chips in the upper part of the chip bin can then be kept at a temperature substantially below 80° C., preferably below 50° C.
  • When the chips are heated in the chip bin, regardless of whether pure steam or NCG-containing steam is used, harmful gases are generated, primarily containing turpentine, but also other harmful NCG-gases. With a view to handling these released gases, a feed arrangement is used having a venting facility via a [0030] pump 20 and a regulated inflow of fresh air via the control valve 21. The control valve 21 is expediently a one-way valve which opens for fresh air in the event of a certain underpressure in the chip bin. A certain controlled ventilation flow, so-called “sweep air”, can thereby be obtained in the upper part of the chip bin. In certain feed arrangements, an overpressure control can also be installed, in which overpressure in the chip bin can be ventilated away via a safety system or in certain cases to an outlet on the roof of the plant. Normally, this overpressure can be led off via a pipe system connected to the suction side of the pump 20, thereby dealing with the excess quantities of gas which the pump 20 does not have the capacity to manage. In all normal operating situations, the pump 20 is dimensioned, however, such that it is capable of conducting obtained quantities of gas to a destruction
    Figure US20040140068A1-20040722-P00999
    h controlled “cold-top” regulation of the chip bin, the pump will always, however, cope with the air quantities which ventilate the chip bin.
  • After the chips have been heated to a suitable temperature and the majority of the air and chip moisture has been driven off, the chips are fed out from the bottom of the chip bin with a [0031] suitable discharge device 10, preferably a feed screw, and onward to a low-pressure feeder 11 (lock device) forming part of a feed arrangement to the high-pressure feeder 12. The low-pressure feeder feeds the chips to a downpipe, where the chips are mixed together with a preliminary transport/digestion liquid. The chip mixture is then fed to a conventional high-pressure feeder (also referred to as “pocket feeder”) provided with bins which, as they rotate, can be filled with the chip mixture (normally from above) from the low-pressure system and, after 90-degree rotation, expose the bin, filled with the chip mixture, to the high-pressure circuit 13, which feeds the chip mixture under high pressure to a top separator 15 disposed in the top of a continuous digester 16. In the top separator the chips are separated from the transport liquid, which transport liquid is fed back to the inlet side of the high-pressure feeder within the high-pressure circuit.
  • In the shown feed arrangement, steam for the heating of the chip bin is obtained by warm black liquor at or close to boiling temperature, typically 140°-160° C., being drawn off from the digester via a [0032] drain sieve 17, after which it is decompressed in a cyclone 18. The steam 19 is tapped from the top of the cyclone and the black liquor BL is passed on to the evaporation unit in the usual manner. The steam can, however, be produced differently, for example by heating pure water by means of a heat exchanger, so that pure steam for the chip bin can be obtained.
  • With a leak-tight feed arrangement in the chip bin, the more energy-favourable steam which is obtained directly with the decompression of the black liquor can, however, be used, without any energy losses being suffered. [0033]
  • According to the invention, at least one [0034] liquid lock 30 is arranged between the chip feed 2 and the upper part of the chip bin. The chips are fed down to the liquid lock and form a chip level over a first liquid surface 33 in the liquid lock 30. Owing to the natural weight of the chips, the chips are fed towards the bottom of the liquid lock. The liquid lock in FIG. 1 is U-shaped with a feed screw 35 driven by a motor 36 disposed in the second outlet branch. The feed screw catches the chips advanced by the chip column in the inlet branch and, under rotation from the feed screw, the chips are fed up to and past the second liquid surface 34 in the liquid lock. After the chips have been drained of the liquid from the liquid lock, the chips tumble down to the chip bin 1 via the downpipe 37.
  • The liquid lock has the effect that all the free air surrounding and between the chip fragments can be driven off, at the same time as a certain part of the air bound in the chips is able to be driven off before the chips reach the chip bin and this without the need to use any compression equivalent to the solution in U.S. Pat. No. 4,096,027, which latter solution can only at best attain 20-30% of the capacity of the water lock to evacuate air. [0035]
  • In FIG. 2 a variant is shown having two liquid locks in series. With a plurality of locks in series a successive heating can be used, with liquid at 50 degrees in the last lock and liquid with a temperature lower, or possibly just 5-10 degrees higher, than the chips in the first lock. A suitable liquid can be black [0036]
    Figure US20040140068A1-20040722-P00999
    release liquor which provides an initial impregnation of the chips. Since most chip moisture is driven off in the first liquid lock, the liquid in the liquid lock can also be circulated in counter-current between the liquid locks.
  • Liquids other than black liquor can, of course, be used in digestion processes where this might be profitable. For example, impregnation liquids with a certain polysulphide, anthraquinone, white liquor or sulphur component may be used. [0037]
  • In FIG. 3, a further variant is shown having a liquid lock with an oblique feed screw (only the shaft shown). [0038]
  • The invention results in the chips being able to receive an initial heating to a moderate temperature even whilst they are in the liquid lock. The steam does not therefore need to be used to raise the temperature of the chips from the ambient temperature (a few degrees below zero to 20-30° C.) right up to a required temperature of around 100° C. Normally there are large quantities of black liquor at a pulp mill, kept at temperatures of around 70-90° C., so that the total utilization of energy at the pulp mill is improved. One of the most important distinguishing features is, however, that the quantity of air which is drawn with the chips into the chip bin is reduced to a minimum. [0039]
  • The invention can be varied in a number of ways within the scope of the appended patent claims. For example, the chips can be fed through the chip bin using the natural weight of the chips, thereby allowing the feed screw to be dispensed with. [0040]
  • Where a feed screw is used, it is expediently designed with drainage ducts and holes in its thread flanks. The feed screw can also be combined with drainage walls in the outlet branch of the liquid lock. [0041]
  • Feed screws can also be replaced with other transport devices, such as open belt/chain conveyors with carriers. [0042]
  • New liquid can expediently be supplied to the liquid lock such that this supply interacts with stratification effects owing to density differences between expelled chip moisture and liquid lock liquid (black liquor), in which case continuous/intermittent drawing-off of expelled chip moisture can be implemented. [0043]
  • In the outlet branch of the liquid lock there can also be found various forms of pressure devices in the form of interacting rollers or spring-loaded shutters, etc., which help to drain away excess liquid in the chips before the chips tumble downwards into the chip bin. [0044]
  • The invention can be used with steam of different grades of NCG-content, i.e. everything from totally pure steam (produced from heated-up pure water) to the steam which is obtained directly upon the decompression of digestion liquid from a digester. [0045]

Claims (8)

1. Feed arrangement for feeding chips to chip bins in the production of cellulose pulp in continuous digesters, in which the chip bin is constituted by a treatment vessel having a top and a bottom, in which the chips are fed into the top of the treatment vessel and fed out via the bottom of the treatment vessel using suitable lock members, and in which distribution devices for the addition of steam are disposed in the treatment vessel so as to heat the chips to a level above 80° C., preferably around 100° C., when the chips are fed out via the bottom of the treatment vessel, characterized in that the chips are fed into the treatment vessel via at least one liquid lock and in which the treatment vessel is otherwise sealed off and is connected to the environment only by controlled ventilation systems.
2. Feed arrangement according to claim 1, characterized in that the liquid lock has a first liquid surface formed in an inlet duct, towards which first liquid surface untreated chips pass and are fed, after which the chips are transported through the liquid-filled inlet duct towards a second liquid surface through which the chips pass before being passed on to the interior of the chip bin.
3. Feed arrangement according to claim 2, characterised in that the liquid lock comprises a supply line for liquid for maintaining a minimum level in the liquid lock.
4. Feed arrangement according to claim 2 or 3, characterised in that the liquid lock comprises a level meter which detects the current liquid level in the water lock and automatically gives an alarm when
Figure US20040140068A1-20040722-P00999
d level falls below a first predetermined level and automatically controls the supply of new liquid to the liquid lock if the liquid level falls below a second predetermined level.
5. Feed arrangement according to claim 2, characterised in that the liquid in the liquid lock is constituted by a treatment chemical, preferably black liquor.
6. Feed arrangement according to claim 2, characterised in that in the liquid lock there is disposed a feed device which conveys the chips onward through the liquid lock.
7. Feed arrangement according to claim 6, characterised in that the feed device is an oblique feed screw.
8. Feed arrangement according to any of the preceding claims, characterised in that distribution devices for the addition of steam are disposed in the bottom of the treatment vessel and in that regulation of the quantity of steam which is added via control valves is controlled by a control device as a function of the temperature in the chip bin detected by the control device, so that the temperature of outbound chips lies at a level above 80° C., preferably around 100° C., whilst the temperature of the chips in the top of the chip bin lies well below 80° C., preferably below 50° C., the steam pressure acting upon the liquid lock in the feed-in of the chip bin being kept to a minimum.
US10/475,378 2001-05-04 2002-05-02 Feeding arrangement for feeding of chips to chip bins Abandoned US20040140068A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/979,004 US7229524B2 (en) 2001-05-04 2004-11-01 Feeding arrangement for feeding of chips to chip bins

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE0101587.4 2001-05-04
SE0101587A SE518789C2 (en) 2001-05-04 2001-05-04 Chip feed system for chip pockets
PCT/SE2002/000845 WO2002090648A1 (en) 2001-05-04 2002-05-02 Feeding arrangement for feeding of chips to chip bins

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/979,004 Division US7229524B2 (en) 2001-05-04 2004-11-01 Feeding arrangement for feeding of chips to chip bins

Publications (1)

Publication Number Publication Date
US20040140068A1 true US20040140068A1 (en) 2004-07-22

Family

ID=20284000

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/475,378 Abandoned US20040140068A1 (en) 2001-05-04 2002-05-02 Feeding arrangement for feeding of chips to chip bins
US10/979,004 Expired - Fee Related US7229524B2 (en) 2001-05-04 2004-11-01 Feeding arrangement for feeding of chips to chip bins

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/979,004 Expired - Fee Related US7229524B2 (en) 2001-05-04 2004-11-01 Feeding arrangement for feeding of chips to chip bins

Country Status (4)

Country Link
US (2) US20040140068A1 (en)
FI (1) FI117826B (en)
SE (1) SE518789C2 (en)
WO (1) WO2002090648A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070151691A1 (en) * 2003-05-12 2007-07-05 Andritz Inc. Method for converting a digester for use as a gas phase and hydraulic phase continuous digester

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE519262E (en) * 2002-03-15 2008-01-08 Kvaerner Pulping Tech Process for feeding cellulose chips on continuous boiling
SE528116C2 (en) * 2005-12-02 2006-09-05 Kvaerner Pulping Tech Wood chip steaming system for chemical pulp production, has chip bin dilution pipe extending between atmosphere and valve regulated by sensor for measuring process parameter
SE0702644L (en) * 2007-11-30 2008-08-26 Metso Fiber Karlstad Ab Apparatus and method for continuous basing of chips in the manufacture of cellulose pulp
SE532083C2 (en) * 2008-03-20 2009-10-20 Metso Fiber Karlstad Ab Supply system including parallel pumps for a continuous boiler
WO2010095982A1 (en) * 2009-02-17 2010-08-26 Metso Fiber Karlstad Ab Arrangement and method for the continuous steam pre-treatment of chips during the production of cellulose pulp
US8956505B2 (en) 2009-06-11 2015-02-17 Andritz Technology And Asset Management Gmbh Compact feed system and method for comminuted cellulosic material
US9115214B2 (en) 2012-09-24 2015-08-25 Abengoa Bioenergy New Technologies, Llc Methods for controlling pretreatment of biomass
US10018416B2 (en) * 2012-12-04 2018-07-10 General Electric Company System and method for removal of liquid from a solids flow
US9784121B2 (en) 2013-12-11 2017-10-10 General Electric Company System and method for continuous solids slurry depressurization
US9702372B2 (en) 2013-12-11 2017-07-11 General Electric Company System and method for continuous solids slurry depressurization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096027A (en) * 1976-02-19 1978-06-20 Kamyr Inc. System for presteaming wood chips at or near atmospheric pressure with minimum displacement of air
US5266159A (en) * 1991-10-25 1993-11-30 Kamyr, Inc. Mass flow measurement, preferably for controlling chip feed to a digester

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2905240A (en) 1954-12-10 1959-09-22 Waldorf Paper Prod Co Apparatus for impregnating wood chips
US3157565A (en) 1961-07-17 1964-11-17 Black Clawson Co Apparatus for impregnation of cellulosic material
SE305582B (en) 1967-09-18 1968-10-28 Kamyr Ab
SE354086B (en) 1971-09-22 1973-02-26 Kamyr Ab
US3729105A (en) * 1971-09-27 1973-04-24 Inst Gas Technology Liquid sealed solids lock hopper
US4927312A (en) * 1988-05-19 1990-05-22 Kamyr, Inc. Chip gates with air lock
US5547546A (en) * 1994-10-04 1996-08-20 Ahlstrom Machinery Inc. Chip bin with steaming control and a gas vent containing a vacuum and pressure relief device
US5714043A (en) 1995-09-14 1998-02-03 Tire Recycling Technologies Corp. Liquid seal bulk feeder for destructive distillation
US5720232A (en) * 1996-07-10 1998-02-24 Meador; William R. Method and apparatus for recovering constituents from discarded tires
US5766418A (en) * 1996-09-13 1998-06-16 Ahlstrom Machinery Inc. Handling fibrous material used to produce cellulose pulp
KR100661010B1 (en) * 1999-12-21 2006-12-26 텍사코 디벨롭먼트 코포레이션 Apparatus and method for withdrawing and dewatering slag from a gasification system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096027A (en) * 1976-02-19 1978-06-20 Kamyr Inc. System for presteaming wood chips at or near atmospheric pressure with minimum displacement of air
US5266159A (en) * 1991-10-25 1993-11-30 Kamyr, Inc. Mass flow measurement, preferably for controlling chip feed to a digester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070151691A1 (en) * 2003-05-12 2007-07-05 Andritz Inc. Method for converting a digester for use as a gas phase and hydraulic phase continuous digester
US7309401B2 (en) 2003-05-12 2007-12-18 Andritz Inc. Top separator for gas phase and hydraulic phase continuous digesters and method for converting digester
US7658818B2 (en) 2003-05-12 2010-02-09 Andritz Inc. Method for converting a digester for use as a gas phase and hydraulic phase continuous digester

Also Published As

Publication number Publication date
FI117826B (en) 2007-03-15
SE518789C2 (en) 2002-11-19
SE0101587L (en) 2002-11-05
SE0101587D0 (en) 2001-05-04
US7229524B2 (en) 2007-06-12
FI20031583A (en) 2003-10-31
WO2002090648A1 (en) 2002-11-14
US20050061464A1 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
CA2265649C (en) Method and system for feeding comminuted fibrous material
US7229524B2 (en) Feeding arrangement for feeding of chips to chip bins
JP2966343B2 (en) Method and apparatus for pumping chips to a continuous digester
US20130105098A1 (en) Method and system for impregnating chips
JP5193599B2 (en) Method and apparatus for impregnating chips
US6841042B2 (en) Feeding comminuted fibrous material using high pressure screw and centrifugal pumps
US6106668A (en) Method for feeding comminuted fibrous material
US8088249B2 (en) Method for the continuous steam pre-treatment of chips during the production of cellulose pulp
US4096027A (en) System for presteaming wood chips at or near atmospheric pressure with minimum displacement of air
US20230220620A1 (en) Continuous steam explosion method and a defibration system
US6280567B1 (en) System and method for treatment of cellulose-containing material prior to pulp digestion
US20060070710A1 (en) Method and a device for preparing cellulose pulp
US3801431A (en) Method and apparatus for continuous pretreatment of wooden chips
JP3496872B2 (en) Method and system for supplying finely divided fibrous material
ES2927242T3 (en) Method for the generation of clean steam in a continuous digester system
US20030102093A1 (en) Processes and systems for handling knots in a chemical pulping process
CA2455172C (en) Feeding comminuted fibrous material using high pressure screw and centrifugal pumps
WO2010095982A1 (en) Arrangement and method for the continuous steam pre-treatment of chips during the production of cellulose pulp
WO2008008296A2 (en) Feed system
US20030102092A1 (en) Processes and systems for handling knots in a chemical pulping process

Legal Events

Date Code Title Description
AS Assignment

Owner name: KVAERNER PULPING AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SNEKKENES, VIDAR;REEL/FRAME:015071/0269

Effective date: 20031013

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION