US20040122442A1 - Bone screw fastener and apparatus for inserting and removing same - Google Patents

Bone screw fastener and apparatus for inserting and removing same Download PDF

Info

Publication number
US20040122442A1
US20040122442A1 US10/326,701 US32670102A US2004122442A1 US 20040122442 A1 US20040122442 A1 US 20040122442A1 US 32670102 A US32670102 A US 32670102A US 2004122442 A1 US2004122442 A1 US 2004122442A1
Authority
US
United States
Prior art keywords
bi
element
driver
fastener
establishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/326,701
Other versions
US6755836B1 (en
Inventor
David Lewis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Plains Tech Group LLC
Original Assignee
High Plains Tech Group LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Plains Tech Group LLC filed Critical High Plains Tech Group LLC
Priority to US10/326,701 priority Critical patent/US6755836B1/en
Assigned to HIGH PLAINS TECHNOLOGY GROUP, LLC reassignment HIGH PLAINS TECHNOLOGY GROUP, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEWIS, DAVID H.
Publication of US20040122442A1 publication Critical patent/US20040122442A1/en
Application granted granted Critical
Publication of US6755836B1 publication Critical patent/US6755836B1/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Threaded wires, pins or screws; Nuts therefor
    • A61B17/8605Heads, i.e. proximal ends projecting from bone
    • A61B17/861Heads, i.e. proximal ends projecting from bone specially shaped for gripping driver
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8875Screwdrivers, spanners or wrenches
    • A61B17/8877Screwdrivers, spanners or wrenches characterised by the cross-section of the driver bit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8875Screwdrivers, spanners or wrenches
    • A61B17/8886Screwdrivers, spanners or wrenches holding the screw head

Abstract

A system for and methods of easily and securely inserting and removing a fastener usable during orthopedic surgery to promote proper healing of injured bone are disclosed. In at least one embodiment, the invention provides a system for positive, complete tri-modal retention of a bone media fastener element by a bone media fastener driver element so that three types of positional divergence of the driver relative to the fastener—bi-axial, bi-rotational, and bi-lateral—may be prevented. At least one embodiment of a bone media fastener apparatus may comprise a shaft element, a threaded bone engagement element, and a head element that itself may comprise a fastener-side, positive, complete tri-modal retention element that is engageable with a driver-side, positive, complete tri-modal retention element of a bone media fastener driver element to prevent bi-lateral divergence, bi-rotational divergence, and bi-axial divergence.

Description

    BACKGROUND OF THE INVENTION
  • Generally, this invention relates to a system for and methods of easily and securely inserting and removing a fastener that in at least one application is used during orthopedic surgery to promote proper healing of injured bone. Specifically, the invention focuses upon a fastener and a corresponding driver that is usable to insert and remove the fastener in a manner that reduces the chance of slippage of the driver from the fastener—a problem in orthopedics, other branches of health care, and fastening generally. [0001]
  • Fasteners with threads, or screw fasteners, are commonly used to hold broken bones in place during healing and to attach orthopedic healing aids such as plates or rods to broken bones. In many healing applications, the fastener should have the ability to draw pieces of the bone into intimate contact, and/or the orthopedic healing aid into intimate contact with the bone(s) or bone pieces. The torque required to achieve this may be delivered by an insertion device or driver. Ideally, the fastening system will allow for quick insertion to minimize the time required for the procedure and will have sufficient engagement with the insertion device to prevent positional divergence such as slippage of the driver from the fastener which could cause the fastener to be improperly positioned and/or cause additional damage to the bone, among other problems. Additionally, the system will allow for secure non-slip insertion of the fastener without requiring an improperly high compressive force be imparted by a user to the driver. Finally, a removal device (which may be the same as the insertion device) must be able to securely reengage the fastener so it can be removed from the bone with a minimized chance of positional divergence of the driver from the fastener, also without requiring the application of an improperly high compressive force into the fastener to assure secure removal of the fastener. [0002]
  • Efforts in the driver/fastener system field have tended to focus on the design of thread systems to ensure intimate contact of bone fragments and/or of the orthopedic healing aid with bone(s). Examples of these efforts may be illustrated in U.S. Pat. Nos. 6,022,352, 6,083,227, and 5,871,486. While these technologies address an important problem, considerably less effort has been applied to the equally important problem of quickly, safely, and securely inserting and removing bone screw fasteners. Examples of efforts in this specific area are illustrated in U.S. Pat. Nos. 5,885,286; 6,048,343; 6,183,472; and 5,997,538. Several of these approaches are complex mechanical assemblies consisting of many small parts which may be difficult to assemble and manipulate, and that pose a hazard to the patient during orthopedic surgery. Often, the physician must take additional time to use these devices and ensure their proper assembly and disassembly. Thus, there is a need for a fastener/driver device that is not a complex mechanical assembly and that exhibits a positive, non-slip engagement between driver and fastener. Although this problem is well known on orthopedics and other fields of endeavor, the need for a simple system that facilitates the rapid, reliable and secure insertion and removal of fasteners has not been adequately met. [0003]
  • SUMMARY OF THE INVENTION
  • The present invention includes a variety of aspects and features which may be applied in various ways depending on the exact application or need to be addressed. At least one embodiment of his invention involves a system for the rapid and reliable insertion and removal of fasteners for use in orthopedic surgery and other applications requiring such capability. This system may include a fastener and a tool such as a driver that is usable for insertion and removal of the fastener. In one basic form, the invention provides a system for positive, complete tri-modal retention of a fastener by a fastener driver so that during operation of the system in a fully engaged configuration and under design loads, three types of positional divergence of the driver relative the fastener—bi-axial, bi-rotational, and bi-lateral—are prevented. Thus, relative to conventional fastener/driver systems, the fastener can be inserted and removed by the driver more quickly and with a reduced possibility of slippage, stripping, or other hazardous, undesired positional divergence of the driver from the fastener. The system is designed to better meet the needs of both the patient and the physician in orthopedic surgery and other areas of health care. It may also find use in other fastening applications such as structural assembly, whether in fields such as aerospace, aircraft or carpentry, as but a few examples. [0004]
  • An object of at least one embodiment of the invention is to provide an insertion/removal device such as a bone fastener driver that can be easily inserted into the head of a bone fastener, with a resultant positive, complete tri-modal retention of the driver to the fastener, where positive, complete tri-modal retention may include the prevention of each bi-lateral, bi-rotational, and bi-axial divergence of the driver from the fastener. [0005]
  • Another goal of at least one embodiment of the invention is to provide a positive retention driver/fastener system that is operable by a user who prefers to (or must) use only one hand. [0006]
  • A further feature of at least one embodiment of this invention may be to provide a positive retention element that may also facilitate proper alignment of the driver with the fastener. [0007]
  • Another goal of the invention is to enable the application of increased driving torques when necessary or desired without resulting in positional divergence of the driver from the fastener. Such increased torques may not have been possible with prior systems whose designs may have resulted in positional divergence (such as bi-axial, bi-lateral, or bi-rotational slippage) of the driver from the fastener during higher applied torque load operation, or whose designs may have required the application of an improperly high compressive axial force to assure secure driver-to-fastener engagement throughout the driving process.[0008]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • All drawings are intended merely as examples of at least one embodiment. [0009]
  • FIG. 1[0010] a is a view of at least one embodiment of the fastener apparatus.
  • FIG. 1[0011] b is a view of at least one embodiment of the fastener apparatus.
  • FIG. 1[0012] c is a view of at least one embodiment of the fastener apparatus showing different elements.
  • FIG. 2 is a view of at least one embodiment of the fastener driver apparatus, including close up views of different embodiments of the end of the fastener driver apparatus. [0013]
  • FIG. 3 is another view of at least one embodiment of the fastener driver apparatus, including close up views of different embodiments of the end of the fastener driver apparatus. [0014]
  • FIG. 4 is a view of at least one embodiment of the fastener and driver system. [0015]
  • FIG. 5[0016] a is a view of at least one embodiment of the fastener and driver system in an engaged configuration.
  • FIG. 5[0017] b is a view of at least one embodiment of the fastener and driver system in an engaged configuration, and including an orthopedic plate.
  • FIG. 5[0018] c is a view of at least one embodiment of the fastener and driver system in an engaged configuration, and including an orthopedic rod.
  • FIG. 6 is a view of at least one embodiment of the fastener as it is used to fasten an orthopedic plate. [0019]
  • FIG. 7 is a view of at least one embodiment of the fastener and driver system. [0020]
  • FIG. 8 is a view of at least one embodiment of the fastener and driver system in an engaged configuration. [0021]
  • FIG. 9 is a view of at least one embodiment of the fastener and driver system. [0022]
  • FIG. 10 is a view of at least one embodiment of the fastener and driver system. [0023]
  • FIG. 11 is a view of at least one embodiment of the fastener and driver system. [0024]
  • FIG. 12 is a view of at least one embodiment of the fastener apparatus.[0025]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • At least one embodiment of a bone media fastener apparatus [0026] 1 may comprise a shaft element 2, a threaded bone engagement element 3 responsive to the shaft element 2, and a head element 4 responsive to the shaft element 2. The head element 4 may have a larger width dimension 5 than does the threaded bone engagement element 3 and the shaft element 2, and may comprise a fastener-side, positive, complete tri-modal retention element 6 that is engageable with a driver-side, positive, complete tri-modal retention element 7 of a bone media fastener driver element 8. This fastener-side, positive, complete tri-modal retention element may prevent bi-lateral divergence 9, bi-rotational divergence 10, and bi-axial divergence 11. Note that in at least one embodiment, each of these terms refer to driver-from-fastener divergence. The terms “bone”, “bone media”, and “bone medium” may refer to bone, bone fragments, osseous tissue, fibrous connective tissue, and/or calcified tissue. As long as at least one of the two or more parts that are to be fastened is bone or bone media (as but two examples, one part may be an orthopedic plate 62 or rod 63), then the term bone or bone media is properly applicable. Bi-lateral divergence 9 may refer to positional divergence or motion of the driver away from the fastener in a lateral direction. Note that bi-lateral divergence prevention may not only refer to prevention of divergence in either of the two directions along any slot-like receptors 15 that either the fastener 22 or the driver 14 may comprise, but may also include prevention of lateral divergence in other directions. Bi-rotational divergence 10 may refer to angular displacement of the driver relative to the fastener in either a clockwise or counterclockwise direction. Bi-axial divergence 11 may refer to positional divergence or motion of the driver 14 away from or towards the fastener 22 in an axial direction, where axial direction may refer to along the length axis 35,29 of the driver 14 and/or fastener 22.
  • The fastener-side, positive, complete tri-modal retention element [0027] 6 may comprise a fastener-side, positive complete tri-modal obstructive retention element 101. The term obstructive retention indicates that the retention of the driver 14 by (or to) the fastener 22 is achieved primarily through obstruction of at least one part by at least one other part, as opposed to through friction between parts. The mere presence of some friction will not render inapplicable the characterization of a retention element as obstructive, as the term obstructive merely indicates that more than half of the retention force is achieved through obstruction instead of friction. Frictional retention is deemed to occur whenever at least one of two substantially parallel contacting surfaces is prevented from moving in a direction parallel to the plane of the contacting surfaces by a force that compresses the contacting surfaces against one another. Note also that, e.g., two contacting spheres can be prevented from moving relative to one another by frictional (or frictive) retention because the contacting surfaces are substantially parallel (notwithstanding the fact that the surfaces of which the contacting surfaces are a part are not planar).
  • The fastener-side, positive complete tri-modal retention element [0028] 6, in addition to the fastener-side positive complete tri-modal obstructive retention element 101, may comprise a fastener-side bi-lateral divergence prevention element 102, a fastener-side, bi-rotational divergence prevention element 103, and a fastener-side, bi-axial divergence prevention element 104. The fastener-side bi-lateral divergence prevention element 102 may be any part or element (including one shaped to create a void, space, slot, recess or receptor) located on the fastener 22 that is usable to prevent bi-lateral divergence 9; the fastener-side, bi-rotational divergence prevention element 103 may be any part or element (including one shaped to create a void, space, slot, recess or receptor) located on the fastener 22 that is usable to prevent bi-rotational divergence 10; and the fastener-side, bi-axial divergence prevention element 104 may be any part or element (including one shaped to create a void, space, slot, recess or receptor) located on the fastener 22 that is usable to prevent bi-axial divergence 11. These elements (as well as any other elements presented in the claims) are not necessarily different and discrete elements (although they may be), but instead two or more elements may be the same structural part, e.g. Of course, certain claims may limit certain elements as discrete elements, or may limit one element as comprising one or more other elements. For example, in at least one embodiment, at least a portion of the fastener-side bi-lateral divergence prevention element 102 may comprise a portion of the fastener-side bi-axial divergence prevention element 104, as may be the case where, e.g., an extendable driver part 67 is extendable into a receptor located on the fastener and the extendable driver part end 141 contacts the fastener receptor bottom 142 in an extended configuration 58.
  • The fastener-side bi-lateral divergence prevention element [0029] 102 may comprise a bi-lateral divergence prevention receptor element 12, which may be engageable with an extendable, bi-lateral divergence prevention element 13 of the driver-side, positive retention element 7 to prevent bi-lateral divergence 9. The term extendable may indicate that the referenced element or part is extendable relative to a device such as the driver 14 that the extendable element 13 is a part of. The fastener-side, bi-rotational divergence prevention element 103, and the fastener-side, bi-axial divergence prevention element 104 may together form a fastener-side, combined bi-rotational and bi-axial divergence prevention element 16. This fastener-side combined element 16 may be engageable with a driver-side, combined bi-rotational and bi-axial divergence prevention element 17 of the driver-side, positive retention element 7 of the bone media fastener driver element 8 to prevent bi-rotational and bi-axial divergence 10, 11.
  • In at least one embodiment, at least a portion of the fastener-side bi-lateral divergence prevention element [0030] 102 may comprise a portion of the fastener-side bi-axial divergence prevention element 104. Further, at least a portion of the bi-lateral divergence prevention receptor element 12 may comprise a portion of the fastener-side bi-axial divergence prevention element 104, as may be the case where, e.g., an extendable driver part 67 is extendable into a receptor located on the fastener and the extendable driver part end 141 contacts the fastener receptor bottom 142 in an extended configuration 58.
  • Additionally, at least a portion of the fastener-side bi-lateral divergence prevention element [0031] 102 may comprise a portion of the fastener-side, combined bi-rotational and bi-axial divergence prevention element 16. Also, the bi-lateral divergence prevention receptor element 12 may comprise a portion of the fastener-side, combined bi-rotational and bi-axial divergence prevention element 16. In any of these designs, the fastener-side bi-lateral divergence prevention element 102 may be adapted and dimensioned to interact with a driver part in order to prevent at least some bi-axial divergence (such as movement of the driver 14 towards the fastener 22 along a driver and/or fastener axis 35, 29). Such a design may allow for a tighter retention fit upon engagement of the driver 14 with the fastener 22, including a design where the driver part that the fastener-side bi-lateral divergence prevention element 102 interacts with is an extendable, bi-lateral divergence prevention element 13 that is responsive to an incrementally adjusting engagement activation element 47.
  • The fastener-side bi-axial divergence prevention element may comprise an axis-orthogonal appendage receptor element [0032] 18 established at least partially along a diameter 19 of the fastener face 20; the axis-orthogonal appendage receptor element 18 may comprise at least two distally divergent, diameter-parallel walls 21. The term axis-orthogonal may indicate that the length axis of the referenced term is orthogonal or perpendicular to the driver length axis 35 or fastener length axis 29, whichever device the referenced term is a part of. The term distally is used to indicate in a direction away from the attachment of the driver 14 to the fastener 22, and although the precise location of attachment between the two may be a general area 23 at the terminus of each 24, 25, the very end 26, 27 of each of the termini 24, 25 is deemed the attachment for the purposes of clarity. Thus, distally divergent walls diverge in the direction away from the very end of the relevant device (in the immediately preceding case, the fastener 22). It is important to note that walls can be diameter-parallel walls even though they extend along only a portion of the diameter. The axis-orthogonal appendage receptor element 18 may be adapted to surround at least a portion 28 of the bi-lateral divergence prevention receptor element 12 and may be symmetric about a fastener length axis 29. As used here, symmetric about a fastener length axis 29 indicates that the referenced part or element may be the same on one side of the axis as it is on the other side.
  • It is important to understand that an element that acts to prevent divergence in any direction need not be able to prevent divergence under all forces, but only under design forces—those forces that might be expected in a certain application. For example, an axis-orthogonal appendage receptor element [0033] 18 may prevent bi-axial divergence 11 during orthopedic surgery under a tension load of two lbs. applied by the driver to the fastener, but may not prevent bi-axial divergence 11 under a tension load of two-hundred lbs. because application of such an extreme force is not to be expected during orthopedic surgery.
  • In at least one embodiment of the bone fastener apparatus [0034] 1, the axis-orthogonal appendage receptor element 18 may be adapted to surround at least a portion of the fastener-side bi-lateral divergence prevention element 102. Further, the bi-lateral divergence prevention receptor element 12 may comprise a circular cross-sectional bi-lateral divergence prevention receptor element 30, or it may comprise a non-circular cross-sectional bi-lateral divergence prevention receptor element 31. As such a non-circular cross-sectional bi-lateral divergence prevention receptor element 31 may be usable to prevent bi-rotational divergence 10 of the driver from the fastener upon engagement with a non-circular driver part, the fastener-side, bi-rotational divergence prevention element 103 may be said to comprise at least a portion of the non-circular cross-sectional bi-lateral divergence prevention receptor element 31. Further, the bi-lateral divergence prevention receptor element 12 may be engageable with a tapered, extendable, bi-lateral divergence prevention element 32 of the driver-side, positive complete tri-modal retention element 7 (regardless of the cross-sectional shape of the extendable, bi-lateral divergence prevention receptor element 12). The taper may also be termed a chamfer. In at least one embodiment of the bone fastener apparatus 1, the bi-lateral divergence prevention receptor element 12 may also exhibit a depth 36 along the fastener length axis 29 that is approximately the same as the depth 37 of the axis-orthogonal appendage receptor element 18 along the fastener length axis.
  • It is important to note that in a preferred embodiment, the bone fastener apparatus [0035] 1 may be a single component which may be made by a variety of means including machining, casting, molding, or other techniques. It may be, e.g., of a generally cylindrical shape 33 into which may be formed threads 34 of various types appropriate to the specific application. The disclosure should also be understood to provide support also for, a more generally applicable fastener apparatus 49 that, as described, is not limited by any bone or orthopedic related terms.
  • The invention also includes a bone media fastener driver apparatus [0036] 38 alone and in combination with the bone media fastener apparatus 1. At least one embodiment of a bone media fastener driver apparatus 38 may comprise an applied force receptor element 39, a force-to-bone fastener transfer element 40 (which may be elongated) that is responsive to the applied force receptor element 39, and a driver-side, positive complete tri-modal retention element 7 responsive to the force-to-bone fastener transfer element and engageable with the fastener-side, positive complete tri-modal retention element 6. The driver-side, positive complete tri-modal retention element 7 may comprise a driver-side, positive complete tri-modal obstructive retention element 110. Either type of driver-side complete tri-modal retention element (7 or 110) may comprise a driver-side bi-lateral divergence prevention element 111, a driver-side bi-rotational divergence prevention element 112, and a driver-side, bi-axial divergence prevention element 113. The driver-side bi-lateral divergence prevention element 111 may be any part or element (including one that is extendable) located on the driver 14 that is usable to prevent bi-lateral divergence 9; the driver-side, bi-rotational divergence prevention element 112 may be any part or element located on the driver 14 that is usable to prevent bi-rotational divergence 10; and the driver-side, bi-axial divergence prevention element 113 may be any part or element located on the driver 14 that is usable to prevent bi-axial divergence 11. The driver-side bi-lateral divergence prevention element 111 may comprise an extendable bi-lateral divergence prevention element 13 that is engageable with a bi-lateral divergence prevention receptor element 12 of the fastener-side, positive complete tri-modal retention element 6 of the bone media fastener element 41 to prevent bi-lateral divergence 9. The driver-side bi-lateral divergence prevention element 111, the driver-side bi-rotational divergence prevention element 112, and the driver-side, bi-axial divergence prevention element 113 may each be discrete elements, although in a preferred embodiment, at least two of the three elements are the same part or parts assembly. For example, the driver-side bi-rotational divergence prevention element 112 and the driver-side, bi-axial divergence prevention element 113 together may form a driver-side, combined bi-rotational and bi-axial divergence prevention element 17 that is engageable with a fastener-side, combined bi-rotational and bi-axial divergence prevention element 16 of the fastener-side, positive complete tri-modal retention element 6 of the bone media fastener element 41 to prevent bi-rotational and bi-axial divergence 10, 11.
  • In at least one embodiment, at least a portion of the driver-side bi-lateral divergence prevention element [0037] 111 may comprise a portion of the driver-side bi-axial divergence prevention element 113, as may be the case where, e.g., an extendable driver part 67 is extendable into a receptor located on the fastener 22 and the extendable driver part end 141 contacts the fastener receptor bottom 142 in an extended configuration 58. Further, at least a portion of the extendable bi-lateral divergence prevention element 13 may comprise a portion of the driver-side bi-axial divergence prevention element 113. Additionally, at least a portion of the driver-side bi-lateral divergence prevention element 111 may comprise a portion of the driver-side, combined bi-rotational and bi-axial divergence prevention element 17. Also, the extendable bi-lateral divergence prevention element 13 may comprise a portion of the driver-side, combined bi-rotational and bi-axial divergence prevention element 17. In any of these designs, the driver-side bi-lateral divergence prevention element 111 may be adapted and dimensioned to interact with a fastener part (including a recess, space, slot, void or receptor) in order to prevent at least some bi-axial divergence (such as movement of the driver 14 towards the fastener 22 along a driver and/or fastener axis 35, 29). Such a design may allow for a tighter retention fit upon engagement of the driver 14 with the fastener 22, including the case where the driver part that the fastener-side bi-lateral divergence prevention element 102 interacts with is an extendable, bi-lateral divergence prevention element 13 that is responsive to an incrementally adjusting engagement activation element 47.
  • The driver-side bi-axial divergence prevention element [0038] 113 or the driver-side, combined bi-rotational and bi-axial divergence prevention element 17 may also comprise an axis-orthogonal appendage element 43 such as, e.g., pawls, established at least partially along a diameter of the driver face 44; the axis-orthogonal appendage element 43 may comprise at least two distally convergent, diameter-parallel walls 45. The axis-orthogonal appendage element 43 may be adapted to surround at least a portion of the extendable, bi-lateral divergence prevention element 13 in an extended configuration and may be symmetric about a driver length axis 35.
  • In at least one embodiment, the extendable bi-lateral divergence prevention element [0039] 13 may comprise a non-circular cross-sectional extendable bi-lateral divergence prevention element 57. In such a design, the driver-side, bi-rotational divergence prevention element 112 may comprise at least a portion of the non-circular cross-sectional extendable bi-lateral divergence prevention element 57. The bi-lateral divergence prevention receptor element 12 may be a corresponding non-circular cross-sectional bi-lateral divergence prevention receptor element 31. In any embodiment (regardless of the cross-sectional shape of the extendable, bi-lateral divergence prevention element 13), the extendable, bi-lateral divergence prevention element 13 may be tapered so as to form a tapered, extendable, bi-lateral divergence prevention element 32. By being tapered, the extendable, bi-lateral divergence prevention element 13 may facilitate the axial alignment of the driver 14 with the fastener 22 by improving, upon extension, the axial alignment provided by the user of the apparatus. Further, the extendable, bi-lateral divergence prevention element 13 may be movable along a driver length axis 35.
  • The bone media fastener driver apparatus [0040] 38 may further comprise an engagement activation element 46 to which the extendable, bi-lateral divergence prevention element 13 is responsive. In at least one embodiment, the engagement activation element 46 may be operable by a user (i.e., user operated) and may comprise an incrementally adjusting engagement activation element 47. It may comprise a threaded system 60 and may be operable by a user via a knob 160 or other rotatable part, as but two examples. The disclosure should also be understood to provide support also for a more generally applicable fastener driver apparatus 48 that, as described, is not limited by any bone or orthopedic related terms.
  • In at least one embodiment, the applied force receptor element [0041] 39 may comprise knurling 70. More generally, it may comprise any appropriate treatment or feature to facilitate a proper and secure hand grip. The force-to-bone fastener transfer element 40 may be an elongated force-to-bone fastener transfer element 140 and may have a cylindrical hole 42 established along at least a portion of its length into which may be inserted and inside of which may move the extendable, bi-lateral divergence prevention element 13.
  • A bone media fastener and driver system [0042] 50 may comprise a bone media fastener element 41, a bone media fastener driver element 8, and a positive complete tri-modal retention element 51. The bone media fastener element 41 may comprise a shaft element 2, a threaded bone engagement element 3 that is responsive to the shaft element 2, and a head element 4 that is responsive to the shaft element 2. The bone media fastener driver element 8 may comprise an applied force receptor element 39, and a force-to-bone fastener transfer element 40 responsive to the applied force receptor element 39. The positive complete tri-modal retention element 51 may comprise a positive complete tri-modal obstructive retention element 121. Either the positive complete tri-modal retention element 51 or the positive complete tri-modal obstructive retention element 121 may prevent bi-lateral divergence 9 with a bi-lateral divergence prevention element 130; bi-rotational divergence 10 with a bi-rotational divergence prevention element 131; and bi-axial divergence 11 with a bi-axial divergence prevention element 132. The bi-lateral divergence prevention element 130 may comprise an extendable, bi-lateral divergence prevention element 13.
  • At least one embodiment of the positive retention element [0043] 51 may comprise a discrete bi-lateral divergence prevention element, a discrete bi-rotational divergence prevention element, and a discrete bi-axial divergence prevention element, as there may be discrete elements to prevent each of the three indicated divergent motions. Instead of three discrete elements, the bi-rotational divergence prevention element 131 and the bi-axial divergence prevention element 132 may together form a combined bi-rotational and bi-axial divergence prevention element 55. Any of the three elements may be combined or overlap to some extent, as may any elements indicated in the application. Further, the fact that a second element performs a function that a first element performs does not render inappropriate a reference to the first element according this function.
  • In at least one embodiment, at least a portion of the bi-lateral divergence prevention element [0044] 130 may comprise a portion of the bi-axial divergence prevention element 132, as may be the case where, e.g., an extendable driver part 67 is extendable into a receptor located on the fastener 22 and the extendable driver part end 141 contacts the fastener receptor bottom 142 in an extended configuration 58. Further, at least a portion of the bi-lateral divergence prevention receptor element 12 may comprise a portion of the bi-axial divergence prevention element 132. Additionally, at least a portion of the bi-lateral divergence prevention element 130 may comprise a portion of the combined bi-rotational and bi-axial divergence prevention element 55. Also, the bi-lateral divergence prevention receptor element 12 may comprise a portion of the combined bi-rotational and bi-axial divergence prevention element 55. In any of these designs, the bi-lateral divergence prevention element 130 may be adapted and dimensioned so that a driver part such as the extendable, bi-lateral divergence prevention element 13 interacts with a fastener part such as the bi-lateral divergence prevention receptor element 12 in order to prevent at least some bi-axial divergence (such as movement of the driver 14 towards the fastener 22 along a driver and/or fastener axis 35, 29). Again, such a design may allow for a tighter retention fit upon engagement of the driver 14 with the fastener 22, including the case where the driver part that interacts with a fastener part is an extendable, bi-lateral divergence prevention element 13 that is responsive to an incrementally adjusting engagement activation element 47.
  • The bi-lateral divergence prevention element [0045] 130 may further comprise a bi-lateral divergence prevention receptor element 12 adapted to receive the extendable, bi-lateral divergence prevention element 13. In a preferred embodiment, the bone media fastener driver element 8 may comprise the extendable bi-lateral divergence prevention element 13 and the bone media fastener element 41 may comprise the bi-lateral divergence prevention receptor element 12.
  • In at least one embodiment of the bone media fastener and driver system [0046] 50, the extendable, bi-lateral divergence prevention element 13 may be a circular cross-sectional, extendable, bi-lateral divergence prevention element 56 and the bi-lateral divergence prevention receptor element 12 may be a corresponding circular cross-sectional, bi-lateral divergence prevention receptor element 30. In a different design, the extendable, bi-lateral divergence prevention element 13 may be a non-circular cross-sectional extendable, bi-lateral divergence prevention element 57 and the bi-lateral divergence prevention receptor element 12 may be a corresponding non-circular cross-sectional lateral divergence prevention receptor element 31. In such a non-circular design, the non-circular shape may aid in preventing bi-rotational divergence 10. Thus, the bi-rotational divergence prevention element 131 may be said to comprise at least a portion of the non-circular cross-sectional extendable bi-lateral divergence prevention element 57. Regardless of the shape of the extendable, bi-lateral divergence prevention element 13, the extendable, bi-lateral divergence prevention element 13 may be a tapered, extendable, bi-lateral divergence prevention element 32 and may be movable along a driver length axis 35.
  • In embodiments of the bone media fastener and driver system [0047] 50 having a combined bi-rotational and bi-axial divergence prevention element 55, this element 55 may comprise an axis-orthogonal appendage element 43 and an axis-orthogonal appendage receptor element 18 engageable with the axis-orthogonal appendage element 43. The axis-orthogonal appendage element 43 and the axis-orthogonal appendage receptor element 18 may each be established at least partially along a diameter of a fastener/driver interface 75. The fastener/driver interface 75 may refer to either the fastener end 27 or the driver end 26 that interfaces the corresponding driver end 26 or fastener end 27, respectively. Further, the axis-orthogonal appendage element 43 may comprise at least two distally convergent, diameter-parallel walls 45, as may the axis-orthogonal appendage receptor element 18. In a preferred embodiment, the bone media fastener driver element 8 may comprise the axis-orthogonal appendage element 43 and the bone media fastener element 41 may comprise the axis-orthogonal appendage receptor element 18. Additionally, in a preferred embodiment, the axis-orthogonal appendage element 43 may be adapted to surround at least a portion of the extendable, bi-lateral divergence prevention element 13 in an extended configuration 58 and the axis-orthogonal appendage receptor element 18 may be adapted to surround at least a portion of the bi-lateral divergence prevention receptor element 12.
  • In at least one embodiment, the bi-lateral divergence prevention element [0048] 130 may comprise a fastener axis-to-driver axis alignment facilitation element 59, particularly where the extendable, bi-lateral divergence prevention element is a tapered, extendable, bi-lateral divergence prevention element 32.
  • The bone media fastener and driver system [0049] 50 may further comprise an orthopedic healing aid 61 adapted to respond to the bone media fastener element 41 in an installed configuration. In a preferred embodiment involving the orthopedic healing aid 61, the healing aid 61 is a plate 62 or rod 63 that is placed substantially between the fastener 22 and the bone(s), including bone piece(s).
  • The system [0050] 50 may include an engagement activation element 46 to which the extendable, bi-lateral divergence prevention element 13 is responsive. In at least one embodiment, this engagement activation element 46 is an incrementally adjusting engagement activation element 47, as would be the case if the engagement activation element 46 comprised, e.g., a threaded system 60 aligned along the length of the bone media fastener driver element 8. The disclosure should also be understood to provide support also for a more generally applicable fastener and driver system 65 that, as described, is not limited by any bone or orthopedic related terms.
  • Associated methods are also within the scope of the inventive technology, including methods of using a bone media fastener [0051] 1 and bone media fastener driver 38 in orthopedic surgical application. At least one embodiment of such a method may comprise the steps of establishing a bone media fastener element 41 relative to a bone medium 64, and engaging the bone media fastener element 41 with a bone media fastener driver element 8 to accomplish complete tri-modal retention. Such step of engaging may comprise the steps of engaging to prevent bi-rotational divergence 10, engaging to prevent bi-axial divergence 11 and engaging to prevent bi-lateral divergence 9. In at least one embodiment, the step of engaging the bone media fastener element 41 with a bone media fastener driver element 8 to accomplish complete tri-modal retention may comprise the step of obstructively engaging the bone media fastener element 41 with a bone media fastener driver element 8. The step of engaging to prevent bi-rotational divergence 10 and the step of engaging to prevent bi-axial divergence 11 may be each be accomplished by performing the same driver-to-fastener relative motion, which motion may comprise a fastener end-to-driver end relative lateral aligning motion 66 such as sliding an axis-orthogonal appendage element 43 into an axis-orthogonal appendage receptor element 18 from the side. In at least one embodiment, the step of engaging the bone media fastener element 41 with a bone media fastener driver element 8 to prevent bi-lateral divergence 9 may be accomplished with a driver-to-fastener relative motion that is different from that motion that is used to accomplish each of the steps of engaging the bone media fastener element 41 with a bone media fastener driver element 8 to prevent bi-rotational divergence 10 and engaging the bone media fastener element 41 with a bone media fastener driver element 8 to prevent bi-axial divergence 11. The step of engaging to prevent bi-lateral divergence 11 may comprise a portion of the step of engaging to prevent bi-axial divergence, as may be the case where, e.g., an extendable driver part 67 is extendable into a receptor located on the fastener and the extendable driver part end 141 contacts the fastener receptor bottom 142 in an extended configuration 58.
  • The step of engaging the bone media fastener element [0052] 41 with a bone media fastener driver element 8 to prevent bi-lateral divergence 9 may comprise extending an extendable driver part 67, which step may comprise activating the extendable driver part 67. The step of activating the extendable driver part 67 may comprise activating the extendable driver part 67 after performing the steps of engaging the bone media fastener element 41 with a bone media fastener driver element 8 to prevent bi-rotational divergence 10 and/or engaging the bone media fastener element 41 with a bone media fastener driver element 8 to prevent bi-axial divergence 11.
  • At least one embodiment of the method of using a bone media fastener [0053] 1 and bone media fastener driver 38 in orthopedic surgical application may further comprise the step of applying a torque force 68 to the bone media fastener element 41 by applying the torque force 68 to the bone media fastener driver element 8 after engaging the bone media fastener element 41 with the bone media fastener driver element 8 to accomplish complete tri-modal retention. At least one embodiment of the method may further comprise the step of establishing an orthopedic healing aid 61 substantially between the bone media fastener element 41 and bone media 64. Further, the method of using a bone media fastener 1 and bone media fastener driver 38 in orthopedic surgery may comprise the step of retracting the extendable driver part 67 and performing a fastener end-to-driver end relative lateral dis-aligning motion 69. The disclosure should also be understood to provide support for more generally applicable methods of using a fastener 22 and fastener driver 14 that is not limited by any bone or orthopedic related terms.
  • As can be easily understood from the foregoing, the basic concepts of the present invention may be embodied in a variety of ways. It involves both exercise techniques as well as devices to accomplish the appropriate exercise. In this application, the fastening techniques are disclosed as part of the results shown to be achieved by the various devices described and as steps which are inherent to utilization. They are simply the natural result of utilizing the devices as intended and described. In addition, while some devices are disclosed, it should be understood that these not only accomplish certain methods but also can be varied in a number of ways. Importantly, as to all of the foregoing, all of these facets should be understood to be encompassed by this disclosure. [0054]
  • The discussion included in this nonprovisional application is intended to serve as a basic description. The reader should be aware that the specific discussion may not explicitly describe all embodiments possible; many alternatives may be implicit. It may not explicitly show how each feature or element can actually be representative of a broader function or of a great variety of alternative or equivalent elements. Again, these are implicitly included in this disclosure. Where the invention is described in deviceoriented terminology, each element of the device implicitly performs a function. Apparatus claims may not only be included for the device described, but also method or process claims may be included to address the functions the invention and each element performs. Neither the description nor the terminology is intended to limit the scope of the claims included in this nonprovisional patent application. Specifically, this application is to be understood to include support for non-orthopedic analogs of any claims that are indicated as covering an orthopedic application. For example, it should be understood that new claims that essentially are those existing claims that include elements with the term “bone” or “bone media” without these terms may be added to the case at a later time, and that such new claims also find support in this specification. [0055]
  • It should also be understood that a variety of changes may be made without departing from the essence of the invention. Such changes are also implicitly included in the description. They still fall within the scope of this invention. A broad disclosure encompassing both the explicit embodiment(s) shown, the great variety of implicit alternative embodiments, and the broad methods or processes and the like are encompassed by this disclosure and may be relied upon when drafting the claims for the full patent application. It should be understood that such language changes and broad claiming will be accomplished when the applicant later (filed by the required deadline) seeks a patent filing based on this provisional filing. This nonprovisional patent application seeks examination of as broad a base of claims as deemed within the applicant's right and is designed to yield a patent covering numerous aspects of the invention both independently and as an overall system. [0056]
  • Further, each of the various elements of the invention and claims may also be achieved in a variety of manners. This disclosure should be understood to encompass each such variation, be it a variation of an embodiment of any apparatus embodiment, a method or process embodiment, or even merely a variation of any element of these. Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms or method terms—even if only the function or result is the same. Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action. Similarly, each physical element disclosed should be understood to encompass a disclosure of the action which that physical element facilitates. Regarding this last aspect, as but one example, the disclosure of a “fastener” should be understood to encompass disclosure of the act of “fastening”—whether explicitly discussed or not—and, conversely, were there effectively disclosure of the act of “fastening”, such a disclosure should be understood to encompass disclosure of a “fastener” and even a “means for fastening” Such changes and alternative terms are to be understood to be explicitly included in the description. [0057]
  • Any acts of law, statutes, regulations, or rules mentioned in this application for patent; or patents, publications, or other references mentioned in this application for patent are hereby incorporated by reference. In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with such interpretation, common dictionary definitions should be understood as incorporated for each term and all definitions, alternative terms, and synonyms such as contained in the Random House Webster's Unabridged Dictionary, second edition are hereby incorporated by reference. Finally, all references listed in the list of References To Be Incorporated By Reference In Accordance With The Patent Application or other information statement filed with the application are hereby appended and hereby incorporated by reference, however, as to each of the above, to the extent that such information or statements incorporated by reference might be considered inconsistent with the patenting of this/these invention(s) such statements are expressly not to be considered as made by the applicant(s). [0058]
  • Thus, the applicant(s) should be understood to claim at least: i) each of the fastener and fastener driver devices as herein disclosed and described, ii) the related methods disclosed and described, iii) similar, equivalent, and even implicit variations of each of these devices and methods, iv) those alternative designs which accomplish each of the functions shown as are disclosed and described, v) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, vi) each feature, component, and step shown as separate and independent inventions, vii) the applications enhanced by the various systems or components disclosed, viii) the resulting products produced by such systems or components, and ix) methods and apparatuses substantially as described hereinbefore and with reference to any of the accompanying examples, x) the various combinations and permutations of each of the elements disclosed, and xi) each potentially dependent claim or concept as a dependency on each and every one of the independent claims or concepts presented. In this regard it should be understood that for practical reasons and so as to avoid adding potentially hundreds of claims, the applicant may eventually present claims with initial dependencies only. Support should be understood to exist to the degree required under new matter laws—including but not limited to European Patent Convention Article 123(2) and United States Patent Law 35 USC 132 or other such laws—to permit the addition of any of the various dependencies or other elements presented under one independent claim or concept as dependencies or elements under any other independent claim or concept. Further, if or when used, the use of the transitional phrase “comprising” is used to maintain the “open-end” claims herein, according to traditional claim interpretation. Thus, unless the context requires otherwise, it should be understood that the term “comprise” or variations such as “comprises” or “comprising”, are intended to imply the inclusion of a stated element or step or group of elements or steps but not the exclusion of any other element or step or group of elements or steps. Such terms should be interpreted in their most expansive form so as to afford the applicant the broadest coverage legally permissible. [0059]
  • In drafting any claims at any time in this application, it should also be understood that the applicant has intended to capture as full and broad a scope of coverage as legally available. To the extent that insubstantial substitutes are made, to the extent that the applicant did not in fact draft any claim so as to literally encompass any particular embodiment, and to the extent otherwise applicable, the applicant should not be understood to have in any way intended to or actually relinquished such coverage as the applicant simply may not have been able to anticipate all eventualities; one skilled in the art, should not be reasonably expected to have drafted a claim that would have literally encompassed such alternative embodiments. [0060]
  • Any claims set forth are hereby incorporated by reference as part of this description of the invention, and the applicant expressly reserves the right to use all of or a portion of such incorporated content of such claims as additional description to support any of or all of the claims or any element or component thereof, and the applicant further expressly reserves the right to move any portion of or all of the incorporated content of such claims or any element or component thereof from the description into the claims or vice-versa as necessary to define the matter for which protection is sought by this application or by any subsequent continuation, division, or continuation-in-part application thereof, or to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules, or regulations of any country or treaty, and such content incorporated by reference shall survive during the entire pendency of this application including any subsequent continuation, division, or continuation-in-part application thereof or any reissue or extension thereon. [0061]

Claims (163)

What is claimed is:
1. A bone media fastener and driver system comprising a bone media fastener element that comprises a shaft element, a threaded bone engagement element responsive to said shaft element, and a head element responsive to said shaft element; a bone media fastener driver element that comprises an applied force receptor element and a force-to-bone fastener transfer element responsive to said applied force receptor element; and a positive, complete trimodal retention element.
2. A bone media fastener and driver system as described in claim 1 wherein said positive, complete trimodal retention element comprises a positive, complete trimodal obstructive retention element.
3. A bone media fastener and driver system as described in claim 1 wherein said positive, complete trimodal retention element comprises a bi-lateral divergence prevention element; a bi-rotational divergence prevention element; and a bi-axial divergence prevention element.
4. A bone media fastener and driver system as described in claim 2 wherein said positive, complete tri-modal obstructive retention element comprises a bi-lateral divergence prevention element; a bi-rotational divergence prevention element; and a bi-axial divergence prevention element.
5. A bone media fastener and driver system as described in claim 3 or 4 wherein said bi-lateral divergence prevention element comprises an extendable bi-lateral divergence prevention element.
6. A bone media fastener and driver system as described in claim 5 wherein each said bi-lateral divergence prevention element, said bi-rotational divergence prevention element, and said bi-axial divergence prevention element are discrete elements.
7. A bone media fastener and driver system as described in claim 4 wherein said bi-rotational divergence prevention element and said bi-axial divergence prevention element together form a combined, bi-rotational and bi-axial divergence prevention element.
8. A bone media fastener and driver system as described in claim 5 wherein said bi-rotational divergence prevention element and said bi-axial divergence prevention element together form a combined, bi-rotational and bi-axial divergence prevention element.
9. A bone media fastener and driver system as described in claim 4 wherein at least a portion of said bi-lateral divergence prevention element comprises a portion of said bi-axial divergence prevention element.
10. A bone media fastener and driver system as described in claim 5 wherein at least a portion of said extendable, bi-lateral divergence prevention element comprises a portion of said bi-axial divergence prevention element.
11. A bone media fastener and driver system as described in claim 7 wherein at least a portion of said bi-lateral divergence prevention element comprises a portion of said combined bi-rotational and bi-axial divergence prevention element.
12. A bone media fastener and driver system as described in claim 8 wherein at least a portion of said extendable, bi-lateral divergence prevention element comprises a portion of said combined bi-rotational and bi-axial divergence prevention element.
13. A bone media fastener and driver system as described in claim 5 wherein said bi-lateral divergence prevention element further comprises a bi-lateral divergence prevention receptor element adapted to receive said extendable, bi-lateral divergence prevention element.
14. A bone media fastener and driver system as described in claim 13 wherein said bone media fastener driver element comprises said extendable bi-lateral divergence prevention element and said bone media fastener element comprises said bi-lateral divergence prevention receptor element.
15. A bone media fastener and driver system as described in claim 14 wherein said extendable, bi-lateral divergence prevention element comprises a circular cross-sectional, extendable, bi-lateral divergence prevention element and said bi-lateral divergence prevention receptor element comprises a corresponding circular cross-sectional, bi-lateral divergence prevention receptor element.
16. A bone media fastener and driver system as described in claim 14 wherein said extendable, bi-lateral divergence prevention element comprises a tapered, extendable, bi-lateral divergence prevention element.
17. A bone media fastener and driver system as described in claim 13 wherein said extendable, bi-lateral divergence prevention element comprises a non-circular cross-sectional extendable, bi-lateral divergence prevention element and said bi-lateral divergence prevention receptor element comprises a corresponding non-circular cross-sectional lateral divergence prevention receptor element.
18. A bone media fastener and driver system as described in claim 17 wherein said bi-rotational divergence prevention element comprises at least a portion of said non-circular cross-sectional extendable bi-lateral divergence prevention element.
19. A bone media fastener and driver system as described in claim 5 wherein said extendable, bi-lateral divergence prevention element is movable along a driver length axis.
20. A bone media fastener and driver system as described in claim 8 wherein said combined bi-rotational and bi-axial divergence prevention element comprises an axis-orthogonal appendage element and an axis-orthogonal appendage receptor element engageable with said axis-orthogonal appendage element.
21. A bone media fastener and driver system as described in claim 20 wherein said axis-orthogonal appendage element and said axis-orthogonal appendage receptor element is each established at least partially along a diameter of a fastener/driver interface.
22. A bone media fastener and driver system as described in claim 21 wherein said axis-orthogonal appendage element comprises at least two distally convergent, diameter-parallel walls.
23. A bone media fastener and driver system as described in claim 22 wherein said axis-orthogonal appendage receptor element comprises at least two distally divergent, diameter-parallel walls.
24. A bone media fastener and driver system as described in claim 20 wherein said bone media fastener driver element comprises said axis-orthogonal appendage element and said bone media fastener element comprises said axis-orthogonal appendage receptor element.
25. A bone media fastener and driver system as described in claim 20 wherein said axis-orthogonal appendage element is adapted to surround at least a portion of said extendable, bi-lateral divergence prevention element in an extended configuration and said axis-orthogonal appendage receptor element is adapted to surround at least a portion of said bi-lateral divergence prevention receptor element.
26. A bone media fastener and driver system as described in claim 4 wherein said bi-lateral divergence prevention element comprises a fastener axis-to-driver axis alignment facilitation element.
27. A bone media fastener and driver system as described in claim 16 wherein said bi-lateral divergence prevention element further comprises a fastener axis-to-driver axis alignment facilitation element.
28. A bone media fastener and driver system as described in claim 4 further comprising an orthopedic healing aid adapted to respond to said bone media fastener element in an installed configuration, wherein said orthopedic healing aid is selected from the group of healing aids consisting of: a plate and a rod.
29. A bone media fastener and driver system as described in claim 20 further comprising an orthopedic healing aid adapted to respond to said bone media fastener element in an installed configuration, wherein said orthopedic healing aid is selected from the group of healing aids consisting of: a plate and a rod.
30. A bone media fastener and driver system as described in claim 4 further comprising an engagement activation element to which said extendable, bi-lateral divergence prevention element is responsive.
31. A bone media fastener and driver system as described in claim 30 wherein said engagement activation element comprises an incrementally adjusting engagement activation element.
32. A bone media fastener and driver system as described in claim 20 further comprising an engagement activation element to which said extendable, bi-lateral divergence prevention element is responsive.
33. A bone media fastener and driver system as described in claim 32 wherein said engagement activation element comprises an incrementally adjusting engagement activation element.
34. A bone media fastener apparatus comprising a shaft element, a threaded bone engagement element responsive to said shaft element, and a head element responsive to said shaft element, wherein said head element comprises a fastener-side, positive, complete tri-modal retention element that is engageable with a driver-side, positive, complete tri-modal retention element of a bone media fastener driver element.
35. A bone media fastener apparatus as described in claim 34 wherein said fastener-side, positive complete tri-modal retention element comprises a fastener-side, positive complete tri-modal obstructive retention element.
36. A bone media fastener apparatus as described in claim 34 wherein said fastener-side, positive complete tri-modal retention element comprises a fastener-side bi-lateral divergence prevention element, a fastener-side, bi-rotational divergence prevention element, and a fastener-side, bi-axial divergence prevention element.
37. A bone media fastener apparatus as described in claim 35 wherein said fastener-side, positive complete tri-modal obstructive retention element comprises a fastener-side bi-lateral divergence prevention element, a fastener-side, bi-rotational divergence prevention element, and a fastener-side, bi-axial divergence prevention element.
38. A bone media fastener apparatus as described in claim 36 or 37 wherein said fastener-side bi-lateral divergence prevention element comprises a bi-lateral divergence prevention receptor element.
39. A bone media fastener apparatus as described in claim 37 wherein each said fastener-side bi-lateral divergence prevention element, said fastener-side, bi-rotational divergence prevention element, and said fastener-side, bi-axial divergence prevention element are discrete elements.
40. A bone media fastener apparatus as described in claim 37 wherein said fastener-side, bi-rotational divergence prevention element, and said fastener-side, bi-axial divergence prevention element together form a fastener-side, combined bi-rotational and bi-axial divergence prevention element.
41. A bone media fastener apparatus as described in claim 38 wherein said fastener-side, bi-rotational divergence prevention element, and said fastener-side, bi-axial divergence prevention element together form a fastener-side, combined bi-rotational and bi-axial divergence prevention element.
42. A bone media fastener apparatus as described in claim 37 wherein at least a portion of said fastener-side bi-lateral divergence prevention element comprises a portion of said fastener-side, bi-axial divergence prevention element.
43. A bone media fastener apparatus as described in claim 38 wherein at least a portion of said bi-lateral divergence prevention receptor element comprises a portion of said fastener-side, bi-axial divergence prevention element.
44. A bone media fastener apparatus as described in claim 40 wherein at least a portion of said fastener-side bi-lateral divergence prevention element comprises a portion of said fastener-side, combined bi-rotational and bi-axial divergence prevention element.
45. A bone media fastener apparatus as described in claim 41 wherein at least a portion of said bi-lateral divergence prevention receptor element comprises a portion of said fastener-side, combined bi-rotational and bi-axial divergence prevention element.
46. A bone media fastener apparatus as described in claim 37 wherein said fastener-side, bi-axial divergence prevention element comprises an axis-orthogonal appendage receptor element established at least partially along a diameter of the fastener face.
47. A bone media fastener apparatus as described in claim 46 wherein said axis-orthogonal appendage receptor element comprises at least two distally divergent, diameter-parallel walls.
48. A bone media fastener apparatus as described in claim 47 wherein said axis-orthogonal appendage receptor element is adapted to surround at least a portion of said fastener-side bi-lateral divergence prevention element.
49. A bone media fastener apparatus as described in claim 41 wherein said bi-lateral divergence prevention receptor element comprises a circular cross-sectional bi-lateral divergence prevention receptor element.
50. A bone media fastener apparatus as described in claim 41 wherein said bi-lateral divergence prevention receptor element comprises a non-circular cross-sectional bi-lateral divergence prevention receptor element.
51. A bone media fastener apparatus as described in claim 50 wherein said fastener-side, bi-rotational divergence prevention element comprises at least a portion of said non-circular cross-sectional bi-lateral divergence prevention receptor element.
52. A bone media fastener apparatus as described in claim 38 wherein said bi-lateral divergence prevention receptor element is engageable with a tapered, extendable, bi-lateral divergence prevention element of said driver-side, positive, complete tri-modal retention element.
53. A bone media fastener driver apparatus comprising an applied force receptor element; a force-to-bone fastener transfer element responsive to said applied force receptor element; a driver-side, positive, complete tri-modal retention element responsive to said force-to-bone fastener transfer element and engageable with a fastener-side, positive, complete tri-modal retention element of said bone media fastener element.
54. A bone media fastener driver apparatus as described in claim 53 wherein said driver-side, positive complete tri-modal retention element comprises a driver-side, positive complete tri-modal obstructive retention element.
55. A bone media fastener driver apparatus as described in claim 53 wherein said driver-side, positive complete tri-modal retention element comprises a driver-side bi-lateral divergence prevention element, a driver-side, bi-rotational divergence prevention element, and a driver-side, bi-axial divergence prevention element.
56. A bone media fastener driver apparatus as described in claim 54 wherein said driver-side, positive complete tri-modal obstructive retention element comprises a driver-side bi-lateral divergence prevention element, a driver-side, bi-rotational divergence prevention element, and a driver-side, bi-axial divergence prevention element.
57. A bone media fastener driver apparatus as described in claim 55 or 56 wherein said driver-side bi-lateral divergence prevention element comprises a extendable bi-lateral divergence prevention element.
58. A bone media fastener driver apparatus as described in claim 57 wherein each said driver-side, bi-lateral divergence prevention element, said driver-side, bi-rotational divergence prevention element, and said driver-side, bi-axial divergence prevention element are discrete elements.
59. A bone media fastener driver apparatus as described in claim 53 wherein said driver-side, bi-rotational divergence prevention element and said driver-side bi-axial divergence prevention element together form a driver-side, combined bi-rotational and bi-axial divergence prevention element.
60. A bone media fastener driver apparatus as described in claim 57 wherein said driver-side, bi-rotational divergence prevention element and said driver-side, bi-axial divergence prevention element together form a driver-side, combined bi-rotational and bi-axial divergence prevention element.
61. A bone media fastener driver apparatus as described in claim 56 wherein at least a portion of said driver-side bi-lateral divergence prevention element comprises a portion of said driver-side bi-axial divergence prevention element.
62. A bone media fastener driver apparatus as described in claim 57 wherein at least a portion of said extendable, bi-lateral divergence prevention element comprises a portion of said driver-side, bi-axial divergence prevention element.
63. A bone media fastener driver apparatus as described in claim 59 wherein at least a portion of said driver-side, bi-lateral divergence prevention element comprises a portion of said driver-side, combined bi-rotational and bi-axial divergence prevention element.
64. A bone media fastener driver apparatus as described in claim 60 wherein at least a portion of said extendable, bi-lateral divergence prevention element comprises a portion of said driver-side, combined bi-rotational and bi-axial divergence prevention element.
65. A bone media fastener driver apparatus as described in claim 56 wherein said driver-side, bi-axial divergence prevention element comprises an axis-orthogonal appendage element established at least partially along a diameter of the driver face.
66. A bone media fastener driver apparatus as described in claim 65 wherein said axis-orthogonal appendage element comprises at least two distally convergent, diameter parallel walls.
67. A bone media fastener driver apparatus as described in claim 65 wherein said axis-orthogonal appendage element is adapted to surround at least a portion of said driver-side bi-lateral divergence prevention element.
68. A bone media fastener driver apparatus as described in claim 60 wherein said extendable, bi-lateral divergence prevention element comprises a circular cross-sectional, extendable, bi-lateral divergence prevention element.
69. A bone media fastener driver apparatus as described in claim 57 wherein said extendable bi-lateral divergence prevention element comprises a non-circular cross-sectional extendable bi-lateral divergence prevention element.
70. A bone media fastener driver apparatus as described in claim 69 wherein said driver-side, bi-rotational divergence prevention element comprises at least a portion of said non-circular cross-sectional extendable bi-lateral divergence prevention element.
71. A bone media fastener driver apparatus as described in claim 57 wherein said extendable bi-lateral divergence prevention element comprises a tapered, extendable, bi-lateral divergence prevention element.
72. A bone media fastener driver apparatus as described in claim 53 further comprising an engagement activation element to which said extendable, bi-lateral divergence prevention element is responsive.
73. A bone media fastener driver apparatus as described in claim 72 wherein said engagement activation element comprises an incrementally adjusting engagement activation element.
74. A bone media fastener and driver system comprising the steps of establishing a bone media fastener element; establishing a bone media fastener driver element; and establishing a positive, complete trimodal retention element,
wherein said step of establishing a bone media fastener element comprises the steps of establishing a shaft element, establishing a threaded bone engagement element responsive to said shaft element, and establishing a head element responsive to said shaft element, and
wherein said step of establishing a bone media fastener driver element comprises the step of establishing an applied force receptor element and a force-to-bone fastener transfer element responsive to said applied force receptor element.
75. A bone media fastener and driver system as described in claim 74 wherein said step of establishing a positive, complete trimodal retention element comprises the step of establishing a positive, complete trimodal obstructive retention element.
76. A bone media fastener and driver system as described in claim 74 wherein said step of establishing a positive, complete trimodal retention element comprises the steps of establishing a bi-lateral divergence prevention element; establishing a bi-rotational divergence prevention element, and establishing a bi-axial divergence prevention element.
77. A bone media fastener and driver system as described in claim 75 wherein said step of establishing a positive, complete tri-modal obstructive retention element comprises the steps of establishing a bi-lateral divergence prevention element; establishing a bi-rotational divergence prevention element; and establishing a bi-axial divergence prevention element.
78. A bone media fastener and driver system as described in claim 76 or 77 wherein said steps of establishing a bi-lateral divergence prevention element comprises the step of establishing an extendable bi-lateral divergence prevention element.
79. A bone media fastener and driver system as described in claim 78 wherein said steps of establishing a bi-lateral divergence prevention element, establishing a bi-rotational divergence prevention element, and a establishing a bi-axial divergence prevention element comprise the step of establishing three discrete elements.
80. A bone media fastener and driver system as described in claim 77 wherein said step of establishing a bi-rotational divergence prevention element and said step of establishing a bi-axial divergence prevention element comprise the step of establishing a combined, bi-rotational and bi-axial divergence prevention element.
81. A bone media fastener and driver system as described in claim 78 wherein said step of establishing a bi-rotational divergence prevention element and said step of establishing a bi-axial divergence prevention element comprise the step of establishing a combined, bi-rotational and bi-axial divergence prevention element.
82. A bone media fastener and driver system as described in claim 77 wherein at least a portion of said step of establishing a bi-lateral divergence prevention element comprises a portion of said step of establishing a bi-axial divergence prevention element.
83. A bone media fastener and driver system as described in claim 78 wherein at least a portion of said step of establishing an extendable, bi-lateral divergence prevention element comprises a portion of said step of establishing a bi-axial divergence prevention element.
84. A bone media fastener and driver system as described in claim 80 wherein at least a portion of said step of establishing a bi-lateral divergence prevention element comprises a portion of said step of establishing a combined bi-rotational and bi-axial divergence prevention element.
85. A bone media fastener and driver system as described in claim 81 wherein at least a portion of said step of establishing an extendable, bi-lateral divergence prevention element comprises a portion of said step of establishing a combined bi-rotational and bi-axial divergence prevention element.
86. A bone media fastener and driver system as described in claim 78 wherein said step of establishing a bi-lateral divergence prevention element further comprises the step of establishing a bi-lateral divergence prevention receptor element adapted to receive said extendable, bi-lateral divergence prevention element.
87. A bone media fastener and driver system as described in claim 86 wherein said step of establishing a bone media fastener driver element comprises the step of establishing said extendable bi-lateral divergence prevention element and said step of establishing a bone media fastener element comprises the step of establishing said bi-lateral divergence prevention receptor element.
88. A bone media fastener and driver system as described in claim 87 wherein said step of establishing an extendable, bi-lateral divergence prevention element comprises a the step of establishing a circular cross-sectional, extendable, bi-lateral divergence prevention element and said step of establishing a bi-lateral divergence prevention receptor element comprises the step of establishing a corresponding circular cross-sectional, bi-lateral divergence prevention receptor element.
89. A bone media fastener and driver system as described in claim 87 wherein said step of establishing an extendable, bi-lateral divergence prevention element comprises the step of establishing a tapered, extendable, bi-lateral divergence prevention element.
90. A bone media fastener and driver system as described in claim 86 wherein said step of establishing an extendable, bi-lateral divergence prevention element comprises the step of establishing a non-circular cross-sectional extendable, bi-lateral divergence prevention element and said step of establishing a bi-lateral divergence prevention receptor element comprises the step of establishing a corresponding non-circular cross-sectional lateral divergence prevention receptor element.
91. A bone media fastener and driver system as described in claim 90 wherein said step of establishing a bi-rotational divergence prevention element comprises at least a portion of said step of establishing a non-circular cross-sectional extendable bi-lateral divergence prevention element.
92. A bone media fastener and driver system as described in claim 78 wherein said step of establishing an extendable, bi-lateral divergence prevention element comprises the step of establishing an extendable, bi-lateral divergence prevention element that is movable along a driver length axis.
93. A bone media fastener and driver system as described in claim 81 wherein said step of establishing a combined bi-rotational and bi-axial divergence prevention element comprises the step of establishing an axis-orthogonal appendage element and the step of establishing an axis-orthogonal appendage receptor element engageable with said axis-orthogonal appendage element.
94. A bone media fastener and driver system as described in claim 93 wherein said step of establishing an axis-orthogonal appendage element comprises the step of establishing said axis-orthogonal appendage element at least partially along a diameter of a fastener/driver interface and said step of establishing an axis-orthogonal appendage receptor element comprises the step of establishing said axis-orthogonal appendage receptor element at least partially along a diameter of a fastener/driver interface.
95. A bone media fastener and driver system as described in claim 94 wherein said step of establishing said axis-orthogonal appendage element comprises the step of establishing at least two distally convergent, diameter-parallel walls.
96. A bone media fastener and driver system as described in claim 95 wherein said step of establishing said axis-orthogonal appendage receptor element comprises the step of establishing at least two distally divergent, diameter-parallel walls.
97. A bone media fastener and driver system as described in claim 93 wherein said step of establishing a bone media fastener driver element comprises the step of establishing said axis-orthogonal appendage element and said step of establishing a bone media fastener element comprises the step of establishing said axis-orthogonal appendage receptor element.
98. A bone media fastener and driver system as described in claim 93 wherein said step of establishing an axis-orthogonal appendage element comprises the step of adapting said axis-orthogonal appendage element to surround at least a portion of said extendable, bi-lateral divergence prevention element in an extended configuration and wherein said step of establishing an axis-orthogonal appendage receptor element comprises the step of adapting said axis-orthogonal appendage receptor element to surround at least a portion of said bi-lateral divergence prevention receptor element.
99. A bone media fastener and driver system as described in claim 77 wherein said step of establishing a bi-lateral divergence prevention element comprises the step of establishing a fastener axis-to-driver axis alignment facilitation element.
100. A bone media fastener and driver system as described in claim 89 wherein said step of establishing a bi-lateral divergence prevention element further comprises the step of establishing a fastener axis-to-driver axis alignment facilitation element.
101. A bone media fastener and driver system as described in claim 77 further comprising the step of establishing an orthopedic healing aid that is adapted to respond to said bone media fastener element in an installed configuration, wherein said orthopedic healing aid is selected from the group of healing aids consisting of: a plate and a rod.
102. A bone media fastener and driver system as described in claim 93 further comprising the step of establishing an orthopedic healing aid adapted to respond to said bone media fastener element in an installed configuration, wherein said orthopedic healing aid is selected from the group of healing aids consisting of: a plate and a rod.
103. A bone media fastener and driver system as described in claim 77 further comprising an the step of establishing an engagement activation element to which said extendable, bi-lateral divergence prevention element is responsive.
104. A bone media fastener and driver system as described in claim 103 wherein said step of establishing an engagement activation element comprises the step of establishing an incrementally adjusting engagement activation element.
105. A bone media fastener and driver system as described in claim 93 further comprising the step of establishing an engagement activation element to which said extendable, bi-lateral divergence prevention element is responsive.
106. A bone media fastener and driver system as described in claim 105 wherein said step of establishing an engagement activation element comprises the step of establishing an incrementally adjusting engagement activation element.
107. A bone media fastener method comprising the steps of establishing a shaft element, establishing a threaded bone engagement element responsive to said shaft element, and establishing a head element responsive to said shaft element, wherein said step of establishing a head element comprises the step of establishing a fastener-side, positive, complete tri-modal retention element that is engageable with a driver-side, positive, complete tri-modal retention element of a bone media fastener driver element.
108. A bone media fastener and driver system as described in claim 107 wherein said step of establishing a fastener-side, positive complete tri-modal retention element comprises the step of establishing a fastener-side, positive complete tri-modal obstructive retention element.
109. A bone media fastener and driver system as described in claim 107 wherein said steps of establishing a fastener-side, positive complete tri-modal retention element comprises the step of establishing a fastener-side bi-lateral divergence prevention element, establishing a fastener-side, bi-rotational divergence prevention element, and establishing a fastener-side, bi-axial divergence prevention element.
110. A bone media fastener and driver system as described in claim 108 wherein said steps of establishing a fastener-side, positive complete tri-modal obstructive retention element comprises the step of establishing a fastener-side bi-lateral divergence prevention element, establishing a fastener-side, bi-rotational divergence prevention element, and establishing a fastener-side, bi-axial divergence prevention element.
111. A bone media fastener and driver system as described in claim 109 or 110 wherein said step of establishing a fastener-side bi-lateral divergence prevention element comprises the step of establishing a bi-lateral divergence prevention receptor element.
112. A bone media fastener and driver system as described in claim 110 wherein said steps of establishing a fastener-side bi-lateral divergence prevention element, establishing a fastener-side, bi-rotational divergence prevention element, and establishing a fastener-side, bi-axial divergence prevention element comprise the step of establishing at least three discrete elements.
113. A bone media fastener and driver system as described in claim 110 wherein said step of establishing a fastener-side, bi-rotational divergence prevention element, and said step of establishing a fastener-side, bi-axial divergence prevention element comprise the step of establishing a fastener-side, combined bi-rotational and bi-axial divergence prevention element.
114. A bone media fastener and driver system as described in claim 111 wherein said step of establishing a fastener-side, bi-rotational divergence prevention element, and said step of establishing a fastener-side, bi-axial divergence prevention element together form a fastener-side, combined bi-rotational and bi-axial divergence prevention element.
115. A bone media fastener and driver system as described in claim 110 wherein at least a portion of said step of establishing a fastener-side bi-lateral divergence prevention element comprises a portion of said step of establishing a fastener-side, bi-axial divergence prevention element.
116. A bone media fastener and driver system as described in claim 111 wherein at least a portion of said step of establishing a bi-lateral divergence prevention receptor element comprises a portion of said step of establishing a fastener-side, bi-axial divergence prevention element.
117. A bone media fastener and driver system as described in claim 113 wherein at least a portion of said step of establishing a fastener-side bi-lateral divergence prevention element comprises a portion of said step of establishing a fastener-side, combined bi-rotational and bi-axial divergence prevention element.
118. A bone media fastener and driver system as described in claim 114 wherein at least a portion of said step of establishing a bi-lateral divergence prevention receptor element comprises a portion of said step of establishing a fastener-side, combined bi-rotational and bi-axial divergence prevention element.
119. A bone media fastener and driver system as described in claim 110 wherein said step of establishing a fastener-side, bi-axial divergence prevention element comprises the step of establishing an axis-orthogonal appendage receptor element at least partially along a diameter of the fastener face.
120. A bone media fastener and driver system as described in claim 119 wherein said step of establishing an axis-orthogonal appendage receptor element comprises the step of establishing at least two distally divergent, diameter-parallel walls.
121. A bone media fastener and driver system as described in claim 120 wherein said step of establishing an axis-orthogonal appendage receptor element comprises the step of establishing an axis-orthogonal appendage receptor element that is adapted to surround at least a portion of said fastener-side bi-lateral divergence prevention element.
122. A bone media fastener and driver system as described in claim 114 wherein said step of establishing a bi-lateral divergence prevention receptor element comprises the step of establishing a circular cross-sectional bi-lateral divergence prevention receptor element.
123. A bone media fastener and driver system as described in claim 114 wherein said step of establishing a bi-lateral divergence prevention receptor element comprises the step of establishing a non-circular cross-sectional bi-lateral divergence prevention receptor element.
124. A bone media fastener and driver system as described in claim 123 wherein said step of establishing a fastener-side, bi-rotational divergence prevention element comprises at least a portion of said step of establishing said non-circular cross-sectional bi-lateral divergence prevention receptor element.
125. A bone media fastener and driver system as described in claim 111 wherein said step of establishing a bi-lateral divergence prevention receptor element comprises the step of establishing a bi-lateral divergence prevention receptor element that is engageable with a tapered, extendable, bi-lateral divergence prevention element of said driver-side, positive, complete tri-modal retention element.
126. A bone media fastener driver method comprising the steps of establishing an applied force receptor element; establishing an force-to-bone fastener transfer element responsive to said applied force receptor element; establishing a driver-side, positive, complete tri-modal retention element responsive to said force-to-bone fastener transfer element and engageable with a fastener-side, positive, complete tri-modal retention element of said bone media fastener element.
127. A bone media fastener driver method as described in claim 126 wherein said step of establishing a driver-side, positive complete tri-modal retention element comprises the step of establishing a driver-side, positive complete tri-modal obstructive retention element.
128. A bone media fastener driver method as described in claim 126 wherein said step of establishing a driver-side, positive complete tri-modal retention element comprises the step of establishing a driver-side bi-lateral divergence prevention element, establishing a driver-side, bi-rotational divergence prevention element, and establishing a driver-side, bi-axial divergence prevention element.
129. A bone media fastener driver method as described in claim 127 wherein said step of establishing a driver-side, positive complete tri-modal obstructive retention element comprises the step of establishing a driver-side bi-lateral divergence prevention element, establishing a driver-side, bi-rotational divergence prevention element, and establishing a driver-side, bi-axial divergence prevention element.
130. A bone media fastener driver method as described in claim 128 or 129 wherein said step of establishing a driver-side bi-lateral divergence prevention element comprises the step of establishing an extendable bi-lateral divergence prevention element.
131. A bone media fastener driver method as described in claim 130 wherein said steps of establishing a driver-side, bi-lateral divergence prevention element, establishing a driver-side, bi-rotational divergence prevention element, and establishing a driver-side, bi-axial divergence prevention element comprises the step of establishing three discrete elements.
132. A bone media fastener driver method as described in claim 126 wherein said steps of establishing a driver-side, bi-rotational divergence prevention element and establishing a driver-side bi-axial divergence prevention element comprise the step of establishing a driver-side, combined bi-rotational and bi-axial divergence prevention element.
133. A bone media fastener driver method as described in claim 130 wherein said steps of establishing a driver-side, bi-rotational divergence prevention element and establishing a driver-side, bi-axial divergence prevention element comprise the step of establishing a driver-side, combined bi-rotational and bi-axial divergence prevention element.
134. A bone media fastener driver method as described in claim 129 wherein at least a portion of said step of establishing a driver-side bi-lateral divergence prevention element comprises a portion of said step of establishing a driver-side bi-axial divergence prevention element.
135. A bone media fastener driver method as described in claim 130 wherein at least a portion of said step of establishing an extendable, bi-lateral divergence prevention element comprises a portion of said step of establishing a driver-side, bi-axial divergence prevention element.
136. A bone media fastener driver method as described in claim 132 wherein at least a portion of said step of establishing a driver-side, bi-lateral divergence prevention element comprises a portion of said step of establishing a driver-side, combined bi-rotational and bi-axial divergence prevention element.
137. A bone media fastener driver method as described in claim 133 wherein at least a portion of said step of establishing an extendable, bi-lateral divergence prevention element comprises a portion of said step of establishing a driver-side, combined bi-rotational and bi-axial divergence prevention element.
138. A bone media fastener driver method as described in claim 129 wherein said step of establishing a driver-side, bi-axial divergence prevention element comprises the step of establishing an axis-orthogonal appendage element at least partially along a diameter of the driver face.
139. A bone media fastener driver method as described in claim 138 wherein said step of establishing an axis-orthogonal appendage element comprises the step of establishing at least two distally convergent, diameter parallel walls.
140. A bone media fastener driver method as described in claim 138 wherein said step of establishing an axis-orthogonal appendage element comprises the step of establishing an axis-orthogonal appendage element that is adapted to surround at least a portion of said driver-side bi-lateral divergence prevention element.
141. A bone media fastener driver method as described in claim 133 wherein said step of establishing an extendable, bi-lateral divergence prevention element comprises the step of establishing a circular cross-sectional, extendable, bi-lateral divergence prevention element.
142. A bone media fastener driver method as described in claim 130 wherein said step of establishing an extendable bi-lateral divergence prevention element comprises the step of establishing a non-circular cross-sectional extendable bi-lateral divergence prevention element.
143. A bone media fastener driver method as described in claim 142 wherein said step of establishing a driver-side, bi-rotational divergence prevention element comprises at least a portion of said step of establishing a non-circular cross-sectional extendable bi-lateral divergence prevention element.
144. A bone media fastener driver method as described in claim 130 wherein said step of establishing an extendable bi-lateral divergence prevention element comprises the step of establishing a tapered, extendable, bi-lateral divergence prevention element.
145. A bone media fastener driver method as described in claim 126 further comprising the step of establishing an engagement activation element to which said extendable, bi-lateral divergence prevention element is responsive.
146. A bone media fastener driver method as described in claim 145 wherein said step of establishing an engagement activation element comprises an incrementally adjusting engagement activation element.
147. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application comprising the steps of: establishing a bone media fastener element relative to a bone medium; and engaging said bone media fastener element with a bone media fastener driver element to accomplish complete trimodal retention.
148. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 147 wherein said step of engaging said bone media fastener element with a bone media fastener driver element comprises the step of obstructively engaging said bone media fastener element with a bone media fastener driver element.
149. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 147 or 148 wherein said step of engaging said bone media fastener element with a bone media fastener driver element to accomplish complete trimodal retention comprises the steps of engaging to prevent bi-axial divergence; engaging to prevent bi-rotational divergence; and engaging to prevent bi-lateral divergence.
150. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 149 wherein said step of engaging to prevent bi-rotational divergence and said step of engaging to prevent bi-axial divergence is each accomplished by performing the same driver-to-fastener relative motion.
151. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 150 wherein said step of performing the same driver-to-fastener relative motion comprises the step of performing a fastener end-to-driver end relative bi-lateral aligning motion.
152. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 151 wherein said step of performing a fastener end-to-driver end relative bi-lateral aligning motion comprises the step of sliding an axis-orthogonal appendage element into an axis orthogonal appendage receptor element from the side.
153. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 149 wherein said step of engaging to prevent bi-lateral divergence is accomplished with a driver-to-fastener relative motion that is different from that motion that is used to accomplish each of said steps of engaging to prevent bi-rotational divergence and engaging to prevent bi-axial divergence.
154. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 149 wherein said step of engaging to prevent bi-lateral divergence comprises a portion of said step of engaging to prevent bi-axial divergence.
155. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 150 wherein said step of engaging to prevent bi-lateral divergence comprises a portion of said step of engaging to prevent bi-axial divergence.
156. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 149 wherein said step of engaging to prevent bi-lateral divergence comprises the step of extending an extendable driver part.
157. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 151 wherein said step of engaging to prevent bi-lateral divergence comprises the step of extending an extendable driver part.
158. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 156 wherein said step of extending an extendable driver part comprises the step of activating said extendable driver part.
159. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 157 wherein said step of extending an extendable driver part comprises the step of activating said extendable driver part.
160. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 158 wherein said step of activating said extendable driver part comprises the step of activating said extendable driver part after performing said step of engaging to prevent bi-axial divergence.
161. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 159 wherein said step of activating said extendable driver part comprises the step of activating said extendable driver part after performing said step of engaging to prevent bi-axial divergence.
162. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 147 further comprising the step of applying a torque force to said bone media fastener element by applying said torque force to said bone media fastener driver element after performing said step of engaging said bone media fastener element with a bone media fastener driver element to accomplish complete trimodal retention.
163. A method of using a bone media fastener and bone media fastener driver in orthopedic surgical application as described in claim 147 further comprising the step of establishing an orthopedic healing aid substantially between said bone media fastener element and bone media, wherein said orthopedic healing aid is selected from the group of healing aids consisting of: a plate and a rod.
US10/326,701 2002-12-20 2002-12-20 Bone screw fastener and apparatus for inserting and removing same Expired - Fee Related US6755836B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/326,701 US6755836B1 (en) 2002-12-20 2002-12-20 Bone screw fastener and apparatus for inserting and removing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/326,701 US6755836B1 (en) 2002-12-20 2002-12-20 Bone screw fastener and apparatus for inserting and removing same

Publications (2)

Publication Number Publication Date
US20040122442A1 true US20040122442A1 (en) 2004-06-24
US6755836B1 US6755836B1 (en) 2004-06-29

Family

ID=32507333

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/326,701 Expired - Fee Related US6755836B1 (en) 2002-12-20 2002-12-20 Bone screw fastener and apparatus for inserting and removing same

Country Status (1)

Country Link
US (1) US6755836B1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060149264A1 (en) * 2004-12-20 2006-07-06 Castaneda Javier E Screw locking systems for bone plates
US7780706B2 (en) 2005-04-27 2010-08-24 Trinity Orthopedics, Llc Mono-planar pedicle screw method, system and kit
US8303601B2 (en) 2006-06-07 2012-11-06 Stryker Spine Collet-activated distraction wedge inserter
US8845649B2 (en) 2004-09-24 2014-09-30 Roger P. Jackson Spinal fixation tool set and method for rod reduction and fastener insertion
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US8870928B2 (en) 2002-09-06 2014-10-28 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
US8894657B2 (en) 2004-02-27 2014-11-25 Roger P. Jackson Tool system for dynamic spinal implants
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US8926670B2 (en) 2003-06-18 2015-01-06 Roger P. Jackson Polyaxial bone screw assembly
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US8998960B2 (en) 2004-11-10 2015-04-07 Roger P. Jackson Polyaxial bone screw with helically wound capture connection
US9050139B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9050148B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Spinal fixation tool attachment structure
US9055978B2 (en) 2004-02-27 2015-06-16 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9144444B2 (en) 2003-06-18 2015-09-29 Roger P Jackson Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US9211150B2 (en) 2004-11-23 2015-12-15 Roger P. Jackson Spinal fixation tool set and method
US9216039B2 (en) 2004-02-27 2015-12-22 Roger P. Jackson Dynamic spinal stabilization assemblies, tool set and method
US9308027B2 (en) 2005-05-27 2016-04-12 Roger P Jackson Polyaxial bone screw with shank articulation pressure insert and method
US9358060B2 (en) 2013-07-25 2016-06-07 Zimmer Spine, Inc. Self-retaining driver for a bone screw
US9393047B2 (en) 2009-06-15 2016-07-19 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US9439683B2 (en) 2007-01-26 2016-09-13 Roger P Jackson Dynamic stabilization member with molded connection
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US9504496B2 (en) 2009-06-15 2016-11-29 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
CN106264701A (en) * 2016-08-05 2017-01-04 王成斌 Femoral neck fracture bone grafting instrument
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US9636146B2 (en) 2012-01-10 2017-05-02 Roger P. Jackson Multi-start closures for open implants
US9662143B2 (en) 2004-02-27 2017-05-30 Roger P Jackson Dynamic fixation assemblies with inner core and outer coil-like member
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9907574B2 (en) 2009-06-15 2018-03-06 Roger P. Jackson Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features
US9918745B2 (en) 2009-06-15 2018-03-20 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US10039578B2 (en) 2003-12-16 2018-08-07 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US10039577B2 (en) 2004-11-23 2018-08-07 Roger P Jackson Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US10299839B2 (en) 2003-12-16 2019-05-28 Medos International Sárl Percutaneous access devices and bone anchor assemblies

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377100B2 (en) 2000-12-08 2013-02-19 Roger P. Jackson Closure for open-headed medical implant
US8257402B2 (en) 2002-09-06 2012-09-04 Jackson Roger P Closure for rod receiving orthopedic implant having left handed thread removal
US8282673B2 (en) 2002-09-06 2012-10-09 Jackson Roger P Anti-splay medical implant closure with multi-surface removal aperture
US6726689B2 (en) 2002-09-06 2004-04-27 Roger P. Jackson Helical interlocking mating guide and advancement structure
US8540753B2 (en) 2003-04-09 2013-09-24 Roger P. Jackson Polyaxial bone screw with uploaded threaded shank and method of assembly and use
EP1635723B1 (en) 2003-06-13 2011-08-10 Tyco Healthcare Group LP Multiple member interconnect for surgical instrument and absorbable screw fastener
US8398682B2 (en) 2003-06-18 2013-03-19 Roger P. Jackson Polyaxial bone screw assembly
US6716214B1 (en) 2003-06-18 2004-04-06 Roger P. Jackson Polyaxial bone screw with spline capture connection
US8814911B2 (en) 2003-06-18 2014-08-26 Roger P. Jackson Polyaxial bone screw with cam connection and lock and release insert
US8377102B2 (en) 2003-06-18 2013-02-19 Roger P. Jackson Polyaxial bone anchor with spline capture connection and lower pressure insert
US8257398B2 (en) * 2003-06-18 2012-09-04 Jackson Roger P Polyaxial bone screw with cam capture
US8366753B2 (en) 2003-06-18 2013-02-05 Jackson Roger P Polyaxial bone screw assembly with fixed retaining structure
US8137386B2 (en) 2003-08-28 2012-03-20 Jackson Roger P Polyaxial bone screw apparatus
US7608092B1 (en) 2004-02-20 2009-10-27 Biomet Sports Medicince, LLC Method and apparatus for performing meniscus repair
US8105368B2 (en) 2005-09-30 2012-01-31 Jackson Roger P Dynamic stabilization connecting member with slitted core and outer sleeve
US8292926B2 (en) 2005-09-30 2012-10-23 Jackson Roger P Dynamic stabilization connecting member with elastic core and outer sleeve
US8308782B2 (en) 2004-11-23 2012-11-13 Jackson Roger P Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
US8353932B2 (en) 2005-09-30 2013-01-15 Jackson Roger P Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
US20050216027A1 (en) * 2004-03-24 2005-09-29 Suh Sean S Extraction screwdriver
US20160213411A9 (en) 2004-04-27 2016-07-28 John Isbell Shipp Absorbable Fastener for Hernia Mesh Fixation
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US10092288B2 (en) 2006-02-03 2018-10-09 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US8936621B2 (en) 2006-02-03 2015-01-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7914539B2 (en) 2004-11-09 2011-03-29 Biomet Sports Medicine, Llc Tissue fixation device
US8034090B2 (en) 2004-11-09 2011-10-11 Biomet Sports Medicine, Llc Tissue fixation device
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US20060189993A1 (en) 2004-11-09 2006-08-24 Arthrotek, Inc. Soft tissue conduit device
US7857830B2 (en) 2006-02-03 2010-12-28 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
WO2006052796A2 (en) 2004-11-10 2006-05-18 Jackson Roger P Helical guide and advancement flange with break-off extensions
US7875065B2 (en) 2004-11-23 2011-01-25 Jackson Roger P Polyaxial bone screw with multi-part shank retainer and pressure insert
US10076361B2 (en) 2005-02-22 2018-09-18 Roger P. Jackson Polyaxial bone screw with spherical capture, compression and alignment and retention structures
US20070043379A1 (en) * 2005-08-04 2007-02-22 Medtronic, Inc. Bone screw/driver assembly and method
US8012177B2 (en) 2007-02-12 2011-09-06 Jackson Roger P Dynamic stabilization assembly with frusto-conical connection
US7704271B2 (en) 2005-12-19 2010-04-27 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
US9980753B2 (en) 2009-06-15 2018-05-29 Roger P Jackson pivotal anchor with snap-in-place insert having rotation blocking extensions
US8556938B2 (en) 2009-06-15 2013-10-15 Roger P. Jackson Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
US9216041B2 (en) 2009-06-15 2015-12-22 Roger P. Jackson Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US7905903B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Method for tissue fixation
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9357992B2 (en) 2011-11-10 2016-06-07 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US7959650B2 (en) 2006-09-29 2011-06-14 Biomet Sports Medicine, Llc Adjustable knotless loops
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US10258382B2 (en) 2007-01-18 2019-04-16 Roger P. Jackson Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US8366745B2 (en) 2007-05-01 2013-02-05 Jackson Roger P Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US8475498B2 (en) 2007-01-18 2013-07-02 Roger P. Jackson Dynamic stabilization connecting member with cord connection
US8092500B2 (en) 2007-05-01 2012-01-10 Jackson Roger P Dynamic stabilization connecting member with floating core, compression spacer and over-mold
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US8197518B2 (en) 2007-05-16 2012-06-12 Ortho Innovations, Llc Thread-thru polyaxial pedicle screw system
US7942911B2 (en) 2007-05-16 2011-05-17 Ortho Innovations, Llc Polyaxial bone screw
US7942910B2 (en) 2007-05-16 2011-05-17 Ortho Innovations, Llc Polyaxial bone screw
US7951173B2 (en) 2007-05-16 2011-05-31 Ortho Innovations, Llc Pedicle screw implant system
EP2160158A4 (en) 2007-05-31 2013-06-26 Roger P Jackson Dynamic stabilization connecting member with pre-tensioned solid core
US8016836B2 (en) * 2007-06-19 2011-09-13 Tornier, Inc. Bone screw driver
US8911477B2 (en) 2007-10-23 2014-12-16 Roger P. Jackson Dynamic stabilization member with end plate support and cable core extension
US8007522B2 (en) 2008-02-04 2011-08-30 Depuy Spine, Inc. Methods for correction of spinal deformities
US8075603B2 (en) 2008-11-14 2011-12-13 Ortho Innovations, Llc Locking polyaxial ball and socket fastener
US7947065B2 (en) 2008-11-14 2011-05-24 Ortho Innovations, Llc Locking polyaxial ball and socket fastener
US20100305710A1 (en) 2009-05-28 2010-12-02 Biomet Manufacturing Corp. Knee Prosthesis
US7942909B2 (en) 2009-08-13 2011-05-17 Ortho Innovations, Llc Thread-thru polyaxial pedicle screw system
US8683895B2 (en) * 2010-02-23 2014-04-01 Kensey Nash Corporation Single revolution snap action drive for surgical fasteners
WO2012030712A1 (en) 2010-08-30 2012-03-08 Zimmer Spine, Inc. Polyaxial pedicle screw
US8459155B2 (en) * 2010-09-03 2013-06-11 Smith & Nephew, Inc. Modified fastener and insertion tool
WO2012033532A1 (en) 2010-09-08 2012-03-15 Roger Jackson P Dynamic stabilization members with elastic and inelastic sections
WO2012112986A2 (en) * 2011-02-18 2012-08-23 Intrinsic Medical, Llc Surgical fastener and associated systems and methods
JP5865479B2 (en) 2011-03-24 2016-02-17 ロジャー・ピー・ジャクソン Bone anchor of the polyaxial having a combined joint and pop-mounted Shank
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US9333012B2 (en) 2011-10-25 2016-05-10 Warsaw Orthopedic, Inc. Spinal implant system and method
US8881625B2 (en) 2011-12-05 2014-11-11 Robert Jenkins High speed, high torque screw fasteners and drive systems
US9259217B2 (en) 2012-01-03 2016-02-16 Biomet Manufacturing, Llc Suture Button
US9387025B2 (en) 2012-04-04 2016-07-12 Smith & Nephew, Inc. Bone screw and self-retaining driver
US9782204B2 (en) 2012-09-28 2017-10-10 Medos International Sarl Bone anchor assemblies
US9080586B2 (en) * 2012-11-20 2015-07-14 Min-Sheng Liu D-type screwing assembly for furniture
US9351733B2 (en) 2013-01-18 2016-05-31 Covidien Lp Surgical fastener applier
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9358010B2 (en) 2013-03-12 2016-06-07 Covidien Lp Flex cable and spring-loaded tube for tacking device
US9867620B2 (en) 2013-03-14 2018-01-16 Covidien Lp Articulation joint for apparatus for endoscopic procedures
US9724145B2 (en) 2013-03-14 2017-08-08 Medos International Sarl Bone anchor assemblies with multiple component bottom loading bone anchors
US9775660B2 (en) 2013-03-14 2017-10-03 DePuy Synthes Products, Inc. Bottom-loading bone anchor assemblies and methods
US20140277153A1 (en) 2013-03-14 2014-09-18 DePuy Synthes Products, LLC Bone Anchor Assemblies and Methods With Improved Locking
US9259247B2 (en) 2013-03-14 2016-02-16 Medos International Sarl Locking compression members for use with bone anchor assemblies and methods
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9655621B2 (en) 2013-03-15 2017-05-23 Covidien Lp Surgical instrument for dispensing tacks and solution
US9453526B2 (en) 2013-04-30 2016-09-27 Degen Medical, Inc. Bottom-loading anchor assembly
US9358004B2 (en) 2013-06-28 2016-06-07 Covidien Lp Articulating apparatus for endoscopic procedures
US10085746B2 (en) 2013-06-28 2018-10-02 Covidien Lp Surgical instrument including rotating end effector and rotation-limiting structure
US9351728B2 (en) 2013-06-28 2016-05-31 Covidien Lp Articulating apparatus for endoscopic procedures
US9668730B2 (en) 2013-06-28 2017-06-06 Covidien Lp Articulating apparatus for endoscopic procedures with timing system
US9526498B2 (en) 2013-09-17 2016-12-27 Covidien Lp Surgical device with a trigger lockout mechanism device
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2248054A (en) * 1939-06-07 1941-07-08 Becker Joseph Screw driver
US2329398A (en) * 1941-01-23 1943-09-14 Bernard A Duffy Screw driver
US3604487A (en) * 1969-03-10 1971-09-14 Richard S Gilbert Orthopedic screw driving means
US5312438A (en) * 1993-05-03 1994-05-17 Lanny L. Johnson Suture anchor and method of use
US5354292A (en) * 1993-03-02 1994-10-11 Braeuer Harry L Surgical mesh introduce with bone screw applicator for the repair of an inguinal hernia
US5484440A (en) * 1992-11-03 1996-01-16 Zimmer, Inc. Bone screw and screwdriver
US6183479B1 (en) * 1997-05-22 2001-02-06 Bionx Implants, Oy Installation tool for suture anchor
US6402757B1 (en) * 1999-03-12 2002-06-11 Biomet, Inc. Cannulated fastener system for repair of bone fracture

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339971A (en) 1978-12-13 1982-07-20 Zatorre Alfredo E Fastener and driving tool
US4572039A (en) 1984-05-30 1986-02-25 Warren Desjardins Interlocking lock screw with screw driver
US5582548A (en) 1990-04-10 1996-12-10 Czegledi; Imre Method of manufacture of anti-slip fastener
GB9110778D0 (en) 1991-05-18 1991-07-10 Middleton Jeffrey K Apparatus for use in surgery
US5353667A (en) 1993-04-23 1994-10-11 Wilner David W Combination tool and fastener
US5666831A (en) 1995-05-26 1997-09-16 Mci Corporation Anti-tampering locking system
US5957645A (en) 1997-10-31 1999-09-28 Phillips Screw Company Spiral drive system for threaded fasteners
US5870934A (en) 1997-11-04 1999-02-16 Cullinan; Terrance P. Anti-theft "O" tool and screw set for license plates
US6128983A (en) 1999-01-06 2000-10-10 Arnn; Edward T. Drive tool for fasteners

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2248054A (en) * 1939-06-07 1941-07-08 Becker Joseph Screw driver
US2329398A (en) * 1941-01-23 1943-09-14 Bernard A Duffy Screw driver
US3604487A (en) * 1969-03-10 1971-09-14 Richard S Gilbert Orthopedic screw driving means
US5484440A (en) * 1992-11-03 1996-01-16 Zimmer, Inc. Bone screw and screwdriver
US5354292A (en) * 1993-03-02 1994-10-11 Braeuer Harry L Surgical mesh introduce with bone screw applicator for the repair of an inguinal hernia
US5312438A (en) * 1993-05-03 1994-05-17 Lanny L. Johnson Suture anchor and method of use
US6183479B1 (en) * 1997-05-22 2001-02-06 Bionx Implants, Oy Installation tool for suture anchor
US6402757B1 (en) * 1999-03-12 2002-06-11 Biomet, Inc. Cannulated fastener system for repair of bone fracture

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8870928B2 (en) 2002-09-06 2014-10-28 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
US9144444B2 (en) 2003-06-18 2015-09-29 Roger P Jackson Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US8936623B2 (en) 2003-06-18 2015-01-20 Roger P. Jackson Polyaxial bone screw assembly
US8926670B2 (en) 2003-06-18 2015-01-06 Roger P. Jackson Polyaxial bone screw assembly
USRE46431E1 (en) 2003-06-18 2017-06-13 Roger P Jackson Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US10039578B2 (en) 2003-12-16 2018-08-07 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US10299839B2 (en) 2003-12-16 2019-05-28 Medos International Sárl Percutaneous access devices and bone anchor assemblies
US9050139B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9055978B2 (en) 2004-02-27 2015-06-16 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9662143B2 (en) 2004-02-27 2017-05-30 Roger P Jackson Dynamic fixation assemblies with inner core and outer coil-like member
US8894657B2 (en) 2004-02-27 2014-11-25 Roger P. Jackson Tool system for dynamic spinal implants
US9050148B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Spinal fixation tool attachment structure
US9216039B2 (en) 2004-02-27 2015-12-22 Roger P. Jackson Dynamic spinal stabilization assemblies, tool set and method
US9636151B2 (en) 2004-02-27 2017-05-02 Roger P Jackson Orthopedic implant rod reduction tool set and method
US9532815B2 (en) 2004-02-27 2017-01-03 Roger P. Jackson Spinal fixation tool set and method
US9662151B2 (en) 2004-02-27 2017-05-30 Roger P Jackson Orthopedic implant rod reduction tool set and method
US9918751B2 (en) 2004-02-27 2018-03-20 Roger P. Jackson Tool system for dynamic spinal implants
US8845649B2 (en) 2004-09-24 2014-09-30 Roger P. Jackson Spinal fixation tool set and method for rod reduction and fastener insertion
US8998960B2 (en) 2004-11-10 2015-04-07 Roger P. Jackson Polyaxial bone screw with helically wound capture connection
US9743957B2 (en) 2004-11-10 2017-08-29 Roger P. Jackson Polyaxial bone screw with shank articulation pressure insert and method
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US9522021B2 (en) 2004-11-23 2016-12-20 Roger P. Jackson Polyaxial bone anchor with retainer with notch for mono-axial motion
US9211150B2 (en) 2004-11-23 2015-12-15 Roger P. Jackson Spinal fixation tool set and method
US10039577B2 (en) 2004-11-23 2018-08-07 Roger P Jackson Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces
US9629669B2 (en) 2004-11-23 2017-04-25 Roger P. Jackson Spinal fixation tool set and method
EP1827264A4 (en) * 2004-12-20 2008-12-10 Depuy Products Inc Screw locking systems bone for plates
EP1827264A2 (en) * 2004-12-20 2007-09-05 DePuy Products, Inc. Screw locking systems bone for plates
US8187309B2 (en) 2004-12-20 2012-05-29 Depuy Products, Inc. Screw locking systems for bone plates
US20060149264A1 (en) * 2004-12-20 2006-07-06 Castaneda Javier E Screw locking systems for bone plates
US7780706B2 (en) 2005-04-27 2010-08-24 Trinity Orthopedics, Llc Mono-planar pedicle screw method, system and kit
US8298268B2 (en) 2005-04-27 2012-10-30 Trinty Orthopedics, LLC. Mono-planar pedicle screw method, system and kit
US9308027B2 (en) 2005-05-27 2016-04-12 Roger P Jackson Polyaxial bone screw with shank articulation pressure insert and method
US8303601B2 (en) 2006-06-07 2012-11-06 Stryker Spine Collet-activated distraction wedge inserter
US9439683B2 (en) 2007-01-26 2016-09-13 Roger P Jackson Dynamic stabilization member with molded connection
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US9918745B2 (en) 2009-06-15 2018-03-20 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US9907574B2 (en) 2009-06-15 2018-03-06 Roger P. Jackson Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features
US9717534B2 (en) 2009-06-15 2017-08-01 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US9393047B2 (en) 2009-06-15 2016-07-19 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US9504496B2 (en) 2009-06-15 2016-11-29 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US9636146B2 (en) 2012-01-10 2017-05-02 Roger P. Jackson Multi-start closures for open implants
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US9770265B2 (en) 2012-11-21 2017-09-26 Roger P. Jackson Splay control closure for open bone anchor
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US9931149B2 (en) 2013-07-25 2018-04-03 Zimmer Spine, Inc. Self-retaining driver for a bone screw
US9358060B2 (en) 2013-07-25 2016-06-07 Zimmer Spine, Inc. Self-retaining driver for a bone screw
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
CN106264701A (en) * 2016-08-05 2017-01-04 王成斌 Femoral neck fracture bone grafting instrument

Also Published As

Publication number Publication date
US6755836B1 (en) 2004-06-29

Similar Documents

Publication Publication Date Title
JP4976371B2 (en) Multi-axis connection system
US5380325A (en) Osteosynthesis device for spinal consolidation
KR100687089B1 (en) Screw
US7842073B2 (en) Screw and rod fixation assembly and device
US8257399B2 (en) Anchoring device for anchoring a rod in bones or vertebrae
CA2382033C (en) Multi-axial bone screw assembly
US6004349A (en) Set screw for use with osteosynthesis apparatus
US7722617B2 (en) Surgical instrumentation for rod reduction
KR101154037B1 (en) Receiving part for connecting a shank of a bone anchoring element to a rod and bone anchoring device with such a receiving part
US6858031B2 (en) Multi-axial bone anchor system
US6224596B1 (en) Set screw for use with osteosynthesis apparatus
US8137387B2 (en) Pedicle screw assembly with inclined surface seat
CA2707241C (en) Distal tibia plating system
AU754078B2 (en) Set screw for medical implants
US8197517B1 (en) Frictional polyaxial screw assembly
EP0574517B1 (en) Screw and driver
US6375657B1 (en) Bonescrew
AU687944B2 (en) Variable locking stabilizer anchor seat and screw
EP2231043B1 (en) Dynamic bone fixation element
US6361535B2 (en) Bone screw threaded plug closure with central set screw
JP5138587B2 (en) Adjustable fixing clamp and methods
US8262696B2 (en) Multilevel facet/laminar fixation system
US6203543B1 (en) Device for releasably securing objects to bones
CN101835436B (en) Multi-axial bone anchor assembly
JP4217623B2 (en) Spinal support are combined by clamping means device

Legal Events

Date Code Title Description
AS Assignment

Owner name: HIGH PLAINS TECHNOLOGY GROUP, LLC, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEWIS, DAVID H.;REEL/FRAME:013611/0988

Effective date: 20021219

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20160629