US20040122353A1 - Relay device for transferring information between a sensor system and a fluid delivery system - Google Patents
Relay device for transferring information between a sensor system and a fluid delivery system Download PDFInfo
- Publication number
- US20040122353A1 US20040122353A1 US10/335,256 US33525602A US2004122353A1 US 20040122353 A1 US20040122353 A1 US 20040122353A1 US 33525602 A US33525602 A US 33525602A US 2004122353 A1 US2004122353 A1 US 2004122353A1
- Authority
- US
- United States
- Prior art keywords
- delivery system
- user
- relay device
- fluid delivery
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/172—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
- A61M5/1723—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14244—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
- A61M5/14276—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/10—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
- G16H20/17—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M2005/1401—Functional features
- A61M2005/1405—Patient controlled analgesia [PCA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M2005/14208—Pressure infusion, e.g. using pumps with a programmable infusion control system, characterised by the infusion program
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3507—Communication with implanted devices, e.g. external control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3507—Communication with implanted devices, e.g. external control
- A61M2205/3523—Communication with implanted devices, e.g. external control using telemetric means
Definitions
- Ambulatory pumps and hospital-based fluid delivery systems are used to deliver fluids into the bodies of patients.
- sensor measurements of a patient's physiological characteristics are used to calculate fluid dosage requirements.
- a sensor monitor is used to collect sensor data from a sensor, calibrate the sensor data to generate sensor measurements, and display the sensor measurements.
- the patient or a caregiver manually calculates the required fluid dosage based on the displayed sensor measurements.
- the patient or caregiver programs the pump or fluid delivery system to adjust the fluid dosage.
- BG blood glucose
- a patient's BG level is too high, the patient can inject a “bolus” (dose) of insulin to lower his/her BG level from its present level to a desired target level.
- the patient may inject a bolus of insulin in anticipation of ingesting carbohydrates, thus heading off a sharp rise in his/her BG level.
- a patient or caregiver must measure the patient's blood glucose using a BG monitoring system, such as a continuous glucose measurement system, a test strip meter, a hospital-based measurement system, or an automated intermittent blood glucose measurement system.
- the BG monitoring system When the BG monitoring system has generated a BG measurement, the BG measurement is displayed on the BG monitoring system. Next, the patient or caregiver must visually read and then utilize the BG measurement to manually calculate a required insulin bolus (i.e., the amount of insulin to inject). Finally, once the required insulin bolus is calculated, the patient or caregiver must utilize an insulin delivery device (e.g., infusion pump, injection pen, IV meter, or the like) to deliver the insulin bolus into the patient's body.
- an insulin delivery device e.g., infusion pump, injection pen, IV meter, or the like
- the patient or caregiver must manually enter the BG measurement into an electronic computing device with bolus estimation software for calculating the required insulin bolus (e.g., a computer, the Internet, a personal digital assistant (PDA), or an insulin delivery device, such as an infusion pump, injection pen, IV meter, or the like), which also requires effort by the patient or caregiver and is subject to transcription errors.
- a computer e.g., a computer, the Internet, a personal digital assistant (PDA), or an insulin delivery device, such as an infusion pump, injection pen, IV meter, or the like
- PDA personal digital assistant
- an insulin delivery device such as an infusion pump, injection pen, IV meter, or the like
- an infusion system for infusing a fluid into a user includes a sensor system, a relay device, and a delivery system.
- the sensor system includes a sensor system housing, a sensor coupled to the sensor system housing for producing a signal indicative of a physiological characteristic level of the user, a sensor system processor contained in the sensor system housing for processing the signal indicative of the physiological characteristic level of the user, and a sensor system transmitter contained in the sensor system housing and coupled to the sensor system processor for transmitting one or more communications in a sensor system format.
- the relay device includes a relay device receiver for receiving the communications from the sensor system in the sensor system format, a relay device processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format, and a relay device transmitter for transmitting the converted communications in the delivery system format.
- the fluid delivery system includes a delivery system housing, a delivery system receiver contained in the delivery system housing for receiving the communications from the relay device in the delivery system format, and a delivery system processor contained in the delivery system housing and coupled to the delivery system receiver for processing the communications from the relay device in the delivery system format and controlling an amount of the fluid infused into the user. Further, the amount of the fluid infused into the user is determined based upon data indicative of the physiological characteristic level of the user.
- At least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user.
- the communications including the data indicative of the physiological characteristic level of the user may be automatically transmitted from the sensor system through the relay device and received by the fluid delivery system.
- the fluid delivery system may also include a display device contained in the delivery system housing and coupled to the delivery system processor for automatically displaying to the user the data indicative of the physiological characteristic level of the user.
- the fluid delivery system may further include a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs may cause the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the user interface may be dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the fluid delivery system includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the fluid delivery system may include a display device contained in the housing and coupled to the delivery system processor for displaying to the user a historical trend or graph using the stored data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the fluid delivery system may include a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs may cause the display device to display the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system. Also, at least a portion of the user interface may be dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the fluid delivery system includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system. Further, at least a portion of the user interface may be dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the fluid delivery system includes a user interface for accepting one or more inputs from the user, and the user interface is contained in the delivery system housing and coupled to the delivery system processor. At least one of the inputs programs the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the fluid delivery system includes a bolus estimator used in conjunction with the delivery system processor for estimating the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system, an indication device coupled to the bolus estimator for indicating the estimated amount of fluid to be infused into the user, and a user interface for accepting one or more inputs from the user. At least one of the inputs accepts or modifies the estimated amount of the fluid to be infused into the user.
- the fluid delivery system includes a closed loop algorithm executed by the delivery system processor for automatically determining the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system and causing the fluid delivery system to infuse the determined amount of the fluid into the user.
- the fluid delivery system includes an indication device for indicating when the data indicative of the physiological characteristic level of the user received by the fluid delivery system is above or below a target characteristic value.
- the fluid delivery system includes a delivery system transmitter contained in the delivery system housing and coupled to the delivery system processor for transmitting one or more communications in the delivery system format.
- the relay device receiver further receives the communications from the fluid delivery system in the delivery system format
- the relay device processor processes the communications from the fluid delivery system and converts the communications for transmission in the sensor system format
- the relay device transmitter transmits the converted communications in the sensor system format.
- the sensor system further includes a sensor system receiver coupled to the sensor system processor for receiving the communications from the relay device in the sensor system format.
- the fluid delivery system includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs generates a request for the data indicative of the physiological characteristic level of the user from the sensor system, at least one of the communications transmitted from the fluid delivery system through the relay device to the sensor system includes the request, and at least one of the communications including the data indicative of the physiological characteristic level of the user is transmitted from the sensor system through the relay device and received by the delivery system in response to the request. The display device then displays the data indicative of the physiological characteristic level of the user received by the fluid delivery system. Additionally, the user interface may be dedicated for interfacing from the fluid delivery system with the sensor system through the relay device. Also, the requested data is the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the data indicative of the physiological characteristic level of the user received by the fluid delivery system is uncalibrated data.
- the fluid delivery system includes a calibration algorithm executed by the delivery system processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user.
- the data indicative of the physiological characteristic level of the user received by the fluid delivery system includes one or more calibrated measurements indicative of the physiological characteristic level of the user.
- the sensor system includes a calibration algorithm executed by the sensor system processor for calibrating the signal indicative of the physiological characteristic level of the user to generate the one or more measurements indicative of the physiological characteristic level of the user, and the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the one or more measurements indicative of the physiological characteristic level of the user.
- the data indicative of the physiological characteristic level of the user received from the sensor system by the relay device is uncalibrated data.
- the relay device includes a calibration algorithm executed by the relay device processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user, and the communications transmitted from the relay device and received by the fluid delivery system include the one or more measurements indicative of the physiological characteristic level of the user.
- At least one of the communications transmitted from the sensor system through the relay device and received by the delivery system includes one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user.
- the sensor system includes a display device coupled to the sensor system processor for displaying data to the user, and a user interface coupled to the sensor system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user obtained by the sensor system. Also, at least another one of the inputs generates the one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
- the sensor system includes a closed loop algorithm executed by the sensor system processor for automatically generating the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
- At least one of the communications transmitted from the sensor system to the relay device includes the data indicative of the physiological characteristic level of the user
- at least one of the communications transmitted from the relay device and received by the fluid delivery system includes one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user
- the relay device includes a display device coupled to the relay device processor for displaying data to the user, and a user interface coupled to the relay device processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user obtained by the sensor system.
- the relay device further includes a closed loop algorithm executed by the relay device processor for automatically generating the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
- the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
- the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
- the communication protocols may utilize different carrier media and/or information packaging for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
- the delivery system processor has a unique identification code
- the sensor system processor has the capability to learn the unique identification code of the delivery system processor.
- the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the delivery system processor to substantially avoid interference with other devices.
- the sensor system processor has a unique identification code
- the delivery system processor has the capability to learn the unique identification code of the sensor system processor.
- the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the sensor system processor to substantially avoid interference with other devices.
- the relay device processor has a unique identification code
- the sensor system processor has the capability to learn the unique identification code of the relay device processor.
- the communications transmitted from the sensor system to the relay device include the unique identification code of the relay device processor to substantially avoid interference with other devices.
- the relay device processor has a unique identification code
- the delivery system processor has the capability to learn the unique identification code of the relay device processor.
- the communications transmitted from the relay device and received by the fluid delivery system include the unique identification code of the relay device processor to substantially avoid interference with other devices.
- the relay device is coupled to the delivery system housing. In other embodiments, the relay device is contained in the delivery system housing. In still other embodiments, the relay device is coupled to the sensor system housing. In further embodiments, the sensor system is a glucose monitoring system, and the fluid delivery system is an insulin infusion device.
- a relay device transfers information between a sensor system and a fluid delivery system.
- the sensor system measures a physiological characteristic level of a user, and the fluid delivery system infuses a fluid into the user.
- the relay device includes a sensor system receiver for receiving one or more communications from the sensor system in a sensor system format, a processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format, and a delivery system transmitter for transmitting the converted communications in the delivery system format to the fluid delivery system.
- the relay device includes a delivery system receiver for receiving one or more communications from the fluid delivery system in the delivery system format.
- the processor further processes the communications from the fluid delivery system and converts the communications for transmission in the sensor system format.
- the relay device also includes a sensor system transmitter for transmitting the converted communications in the sensor system format to the sensor system.
- at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user.
- at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include one or more commands for programming an amount of the fluid to be infused into the user based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
- At least one of the communications transmitted from the sensor system to the relay device include data indicative of the physiological characteristic level of the user
- at least one of the communications transmitted from the relay device and received by the fluid delivery system include one or more commands for programming an amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user
- the relay device may include a display device coupled to the processor for displaying data to the user, and a user interface coupled to the processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user. Also, at least another one of the inputs generates the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
- the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device to the fluid delivery system.
- the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the relay device to the fluid delivery system.
- the communication protocols may utilize different carrier media and/or information packaging for communications transmitted from the sensor system through the relay device to the fluid delivery system.
- a relay device transfers information between a sensor system and a fluid delivery system.
- the sensor system measures a physiological characteristic level of a user, and the fluid delivery system infuses a fluid into the user.
- the relay device includes a sensor system transceiver for transmitting and receiving one or more communications to and from the sensor system.
- the communications are transmitted and received in a sensor system format.
- the relay device also includes a delivery system transceiver for transmitting and receiving one or more communications to and from the fluid delivery system.
- the communications are transmitted and received in a delivery system format.
- the relay device further includes a processor for processing the communications from the sensor system and the fluid delivery system.
- the processor converts the communications received from the sensor system in the sensor system format for transmission in the delivery system format to the fluid delivery system, and further converts the communications received from the fluid delivery system in the delivery system format for transmission in the sensor system format to the sensor system.
- At least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user.
- at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include one or more commands for programming an amount of the fluid to be infused into the user based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
- At least one of the communications transmitted from the sensor system to the relay device include data indicative of the physiological characteristic level of the user
- at least one of the communications transmitted from the relay device and received by the fluid delivery system include one or more commands for programming an amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user
- the relay device may include a display device coupled to the processor for displaying data to the user, and a user interface coupled to the processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user. Additionally, at least another one of the inputs generates the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
- the sensor system format and the delivery system format utilize different frequencies for communications transmitted between the sensor system and the fluid delivery system through the relay device.
- the sensor system format and the delivery system format utilize different communication protocols for communications transmitted between the sensor system and the fluid delivery system through the relay device.
- the communication protocols may utilize different carrier media and/or information packaging for communications transmitted between the sensor system and the fluid delivery system through the relay device.
- an infusion system for infusing a fluid into a user includes a sensor system and a fluid delivery system.
- the sensor system includes a sensor for producing a signal indicative of a physiological characteristic level of the user, a sensor system processor coupled to the sensor for processing the signal indicative of the physiological characteristic level of the user, and a sensor system transmitter coupled to the sensor system processor for transmitting one or more communications in a sensor system format.
- the fluid delivery system includes a delivery system housing, a relay device contained in the delivery system housing, a delivery system receiver, and a delivery system processor.
- the relay device includes a relay device receiver for receiving the communications from the sensor system in the sensor system format, a relay device processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format, and a relay device transmitter for transmitting the converted communications in the delivery system format.
- the delivery system receiver is contained in the delivery system housing and receives the communications from the relay device in the delivery system format.
- the delivery system processor is also contained in the delivery system housing and is coupled to the delivery system receiver, and processes the communications from the relay device in the delivery system format and controls an amount of the fluid infused into the user. The amount of the fluid infused into the user is determined based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
- At least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user.
- the communications including the data indicative of the physiological characteristic level of the user may be automatically transmitted from the sensor system through the relay device and received by the fluid delivery system.
- the fluid delivery system may also include a display device contained in the delivery system housing and coupled to the delivery system processor for automatically displaying to the user the data indicative of the physiological characteristic level of the user.
- the fluid delivery system includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the fluid delivery system includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the fluid delivery system may include a display device contained in the delivery system housing and coupled to the delivery system processor for displaying to the user a historical trend or graph using the stored data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the fluid delivery system may include a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the fluid delivery system includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the fluid delivery system includes a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs programs the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- the fluid delivery system includes a bolus estimator used in conjunction with the delivery system processor for estimating the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system, an indication device coupled to the bolus estimator for indicating the estimated amount of fluid to be infused into the user, and a user interface for accepting one or more inputs from the user. At least one of the inputs accepts or modifies the estimated amount of the fluid to be infused into the user.
- the fluid delivery system includes a closed loop algorithm executed by the delivery system processor for automatically determining the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system and causing the fluid delivery system to infuse the determined amount of the fluid into the user.
- the fluid delivery system includes an indication device for indicating when the data indicative of the physiological characteristic level of the user received by the fluid delivery system is above or below a target characteristic value.
- the data indicative of the physiological characteristic level of the user received by the fluid delivery system is uncalibrated data
- the fluid delivery system further includes a calibration algorithm executed by the delivery system processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user.
- the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
- the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
- the different communication protocols may utilize different carrier media and/or information packaging for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
- the delivery system processor has a unique identification code
- the sensor system processor has the capability to learn the unique identification code of the delivery system processor.
- the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the delivery system processor to substantially avoid interference with other devices.
- the sensor system processor has a unique identification code
- the delivery system processor has the capability to learn the unique identification code of the sensor system processor.
- the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the sensor system processor to substantially avoid interference with other devices.
- FIG. 1 is a block diagram of a system for transferring information between a blood glucose monitoring system and an infusion pump through a relay device in accordance with an embodiment of the present invention.
- FIG. 2( a )- 2 ( c ) are perspective views of a blood glucose monitoring system in accordance with embodiments of the present invention.
- FIG. 3( a ) is a perspective view of an external infusion pump in accordance with an embodiment of the present invention.
- FIG. 3( b ) is a simplified block diagram of an external infusion pump in accordance with an embodiment of the present invention.
- FIGS. 4 ( a )- 5 ( f ) are block diagrams of a system for transferring information between a blood glucose monitoring system and an infusion pump through a relay device in accordance with embodiments of the present invention.
- FIGS. 6 ( a )- 6 ( d ) are perspective views of a relay device in accordance with embodiments of the present invention.
- FIGS. 7 ( a )- 7 ( c ) are perspective views of a relay device placed on a body of a user in accordance with embodiments of the present invention.
- FIGS. 8 ( a )- 8 ( c ) are perspective views of a relay device placed on an infusion pump in accordance with embodiments of the present invention.
- FIG. 8( d ) is a cut-away perspective view of an infusion pump with a relay device included in the infusion pump in accordance with another embodiment of the present invention.
- FIGS. 9 ( a )- 9 ( e ) are block diagrams of a relay device in accordance with embodiments of the present invention.
- FIG. 10 is a block diagram of a system for transferring information between a blood glucose monitoring system and an infusion pump using a relay device incorporated into the infusion pump in accordance with another embodiment of the present invention.
- FIG. 11 is a block diagram of a system for transferring information between a blood glucose monitoring system and an infusion pump using a relay device incorporated into the infusion pump in accordance with yet another embodiment of the present invention.
- FIG. 12 is a block diagram of a system for transferring information between a blood glucose monitoring system and an infusion pump using a relay device incorporated into the infusion pump in accordance with still another embodiment of the present invention.
- the invention is embodied in a relay device for transferring information between a sensor system for measuring a physiological characteristic level of a user's body and a fluid delivery system for delivering fluid into the user's body.
- the relay device receives information from one system in a first format, converts the information into a second format appropriate for the other system, and then transmits the converted information to the other system. Therefore, the relay device enables communication between the sensor system and the fluid delivery system, even if the systems are not developed in conjunction with one another. For example, sensor data or measurements may be communicated from the sensor system via the relay device to the fluid delivery system, and then utilized to adjust the amount of fluid delivered by the fluid delivery system into the user's body.
- the relay device encourages the user or caregiver to utilize the sensor data or measurements in order to adjust the amount of fluid delivered into the user's body by the fluid delivery system. Further, the sensor measurements may be displayed on the fluid delivery system for the user or caregiver to see. Therefore, the relay device allows the user or caregiver to interface with the sensor system (e.g., view the sensor measurements) utilizing a single device, the fluid delivery system.
- Particular embodiments are directed toward use of ambulatory sensor and fluid delivery systems that are programmed and adjusted primarily by the user or a caregiver, such as the user's parent.
- Other embodiments are directed toward use of hospital-based sensor and fluid delivery systems that are programmed and adjusted primarily by a caregiver, such as the user's physician or nurse.
- the sensor system is a blood glucose (BG) monitoring system, which utilizes a sensor placed in a user to automatically measure the user's BG level, either periodically or continuously.
- the sensor may measure additional physiological characteristic levels of the user, such as blood oxygen, temperature, and the like.
- the sensor may be implanted in and/or through subcutaneous, dermal, sub-dermal, inter-peritoneal, or peritoneal tissue, and may be a sensor in contact with the user's body fluid, such as the user's blood, interstitial fluid, and the like.
- the fluid delivery system is an insulin delivery device, such as an external insulin infusion pump, which regulates the amount of insulin delivered into the user's body.
- the relay device receives information from one system in a first format, converts the information into a second format appropriate for the other system, and then transmits the converted information to the other system.
- the relay device may receive BG data or measurements from the BG monitoring system in a sensor system format (e.g., at a frequency of 131 kilohertz, utilizing radio frequency (RF) carrier media, in packets of 107 bytes), convert such data or measurements into a delivery system format appropriate for the insulin infusion pump (e.g., to a frequency of 916 megahertz, utilizing infrared (IR) carrier media, in packets of 71 bytes), and then transmit such converted data or measurements to the insulin infusion pump.
- a sensor system format e.g., at a frequency of 131 kilohertz, utilizing radio frequency (RF) carrier media, in packets of 107 bytes
- RF radio frequency
- IR infrared
- the sensor system may include other types of sensors, such as optical, enzymatic, fluorescent, or the like.
- the sensor system may measure the user's BG level only when requested by the user, or a BG meter may be utilized to measure the user's BG level based on a sampling of the user's blood.
- the sensor system may measure other physiological characteristic levels of the user, such as heart rate, blood oxygen, pH, peroxide, respiratory rate, body temperature, blood pressure, perspiration, brain wave activity, cholesterol level, ketone level, medication concentration, viral load (e.g., HIV), and the like.
- the sensor system may also include multiple sensors—one or more sensors to measure the user's BG level and one or more sensors to measure such other physiological characteristic levels of the user.
- the sensor system may measure the physiological characteristic levels of the user from body fluids other than blood, such as interstitial fluid, spinal fluid, saliva, urine, tears, sweat, or the like.
- the fluid delivery system may be an implantable infusion pump, an infusion pump that uses a combination of implantable and external components, a pen injector, a disposable pump, an intra venous drip system, or the like.
- the fluid delivery system may deliver fluids other than insulin, including peptides, proteins, sugars, vitamins, antigens, hormones, steroids, medicaments, drugs, pain killers, anti-cancer agents, anti-coagulants, stimulants, tranquilizers, sedatives, and the like. Particular embodiments are directed towards use in humans; however, alternative embodiments may be used in animals.
- a relay device transfers information between a sensor system for measuring a physiological characteristic level of a user's body and a fluid delivery system for delivering fluid into the user's body.
- the sensor system is a BG monitoring system 20 , which utilizes a sensor that is placed in a user to measure the user's BG level.
- the sensor may measure additional physiological characteristic levels of the user, such as blood oxygen, temperature, or the like.
- the BG monitoring system 20 is an implantable glucose monitoring system, and is generally of the type described in U.S. Pat. No. 6,368,274, and disclosed in U.S. patent application Ser. No. 10/034,740, filed Dec. 27, 2001 and entitled “Implantable Sensor Flush Sleeve,” and U.S. Provisional Patent Application filed Sep. 27, 2002 and entitled “Implantable Sensor Method and System,” which are herein incorporated by reference.
- the BG monitoring system 20 includes a glucose sensor set 50 and a glucose monitor 54 .
- the sensor set 50 and glucose monitor 54 are implanted in the user's sub-dermal or inter-peritoneal tissue, and are in contact with the user's blood or other body fluid, to measure the user's BG level.
- the sensor set 50 may be implanted into the central vein of the user's heart, and the glucose monitor 54 may be located in the user's chest cavity.
- the sensor set 50 may be placed in the user's peritoneum, and the glucose monitor 54 may be located in the user's abdominal cavity.
- the glucose monitor 54 includes a processor (not shown) for processing data as it is received from the sensor set 50 , and a transmitter and/or receiver (not shown) for transferring the data to and/or from a data processor, such as a dedicated processor 56 designed specifically to work with the glucose monitor 54 , a computer, communication station, or the like.
- the data processor 56 preferably comprises a relatively compact, portable housing that may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like.
- the BG monitoring system 20 may also be included in a hospital-based system, and the data processor 56 may comprise a housing that may be included in a monitor, placed on an intravenous (IV) pole, or the like near the patient's bed.
- IV intravenous
- the BG monitoring system 20 is a telemetered glucose monitoring system, and may generally be of the type described in U.S. patent application Ser. No. 09/377,472, filed Aug. 19, 1999 and entitled “Telemetered Characteristic Monitor System and Method of Using the Same,” which is herein incorporated by reference.
- the BG monitoring system 20 may also be a vascular glucose monitoring system, and may generally be of the type described in U.S. patent application Ser. No. 10/036,93, filed Dec. 28, 2001 and entitled “Sensing Apparatus and Process,” and U.S. Provisional Patent Application filed Sep. 27, 2002 and entitled “Multilumen Catheter,” which are herein incorporated by reference. Referring to FIG.
- the BG monitoring system 20 ′ may include a glucose sensor set 50 ′ and a glucose monitor 54 ′.
- the sensor set 50 ′ includes a glucose sensor that is placed in and/or through the user's subcutaneous, dermal, sub-dermal, inter-peritoneal, peritoneal, muscle, lymph, or organ tissue, veins, arteries, or the like, and may be in contact with the user's blood or other body fluid, to measure the user's BG level.
- the sensor set 50 ′ is connected to the glucose monitor 54 ′ via a cable 52
- the glucose monitor 54 ′ includes a processor (not shown) for processing data as it is received from the sensor set 50 ′ via the cable 52 .
- the sensor set 50 ′ may be placed in the user's subcutaneous tissue, and the glucose monitor 54 ′ may be adhered to the user's body.
- the sensor set 50 ′ may be inserted into one lumen of a multilumen catheter, which may then be implanted in the central vein of the user's heart and include an extension lead for connecting to the glucose monitor 54 ′ via the cable 52 , and the glucose monitor 54 ′ may be adhered to the user's body, as shown in FIG. 11.
- the other lumen(s) of the multilumen catheter may be utilized for sampling other physiological characteristic levels of the user and/or delivering fluids into the user's body, such as protein nutrition, blood products, medication, lipids, and the like.
- Such a multilumen catheter may generally be of the type described in U.S. Provisional Patent Application filed Sep. 27, 2002 and entitled “Multilumen Catheter,” which is herein incorporated by reference.
- the glucose monitor 54 ′ may also include a transmitter and/or receiver (not shown) for transferring the data to and/or from a data processor, such as a dedicated processor 56 ′ designed specifically to work with the glucose monitor 54 ′ , a computer, communication station, or the like.
- the data processor 56 ′ preferably comprises a relatively compact, portable housing that may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like.
- the BG monitoring system 20 may also be included in a hospital-based system, and the data processor 56 ′ may comprise a housing that may be included in a monitor, placed on an intravenous (IV) pole, or the like near the patient's bed.
- the cable 52 may be omitted, and the sensor set 50 ′ may be directly connected to the glucose monitor 54 ′.
- the BG monitoring system 20 may be a continuous glucose monitoring system, and may generally be of the type described in U.S. Pat. No. 6,424,847, which is herein incorporated by reference.
- the BG monitoring system 20 ′′ may include a glucose sensor set 50 ′′ and a glucose monitor 5 ′′.
- the sensor set 50 ′′ includes a glucose sensor that is placed in and/or through the user's subcutaneous, dermal, sub-dermal, inter-peritoneal, peritoneal, muscle, lymph, or organ tissue, veins, arteries, or the like, and may be in contact with the user's blood or other body fluid, to measure the user's BG level.
- the sensor set 50 ′′ is connected to the glucose monitor 54 ′′ via a cable 52 ′, and the glucose monitor 54 ′′ includes a processor (not shown) for processing data as it is received from the sensor set 50 ′′ via the cable 52 ′.
- the glucose monitor 54 ′′ comprises a relatively compact, portable housing that may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like.
- the BG monitoring system 20 may also be included in a hospital-based system, and the glucose monitor 54 ′′ may comprise a housing that may be included in a monitor, placed on an intravenous (IV) pole, or the like near the patient's bed.
- IV intravenous
- the glucose monitor 54 ′′ may also include a transmitter and/or receiver (not shown) for transferring the data to and/or from a data processor (not shown), such as a computer, communication station, or the like.
- a data processor such as a computer, communication station, or the like.
- the cable 52 ′ may be omitted, and the sensor set 50 ′′ may be directly connected to the glucose monitor 54 ′′.
- the BG monitoring system 20 may include other types of sensors, such as optical, enzymatic, fluorescent, or the like.
- the sensor system may measure other physiological characteristic levels of the user, such as heart rate, blood oxygen, pH, peroxide, respiratory rate, body temperature, blood pressure, perspiration, brain wave activity, cholesterol level, ketone level, medication concentration, viral load (e.g., HIV), and the like.
- the sensor system may also include multiple sensors—one or more sensors to measure the user's BG level and one or more sensors to measure such other physiological characteristic levels of the user.
- the BG monitoring system 20 may include a glucose sensor set 50 inserted in or on the user's body to measure the user's BG level and an oxygen sensor to measure the oxygen level at or near the insertion site of the sensor set 50 .
- the measured oxygen level may then be used to determine the effectiveness of the sensor set 50 , the formation of foreign bodies near the sensor set 50 , or the like.
- the sensor system may measure the physiological characteristic levels of the user from body fluids other than blood, such as interstitial fluid, spinal fluid, saliva, urine, tears, sweat, or the like.
- the BG monitoring system 20 automatically measures the user's BG level on a periodic basis. In other particular embodiments, the BG monitoring system 20 automatically measures the user's BG level on a continuous basis. In alternative embodiments, the BG monitoring system 20 may not automatically measure the user's BG level.
- the BG monitoring system 20 may include a user interface, such as a keypad 60 , which may be utilized by the user to request a BG measurement from the BG monitoring system 20 .
- the BG monitoring system 20 may include a BG meter, which measures the user's BG level based on a sampling of the user's blood.
- the BG monitoring system 20 includes a transmitter and/or receiver (not shown) for communicating with external devices, such as a remote programmer (not shown) for the BG monitoring system 20 , a BG meter (not shown), the relay device 10 , the infusion pump 30 via the relay device 10 , or the like.
- external devices such as a remote programmer (not shown) for the BG monitoring system 20 , a BG meter (not shown), the relay device 10 , the infusion pump 30 via the relay device 10 , or the like.
- the glucose monitor 54 and/or data processor 56 may include the transmitter and/or receiver.
- the BG monitoring system 20 preferably communicates with such external devices using radio frequency (RF) communication.
- RF radio frequency
- other modes of communication may be utilized, such as infrared (IR), wired, ultrasonic, optical, or the like.
- the BG monitoring system 20 may also include a display and a user interface.
- the data processor 56 includes a display 58 and a keypad 60 with one or more keys.
- the glucose monitor 54 utilizes the transmitter and/or receiver (not shown) to transfer data to and/or from the data processor 56 .
- the glucose monitor 54 ′′ may include the display 58 ′′ and keypad 60 ′′ with one or more keys.
- the user may utilize the display 58 and/or keypad 60 to display the user's current BG level, view other BG information recorded or calculated by the glucose monitor 54 and/or data processor 56 (e.g., average BG level, BG trends, graphs of historical BG measurements), view alarms or other messages, program the BG monitoring system 20 , enter calibration or other data into the BG monitoring system 20 , download information from the BG monitoring system 20 , and the like.
- the user may also utilize the display 58 and/or keypad 60 to transmit data, delivery commands, and/or other information to the infusion pump 30 via the relay device 10 .
- the user interface may include one or more buttons, switches, levers, joystick, roller ball, mouse, keyboard, and the like.
- the keypad 60 may be omitted, and the display 58 may be used as a touch screen input device.
- the display and/or user interface may be omitted from the BG monitoring system 20 , and instead included on the relay device 10 and/or infusion pump 30 .
- the BG monitoring system 20 stores information in a memory (not shown) of the BG monitoring system 20 for subsequent review and/or downloading to a storage media.
- Information stored by the BG monitoring system 20 may include one or more of raw BG data, calibrated BG measurements, time stamps, sensor alarms, sensor settings, calibration data, sensor performance data, sensor errors, sensor system diagnostics, statistics, user information, serial number, and the like.
- information is transmitted from the BG monitoring system 20 to the infusion pump 30 via the relay device 10 , and then downloaded to a storage media from the infusion pump 30 .
- the storage media may include one or more of a personal computer (PC), a central server, an electronic memory, a personal digital assistant (PDA), a cell phone, a laptop computer, magnetic memory, silicon memory, a data storage device, and the like.
- information may be downloaded to the storage media directly from the BG monitoring system 20 through an interface, such as a transmitter, a cable, a communication station, or the like.
- information may be downloaded from the data processor 56 to the storage media.
- information may be downloaded from the glucose monitor 54 to the storage media.
- information may be transmitted from the BG monitoring system 20 to the relay device 10 , and then downloaded to the storage media from the relay device 10 .
- information may be downloaded to the storage media from more than one of the BG monitoring system 20 , relay device 10 , and infusion pump 30 .
- sensor calibration data is provided to the BG monitoring system 20 by communication with an external device, such as a BG meter or other BG measuring device (not shown).
- the BG monitoring system 20 preferably includes a transmitter and/or receiver (not shown) for communicating with such external devices.
- the glucose monitor 54 and/or the data processor 56 may include the transmitter and/or receiver.
- the user obtains a BG reference reading utilizing a BG meter or other BG measuring device, which then transmits the BG reference reading to the BG monitoring system 20 , either directly or via the relay device 10 .
- the user may manually enter sensor calibration data into the BG monitoring system 20 .
- the user may utilize the display 58 and/or user interface 60 on the data processor 56 , as shown in FIGS. 2 ( a )- 2 ( b ), to manually input the calibration data into the BG monitoring system 20 .
- the user may utilize the display 58 ′′ and/or user interface 60 ′′ on the glucose monitor 54 ′′ , as shown in FIG. 2( c ), to manually input the calibration data into the BG monitoring system 20 .
- the fluid delivery system is an external infusion pump 30 , which regulates the flow of fluid, preferably medication such as insulin, through flexible tubing 32 and into an infusion set 34 or the like that is adhered to the user's body.
- infusion sets 34 that may be used are described in, but not limited to, U.S. Pat. Nos. 4,723,947; 4,755,173; 5,176,662; 5,584,813; and 6,056,718, which are herein incorporated by reference.
- the infusion pump 30 is generally of the type described in U.S. Pat. Nos.
- the fluid delivery system may be an implantable infusion pump, an infusion pump that uses a combination of implantable and external components, a pen injector, disposable pump, an intra venous drip system, or the like.
- the fluid delivery system may deliver fluids other than insulin, including peptides, proteins, sugars, vitamins, antigens, hormones, steroids, medicaments, drugs, pain killers, anti-cancer agents, anti-coagulants, stimulants, tranquilizers, sedatives, and the like.
- the infusion pump 30 comprises a relatively compact, portable housing that may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like.
- the infusion pump 30 may also be included in a hospital-based system, and the infusion pump 30 may comprise a housing that may be included in a monitor, placed on an intravenous (IV) pole, or the like near the patient's bed.
- the infusion pump 30 preferably includes a processor 150 for running programs and controlling the infusion pump 30 .
- the processor 150 is coupled to an internal memory device 154 that stores programs, history data, user defined information and parameters.
- the memory device 154 is a ROM and DRAM; however, in alternative embodiments, the memory device 154 may include other memory storage devices, such as RAM, EPROM, dynamic storage such as flash memory, energy efficient hard-drive, or the like.
- the processor 150 is also coupled to a drive mechanism 160 that is connected to a fluid reservoir 162 containing fluid that is delivered through the tubing 32 and into the infusion set 34 adhered to the user's body.
- the processor 150 may additionally be coupled to a bolus estimator 164 , which estimates an appropriate amount of insulin to be delivered to the user based on the user's BG level, the amount of carbohydrates to be consumed, and the like.
- the bolus estimator 164 may generally be of the type described in U.S.
- the infusion pump 30 further includes a communication system 152 coupled to the processor 150 for communicating with external devices, such as a remote programmer (not shown) for the infusion pump 30 , the BG monitoring system 20 via the relay device 10 , the relay device 10 , or the like.
- the communication system 152 may include a transmitter and/or receiver (not shown) for communicating with such external devices.
- the infusion pump 30 preferably communicates with such external devices using radio frequency (RF) communication. Alternatively, other modes of communication may be utilized, such as infrared (IR), wired, ultrasonic, optical, or the like.
- the transmitter and/or receiver (not shown) of the communication system 152 may be capable of communicating with certain external devices utilizing a particular frequency and/or communication protocol, such as the remote programmer (not shown) for the infusion pump 30 or the like.
- the infusion pump 30 may include another transmitter and/or receiver (not shown) as part of the relay device 10 incorporated in the infusion pump 30 itself (as shown and described below in the embodiment of FIGS. 8 ( d ) and 10 - 12 ), which is capable of communicating with other external devices utilizing another particular frequency and/or communication protocol, such as the BG monitoring system 20 or the like.
- the transmitter and/or receiver (not shown) of the communication system 152 may be capable of communicating with various external devices utilizing different frequencies and/or communication protocols.
- the infusion pump 30 also includes a display 100 and/or a user interface 110 .
- the display 100 is a monochromatic liquid crystal display (LCD).
- the display 100 is a light emitting diode (LED) display, a cathode ray tube (CRT) display, a touch screen, a color LCD, or the like.
- LED light emitting diode
- CRT cathode ray tube
- the user interface is a keypad 110 including one or more keys with selectable functions.
- the infusion pump 30 is preferably programmed through the keypad 110 , or alternatively, by commands received from an external device, such as a remote programmer, the BG monitoring system 20 via the relay device 10 , the relay device 10 , or the like.
- the keypad 110 may generally be of the type, and operate in a manner similar to that, disclosed in U.S. patent applications Ser. No. 09/334,858, filed Jun. 16, 1999 and entitled “External Infusion Device with Remote Programming, Bolus Estimator and/or Vibration Alarm Capabilities,” and Ser. No. 09/784,949, filed Feb. 15, 2001 and entitled “Improved Infusion Device Menu Structure and Method of Using the Same,” which are herein incorporated by reference.
- the keypad 110 includes an Up-Arrow key 112 , a Down-Arrow key 114 , an ACT (activate) key 116 , an ESC (escape) key 118 , and an Express Bolus key 120 for programming the infusion pump 30 .
- the keypad 110 also includes a dedicated key 122 for interfacing with the BG monitoring system 20 via the relay device 10 .
- the user chooses a function and then selects which key will perform that function. For example, while the display 100 is blank, the user may select the Express Bolus key 120 to quickly set a bolus amount, or the ESC key 118 to show a status information screen on the display 100 .
- the user selects one or more keystrokes to perform a function. For example, while the display 100 is blank, the user may first select the ACT key 116 to show a main menu screen, then the Up-Arrow and Down-Arrow keys 112 and 114 to scroll through the menu choices, and then the ACT key 116 again to select a menu option.
- the user selects the keys 112 , 114 , 116 , 118 , 120 , and/or 122 on the keypad 110 to perform functions on the infusion pump 30 , such as starting or stopping a bolus or basal delivery, accessing historical data or status information, setting a utility (e.g., date, time, serial number, or the like), turning on or off a feature (e.g., light, key lock, temporary operation, or the like), escaping to a home display screen, backing up to a previous screen, deleting or approving an input, scrolling, priming, resetting, and the like.
- a utility e.g., date, time, serial number, or the like
- a feature e.g., light, key lock, temporary operation, or the like
- the display 100 and/or user interface 110 may also be utilized to input information into and/or display information from the BG monitoring system 20 via the relay device 10 , such as viewing sensor measurements received from the BG monitoring system 20 on the display 100 of the infusion pump 30 .
- the keypad 110 may include more or less keys, or have different key arrangements than those illustrated in the figures.
- one or more keys on the keypad 110 may be programmable.
- the user may define one or more keystrokes to cause the infusion pump 30 to perform one or more functions.
- a first user may define key 120 on a first infusion pump 30 to cause the display 100 to show the most recent sensor measurement, while a second user may define key 120 on a second infusion pump 30 to perform an express bolus function.
- the user interface may include one or more buttons, switches, levers, joysticks, roller balls, mice, keyboards, and the like.
- the keypad 110 may be omitted, and the display 100 may be used as a touch screen input device.
- the infusion pump 30 may provide feedback to the user on status or programming changes visibly on the display 100 and/or through lights (not shown) on the infusion pump 30 , audibly through a speaker 156 , and/or tactilely through a vibrator 158 .
- the infusion pump 30 may also provide the user with a visible alarm via the display 100 and/or lights, an audible alarm via the speaker 156 , and/or a vibration alarm via the vibrator 158 , such as a warning that is indicative of a low reservoir or low battery, an alarm or warning that is indicative of a sensor measurement received from the BG monitoring system 20 via the relay device 10 that is above or below target glycemic values, or the like.
- the display 100 , keypad 110 , lights, speaker 156 , and/or vibrator 158 may be omitted from the infusion pump 30 , and instead, included on the relay device 10 and/or the BG monitoring system 20 .
- the display 100 , keypad 110 , lights, speaker 156 , and/or vibrator 158 may be omitted, the infusion pump 30 may be implanted in the user's body, and all programming may be handled through a communication system using wireless modes of communication, such as radio frequency (RF), infrared (IR), and the like.
- RF radio frequency
- IR infrared
- the infusion pump 30 stores information in a memory (not shown) of the infusion pump 30 for subsequent review and/or downloading to a storage media.
- Information stored by the infusion pump 30 includes one or more of insulin delivery rates, insulin bolus amounts, time stamps, alarms, errors, warnings, utility settings, statistics, profiles, user information, serial number, commands, force measurements, pressure measurements, and the like.
- information is downloaded directly from the infusion pump 30 to a storage media through an interface, such as a transmitter, cable, communication station, or the like.
- an external communication link (not shown) may be connected via a cable to a serial, USB, or the like port of a computer.
- the infusion pump 30 may include an RF transmitter or transceiver (not shown), which transmits information to an RF receiver or transceiver in the external communication link for downloading to the computer.
- information may be downloaded from the infusion pump 30 through a communication station generally of the type disclosed in U.S. Pat. No. 5,376,070, which is herein incorporated by reference.
- information may be downloaded from the infusion pump 30 through a BG meter (not shown) as disclosed in U.S. Provisional Patent Application Serial No. 60/412,998, filed Sep. 23, 2002 and entitled “System for Providing Blood Glucose Measurements to Bolus Estimator,” which is herein incorporated by reference.
- the storage media may include one or more of a personal computer (PC), a central server, an electronic memory, a personal digital assistant (PDA), a cell phone, a laptop computer, magnetic memory, silicon memory, a data storage device, and the like.
- information may be transmitted from the infusion pump 30 to the BG monitoring system 20 via the relay device 10 , and then downloaded to a storage media from the BG monitoring system 20 .
- information may be transmitted from the infusion pump 30 to the relay device 10 , and then downloaded to the storage media from the relay device 10 .
- information may be downloaded to the storage media from more than one of the BG monitoring system 20 , relay device 10 , and infusion pump 30 .
- the relay device 10 transfers information between the BG monitoring system 20 and the infusion pump 30 .
- the relay device 10 comprises a relatively compact, portable housing 200 without a user interface or a display, as illustrated in FIG. 6( a ).
- the relay device 10 may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like.
- the relay device 10 ′ may include a housing 200 ′ with a single key 202 , as shown in FIG. 6( b ).
- the single key 202 provides a user interface for the user to request new information from the BG monitoring system 20 .
- the relay device 10 ′′ may include a housing 200 ′′ with a keypad 204 , as shown in FIG. 6( c ).
- the keypad 204 may include more than one key, and at least one of the keys may be utilized by the user to send data or commands to the infusion pump 30 .
- the keypad 204 includes an Up-Arrow key 206 , a Down-Arrow key 208 , and an ACT (activate) key 210 for programming the infusion pump 30 from the relay device 10 in a manner similar to that shown and described in the embodiment of FIG. 3( a ).
- the keypad 204 also includes a dedicated key 212 for interfacing with and requesting data from the BG monitoring system 20 .
- the keypad 204 may include more or less keys or different key arrangements than those illustrated in FIG. 6( c ).
- the relay device 10 ′′′ may include a housing 200 ′′′ with a display 214 and a keypad 216 , as shown in FIG. 6( d ).
- the display 214 may be a monochromatic liquid crystal display (LCD).
- the display 214 may be a light emitting diode (LED) display, a cathode ray tube (CRT) display, a touch screen, a color LCD, or the like.
- the keypad 216 may include more than one key, and at least one of the keys may be utilized by the user to send data or commands to the infusion pump 30 .
- the keypad 216 includes an Up-Arrow key 218 , a Down-Arrow key 220 , an ACT (activate) key 222 , and an ESC (escape) key 224 for programming the infusion pump 30 from the relay device 10 in a manner similar to that shown and described in the embodiment of FIG. 3( a ).
- the keypad 216 also includes a dedicated key 226 for interfacing with and requesting data from the BG monitoring system 20 .
- the keypad 216 may include more or less keys or different key arrangements than those illustrated in FIG. 6( d ).
- the relay device 10 may be a computer system (not shown), such as a personal computer (PC), a personal digital assistant (PDA), a central data system (such as is used in hospitals to store or track data, Internet systems, or the like), or the like.
- a computer system such as a personal computer (PC), a personal digital assistant (PDA), a central data system (such as is used in hospitals to store or track data, Internet systems, or the like), or the like.
- the relay device 10 is positioned on the user's body near the BG monitoring system 20 .
- the relay device 10 may be positioned on the user's is body using a necklace 250 to hold the relay device 10 like a pendant (as shown in FIG. 7( a )), using a belt or strap 252 to hold the relay device 10 in place (as shown in FIG. 7( b )), or by placing the relay device 10 in a clothing garment 254 or clipping the relay device 10 in place (as shown in FIG. 7( c )).
- Positioning the relay device 10 near the BG monitoring system 20 is especially useful to minimize the power required by the transmitter and/or receiver in the BG monitoring system 20 to send and/or receive signals between the BG monitoring system 20 and the relay device 10 .
- Other methods may be used to locate the relay device 10 near the BG monitoring system 20 , such as using tape or adhesive to hold the relay device 10 in place, holding the relay device 10 in a hand and bringing the hand near the BG monitoring system 20 , or the like.
- the relay device 10 may be incorporated with the infusion pump 30 to minimize the number of components that the user must handle.
- the relay device 10 may be incorporated into a clip that is attached to the infusion pump 30 to hold the infusion pump 30 in place on the user's body, as shown in FIG. 8( a ).
- the relay device 10 ′ may be mounted on a side of the infusion pump 30 , as shown in FIG. 8( b ).
- the relay device 10 ′′ may be attached to a bottom of the infusion pump 30 , as shown in FIG. 8( c ).
- the relay device 10 may be incorporated with the BG monitoring system 20 in a manner similar to that shown and described in the embodiments of FIGS. 8 ( a )- 8 ( c ).
- the relay device 10 may be incorporated into a clip that is attached to, or mounted on a side of, or attached to a bottom of, the data processor 56 shown in FIGS. 2 ( a )- 2 ( b ) or the glucose monitor 54 ′′ shown in FIG. 2( c ).
- the relay device 10 may be incorporated into the infusion pump 30 .
- FIG. 8( d ) illustrates a cut-away perspective view of the infusion pump 30 showing the electronic boards and modules that may be included in the infusion pump 30 .
- the infusion pump 30 may include a display module 260 , a mother board 262 , and an interface board 264 .
- the mother board 262 is the main control unit for the infusion pump 30 , and includes the processor and memory.
- the display module 260 includes the display 100 , and in particular embodiments, a backlight for the display 100 .
- the interface board 264 interfaces between different systems in the infusion pump 30 , and includes the drive mechanism and power supplies.
- the infusion pump 30 also includes a communication board 265 and an antenna 268 , which enable communication with external devices, such as a remote programmer (not shown) for the infusion pump 30 , the BG monitoring system 20 , and the like.
- the communication board 265 includes the communication system as well as the relay device components. During communications with the BG monitoring system 20 , the drive mechanism and power supplies on the interface board 264 are temporarily shutdown. Accordingly, the infusion pump 30 further includes a capacitor 266 for providing power to the infusion pump 30 and the communication board 265 during such communications.
- the relay device (not shown) may be incorporated into the infusion pump 30 .
- the BG monitoring system 20 may transmit communications to the infusion pump 30 in a sensor system format
- the relay device incorporated into the infusion pump 30 may receive such communications and convert them to a delivery system format
- the infusion pump 30 may then process such converted communications.
- the infusion pump 30 may format communications in the delivery system format
- the relay device incorporated into the infusion pump 30 may convert such communications to the sensor system format and transmit such converted communications
- the BG monitoring system 20 may receive such communications in the sensor system format.
- the BG monitoring system 20 may communicate with the infusion pump 30 using wireless modes of communication, such as radio frequency (RF), infrared (IR), ultrasonic, sonic, optical, and the like, as shown in FIGS. 10 and 11.
- the BG monitoring system 20 may communicate with the infusion pump 30 using a wired connection 35 , as shown in FIG. 12.
- information may be downloaded directly from the relay device 10 to a storage media through an interface, such as a transmitter, a cable, a communication station, or the like.
- information stored by the BG monitoring system 20 and/or the infusion pump 30 may be transmitted to the relay device 10 , and then downloaded from the relay device 10 to the storage media.
- the storage media may include one or more of a personal computer (PC), a central server, an electronic memory, a personal digital assistant (PDA), a cell phone, a laptop computer, magnetic memory, silicon memory, a data storage device, and the like.
- information may be downloaded directly from the BG monitoring system 20 or the infusion pump 30 to a storage media.
- information may be downloaded to the storage media from more than one of the BG monitoring system 20 , relay device 10 , and infusion pump 30 .
- the relay device 10 communicates with the BG monitoring system 20 and the infusion pump 30 using radio frequency (RF) communication.
- RF radio frequency
- other modes of communication may be used, such as infrared (IR), wired, ultrasonic, sonic, optical, and the like.
- more than one mode of communication may be utilized by the relay device 10 .
- the relay device 10 includes an RF mixer 300 , a first microcontroller 302 , a second microcontroller 304 , and an RF transceiver 306 , as shown in FIG. 9( a ).
- the RF mixer 300 receives an RF signal from the BG monitoring system 20 and forwards the signal to the first microcontroller 302 .
- the first microcontroller 302 decodes the RF signal received in a first format from the BG monitoring system 20 (e.g., at a frequency of 131 kilohertz), and forwards the decoded signal to the second microcontroller 304 .
- the second microcontroller 304 processes and encodes the signal into a second format for the infusion pump 30 (e.g., at a frequency of 916 megahertz), and forwards the encoded signal to the RF transceiver 306 .
- the RF transceiver 306 then transmits the encoded signal to the infusion pump 30 .
- the RF transceiver 306 receives an RF signal from the infusion pump 30 and forwards the signal to the second microcontroller 304 .
- the second microcontroller 304 decodes the RF signal received in the second format from the infusion pump 30 , and forwards the decoded signal to the first microcontroller 302 .
- the first microcontroller 302 processes and encodes the signal into the first format for the BG monitoring system 20 , and forwards the encoded signal to the RF mixer 300 .
- the RF mixer 300 then transmits the encoded signal to the BG monitoring system 20 .
- Inclusion of the two microcontrollers 302 and 304 allows the relay device 10 to encode and decode signals for the BG monitoring system 20 and the infusion pump 30 simultaneously.
- the two microcontrollers 302 and 304 shown in FIG. 9( a ) may be replaced with a single fast microcontroller 308 , as illustrated in FIG. 9( b ).
- the fast microcontroller 308 encodes and decodes signals in appropriate formats respectively for the BG monitoring system 20 and the infusion pump 30 in a manner similar to that of the two microcontrollers 302 and 304 shown in FIG. 9( a ).
- the relay device 10 ′′ may include an RF mixer 320 and an RF transceiver 326 , as illustrated in FIG. 9( c ), which are similar to the RF mixer 300 and RF transceiver 306 shown in FIGS.
- the relay device 10 ′′ may also include a field programmable gate array (FPGA) 322 , which performs functions similar to the first microcontroller 302 shown in FIG. 9( a ), for encoding and decoding signals in an appropriate format for the BG monitoring system 20 .
- the relay device 10 ′′ may further include a microcontroller 322 , which is similar to the second microcontroller 304 shown in FIG. 9( a ), for encoding and decoding signals in an appropriate format for the infusion pump 30 .
- the relay device 10 ′′′ may include an application specific integrated circuit (ASIC) 340 , which incorporates an RF mixer for transmitting and receiving signals to and from the BG monitoring system 20 , as illustrated in FIG. 9( d ).
- the ASIC 340 may also encode and decode information in an appropriate format for the BG monitoring system 20 .
- the relay device 10 ′′′ may include a microcontroller 342 , which is similar to the second microcontroller 304 shown in FIG. 9( a ), for encoding and decoding signals in an appropriate format for the infusion pump 30 .
- the relay device 10 ′′′ may further include an RF transceiver 344 , which is similar to the RF transceiver 306 shown in FIG.
- the microcontroller 342 shown in FIG. 9( d ) may be omitted, and the functionality instead may be included in an application specific integrated circuit (ASIC_ 360 , as shown in FIG. 9( e ).
- the ASIC 360 transmits and receives signals to and from the BG monitoring system 20 .
- the ASIC 360 also encodes and decodes signals in appropriate formats respectively for the BG monitoring system 20 and infusion pump 30 .
- the relay device 10 ′′′′ may further include an RF transceiver 362 , which is similar to the RF transceiver 306 shown in FIG. 9( a ), for transmitting and receiving signals to and from the infusion pump 30 .
- the relay device 10 receives information from the BG monitoring system 20 in a sensor system format, converts the information into a delivery system format appropriate for the infusion pump 30 , and then transmits the converted information in the delivery system format to the infusion pump 30 .
- the relay device 10 may also receive information from the infusion pump 30 in the delivery system format, convert the information into the sensor system format appropriate for the BG monitoring system 20 , and then transmit the converted information in the sensor system format to the BG monitoring system 20 .
- communication is in only one direction, either from the BG monitoring system 20 to the infusion pump 30 , or from the infusion pump 30 to the BG monitoring system 20 .
- the sensor system and delivery system formats include one or more frequencies, communication protocols, and the like that are used to transfer information between the BG monitoring system 20 and the infusion pump 30 .
- the sensor system format utilized by the BG monitoring system 20 may include a lower frequency, such as 131 kilohertz, resulting in less tissue attenuation at and/or near the insertion site of the BG monitoring sensor set 50 .
- the delivery system format utilized by the infusion pump 30 may include a higher frequency, such as 916 megahertz or 402-405 megahertz, ensuring compliance with federal, state, regulatory, and other requirements for RF communications.
- other frequencies may be utilized by the BG monitoring system 20 and/or infusion pump 30 .
- the communication protocols specify carrier media for communication, such as radio frequency (RF) (including frequency modulated (FM), amplitude modulated (AM), and the like RF), infrared (IR), ultrasonic, audio, light wave, Bluetooth, IRDA, conductive using wires or other direct contacts, and the like.
- the communication protocols also specify information packaging, which includes how the information is arranged and sent on the carrier media.
- the information packaging may specify which data components are sent (e.g., the serial number of the relay device 10 , BG monitoring system 20 , and/or infusion pump 30 , a date and time stamp, a sensor measurement, a pump command, and the like).
- the information packaging may also specify the order in which data components are sent.
- the information packaging may specify how the information is sent, such as in packets, bits, words, and the like.
- the information packaging may additionally specify how the information is expressed, such as in decimal, hexadecimal, DC balanced format, and the like.
- the BG monitoring system 20 utilizes a sensor system communication protocol
- the infusion pump 30 utilizes a delivery system communication protocol.
- the BG monitoring system 20 uses the sensor system communication protocol to communicate with the relay device 10
- the infusion pump 30 uses the delivery system communication protocol to communicate with the relay device 10 .
- the BG monitoring system 20 and infusion pump 30 do not use the same communication protocol; thus, the relay device 10 converts information received from the BG monitoring system 20 into the delivery system communication protocol for communicating to the infusion pump 30 , and the relay device 10 converts information received from the infusion pump 30 into the sensor system communication protocol for communicating to the BG monitoring system 20 .
- the relay device 10 may receive BG data or measurements from the BG monitoring system 20 formatted in the sensor system communication protocol utilizing radio frequency carrier media, in packets of 107 bytes, or the like.
- the relay device 10 converts such data or measurements into the delivery system communication protocol utilizing infrared carrier media, in packets of 71 bytes, or the like, and then transmits such converted data or measurements formatted in the delivery system communication protocol to the infusion pump 30 .
- other carrier media or information packaging may be utilized by the BG monitoring system 20 and/or infusion pump 30 .
- the relay device 10 , BG monitoring system 20 , infusion pump 30 , and other devices capable of communicating with the relay device 10 , BG monitoring system 20 , and/or infusion pump 30 each have a unique identification (ID) code, such as a serial number, identification number, password, or the like.
- ID code may be included in communications transmitted to and received from the relay device 10 , BG monitoring system 20 , and/or infusion pump 30 in order to ensure security and/or to distinguish information from various sources.
- each packet of information that is transmitted to the relay device 10 may include the ID code for the relay device 10 , and the relay device 10 may use the ID code to discern whether the packet of information is intended for the relay device 10 .
- each packet of information that is transmitted to the BG monitoring system 20 may include the ID code for the BG monitoring system 20 , and the BG monitoring system 20 may use the ID code to discern whether the packet of information is intended for the BG monitoring system 20 .
- each packet of information that is transmitted to the infusion pump 30 may include the ID code for the infusion pump 30 , and the infusion pump 30 may use the ID code to discern whether the packet of information is intended for the infusion pump 30 .
- the relay device 10 , BG monitoring system 20 , infusion pump 30 , and other devices capable of communicating with the relay device 10 , BG monitoring system 20 , and/or infusion pump 30 may know each other's unique ID code.
- the BG monitoring system 20 and/or the infusion pump 30 may respond to commands and accept information only from devices for which they know such ID codes.
- the BG monitoring system 20 may communicate with the infusion pump 30 through the relay device 10 , and thus, may know the ID codes for the relay device 10 and infusion pump 30 .
- the infusion pump 30 may communicate with the BG monitoring system 20 through the relay device 10 , and thus, may know the ID codes for the relay device 10 and BG monitoring system 20 .
- the infusion pump 30 may also know the ID code for a remote programmer.
- the relay device 10 , BG monitoring system 20 , infusion pump 30 , and other devices capable of communicating with the BG monitoring system 20 and/or infusion pump 30 have no ID code.
- the BG monitoring system 20 is continually synchronized with any device that communicates with the BG monitoring system 20 , such as the relay device 10 , the infusion pump 30 via the relay device 10 , and the like.
- the BG monitoring system 20 transmits information at fixed intervals (e.g., once every thirty seconds, minute, five minutes, ten minutes, twenty minutes, or the like) for exact time periods (e.g., for time periods of less than one second, one second, one to five seconds, more than five seconds, or the like).
- the devices that communicate with the BG monitoring system 20 “wake up” at the fixed intervals and “listen” to receive the information from the BG monitoring system 20 .
- This fixed interval communication method allows the BG monitoring system 20 and the devices that communicate with the BG monitoring system 20 to supply power to their communication systems on a periodic, rather than continuous, basis. Accordingly, the BG monitoring system 20 and the devices that communicate with the BG monitoring system 20 are able to save power when not communicating with one another.
- the BG monitoring system 20 and the devices that communicate with the BG monitoring system 20 may supply power to their communication systems on a continuous basis, and thus, be capable of continuous communication.
- the BG monitoring system 20 and the devices that communicate with the BG monitoring system 20 may supply power to their communication systems only upon request from the user. For example, the user may select the dedicated key 122 on the infusion pump 30 shown in FIG.
- the BG monitoring system 20 may periodically supply power to its communication system for a relatively short time period in order to detect whether another device is requesting information, and in response to such a request, the BG monitoring system 20 and the devices that communicate with the BG monitoring system 20 may supply power to their communication systems and then communicate the requested information. Accordingly, the BG monitoring system 20 and the devices that communicate with the BG monitoring system 20 are able to save power when not communicating with one another.
- the relay device 10 receives information from the BG monitoring system 20 , and then transmits the information to the infusion pump 30 .
- the relay device 10 may also receive information from the infusion pump 30 , and then transmit the information to the BG monitoring system 20 .
- the infusion pump 30 includes a display 32 and a user interface 34 , as shown in FIG. 4( a ).
- the display 32 may be an LCD display 100
- the user interface 34 may be a keypad 10 including one or more keys, as shown in FIGS. 3 ( a )- 3 ( b ).
- the BG monitoring system 20 sends a sensor signal to the relay device 10 , and then the relay device 10 sends the sensor signal to the infusion pump 30 .
- the sensor signal contains uncalibrated sensor data
- the infusion pump 30 calibrates the uncalibrated sensor data to generate sensor measurements, which are shown on the display 32 .
- the BG monitoring system automatically sends the sensor data to the infusion pump 30 on a periodic (e.g., once every thirty seconds, minute, five minutes, ten minutes, or the like) or continuous basis, and the infusion pump 30 automatically shows the sensor measurement on the display 32 once the sensor data has been received and calibrated.
- the user may also utilize the user interface 34 to cause the display 32 to show a sensor measurement.
- the infusion pump 30 may provide an alarm or warning to the user if the sensor measurement is above or below target glycemic values. For example, if the sensor measurement is above a hyperglycemic limit (e.g., 250 mg/dl) or below a hypoglycemic limit (e.g., 70 mg/dl), the infusion pump 30 may provide the user with a visible alarm via the display 100 and/or lights, an audible alarm via the speaker 156 , and/or a vibration alarm via the vibrator 158 .
- a hyperglycemic limit e.g. 250 mg/dl
- a hypoglycemic limit e.g., 70 mg/dl
- the infusion pump 30 may also suspend insulin delivery if the sensor measurement is below the hypoglycemic limit, and notify the user to activate a bolus delivery if the sensor measurement is above the hyperglycemic limit.
- the infusion pump 30 may include the bolus estimator 164 , which utilizes the sensor measurement to estimate an appropriate amount of insulin to be delivered to the user based on the user's BG level, the amount of carbohydrates to be consumed, and the like.
- the calculated bolus estimate may be shown to the user on the display 32 , and the user may then utilize the user interface 34 to accept or modify the bolus estimate for infusion into the user.
- the BG monitoring system 20 calibrates the sensor data to generate sensor measurements, which are included in the sensor signal transmitted from the BG monitoring system 20 to the infusion pump 30 via the relay device 10 .
- the BG monitoring system 20 sends a sensor signal with uncalibrated sensor data to the relay device 10 , the relay device 10 calibrates the uncalibrated sensor data to generate sensor measurements, and the relay device 10 sends the sensor signal with the sensor measurements to the infusion pump 30 .
- the infusion pump 30 may include a display 32
- the relay device 10 may include a user interface 14 , as shown in FIG. 4( b ).
- the display 32 may be an LCD display 100 (as shown in FIGS. 3 ( a )- 3 ( b ))
- the user interface 14 may be a single key 202 (as shown in FIG. 6( b )), or a keypad 204 or 216 including one or more keys (as shown in FIGS. 6 ( c ) and 6 ( d )).
- the user may utilize the user interface 14 on the relay device 10 to request new data from the BG monitoring system 20 .
- the relay device 10 When the user interface 14 is activated (e.g., the user presses the single key 202 shown in FIG. 6( b ), one or more keys on the keypad 204 shown in FIG. 6( c ), or one or more keys on the keypad 216 shown in FIG. 6( d )), the relay device 10 sends a request to the BG monitoring system 20 to transmit the most recent sensor data, as shown in FIG. 4( b ). In other alternative embodiments, when the user interface 14 is activated, the relay device 10 sends a signal to the infusion pump 30 to request the most recent sensor data from the BG monitoring system 20 , and the infusion pump 30 then sends such a request to the BG monitoring system 20 through the relay device 10 , as shown in FIG.
- the BG monitoring system 20 in response to a request for the most recent sensor data, sends a sensor signal to the relay device 10 , and then the relay device 10 sends the sensor signal to the infusion pump 30 , similar to the manner described above with respect to FIG. 4( a ).
- the infusion pump 30 may automatically show a sensor measurement on the display 32 once the sensor signal is received by the infusion pump 30 .
- the user may also utilize the user interface 14 on the relay device 10 to cause the display 32 on the infusion pump 30 to show a sensor measurement.
- the user may also utilize the user interface 14 on the relay device 10 to send commands or data to the infusion pump 30 .
- the relay device 10 may include a first user interface 14 ′, and the infusion pump 30 may include a display 32 and a second user interface 34 ′, as shown in FIG. 4( f ).
- the user may utilize the first user interface 14 ′ on the relay device 10 to request new data from the BG monitoring system 20 .
- the relay device 10 sends a request to the BG monitoring system 20 to transmit the most recent sensor data.
- the BG monitoring system 20 sends a sensor signal to the relay device 10 , and then the relay device 10 sends the sensor signal to the infusion pump 30 , similar to the manner described above with respect to FIG. 4( a ).
- the infusion pump 30 may automatically show a sensor measurement on the display 32 ′ once the sensor signal is received by the infusion pump 30 .
- the user may also utilize the first user interface 14 ′ on the relay device 10 or the second user interface 34 ′ on the infusion pump 30 to cause the display 32 on the infusion pump 30 to show a sensor measurement.
- the user may additionally utilize the first user interface 14 ′ on the relay device 10 to send commands or data to the infusion pump 30 .
- the user may utilize the second user interface 34 ′ on the infusion pump 30 to perform functions on the infusion pump 30 .
- the relay device 10 may include a display 12 and a user interface 14 , as shown in FIG. 4( d ).
- the display 12 may be an LCD display 214
- the user interface 14 may be a keypad 216 including one or more keys, as illustrated in FIG. 6( d ).
- the BG monitoring system 20 sends a sensor signal with uncalibrated sensor data to the relay device 10 , and the relay device 10 calibrates the data to generate sensor measurements, which are shown on the display 12 of the relay device 10 .
- the relay device 10 may automatically show a sensor measurement on the display 12 once the sensor data is received and calibrated by the relay device 10 .
- the user may also utilize the user interface 14 to cause the display 12 to show a sensor measurement.
- the user may further utilize the user interface 14 on the relay device 10 to send commands or data to the infusion pump 30 .
- the relay device 10 may also receive data from the infusion pump 30 (not shown), such as the amount of insulin remaining, alarms indicating a low battery or no delivery by the infusion pump 30 , and the like. The relay device 10 may then utilize such data to adjust the commands sent to the infusion pump 30 and/or show such data on the display 12 to the user.
- the BG monitoring system 20 calibrates the sensor data to generate sensor measurements, which are included in the sensor signal transmitted from the BG monitoring system 20 to the relay device 10 .
- the BG monitoring system 20 includes a display 22 and a user interface 24 , as shown in FIG. 4( e ).
- the display 22 may be an LCD display 58
- the user interface 24 may be a keypad 60 including one or more keys, as shown in FIGS. 2 ( a )- 2 ( c ).
- the BG monitoring system 20 calibrates the sensor data to generate sensor measurements, which are shown on the display 22 of the BG monitoring system 20 .
- the BG monitoring system 20 may automatically show a sensor measurement on the display 22 once the sensor data is calibrated.
- the user may also utilize the user interface 24 to cause the display 22 to show a sensor measurement.
- the user may further utilize the user interface 24 on the BG monitoring system 20 to send commands or data through the relay device 10 to the infusion pump 30 .
- the BG monitoring system 20 sends a sensor signal to the relay device 10 , and then the relay device 10 sends the sensor signal to the infusion pump 30 , as shown in FIG. 4( a ).
- the infusion pump 30 includes a display 32 and a user interface 34 , such as the display 100 and user interface 110 shown in FIG. 3( a ).
- the BG monitoring system automatically sends the sensor signal to the infusion pump 30 on a periodic (e.g., once every thirty seconds, minute, five minutes, ten minutes, or the like) or continuous basis.
- the infusion pump 30 periodically sends a command signal to the BG monitoring system 20 via the relay device 10 , commanding the BG monitoring system 20 to send the sensor signal to the infusion pump 30 , and in response to the command, the BG monitoring system 20 sends the sensor signal to the infusion pump 30 .
- the user interface 110 may be utilized to cause the BG monitoring system 20 to send the sensor signal to the infusion pump 30 via the relay device 10 .
- the infusion pump 30 automatically shows a sensor measurement on the display 32 once the sensor signal is received by the infusion pump 30 . The user may also utilize the user interface 110 to cause the display 100 to show a sensor measurement.
- the user interface 110 on the infusion pump 30 preferably includes a dedicated interface for requesting information from and/or inputting data to the BG monitoring system 20 via the relay device 10 .
- utilizing the dedicated interface may initiate bi-directional communication between the infusion pump 30 and the BG monitoring system 20 via the relay device 10 .
- the dedicated interface may be used to cause the display 100 of the infusion pump 30 to show historical data, such as trends of whether sensor measurements are increasing or decreasing, a plot of two or more sensor measurements, a graph of the past n-hours of sensor measurements, and the like.
- the infusion pump 30 may automatically show sensor measurements or historical data (e.g., trends, plots, graphs, or the like of sensor measurements) on the display 100 when the display 100 would otherwise be blank.
- the dedicated interface on the infusion pump 30 may include a dedicated key 122 for causing the display 100 to show the sensor measurement.
- the user may select one or more keystrokes to cause the display 100 to show the sensor measurement.
- the user may select the dedicated key 122 followed by the ACT key 116 to cause the display 100 to show the sensor measurement.
- the ability of the infusion pump 30 to communicate with the BG monitoring system 20 via the relay device 10 may be activated by entering the BG monitoring system's 20 serial number or other identifying information into the infusion pump 30 .
- the infusion pump 30 may program certain keys for interfacing with the BG monitoring system 20 via the relay device 10 .
- the dedicated interface may include a button, switch, lever, handle, touch screen, or the like, or combinations of keys, buttons, switches, levers, handles, touch screens, or the like. Combinations of interfaces include activating more than one interface simultaneously (in parallel), or activating more than one interface in sequence.
- the dedicated interface may be located on another device that communicates with the infusion pump 30 , and the sensor measurement may be shown on a display of that device, such as the BG monitoring system 20 (for example, the glucose monitor 54 and/or data processor 56 ), a remote programmer (not shown) for the infusion pump 30 , a personal digital assistant (PDA), a computer, a cell phone, or the like.
- the BG monitoring system 20 for example, the glucose monitor 54 and/or data processor 56
- PDA personal digital assistant
- one or more sensor measurements are stored in the memory 154 of the infusion pump 30 . Furthermore, selecting the dedicated key 122 (or other dedicated interface) causes the most recent sensor measurement to be shown on the display 100 . When the most recent sensor measurement is already shown on the display 100 , selecting the dedicated key 122 causes the next, most recent sensor measurement to be shown on the display 100 , and each subsequent selection of the dedicated key 122 causes older and older sensor measurements to be shown on the display 100 .
- the infusion pump 30 may include other user interfaces to display older sensor measurements.
- the sensor measurements may be stored in a storage device other than the infusion pump 30 , and selecting the dedicated key 122 causes the infusion pump 30 to retrieve the sensor measurement from the storage device and then show it on the display 100 .
- the infusion pump 30 periodically sends a command signal to the BG monitoring system 20 via the relay device 10 , commanding the BG monitoring system 20 to send sensor data to the infusion pump 30 , so that the most recent sensor data is available to be shown on the display 100 of the infusion pump 30 .
- the BG monitoring system 20 sends the sensor data to the infusion pump 30 , and the infusion pump 30 calibrates the sensor data to generate a sensor measurement. The sensor measurement is then stored in the memory 154 of the infusion pump 30 .
- the user selects the dedicated key 122 (or other)dedicated interface) to retrieve the sensor measurement from the memory 154 of the infusion pump 30 and show the sensor measurement on the display 100 of the infusion pump 30 .
- the sensor data is stored in the memory 154 of the infusion pump 30 .
- the sensor data is retrieved from the memory 154 of the infusion pump 30 , and then calibrated to generate the sensor measurement.
- the BG monitoring system 20 sends calibrated sensor measurements to be stored in the memory 154 of the infusion pump 30 .
- the infusion pump 30 communicates with the BG monitoring system 20 to indicate that the sensor data has been received and/or to echo the sensor data so that the data can be retransmitted if it was received inaccurately.
- the dedicated key 122 (or other dedicated interface) is used to cause the BG monitoring system 20 to send the most recent sensor data, such as one or more raw sensor data points, one or more calibrated sensor measurements, or the like, to the infusion pump 30 .
- the infusion pump 30 shows the most recent sensor measurement on the display 100 .
- the infusion pump 30 indicates to the BG monitoring system 20 the most recent sensor data that the infusion pump 30 has received, and in response, the BG monitoring system 20 sends any additional sensor data that the BG monitoring system 20 has that has not been received by the infusion pump 30 .
- the BG level measured by the BG monitoring system 20 is used in a closed loop algorithm to automatically adjust the delivery of fluid, such as insulin, in the infusion pump 30 .
- a calibration algorithm is used to convert sensor data into sensor measurements, and then the sensor measurements are used in a closed loop algorithm to generate fluid delivery commands to operate the infusion pump 30 .
- the calibration algorithm 26 and closed loop algorithm 28 reside with and are executed by the processor of the BG monitoring system 20 , as shown in FIG. 5( a ). Commands to control the infusion pump 30 are generated at the BG monitoring system 20 , and are sent through the relay device 10 to the infusion pump 30 .
- the calibration algorithm 26 resides with and is executed by the processor of the BG monitoring system 20
- the closed loop algorithm 18 resides with and is executed by the processor of the relay device 10 , as shown in FIG. 5( b ).
- Calibrated sensor measurements are sent from the BG monitoring system 20 to the relay device 10
- fluid delivery commands are sent from the relay device to the infusion pump 30 .
- the calibration algorithm 26 resides with and is executed by the processor of the BG monitoring system 20
- the closed loop algorithm 38 resides with and is executed by the processor of the infusion pump 30 , as shown in FIG. 5( c ).
- Calibrated sensor measurements are sent from the BG monitoring system 20 through the relay device 10 to the infusion pump 30 , and fluid delivery commands are generated at the infusion pump 30 .
- the calibration algorithm 16 and the closed loop algorithm 18 both reside with and are executed by the processor of the relay device 10 , as shown in FIG. 5( d ). Uncalibrated sensor data is sent from the BG monitoring system 20 to the relay device 10 , where they are calibrated and used in the closed loop algorithm 18 to generate fluid delivery commands, which are sent to the infusion pump 30 .
- the calibration algorithm 16 resides with and is executed by the processor of the relay device 10
- the closed loop algorithm 38 resides with and is executed by the processor of the infusion pump 30 , as shown in FIG. 5( e ).
- Uncalibrated sensor data is sent from the BG monitoring system 20 to the relay device 10 , where they are calibrated to generate sensor measurements. Then the sensor measurements are sent to the infusion pump 30 and used in the closed loop algorithm 38 to generate fluid delivery commands.
- the calibration algorithm 36 and the closed loop algorithm 38 both reside with and are executed by the processor of the infusion pump 30 , as shown in FIG. 5( f ).
- Uncalibrated sensor data is sent from the BG monitoring system 20 through the relay device 10 to the infusion pump 30 . Then, at the infusion pump 30 , the uncalibrated sensor data is calibrated and used in the closed loop algorithm 38 to generate fluid delivery commands.
- a semi-closed loop algorithm is used in place of a closed loop algorithm.
- a semi-closed loop algorithm generates recommended changes to the fluid delivery, which must be approved by the user or a caregiver using the user interface on the infusion pump 30 , the BG monitoring system 20 , or the relay device 10 before new commands are issued to the infusion pump 30 .
- FIGS. 4 ( a )- 5 ( f ) generally show communication flowing from the BG monitoring system 20 to the infusion pump 30
- communication signals might be generated by any of the devices.
- a signal may be sent from the infusion pump 30 through the relay device 10 to the BG monitoring system 20 .
- the signals from the infusion pump 30 may include signals to request information from the BG monitoring system 20 , verify receipt of information, echo information received, transmit information to be downloaded to the BG monitoring system 20 , and the like.
- signals may be initiated at the relay device 10 and sent to the BG monitoring system 20 and/or the infusion pump 30 .
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Vascular Medicine (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Diabetes (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
A relay device transfers information between a sensor system, which measures a physiological characteristic level of a user, and a fluid delivery system, which infuses a fluid into a user. The relay device includes a sensor system receiver for receiving communications from the sensor system in a sensor system format. The relay device also includes a processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format. The relay device further includes a delivery system transmitter for transmitting the converted communications in the delivery system format to the fluid delivery system. The sensor system and delivery system formats may utilize different frequencies and/or different communication protocols for communications transmitted between the sensor system and the fluid delivery system through the relay device.
Description
- This application claims priority on U.S. Provisional Patent Application filed Dec. 19, 2002 and entitled “Relay Device for Transferring Information Between a Sensor System and a Fluid Delivery System,” which is herein specifically incorporated by reference.
- Ambulatory pumps and hospital-based fluid delivery systems are used to deliver fluids into the bodies of patients. For some therapies, sensor measurements of a patient's physiological characteristics are used to calculate fluid dosage requirements. Typically, a sensor monitor is used to collect sensor data from a sensor, calibrate the sensor data to generate sensor measurements, and display the sensor measurements. Next, the patient or a caregiver manually calculates the required fluid dosage based on the displayed sensor measurements. Finally, the patient or caregiver programs the pump or fluid delivery system to adjust the fluid dosage.
- For example, patients with Type 1 diabetes and some patients with
Type 2 diabetes use insulin to control their blood glucose (BG) level. Typically, if a patient's BG level is too high, the patient can inject a “bolus” (dose) of insulin to lower his/her BG level from its present level to a desired target level. Furthermore, the patient may inject a bolus of insulin in anticipation of ingesting carbohydrates, thus heading off a sharp rise in his/her BG level. Presently, a patient or caregiver must measure the patient's blood glucose using a BG monitoring system, such as a continuous glucose measurement system, a test strip meter, a hospital-based measurement system, or an automated intermittent blood glucose measurement system. When the BG monitoring system has generated a BG measurement, the BG measurement is displayed on the BG monitoring system. Next, the patient or caregiver must visually read and then utilize the BG measurement to manually calculate a required insulin bolus (i.e., the amount of insulin to inject). Finally, once the required insulin bolus is calculated, the patient or caregiver must utilize an insulin delivery device (e.g., infusion pump, injection pen, IV meter, or the like) to deliver the insulin bolus into the patient's body. - Unfortunately, this process requires the patient or caregiver to handle several pieces of equipment, including the BG monitoring system and the insulin delivery device, which may discourage the patient or caregiver from using the BG measurements to adjust the insulin dosage, and thus, decrease the efficacy of the insulin delivery device. Additionally, if the BG monitoring system and the insulin delivery device are not developed in conjunction with one another, they typically communicate using different frequencies and/or modes of communication, and as a result, cannot communicate directly with one another. Thus, the patient or caregiver must manually calculate the required insulin bolus and program the insulin delivery device accordingly, which requires effort by the patient or caregiver and is subject to calculation errors. Alternatively, the patient or caregiver must manually enter the BG measurement into an electronic computing device with bolus estimation software for calculating the required insulin bolus (e.g., a computer, the Internet, a personal digital assistant (PDA), or an insulin delivery device, such as an infusion pump, injection pen, IV meter, or the like), which also requires effort by the patient or caregiver and is subject to transcription errors. For example, the patient or caregiver may not accurately enter the BG measurement that is displayed on the BG measurement device into the electronic computing device, and thus, the resulting bolus estimate calculation may not be accurate.
- It is an object of an embodiment of the present invention to provide an improved infusion system including a relay device for transferring information between a sensor system and a fluid delivery system, which obviates for practical purposes, the above mentioned limitations.
- According to an embodiment of the invention, an infusion system for infusing a fluid into a user includes a sensor system, a relay device, and a delivery system. The sensor system includes a sensor system housing, a sensor coupled to the sensor system housing for producing a signal indicative of a physiological characteristic level of the user, a sensor system processor contained in the sensor system housing for processing the signal indicative of the physiological characteristic level of the user, and a sensor system transmitter contained in the sensor system housing and coupled to the sensor system processor for transmitting one or more communications in a sensor system format. The relay device includes a relay device receiver for receiving the communications from the sensor system in the sensor system format, a relay device processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format, and a relay device transmitter for transmitting the converted communications in the delivery system format. The fluid delivery system includes a delivery system housing, a delivery system receiver contained in the delivery system housing for receiving the communications from the relay device in the delivery system format, and a delivery system processor contained in the delivery system housing and coupled to the delivery system receiver for processing the communications from the relay device in the delivery system format and controlling an amount of the fluid infused into the user. Further, the amount of the fluid infused into the user is determined based upon data indicative of the physiological characteristic level of the user.
- In particular embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user. Additionally, the communications including the data indicative of the physiological characteristic level of the user may be automatically transmitted from the sensor system through the relay device and received by the fluid delivery system. Further, the fluid delivery system may also include a display device contained in the delivery system housing and coupled to the delivery system processor for automatically displaying to the user the data indicative of the physiological characteristic level of the user. Alternatively, the fluid delivery system may further include a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs may cause the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system. Also, the user interface may be dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- In other particular embodiments, the fluid delivery system includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system. Also, the fluid delivery system may include a display device contained in the housing and coupled to the delivery system processor for displaying to the user a historical trend or graph using the stored data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- In still other particular embodiments, the fluid delivery system may include a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs may cause the display device to display the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system. Also, at least a portion of the user interface may be dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- In yet other particular embodiments, the fluid delivery system includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system. Further, at least a portion of the user interface may be dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- In still other embodiments, the fluid delivery system includes a user interface for accepting one or more inputs from the user, and the user interface is contained in the delivery system housing and coupled to the delivery system processor. At least one of the inputs programs the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system. In yet other embodiments, the fluid delivery system includes a bolus estimator used in conjunction with the delivery system processor for estimating the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system, an indication device coupled to the bolus estimator for indicating the estimated amount of fluid to be infused into the user, and a user interface for accepting one or more inputs from the user. At least one of the inputs accepts or modifies the estimated amount of the fluid to be infused into the user. In additional embodiments, the fluid delivery system includes a closed loop algorithm executed by the delivery system processor for automatically determining the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system and causing the fluid delivery system to infuse the determined amount of the fluid into the user. In further embodiments, the fluid delivery system includes an indication device for indicating when the data indicative of the physiological characteristic level of the user received by the fluid delivery system is above or below a target characteristic value.
- In still additional embodiments, the fluid delivery system includes a delivery system transmitter contained in the delivery system housing and coupled to the delivery system processor for transmitting one or more communications in the delivery system format. The relay device receiver further receives the communications from the fluid delivery system in the delivery system format, the relay device processor processes the communications from the fluid delivery system and converts the communications for transmission in the sensor system format, and the relay device transmitter transmits the converted communications in the sensor system format. Also, the sensor system further includes a sensor system receiver coupled to the sensor system processor for receiving the communications from the relay device in the sensor system format.
- In still further embodiments, the fluid delivery system includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs generates a request for the data indicative of the physiological characteristic level of the user from the sensor system, at least one of the communications transmitted from the fluid delivery system through the relay device to the sensor system includes the request, and at least one of the communications including the data indicative of the physiological characteristic level of the user is transmitted from the sensor system through the relay device and received by the delivery system in response to the request. The display device then displays the data indicative of the physiological characteristic level of the user received by the fluid delivery system. Additionally, the user interface may be dedicated for interfacing from the fluid delivery system with the sensor system through the relay device. Also, the requested data is the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- In yet other embodiments, the data indicative of the physiological characteristic level of the user received by the fluid delivery system is uncalibrated data. The fluid delivery system includes a calibration algorithm executed by the delivery system processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user.
- In alternative embodiments, the data indicative of the physiological characteristic level of the user received by the fluid delivery system includes one or more calibrated measurements indicative of the physiological characteristic level of the user. In particular alternative embodiments, the sensor system includes a calibration algorithm executed by the sensor system processor for calibrating the signal indicative of the physiological characteristic level of the user to generate the one or more measurements indicative of the physiological characteristic level of the user, and the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the one or more measurements indicative of the physiological characteristic level of the user. In other particular alternative embodiments, the data indicative of the physiological characteristic level of the user received from the sensor system by the relay device is uncalibrated data. The relay device includes a calibration algorithm executed by the relay device processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user, and the communications transmitted from the relay device and received by the fluid delivery system include the one or more measurements indicative of the physiological characteristic level of the user.
- In additional alternative embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the delivery system includes one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user. In some embodiments, the sensor system includes a display device coupled to the sensor system processor for displaying data to the user, and a user interface coupled to the sensor system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user obtained by the sensor system. Also, at least another one of the inputs generates the one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system. In other embodiments, the sensor system includes a closed loop algorithm executed by the sensor system processor for automatically generating the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
- In further alternative embodiments, at least one of the communications transmitted from the sensor system to the relay device includes the data indicative of the physiological characteristic level of the user, and at least one of the communications transmitted from the relay device and received by the fluid delivery system includes one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user. In particular embodiments, the relay device includes a display device coupled to the relay device processor for displaying data to the user, and a user interface coupled to the relay device processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user obtained by the sensor system. Also, at least another one of the inputs generates the one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system. In other particular embodiments, the relay device further includes a closed loop algorithm executed by the relay device processor for automatically generating the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
- In yet additional embodiments, the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device and received by the fluid delivery system. In some embodiments, the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the relay device and received by the fluid delivery system. The communication protocols may utilize different carrier media and/or information packaging for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
- In particular embodiments, the delivery system processor has a unique identification code, and the sensor system processor has the capability to learn the unique identification code of the delivery system processor. Further, the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the delivery system processor to substantially avoid interference with other devices. In other particular embodiments, the sensor system processor has a unique identification code, and the delivery system processor has the capability to learn the unique identification code of the sensor system processor. Further, the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the sensor system processor to substantially avoid interference with other devices. In still other particular embodiments, the relay device processor has a unique identification code, and the sensor system processor has the capability to learn the unique identification code of the relay device processor. Also, the communications transmitted from the sensor system to the relay device include the unique identification code of the relay device processor to substantially avoid interference with other devices. In yet other particular embodiments, the relay device processor has a unique identification code, and the delivery system processor has the capability to learn the unique identification code of the relay device processor. Also, the communications transmitted from the relay device and received by the fluid delivery system include the unique identification code of the relay device processor to substantially avoid interference with other devices.
- In additional embodiments, the relay device is coupled to the delivery system housing. In other embodiments, the relay device is contained in the delivery system housing. In still other embodiments, the relay device is coupled to the sensor system housing. In further embodiments, the sensor system is a glucose monitoring system, and the fluid delivery system is an insulin infusion device.
- In another embodiment of the present invention, a relay device transfers information between a sensor system and a fluid delivery system. The sensor system measures a physiological characteristic level of a user, and the fluid delivery system infuses a fluid into the user. The relay device includes a sensor system receiver for receiving one or more communications from the sensor system in a sensor system format, a processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format, and a delivery system transmitter for transmitting the converted communications in the delivery system format to the fluid delivery system.
- In some embodiments, the relay device includes a delivery system receiver for receiving one or more communications from the fluid delivery system in the delivery system format. The processor further processes the communications from the fluid delivery system and converts the communications for transmission in the sensor system format. The relay device also includes a sensor system transmitter for transmitting the converted communications in the sensor system format to the sensor system. In other embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user. In yet other embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include one or more commands for programming an amount of the fluid to be infused into the user based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
- In further embodiments, at least one of the communications transmitted from the sensor system to the relay device include data indicative of the physiological characteristic level of the user, and at least one of the communications transmitted from the relay device and received by the fluid delivery system include one or more commands for programming an amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user. Additionally, the relay device may include a display device coupled to the processor for displaying data to the user, and a user interface coupled to the processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user. Also, at least another one of the inputs generates the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
- In still other embodiments, the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device to the fluid delivery system. In yet other embodiments, the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the relay device to the fluid delivery system. The communication protocols may utilize different carrier media and/or information packaging for communications transmitted from the sensor system through the relay device to the fluid delivery system.
- In yet another embodiment of the present invention, a relay device transfers information between a sensor system and a fluid delivery system. The sensor system measures a physiological characteristic level of a user, and the fluid delivery system infuses a fluid into the user. The relay device includes a sensor system transceiver for transmitting and receiving one or more communications to and from the sensor system. The communications are transmitted and received in a sensor system format. The relay device also includes a delivery system transceiver for transmitting and receiving one or more communications to and from the fluid delivery system. The communications are transmitted and received in a delivery system format. The relay device further includes a processor for processing the communications from the sensor system and the fluid delivery system. The processor converts the communications received from the sensor system in the sensor system format for transmission in the delivery system format to the fluid delivery system, and further converts the communications received from the fluid delivery system in the delivery system format for transmission in the sensor system format to the sensor system.
- In particular embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user. In other particular embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include one or more commands for programming an amount of the fluid to be infused into the user based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
- In additional embodiments, at least one of the communications transmitted from the sensor system to the relay device include data indicative of the physiological characteristic level of the user, and at least one of the communications transmitted from the relay device and received by the fluid delivery system include one or more commands for programming an amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user. Also, the relay device may include a display device coupled to the processor for displaying data to the user, and a user interface coupled to the processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user. Additionally, at least another one of the inputs generates the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
- In further embodiments, the sensor system format and the delivery system format utilize different frequencies for communications transmitted between the sensor system and the fluid delivery system through the relay device. In additional embodiments, the sensor system format and the delivery system format utilize different communication protocols for communications transmitted between the sensor system and the fluid delivery system through the relay device. The communication protocols may utilize different carrier media and/or information packaging for communications transmitted between the sensor system and the fluid delivery system through the relay device.
- In still another embodiment of the present invention, an infusion system for infusing a fluid into a user includes a sensor system and a fluid delivery system. The sensor system includes a sensor for producing a signal indicative of a physiological characteristic level of the user, a sensor system processor coupled to the sensor for processing the signal indicative of the physiological characteristic level of the user, and a sensor system transmitter coupled to the sensor system processor for transmitting one or more communications in a sensor system format. The fluid delivery system includes a delivery system housing, a relay device contained in the delivery system housing, a delivery system receiver, and a delivery system processor. The relay device includes a relay device receiver for receiving the communications from the sensor system in the sensor system format, a relay device processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format, and a relay device transmitter for transmitting the converted communications in the delivery system format. The delivery system receiver is contained in the delivery system housing and receives the communications from the relay device in the delivery system format. The delivery system processor is also contained in the delivery system housing and is coupled to the delivery system receiver, and processes the communications from the relay device in the delivery system format and controls an amount of the fluid infused into the user. The amount of the fluid infused into the user is determined based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
- In particular embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user. Additionally, the communications including the data indicative of the physiological characteristic level of the user may be automatically transmitted from the sensor system through the relay device and received by the fluid delivery system. Further, the fluid delivery system may also include a display device contained in the delivery system housing and coupled to the delivery system processor for automatically displaying to the user the data indicative of the physiological characteristic level of the user.
- In other particular embodiments, the fluid delivery system includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- In still other embodiments, the fluid delivery system includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system. Additionally, the fluid delivery system may include a display device contained in the delivery system housing and coupled to the delivery system processor for displaying to the user a historical trend or graph using the stored data indicative of the physiological characteristic level of the user received by the fluid delivery system. Alternatively, the fluid delivery system may include a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- In additional embodiments, the fluid delivery system includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system. In further embodiments, the fluid delivery system includes a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs programs the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
- In yet other embodiments, the fluid delivery system includes a bolus estimator used in conjunction with the delivery system processor for estimating the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system, an indication device coupled to the bolus estimator for indicating the estimated amount of fluid to be infused into the user, and a user interface for accepting one or more inputs from the user. At least one of the inputs accepts or modifies the estimated amount of the fluid to be infused into the user. In still further embodiments, the fluid delivery system includes a closed loop algorithm executed by the delivery system processor for automatically determining the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system and causing the fluid delivery system to infuse the determined amount of the fluid into the user. In still additional embodiments, the fluid delivery system includes an indication device for indicating when the data indicative of the physiological characteristic level of the user received by the fluid delivery system is above or below a target characteristic value. In even additional embodiments, the data indicative of the physiological characteristic level of the user received by the fluid delivery system is uncalibrated data, and the fluid delivery system further includes a calibration algorithm executed by the delivery system processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user.
- In some embodiments, the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device and received by the fluid delivery system. In other embodiments, the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the relay device and received by the fluid delivery system. The different communication protocols may utilize different carrier media and/or information packaging for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
- In yet further embodiments, the delivery system processor has a unique identification code, and the sensor system processor has the capability to learn the unique identification code of the delivery system processor. The communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the delivery system processor to substantially avoid interference with other devices. In yet additional embodiments, the sensor system processor has a unique identification code, and the delivery system processor has the capability to learn the unique identification code of the sensor system processor. The communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the sensor system processor to substantially avoid interference with other devices. Other features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, various features of embodiments of the invention.
- A detailed description of embodiments of the invention will be made with reference to the accompanying drawings, wherein like numerals designate corresponding parts in the several figures.
- FIG. 1 is a block diagram of a system for transferring information between a blood glucose monitoring system and an infusion pump through a relay device in accordance with an embodiment of the present invention.
- FIG. 2(a)-2(c) are perspective views of a blood glucose monitoring system in accordance with embodiments of the present invention.
- FIG. 3(a) is a perspective view of an external infusion pump in accordance with an embodiment of the present invention.
- FIG. 3(b) is a simplified block diagram of an external infusion pump in accordance with an embodiment of the present invention.
- FIGS.4(a)-5(f) are block diagrams of a system for transferring information between a blood glucose monitoring system and an infusion pump through a relay device in accordance with embodiments of the present invention.
- FIGS.6(a)-6(d) are perspective views of a relay device in accordance with embodiments of the present invention.
- FIGS.7(a)-7(c) are perspective views of a relay device placed on a body of a user in accordance with embodiments of the present invention.
- FIGS.8(a)-8(c) are perspective views of a relay device placed on an infusion pump in accordance with embodiments of the present invention.
- FIG. 8(d) is a cut-away perspective view of an infusion pump with a relay device included in the infusion pump in accordance with another embodiment of the present invention.
- FIGS.9(a)-9(e) are block diagrams of a relay device in accordance with embodiments of the present invention.
- FIG. 10 is a block diagram of a system for transferring information between a blood glucose monitoring system and an infusion pump using a relay device incorporated into the infusion pump in accordance with another embodiment of the present invention.
- FIG. 11 is a block diagram of a system for transferring information between a blood glucose monitoring system and an infusion pump using a relay device incorporated into the infusion pump in accordance with yet another embodiment of the present invention.
- FIG. 12 is a block diagram of a system for transferring information between a blood glucose monitoring system and an infusion pump using a relay device incorporated into the infusion pump in accordance with still another embodiment of the present invention.
- As shown in the drawings for purposes of illustration, the invention is embodied in a relay device for transferring information between a sensor system for measuring a physiological characteristic level of a user's body and a fluid delivery system for delivering fluid into the user's body. The relay device receives information from one system in a first format, converts the information into a second format appropriate for the other system, and then transmits the converted information to the other system. Therefore, the relay device enables communication between the sensor system and the fluid delivery system, even if the systems are not developed in conjunction with one another. For example, sensor data or measurements may be communicated from the sensor system via the relay device to the fluid delivery system, and then utilized to adjust the amount of fluid delivered by the fluid delivery system into the user's body. Thus, the relay device encourages the user or caregiver to utilize the sensor data or measurements in order to adjust the amount of fluid delivered into the user's body by the fluid delivery system. Further, the sensor measurements may be displayed on the fluid delivery system for the user or caregiver to see. Therefore, the relay device allows the user or caregiver to interface with the sensor system (e.g., view the sensor measurements) utilizing a single device, the fluid delivery system. Particular embodiments are directed toward use of ambulatory sensor and fluid delivery systems that are programmed and adjusted primarily by the user or a caregiver, such as the user's parent. Other embodiments are directed toward use of hospital-based sensor and fluid delivery systems that are programmed and adjusted primarily by a caregiver, such as the user's physician or nurse.
- In preferred embodiments, the sensor system is a blood glucose (BG) monitoring system, which utilizes a sensor placed in a user to automatically measure the user's BG level, either periodically or continuously. In particular embodiments, the sensor may measure additional physiological characteristic levels of the user, such as blood oxygen, temperature, and the like. The sensor may be implanted in and/or through subcutaneous, dermal, sub-dermal, inter-peritoneal, or peritoneal tissue, and may be a sensor in contact with the user's body fluid, such as the user's blood, interstitial fluid, and the like. In preferred embodiments, the fluid delivery system is an insulin delivery device, such as an external insulin infusion pump, which regulates the amount of insulin delivered into the user's body. The relay device receives information from one system in a first format, converts the information into a second format appropriate for the other system, and then transmits the converted information to the other system. For example, the relay device may receive BG data or measurements from the BG monitoring system in a sensor system format (e.g., at a frequency of 131 kilohertz, utilizing radio frequency (RF) carrier media, in packets of 107 bytes), convert such data or measurements into a delivery system format appropriate for the insulin infusion pump (e.g., to a frequency of 916 megahertz, utilizing infrared (IR) carrier media, in packets of 71 bytes), and then transmit such converted data or measurements to the insulin infusion pump. The amount of insulin delivered into the user's body by the infusion pump may then be adjusted, either manually by the user or a caregiver or automatically, in response to the received BG data or measurements. In some embodiments, the BG measurements may also be displayed on the insulin infusion pump.
- However, in alternative embodiments of the present invention, the sensor system may include other types of sensors, such as optical, enzymatic, fluorescent, or the like. In additional alternative embodiments, the sensor system may measure the user's BG level only when requested by the user, or a BG meter may be utilized to measure the user's BG level based on a sampling of the user's blood. In further alternative embodiments, the sensor system may measure other physiological characteristic levels of the user, such as heart rate, blood oxygen, pH, peroxide, respiratory rate, body temperature, blood pressure, perspiration, brain wave activity, cholesterol level, ketone level, medication concentration, viral load (e.g., HIV), and the like. The sensor system may also include multiple sensors—one or more sensors to measure the user's BG level and one or more sensors to measure such other physiological characteristic levels of the user. In other alternative embodiments, the sensor system may measure the physiological characteristic levels of the user from body fluids other than blood, such as interstitial fluid, spinal fluid, saliva, urine, tears, sweat, or the like. In still other alternative embodiments, the fluid delivery system may be an implantable infusion pump, an infusion pump that uses a combination of implantable and external components, a pen injector, a disposable pump, an intra venous drip system, or the like. In yet other alternative embodiments, the fluid delivery system may deliver fluids other than insulin, including peptides, proteins, sugars, vitamins, antigens, hormones, steroids, medicaments, drugs, pain killers, anti-cancer agents, anti-coagulants, stimulants, tranquilizers, sedatives, and the like. Particular embodiments are directed towards use in humans; however, alternative embodiments may be used in animals.
- In preferred embodiments of the present invention, a relay device transfers information between a sensor system for measuring a physiological characteristic level of a user's body and a fluid delivery system for delivering fluid into the user's body. In the embodiment illustrated in FIG. 1, the sensor system is a
BG monitoring system 20, which utilizes a sensor that is placed in a user to measure the user's BG level. The sensor may measure additional physiological characteristic levels of the user, such as blood oxygen, temperature, or the like. - In particular embodiments, the
BG monitoring system 20 is an implantable glucose monitoring system, and is generally of the type described in U.S. Pat. No. 6,368,274, and disclosed in U.S. patent application Ser. No. 10/034,740, filed Dec. 27, 2001 and entitled “Implantable Sensor Flush Sleeve,” and U.S. Provisional Patent Application filed Sep. 27, 2002 and entitled “Implantable Sensor Method and System,” which are herein incorporated by reference. Referring to FIG. 2(a), theBG monitoring system 20 includes a glucose sensor set 50 and aglucose monitor 54. The sensor set 50 and glucose monitor 54 are implanted in the user's sub-dermal or inter-peritoneal tissue, and are in contact with the user's blood or other body fluid, to measure the user's BG level. For example, the sensor set 50 may be implanted into the central vein of the user's heart, and the glucose monitor 54 may be located in the user's chest cavity. Alternatively, the sensor set 50 may be placed in the user's peritoneum, and the glucose monitor 54 may be located in the user's abdominal cavity. The glucose monitor 54 includes a processor (not shown) for processing data as it is received from the sensor set 50, and a transmitter and/or receiver (not shown) for transferring the data to and/or from a data processor, such as adedicated processor 56 designed specifically to work with theglucose monitor 54, a computer, communication station, or the like. Thedata processor 56 preferably comprises a relatively compact, portable housing that may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like. However, theBG monitoring system 20 may also be included in a hospital-based system, and thedata processor 56 may comprise a housing that may be included in a monitor, placed on an intravenous (IV) pole, or the like near the patient's bed. - In other particular embodiments, the
BG monitoring system 20 is a telemetered glucose monitoring system, and may generally be of the type described in U.S. patent application Ser. No. 09/377,472, filed Aug. 19, 1999 and entitled “Telemetered Characteristic Monitor System and Method of Using the Same,” which is herein incorporated by reference. TheBG monitoring system 20 may also be a vascular glucose monitoring system, and may generally be of the type described in U.S. patent application Ser. No. 10/036,93, filed Dec. 28, 2001 and entitled “Sensing Apparatus and Process,” and U.S. Provisional Patent Application filed Sep. 27, 2002 and entitled “Multilumen Catheter,” which are herein incorporated by reference. Referring to FIG. 2(b), theBG monitoring system 20′ may include a glucose sensor set 50′ and aglucose monitor 54′. The sensor set 50′ includes a glucose sensor that is placed in and/or through the user's subcutaneous, dermal, sub-dermal, inter-peritoneal, peritoneal, muscle, lymph, or organ tissue, veins, arteries, or the like, and may be in contact with the user's blood or other body fluid, to measure the user's BG level. The sensor set 50′ is connected to the glucose monitor 54′ via acable 52, and the glucose monitor 54′ includes a processor (not shown) for processing data as it is received from the sensor set 50′ via thecable 52. For example, the sensor set 50′ may be placed in the user's subcutaneous tissue, and the glucose monitor 54′ may be adhered to the user's body. Alternatively, the sensor set 50′ may be inserted into one lumen of a multilumen catheter, which may then be implanted in the central vein of the user's heart and include an extension lead for connecting to the glucose monitor 54′ via thecable 52, and the glucose monitor 54′ may be adhered to the user's body, as shown in FIG. 11. The other lumen(s) of the multilumen catheter may be utilized for sampling other physiological characteristic levels of the user and/or delivering fluids into the user's body, such as protein nutrition, blood products, medication, lipids, and the like. Such a multilumen catheter may generally be of the type described in U.S. Provisional Patent Application filed Sep. 27, 2002 and entitled “Multilumen Catheter,” which is herein incorporated by reference. - The glucose monitor54′ may also include a transmitter and/or receiver (not shown) for transferring the data to and/or from a data processor, such as a
dedicated processor 56′ designed specifically to work with the glucose monitor 54′ , a computer, communication station, or the like. Thedata processor 56′ preferably comprises a relatively compact, portable housing that may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like. However, theBG monitoring system 20 may also be included in a hospital-based system, and thedata processor 56′ may comprise a housing that may be included in a monitor, placed on an intravenous (IV) pole, or the like near the patient's bed. In alternative embodiments, thecable 52 may be omitted, and the sensor set 50′ may be directly connected to the glucose monitor 54′. - In yet other particular embodiments, the
BG monitoring system 20 may be a continuous glucose monitoring system, and may generally be of the type described in U.S. Pat. No. 6,424,847, which is herein incorporated by reference. Referring to FIG. 2(c), theBG monitoring system 20″ may include a glucose sensor set 50″ and a glucose monitor 5″. The sensor set 50″ includes a glucose sensor that is placed in and/or through the user's subcutaneous, dermal, sub-dermal, inter-peritoneal, peritoneal, muscle, lymph, or organ tissue, veins, arteries, or the like, and may be in contact with the user's blood or other body fluid, to measure the user's BG level. The sensor set 50″ is connected to the glucose monitor 54″ via acable 52′, and the glucose monitor 54″ includes a processor (not shown) for processing data as it is received from the sensor set 50″ via thecable 52′. The glucose monitor 54″ comprises a relatively compact, portable housing that may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like. However, theBG monitoring system 20 may also be included in a hospital-based system, and the glucose monitor 54″ may comprise a housing that may be included in a monitor, placed on an intravenous (IV) pole, or the like near the patient's bed. The glucose monitor 54″ may also include a transmitter and/or receiver (not shown) for transferring the data to and/or from a data processor (not shown), such as a computer, communication station, or the like. In alternative embodiments, thecable 52′ may be omitted, and the sensor set 50″ may be directly connected to the glucose monitor 54″. - In alternative embodiments, the
BG monitoring system 20 may include other types of sensors, such as optical, enzymatic, fluorescent, or the like. In further alternative embodiments, the sensor system may measure other physiological characteristic levels of the user, such as heart rate, blood oxygen, pH, peroxide, respiratory rate, body temperature, blood pressure, perspiration, brain wave activity, cholesterol level, ketone level, medication concentration, viral load (e.g., HIV), and the like. The sensor system may also include multiple sensors—one or more sensors to measure the user's BG level and one or more sensors to measure such other physiological characteristic levels of the user. For example, theBG monitoring system 20 may include a glucose sensor set 50 inserted in or on the user's body to measure the user's BG level and an oxygen sensor to measure the oxygen level at or near the insertion site of the sensor set 50. The measured oxygen level may then be used to determine the effectiveness of the sensor set 50, the formation of foreign bodies near the sensor set 50, or the like. In other alternative embodiments, the sensor system may measure the physiological characteristic levels of the user from body fluids other than blood, such as interstitial fluid, spinal fluid, saliva, urine, tears, sweat, or the like. - In particular embodiments, the
BG monitoring system 20 automatically measures the user's BG level on a periodic basis. In other particular embodiments, theBG monitoring system 20 automatically measures the user's BG level on a continuous basis. In alternative embodiments, theBG monitoring system 20 may not automatically measure the user's BG level. For example, theBG monitoring system 20 may include a user interface, such as akeypad 60, which may be utilized by the user to request a BG measurement from theBG monitoring system 20. Alternatively, theBG monitoring system 20 may include a BG meter, which measures the user's BG level based on a sampling of the user's blood. - In preferred embodiments, the
BG monitoring system 20 includes a transmitter and/or receiver (not shown) for communicating with external devices, such as a remote programmer (not shown) for theBG monitoring system 20, a BG meter (not shown), therelay device 10, theinfusion pump 30 via therelay device 10, or the like. For example, the glucose monitor 54 and/ordata processor 56 may include the transmitter and/or receiver. TheBG monitoring system 20 preferably communicates with such external devices using radio frequency (RF) communication. Alternatively, other modes of communication may be utilized, such as infrared (IR), wired, ultrasonic, optical, or the like. - In particular embodiments, the
BG monitoring system 20 may also include a display and a user interface. Referring to FIGS. 2(a)-2(b), thedata processor 56 includes adisplay 58 and akeypad 60 with one or more keys. The glucose monitor 54 utilizes the transmitter and/or receiver (not shown) to transfer data to and/or from thedata processor 56. Alternatively, referring to FIG. 2(c), the glucose monitor 54″ may include thedisplay 58″ andkeypad 60″ with one or more keys. The user may utilize thedisplay 58 and/orkeypad 60 to display the user's current BG level, view other BG information recorded or calculated by the glucose monitor 54 and/or data processor 56 (e.g., average BG level, BG trends, graphs of historical BG measurements), view alarms or other messages, program theBG monitoring system 20, enter calibration or other data into theBG monitoring system 20, download information from theBG monitoring system 20, and the like. In particular embodiments, the user may also utilize thedisplay 58 and/orkeypad 60 to transmit data, delivery commands, and/or other information to theinfusion pump 30 via therelay device 10. In alternative embodiments, the user interface may include one or more buttons, switches, levers, joystick, roller ball, mouse, keyboard, and the like. In further alternative embodiments, thekeypad 60 may be omitted, and thedisplay 58 may be used as a touch screen input device. In other alternative embodiments, the display and/or user interface may be omitted from theBG monitoring system 20, and instead included on therelay device 10 and/orinfusion pump 30. - In preferred embodiments, the
BG monitoring system 20 stores information in a memory (not shown) of theBG monitoring system 20 for subsequent review and/or downloading to a storage media. Information stored by theBG monitoring system 20 may include one or more of raw BG data, calibrated BG measurements, time stamps, sensor alarms, sensor settings, calibration data, sensor performance data, sensor errors, sensor system diagnostics, statistics, user information, serial number, and the like. In preferred embodiments, information is transmitted from theBG monitoring system 20 to theinfusion pump 30 via therelay device 10, and then downloaded to a storage media from theinfusion pump 30. The storage media may include one or more of a personal computer (PC), a central server, an electronic memory, a personal digital assistant (PDA), a cell phone, a laptop computer, magnetic memory, silicon memory, a data storage device, and the like. In alternative embodiments, information may be downloaded to the storage media directly from theBG monitoring system 20 through an interface, such as a transmitter, a cable, a communication station, or the like. In particular alternative embodiments, information may be downloaded from thedata processor 56 to the storage media. In other alternative embodiments, information may be downloaded from the glucose monitor 54 to the storage media. In further alternative embodiments, information may be transmitted from theBG monitoring system 20 to therelay device 10, and then downloaded to the storage media from therelay device 10. In other alternative embodiments, information may be downloaded to the storage media from more than one of theBG monitoring system 20,relay device 10, andinfusion pump 30. - In preferred embodiments, sensor calibration data is provided to the
BG monitoring system 20 by communication with an external device, such as a BG meter or other BG measuring device (not shown). TheBG monitoring system 20 preferably includes a transmitter and/or receiver (not shown) for communicating with such external devices. For example, the glucose monitor 54 and/or thedata processor 56 may include the transmitter and/or receiver. The user obtains a BG reference reading utilizing a BG meter or other BG measuring device, which then transmits the BG reference reading to theBG monitoring system 20, either directly or via therelay device 10. In alternative embodiments, the user may manually enter sensor calibration data into theBG monitoring system 20. In particular alternative embodiments, the user may utilize thedisplay 58 and/oruser interface 60 on thedata processor 56, as shown in FIGS. 2(a)-2(b), to manually input the calibration data into theBG monitoring system 20. In other particular alternative embodiments, the user may utilize thedisplay 58″ and/oruser interface 60″ on the glucose monitor 54″ , as shown in FIG. 2(c), to manually input the calibration data into theBG monitoring system 20. - In the embodiment illustrated in FIGS. 1 and 3(a)-3(b), the fluid delivery system is an
external infusion pump 30, which regulates the flow of fluid, preferably medication such as insulin, throughflexible tubing 32 and into an infusion set 34 or the like that is adhered to the user's body. Infusion sets 34 that may be used are described in, but not limited to, U.S. Pat. Nos. 4,723,947; 4,755,173; 5,176,662; 5,584,813; and 6,056,718, which are herein incorporated by reference. Theinfusion pump 30 is generally of the type described in U.S. Pat. Nos. 4,562,751; 4,685,903; 5,080,653; 5,097,122; 5,505,709; and 6,248,093; and disclosed in U.S. patent application Ser. No. 09/334,858, filed Jun. 16, 1999 and entitled “External Infusion Device with Remote Programming, Bolus Estimator and/or Vibration Alarm Capabilities,” which are herein incorporated by reference. In alternative embodiments, the fluid delivery system may be an implantable infusion pump, an infusion pump that uses a combination of implantable and external components, a pen injector, disposable pump, an intra venous drip system, or the like. In still other alternative embodiments, the fluid delivery system may deliver fluids other than insulin, including peptides, proteins, sugars, vitamins, antigens, hormones, steroids, medicaments, drugs, pain killers, anti-cancer agents, anti-coagulants, stimulants, tranquilizers, sedatives, and the like. - Referring to FIGS.3(a)-3(b), the
infusion pump 30 comprises a relatively compact, portable housing that may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like. However, theinfusion pump 30 may also be included in a hospital-based system, and theinfusion pump 30 may comprise a housing that may be included in a monitor, placed on an intravenous (IV) pole, or the like near the patient's bed. The infusion pump 30 preferably includes aprocessor 150 for running programs and controlling theinfusion pump 30. Theprocessor 150 is coupled to aninternal memory device 154 that stores programs, history data, user defined information and parameters. In preferred embodiments, thememory device 154 is a ROM and DRAM; however, in alternative embodiments, thememory device 154 may include other memory storage devices, such as RAM, EPROM, dynamic storage such as flash memory, energy efficient hard-drive, or the like. Theprocessor 150 is also coupled to adrive mechanism 160 that is connected to afluid reservoir 162 containing fluid that is delivered through thetubing 32 and into the infusion set 34 adhered to the user's body. Theprocessor 150 may additionally be coupled to abolus estimator 164, which estimates an appropriate amount of insulin to be delivered to the user based on the user's BG level, the amount of carbohydrates to be consumed, and the like. Thebolus estimator 164 may generally be of the type described in U.S. patent application Ser. No. 09/334,858, filed Jun. 16, 1999 and entitled “External Infusion Device with Remote Programming, Bolus Estimator and/or Vibration Alarm Capabilities,” which is herein incorporated by reference. - The infusion pump30 further includes a
communication system 152 coupled to theprocessor 150 for communicating with external devices, such as a remote programmer (not shown) for theinfusion pump 30, theBG monitoring system 20 via therelay device 10, therelay device 10, or the like. Thecommunication system 152 may include a transmitter and/or receiver (not shown) for communicating with such external devices. The infusion pump 30 preferably communicates with such external devices using radio frequency (RF) communication. Alternatively, other modes of communication may be utilized, such as infrared (IR), wired, ultrasonic, optical, or the like. - In some embodiments, the transmitter and/or receiver (not shown) of the
communication system 152 may be capable of communicating with certain external devices utilizing a particular frequency and/or communication protocol, such as the remote programmer (not shown) for theinfusion pump 30 or the like. Theinfusion pump 30 may include another transmitter and/or receiver (not shown) as part of therelay device 10 incorporated in theinfusion pump 30 itself (as shown and described below in the embodiment of FIGS. 8(d) and 10-12), which is capable of communicating with other external devices utilizing another particular frequency and/or communication protocol, such as theBG monitoring system 20 or the like. In other embodiments, the transmitter and/or receiver (not shown) of thecommunication system 152 may be capable of communicating with various external devices utilizing different frequencies and/or communication protocols. - The
infusion pump 30 also includes adisplay 100 and/or auser interface 110. In preferred embodiments, thedisplay 100 is a monochromatic liquid crystal display (LCD). In alternative embodiments, thedisplay 100 is a light emitting diode (LED) display, a cathode ray tube (CRT) display, a touch screen, a color LCD, or the like. - In preferred embodiments, the user interface is a
keypad 110 including one or more keys with selectable functions. Theinfusion pump 30 is preferably programmed through thekeypad 110, or alternatively, by commands received from an external device, such as a remote programmer, theBG monitoring system 20 via therelay device 10, therelay device 10, or the like. Thekeypad 110 may generally be of the type, and operate in a manner similar to that, disclosed in U.S. patent applications Ser. No. 09/334,858, filed Jun. 16, 1999 and entitled “External Infusion Device with Remote Programming, Bolus Estimator and/or Vibration Alarm Capabilities,” and Ser. No. 09/784,949, filed Feb. 15, 2001 and entitled “Improved Infusion Device Menu Structure and Method of Using the Same,” which are herein incorporated by reference. - In the illustrated embodiment, the
keypad 110 includes an Up-Arrow key 112, a Down-Arrow key 114, an ACT (activate) key 116, an ESC (escape)key 118, and an Express Bolus key 120 for programming theinfusion pump 30. Thekeypad 110 also includes adedicated key 122 for interfacing with theBG monitoring system 20 via therelay device 10. In particular embodiments, the user chooses a function and then selects which key will perform that function. For example, while thedisplay 100 is blank, the user may select the Express Bolus key 120 to quickly set a bolus amount, or the ESC key 118 to show a status information screen on thedisplay 100. In other particular embodiments, the user selects one or more keystrokes to perform a function. For example, while thedisplay 100 is blank, the user may first select the ACT key 116 to show a main menu screen, then the Up-Arrow and Down-Arrow keys keys keypad 110 to perform functions on theinfusion pump 30, such as starting or stopping a bolus or basal delivery, accessing historical data or status information, setting a utility (e.g., date, time, serial number, or the like), turning on or off a feature (e.g., light, key lock, temporary operation, or the like), escaping to a home display screen, backing up to a previous screen, deleting or approving an input, scrolling, priming, resetting, and the like. In particular embodiments, thedisplay 100 and/oruser interface 110 may also be utilized to input information into and/or display information from theBG monitoring system 20 via therelay device 10, such as viewing sensor measurements received from theBG monitoring system 20 on thedisplay 100 of theinfusion pump 30. In alternative embodiments, thekeypad 110 may include more or less keys, or have different key arrangements than those illustrated in the figures. - In further alternative embodiments, one or more keys on the
keypad 110 may be programmable. In particular embodiments, the user may define one or more keystrokes to cause theinfusion pump 30 to perform one or more functions. For example, a first user may define key 120 on afirst infusion pump 30 to cause thedisplay 100 to show the most recent sensor measurement, while a second user may define key 120 on asecond infusion pump 30 to perform an express bolus function. In other alternative embodiments, the user interface may include one or more buttons, switches, levers, joysticks, roller balls, mice, keyboards, and the like. In still other alternative embodiments, thekeypad 110 may be omitted, and thedisplay 100 may be used as a touch screen input device. - The
infusion pump 30 may provide feedback to the user on status or programming changes visibly on thedisplay 100 and/or through lights (not shown) on theinfusion pump 30, audibly through aspeaker 156, and/or tactilely through avibrator 158. Theinfusion pump 30 may also provide the user with a visible alarm via thedisplay 100 and/or lights, an audible alarm via thespeaker 156, and/or a vibration alarm via thevibrator 158, such as a warning that is indicative of a low reservoir or low battery, an alarm or warning that is indicative of a sensor measurement received from theBG monitoring system 20 via therelay device 10 that is above or below target glycemic values, or the like. In alternative embodiments, thedisplay 100,keypad 110, lights,speaker 156, and/orvibrator 158 may be omitted from theinfusion pump 30, and instead, included on therelay device 10 and/or theBG monitoring system 20. In further alternative embodiments, thedisplay 100,keypad 110, lights,speaker 156, and/orvibrator 158 may be omitted, theinfusion pump 30 may be implanted in the user's body, and all programming may be handled through a communication system using wireless modes of communication, such as radio frequency (RF), infrared (IR), and the like. - In preferred embodiments, the infusion pump30 stores information in a memory (not shown) of the
infusion pump 30 for subsequent review and/or downloading to a storage media. Information stored by theinfusion pump 30 includes one or more of insulin delivery rates, insulin bolus amounts, time stamps, alarms, errors, warnings, utility settings, statistics, profiles, user information, serial number, commands, force measurements, pressure measurements, and the like. In preferred embodiments, information is downloaded directly from theinfusion pump 30 to a storage media through an interface, such as a transmitter, cable, communication station, or the like. In particular embodiments, an external communication link (not shown) may be connected via a cable to a serial, USB, or the like port of a computer. Theinfusion pump 30 may include an RF transmitter or transceiver (not shown), which transmits information to an RF receiver or transceiver in the external communication link for downloading to the computer. In other particular embodiments, information may be downloaded from theinfusion pump 30 through a communication station generally of the type disclosed in U.S. Pat. No. 5,376,070, which is herein incorporated by reference. In still other particular embodiments, information may be downloaded from theinfusion pump 30 through a BG meter (not shown) as disclosed in U.S. Provisional Patent Application Serial No. 60/412,998, filed Sep. 23, 2002 and entitled “System for Providing Blood Glucose Measurements to Bolus Estimator,” which is herein incorporated by reference. The storage media may include one or more of a personal computer (PC), a central server, an electronic memory, a personal digital assistant (PDA), a cell phone, a laptop computer, magnetic memory, silicon memory, a data storage device, and the like. In alternative embodiments, information may be transmitted from theinfusion pump 30 to theBG monitoring system 20 via therelay device 10, and then downloaded to a storage media from theBG monitoring system 20. In further alternative embodiments, information may be transmitted from theinfusion pump 30 to therelay device 10, and then downloaded to the storage media from therelay device 10. In other alternative embodiments, information may be downloaded to the storage media from more than one of theBG monitoring system 20,relay device 10, andinfusion pump 30. - In the embodiment illustrated in FIG. 1, the
relay device 10 transfers information between theBG monitoring system 20 and theinfusion pump 30. In preferred embodiments, therelay device 10 comprises a relatively compact,portable housing 200 without a user interface or a display, as illustrated in FIG. 6(a). Therelay device 10 may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like. In alternative embodiments, therelay device 10′ may include ahousing 200′ with asingle key 202, as shown in FIG. 6(b). Thesingle key 202 provides a user interface for the user to request new information from theBG monitoring system 20. - In further alternative embodiments, the
relay device 10″ may include ahousing 200″ with akeypad 204, as shown in FIG. 6(c). Thekeypad 204 may include more than one key, and at least one of the keys may be utilized by the user to send data or commands to theinfusion pump 30. In the illustrated embodiment, thekeypad 204 includes an Up-Arrow key 206, a Down-Arrow key 208, and an ACT (activate)key 210 for programming the infusion pump 30 from therelay device 10 in a manner similar to that shown and described in the embodiment of FIG. 3(a). Thekeypad 204 also includes adedicated key 212 for interfacing with and requesting data from theBG monitoring system 20. However, in alternative embodiments, thekeypad 204 may include more or less keys or different key arrangements than those illustrated in FIG. 6(c). - In other alternative embodiments, the
relay device 10′″ may include ahousing 200′″ with adisplay 214 and akeypad 216, as shown in FIG. 6(d). In particular alternative embodiments, thedisplay 214 may be a monochromatic liquid crystal display (LCD). In other particular alternative embodiments, thedisplay 214 may be a light emitting diode (LED) display, a cathode ray tube (CRT) display, a touch screen, a color LCD, or the like. Thekeypad 216 may include more than one key, and at least one of the keys may be utilized by the user to send data or commands to theinfusion pump 30. In the illustrated embodiment, thekeypad 216 includes an Up-Arrow key 218, a Down-Arrow key 220, an ACT (activate)key 222, and an ESC (escape)key 224 for programming the infusion pump 30 from therelay device 10 in a manner similar to that shown and described in the embodiment of FIG. 3(a). Thekeypad 216 also includes adedicated key 226 for interfacing with and requesting data from theBG monitoring system 20. However, in alternative embodiments, thekeypad 216 may include more or less keys or different key arrangements than those illustrated in FIG. 6(d). In still other alternative embodiments, therelay device 10 may be a computer system (not shown), such as a personal computer (PC), a personal digital assistant (PDA), a central data system (such as is used in hospitals to store or track data, Internet systems, or the like), or the like. - In preferred embodiments, the
relay device 10 is positioned on the user's body near theBG monitoring system 20. For example, therelay device 10 may be positioned on the user's is body using anecklace 250 to hold therelay device 10 like a pendant (as shown in FIG. 7(a)), using a belt orstrap 252 to hold therelay device 10 in place (as shown in FIG. 7(b)), or by placing therelay device 10 in aclothing garment 254 or clipping therelay device 10 in place (as shown in FIG. 7(c)). Positioning therelay device 10 near theBG monitoring system 20 is especially useful to minimize the power required by the transmitter and/or receiver in theBG monitoring system 20 to send and/or receive signals between theBG monitoring system 20 and therelay device 10. Other methods may be used to locate therelay device 10 near theBG monitoring system 20, such as using tape or adhesive to hold therelay device 10 in place, holding therelay device 10 in a hand and bringing the hand near theBG monitoring system 20, or the like. - In alternative embodiments, the
relay device 10 may be incorporated with theinfusion pump 30 to minimize the number of components that the user must handle. For example, therelay device 10 may be incorporated into a clip that is attached to theinfusion pump 30 to hold theinfusion pump 30 in place on the user's body, as shown in FIG. 8(a). Alternatively, therelay device 10′ may be mounted on a side of theinfusion pump 30, as shown in FIG. 8(b). Additionally, therelay device 10″ may be attached to a bottom of theinfusion pump 30, as shown in FIG. 8(c). In other alternative embodiments, therelay device 10 may be incorporated with theBG monitoring system 20 in a manner similar to that shown and described in the embodiments of FIGS. 8(a)-8(c). For example, therelay device 10 may be incorporated into a clip that is attached to, or mounted on a side of, or attached to a bottom of, thedata processor 56 shown in FIGS. 2(a)-2(b) or the glucose monitor 54″ shown in FIG. 2(c). - In further alternative embodiments, the
relay device 10 may be incorporated into theinfusion pump 30. FIG. 8(d) illustrates a cut-away perspective view of theinfusion pump 30 showing the electronic boards and modules that may be included in theinfusion pump 30. Theinfusion pump 30 may include adisplay module 260, amother board 262, and aninterface board 264. Themother board 262 is the main control unit for theinfusion pump 30, and includes the processor and memory. Thedisplay module 260 includes thedisplay 100, and in particular embodiments, a backlight for thedisplay 100. Theinterface board 264 interfaces between different systems in theinfusion pump 30, and includes the drive mechanism and power supplies. Theinfusion pump 30 also includes acommunication board 265 and anantenna 268, which enable communication with external devices, such as a remote programmer (not shown) for theinfusion pump 30, theBG monitoring system 20, and the like. Thecommunication board 265 includes the communication system as well as the relay device components. During communications with theBG monitoring system 20, the drive mechanism and power supplies on theinterface board 264 are temporarily shutdown. Accordingly, theinfusion pump 30 further includes acapacitor 266 for providing power to theinfusion pump 30 and thecommunication board 265 during such communications. - For example, referring to FIGS.10-12, the relay device (not shown) may be incorporated into the
infusion pump 30. TheBG monitoring system 20 may transmit communications to theinfusion pump 30 in a sensor system format, the relay device incorporated into theinfusion pump 30 may receive such communications and convert them to a delivery system format, and theinfusion pump 30 may then process such converted communications. Conversely, theinfusion pump 30 may format communications in the delivery system format, the relay device incorporated into theinfusion pump 30 may convert such communications to the sensor system format and transmit such converted communications, and theBG monitoring system 20 may receive such communications in the sensor system format. In particular embodiments, theBG monitoring system 20 may communicate with theinfusion pump 30 using wireless modes of communication, such as radio frequency (RF), infrared (IR), ultrasonic, sonic, optical, and the like, as shown in FIGS. 10 and 11. In other particular embodiments, theBG monitoring system 20 may communicate with theinfusion pump 30 using awired connection 35, as shown in FIG. 12. - In particular embodiments, information may be downloaded directly from the
relay device 10 to a storage media through an interface, such as a transmitter, a cable, a communication station, or the like. For example, information stored by theBG monitoring system 20 and/or theinfusion pump 30 may be transmitted to therelay device 10, and then downloaded from therelay device 10 to the storage media. The storage media may include one or more of a personal computer (PC), a central server, an electronic memory, a personal digital assistant (PDA), a cell phone, a laptop computer, magnetic memory, silicon memory, a data storage device, and the like. In alternative embodiments, information may be downloaded directly from theBG monitoring system 20 or theinfusion pump 30 to a storage media. In further alternative embodiments, information may be downloaded to the storage media from more than one of theBG monitoring system 20,relay device 10, andinfusion pump 30. - In preferred embodiments, the
relay device 10 communicates with theBG monitoring system 20 and theinfusion pump 30 using radio frequency (RF) communication. In alternative embodiments, other modes of communication may be used, such as infrared (IR), wired, ultrasonic, sonic, optical, and the like. In further alternative embodiments, more than one mode of communication may be utilized by therelay device 10. - In preferred embodiments, the
relay device 10 includes anRF mixer 300, afirst microcontroller 302, asecond microcontroller 304, and anRF transceiver 306, as shown in FIG. 9(a). TheRF mixer 300 receives an RF signal from theBG monitoring system 20 and forwards the signal to thefirst microcontroller 302. Thefirst microcontroller 302 decodes the RF signal received in a first format from the BG monitoring system 20 (e.g., at a frequency of 131 kilohertz), and forwards the decoded signal to thesecond microcontroller 304. Next, thesecond microcontroller 304 processes and encodes the signal into a second format for the infusion pump 30 (e.g., at a frequency of 916 megahertz), and forwards the encoded signal to theRF transceiver 306. TheRF transceiver 306 then transmits the encoded signal to theinfusion pump 30. Conversely, theRF transceiver 306 receives an RF signal from theinfusion pump 30 and forwards the signal to thesecond microcontroller 304. Thesecond microcontroller 304 decodes the RF signal received in the second format from theinfusion pump 30, and forwards the decoded signal to thefirst microcontroller 302. Next, thefirst microcontroller 302 processes and encodes the signal into the first format for theBG monitoring system 20, and forwards the encoded signal to theRF mixer 300. TheRF mixer 300 then transmits the encoded signal to theBG monitoring system 20. Inclusion of the twomicrocontrollers relay device 10 to encode and decode signals for theBG monitoring system 20 and theinfusion pump 30 simultaneously. - In alternative embodiments, the two
microcontrollers BG monitoring system 20 and theinfusion pump 30 in a manner similar to that of the twomicrocontrollers relay device 10″ may include anRF mixer 320 and anRF transceiver 326, as illustrated in FIG. 9(c), which are similar to theRF mixer 300 andRF transceiver 306 shown in FIGS. 9(a) and 9(b). Therelay device 10″ may also include a field programmable gate array (FPGA) 322, which performs functions similar to thefirst microcontroller 302 shown in FIG. 9(a), for encoding and decoding signals in an appropriate format for theBG monitoring system 20. Therelay device 10″ may further include amicrocontroller 322, which is similar to thesecond microcontroller 304 shown in FIG. 9(a), for encoding and decoding signals in an appropriate format for theinfusion pump 30. - In other alternative embodiments, the
relay device 10′″ may include an application specific integrated circuit (ASIC) 340, which incorporates an RF mixer for transmitting and receiving signals to and from theBG monitoring system 20, as illustrated in FIG. 9(d). TheASIC 340 may also encode and decode information in an appropriate format for theBG monitoring system 20. Additionally, therelay device 10′″ may include amicrocontroller 342, which is similar to thesecond microcontroller 304 shown in FIG. 9(a), for encoding and decoding signals in an appropriate format for theinfusion pump 30. Therelay device 10′″ may further include anRF transceiver 344, which is similar to theRF transceiver 306 shown in FIG. 9(a), for transmitting and receiving signals to and from theinfusion pump 30. In still other alternative embodiments, themicrocontroller 342 shown in FIG. 9(d) may be omitted, and the functionality instead may be included in an application specific integrated circuit (ASIC_360, as shown in FIG. 9(e). TheASIC 360 transmits and receives signals to and from theBG monitoring system 20. TheASIC 360 also encodes and decodes signals in appropriate formats respectively for theBG monitoring system 20 andinfusion pump 30. Therelay device 10″″ may further include anRF transceiver 362, which is similar to theRF transceiver 306 shown in FIG. 9(a), for transmitting and receiving signals to and from theinfusion pump 30. - Referring to FIG. 1, the
relay device 10 receives information from theBG monitoring system 20 in a sensor system format, converts the information into a delivery system format appropriate for theinfusion pump 30, and then transmits the converted information in the delivery system format to theinfusion pump 30. Therelay device 10 may also receive information from theinfusion pump 30 in the delivery system format, convert the information into the sensor system format appropriate for theBG monitoring system 20, and then transmit the converted information in the sensor system format to theBG monitoring system 20. In alternative embodiments, communication is in only one direction, either from theBG monitoring system 20 to theinfusion pump 30, or from theinfusion pump 30 to theBG monitoring system 20. - In preferred embodiments, the sensor system and delivery system formats include one or more frequencies, communication protocols, and the like that are used to transfer information between the
BG monitoring system 20 and theinfusion pump 30. For example, the sensor system format utilized by theBG monitoring system 20 may include a lower frequency, such as 131 kilohertz, resulting in less tissue attenuation at and/or near the insertion site of the BG monitoring sensor set 50. The delivery system format utilized by theinfusion pump 30 may include a higher frequency, such as 916 megahertz or 402-405 megahertz, ensuring compliance with federal, state, regulatory, and other requirements for RF communications. However, other frequencies may be utilized by theBG monitoring system 20 and/orinfusion pump 30. - The communication protocols specify carrier media for communication, such as radio frequency (RF) (including frequency modulated (FM), amplitude modulated (AM), and the like RF), infrared (IR), ultrasonic, audio, light wave, Bluetooth, IRDA, conductive using wires or other direct contacts, and the like. The communication protocols also specify information packaging, which includes how the information is arranged and sent on the carrier media. For example, the information packaging may specify which data components are sent (e.g., the serial number of the
relay device 10,BG monitoring system 20, and/orinfusion pump 30, a date and time stamp, a sensor measurement, a pump command, and the like). The information packaging may also specify the order in which data components are sent. Further, the information packaging may specify how the information is sent, such as in packets, bits, words, and the like. The information packaging may additionally specify how the information is expressed, such as in decimal, hexadecimal, DC balanced format, and the like. - The
BG monitoring system 20 utilizes a sensor system communication protocol, and theinfusion pump 30 utilizes a delivery system communication protocol. For example, theBG monitoring system 20 uses the sensor system communication protocol to communicate with therelay device 10, and theinfusion pump 30 uses the delivery system communication protocol to communicate with therelay device 10. In particular embodiments, theBG monitoring system 20 and infusion pump 30 do not use the same communication protocol; thus, therelay device 10 converts information received from theBG monitoring system 20 into the delivery system communication protocol for communicating to theinfusion pump 30, and therelay device 10 converts information received from theinfusion pump 30 into the sensor system communication protocol for communicating to theBG monitoring system 20. For example, therelay device 10 may receive BG data or measurements from theBG monitoring system 20 formatted in the sensor system communication protocol utilizing radio frequency carrier media, in packets of 107 bytes, or the like. Therelay device 10 converts such data or measurements into the delivery system communication protocol utilizing infrared carrier media, in packets of 71 bytes, or the like, and then transmits such converted data or measurements formatted in the delivery system communication protocol to theinfusion pump 30. However, other carrier media or information packaging may be utilized by theBG monitoring system 20 and/or infusion pump 30.7 In preferred embodiments, therelay device 10,BG monitoring system 20,infusion pump 30, and other devices capable of communicating with therelay device 10,BG monitoring system 20, and/or infusion pump 30 (e.g., remote programmer for theBG monitoring system 20, remote programmer for theinfusion pump 30, and the like) each have a unique identification (ID) code, such as a serial number, identification number, password, or the like. The ID code may be included in communications transmitted to and received from therelay device 10,BG monitoring system 20, and/orinfusion pump 30 in order to ensure security and/or to distinguish information from various sources. In particular embodiments, each packet of information that is transmitted to therelay device 10 may include the ID code for therelay device 10, and therelay device 10 may use the ID code to discern whether the packet of information is intended for therelay device 10. Similarly, each packet of information that is transmitted to theBG monitoring system 20 may include the ID code for theBG monitoring system 20, and theBG monitoring system 20 may use the ID code to discern whether the packet of information is intended for theBG monitoring system 20. Also, each packet of information that is transmitted to theinfusion pump 30 may include the ID code for theinfusion pump 30, and theinfusion pump 30 may use the ID code to discern whether the packet of information is intended for theinfusion pump 30. In further particular embodiments, therelay device 10,BG monitoring system 20,infusion pump 30, and other devices capable of communicating with therelay device 10,BG monitoring system 20, and/orinfusion pump 30 may know each other's unique ID code. TheBG monitoring system 20 and/or theinfusion pump 30 may respond to commands and accept information only from devices for which they know such ID codes. For example, theBG monitoring system 20 may communicate with theinfusion pump 30 through therelay device 10, and thus, may know the ID codes for therelay device 10 andinfusion pump 30. Conversely, theinfusion pump 30 may communicate with theBG monitoring system 20 through therelay device 10, and thus, may know the ID codes for therelay device 10 andBG monitoring system 20. Theinfusion pump 30 may also know the ID code for a remote programmer. In alternative embodiments, therelay device 10,BG monitoring system 20,infusion pump 30, and other devices capable of communicating with theBG monitoring system 20 and/orinfusion pump 30 have no ID code. - In preferred embodiments, the
BG monitoring system 20 is continually synchronized with any device that communicates with theBG monitoring system 20, such as therelay device 10, theinfusion pump 30 via therelay device 10, and the like. TheBG monitoring system 20 transmits information at fixed intervals (e.g., once every thirty seconds, minute, five minutes, ten minutes, twenty minutes, or the like) for exact time periods (e.g., for time periods of less than one second, one second, one to five seconds, more than five seconds, or the like). The devices that communicate with theBG monitoring system 20 “wake up” at the fixed intervals and “listen” to receive the information from theBG monitoring system 20. This fixed interval communication method allows theBG monitoring system 20 and the devices that communicate with theBG monitoring system 20 to supply power to their communication systems on a periodic, rather than continuous, basis. Accordingly, theBG monitoring system 20 and the devices that communicate with theBG monitoring system 20 are able to save power when not communicating with one another. In alternative embodiments, theBG monitoring system 20 and the devices that communicate with theBG monitoring system 20 may supply power to their communication systems on a continuous basis, and thus, be capable of continuous communication. In further alternative embodiments, theBG monitoring system 20 and the devices that communicate with theBG monitoring system 20 may supply power to their communication systems only upon request from the user. For example, the user may select thededicated key 122 on theinfusion pump 30 shown in FIG. 3(a), or alternatively, thededicated key relay device 10 shown in FIGS. 6(c) and 6(d), to request information from theBG monitoring system 20. TheBG monitoring system 20 may periodically supply power to its communication system for a relatively short time period in order to detect whether another device is requesting information, and in response to such a request, theBG monitoring system 20 and the devices that communicate with theBG monitoring system 20 may supply power to their communication systems and then communicate the requested information. Accordingly, theBG monitoring system 20 and the devices that communicate with theBG monitoring system 20 are able to save power when not communicating with one another. - Referring to FIG. 1, the
relay device 10 receives information from theBG monitoring system 20, and then transmits the information to theinfusion pump 30. Therelay device 10 may also receive information from theinfusion pump 30, and then transmit the information to theBG monitoring system 20. In preferred embodiments, theinfusion pump 30 includes adisplay 32 and auser interface 34, as shown in FIG. 4(a). For example, thedisplay 32 may be anLCD display 100, and theuser interface 34 may be akeypad 10 including one or more keys, as shown in FIGS. 3(a)-3(b). TheBG monitoring system 20 sends a sensor signal to therelay device 10, and then therelay device 10 sends the sensor signal to theinfusion pump 30. In preferred embodiments, the sensor signal contains uncalibrated sensor data, and theinfusion pump 30 calibrates the uncalibrated sensor data to generate sensor measurements, which are shown on thedisplay 32. In particular embodiments, the BG monitoring system automatically sends the sensor data to theinfusion pump 30 on a periodic (e.g., once every thirty seconds, minute, five minutes, ten minutes, or the like) or continuous basis, and theinfusion pump 30 automatically shows the sensor measurement on thedisplay 32 once the sensor data has been received and calibrated. The user may also utilize theuser interface 34 to cause thedisplay 32 to show a sensor measurement. In other particular embodiments, once theinfusion pump 30 generates the sensor measurement, theinfusion pump 30 may provide an alarm or warning to the user if the sensor measurement is above or below target glycemic values. For example, if the sensor measurement is above a hyperglycemic limit (e.g., 250 mg/dl) or below a hypoglycemic limit (e.g., 70 mg/dl), theinfusion pump 30 may provide the user with a visible alarm via thedisplay 100 and/or lights, an audible alarm via thespeaker 156, and/or a vibration alarm via thevibrator 158. Theinfusion pump 30 may also suspend insulin delivery if the sensor measurement is below the hypoglycemic limit, and notify the user to activate a bolus delivery if the sensor measurement is above the hyperglycemic limit. In further particular embodiments, theinfusion pump 30 may include thebolus estimator 164, which utilizes the sensor measurement to estimate an appropriate amount of insulin to be delivered to the user based on the user's BG level, the amount of carbohydrates to be consumed, and the like. The calculated bolus estimate may be shown to the user on thedisplay 32, and the user may then utilize theuser interface 34 to accept or modify the bolus estimate for infusion into the user. In alternative embodiments, theBG monitoring system 20 calibrates the sensor data to generate sensor measurements, which are included in the sensor signal transmitted from theBG monitoring system 20 to theinfusion pump 30 via therelay device 10. In other alternative embodiments, theBG monitoring system 20 sends a sensor signal with uncalibrated sensor data to therelay device 10, therelay device 10 calibrates the uncalibrated sensor data to generate sensor measurements, and therelay device 10 sends the sensor signal with the sensor measurements to theinfusion pump 30. - In additional alternative embodiments, the
infusion pump 30 may include adisplay 32, and therelay device 10 may include auser interface 14, as shown in FIG. 4(b). For example, thedisplay 32 may be an LCD display 100 (as shown in FIGS. 3(a)-3(b)), and theuser interface 14 may be a single key 202 (as shown in FIG. 6(b)), or akeypad user interface 14 on therelay device 10 to request new data from theBG monitoring system 20. When theuser interface 14 is activated (e.g., the user presses thesingle key 202 shown in FIG. 6(b), one or more keys on thekeypad 204 shown in FIG. 6(c), or one or more keys on thekeypad 216 shown in FIG. 6(d)), therelay device 10 sends a request to theBG monitoring system 20 to transmit the most recent sensor data, as shown in FIG. 4(b). In other alternative embodiments, when theuser interface 14 is activated, therelay device 10 sends a signal to theinfusion pump 30 to request the most recent sensor data from theBG monitoring system 20, and theinfusion pump 30 then sends such a request to theBG monitoring system 20 through therelay device 10, as shown in FIG. 4(c). Referring to FIGS. 4(b) and 4(c), in response to a request for the most recent sensor data, theBG monitoring system 20 sends a sensor signal to therelay device 10, and then therelay device 10 sends the sensor signal to theinfusion pump 30, similar to the manner described above with respect to FIG. 4(a). In particular embodiments, theinfusion pump 30 may automatically show a sensor measurement on thedisplay 32 once the sensor signal is received by theinfusion pump 30. The user may also utilize theuser interface 14 on therelay device 10 to cause thedisplay 32 on theinfusion pump 30 to show a sensor measurement. The user may also utilize theuser interface 14 on therelay device 10 to send commands or data to theinfusion pump 30. - In further alternative embodiments, the
relay device 10 may include afirst user interface 14′, and theinfusion pump 30 may include adisplay 32 and asecond user interface 34′, as shown in FIG. 4(f). The user may utilize thefirst user interface 14′ on therelay device 10 to request new data from theBG monitoring system 20. When thefirst user interface 14′ is activated, therelay device 10 sends a request to theBG monitoring system 20 to transmit the most recent sensor data. In response, theBG monitoring system 20 sends a sensor signal to therelay device 10, and then therelay device 10 sends the sensor signal to theinfusion pump 30, similar to the manner described above with respect to FIG. 4(a). In particular embodiments, theinfusion pump 30 may automatically show a sensor measurement on thedisplay 32′ once the sensor signal is received by theinfusion pump 30. The user may also utilize thefirst user interface 14′ on therelay device 10 or thesecond user interface 34′ on theinfusion pump 30 to cause thedisplay 32 on theinfusion pump 30 to show a sensor measurement. The user may additionally utilize thefirst user interface 14′ on therelay device 10 to send commands or data to theinfusion pump 30. Further, the user may utilize thesecond user interface 34′ on theinfusion pump 30 to perform functions on theinfusion pump 30. - In other alternative embodiments, the
relay device 10 may include adisplay 12 and auser interface 14, as shown in FIG. 4(d). For example, thedisplay 12 may be anLCD display 214, and theuser interface 14 may be akeypad 216 including one or more keys, as illustrated in FIG. 6(d). TheBG monitoring system 20 sends a sensor signal with uncalibrated sensor data to therelay device 10, and therelay device 10 calibrates the data to generate sensor measurements, which are shown on thedisplay 12 of therelay device 10. In particular embodiments, therelay device 10 may automatically show a sensor measurement on thedisplay 12 once the sensor data is received and calibrated by therelay device 10. The user may also utilize theuser interface 14 to cause thedisplay 12 to show a sensor measurement. The user may further utilize theuser interface 14 on therelay device 10 to send commands or data to theinfusion pump 30. In particular embodiments, therelay device 10 may also receive data from the infusion pump 30 (not shown), such as the amount of insulin remaining, alarms indicating a low battery or no delivery by theinfusion pump 30, and the like. Therelay device 10 may then utilize such data to adjust the commands sent to theinfusion pump 30 and/or show such data on thedisplay 12 to the user. In alternative embodiments, theBG monitoring system 20 calibrates the sensor data to generate sensor measurements, which are included in the sensor signal transmitted from theBG monitoring system 20 to therelay device 10. - In still other alternative embodiments, the
BG monitoring system 20 includes adisplay 22 and auser interface 24, as shown in FIG. 4(e). For example, thedisplay 22 may be anLCD display 58, and theuser interface 24 may be akeypad 60 including one or more keys, as shown in FIGS. 2(a)-2(c). TheBG monitoring system 20 calibrates the sensor data to generate sensor measurements, which are shown on thedisplay 22 of theBG monitoring system 20. In particular embodiments, theBG monitoring system 20 may automatically show a sensor measurement on thedisplay 22 once the sensor data is calibrated. The user may also utilize theuser interface 24 to cause thedisplay 22 to show a sensor measurement. The user may further utilize theuser interface 24 on theBG monitoring system 20 to send commands or data through therelay device 10 to theinfusion pump 30. - In preferred embodiments, the
BG monitoring system 20 sends a sensor signal to therelay device 10, and then therelay device 10 sends the sensor signal to theinfusion pump 30, as shown in FIG. 4(a). Theinfusion pump 30 includes adisplay 32 and auser interface 34, such as thedisplay 100 anduser interface 110 shown in FIG. 3(a). In particular embodiments, the BG monitoring system automatically sends the sensor signal to theinfusion pump 30 on a periodic (e.g., once every thirty seconds, minute, five minutes, ten minutes, or the like) or continuous basis. In other particular embodiments, theinfusion pump 30 periodically sends a command signal to theBG monitoring system 20 via therelay device 10, commanding theBG monitoring system 20 to send the sensor signal to theinfusion pump 30, and in response to the command, theBG monitoring system 20 sends the sensor signal to theinfusion pump 30. In further particular embodiments, theuser interface 110 may be utilized to cause theBG monitoring system 20 to send the sensor signal to theinfusion pump 30 via therelay device 10. In preferred embodiments, theinfusion pump 30 automatically shows a sensor measurement on thedisplay 32 once the sensor signal is received by theinfusion pump 30. The user may also utilize theuser interface 110 to cause thedisplay 100 to show a sensor measurement. - The
user interface 110 on theinfusion pump 30 preferably includes a dedicated interface for requesting information from and/or inputting data to theBG monitoring system 20 via therelay device 10. Additionally, in particular embodiments where bidirectional communication is not enabled continuously between theBG monitoring system 20 and theinfusion pump 30, utilizing the dedicated interface may initiate bi-directional communication between theinfusion pump 30 and theBG monitoring system 20 via therelay device 10. In further particular embodiments, the dedicated interface may be used to cause thedisplay 100 of theinfusion pump 30 to show historical data, such as trends of whether sensor measurements are increasing or decreasing, a plot of two or more sensor measurements, a graph of the past n-hours of sensor measurements, and the like. In other embodiments, theinfusion pump 30 may automatically show sensor measurements or historical data (e.g., trends, plots, graphs, or the like of sensor measurements) on thedisplay 100 when thedisplay 100 would otherwise be blank. - Referring to FIG. 3(a), the dedicated interface on the
infusion pump 30 may include adedicated key 122 for causing thedisplay 100 to show the sensor measurement. In alternative embodiments, the user may select one or more keystrokes to cause thedisplay 100 to show the sensor measurement. For example, the user may select thededicated key 122 followed by the ACT key 116 to cause thedisplay 100 to show the sensor measurement. In further alternative embodiments, the ability of theinfusion pump 30 to communicate with theBG monitoring system 20 via therelay device 10 may be activated by entering the BG monitoring system's 20 serial number or other identifying information into theinfusion pump 30. In response, theinfusion pump 30 may program certain keys for interfacing with theBG monitoring system 20 via therelay device 10. - In other alternative embodiments, the dedicated interface may include a button, switch, lever, handle, touch screen, or the like, or combinations of keys, buttons, switches, levers, handles, touch screens, or the like. Combinations of interfaces include activating more than one interface simultaneously (in parallel), or activating more than one interface in sequence. In still other alternative embodiments, the dedicated interface may be located on another device that communicates with the
infusion pump 30, and the sensor measurement may be shown on a display of that device, such as the BG monitoring system 20 (for example, the glucose monitor 54 and/or data processor 56), a remote programmer (not shown) for theinfusion pump 30, a personal digital assistant (PDA), a computer, a cell phone, or the like. - In preferred embodiments, one or more sensor measurements are stored in the
memory 154 of theinfusion pump 30. Furthermore, selecting the dedicated key 122 (or other dedicated interface) causes the most recent sensor measurement to be shown on thedisplay 100. When the most recent sensor measurement is already shown on thedisplay 100, selecting thededicated key 122 causes the next, most recent sensor measurement to be shown on thedisplay 100, and each subsequent selection of thededicated key 122 causes older and older sensor measurements to be shown on thedisplay 100. In alternative embodiments, theinfusion pump 30 may include other user interfaces to display older sensor measurements. In other alternative embodiments, the sensor measurements may be stored in a storage device other than theinfusion pump 30, and selecting thededicated key 122 causes theinfusion pump 30 to retrieve the sensor measurement from the storage device and then show it on thedisplay 100. - In additional alternative embodiments, the
infusion pump 30 periodically sends a command signal to theBG monitoring system 20 via therelay device 10, commanding theBG monitoring system 20 to send sensor data to theinfusion pump 30, so that the most recent sensor data is available to be shown on thedisplay 100 of theinfusion pump 30. In response to the command from theinfusion pump 30, theBG monitoring system 20 sends the sensor data to theinfusion pump 30, and theinfusion pump 30 calibrates the sensor data to generate a sensor measurement. The sensor measurement is then stored in thememory 154 of theinfusion pump 30. When the user desires to see the most recent sensor measurement, the user selects the dedicated key 122 (or other)dedicated interface) to retrieve the sensor measurement from thememory 154 of theinfusion pump 30 and show the sensor measurement on thedisplay 100 of theinfusion pump 30. In other alternative embodiments, the sensor data is stored in thememory 154 of theinfusion pump 30. When the user selects thededicated key 122 to view the sensor measurement, the sensor data is retrieved from thememory 154 of theinfusion pump 30, and then calibrated to generate the sensor measurement. In further alternative embodiments, theBG monitoring system 20 sends calibrated sensor measurements to be stored in thememory 154 of theinfusion pump 30. In yet other alternative embodiments, theinfusion pump 30 communicates with theBG monitoring system 20 to indicate that the sensor data has been received and/or to echo the sensor data so that the data can be retransmitted if it was received inaccurately. - In still other alternative embodiments, the dedicated key122 (or other dedicated interface) is used to cause the
BG monitoring system 20 to send the most recent sensor data, such as one or more raw sensor data points, one or more calibrated sensor measurements, or the like, to theinfusion pump 30. Once the sensor data is received, theinfusion pump 30 shows the most recent sensor measurement on thedisplay 100. In particular alternative embodiments, theinfusion pump 30 indicates to theBG monitoring system 20 the most recent sensor data that theinfusion pump 30 has received, and in response, theBG monitoring system 20 sends any additional sensor data that theBG monitoring system 20 has that has not been received by theinfusion pump 30. - In another embodiment of the present invention, the BG level measured by the
BG monitoring system 20 is used in a closed loop algorithm to automatically adjust the delivery of fluid, such as insulin, in theinfusion pump 30. A calibration algorithm is used to convert sensor data into sensor measurements, and then the sensor measurements are used in a closed loop algorithm to generate fluid delivery commands to operate theinfusion pump 30. In particular embodiments, thecalibration algorithm 26 andclosed loop algorithm 28 reside with and are executed by the processor of theBG monitoring system 20, as shown in FIG. 5(a). Commands to control theinfusion pump 30 are generated at theBG monitoring system 20, and are sent through therelay device 10 to theinfusion pump 30. - In other particular embodiments, the
calibration algorithm 26 resides with and is executed by the processor of theBG monitoring system 20, and theclosed loop algorithm 18 resides with and is executed by the processor of therelay device 10, as shown in FIG. 5(b). Calibrated sensor measurements are sent from theBG monitoring system 20 to therelay device 10, and fluid delivery commands are sent from the relay device to theinfusion pump 30. - In still other particular embodiments, the
calibration algorithm 26 resides with and is executed by the processor of theBG monitoring system 20, and theclosed loop algorithm 38 resides with and is executed by the processor of theinfusion pump 30, as shown in FIG. 5(c). Calibrated sensor measurements are sent from theBG monitoring system 20 through therelay device 10 to theinfusion pump 30, and fluid delivery commands are generated at theinfusion pump 30. - In yet other particular embodiments, the
calibration algorithm 16 and theclosed loop algorithm 18 both reside with and are executed by the processor of therelay device 10, as shown in FIG. 5(d). Uncalibrated sensor data is sent from theBG monitoring system 20 to therelay device 10, where they are calibrated and used in theclosed loop algorithm 18 to generate fluid delivery commands, which are sent to theinfusion pump 30. - In further particular embodiments, the
calibration algorithm 16 resides with and is executed by the processor of therelay device 10, and theclosed loop algorithm 38 resides with and is executed by the processor of theinfusion pump 30, as shown in FIG. 5(e). Uncalibrated sensor data is sent from theBG monitoring system 20 to therelay device 10, where they are calibrated to generate sensor measurements. Then the sensor measurements are sent to theinfusion pump 30 and used in theclosed loop algorithm 38 to generate fluid delivery commands. - In additional particular embodiments, the
calibration algorithm 36 and theclosed loop algorithm 38 both reside with and are executed by the processor of theinfusion pump 30, as shown in FIG. 5(f). Uncalibrated sensor data is sent from theBG monitoring system 20 through therelay device 10 to theinfusion pump 30. Then, at theinfusion pump 30, the uncalibrated sensor data is calibrated and used in theclosed loop algorithm 38 to generate fluid delivery commands. - In alternative embodiments, a semi-closed loop algorithm is used in place of a closed loop algorithm. A semi-closed loop algorithm generates recommended changes to the fluid delivery, which must be approved by the user or a caregiver using the user interface on the
infusion pump 30, theBG monitoring system 20, or therelay device 10 before new commands are issued to theinfusion pump 30. - Although FIGS.4(a)-5(f) generally show communication flowing from the
BG monitoring system 20 to theinfusion pump 30, it should be noted that communication signals might be generated by any of the devices. In particular embodiments, a signal may be sent from theinfusion pump 30 through therelay device 10 to theBG monitoring system 20. The signals from theinfusion pump 30 may include signals to request information from theBG monitoring system 20, verify receipt of information, echo information received, transmit information to be downloaded to theBG monitoring system 20, and the like. In additional alternative embodiments, signals may be initiated at therelay device 10 and sent to theBG monitoring system 20 and/or theinfusion pump 30. - While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit thereof. The accompanying claims are intended to cover such modifications as would fall within the true scope and spirit of the present invention.
- The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims, rather than the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Claims (96)
1. An infusion system for infusing a fluid into a user, the infusion system comprising:
a sensor system including:
a sensor system housing;
a sensor coupled to the sensor system housing for producing a signal indicative of a physiological characteristic level of the user;
a sensor system processor contained in the sensor system housing for processing the signal indicative of the physiological characteristic level of the user; and
a sensor system transmitter contained in the sensor system housing and coupled to the sensor system processor for transmitting one or more communications in a sensor system format;
a relay device including:
a relay device receiver for receiving the communications from the sensor system in the sensor system format;
a relay device processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format; and
a relay device transmitter for transmitting the converted communications in the delivery system format; and
a fluid delivery system including:
a delivery system housing;
a delivery system receiver contained in the delivery system housing for receiving the communications from the relay device in the delivery system format; and
a delivery system processor contained in the delivery system housing and coupled to the delivery system receiver for processing the communications from the relay device in the delivery system format and controlling an amount of the fluid infused into the user;
wherein the amount of the fluid infused into the user is determined based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
2. The infusion system according to claim 1 , wherein at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user.
3. The infusion system according to claim 2 , wherein the communications including the data indicative of the physiological characteristic level of the user are automatically transmitted from the sensor system through the relay device and received by the fluid delivery system.
4. The infusion system according to claim 3 , wherein the fluid delivery system further includes a display device contained in the delivery system housing and coupled to the delivery system processor for automatically displaying to the user the data indicative of the physiological characteristic level of the user.
5. The infusion system according to claim 3 , wherein the fluid delivery system further includes:
a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
6. The infusion system according to claim 5 , wherein at least a portion of the user interface is dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
7. The infusion system according to claim 3 , wherein the fluid delivery system further includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
8. The infusion system according to claim 7 , wherein the fluid delivery system further includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying to the user a historical trend or graph using the stored data indicative of the physiological characteristic level of the user received by the fluid delivery system.
9. The infusion system according to claim 7 , wherein the fluid delivery system further includes:
a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
10. The infusion system according to claim 9 , wherein at least another one of the inputs causes the display device to display the next most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
11. The infusion system according to claim 9 , wherein at least a portion of the user interface is dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
12. The infusion system according to claim 9 , wherein at least another one of the inputs causes the display device to display the stored data that is older than the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
13. The infusion system according to claim 2 , wherein the fluid delivery system further includes:
a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
14. The infusion system according to claim 13 , wherein at least a portion of the user interface is dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
15. The infusion system according to claim 2 , wherein the fluid delivery system further includes a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs programs the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
16. The infusion system according to claim 2 , wherein the fluid delivery system further includes:
a bolus estimator used in conjunction with the delivery system processor for estimating the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system;
an indication device coupled to the bolus estimator for indicating the estimated amount of fluid to be infused into the user; and
a user interface for accepting one or more inputs from the user, wherein at least one of the inputs accepts or modifies the estimated amount of the fluid to be infused into the user.
17. The infusion system according to claim 2 , wherein the fluid delivery system further includes a closed loop algorithm executed by the delivery system processor for automatically determining the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system and causing the fluid delivery system to infuse the determined amount of the fluid into the user.
18. The infusion system according to claim 2 , wherein the fluid delivery system further includes an indication device for indicating when the data indicative of the physiological characteristic level of the user received by the fluid delivery system is above or below a target characteristic value.
19. The infusion system according to claim 2 , wherein the fluid delivery system further includes:
a delivery system transmitter contained in the delivery system housing and coupled to the delivery system processor for transmitting one or more communications in the delivery system format,
wherein the relay device receiver further receives the communications from the fluid delivery system in the delivery system format, the relay device processor processes the communications from the fluid delivery system and converts the communications for transmission in the sensor system format, and the relay device transmitter transmits the converted communications in the sensor system format, and
wherein the sensor system further includes a sensor system receiver contained in the sensor system housing and coupled to the sensor system processor for receiving the communications from the relay device in the sensor system format.
20. The infusion system according to claim 19 , wherein the fluid delivery system further includes:
a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs generates a request for the data indicative of the physiological characteristic level of the user from the sensor system,
wherein at least one of the communications transmitted from the fluid delivery system through the relay device to the sensor system includes the request,
wherein at least one of the communications including the data indicative of the physiological characteristic level of the user is transmitted from the sensor system through the relay device and received by the delivery system in response to the request, and
wherein the display device displays the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
21. The infusion system according to claim 20 , wherein at least a portion of the user interface is dedicated for interfacing from the fluid delivery system with the sensor system through the relay device.
22. The infusion system according to claim 20 , wherein the requested data is the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
23. The infusion system according to claim 20 , wherein the fluid delivery system further includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
24. The infusion system according to claim 23 , wherein at least another one of the inputs causes the display device to display a historical trend or graph using the stored data indicative of the physiological characteristic level of the user received by the fluid delivery system.
25. The infusion system according to claim 2 , wherein the data indicative of the physiological characteristic level of the user received by the fluid delivery system is uncalibrated data, and the fluid delivery system further includes a calibration algorithm executed by the delivery system processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user.
26. The infusion system according to claim 2 , wherein the data indicative of the physiological characteristic level of the user received by the fluid delivery system includes one or more measurements indicative of the physiological characteristic level of the user.
27. The infusion system according to claim 26 , wherein the sensor system further includes a calibration algorithm executed by the sensor system processor for calibrating the signal indicative of the physiological characteristic level of the user to generate the one or more measurements indicative of the physiological characteristic level of the user, and the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the one or more measurements indicative of the physiological characteristic level of the user.
28. The infusion system according to claim 26 , wherein the data indicative of the physiological characteristic level of the user received from the sensor system by the relay device is uncalibrated data, and the relay device further includes a calibration algorithm executed by the relay device processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user, wherein the communications transmitted from the relay device and received by the fluid delivery system include the one or more measurements indicative of the physiological characteristic level of the user.
29. The infusion system according to claim 2 , wherein the data indicative of the physiological characteristic level of the user received by the fluid delivery system is downloadable to an external storage device.
30. The infusion system according to claim 2 , wherein the fluid delivery system further includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
31. The infusion system according to claim 1 , wherein at least one of the communications transmitted from the sensor system through the relay device and received by the delivery system includes one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user.
32. The infusion system according to claim 31 , wherein the sensor system further includes:
a display device coupled to the sensor system processor for displaying data to the user; and
a user interface coupled to the sensor system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user obtained by the sensor system.
33. The infusion system according to claim 32 , wherein at least another one of the inputs generates the one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
34. The infusion system according to claim 31 , wherein the sensor system further includes a closed loop algorithm executed by the sensor system processor for automatically generating the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
35. The infusion system according to claim 1 , wherein at least one of the communications transmitted from the sensor system to the relay device includes the data indicative of the physiological characteristic level of the user, and at least one of the communications transmitted from the relay device and received by the fluid delivery system includes one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user.
36. The infusion system according to claim 35 , wherein the relay device further includes:
a display device coupled to the relay device processor for displaying data to the user; and
a user interface coupled to the relay device processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user obtained by the sensor system.
37. The infusion system according to claim 36 , wherein at least another one of the inputs generates the one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
38. The infusion system according to claim 35 , wherein the relay device further includes a closed loop algorithm executed by the relay device processor for automatically generating the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
39. The infusion system according to claim 1 , wherein the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
40. The infusion system according to claim 1 , wherein the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the device and received by the fluid delivery system.
41. The infusion system according to claim 40 , wherein the different communication protocols utilize different carrier media for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
42. The infusion system according to claim 40 , wherein the different communication protocols utilize different information packaging for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
43. The infusion system according to claim 1 , wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system are transmitted using radio frequency communication.
44. The infusion system according to claim 1 , wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system are transmitted using infrared communication.
45. The infusion system according to claim 1 , wherein the delivery system processor has a unique identification code, and the sensor system processor has the capability to learn the unique identification code of the delivery system processor, and further wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the delivery system processor to substantially avoid interference with other devices.
46. The infusion system according to claim 1 , wherein the sensor system processor has a unique identification code, and the delivery system processor has the capability to learn the unique identification code of the sensor system processor, and further wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the sensor system processor to substantially avoid interference with other devices.
47. The infusion system according to claim 1 , wherein the relay device processor has a unique identification code, and the sensor system processor has the capability to learn the unique identification code of the relay device processor, and further wherein the communications transmitted from the sensor system to the relay device include the unique identification code of the relay device processor to substantially avoid interference with other devices.
48. The infusion system according to claim 1 , wherein the relay device processor has a unique identification code, and the delivery system processor has the capability to learn the unique identification code of the relay device processor, and further wherein the communications transmitted from the relay device and received by the fluid delivery system include the unique identification code of the relay device processor to substantially avoid interference with other devices.
49. The infusion system according to claim 1 , wherein the relay device is coupled to the delivery system housing.
50. The infusion system according to claim 1 , wherein the relay device is contained in the delivery system housing.
51. The infusion system according to claim 1 , wherein the relay device is coupled to the sensor system housing.
52. The infusion system according to claim 1 , wherein the sensor system is a glucose monitoring system, and the fluid delivery system is an insulin infusion device.
53. A relay device for transferring information between a sensor system and a fluid delivery system, wherein the sensor system measures a physiological characteristic level of a user, and the fluid delivery system infuses a fluid into the user, the relay device comprising:
a sensor system receiver for receiving one or more communications from the sensor system in a sensor system format;
a processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format; and
a delivery system transmitter for transmitting the converted communications in the delivery system format to the fluid delivery system.
54. The relay according to claim 53 , further comprising:
a delivery system receiver for receiving one or more communications from the fluid delivery system in the delivery system format, wherein the processor further processes the communications from the fluid delivery system and converts the communications for transmission in the sensor system format; and
a sensor system transmitter for transmitting the converted communications in the sensor system format to the sensor system.
55. The relay device according to claim 53 , wherein at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user.
56. The relay device according to claim 53 , wherein at least one of the communications transmitted from the sensor system through the relay device and received by the delivery system includes one or more commands for programming an amount of the fluid to be infused into the user based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
57. The relay device according to claim 53 , wherein at least one of the communications transmitted from the sensor system to the relay device includes data indicative of the physiological characteristic level of the user, and at least one of the communications transmitted from the relay device and received by the fluid delivery system includes one or more commands for programming an amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
58. The relay device according to claim 57 , wherein the relay device further includes:
a display device coupled to the processor for displaying data to the user; and
a user interface coupled to the processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user.
59. The relay device according to claim 58 , wherein at least another one of the inputs generates the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
60. The relay device according to claim 53 , wherein the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device to the fluid delivery system.
61. The relay device according to claim 53 , wherein the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the relay device to the fluid delivery system.
62. The relay device according to claim 61 , wherein the different communication protocols utilize different carrier media for communications transmitted from the sensor system through the relay device to the fluid delivery system.
63. The relay device according to claim 61 , wherein the different communication protocols utilize different information packaging for communications transmitted from the sensor system through the relay device to the fluid delivery system.
64. A relay device for transferring information between a sensor system and a fluid delivery system, wherein the sensor system measures a physiological characteristic level of a user, and the fluid delivery system infuses a fluid into the user, the device comprising:
a sensor system transceiver for transmitting and receiving one or more communications to and from the sensor system, wherein the communications are transmitted and received in a sensor system format;
a delivery system transceiver for transmitting and receiving one or more communications to and from the fluid delivery system, wherein the communications are transmitted and received in a delivery system format;
a processor for processing the communications from the sensor system and the fluid delivery system, wherein the processor converts the communications received from the sensor system in the sensor system format for transmission in the delivery system format to the fluid delivery system, and further wherein the processor converts the communications received from the fluid delivery system in the delivery system format for transmission in the sensor system format to the sensor system.
65. The relay device according to claim 64 , wherein at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user.
66. The relay device according to claim 64 , wherein at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system includes one or more commands for programming an amount of the fluid to be infused into the user based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
67. The relay device according to claim 64 , wherein at least one of the communications transmitted from the sensor system to the relay device includes data indicative of the physiological characteristic level of the user, and at least one of the communications transmitted from the relay device and received by the fluid delivery system includes one or more commands for programming an amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
68. The relay device according to claim 67 , wherein the relay device further includes:
a display device coupled to the processor for displaying data to the user; and
a user interface coupled to the processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user.
69. The relay device according to claim 68 , wherein at least another one of the inputs generates the one or more commands the for programming amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
70. The relay device according to claim 64 , wherein the sensor system format and the delivery system format utilize different frequencies for communications transmitted between the sensor system and the fluid delivery system through the relay device.
71. The relay device according to claim 64 , wherein the sensor system format and the delivery system format utilize different communication protocols for communications transmitted between the sensor system and the fluid delivery system through the relay device.
72. The relay device according to claim 71 , wherein the different communication protocols utilize different carrier media for communications transmitted between the sensor system and the fluid delivery system through the relay device.
73. The relay device according to claim 71 , wherein the different communication protocols utilize different information packaging for communications transmitted between the sensor system and the fluid delivery system through the relay device.
74. An infusion system for infusing a fluid into a user, the infusion system comprising:
a sensor system including:
a sensor for producing a signal indicative of a physiological characteristic level of the user;
a sensor system processor coupled to the sensor for processing the signal indicative of the physiological characteristic level of the user; and
a sensor system transmitter coupled to the sensor system processor for transmitting one or more communications in a sensor system format; and
a fluid delivery system including:
a delivery system housing;
a relay device contained in the delivery system housing, the relay device including:
a relay device receiver for receiving the communications from the sensor system in the sensor system format;
a relay device processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format; and
a relay device transmitter for transmitting the converted communications in the delivery system format;
a delivery system receiver contained in the delivery system housing for receiving the communications from the relay device in the delivery system format; and
a delivery system processor contained in the delivery system housing and coupled to the delivery system receiver for processing the communications from the relay device in the delivery system format and controlling an amount of the fluid infused into the user;
wherein the amount of the fluid infused into the user is determined based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
75. The infusion system according to claim 74 , wherein at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user.
76. The infusion system according to claim 75 , wherein the communications including the data indicative of the physiological characteristic level of the user are automatically transmitted from the sensor system through the relay device and received by the fluid delivery system.
77. The infusion system according to claim 76 , wherein the fluid delivery system further includes a display device contained in the delivery system housing and coupled to the delivery system processor for automatically displaying to the user the data indicative of the physiological characteristic level of the user.
78. The infusion system according to claim 76 , wherein the fluid delivery system further includes:
a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
79. The infusion system according to claim 76 , wherein the fluid delivery system further includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
80. The infusion system according to claim 79 , wherein the fluid delivery system further includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying to the user a historical trend or graph using the stored data indicative of the physiological characteristic level of the user received by the fluid delivery system.
81. The infusion system according to claim 79 , wherein the fluid delivery system further includes:
a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
82. The infusion system according to claim 75 , wherein the fluid delivery system further includes:
a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
83. The infusion system according to claim 75 , wherein the fluid delivery system further includes a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs programs the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
84. The infusion system according to claim 75 , wherein the fluid delivery system further includes:
a bolus estimator used in conjunction with the delivery system processor for estimating the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system;
an indication device coupled to the bolus estimator for indicating the estimated amount of fluid to be infused into the user; and
a user interface for accepting one or more inputs from the user, wherein at least one of the inputs accepts or modifies the estimated amount of the fluid to be infused into the user.
85. The infusion system according to claim 75 , wherein the fluid delivery system further includes a closed loop algorithm executed by the delivery system processor for automatically determining the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system and causing the fluid delivery system to infuse the determined amount of the fluid into the user.
86. The infusion system according to claim 75 , wherein the fluid delivery system further includes an indication device for indicating when the data indicative of the physiological characteristic level of the user received by the fluid delivery system is above or below a target characteristic value.
87. The infusion system according to claim 75 , wherein the data indicative of the physiological characteristic level of the user received by the fluid delivery system is uncalibrated data, and the fluid delivery system further includes a calibration algorithm executed by the delivery system processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user.
88. The infusion system according to claim 74 , wherein the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
89. The infusion system according to claim 74 , wherein the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
90. The infusion system according to claim 89 , wherein the different communication protocols utilize different carrier media for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
91. The infusion system according to claim 89 , wherein the different communication protocols utilize different information packaging for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
92. The infusion system according to claim 74 , wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system are transmitted using radio frequency communication.
93. The infusion system according to claim 74 , wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system are transmitted using infrared communication.
94. The infusion system according to claim 74 , wherein the delivery system processor has a unique identification code, and the sensor system processor has the capability to learn the unique identification code of the delivery system processor, and further wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the delivery system processor to substantially avoid interference with other devices.
95. The infusion system according to claim 74 , wherein the sensor system processor has a unique identification code, and the delivery system processor has the capability to learn the unique identification code of the sensor system processor, and further wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the sensor system processor to substantially avoid interference with other devices.
96. The infusion system according to claim 74 , wherein the sensor system is a glucose monitoring system, and the fluid delivery system is an insulin infusion device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/335,256 US20040122353A1 (en) | 2002-12-19 | 2002-12-31 | Relay device for transferring information between a sensor system and a fluid delivery system |
US12/769,590 US8622954B2 (en) | 2002-12-19 | 2010-04-28 | Relay device for transferring information between a sensor system and a fluid delivery system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US43533702P | 2002-12-19 | 2002-12-19 | |
US10/335,256 US20040122353A1 (en) | 2002-12-19 | 2002-12-31 | Relay device for transferring information between a sensor system and a fluid delivery system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/769,590 Continuation US8622954B2 (en) | 2002-12-19 | 2010-04-28 | Relay device for transferring information between a sensor system and a fluid delivery system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040122353A1 true US20040122353A1 (en) | 2004-06-24 |
Family
ID=32599688
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/335,256 Abandoned US20040122353A1 (en) | 2002-12-19 | 2002-12-31 | Relay device for transferring information between a sensor system and a fluid delivery system |
US12/769,590 Expired - Lifetime US8622954B2 (en) | 2002-12-19 | 2010-04-28 | Relay device for transferring information between a sensor system and a fluid delivery system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/769,590 Expired - Lifetime US8622954B2 (en) | 2002-12-19 | 2010-04-28 | Relay device for transferring information between a sensor system and a fluid delivery system |
Country Status (1)
Country | Link |
---|---|
US (2) | US20040122353A1 (en) |
Cited By (428)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040215492A1 (en) * | 2003-01-30 | 2004-10-28 | Choi Soo Bong | Method for controlling insulin pump through internet |
US20050151661A1 (en) * | 2003-03-13 | 2005-07-14 | Albarado Jason P. | Enclosure system for hot work within the vicinity of flammable or combustible material |
US20060010098A1 (en) * | 2004-06-04 | 2006-01-12 | Goodnow Timothy T | Diabetes care host-client architecture and data management system |
US20060226985A1 (en) * | 2005-02-08 | 2006-10-12 | Goodnow Timothy T | RF tag on test strips, test strip vials and boxes |
US20060264835A1 (en) * | 2003-10-21 | 2006-11-23 | Novo Nordisk A/S | Medical skin mountable device |
US20070032891A1 (en) * | 2003-05-23 | 2007-02-08 | Choi Soo B | Method for controlling insulin pump through internet |
US20070052543A1 (en) * | 2003-03-13 | 2007-03-08 | Albarado Jason P | Enclosure system allowing for hot work within the vicinity of flammable and combustible material |
US20070060869A1 (en) * | 2005-08-16 | 2007-03-15 | Tolle Mike C V | Controller device for an infusion pump |
US20070088333A1 (en) * | 2005-10-13 | 2007-04-19 | G&L Consulting, Llc | Method and system for infusing an osmotic solute into a patient and providing feedback control of the infusing rate |
US20070106247A1 (en) * | 2005-10-21 | 2007-05-10 | Ceeben Systems, Inc. | Method and apparatus for peritoneal hypothermia and/or resuscitation |
US20070120695A1 (en) * | 2003-03-13 | 2007-05-31 | Albarado Jason P | Enclosure system allowing for hot work within the vicinity of flammable and combustible material |
US20070142767A1 (en) * | 2005-12-12 | 2007-06-21 | Marcel Frikart | System with A Portable Patient Device and External Operating Part |
US20070255126A1 (en) * | 2006-04-28 | 2007-11-01 | Moberg Sheldon B | Data communication in networked fluid infusion systems |
US20070253021A1 (en) * | 2006-04-28 | 2007-11-01 | Medtronic Minimed, Inc. | Identification of devices in a medical device network and wireless data communication techniques utilizing device identifiers |
US20070260174A1 (en) * | 2006-05-05 | 2007-11-08 | Searete Llc | Detecting a failure to maintain a regimen |
US20070258395A1 (en) * | 2006-04-28 | 2007-11-08 | Medtronic Minimed, Inc. | Wireless data communication protocols for a medical device network |
WO2006102412A3 (en) * | 2005-03-21 | 2007-11-22 | Abbott Diabetes Care Inc | Method and system for providing integrated medication infusion and analyte monitoring system |
US20070276545A1 (en) * | 2006-04-28 | 2007-11-29 | Smirnov Alexei V | Adaptive response time closed loop control algorithm |
WO2008027967A1 (en) * | 2006-08-31 | 2008-03-06 | Fresenius Medical Care Holdings, Inc. | Data communication system for peritoneal dialysis machine |
WO2008032238A2 (en) * | 2006-09-13 | 2008-03-20 | Koninklijke Philips Electronics N. V. | Device for automatic adjustment of the dose of melatonin and/or delivery of melatonin |
US20080125693A1 (en) * | 2006-08-31 | 2008-05-29 | Gavin David A | Peritoneal dialysis systems and related methods |
US20080200802A1 (en) * | 2006-12-07 | 2008-08-21 | Philometron, Inc. | Platform for detection of tissue content and/or structural changes with closed-loop control in mammalian organisms |
US20080214919A1 (en) * | 2006-12-26 | 2008-09-04 | Lifescan, Inc. | System and method for implementation of glycemic control protocols |
US20080221512A1 (en) * | 2004-09-09 | 2008-09-11 | Da Silva J Ricardo | Patient hydration system with taper down feature |
US20080234556A1 (en) * | 2007-03-20 | 2008-09-25 | Cardiac Pacemakers, Inc. | Method and apparatus for sensing respiratory activities using sensor in lymphatic system |
US20080249467A1 (en) * | 2007-04-05 | 2008-10-09 | Daniel Rogers Burnett | Device and Method for Safe Access to a Body Cavity |
WO2008124644A1 (en) * | 2007-04-05 | 2008-10-16 | Velomedix, Inc | Automated therapy system and method |
US20080287870A1 (en) * | 2005-10-17 | 2008-11-20 | Nov Nordisk A/S | Vented Drug Reservoir Unit |
US20080296226A1 (en) * | 2007-05-29 | 2008-12-04 | Fresenius Medical Care Holdings, Inc. | Solutions, Dialysates, and Related Methods |
US20090048501A1 (en) * | 2003-07-15 | 2009-02-19 | Therasense, Inc. | Glucose measuring device integrated into a holster for a personal area network device |
US20090118682A1 (en) * | 2005-09-13 | 2009-05-07 | Novo Nordisk A/S | Reservoir Device With Inspection Aid For Detection Of Drug Condition |
US20090131860A1 (en) * | 2005-04-13 | 2009-05-21 | Novo Nordisk A/S | Medical Skin Mountable Device And System |
US20090157202A1 (en) * | 2007-08-10 | 2009-06-18 | Smiths Medical Md | Therapy rules for closed loop programming of medical devices |
WO2009082741A2 (en) * | 2007-12-24 | 2009-07-02 | Medtronic Minimed, Inc. | Infusion system with adaptive user interface |
US20090227855A1 (en) * | 2005-08-16 | 2009-09-10 | Medtronic Minimed, Inc. | Controller device for an infusion pump |
US20090240120A1 (en) * | 2008-02-21 | 2009-09-24 | Dexcom, Inc. | Systems and methods for processing, transmitting and displaying sensor data |
US20090284372A1 (en) * | 2003-06-10 | 2009-11-19 | Abbott Diabetes Care Inc. | Glucose Measuring Device For Use In Personal Area Network |
US7653425B2 (en) | 2006-08-09 | 2010-01-26 | Abbott Diabetes Care Inc. | Method and system for providing calibration of an analyte sensor in an analyte monitoring system |
US20100049004A1 (en) * | 2008-04-21 | 2010-02-25 | Philometron, Inc. | Metabolic energy monitoring system |
US7679407B2 (en) | 2003-04-28 | 2010-03-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing peak detection circuitry for data communication systems |
US7697967B2 (en) | 2005-12-28 | 2010-04-13 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US20100100048A1 (en) * | 2003-10-27 | 2010-04-22 | Novo Nordisk A/S | Medical Skin Mountable Device |
US20100125241A1 (en) * | 2008-11-17 | 2010-05-20 | Disetronic Licensing, Ag | Prandial Blood Glucose Excursion Optimization Method Via Computation of Time-Varying Optimal Insulin Profiles and System Thereof |
US7727181B2 (en) | 2002-10-09 | 2010-06-01 | Abbott Diabetes Care Inc. | Fluid delivery device with autocalibration |
US7731657B2 (en) | 2005-08-30 | 2010-06-08 | Abbott Diabetes Care Inc. | Analyte sensor introducer and methods of use |
US7736310B2 (en) | 2006-01-30 | 2010-06-15 | Abbott Diabetes Care Inc. | On-body medical device securement |
US7736354B2 (en) | 2004-09-09 | 2010-06-15 | Plc Medical Systems, Inc. | Patient hydration system with hydration state detection |
US7756561B2 (en) | 2005-09-30 | 2010-07-13 | Abbott Diabetes Care Inc. | Method and apparatus for providing rechargeable power in data monitoring and management systems |
US7758563B2 (en) | 2004-09-09 | 2010-07-20 | Plc Medical Systems, Inc. | Patient hydration monitoring and maintenance system and method for use with administration of a diuretic |
US7758562B2 (en) | 2004-09-09 | 2010-07-20 | Plc Medical Systems, Inc. | Patient hydration system with a redundant monitoring of hydration fluid infusion |
US7768408B2 (en) | 2005-05-17 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US7768386B2 (en) | 2007-07-31 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US7768387B2 (en) | 2007-04-14 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing dynamic multi-stage signal amplification in a medical device |
US7766829B2 (en) | 2005-11-04 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US20100201196A1 (en) * | 2005-08-16 | 2010-08-12 | Medtronic Minimed, Inc. | Method and apparatus for predicting end of battery life |
US20100204677A1 (en) * | 2004-09-09 | 2010-08-12 | Mark Gelfand | Patient hydration system and method |
WO2010089304A1 (en) * | 2009-02-04 | 2010-08-12 | Sanofi-Aventis Deutschland Gmbh | Medical device and method for providing information for glycemic control |
US7801582B2 (en) | 2006-03-31 | 2010-09-21 | Abbott Diabetes Care Inc. | Analyte monitoring and management system and methods therefor |
US7811231B2 (en) | 2002-12-31 | 2010-10-12 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
CN101856525A (en) * | 2010-06-07 | 2010-10-13 | 包金明 | Medical infusion liquid drop speed monitoring method and device |
US7822455B2 (en) | 2006-02-28 | 2010-10-26 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
US20100274217A1 (en) * | 2009-01-28 | 2010-10-28 | Da Silva J Ricardo | Fluid replacement device |
US7826382B2 (en) | 2008-05-30 | 2010-11-02 | Abbott Diabetes Care Inc. | Close proximity communication device and methods |
US20100280442A1 (en) * | 2002-12-19 | 2010-11-04 | Medtronic Minimed, Inc. | Replay device for transferring information between a sensor system and a fluid delivery system |
US7837667B2 (en) | 2004-09-09 | 2010-11-23 | Plc Medical Systems, Inc. | Patient hydration system with abnormal condition sensing |
US7860544B2 (en) | 1998-04-30 | 2010-12-28 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US7883464B2 (en) | 2005-09-30 | 2011-02-08 | Abbott Diabetes Care Inc. | Integrated transmitter unit and sensor introducer mechanism and methods of use |
US7885698B2 (en) | 2006-02-28 | 2011-02-08 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
US7892197B2 (en) | 2007-09-19 | 2011-02-22 | Fresenius Medical Care Holdings, Inc. | Automatic prime of an extracorporeal blood circuit |
US20110046547A1 (en) * | 2002-11-12 | 2011-02-24 | Mantle Ross E | Device for the Extravascular Recirculation of Liquid in Body Cavities |
US7920907B2 (en) | 2006-06-07 | 2011-04-05 | Abbott Diabetes Care Inc. | Analyte monitoring system and method |
US7922458B2 (en) | 2002-10-09 | 2011-04-12 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US7928850B2 (en) | 2007-05-08 | 2011-04-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US7942844B2 (en) | 2006-04-28 | 2011-05-17 | Medtronic Minimed, Inc. | Remote monitoring for networked fluid infusion systems |
US7948370B2 (en) | 2005-10-31 | 2011-05-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing data communication in data monitoring and management systems |
US20110137255A1 (en) * | 2003-10-27 | 2011-06-09 | Novo Nordisk A/S | Medical Skin Mountable Device |
US20110152770A1 (en) * | 2009-07-30 | 2011-06-23 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US20110152644A1 (en) * | 2009-12-18 | 2011-06-23 | Wolfgang Heck | Protective container for holding reusable diagnostic components |
US7976778B2 (en) | 2001-04-02 | 2011-07-12 | Abbott Diabetes Care Inc. | Blood glucose tracking apparatus |
US20110184653A1 (en) * | 2010-01-22 | 2011-07-28 | Lifescan, Inc. | Analyte testing method and system |
US7996158B2 (en) | 2007-05-14 | 2011-08-09 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8029441B2 (en) | 2006-02-28 | 2011-10-04 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US8047811B2 (en) | 2002-10-09 | 2011-11-01 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US8073008B2 (en) | 2006-04-28 | 2011-12-06 | Medtronic Minimed, Inc. | Subnetwork synchronization and variable transmit synchronization techniques for a wireless medical device network |
US8075513B2 (en) | 2006-10-13 | 2011-12-13 | Plc Medical Systems, Inc. | Patient connection system for a balance hydration unit |
US8103471B2 (en) | 2007-05-14 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8103456B2 (en) | 2009-01-29 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and device for early signal attenuation detection using blood glucose measurements |
US8112138B2 (en) | 2005-06-03 | 2012-02-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing rechargeable power in data monitoring and management systems |
US8112240B2 (en) | 2005-04-29 | 2012-02-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing leak detection in data monitoring and management systems |
US8116840B2 (en) | 2003-10-31 | 2012-02-14 | Abbott Diabetes Care Inc. | Method of calibrating of an analyte-measurement device, and associated methods, devices and systems |
US8121857B2 (en) | 2007-02-15 | 2012-02-21 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US8123686B2 (en) | 2007-03-01 | 2012-02-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US8135548B2 (en) | 2006-10-26 | 2012-03-13 | Abbott Diabetes Care Inc. | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
US8140312B2 (en) | 2007-05-14 | 2012-03-20 | Abbott Diabetes Care Inc. | Method and system for determining analyte levels |
US8140142B2 (en) | 2007-04-14 | 2012-03-20 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US8149117B2 (en) | 2007-05-08 | 2012-04-03 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8160900B2 (en) | 2007-06-29 | 2012-04-17 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
US8185181B2 (en) | 2009-10-30 | 2012-05-22 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
US8197444B1 (en) | 2010-12-22 | 2012-06-12 | Medtronic Minimed, Inc. | Monitoring the seating status of a fluid reservoir in a fluid infusion device |
US8211016B2 (en) | 2006-10-25 | 2012-07-03 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
US8216138B1 (en) | 2007-10-23 | 2012-07-10 | Abbott Diabetes Care Inc. | Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration |
US8219173B2 (en) | 2008-09-30 | 2012-07-10 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US8224415B2 (en) | 2009-01-29 | 2012-07-17 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
US8226891B2 (en) | 2006-03-31 | 2012-07-24 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US8239166B2 (en) | 2007-05-14 | 2012-08-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8252229B2 (en) | 2008-04-10 | 2012-08-28 | Abbott Diabetes Care Inc. | Method and system for sterilizing an analyte sensor |
US8251904B2 (en) | 2005-06-09 | 2012-08-28 | Roche Diagnostics Operations, Inc. | Device and method for insulin dosing |
US8260558B2 (en) | 2007-05-14 | 2012-09-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8287454B2 (en) | 1998-04-30 | 2012-10-16 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8333714B2 (en) | 2006-09-10 | 2012-12-18 | Abbott Diabetes Care Inc. | Method and system for providing an integrated analyte sensor insertion device and data processing unit |
US8346337B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8346335B2 (en) | 2008-03-28 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
US8344966B2 (en) | 2006-01-31 | 2013-01-01 | Abbott Diabetes Care Inc. | Method and system for providing a fault tolerant display unit in an electronic device |
US8344847B2 (en) | 2009-07-09 | 2013-01-01 | Medtronic Minimed, Inc. | Coordination of control commands in a medical device system having at least one therapy delivery device and at least one wireless controller device |
US8368556B2 (en) | 2009-04-29 | 2013-02-05 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US8374668B1 (en) | 2007-10-23 | 2013-02-12 | Abbott Diabetes Care Inc. | Analyte sensor with lag compensation |
US8377031B2 (en) | 2007-10-23 | 2013-02-19 | Abbott Diabetes Care Inc. | Closed loop control system with safety parameters and methods |
US8386042B2 (en) | 2009-11-03 | 2013-02-26 | Medtronic Minimed, Inc. | Omnidirectional accelerometer device and medical device incorporating same |
US8409093B2 (en) | 2007-10-23 | 2013-04-02 | Abbott Diabetes Care Inc. | Assessing measures of glycemic variability |
US8417311B2 (en) | 2008-09-12 | 2013-04-09 | Optiscan Biomedical Corporation | Fluid component analysis system and method for glucose monitoring and control |
US8439960B2 (en) | 2007-07-09 | 2013-05-14 | Velomedix, Inc. | Hypothermia devices and methods |
US8444560B2 (en) | 2007-05-14 | 2013-05-21 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8449524B2 (en) | 2007-10-10 | 2013-05-28 | Optiscan Biomedical Corporation | Fluid component analysis systems and methods for glucose monitoring and control |
US8456301B2 (en) | 2007-05-08 | 2013-06-04 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8460243B2 (en) * | 2003-06-10 | 2013-06-11 | Abbott Diabetes Care Inc. | Glucose measuring module and insulin pump combination |
US8467972B2 (en) | 2009-04-28 | 2013-06-18 | Abbott Diabetes Care Inc. | Closed loop blood glucose control algorithm analysis |
US8465425B2 (en) | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8473022B2 (en) | 2008-01-31 | 2013-06-25 | Abbott Diabetes Care Inc. | Analyte sensor with time lag compensation |
US8474332B2 (en) | 2010-10-20 | 2013-07-02 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8478557B2 (en) | 2009-07-31 | 2013-07-02 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte monitoring system calibration accuracy |
US8483967B2 (en) | 2009-04-29 | 2013-07-09 | Abbott Diabetes Care Inc. | Method and system for providing real time analyte sensor calibration with retrospective backfill |
US8479595B2 (en) | 2010-10-20 | 2013-07-09 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8487758B2 (en) | 2009-09-02 | 2013-07-16 | Medtronic Minimed, Inc. | Medical device having an intelligent alerting scheme, and related operating methods |
US8497777B2 (en) | 2009-04-15 | 2013-07-30 | Abbott Diabetes Care Inc. | Analyte monitoring system having an alert |
US8495918B2 (en) | 2010-10-20 | 2013-07-30 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8512243B2 (en) | 2005-09-30 | 2013-08-20 | Abbott Diabetes Care Inc. | Integrated introducer and transmitter assembly and methods of use |
US8515517B2 (en) | 2006-10-02 | 2013-08-20 | Abbott Diabetes Care Inc. | Method and system for dynamically updating calibration parameters for an analyte sensor |
US8514086B2 (en) | 2009-08-31 | 2013-08-20 | Abbott Diabetes Care Inc. | Displays for a medical device |
US8523803B1 (en) | 2012-03-20 | 2013-09-03 | Medtronic Minimed, Inc. | Motor health monitoring and medical device incorporating same |
US8545403B2 (en) | 2005-12-28 | 2013-10-01 | Abbott Diabetes Care Inc. | Medical device insertion |
US8560082B2 (en) | 2009-01-30 | 2013-10-15 | Abbott Diabetes Care Inc. | Computerized determination of insulin pump therapy parameters using real time and retrospective data processing |
US8560038B2 (en) | 2007-05-14 | 2013-10-15 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8564447B2 (en) | 2011-03-18 | 2013-10-22 | Medtronic Minimed, Inc. | Battery life indication techniques for an electronic device |
US8562565B2 (en) | 2010-10-15 | 2013-10-22 | Medtronic Minimed, Inc. | Battery shock absorber for a portable medical device |
US8571624B2 (en) | 2004-12-29 | 2013-10-29 | Abbott Diabetes Care Inc. | Method and apparatus for mounting a data transmission device in a communication system |
US8574201B2 (en) | 2009-12-22 | 2013-11-05 | Medtronic Minimed, Inc. | Syringe piston with check valve seal |
US8583205B2 (en) | 2008-03-28 | 2013-11-12 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
US8579853B2 (en) | 2006-10-31 | 2013-11-12 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US8591410B2 (en) | 2008-05-30 | 2013-11-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US8593109B2 (en) | 2006-03-31 | 2013-11-26 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US8600681B2 (en) | 2007-05-14 | 2013-12-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8597188B2 (en) | 2007-06-21 | 2013-12-03 | Abbott Diabetes Care Inc. | Health management devices and methods |
US8603033B2 (en) | 2010-10-15 | 2013-12-10 | Medtronic Minimed, Inc. | Medical device and related assembly having an offset element for a piezoelectric speaker |
US8603027B2 (en) | 2012-03-20 | 2013-12-10 | Medtronic Minimed, Inc. | Occlusion detection using pulse-width modulation and medical device incorporating same |
US8603032B2 (en) | 2010-10-15 | 2013-12-10 | Medtronic Minimed, Inc. | Medical device with membrane keypad sealing element, and related manufacturing method |
US8603026B2 (en) | 2012-03-20 | 2013-12-10 | Medtronic Minimed, Inc. | Dynamic pulse-width modulation motor control and medical device incorporating same |
US20130331961A1 (en) * | 2012-06-11 | 2013-12-12 | General Electric Company | Data exchange system providing flexible and robust handling of units of measure |
US8612159B2 (en) | 1998-04-30 | 2013-12-17 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8614596B2 (en) | 2011-02-28 | 2013-12-24 | Medtronic Minimed, Inc. | Systems and methods for initializing a voltage bus and medical devices incorporating same |
US8613892B2 (en) | 2009-06-30 | 2013-12-24 | Abbott Diabetes Care Inc. | Analyte meter with a moveable head and methods of using the same |
US8613703B2 (en) | 2007-05-31 | 2013-12-24 | Abbott Diabetes Care Inc. | Insertion devices and methods |
US8617069B2 (en) | 2007-06-21 | 2013-12-31 | Abbott Diabetes Care Inc. | Health monitor |
US8622988B2 (en) | 2008-08-31 | 2014-01-07 | Abbott Diabetes Care Inc. | Variable rate closed loop control and methods |
US8628510B2 (en) | 2010-12-22 | 2014-01-14 | Medtronic Minimed, Inc. | Monitoring the operating health of a force sensor in a fluid infusion device |
US8635046B2 (en) | 2010-06-23 | 2014-01-21 | Abbott Diabetes Care Inc. | Method and system for evaluating analyte sensor response characteristics |
US20140039383A1 (en) * | 2007-10-09 | 2014-02-06 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US8652043B2 (en) | 2001-01-02 | 2014-02-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8665091B2 (en) | 2007-05-08 | 2014-03-04 | Abbott Diabetes Care Inc. | Method and device for determining elapsed sensor life |
US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8690855B2 (en) * | 2010-12-22 | 2014-04-08 | Medtronic Minimed, Inc. | Fluid reservoir seating procedure for a fluid infusion device |
US8710993B2 (en) | 2011-11-23 | 2014-04-29 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US8732188B2 (en) | 2007-02-18 | 2014-05-20 | Abbott Diabetes Care Inc. | Method and system for providing contextual based medication dosage determination |
US8734422B2 (en) | 2008-08-31 | 2014-05-27 | Abbott Diabetes Care Inc. | Closed loop control with improved alarm functions |
US8755269B2 (en) | 2009-12-23 | 2014-06-17 | Medtronic Minimed, Inc. | Ranking and switching of wireless channels in a body area network of medical devices |
US8764657B2 (en) | 2010-03-24 | 2014-07-01 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US8771183B2 (en) | 2004-02-17 | 2014-07-08 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US8795252B2 (en) | 2008-08-31 | 2014-08-05 | Abbott Diabetes Care Inc. | Robust closed loop control and methods |
US8798934B2 (en) | 2009-07-23 | 2014-08-05 | Abbott Diabetes Care Inc. | Real time management of data relating to physiological control of glucose levels |
US8808269B2 (en) | 2012-08-21 | 2014-08-19 | Medtronic Minimed, Inc. | Reservoir plunger position monitoring and medical device incorporating same |
US8834366B2 (en) | 2007-07-31 | 2014-09-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor calibration |
US8864726B2 (en) | 2011-02-22 | 2014-10-21 | Medtronic Minimed, Inc. | Pressure vented fluid reservoir having a movable septum |
US8870818B2 (en) | 2012-11-15 | 2014-10-28 | Medtronic Minimed, Inc. | Systems and methods for alignment and detection of a consumable component |
US8880138B2 (en) | 2005-09-30 | 2014-11-04 | Abbott Diabetes Care Inc. | Device for channeling fluid and methods of use |
US8876755B2 (en) | 2008-07-14 | 2014-11-04 | Abbott Diabetes Care Inc. | Closed loop control system interface and methods |
US8924159B2 (en) | 2008-05-30 | 2014-12-30 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US8920381B2 (en) | 2013-04-12 | 2014-12-30 | Medtronic Minimed, Inc. | Infusion set with improved bore configuration |
US8930203B2 (en) | 2007-02-18 | 2015-01-06 | Abbott Diabetes Care Inc. | Multi-function analyte test device and methods therefor |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8986208B2 (en) | 2008-09-30 | 2015-03-24 | Abbott Diabetes Care Inc. | Analyte sensor sensitivity attenuation mitigation |
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
US8993331B2 (en) | 2009-08-31 | 2015-03-31 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods for managing power and noise |
US9008743B2 (en) | 2007-04-14 | 2015-04-14 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9018893B2 (en) | 2011-03-18 | 2015-04-28 | Medtronic Minimed, Inc. | Power control techniques for an electronic device |
US9033924B2 (en) | 2013-01-18 | 2015-05-19 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9069536B2 (en) | 2011-10-31 | 2015-06-30 | Abbott Diabetes Care Inc. | Electronic devices having integrated reset systems and methods thereof |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9072425B1 (en) * | 2014-03-04 | 2015-07-07 | Stuart Bogema | Method of providing a proper on-site evidence chain for a combined drug test/DNA preservation protocol |
US9101305B2 (en) | 2011-03-09 | 2015-08-11 | Medtronic Minimed, Inc. | Glucose sensor product and related manufacturing and packaging methods |
US20150223732A1 (en) * | 2009-11-06 | 2015-08-13 | Crisi Medical Systems, Inc. | Medication Injection Site and Data Collection System |
US9107994B2 (en) | 2013-01-18 | 2015-08-18 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9125548B2 (en) | 2007-05-14 | 2015-09-08 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9180243B2 (en) | 2013-03-15 | 2015-11-10 | Tandem Diabetes Care, Inc. | Detection of infusion pump conditions |
US9204827B2 (en) | 2007-04-14 | 2015-12-08 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9226701B2 (en) | 2009-04-28 | 2016-01-05 | Abbott Diabetes Care Inc. | Error detection in critical repeating data in a wireless sensor system |
US9259175B2 (en) | 2006-10-23 | 2016-02-16 | Abbott Diabetes Care, Inc. | Flexible patch for fluid delivery and monitoring body analytes |
US9259528B2 (en) | 2013-08-22 | 2016-02-16 | Medtronic Minimed, Inc. | Fluid infusion device with safety coupling |
US9308321B2 (en) | 2013-02-18 | 2016-04-12 | Medtronic Minimed, Inc. | Infusion device having gear assembly initialization |
US9317656B2 (en) | 2011-11-23 | 2016-04-19 | Abbott Diabetes Care Inc. | Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof |
US9314195B2 (en) | 2009-08-31 | 2016-04-19 | Abbott Diabetes Care Inc. | Analyte signal processing device and methods |
US9320461B2 (en) | 2009-09-29 | 2016-04-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing notification function in analyte monitoring systems |
US9326709B2 (en) | 2010-03-10 | 2016-05-03 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
US9326707B2 (en) | 2008-11-10 | 2016-05-03 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
US9333292B2 (en) | 2012-06-26 | 2016-05-10 | Medtronic Minimed, Inc. | Mechanically actuated fluid infusion device |
US9339217B2 (en) | 2011-11-25 | 2016-05-17 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods of use |
US9351669B2 (en) | 2009-09-30 | 2016-05-31 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US9364609B2 (en) | 2012-08-30 | 2016-06-14 | Medtronic Minimed, Inc. | Insulin on board compensation for a closed-loop insulin infusion system |
US9393399B2 (en) | 2011-02-22 | 2016-07-19 | Medtronic Minimed, Inc. | Sealing assembly for a fluid reservoir of a fluid infusion device |
US9392969B2 (en) | 2008-08-31 | 2016-07-19 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
US9399096B2 (en) | 2014-02-06 | 2016-07-26 | Medtronic Minimed, Inc. | Automatic closed-loop control adjustments and infusion systems incorporating same |
US9398882B2 (en) | 2005-09-30 | 2016-07-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor and data processing device |
US9402949B2 (en) | 2013-08-13 | 2016-08-02 | Medtronic Minimed, Inc. | Detecting conditions associated with medical device operations using matched filters |
US9402570B2 (en) | 2011-12-11 | 2016-08-02 | Abbott Diabetes Care Inc. | Analyte sensor devices, connections, and methods |
US9402544B2 (en) | 2009-02-03 | 2016-08-02 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US9433731B2 (en) | 2013-07-19 | 2016-09-06 | Medtronic Minimed, Inc. | Detecting unintentional motor motion and infusion device incorporating same |
US9433718B2 (en) | 2013-03-15 | 2016-09-06 | Fresenius Medical Care Holdings, Inc. | Medical fluid system including radio frequency (RF) device within a magnetic assembly, and fluid cartridge body with one of multiple passageways disposed within the RF device, and specially configured cartridge gap accepting a portion of said RF device |
US9463309B2 (en) | 2011-02-22 | 2016-10-11 | Medtronic Minimed, Inc. | Sealing assembly and structure for a fluid infusion device having a needled fluid reservoir |
US9474475B1 (en) | 2013-03-15 | 2016-10-25 | Abbott Diabetes Care Inc. | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
US9486571B2 (en) | 2013-12-26 | 2016-11-08 | Tandem Diabetes Care, Inc. | Safety processor for wireless control of a drug delivery device |
CN106133731A (en) * | 2014-12-04 | 2016-11-16 | 美敦力迷你迈德公司 | The diagnosis in advance of infusion apparatus operational mode feasibility |
US9522223B2 (en) | 2013-01-18 | 2016-12-20 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9521968B2 (en) | 2005-09-30 | 2016-12-20 | Abbott Diabetes Care Inc. | Analyte sensor retention mechanism and methods of use |
US9532737B2 (en) | 2011-02-28 | 2017-01-03 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US9555186B2 (en) | 2012-06-05 | 2017-01-31 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US9565718B2 (en) | 2013-09-10 | 2017-02-07 | Tandem Diabetes Care, Inc. | System and method for detecting and transmitting medical device alarm with a smartphone application |
US9566377B2 (en) | 2013-03-15 | 2017-02-14 | Fresenius Medical Care Holdings, Inc. | Medical fluid sensing and concentration determination in a fluid cartridge with multiple passageways, using a radio frequency device situated within a magnetic field |
US9572534B2 (en) | 2010-06-29 | 2017-02-21 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US9598210B2 (en) | 2007-12-27 | 2017-03-21 | Medtronic Minimed, Inc. | Reservoir pressure equalization systems and methods |
US9597439B2 (en) | 2013-03-15 | 2017-03-21 | Fresenius Medical Care Holdings, Inc. | Medical fluid sensing and concentration determination using radio frequency energy and a magnetic field |
US9610401B2 (en) | 2012-01-13 | 2017-04-04 | Medtronic Minimed, Inc. | Infusion set component with modular fluid channel element |
US9610402B2 (en) | 2014-03-24 | 2017-04-04 | Medtronic Minimed, Inc. | Transcutaneous conduit insertion mechanism with a living hinge for use with a fluid infusion patch pump device |
US9615780B2 (en) | 2007-04-14 | 2017-04-11 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9623179B2 (en) | 2012-08-30 | 2017-04-18 | Medtronic Minimed, Inc. | Safeguarding techniques for a closed-loop insulin infusion system |
US9622670B2 (en) | 2010-07-09 | 2017-04-18 | Potrero Medical, Inc. | Method and apparatus for pressure measurement |
US9622691B2 (en) | 2011-10-31 | 2017-04-18 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
US9636450B2 (en) | 2007-02-19 | 2017-05-02 | Udo Hoss | Pump system modular components for delivering medication and analyte sensing at seperate insertion sites |
US9662445B2 (en) | 2012-08-30 | 2017-05-30 | Medtronic Minimed, Inc. | Regulating entry into a closed-loop operating mode of an insulin infusion system |
US9675290B2 (en) | 2012-10-30 | 2017-06-13 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
US9681828B2 (en) | 2014-05-01 | 2017-06-20 | Medtronic Minimed, Inc. | Physiological characteristic sensors and methods for forming such sensors |
US9694132B2 (en) | 2013-12-19 | 2017-07-04 | Medtronic Minimed, Inc. | Insertion device for insertion set |
US9713664B2 (en) | 2013-03-15 | 2017-07-25 | Fresenius Medical Care Holdings, Inc. | Nuclear magnetic resonance module for a dialysis machine |
US9737656B2 (en) | 2013-12-26 | 2017-08-22 | Tandem Diabetes Care, Inc. | Integration of infusion pump with remote electronic device |
US9743862B2 (en) | 2011-03-31 | 2017-08-29 | Abbott Diabetes Care Inc. | Systems and methods for transcutaneously implanting medical devices |
US9750878B2 (en) | 2013-12-11 | 2017-09-05 | Medtronic Minimed, Inc. | Closed-loop control of glucose according to a predicted blood glucose trajectory |
US9750877B2 (en) | 2013-12-11 | 2017-09-05 | Medtronic Minimed, Inc. | Predicted time to assess and/or control a glycemic state |
US9772386B2 (en) | 2013-03-15 | 2017-09-26 | Fresenius Medical Care Holdings, Inc. | Dialysis system with sample concentration determination device using magnet and radio frequency coil assemblies |
US9788771B2 (en) | 2006-10-23 | 2017-10-17 | Abbott Diabetes Care Inc. | Variable speed sensor insertion devices and methods of use |
US9795326B2 (en) | 2009-07-23 | 2017-10-24 | Abbott Diabetes Care Inc. | Continuous analyte measurement systems and systems and methods for implanting them |
US9833563B2 (en) | 2014-09-26 | 2017-12-05 | Medtronic Minimed, Inc. | Systems for managing reservoir chamber pressure |
US9833564B2 (en) | 2014-11-25 | 2017-12-05 | Medtronic Minimed, Inc. | Fluid conduit assembly with air venting features |
US9839741B2 (en) | 2011-02-22 | 2017-12-12 | Medtronic Minimed, Inc. | Flanged sealing element and needle guide pin assembly for a fluid infusion device having a needled fluid reservoir |
US9839753B2 (en) | 2014-09-26 | 2017-12-12 | Medtronic Minimed, Inc. | Systems for managing reservoir chamber pressure |
US9849239B2 (en) | 2012-08-30 | 2017-12-26 | Medtronic Minimed, Inc. | Generation and application of an insulin limit for a closed-loop operating mode of an insulin infusion system |
US9849240B2 (en) | 2013-12-12 | 2017-12-26 | Medtronic Minimed, Inc. | Data modification for predictive operations and devices incorporating same |
US9861748B2 (en) | 2014-02-06 | 2018-01-09 | Medtronic Minimed, Inc. | User-configurable closed-loop notifications and infusion systems incorporating same |
US9878096B2 (en) | 2012-08-30 | 2018-01-30 | Medtronic Minimed, Inc. | Generation of target glucose values for a closed-loop operating mode of an insulin infusion system |
US9878095B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and multiple sensor contact elements |
US9880528B2 (en) | 2013-08-21 | 2018-01-30 | Medtronic Minimed, Inc. | Medical devices and related updating methods and systems |
US9879668B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and an optical sensor |
US9889257B2 (en) | 2013-08-21 | 2018-02-13 | Medtronic Minimed, Inc. | Systems and methods for updating medical devices |
US9895490B2 (en) | 2010-12-22 | 2018-02-20 | Medtronic Minimed, Inc. | Occlusion detection for a fluid infusion device |
US9907492B2 (en) | 2012-09-26 | 2018-03-06 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
US9937293B2 (en) | 2004-02-26 | 2018-04-10 | Dexcom, Inc. | Integrated delivery device for continuous glucose sensor |
US9937292B2 (en) | 2014-12-09 | 2018-04-10 | Medtronic Minimed, Inc. | Systems for filling a fluid infusion device reservoir |
US9943644B2 (en) | 2008-08-31 | 2018-04-17 | Abbott Diabetes Care Inc. | Closed loop control with reference measurement and methods thereof |
US9943645B2 (en) | 2014-12-04 | 2018-04-17 | Medtronic Minimed, Inc. | Methods for operating mode transitions and related infusion devices and systems |
US9962486B2 (en) | 2013-03-14 | 2018-05-08 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US9968306B2 (en) | 2012-09-17 | 2018-05-15 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
US9980670B2 (en) | 2002-11-05 | 2018-05-29 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US9980669B2 (en) | 2011-11-07 | 2018-05-29 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods |
US9987425B2 (en) | 2015-06-22 | 2018-06-05 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and sensor contact elements |
US9987420B2 (en) | 2014-11-26 | 2018-06-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
CN108143400A (en) * | 2016-12-02 | 2018-06-12 | 杏旭天利医疗器械(北京)有限公司 | Body temperature measuring device, system and method |
US9993594B2 (en) | 2015-06-22 | 2018-06-12 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and rotor position sensors |
US9999721B2 (en) | 2015-05-26 | 2018-06-19 | Medtronic Minimed, Inc. | Error handling in infusion devices with distributed motor control and related operating methods |
US10001450B2 (en) | 2014-04-18 | 2018-06-19 | Medtronic Minimed, Inc. | Nonlinear mapping technique for a physiological characteristic sensor |
US10002233B2 (en) | 2007-05-14 | 2018-06-19 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10007765B2 (en) | 2014-05-19 | 2018-06-26 | Medtronic Minimed, Inc. | Adaptive signal processing for infusion devices and related methods and systems |
US10010668B2 (en) | 2015-06-22 | 2018-07-03 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and a force sensor |
US10022499B2 (en) | 2007-02-15 | 2018-07-17 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US10037722B2 (en) | 2015-11-03 | 2018-07-31 | Medtronic Minimed, Inc. | Detecting breakage in a display element |
US10076285B2 (en) | 2013-03-15 | 2018-09-18 | Abbott Diabetes Care Inc. | Sensor fault detection using analyte sensor data pattern comparison |
US10092229B2 (en) | 2010-06-29 | 2018-10-09 | Abbott Diabetes Care Inc. | Calibration of analyte measurement system |
US10105488B2 (en) | 2013-12-12 | 2018-10-23 | Medtronic Minimed, Inc. | Predictive infusion device operations and related methods and systems |
US10111608B2 (en) | 2007-04-14 | 2018-10-30 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US10112011B2 (en) | 2013-07-19 | 2018-10-30 | Dexcom, Inc. | Time averaged basal rate optimizer |
US10117992B2 (en) | 2015-09-29 | 2018-11-06 | Medtronic Minimed, Inc. | Infusion devices and related rescue detection methods |
US10130767B2 (en) | 2012-08-30 | 2018-11-20 | Medtronic Minimed, Inc. | Sensor model supervisor for a closed-loop insulin infusion system |
US10132793B2 (en) | 2012-08-30 | 2018-11-20 | Abbott Diabetes Care Inc. | Dropout detection in continuous analyte monitoring data during data excursions |
US10136816B2 (en) | 2009-08-31 | 2018-11-27 | Abbott Diabetes Care Inc. | Medical devices and methods |
US10136845B2 (en) | 2011-02-28 | 2018-11-27 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US10137243B2 (en) | 2015-05-26 | 2018-11-27 | Medtronic Minimed, Inc. | Infusion devices with distributed motor control and related operating methods |
US10146911B2 (en) | 2015-10-23 | 2018-12-04 | Medtronic Minimed, Inc. | Medical devices and related methods and systems for data transfer |
US10152049B2 (en) | 2014-05-19 | 2018-12-11 | Medtronic Minimed, Inc. | Glucose sensor health monitoring and related methods and systems |
US20180369479A1 (en) * | 2017-06-26 | 2018-12-27 | Abbott Diabetes Care Inc. | Artificial Pancreas Integrated CGM Architectures and Designs |
US10195341B2 (en) | 2014-11-26 | 2019-02-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US10194850B2 (en) | 2005-08-31 | 2019-02-05 | Abbott Diabetes Care Inc. | Accuracy of continuous glucose sensors |
US10201657B2 (en) | 2015-08-21 | 2019-02-12 | Medtronic Minimed, Inc. | Methods for providing sensor site rotation feedback and related infusion devices and systems |
US10213139B2 (en) | 2015-05-14 | 2019-02-26 | Abbott Diabetes Care Inc. | Systems, devices, and methods for assembling an applicator and sensor control device |
US10226207B2 (en) | 2004-12-29 | 2019-03-12 | Abbott Diabetes Care Inc. | Sensor inserter having introducer |
US10232113B2 (en) | 2014-04-24 | 2019-03-19 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for regulating insulin on board |
US10238030B2 (en) | 2016-12-06 | 2019-03-26 | Medtronic Minimed, Inc. | Wireless medical device with a complementary split ring resonator arrangement for suppression of electromagnetic interference |
US10258736B2 (en) | 2012-05-17 | 2019-04-16 | Tandem Diabetes Care, Inc. | Systems including vial adapter for fluid transfer |
US10265031B2 (en) | 2014-12-19 | 2019-04-23 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for automatic alert clearing |
US10275572B2 (en) | 2014-05-01 | 2019-04-30 | Medtronic Minimed, Inc. | Detecting blockage of a reservoir cavity during a seating operation of a fluid infusion device |
US10274349B2 (en) | 2014-05-19 | 2019-04-30 | Medtronic Minimed, Inc. | Calibration factor adjustments for infusion devices and related methods and systems |
US10272201B2 (en) | 2016-12-22 | 2019-04-30 | Medtronic Minimed, Inc. | Insertion site monitoring methods and related infusion devices and systems |
US10279126B2 (en) | 2014-10-07 | 2019-05-07 | Medtronic Minimed, Inc. | Fluid conduit assembly with gas trapping filter in the fluid flow path |
US10286135B2 (en) | 2014-03-28 | 2019-05-14 | Fresenius Medical Care Holdings, Inc. | Measuring conductivity of a medical fluid |
US10293108B2 (en) | 2015-08-21 | 2019-05-21 | Medtronic Minimed, Inc. | Infusion devices and related patient ratio adjustment methods |
US10307528B2 (en) | 2015-03-09 | 2019-06-04 | Medtronic Minimed, Inc. | Extensible infusion devices and related methods |
US10307535B2 (en) | 2014-12-19 | 2019-06-04 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for preemptive alerting |
US10363365B2 (en) | 2017-02-07 | 2019-07-30 | Medtronic Minimed, Inc. | Infusion devices and related consumable calibration methods |
US10391242B2 (en) | 2012-06-07 | 2019-08-27 | Medtronic Minimed, Inc. | Diabetes therapy management system for recommending bolus calculator adjustments |
US10433773B1 (en) | 2013-03-15 | 2019-10-08 | Abbott Diabetes Care Inc. | Noise rejection methods and apparatus for sparsely sampled analyte sensor data |
USD864218S1 (en) | 2018-08-20 | 2019-10-22 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD864217S1 (en) | 2018-08-20 | 2019-10-22 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD864219S1 (en) | 2018-08-20 | 2019-10-22 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
US10449298B2 (en) | 2015-03-26 | 2019-10-22 | Medtronic Minimed, Inc. | Fluid injection devices and related methods |
US10449306B2 (en) | 2015-11-25 | 2019-10-22 | Medtronics Minimed, Inc. | Systems for fluid delivery with wicking membrane |
US10463297B2 (en) | 2015-08-21 | 2019-11-05 | Medtronic Minimed, Inc. | Personalized event detection methods and related devices and systems |
US20190336048A1 (en) * | 2018-05-04 | 2019-11-07 | Dexcom, Inc. | Systems and methods for power management in analyte sensor system |
US10478557B2 (en) | 2015-08-21 | 2019-11-19 | Medtronic Minimed, Inc. | Personalized parameter modeling methods and related devices and systems |
US10496797B2 (en) | 2012-08-30 | 2019-12-03 | Medtronic Minimed, Inc. | Blood glucose validation for a closed-loop operating mode of an insulin infusion system |
US10500135B2 (en) | 2017-01-30 | 2019-12-10 | Medtronic Minimed, Inc. | Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device |
US10532165B2 (en) | 2017-01-30 | 2020-01-14 | Medtronic Minimed, Inc. | Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device |
US10552580B2 (en) | 2017-02-07 | 2020-02-04 | Medtronic Minimed, Inc. | Infusion system consumables and related calibration methods |
US10555695B2 (en) | 2011-04-15 | 2020-02-11 | Dexcom, Inc. | Advanced analyte sensor calibration and error detection |
USD875767S1 (en) | 2018-08-23 | 2020-02-18 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD875765S1 (en) | 2018-08-10 | 2020-02-18 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD875766S1 (en) | 2018-08-10 | 2020-02-18 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
US10575767B2 (en) | 2015-05-29 | 2020-03-03 | Medtronic Minimed, Inc. | Method for monitoring an analyte, analyte sensor and analyte monitoring apparatus |
US10589038B2 (en) | 2016-04-27 | 2020-03-17 | Medtronic Minimed, Inc. | Set connector systems for venting a fluid reservoir |
US20200085351A1 (en) * | 2004-07-13 | 2020-03-19 | Dexcom, Inc. | Analyte sensor |
US10610136B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
USD880496S1 (en) | 2018-08-20 | 2020-04-07 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD882622S1 (en) | 2018-08-22 | 2020-04-28 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
US10639419B2 (en) | 2014-03-17 | 2020-05-05 | Plc Medical Systems, Inc. | Fluid therapy method |
US10646649B2 (en) | 2017-02-21 | 2020-05-12 | Medtronic Minimed, Inc. | Infusion devices and fluid identification apparatuses and methods |
US10664569B2 (en) | 2015-08-21 | 2020-05-26 | Medtronic Minimed, Inc. | Data analytics and generation of recommendations for controlling glycemic outcomes associated with tracked events |
US10661037B2 (en) * | 2013-06-25 | 2020-05-26 | Socpra Sciences Et Génie S.E.C. | Indirect measurement in a total liquid ventilation system |
US10674944B2 (en) | 2015-05-14 | 2020-06-09 | Abbott Diabetes Care Inc. | Compact medical device inserters and related systems and methods |
US10685749B2 (en) | 2007-12-19 | 2020-06-16 | Abbott Diabetes Care Inc. | Insulin delivery apparatuses capable of bluetooth data transmission |
US10813577B2 (en) | 2005-06-21 | 2020-10-27 | Dexcom, Inc. | Analyte sensor |
USD902408S1 (en) | 2003-11-05 | 2020-11-17 | Abbott Diabetes Care Inc. | Analyte sensor control unit |
US10874338B2 (en) | 2010-06-29 | 2020-12-29 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US10943687B2 (en) | 2007-05-24 | 2021-03-09 | Tandem Diabetes Care, Inc. | Expert system for insulin pump therapy |
WO2021055531A1 (en) * | 2019-09-17 | 2021-03-25 | The Trustees Of Indiana University | Syringe pump controller |
EP2829224B1 (en) | 2006-02-22 | 2021-03-31 | DexCom, Inc. | Analyte sensor |
US10966609B2 (en) | 2004-02-26 | 2021-04-06 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
US11000215B1 (en) | 2003-12-05 | 2021-05-11 | Dexcom, Inc. | Analyte sensor |
USD924406S1 (en) | 2010-02-01 | 2021-07-06 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
US11071478B2 (en) | 2017-01-23 | 2021-07-27 | Abbott Diabetes Care Inc. | Systems, devices and methods for analyte sensor insertion |
US11097051B2 (en) | 2016-11-04 | 2021-08-24 | Medtronic Minimed, Inc. | Methods and apparatus for detecting and reacting to insufficient hypoglycemia response |
USD931306S1 (en) | 2020-01-20 | 2021-09-21 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
US11135345B2 (en) | 2017-05-10 | 2021-10-05 | Fresenius Medical Care Holdings, Inc. | On demand dialysate mixing using concentrates |
USD938457S1 (en) | 2013-03-13 | 2021-12-14 | Tandem Diabetes Care, Inc. | Medical device display screen or portion thereof with graphical user interface |
US11207463B2 (en) | 2017-02-21 | 2021-12-28 | Medtronic Minimed, Inc. | Apparatuses, systems, and methods for identifying an infusate in a reservoir of an infusion device |
US11213226B2 (en) | 2010-10-07 | 2022-01-04 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods |
US11213621B2 (en) | 2004-09-09 | 2022-01-04 | Reprieve Cardiovascular, Inc. | Fluid therapy method |
US11229382B2 (en) | 2013-12-31 | 2022-01-25 | Abbott Diabetes Care Inc. | Self-powered analyte sensor and devices using the same |
US20220088304A1 (en) * | 2018-11-30 | 2022-03-24 | President And Fellows Of Harvard College | Systems and methods for closed-loop control of insulin-glucose dynamics |
US11294407B2 (en) | 2001-04-27 | 2022-04-05 | Roche Diabetes Care, Inc. | Device and method for insulin dosing |
US11298053B2 (en) | 2007-05-30 | 2022-04-12 | Tandem Diabetes Care, Inc. | Insulin pump based expert system |
US11302433B2 (en) | 2008-01-07 | 2022-04-12 | Tandem Diabetes Care, Inc. | Diabetes therapy coaching |
US11298058B2 (en) | 2005-12-28 | 2022-04-12 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US11324889B2 (en) | 2020-02-14 | 2022-05-10 | Insulet Corporation | Compensation for missing readings from a glucose monitor in an automated insulin delivery system |
US11331022B2 (en) | 2017-10-24 | 2022-05-17 | Dexcom, Inc. | Pre-connected analyte sensors |
US11350862B2 (en) | 2017-10-24 | 2022-06-07 | Dexcom, Inc. | Pre-connected analyte sensors |
US11373347B2 (en) | 2007-06-08 | 2022-06-28 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
US11386996B2 (en) | 2014-01-30 | 2022-07-12 | Insulet Netherlands B.V. | Therapeutic product delivery system and method of pairing |
US11439754B1 (en) | 2021-12-01 | 2022-09-13 | Insulet Corporation | Optimizing embedded formulations for drug delivery |
US11446177B2 (en) | 2005-10-21 | 2022-09-20 | Theranova, Llc | Method and apparatus for peritoneal oxygenation |
US11464908B2 (en) | 2019-02-18 | 2022-10-11 | Tandem Diabetes Care, Inc. | Methods and apparatus for monitoring infusion sites for ambulatory infusion pumps |
US11501867B2 (en) | 2015-10-19 | 2022-11-15 | Medtronic Minimed, Inc. | Medical devices and related event pattern presentation methods |
US11504458B2 (en) | 2018-10-17 | 2022-11-22 | Fresenius Medical Care Holdings, Inc. | Ultrasonic authentication for dialysis |
US11551802B2 (en) | 2020-02-11 | 2023-01-10 | Insulet Corporation | Early meal detection and calorie intake detection |
US11547800B2 (en) | 2020-02-12 | 2023-01-10 | Insulet Corporation | User parameter dependent cost function for personalized reduction of hypoglycemia and/or hyperglycemia in a closed loop artificial pancreas system |
US11553883B2 (en) | 2015-07-10 | 2023-01-17 | Abbott Diabetes Care Inc. | System, device and method of dynamic glucose profile response to physiological parameters |
US11565039B2 (en) | 2018-10-11 | 2023-01-31 | Insulet Corporation | Event detection for drug delivery system |
US11565043B2 (en) | 2018-05-04 | 2023-01-31 | Insulet Corporation | Safety constraints for a control algorithm based drug delivery system |
US11594314B2 (en) | 2020-12-07 | 2023-02-28 | Beta Bionics, Inc. | Modular blood glucose control systems |
US11596330B2 (en) | 2017-03-21 | 2023-03-07 | Abbott Diabetes Care Inc. | Methods, devices and system for providing diabetic condition diagnosis and therapy |
US11596740B2 (en) | 2015-02-18 | 2023-03-07 | Insulet Corporation | Fluid delivery and infusion devices, and methods of use thereof |
US11607493B2 (en) | 2020-04-06 | 2023-03-21 | Insulet Corporation | Initial total daily insulin setting for user onboarding |
USD982762S1 (en) | 2020-12-21 | 2023-04-04 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
US11628251B2 (en) | 2018-09-28 | 2023-04-18 | Insulet Corporation | Activity mode for artificial pancreas system |
US11638781B2 (en) | 2015-12-29 | 2023-05-02 | Tandem Diabetes Care, Inc. | System and method for switching between closed loop and open loop control of an ambulatory infusion pump |
US11666702B2 (en) | 2015-10-19 | 2023-06-06 | Medtronic Minimed, Inc. | Medical devices and related event pattern treatment recommendation methods |
US11676694B2 (en) | 2012-06-07 | 2023-06-13 | Tandem Diabetes Care, Inc. | Device and method for training users of ambulatory medical devices |
US11684716B2 (en) | 2020-07-31 | 2023-06-27 | Insulet Corporation | Techniques to reduce risk of occlusions in drug delivery systems |
US11717225B2 (en) | 2014-03-30 | 2023-08-08 | Abbott Diabetes Care Inc. | Method and apparatus for determining meal start and peak events in analyte monitoring systems |
US11724027B2 (en) | 2016-09-23 | 2023-08-15 | Insulet Corporation | Fluid delivery device with sensor |
US11738144B2 (en) | 2021-09-27 | 2023-08-29 | Insulet Corporation | Techniques enabling adaptation of parameters in aid systems by user input |
US11793936B2 (en) | 2009-05-29 | 2023-10-24 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
USD1002852S1 (en) | 2019-06-06 | 2023-10-24 | Abbott Diabetes Care Inc. | Analyte sensor device |
US11801344B2 (en) | 2019-09-13 | 2023-10-31 | Insulet Corporation | Blood glucose rate of change modulation of meal and correction insulin bolus quantity |
US11833329B2 (en) | 2019-12-20 | 2023-12-05 | Insulet Corporation | Techniques for improved automatic drug delivery performance using delivery tendencies from past delivery history and use patterns |
US11857763B2 (en) | 2016-01-14 | 2024-01-02 | Insulet Corporation | Adjusting insulin delivery rates |
US11865299B2 (en) | 2008-08-20 | 2024-01-09 | Insulet Corporation | Infusion pump systems and methods |
US11904140B2 (en) | 2021-03-10 | 2024-02-20 | Insulet Corporation | Adaptable asymmetric medicament cost component in a control system for medicament delivery |
US11929158B2 (en) | 2016-01-13 | 2024-03-12 | Insulet Corporation | User interface for diabetes management system |
US11935637B2 (en) | 2019-09-27 | 2024-03-19 | Insulet Corporation | Onboarding and total daily insulin adaptivity |
US11941392B2 (en) | 2019-07-16 | 2024-03-26 | Beta Bionics, Inc. | Ambulatory medical device with malfunction alert prioritization |
USD1020794S1 (en) | 2018-04-02 | 2024-04-02 | Bigfoot Biomedical, Inc. | Medication delivery device with icons |
US11957876B2 (en) | 2019-07-16 | 2024-04-16 | Beta Bionics, Inc. | Glucose control system with automated backup therapy protocol generation |
US11957875B2 (en) | 2019-12-06 | 2024-04-16 | Insulet Corporation | Techniques and devices providing adaptivity and personalization in diabetes treatment |
USD1024090S1 (en) | 2019-01-09 | 2024-04-23 | Bigfoot Biomedical, Inc. | Display screen or portion thereof with graphical user interface associated with insulin delivery |
US11969579B2 (en) | 2017-01-13 | 2024-04-30 | Insulet Corporation | Insulin delivery methods, systems and devices |
US11986630B2 (en) | 2020-02-12 | 2024-05-21 | Insulet Corporation | Dual hormone delivery system for reducing impending hypoglycemia and/or hyperglycemia risk |
US12036389B2 (en) | 2020-01-06 | 2024-07-16 | Insulet Corporation | Prediction of meal and/or exercise events based on persistent residuals |
US12042630B2 (en) | 2017-01-13 | 2024-07-23 | Insulet Corporation | System and method for adjusting insulin delivery |
US12064591B2 (en) | 2013-07-19 | 2024-08-20 | Insulet Corporation | Infusion pump system and method |
US12076160B2 (en) | 2016-12-12 | 2024-09-03 | Insulet Corporation | Alarms and alerts for medication delivery devices and systems |
US12097355B2 (en) | 2023-01-06 | 2024-09-24 | Insulet Corporation | Automatically or manually initiated meal bolus delivery with subsequent automatic safety constraint relaxation |
US12106837B2 (en) | 2016-01-14 | 2024-10-01 | Insulet Corporation | Occlusion resolution in medication delivery devices, systems, and methods |
US12115339B2 (en) | 2016-11-28 | 2024-10-15 | Medtronic Minimed, Inc. | Interactive guidance for medical devices |
US12115351B2 (en) | 2020-09-30 | 2024-10-15 | Insulet Corporation | Secure wireless communications between a glucose monitor and other devices |
US12126995B2 (en) | 2021-09-01 | 2024-10-22 | Abbott Diabetes Care Inc. | Secured communications in medical monitoring systems |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017091624A1 (en) | 2015-11-24 | 2017-06-01 | Insulet Corporation | Wearable automated medication delivery system |
USD853583S1 (en) | 2017-03-29 | 2019-07-09 | Becton, Dickinson And Company | Hand-held device housing |
Citations (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3631847A (en) * | 1966-03-04 | 1972-01-04 | James C Hobbs | Method and apparatus for injecting fluid into the vascular system |
US4212738A (en) * | 1977-03-28 | 1980-07-15 | Akzo N.V. | Artificial kidney |
US4270532A (en) * | 1977-12-28 | 1981-06-02 | Siemens Aktiengesellschaft | Device for the pre-programmable infusion of liquids |
US4373527A (en) * | 1979-04-27 | 1983-02-15 | The Johns Hopkins University | Implantable, programmable medication infusion system |
US4395259A (en) * | 1980-09-22 | 1983-07-26 | Siemens Aktiengesellschaft | Device for the infusion of fluids into the human or animal body |
US4433072A (en) * | 1978-12-15 | 1984-02-21 | Hospal-Sodip, S.A. | Mixtures of polymers for medical use |
US4443218A (en) * | 1982-09-09 | 1984-04-17 | Infusaid Corporation | Programmable implantable infusate pump |
US4494950A (en) * | 1982-01-19 | 1985-01-22 | The Johns Hopkins University | Plural module medication delivery system |
US4562751A (en) * | 1984-01-06 | 1986-01-07 | Nason Clyde K | Solenoid drive apparatus for an external infusion pump |
US4671288A (en) * | 1985-06-13 | 1987-06-09 | The Regents Of The University Of California | Electrochemical cell sensor for continuous short-term use in tissues and blood |
US4678408A (en) * | 1984-01-06 | 1987-07-07 | Pacesetter Infusion, Ltd. | Solenoid drive apparatus for an external infusion pump |
US4731726A (en) * | 1986-05-19 | 1988-03-15 | Healthware Corporation | Patient-operated glucose monitor and diabetes management system |
US4731051A (en) * | 1979-04-27 | 1988-03-15 | The Johns Hopkins University | Programmable control means for providing safe and controlled medication infusion |
US4803625A (en) * | 1986-06-30 | 1989-02-07 | Buddy Systems, Inc. | Personal health monitor |
US4809697A (en) * | 1987-10-14 | 1989-03-07 | Siemens-Pacesetter, Inc. | Interactive programming and diagnostic system for use with implantable pacemaker |
US4826810A (en) * | 1983-12-16 | 1989-05-02 | Aoki Thomas T | System and method for treating animal body tissues to improve the dietary fuel processing capabilities thereof |
US4898578A (en) * | 1988-01-26 | 1990-02-06 | Baxter International Inc. | Drug infusion system with calculator |
US4935105A (en) * | 1987-02-24 | 1990-06-19 | Imperial Chemical Industries Plc | Methods of operating enzyme electrode sensors |
US5003298A (en) * | 1986-01-15 | 1991-03-26 | Karel Havel | Variable color digital display for emphasizing position of decimal point |
US5011468A (en) * | 1987-05-29 | 1991-04-30 | Retroperfusion Systems, Inc. | Retroperfusion and retroinfusion control apparatus, system and method |
US5019974A (en) * | 1987-05-01 | 1991-05-28 | Diva Medical Systems Bv | Diabetes management system and apparatus |
US5078683A (en) * | 1990-05-04 | 1992-01-07 | Block Medical, Inc. | Programmable infusion system |
US5080653A (en) * | 1990-04-16 | 1992-01-14 | Pacesetter Infusion, Ltd. | Infusion pump with dual position syringe locator |
US5097122A (en) * | 1990-04-16 | 1992-03-17 | Pacesetter Infusion, Ltd. | Medication infusion system having optical motion sensor to detect drive mechanism malfunction |
US5100380A (en) * | 1984-02-08 | 1992-03-31 | Abbott Laboratories | Remotely programmable infusion system |
US5101814A (en) * | 1989-08-11 | 1992-04-07 | Palti Yoram Prof | System for monitoring and controlling blood glucose |
US5108819A (en) * | 1990-02-14 | 1992-04-28 | Eli Lilly And Company | Thin film electrical component |
US5284140A (en) * | 1992-02-11 | 1994-02-08 | Eli Lilly And Company | Acrylic copolymer membranes for biosensors |
US5299571A (en) * | 1993-01-22 | 1994-04-05 | Eli Lilly And Company | Apparatus and method for implantation of sensors |
US5307263A (en) * | 1992-11-17 | 1994-04-26 | Raya Systems, Inc. | Modular microprocessor-based health monitoring system |
US5317506A (en) * | 1989-01-30 | 1994-05-31 | Abbott Laboratories | Infusion fluid management system |
US5320725A (en) * | 1989-08-02 | 1994-06-14 | E. Heller & Company | Electrode and method for the detection of hydrogen peroxide |
US5322063A (en) * | 1991-10-04 | 1994-06-21 | Eli Lilly And Company | Hydrophilic polyurethane membranes for electrochemical glucose sensors |
US5390671A (en) * | 1994-03-15 | 1995-02-21 | Minimed Inc. | Transcutaneous sensor insertion set |
US5391250A (en) * | 1994-03-15 | 1995-02-21 | Minimed Inc. | Method of fabricating thin film sensors |
US5411647A (en) * | 1992-11-23 | 1995-05-02 | Eli Lilly And Company | Techniques to improve the performance of electrochemical sensors |
US5417222A (en) * | 1994-01-21 | 1995-05-23 | Hewlett-Packard Company | Patient monitoring system |
US5482473A (en) * | 1994-05-09 | 1996-01-09 | Minimed Inc. | Flex circuit connector |
US5485408A (en) * | 1992-09-09 | 1996-01-16 | Sims Deltec, Inc. | Pump simulation apparatus |
US5497772A (en) * | 1993-11-19 | 1996-03-12 | Alfred E. Mann Foundation For Scientific Research | Glucose monitoring system |
US5507288A (en) * | 1994-05-05 | 1996-04-16 | Boehringer Mannheim Gmbh | Analytical system for monitoring a substance to be analyzed in patient-blood |
US5593390A (en) * | 1994-03-09 | 1997-01-14 | Visionary Medical Products, Inc. | Medication delivery device with a microprocessor and characteristic monitor |
US5594638A (en) * | 1993-12-29 | 1997-01-14 | First Opinion Corporation | Computerized medical diagnostic system including re-enter function and sensitivity factors |
US5593852A (en) * | 1993-12-02 | 1997-01-14 | Heller; Adam | Subcutaneous glucose electrode |
US5609060A (en) * | 1995-04-28 | 1997-03-11 | Dentsleeve Pty Limited | Multiple channel perfused manometry apparatus and a method of operation of such a device |
US5626144A (en) * | 1994-05-23 | 1997-05-06 | Enact Health Management Systems | System for monitoring and reporting medical measurements |
US5630710A (en) * | 1994-03-09 | 1997-05-20 | Baxter International Inc. | Ambulatory infusion pump |
US5750926A (en) * | 1995-08-16 | 1998-05-12 | Alfred E. Mann Foundation For Scientific Research | Hermetically sealed electrical feedthrough for use with implantable electronic devices |
US5764159A (en) * | 1994-02-16 | 1998-06-09 | Debiotech S.A. | Apparatus for remotely monitoring controllable devices |
US5772635A (en) * | 1995-05-15 | 1998-06-30 | Alaris Medical Systems, Inc. | Automated infusion system with dose rate calculator |
US5777060A (en) * | 1995-03-27 | 1998-07-07 | Minimed, Inc. | Silicon-containing biocompatible membranes |
US5779665A (en) * | 1997-05-08 | 1998-07-14 | Minimed Inc. | Transdermal introducer assembly |
US5786439A (en) * | 1996-10-24 | 1998-07-28 | Minimed Inc. | Hydrophilic, swellable coatings for biosensors |
US5861018A (en) * | 1996-05-28 | 1999-01-19 | Telecom Medical Inc. | Ultrasound transdermal communication system and method |
US5868669A (en) * | 1993-12-29 | 1999-02-09 | First Opinion Corporation | Computerized medical diagnostic and treatment advice system |
US5871465A (en) * | 1994-11-25 | 1999-02-16 | I-Flow Corporation | Remotely programmable infusion system |
US5879163A (en) * | 1996-06-24 | 1999-03-09 | Health Hero Network, Inc. | On-line health education and feedback system using motivational driver profile coding and automated content fulfillment |
US5885245A (en) * | 1996-08-02 | 1999-03-23 | Sabratek Corporation | Medical apparatus with remote virtual input device |
US5897493A (en) * | 1997-03-28 | 1999-04-27 | Health Hero Network, Inc. | Monitoring system for remotely querying individuals |
US5899855A (en) * | 1992-11-17 | 1999-05-04 | Health Hero Network, Inc. | Modular microprocessor-based health monitoring system |
US5904708A (en) * | 1998-03-19 | 1999-05-18 | Medtronic, Inc. | System and method for deriving relative physiologic signals |
US5913310A (en) * | 1994-05-23 | 1999-06-22 | Health Hero Network, Inc. | Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game |
US5917346A (en) * | 1997-09-12 | 1999-06-29 | Alfred E. Mann Foundation | Low power current to frequency converter circuit for use in implantable sensors |
US5918603A (en) * | 1994-05-23 | 1999-07-06 | Health Hero Network, Inc. | Method for treating medical conditions using a microprocessor-based video game |
US6032119A (en) * | 1997-01-16 | 2000-02-29 | Health Hero Network, Inc. | Personalized display of health information |
US6043437A (en) * | 1996-12-20 | 2000-03-28 | Alfred E. Mann Foundation | Alumina insulation for coating implantable components and other microminiature devices |
US6081736A (en) * | 1997-10-20 | 2000-06-27 | Alfred E. Mann Foundation | Implantable enzyme-based monitoring systems adapted for long term use |
US6175752B1 (en) * | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6183412B1 (en) * | 1997-10-02 | 2001-02-06 | Micromed Technology, Inc. | Implantable pump system |
US6246992B1 (en) * | 1996-10-16 | 2001-06-12 | Health Hero Network, Inc. | Multiple patient monitoring system for proactive health management |
US6248067B1 (en) * | 1999-02-05 | 2001-06-19 | Minimed Inc. | Analyte sensor and holter-type monitor system and method of using the same |
US6408330B1 (en) * | 1997-04-14 | 2002-06-18 | Delahuerga Carlos | Remote data collecting and address providing method and apparatus |
US20020082665A1 (en) * | 1999-07-07 | 2002-06-27 | Medtronic, Inc. | System and method of communicating between an implantable medical device and a remote computer system or health care provider |
US6503381B1 (en) * | 1997-09-12 | 2003-01-07 | Therasense, Inc. | Biosensor |
US20030061234A1 (en) * | 2001-09-25 | 2003-03-27 | Ali Mohammed Zamshed | Application location register routing |
US20030061232A1 (en) * | 2001-09-21 | 2003-03-27 | Dun & Bradstreet Inc. | Method and system for processing business data |
US20030078560A1 (en) * | 2001-09-07 | 2003-04-24 | Miller Michael E. | Method and system for non-vascular sensor implantation |
US6554798B1 (en) * | 1998-08-18 | 2003-04-29 | Medtronic Minimed, Inc. | External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities |
US6558320B1 (en) * | 2000-01-20 | 2003-05-06 | Medtronic Minimed, Inc. | Handheld personal data assistant (PDA) with a medical device and method of using the same |
US6560741B1 (en) * | 1999-02-24 | 2003-05-06 | Datastrip (Iom) Limited | Two-dimensional printed code for storing biometric information and integrated off-line apparatus for reading same |
US20030088166A1 (en) * | 1998-03-04 | 2003-05-08 | Therasense, Inc. | Electrochemical analyte sensor |
US6579690B1 (en) * | 1997-12-05 | 2003-06-17 | Therasense, Inc. | Blood analyte monitoring through subcutaneous measurement |
US6676816B2 (en) * | 2001-05-11 | 2004-01-13 | Therasense, Inc. | Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes |
US6689265B2 (en) * | 1995-10-11 | 2004-02-10 | Therasense, Inc. | Electrochemical analyte sensors using thermostable soybean peroxidase |
US20040064156A1 (en) * | 2002-09-27 | 2004-04-01 | Medtronic Minimed, Inc. | Method and apparatus for enhancing the integrity of an implantable sensor device |
US20040064133A1 (en) * | 2002-09-27 | 2004-04-01 | Medtronic-Minimed | Implantable sensor method and system |
US20040074785A1 (en) * | 2002-10-18 | 2004-04-22 | Holker James D. | Analyte sensors and methods for making them |
US6733471B1 (en) * | 1998-03-16 | 2004-05-11 | Medtronic, Inc. | Hemostatic system and components for extracorporeal circuit |
US20040093167A1 (en) * | 2002-11-08 | 2004-05-13 | Braig James R. | Analyte detection system with software download capabilities |
US6746582B2 (en) * | 2000-05-12 | 2004-06-08 | Therasense, Inc. | Electrodes with multilayer membranes and methods of making the electrodes |
US20040111017A1 (en) * | 1999-06-18 | 2004-06-10 | Therasense, Inc. | Mass transport limited in vivo analyte sensor |
US6749740B2 (en) * | 1999-11-04 | 2004-06-15 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
Family Cites Families (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5935099A (en) * | 1992-09-09 | 1999-08-10 | Sims Deltec, Inc. | Drug pump systems and methods |
DE2758467C2 (en) | 1977-12-28 | 1985-04-04 | Siemens AG, 1000 Berlin und 8000 München | Device for the pre-programmable infusion of liquids |
US4559037A (en) | 1977-12-28 | 1985-12-17 | Siemens Aktiengesellschaft | Device for the pre-programmable infusion of liquids |
EP0098592A3 (en) | 1982-07-06 | 1985-08-21 | Fujisawa Pharmaceutical Co., Ltd. | Portable artificial pancreas |
US4685903A (en) | 1984-01-06 | 1987-08-11 | Pacesetter Infusion, Ltd. | External infusion pump apparatus |
US4550731A (en) | 1984-03-07 | 1985-11-05 | Cordis Corporation | Acquisition circuit for cardiac pacer |
US4542532A (en) | 1984-03-09 | 1985-09-17 | Medtronic, Inc. | Dual-antenna transceiver |
CA1254091A (en) | 1984-09-28 | 1989-05-16 | Vladimir Feingold | Implantable medication infusion system |
US4781798A (en) | 1985-04-19 | 1988-11-01 | The Regents Of The University Of California | Transparent multi-oxygen sensor array and method of using same |
US4703756A (en) | 1986-05-06 | 1987-11-03 | The Regents Of The University Of California | Complete glucose monitoring system with an implantable, telemetered sensor module |
US5041086A (en) | 1987-12-04 | 1991-08-20 | Pacesetter Infusion, Ltd. | Clinical configuration of multimode medication infusion system |
US5025374A (en) * | 1987-12-09 | 1991-06-18 | Arch Development Corp. | Portable system for choosing pre-operative patient test |
GB2218831A (en) | 1988-05-17 | 1989-11-22 | Mark John Newland | Personal medical apparatus |
US4953552A (en) | 1989-04-21 | 1990-09-04 | Demarzo Arthur P | Blood glucose monitoring system |
US5264104A (en) | 1989-08-02 | 1993-11-23 | Gregg Brian A | Enzyme electrodes |
US5262035A (en) | 1989-08-02 | 1993-11-16 | E. Heller And Company | Enzyme electrodes |
US5264105A (en) | 1989-08-02 | 1993-11-23 | Gregg Brian A | Enzyme electrodes |
US5050612A (en) | 1989-09-12 | 1991-09-24 | Matsumura Kenneth N | Device for computer-assisted monitoring of the body |
US5165407A (en) | 1990-04-19 | 1992-11-24 | The University Of Kansas | Implantable glucose sensor |
CA2050057A1 (en) | 1991-03-04 | 1992-09-05 | Adam Heller | Interferant eliminating biosensors |
US5262305A (en) | 1991-03-04 | 1993-11-16 | E. Heller & Company | Interferant eliminating biosensors |
US5247434A (en) | 1991-04-19 | 1993-09-21 | Althin Medical, Inc. | Method and apparatus for kidney dialysis |
JPH08275927A (en) * | 1992-02-13 | 1996-10-22 | Seta:Kk | Homestay medical care system and medical device used in this system |
US5788669A (en) * | 1995-11-22 | 1998-08-04 | Sims Deltec, Inc. | Pump tracking system |
US5376070A (en) | 1992-09-29 | 1994-12-27 | Minimed Inc. | Data transfer system for an infusion pump |
US5960403A (en) | 1992-11-17 | 1999-09-28 | Health Hero Network | Health management process control system |
US5956501A (en) | 1997-01-10 | 1999-09-21 | Health Hero Network, Inc. | Disease simulation system and method |
US5933136A (en) * | 1996-12-23 | 1999-08-03 | Health Hero Network, Inc. | Network media access control system for encouraging patient compliance with a treatment plan |
US6101478A (en) * | 1997-04-30 | 2000-08-08 | Health Hero Network | Multi-user remote health monitoring system |
US5997476A (en) | 1997-03-28 | 1999-12-07 | Health Hero Network, Inc. | Networked system for interactive communication and remote monitoring of individuals |
US5940801A (en) * | 1994-04-26 | 1999-08-17 | Health Hero Network, Inc. | Modular microprocessor-based diagnostic measurement apparatus and method for psychological conditions |
US5371687A (en) | 1992-11-20 | 1994-12-06 | Boehringer Mannheim Corporation | Glucose test data acquisition and management system |
US5357427A (en) | 1993-03-15 | 1994-10-18 | Digital Equipment Corporation | Remote monitoring of high-risk patients using artificial intelligence |
US5350411A (en) * | 1993-06-28 | 1994-09-27 | Medtronic, Inc. | Pacemaker telemetry system |
US5368562A (en) | 1993-07-30 | 1994-11-29 | Pharmacia Deltec, Inc. | Systems and methods for operating ambulatory medical devices such as drug delivery devices |
DE4329229A1 (en) | 1993-08-25 | 1995-03-09 | Meditech Medizintechnik Gmbh | Adaptive controlled pump control, in particular for adaptive patient-controlled analgesia (APCA) |
US5791344A (en) * | 1993-11-19 | 1998-08-11 | Alfred E. Mann Foundation For Scientific Research | Patient monitoring system |
US5543326A (en) * | 1994-03-04 | 1996-08-06 | Heller; Adam | Biosensor including chemically modified enzymes |
EP0672427A1 (en) * | 1994-03-17 | 1995-09-20 | Siemens-Elema AB | System for infusion of medicine into the body of a patient |
US5569186A (en) | 1994-04-25 | 1996-10-29 | Minimed Inc. | Closed loop infusion pump system with removable glucose sensor |
US5370622A (en) | 1994-04-28 | 1994-12-06 | Minimed Inc. | Proctective case for a medication infusion pump |
US5582593A (en) | 1994-07-21 | 1996-12-10 | Hultman; Barry W. | Ambulatory medication delivery system |
US5569187A (en) | 1994-08-16 | 1996-10-29 | Texas Instruments Incorporated | Method and apparatus for wireless chemical supplying |
US5687734A (en) | 1994-10-20 | 1997-11-18 | Hewlett-Packard Company | Flexible patient monitoring system featuring a multiport transmitter |
US5685844A (en) | 1995-01-06 | 1997-11-11 | Abbott Laboratories | Medicinal fluid pump having multiple stored protocols |
US5586553A (en) | 1995-02-16 | 1996-12-24 | Minimed Inc. | Transcutaneous sensor insertion set |
US5814015A (en) * | 1995-02-24 | 1998-09-29 | Harvard Clinical Technology, Inc. | Infusion pump for at least one syringe |
US5665065A (en) | 1995-05-26 | 1997-09-09 | Minimed Inc. | Medication infusion device with blood glucose data input |
US6018289A (en) | 1995-06-15 | 2000-01-25 | Sekura; Ronald D. | Prescription compliance device and method of using device |
US5972199A (en) | 1995-10-11 | 1999-10-26 | E. Heller & Company | Electrochemical analyte sensors using thermostable peroxidase |
US5665222A (en) * | 1995-10-11 | 1997-09-09 | E. Heller & Company | Soybean peroxidase electrochemical sensor |
AUPN707195A0 (en) | 1995-12-12 | 1996-01-11 | University Of Melbourne, The | Field programmable intravenous infusion system |
FI960636A (en) | 1996-02-12 | 1997-08-13 | Nokia Mobile Phones Ltd | A procedure for monitoring the health of a patient |
FI118509B (en) | 1996-02-12 | 2007-12-14 | Nokia Oyj | A method and apparatus for predicting blood glucose levels in a patient |
FR2748588B1 (en) | 1996-05-07 | 1998-08-07 | Soc Et Tech Set | DEVICE COMPRISING AT LEAST ONE ARRAY OF NEURONES FOR DETERMINING THE QUANTITY OF A SUBSTANCE TO BE ADMINISTERED TO A PATIENT, IN PARTICULAR INSULIN |
US5807336A (en) * | 1996-08-02 | 1998-09-15 | Sabratek Corporation | Apparatus for monitoring and/or controlling a medical device |
CA2271710A1 (en) | 1996-11-08 | 1998-05-14 | Linda L. Roman | System for providing comprehensive health care and support |
AU5461298A (en) | 1996-12-04 | 1998-06-29 | Enact Health Management Systems | System for downloading and reporting medical information |
AU6157898A (en) * | 1997-02-06 | 1998-08-26 | E. Heller & Company | Small volume (in vitro) analyte sensor |
US6009339A (en) | 1997-02-27 | 1999-12-28 | Terumo Cardiovascular Systems Corporation | Blood parameter measurement device |
WO1998042407A1 (en) | 1997-03-27 | 1998-10-01 | Medtronic, Inc. | Concepts to implement medconnect |
TW357517B (en) | 1997-05-29 | 1999-05-01 | Koji Akai | Monitoring system |
US5954643A (en) | 1997-06-09 | 1999-09-21 | Minimid Inc. | Insertion set for a transcutaneous sensor |
AU8165498A (en) | 1997-06-23 | 1999-01-04 | Enact Health Management Systems | Improved system for downloading and reporting medical information |
US6130620A (en) | 1997-08-11 | 2000-10-10 | Electronic Monitoring Systems, Inc. | Remote monitoring system |
WO1999010801A1 (en) | 1997-08-22 | 1999-03-04 | Apex Inc. | Remote computer control system |
US5999848A (en) | 1997-09-12 | 1999-12-07 | Alfred E. Mann Foundation | Daisy chainable sensors and stimulators for implantation in living tissue |
US5999849A (en) | 1997-09-12 | 1999-12-07 | Alfred E. Mann Foundation | Low power rectifier circuit for implantable medical device |
US6259937B1 (en) * | 1997-09-12 | 2001-07-10 | Alfred E. Mann Foundation | Implantable substrate sensor |
US6119028A (en) | 1997-10-20 | 2000-09-12 | Alfred E. Mann Foundation | Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces |
US6088608A (en) * | 1997-10-20 | 2000-07-11 | Alfred E. Mann Foundation | Electrochemical sensor and integrity tests therefor |
FI107080B (en) | 1997-10-27 | 2001-05-31 | Nokia Mobile Phones Ltd | measuring device |
US6103033A (en) | 1998-03-04 | 2000-08-15 | Therasense, Inc. | Process for producing an electrochemical biosensor |
US6319241B1 (en) | 1998-04-30 | 2001-11-20 | Medtronic, Inc. | Techniques for positioning therapy delivery elements within a spinal cord or a brain |
US6294281B1 (en) * | 1998-06-17 | 2001-09-25 | Therasense, Inc. | Biological fuel cell and method |
US6591125B1 (en) | 2000-06-27 | 2003-07-08 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
EP1119285A1 (en) | 1998-10-08 | 2001-08-01 | Minimed Inc. | Telemetered characteristic monitor system |
US6338790B1 (en) | 1998-10-08 | 2002-01-15 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
US20040158193A1 (en) | 1999-02-10 | 2004-08-12 | Baxter International Inc. | Medical apparatus using selective graphical interface |
EP1135052A1 (en) | 1999-02-12 | 2001-09-26 | Cygnus, Inc. | Devices and methods for frequent measurement of an analyte present in a biological system |
US6669663B1 (en) | 1999-04-30 | 2003-12-30 | Medtronic, Inc. | Closed loop medicament pump |
WO2000078210A1 (en) | 1999-06-17 | 2000-12-28 | Minimed Inc. | Characteristic monitor system for use with analyte sensor |
US7247138B2 (en) | 1999-07-01 | 2007-07-24 | Medtronic Minimed, Inc. | Reusable analyte sensor site and method of using the same |
EP1217942A1 (en) | 1999-09-24 | 2002-07-03 | Healthetech, Inc. | Physiological monitor and associated computation, display and communication unit |
JP2004513669A (en) | 1999-10-08 | 2004-05-13 | ヘルセテック インコーポレイテッド | Integrated calorie management system |
DE60011286T2 (en) * | 1999-11-15 | 2005-07-14 | Therasense, Inc., Alameda | TRANSITION METAL COMPLEX COMPOUNDS WITH A BIDENTATE LIGANDE WITH AN IMIDAZOLE RING |
WO2001039089A1 (en) | 1999-11-24 | 2001-05-31 | Healthetech, Inc. | Health management system with connection to remote computer system |
US6513532B2 (en) | 2000-01-19 | 2003-02-04 | Healthetech, Inc. | Diet and activity-monitoring device |
US6629934B2 (en) | 2000-02-02 | 2003-10-07 | Healthetech, Inc. | Indirect calorimeter for medical applications |
US6895263B2 (en) | 2000-02-23 | 2005-05-17 | Medtronic Minimed, Inc. | Real time self-adjusting calibration algorithm |
US6623501B2 (en) | 2000-04-05 | 2003-09-23 | Therasense, Inc. | Reusable ceramic skin-piercing device |
US6560471B1 (en) | 2001-01-02 | 2003-05-06 | Therasense, Inc. | Analyte monitoring device and methods of use |
US7041468B2 (en) | 2001-04-02 | 2006-05-09 | Therasense, Inc. | Blood glucose tracking apparatus and methods |
US6932894B2 (en) * | 2001-05-15 | 2005-08-23 | Therasense, Inc. | Biosensor membranes composed of polymers containing heterocyclic nitrogens |
US6671554B2 (en) | 2001-09-07 | 2003-12-30 | Medtronic Minimed, Inc. | Electronic lead for a medical implant device, method of making same, and method and apparatus for inserting same |
US7052591B2 (en) | 2001-09-21 | 2006-05-30 | Therasense, Inc. | Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking |
US20030212379A1 (en) | 2002-02-26 | 2003-11-13 | Bylund Adam David | Systems and methods for remotely controlling medication infusion and analyte monitoring |
US20040061232A1 (en) * | 2002-09-27 | 2004-04-01 | Medtronic Minimed, Inc. | Multilayer substrate |
US7138330B2 (en) * | 2002-09-27 | 2006-11-21 | Medtronic Minimed, Inc. | High reliability multilayer circuit substrates and methods for their formation |
EP2383470A1 (en) * | 2002-10-09 | 2011-11-02 | Abbott Diabetes Care Inc. | Plunger pump actuated by a shape memory element |
US20040122353A1 (en) | 2002-12-19 | 2004-06-24 | Medtronic Minimed, Inc. | Relay device for transferring information between a sensor system and a fluid delivery system |
US7201977B2 (en) | 2004-03-23 | 2007-04-10 | Seagate Technology Llc | Anti-ferromagnetically coupled granular-continuous magnetic recording media |
-
2002
- 2002-12-31 US US10/335,256 patent/US20040122353A1/en not_active Abandoned
-
2010
- 2010-04-28 US US12/769,590 patent/US8622954B2/en not_active Expired - Lifetime
Patent Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3631847A (en) * | 1966-03-04 | 1972-01-04 | James C Hobbs | Method and apparatus for injecting fluid into the vascular system |
US4212738A (en) * | 1977-03-28 | 1980-07-15 | Akzo N.V. | Artificial kidney |
US4270532A (en) * | 1977-12-28 | 1981-06-02 | Siemens Aktiengesellschaft | Device for the pre-programmable infusion of liquids |
US4433072A (en) * | 1978-12-15 | 1984-02-21 | Hospal-Sodip, S.A. | Mixtures of polymers for medical use |
US4731051A (en) * | 1979-04-27 | 1988-03-15 | The Johns Hopkins University | Programmable control means for providing safe and controlled medication infusion |
US4373527A (en) * | 1979-04-27 | 1983-02-15 | The Johns Hopkins University | Implantable, programmable medication infusion system |
US4373527B1 (en) * | 1979-04-27 | 1995-06-27 | Univ Johns Hopkins | Implantable programmable medication infusion system |
US4395259A (en) * | 1980-09-22 | 1983-07-26 | Siemens Aktiengesellschaft | Device for the infusion of fluids into the human or animal body |
US4494950A (en) * | 1982-01-19 | 1985-01-22 | The Johns Hopkins University | Plural module medication delivery system |
US4443218A (en) * | 1982-09-09 | 1984-04-17 | Infusaid Corporation | Programmable implantable infusate pump |
US4826810A (en) * | 1983-12-16 | 1989-05-02 | Aoki Thomas T | System and method for treating animal body tissues to improve the dietary fuel processing capabilities thereof |
US4562751A (en) * | 1984-01-06 | 1986-01-07 | Nason Clyde K | Solenoid drive apparatus for an external infusion pump |
US4678408A (en) * | 1984-01-06 | 1987-07-07 | Pacesetter Infusion, Ltd. | Solenoid drive apparatus for an external infusion pump |
US5100380A (en) * | 1984-02-08 | 1992-03-31 | Abbott Laboratories | Remotely programmable infusion system |
US4671288A (en) * | 1985-06-13 | 1987-06-09 | The Regents Of The University Of California | Electrochemical cell sensor for continuous short-term use in tissues and blood |
US5003298A (en) * | 1986-01-15 | 1991-03-26 | Karel Havel | Variable color digital display for emphasizing position of decimal point |
US4731726A (en) * | 1986-05-19 | 1988-03-15 | Healthware Corporation | Patient-operated glucose monitor and diabetes management system |
US4803625A (en) * | 1986-06-30 | 1989-02-07 | Buddy Systems, Inc. | Personal health monitor |
US4935105A (en) * | 1987-02-24 | 1990-06-19 | Imperial Chemical Industries Plc | Methods of operating enzyme electrode sensors |
US5019974A (en) * | 1987-05-01 | 1991-05-28 | Diva Medical Systems Bv | Diabetes management system and apparatus |
US5011468A (en) * | 1987-05-29 | 1991-04-30 | Retroperfusion Systems, Inc. | Retroperfusion and retroinfusion control apparatus, system and method |
US4809697A (en) * | 1987-10-14 | 1989-03-07 | Siemens-Pacesetter, Inc. | Interactive programming and diagnostic system for use with implantable pacemaker |
US4898578A (en) * | 1988-01-26 | 1990-02-06 | Baxter International Inc. | Drug infusion system with calculator |
US5643212A (en) * | 1989-01-30 | 1997-07-01 | Coutre; James E. | Infusion pump management system for suggesting an adapted course of therapy |
US5317506A (en) * | 1989-01-30 | 1994-05-31 | Abbott Laboratories | Infusion fluid management system |
US5320725A (en) * | 1989-08-02 | 1994-06-14 | E. Heller & Company | Electrode and method for the detection of hydrogen peroxide |
US5101814A (en) * | 1989-08-11 | 1992-04-07 | Palti Yoram Prof | System for monitoring and controlling blood glucose |
US5108819A (en) * | 1990-02-14 | 1992-04-28 | Eli Lilly And Company | Thin film electrical component |
US5403700A (en) * | 1990-02-14 | 1995-04-04 | Eli Lilly And Company | Method of making a thin film electrical component |
US5080653A (en) * | 1990-04-16 | 1992-01-14 | Pacesetter Infusion, Ltd. | Infusion pump with dual position syringe locator |
US5097122A (en) * | 1990-04-16 | 1992-03-17 | Pacesetter Infusion, Ltd. | Medication infusion system having optical motion sensor to detect drive mechanism malfunction |
US5078683A (en) * | 1990-05-04 | 1992-01-07 | Block Medical, Inc. | Programmable infusion system |
US6514718B2 (en) * | 1991-03-04 | 2003-02-04 | Therasense, Inc. | Subcutaneous glucose electrode |
US6881551B2 (en) * | 1991-03-04 | 2005-04-19 | Therasense, Inc. | Subcutaneous glucose electrode |
US5322063A (en) * | 1991-10-04 | 1994-06-21 | Eli Lilly And Company | Hydrophilic polyurethane membranes for electrochemical glucose sensors |
US5284140A (en) * | 1992-02-11 | 1994-02-08 | Eli Lilly And Company | Acrylic copolymer membranes for biosensors |
US5485408A (en) * | 1992-09-09 | 1996-01-16 | Sims Deltec, Inc. | Pump simulation apparatus |
US5307263A (en) * | 1992-11-17 | 1994-04-26 | Raya Systems, Inc. | Modular microprocessor-based health monitoring system |
US5899855A (en) * | 1992-11-17 | 1999-05-04 | Health Hero Network, Inc. | Modular microprocessor-based health monitoring system |
US5411647A (en) * | 1992-11-23 | 1995-05-02 | Eli Lilly And Company | Techniques to improve the performance of electrochemical sensors |
US5299571A (en) * | 1993-01-22 | 1994-04-05 | Eli Lilly And Company | Apparatus and method for implantation of sensors |
US5497772A (en) * | 1993-11-19 | 1996-03-12 | Alfred E. Mann Foundation For Scientific Research | Glucose monitoring system |
US5593852A (en) * | 1993-12-02 | 1997-01-14 | Heller; Adam | Subcutaneous glucose electrode |
US5594638A (en) * | 1993-12-29 | 1997-01-14 | First Opinion Corporation | Computerized medical diagnostic system including re-enter function and sensitivity factors |
US5868669A (en) * | 1993-12-29 | 1999-02-09 | First Opinion Corporation | Computerized medical diagnostic and treatment advice system |
US5417222A (en) * | 1994-01-21 | 1995-05-23 | Hewlett-Packard Company | Patient monitoring system |
US5764159A (en) * | 1994-02-16 | 1998-06-09 | Debiotech S.A. | Apparatus for remotely monitoring controllable devices |
US5593390A (en) * | 1994-03-09 | 1997-01-14 | Visionary Medical Products, Inc. | Medication delivery device with a microprocessor and characteristic monitor |
US5630710A (en) * | 1994-03-09 | 1997-05-20 | Baxter International Inc. | Ambulatory infusion pump |
US5391250A (en) * | 1994-03-15 | 1995-02-21 | Minimed Inc. | Method of fabricating thin film sensors |
US5390671A (en) * | 1994-03-15 | 1995-02-21 | Minimed Inc. | Transcutaneous sensor insertion set |
US5507288B1 (en) * | 1994-05-05 | 1997-07-08 | Boehringer Mannheim Gmbh | Analytical system for monitoring a substance to be analyzed in patient-blood |
US5507288A (en) * | 1994-05-05 | 1996-04-16 | Boehringer Mannheim Gmbh | Analytical system for monitoring a substance to be analyzed in patient-blood |
US5482473A (en) * | 1994-05-09 | 1996-01-09 | Minimed Inc. | Flex circuit connector |
US5704366A (en) * | 1994-05-23 | 1998-01-06 | Enact Health Management Systems | System for monitoring and reporting medical measurements |
US5913310A (en) * | 1994-05-23 | 1999-06-22 | Health Hero Network, Inc. | Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game |
US5626144A (en) * | 1994-05-23 | 1997-05-06 | Enact Health Management Systems | System for monitoring and reporting medical measurements |
US5918603A (en) * | 1994-05-23 | 1999-07-06 | Health Hero Network, Inc. | Method for treating medical conditions using a microprocessor-based video game |
US5871465A (en) * | 1994-11-25 | 1999-02-16 | I-Flow Corporation | Remotely programmable infusion system |
US5777060A (en) * | 1995-03-27 | 1998-07-07 | Minimed, Inc. | Silicon-containing biocompatible membranes |
US5609060A (en) * | 1995-04-28 | 1997-03-11 | Dentsleeve Pty Limited | Multiple channel perfused manometry apparatus and a method of operation of such a device |
US5772635A (en) * | 1995-05-15 | 1998-06-30 | Alaris Medical Systems, Inc. | Automated infusion system with dose rate calculator |
US5750926A (en) * | 1995-08-16 | 1998-05-12 | Alfred E. Mann Foundation For Scientific Research | Hermetically sealed electrical feedthrough for use with implantable electronic devices |
US6689265B2 (en) * | 1995-10-11 | 2004-02-10 | Therasense, Inc. | Electrochemical analyte sensors using thermostable soybean peroxidase |
US5861018A (en) * | 1996-05-28 | 1999-01-19 | Telecom Medical Inc. | Ultrasound transdermal communication system and method |
US5879163A (en) * | 1996-06-24 | 1999-03-09 | Health Hero Network, Inc. | On-line health education and feedback system using motivational driver profile coding and automated content fulfillment |
US5885245A (en) * | 1996-08-02 | 1999-03-23 | Sabratek Corporation | Medical apparatus with remote virtual input device |
US6246992B1 (en) * | 1996-10-16 | 2001-06-12 | Health Hero Network, Inc. | Multiple patient monitoring system for proactive health management |
US5786439A (en) * | 1996-10-24 | 1998-07-28 | Minimed Inc. | Hydrophilic, swellable coatings for biosensors |
US6043437A (en) * | 1996-12-20 | 2000-03-28 | Alfred E. Mann Foundation | Alumina insulation for coating implantable components and other microminiature devices |
US6032119A (en) * | 1997-01-16 | 2000-02-29 | Health Hero Network, Inc. | Personalized display of health information |
US5897493A (en) * | 1997-03-28 | 1999-04-27 | Health Hero Network, Inc. | Monitoring system for remotely querying individuals |
US6408330B1 (en) * | 1997-04-14 | 2002-06-18 | Delahuerga Carlos | Remote data collecting and address providing method and apparatus |
US5779665A (en) * | 1997-05-08 | 1998-07-14 | Minimed Inc. | Transdermal introducer assembly |
US6893545B2 (en) * | 1997-09-12 | 2005-05-17 | Therasense, Inc. | Biosensor |
US6503381B1 (en) * | 1997-09-12 | 2003-01-07 | Therasense, Inc. | Biosensor |
US5917346A (en) * | 1997-09-12 | 1999-06-29 | Alfred E. Mann Foundation | Low power current to frequency converter circuit for use in implantable sensors |
US6183412B1 (en) * | 1997-10-02 | 2001-02-06 | Micromed Technology, Inc. | Implantable pump system |
US6081736A (en) * | 1997-10-20 | 2000-06-27 | Alfred E. Mann Foundation | Implantable enzyme-based monitoring systems adapted for long term use |
US6579690B1 (en) * | 1997-12-05 | 2003-06-17 | Therasense, Inc. | Blood analyte monitoring through subcutaneous measurement |
US20030088166A1 (en) * | 1998-03-04 | 2003-05-08 | Therasense, Inc. | Electrochemical analyte sensor |
US6733471B1 (en) * | 1998-03-16 | 2004-05-11 | Medtronic, Inc. | Hemostatic system and components for extracorporeal circuit |
US5904708A (en) * | 1998-03-19 | 1999-05-18 | Medtronic, Inc. | System and method for deriving relative physiologic signals |
US6565509B1 (en) * | 1998-04-30 | 2003-05-20 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6175752B1 (en) * | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6554798B1 (en) * | 1998-08-18 | 2003-04-29 | Medtronic Minimed, Inc. | External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities |
US6248067B1 (en) * | 1999-02-05 | 2001-06-19 | Minimed Inc. | Analyte sensor and holter-type monitor system and method of using the same |
US6560741B1 (en) * | 1999-02-24 | 2003-05-06 | Datastrip (Iom) Limited | Two-dimensional printed code for storing biometric information and integrated off-line apparatus for reading same |
US20040111017A1 (en) * | 1999-06-18 | 2004-06-10 | Therasense, Inc. | Mass transport limited in vivo analyte sensor |
US20020082665A1 (en) * | 1999-07-07 | 2002-06-27 | Medtronic, Inc. | System and method of communicating between an implantable medical device and a remote computer system or health care provider |
US6749740B2 (en) * | 1999-11-04 | 2004-06-15 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
US6558320B1 (en) * | 2000-01-20 | 2003-05-06 | Medtronic Minimed, Inc. | Handheld personal data assistant (PDA) with a medical device and method of using the same |
US6746582B2 (en) * | 2000-05-12 | 2004-06-08 | Therasense, Inc. | Electrodes with multilayer membranes and methods of making the electrodes |
US6676816B2 (en) * | 2001-05-11 | 2004-01-13 | Therasense, Inc. | Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes |
US20030078560A1 (en) * | 2001-09-07 | 2003-04-24 | Miller Michael E. | Method and system for non-vascular sensor implantation |
US20030061232A1 (en) * | 2001-09-21 | 2003-03-27 | Dun & Bradstreet Inc. | Method and system for processing business data |
US20030061234A1 (en) * | 2001-09-25 | 2003-03-27 | Ali Mohammed Zamshed | Application location register routing |
US20040064133A1 (en) * | 2002-09-27 | 2004-04-01 | Medtronic-Minimed | Implantable sensor method and system |
US20040064156A1 (en) * | 2002-09-27 | 2004-04-01 | Medtronic Minimed, Inc. | Method and apparatus for enhancing the integrity of an implantable sensor device |
US20040074785A1 (en) * | 2002-10-18 | 2004-04-22 | Holker James D. | Analyte sensors and methods for making them |
US20040093167A1 (en) * | 2002-11-08 | 2004-05-13 | Braig James R. | Analyte detection system with software download capabilities |
Cited By (1100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8226558B2 (en) | 1998-04-30 | 2012-07-24 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8346337B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8480580B2 (en) | 1998-04-30 | 2013-07-09 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8306598B2 (en) | 1998-04-30 | 2012-11-06 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8346336B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US7885699B2 (en) | 1998-04-30 | 2011-02-08 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US7869853B1 (en) | 1998-04-30 | 2011-01-11 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US7860544B2 (en) | 1998-04-30 | 2010-12-28 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9011331B2 (en) | 1998-04-30 | 2015-04-21 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8880137B2 (en) | 1998-04-30 | 2014-11-04 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8473021B2 (en) | 1998-04-30 | 2013-06-25 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8465425B2 (en) | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8409131B2 (en) | 1998-04-30 | 2013-04-02 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9014773B2 (en) | 1998-04-30 | 2015-04-21 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8391945B2 (en) | 1998-04-30 | 2013-03-05 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8287454B2 (en) | 1998-04-30 | 2012-10-16 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9042953B2 (en) | 1998-04-30 | 2015-05-26 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8275439B2 (en) | 1998-04-30 | 2012-09-25 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8774887B2 (en) | 1998-04-30 | 2014-07-08 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8273022B2 (en) | 1998-04-30 | 2012-09-25 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8162829B2 (en) | 1998-04-30 | 2012-04-24 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066694B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066697B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8597189B2 (en) | 1998-04-30 | 2013-12-03 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8357091B2 (en) | 1998-04-30 | 2013-01-22 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8265726B2 (en) | 1998-04-30 | 2012-09-11 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8744545B2 (en) | 1998-04-30 | 2014-06-03 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9072477B2 (en) | 1998-04-30 | 2015-07-07 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8734346B2 (en) | 1998-04-30 | 2014-05-27 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8738109B2 (en) | 1998-04-30 | 2014-05-27 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8734348B2 (en) | 1998-04-30 | 2014-05-27 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8260392B2 (en) | 1998-04-30 | 2012-09-04 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8255031B2 (en) | 1998-04-30 | 2012-08-28 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8353829B2 (en) | 1998-04-30 | 2013-01-15 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8175673B2 (en) | 1998-04-30 | 2012-05-08 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9326714B2 (en) | 1998-04-30 | 2016-05-03 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8672844B2 (en) | 1998-04-30 | 2014-03-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8235896B2 (en) | 1998-04-30 | 2012-08-07 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8177716B2 (en) | 1998-04-30 | 2012-05-15 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US10478108B2 (en) | 1998-04-30 | 2019-11-19 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8612159B2 (en) | 1998-04-30 | 2013-12-17 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8231532B2 (en) | 1998-04-30 | 2012-07-31 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8670815B2 (en) | 1998-04-30 | 2014-03-11 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8226555B2 (en) | 1998-04-30 | 2012-07-24 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8666469B2 (en) | 1998-04-30 | 2014-03-04 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8380273B2 (en) | 1998-04-30 | 2013-02-19 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8660627B2 (en) | 1998-04-30 | 2014-02-25 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8617071B2 (en) | 1998-04-30 | 2013-12-31 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8226557B2 (en) | 1998-04-30 | 2012-07-24 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8840553B2 (en) | 1998-04-30 | 2014-09-23 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8372005B2 (en) | 1998-04-30 | 2013-02-12 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8622906B2 (en) | 1998-04-30 | 2014-01-07 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8649841B2 (en) | 1998-04-30 | 2014-02-11 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8224413B2 (en) | 1998-04-30 | 2012-07-17 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8641619B2 (en) | 1998-04-30 | 2014-02-04 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8366614B2 (en) | 1998-04-30 | 2013-02-05 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8652043B2 (en) | 2001-01-02 | 2014-02-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9498159B2 (en) | 2001-01-02 | 2016-11-22 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9011332B2 (en) | 2001-01-02 | 2015-04-21 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9610034B2 (en) | 2001-01-02 | 2017-04-04 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8668645B2 (en) | 2001-01-02 | 2014-03-11 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US7976778B2 (en) | 2001-04-02 | 2011-07-12 | Abbott Diabetes Care Inc. | Blood glucose tracking apparatus |
US8236242B2 (en) | 2001-04-02 | 2012-08-07 | Abbott Diabetes Care Inc. | Blood glucose tracking apparatus and methods |
US8268243B2 (en) | 2001-04-02 | 2012-09-18 | Abbott Diabetes Care Inc. | Blood glucose tracking apparatus and methods |
US8765059B2 (en) | 2001-04-02 | 2014-07-01 | Abbott Diabetes Care Inc. | Blood glucose tracking apparatus |
US9477811B2 (en) | 2001-04-02 | 2016-10-25 | Abbott Diabetes Care Inc. | Blood glucose tracking apparatus and methods |
US11294407B2 (en) | 2001-04-27 | 2022-04-05 | Roche Diabetes Care, Inc. | Device and method for insulin dosing |
US7753873B2 (en) * | 2002-10-09 | 2010-07-13 | Abbott Diabetes Care Inc. | Fluid delivery device with autocalibration |
US7922458B2 (en) | 2002-10-09 | 2011-04-12 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US7766864B2 (en) * | 2002-10-09 | 2010-08-03 | Abbott Diabetes Care Inc. | Fluid delivery device with autocalibration |
US8029250B2 (en) | 2002-10-09 | 2011-10-04 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US7993109B2 (en) | 2002-10-09 | 2011-08-09 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US8029245B2 (en) | 2002-10-09 | 2011-10-04 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US7753874B2 (en) * | 2002-10-09 | 2010-07-13 | Abbott Diabetes Care Inc. | Fluid delivery device with autocalibration |
US7727181B2 (en) | 2002-10-09 | 2010-06-01 | Abbott Diabetes Care Inc. | Fluid delivery device with autocalibration |
US7993108B2 (en) | 2002-10-09 | 2011-08-09 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US8047812B2 (en) | 2002-10-09 | 2011-11-01 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US8343093B2 (en) | 2002-10-09 | 2013-01-01 | Abbott Diabetes Care Inc. | Fluid delivery device with autocalibration |
US8047811B2 (en) | 2002-10-09 | 2011-11-01 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US11141084B2 (en) | 2002-11-05 | 2021-10-12 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US9980670B2 (en) | 2002-11-05 | 2018-05-29 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US10973443B2 (en) | 2002-11-05 | 2021-04-13 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US11116430B2 (en) | 2002-11-05 | 2021-09-14 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US20110046547A1 (en) * | 2002-11-12 | 2011-02-24 | Mantle Ross E | Device for the Extravascular Recirculation of Liquid in Body Cavities |
US8622954B2 (en) | 2002-12-19 | 2014-01-07 | Medtronic Minimed, Inc. | Relay device for transferring information between a sensor system and a fluid delivery system |
US20100280442A1 (en) * | 2002-12-19 | 2010-11-04 | Medtronic Minimed, Inc. | Replay device for transferring information between a sensor system and a fluid delivery system |
US8622903B2 (en) | 2002-12-31 | 2014-01-07 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
US8187183B2 (en) | 2002-12-31 | 2012-05-29 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
US7811231B2 (en) | 2002-12-31 | 2010-10-12 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
US10039881B2 (en) | 2002-12-31 | 2018-08-07 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US10750952B2 (en) | 2002-12-31 | 2020-08-25 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
US9962091B2 (en) | 2002-12-31 | 2018-05-08 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
US20040215492A1 (en) * | 2003-01-30 | 2004-10-28 | Choi Soo Bong | Method for controlling insulin pump through internet |
US20050151661A1 (en) * | 2003-03-13 | 2005-07-14 | Albarado Jason P. | Enclosure system for hot work within the vicinity of flammable or combustible material |
US7091848B2 (en) | 2003-03-13 | 2006-08-15 | Alford Safety Services, Inc. | Enclosure system for hot work within the vicinity of flammable or combustible material |
US7518484B2 (en) * | 2003-03-13 | 2009-04-14 | Alford Safety Services, Inc. | Enclosure system allowing for hot work within the vicinity of flammable and combustible material |
US20070120695A1 (en) * | 2003-03-13 | 2007-05-31 | Albarado Jason P | Enclosure system allowing for hot work within the vicinity of flammable and combustible material |
US7193501B1 (en) | 2003-03-13 | 2007-03-20 | Alford Safety Services, Inc. | Enclosure system allowing for hot work within the vicinity of flammable and combustible material |
US20070052543A1 (en) * | 2003-03-13 | 2007-03-08 | Albarado Jason P | Enclosure system allowing for hot work within the vicinity of flammable and combustible material |
US8512246B2 (en) | 2003-04-28 | 2013-08-20 | Abbott Diabetes Care Inc. | Method and apparatus for providing peak detection circuitry for data communication systems |
US7679407B2 (en) | 2003-04-28 | 2010-03-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing peak detection circuitry for data communication systems |
US7231263B2 (en) * | 2003-05-23 | 2007-06-12 | Soo Bong Choi | Method for controlling insulin pump through internet |
US20070032891A1 (en) * | 2003-05-23 | 2007-02-08 | Choi Soo B | Method for controlling insulin pump through internet |
US20090284372A1 (en) * | 2003-06-10 | 2009-11-19 | Abbott Diabetes Care Inc. | Glucose Measuring Device For Use In Personal Area Network |
US8512239B2 (en) * | 2003-06-10 | 2013-08-20 | Abbott Diabetes Care Inc. | Glucose measuring device for use in personal area network |
US8647269B2 (en) | 2003-06-10 | 2014-02-11 | Abbott Diabetes Care Inc. | Glucose measuring device for use in personal area network |
US8460243B2 (en) * | 2003-06-10 | 2013-06-11 | Abbott Diabetes Care Inc. | Glucose measuring module and insulin pump combination |
US8066639B2 (en) | 2003-06-10 | 2011-11-29 | Abbott Diabetes Care Inc. | Glucose measuring device for use in personal area network |
US9730584B2 (en) | 2003-06-10 | 2017-08-15 | Abbott Diabetes Care Inc. | Glucose measuring device for use in personal area network |
US7722536B2 (en) | 2003-07-15 | 2010-05-25 | Abbott Diabetes Care Inc. | Glucose measuring device integrated into a holster for a personal area network device |
US8029443B2 (en) | 2003-07-15 | 2011-10-04 | Abbott Diabetes Care Inc. | Glucose measuring device integrated into a holster for a personal area network device |
US20090048501A1 (en) * | 2003-07-15 | 2009-02-19 | Therasense, Inc. | Glucose measuring device integrated into a holster for a personal area network device |
US8062253B2 (en) | 2003-10-21 | 2011-11-22 | Novo Nordisk A/S | Medical skin mountable device |
US20060264835A1 (en) * | 2003-10-21 | 2006-11-23 | Novo Nordisk A/S | Medical skin mountable device |
US20110137255A1 (en) * | 2003-10-27 | 2011-06-09 | Novo Nordisk A/S | Medical Skin Mountable Device |
US20100100048A1 (en) * | 2003-10-27 | 2010-04-22 | Novo Nordisk A/S | Medical Skin Mountable Device |
US9592336B2 (en) | 2003-10-27 | 2017-03-14 | Novo Nordisk A/S | Medical skin mountable device |
US8219174B2 (en) | 2003-10-31 | 2012-07-10 | Abbott Diabetes Care Inc. | Method of calibrating an analyte-measurement device, and associated methods, devices and systems |
US8116840B2 (en) | 2003-10-31 | 2012-02-14 | Abbott Diabetes Care Inc. | Method of calibrating of an analyte-measurement device, and associated methods, devices and systems |
US8684930B2 (en) | 2003-10-31 | 2014-04-01 | Abbott Diabetes Care Inc. | Method of calibrating an analyte-measurement device, and associated methods, devices and systems |
US8219175B2 (en) | 2003-10-31 | 2012-07-10 | Abbott Diabetes Care Inc. | Method of calibrating an analyte-measurement device, and associated methods, devices and systems |
USD902408S1 (en) | 2003-11-05 | 2020-11-17 | Abbott Diabetes Care Inc. | Analyte sensor control unit |
USD914881S1 (en) | 2003-11-05 | 2021-03-30 | Abbott Diabetes Care Inc. | Analyte sensor electronic mount |
US11000215B1 (en) | 2003-12-05 | 2021-05-11 | Dexcom, Inc. | Analyte sensor |
US11627900B2 (en) | 2003-12-05 | 2023-04-18 | Dexcom, Inc. | Analyte sensor |
US11020031B1 (en) | 2003-12-05 | 2021-06-01 | Dexcom, Inc. | Analyte sensor |
US8771183B2 (en) | 2004-02-17 | 2014-07-08 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US11246990B2 (en) | 2004-02-26 | 2022-02-15 | Dexcom, Inc. | Integrated delivery device for continuous glucose sensor |
US10966609B2 (en) | 2004-02-26 | 2021-04-06 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
US12115357B2 (en) | 2004-02-26 | 2024-10-15 | Dexcom, Inc. | Integrated delivery device for continuous glucose sensor |
US10835672B2 (en) | 2004-02-26 | 2020-11-17 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US12102410B2 (en) | 2004-02-26 | 2024-10-01 | Dexcom, Inc | Integrated medicament delivery device for use with continuous analyte sensor |
US9937293B2 (en) | 2004-02-26 | 2018-04-10 | Dexcom, Inc. | Integrated delivery device for continuous glucose sensor |
US11507530B2 (en) | 2004-06-04 | 2022-11-22 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US11182332B2 (en) | 2004-06-04 | 2021-11-23 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US20060010098A1 (en) * | 2004-06-04 | 2006-01-12 | Goodnow Timothy T | Diabetes care host-client architecture and data management system |
US12056079B2 (en) | 2004-06-04 | 2024-08-06 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US10963417B2 (en) | 2004-06-04 | 2021-03-30 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US10980452B2 (en) | 2004-07-13 | 2021-04-20 | Dexcom, Inc. | Analyte sensor |
US10918313B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
US11045120B2 (en) | 2004-07-13 | 2021-06-29 | Dexcom, Inc. | Analyte sensor |
US10813576B2 (en) * | 2004-07-13 | 2020-10-27 | Dexcom, Inc. | Analyte sensor |
US10932700B2 (en) | 2004-07-13 | 2021-03-02 | Dexcom, Inc. | Analyte sensor |
US10918315B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
US10918314B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
US10993641B2 (en) | 2004-07-13 | 2021-05-04 | Dexcom, Inc. | Analyte sensor |
US11026605B1 (en) | 2004-07-13 | 2021-06-08 | Dexcom, Inc. | Analyte sensor |
US11883164B2 (en) | 2004-07-13 | 2024-01-30 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US20200085351A1 (en) * | 2004-07-13 | 2020-03-19 | Dexcom, Inc. | Analyte sensor |
US10799159B2 (en) | 2004-07-13 | 2020-10-13 | Dexcom, Inc. | Analyte sensor |
US10827956B2 (en) | 2004-07-13 | 2020-11-10 | Dexcom, Inc. | Analyte sensor |
US10993642B2 (en) | 2004-07-13 | 2021-05-04 | Dexcom, Inc. | Analyte sensor |
US11064917B2 (en) | 2004-07-13 | 2021-07-20 | Dexcom, Inc. | Analyte sensor |
US7837667B2 (en) | 2004-09-09 | 2010-11-23 | Plc Medical Systems, Inc. | Patient hydration system with abnormal condition sensing |
US20100280445A1 (en) * | 2004-09-09 | 2010-11-04 | Mark Gelfand | Patient hydration system with taper down function |
US7736354B2 (en) | 2004-09-09 | 2010-06-15 | Plc Medical Systems, Inc. | Patient hydration system with hydration state detection |
US7758562B2 (en) | 2004-09-09 | 2010-07-20 | Plc Medical Systems, Inc. | Patient hydration system with a redundant monitoring of hydration fluid infusion |
US7727222B2 (en) | 2004-09-09 | 2010-06-01 | Plc Medical Systems, Inc. | Patient hydration system with taper down feature |
US20100204677A1 (en) * | 2004-09-09 | 2010-08-12 | Mark Gelfand | Patient hydration system and method |
US8007460B2 (en) | 2004-09-09 | 2011-08-30 | Plc Medical Systems, Inc. | Patient hydration system and method |
US20100234797A1 (en) * | 2004-09-09 | 2010-09-16 | Mark Gelfand | Patient hydration system with bolus function |
US11213621B2 (en) | 2004-09-09 | 2022-01-04 | Reprieve Cardiovascular, Inc. | Fluid therapy method |
US9526833B2 (en) | 2004-09-09 | 2016-12-27 | Plc Medical Systems, Inc. | Patient hydration system with bolus function |
US20100280443A1 (en) * | 2004-09-09 | 2010-11-04 | Mark Gelfand | Patient hydration system with redundant monitoring |
US7938817B2 (en) | 2004-09-09 | 2011-05-10 | Plc Medical Systems, Inc. | Patient hydration system and method |
US7758563B2 (en) | 2004-09-09 | 2010-07-20 | Plc Medical Systems, Inc. | Patient hydration monitoring and maintenance system and method for use with administration of a diuretic |
US20080221512A1 (en) * | 2004-09-09 | 2008-09-11 | Da Silva J Ricardo | Patient hydration system with taper down feature |
US8444623B2 (en) | 2004-09-09 | 2013-05-21 | Plc Medical Systems, Inc. | Patient hydration method |
US20100280444A1 (en) * | 2004-09-09 | 2010-11-04 | Mark Gelfand | Patient hydration system with abnormal reading detection |
US11160475B2 (en) | 2004-12-29 | 2021-11-02 | Abbott Diabetes Care Inc. | Sensor inserter having introducer |
US8571624B2 (en) | 2004-12-29 | 2013-10-29 | Abbott Diabetes Care Inc. | Method and apparatus for mounting a data transmission device in a communication system |
US10226207B2 (en) | 2004-12-29 | 2019-03-12 | Abbott Diabetes Care Inc. | Sensor inserter having introducer |
US8106780B2 (en) | 2005-02-08 | 2012-01-31 | Abbott Diabetes Care Inc. | Analyte meter including an RFID reader |
US9060805B2 (en) | 2005-02-08 | 2015-06-23 | Abbott Diabetes Care Inc. | Analyte meter including an RFID reader |
US8390455B2 (en) | 2005-02-08 | 2013-03-05 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US9907470B2 (en) | 2005-02-08 | 2018-03-06 | Abbott Diabetes Care Inc. | Analyte meter including an RFID reader |
US8358210B2 (en) | 2005-02-08 | 2013-01-22 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8760297B2 (en) | 2005-02-08 | 2014-06-24 | Abbott Diabetes Care Inc. | Analyte meter including an RFID reader |
US9336423B2 (en) | 2005-02-08 | 2016-05-10 | Abbott Diabetes Care Inc. | Analyte meter including an RFID reader |
US8115635B2 (en) | 2005-02-08 | 2012-02-14 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8410939B2 (en) | 2005-02-08 | 2013-04-02 | Abbott Diabetes Care Inc. | Analyte meter including an RFID reader |
US7545272B2 (en) | 2005-02-08 | 2009-06-09 | Therasense, Inc. | RF tag on test strips, test strip vials and boxes |
US20100063374A1 (en) * | 2005-02-08 | 2010-03-11 | Goodnow Timothy T | Analyte meter including an RFID reader |
US8223021B2 (en) | 2005-02-08 | 2012-07-17 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US20060226985A1 (en) * | 2005-02-08 | 2006-10-12 | Goodnow Timothy T | RF tag on test strips, test strip vials and boxes |
US8542122B2 (en) | 2005-02-08 | 2013-09-24 | Abbott Diabetes Care Inc. | Glucose measurement device and methods using RFID |
US10617336B2 (en) | 2005-03-10 | 2020-04-14 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918318B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10856787B2 (en) | 2005-03-10 | 2020-12-08 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US11051726B2 (en) | 2005-03-10 | 2021-07-06 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10898114B2 (en) | 2005-03-10 | 2021-01-26 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10716498B2 (en) | 2005-03-10 | 2020-07-21 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610135B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US11000213B2 (en) | 2005-03-10 | 2021-05-11 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10925524B2 (en) | 2005-03-10 | 2021-02-23 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918316B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10709364B2 (en) | 2005-03-10 | 2020-07-14 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918317B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610136B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610137B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10743801B2 (en) | 2005-03-10 | 2020-08-18 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
AU2006226988B2 (en) * | 2005-03-21 | 2011-12-01 | Abbott Diabetes Care, Inc. | Method and system for providing integrated medication infusion and analyte monitoring system |
WO2006102412A3 (en) * | 2005-03-21 | 2007-11-22 | Abbott Diabetes Care Inc | Method and system for providing integrated medication infusion and analyte monitoring system |
US8029460B2 (en) | 2005-03-21 | 2011-10-04 | Abbott Diabetes Care Inc. | Method and system for providing integrated medication infusion and analyte monitoring system |
US8029459B2 (en) | 2005-03-21 | 2011-10-04 | Abbott Diabetes Care Inc. | Method and system for providing integrated medication infusion and analyte monitoring system |
US8343092B2 (en) | 2005-03-21 | 2013-01-01 | Abbott Diabetes Care Inc. | Method and system for providing integrated medication infusion and analyte monitoring system |
US8747363B2 (en) | 2005-04-13 | 2014-06-10 | Novo Nordisk A/S | Medical skin mountable device and system |
US20090131860A1 (en) * | 2005-04-13 | 2009-05-21 | Novo Nordisk A/S | Medical Skin Mountable Device And System |
US8298172B2 (en) | 2005-04-13 | 2012-10-30 | Novo Nordisk A/S | Medical skin mountable device and system |
US8112240B2 (en) | 2005-04-29 | 2012-02-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing leak detection in data monitoring and management systems |
US9750440B2 (en) | 2005-05-17 | 2017-09-05 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US8471714B2 (en) | 2005-05-17 | 2013-06-25 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US7768408B2 (en) | 2005-05-17 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US10206611B2 (en) | 2005-05-17 | 2019-02-19 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US9332944B2 (en) | 2005-05-17 | 2016-05-10 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US8653977B2 (en) | 2005-05-17 | 2014-02-18 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US8089363B2 (en) | 2005-05-17 | 2012-01-03 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US7884729B2 (en) | 2005-05-17 | 2011-02-08 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US8112138B2 (en) | 2005-06-03 | 2012-02-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing rechargeable power in data monitoring and management systems |
US8251904B2 (en) | 2005-06-09 | 2012-08-28 | Roche Diagnostics Operations, Inc. | Device and method for insulin dosing |
US10311209B2 (en) | 2005-06-09 | 2019-06-04 | Roche Diabetes Care, Inc. | Device and method for insulin dosing |
US10813577B2 (en) | 2005-06-21 | 2020-10-27 | Dexcom, Inc. | Analyte sensor |
US20100201196A1 (en) * | 2005-08-16 | 2010-08-12 | Medtronic Minimed, Inc. | Method and apparatus for predicting end of battery life |
US20070060869A1 (en) * | 2005-08-16 | 2007-03-15 | Tolle Mike C V | Controller device for an infusion pump |
US20090227855A1 (en) * | 2005-08-16 | 2009-09-10 | Medtronic Minimed, Inc. | Controller device for an infusion pump |
US8663201B2 (en) | 2005-08-16 | 2014-03-04 | Medtronic Minimed, Inc. | Infusion device |
US8106534B2 (en) | 2005-08-16 | 2012-01-31 | Medtronic Minimed, Inc. | Method and apparatus for predicting end of battery life |
US8602991B2 (en) | 2005-08-30 | 2013-12-10 | Abbott Diabetes Care Inc. | Analyte sensor introducer and methods of use |
US7731657B2 (en) | 2005-08-30 | 2010-06-08 | Abbott Diabetes Care Inc. | Analyte sensor introducer and methods of use |
US10194850B2 (en) | 2005-08-31 | 2019-02-05 | Abbott Diabetes Care Inc. | Accuracy of continuous glucose sensors |
US11957463B2 (en) | 2005-08-31 | 2024-04-16 | Abbott Diabetes Care Inc. | Accuracy of continuous glucose sensors |
US20090118682A1 (en) * | 2005-09-13 | 2009-05-07 | Novo Nordisk A/S | Reservoir Device With Inspection Aid For Detection Of Drug Condition |
USD979766S1 (en) | 2005-09-30 | 2023-02-28 | Abbott Diabetes Care Inc. | Analyte sensor device |
US8880138B2 (en) | 2005-09-30 | 2014-11-04 | Abbott Diabetes Care Inc. | Device for channeling fluid and methods of use |
US11457869B2 (en) | 2005-09-30 | 2022-10-04 | Abbott Diabetes Care Inc. | Integrated transmitter unit and sensor introducer mechanism and methods of use |
US10342489B2 (en) | 2005-09-30 | 2019-07-09 | Abbott Diabetes Care Inc. | Integrated introducer and transmitter assembly and methods of use |
US9398882B2 (en) | 2005-09-30 | 2016-07-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor and data processing device |
US7756561B2 (en) | 2005-09-30 | 2010-07-13 | Abbott Diabetes Care Inc. | Method and apparatus for providing rechargeable power in data monitoring and management systems |
US9775563B2 (en) | 2005-09-30 | 2017-10-03 | Abbott Diabetes Care Inc. | Integrated introducer and transmitter assembly and methods of use |
US7883464B2 (en) | 2005-09-30 | 2011-02-08 | Abbott Diabetes Care Inc. | Integrated transmitter unit and sensor introducer mechanism and methods of use |
US8512243B2 (en) | 2005-09-30 | 2013-08-20 | Abbott Diabetes Care Inc. | Integrated introducer and transmitter assembly and methods of use |
US10194863B2 (en) | 2005-09-30 | 2019-02-05 | Abbott Diabetes Care Inc. | Integrated transmitter unit and sensor introducer mechanism and methods of use |
US9480421B2 (en) | 2005-09-30 | 2016-11-01 | Abbott Diabetes Care Inc. | Integrated introducer and transmitter assembly and methods of use |
US9521968B2 (en) | 2005-09-30 | 2016-12-20 | Abbott Diabetes Care Inc. | Analyte sensor retention mechanism and methods of use |
US20070088333A1 (en) * | 2005-10-13 | 2007-04-19 | G&L Consulting, Llc | Method and system for infusing an osmotic solute into a patient and providing feedback control of the infusing rate |
US20110160670A1 (en) * | 2005-10-17 | 2011-06-30 | Novo Nordisk A/S | Vented drug reservoir unit |
US20080287870A1 (en) * | 2005-10-17 | 2008-11-20 | Nov Nordisk A/S | Vented Drug Reservoir Unit |
US8394060B2 (en) | 2005-10-17 | 2013-03-12 | Novo Nordisk A/S | Vented drug reservoir unit |
US20070106247A1 (en) * | 2005-10-21 | 2007-05-10 | Ceeben Systems, Inc. | Method and apparatus for peritoneal hypothermia and/or resuscitation |
US8672884B2 (en) | 2005-10-21 | 2014-03-18 | Velomedix, Inc. | Method and apparatus for peritoneal hypothermia and/or resuscitation |
US11446177B2 (en) | 2005-10-21 | 2022-09-20 | Theranova, Llc | Method and apparatus for peritoneal oxygenation |
US7948370B2 (en) | 2005-10-31 | 2011-05-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing data communication in data monitoring and management systems |
US8638220B2 (en) | 2005-10-31 | 2014-01-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing data communication in data monitoring and management systems |
US11911151B1 (en) | 2005-11-01 | 2024-02-27 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US11399748B2 (en) | 2005-11-01 | 2022-08-02 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9326716B2 (en) | 2005-11-01 | 2016-05-03 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US10201301B2 (en) | 2005-11-01 | 2019-02-12 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US11103165B2 (en) | 2005-11-01 | 2021-08-31 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8920319B2 (en) | 2005-11-01 | 2014-12-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US10231654B2 (en) | 2005-11-01 | 2019-03-19 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US11272867B2 (en) | 2005-11-01 | 2022-03-15 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8915850B2 (en) | 2005-11-01 | 2014-12-23 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US10952652B2 (en) | 2005-11-01 | 2021-03-23 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9078607B2 (en) | 2005-11-01 | 2015-07-14 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US11363975B2 (en) | 2005-11-01 | 2022-06-21 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9323898B2 (en) | 2005-11-04 | 2016-04-26 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US7766829B2 (en) | 2005-11-04 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US8585591B2 (en) | 2005-11-04 | 2013-11-19 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US9669162B2 (en) | 2005-11-04 | 2017-06-06 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US11538580B2 (en) | 2005-11-04 | 2022-12-27 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US20070142767A1 (en) * | 2005-12-12 | 2007-06-21 | Marcel Frikart | System with A Portable Patient Device and External Operating Part |
US8758240B2 (en) * | 2005-12-12 | 2014-06-24 | Roche Diagnostics International Ag | System with a portable patient device and external operating part |
US11298058B2 (en) | 2005-12-28 | 2022-04-12 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US7697967B2 (en) | 2005-12-28 | 2010-04-13 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US10307091B2 (en) | 2005-12-28 | 2019-06-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US8545403B2 (en) | 2005-12-28 | 2013-10-01 | Abbott Diabetes Care Inc. | Medical device insertion |
US8852101B2 (en) | 2005-12-28 | 2014-10-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US9332933B2 (en) | 2005-12-28 | 2016-05-10 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US9795331B2 (en) | 2005-12-28 | 2017-10-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US7736310B2 (en) | 2006-01-30 | 2010-06-15 | Abbott Diabetes Care Inc. | On-body medical device securement |
US9326727B2 (en) | 2006-01-30 | 2016-05-03 | Abbott Diabetes Care Inc. | On-body medical device securement |
US7951080B2 (en) | 2006-01-30 | 2011-05-31 | Abbott Diabetes Care Inc. | On-body medical device securement |
US8734344B2 (en) | 2006-01-30 | 2014-05-27 | Abbott Diabetes Care Inc. | On-body medical device securement |
US8344966B2 (en) | 2006-01-31 | 2013-01-01 | Abbott Diabetes Care Inc. | Method and system for providing a fault tolerant display unit in an electronic device |
EP2829224B1 (en) | 2006-02-22 | 2021-03-31 | DexCom, Inc. | Analyte sensor |
US10117614B2 (en) | 2006-02-28 | 2018-11-06 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
US8506482B2 (en) | 2006-02-28 | 2013-08-13 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
US8029441B2 (en) | 2006-02-28 | 2011-10-04 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US11064916B2 (en) | 2006-02-28 | 2021-07-20 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US10945647B2 (en) | 2006-02-28 | 2021-03-16 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
USD961778S1 (en) | 2006-02-28 | 2022-08-23 | Abbott Diabetes Care Inc. | Analyte sensor device |
US9031630B2 (en) | 2006-02-28 | 2015-05-12 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
US7822455B2 (en) | 2006-02-28 | 2010-10-26 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
US9364149B2 (en) | 2006-02-28 | 2016-06-14 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US9844329B2 (en) | 2006-02-28 | 2017-12-19 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
US11872039B2 (en) | 2006-02-28 | 2024-01-16 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
US10159433B2 (en) | 2006-02-28 | 2018-12-25 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US11179071B2 (en) | 2006-02-28 | 2021-11-23 | Abbott Diabetes Care Inc | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US7885698B2 (en) | 2006-02-28 | 2011-02-08 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
US11179072B2 (en) | 2006-02-28 | 2021-11-23 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US7826879B2 (en) | 2006-02-28 | 2010-11-02 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
US9380971B2 (en) | 2006-03-31 | 2016-07-05 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US8597575B2 (en) | 2006-03-31 | 2013-12-03 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US7801582B2 (en) | 2006-03-31 | 2010-09-21 | Abbott Diabetes Care Inc. | Analyte monitoring and management system and methods therefor |
US9743863B2 (en) | 2006-03-31 | 2017-08-29 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US9039975B2 (en) | 2006-03-31 | 2015-05-26 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US8933664B2 (en) | 2006-03-31 | 2015-01-13 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US8086292B2 (en) | 2006-03-31 | 2011-12-27 | Abbott Diabetes Care Inc. | Analyte monitoring and management system and methods therefor |
US9625413B2 (en) | 2006-03-31 | 2017-04-18 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US8593109B2 (en) | 2006-03-31 | 2013-11-26 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US8543183B2 (en) | 2006-03-31 | 2013-09-24 | Abbott Diabetes Care Inc. | Analyte monitoring and management system and methods therefor |
US8226891B2 (en) | 2006-03-31 | 2012-07-24 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US20070276545A1 (en) * | 2006-04-28 | 2007-11-29 | Smirnov Alexei V | Adaptive response time closed loop control algorithm |
US20070253021A1 (en) * | 2006-04-28 | 2007-11-01 | Medtronic Minimed, Inc. | Identification of devices in a medical device network and wireless data communication techniques utilizing device identifiers |
US20070258395A1 (en) * | 2006-04-28 | 2007-11-08 | Medtronic Minimed, Inc. | Wireless data communication protocols for a medical device network |
US7942844B2 (en) | 2006-04-28 | 2011-05-17 | Medtronic Minimed, Inc. | Remote monitoring for networked fluid infusion systems |
US7603186B2 (en) | 2006-04-28 | 2009-10-13 | Advanced Energy Industries, Inc. | Adaptive response time closed loop control algorithm |
WO2007127897A3 (en) * | 2006-04-28 | 2008-09-18 | Advanced Energy Ind Inc | Adaptive response time closed loop control algorithm |
US8073008B2 (en) | 2006-04-28 | 2011-12-06 | Medtronic Minimed, Inc. | Subnetwork synchronization and variable transmit synchronization techniques for a wireless medical device network |
US20070255126A1 (en) * | 2006-04-28 | 2007-11-01 | Moberg Sheldon B | Data communication in networked fluid infusion systems |
US20070260174A1 (en) * | 2006-05-05 | 2007-11-08 | Searete Llc | Detecting a failure to maintain a regimen |
US7920907B2 (en) | 2006-06-07 | 2011-04-05 | Abbott Diabetes Care Inc. | Analyte monitoring system and method |
US9833181B2 (en) | 2006-08-09 | 2017-12-05 | Abbot Diabetes Care Inc. | Method and system for providing calibration of an analyte sensor in an analyte monitoring system |
US7653425B2 (en) | 2006-08-09 | 2010-01-26 | Abbott Diabetes Care Inc. | Method and system for providing calibration of an analyte sensor in an analyte monitoring system |
US9408566B2 (en) | 2006-08-09 | 2016-08-09 | Abbott Diabetes Care Inc. | Method and system for providing calibration of an analyte sensor in an analyte monitoring system |
US8376945B2 (en) | 2006-08-09 | 2013-02-19 | Abbott Diabetes Care Inc. | Method and system for providing calibration of an analyte sensor in an analyte monitoring system |
US11864894B2 (en) | 2006-08-09 | 2024-01-09 | Abbott Diabetes Care Inc. | Method and system for providing calibration of an analyte sensor in an analyte monitoring system |
US10278630B2 (en) | 2006-08-09 | 2019-05-07 | Abbott Diabetes Care Inc. | Method and system for providing calibration of an analyte sensor in an analyte monitoring system |
EP2990065A1 (en) * | 2006-08-31 | 2016-03-02 | Fresenius Medical Care Holdings, Inc. | Data communication system for peritoneal dialysis machine |
US8926550B2 (en) * | 2006-08-31 | 2015-01-06 | Fresenius Medical Care Holdings, Inc. | Data communication system for peritoneal dialysis machine |
US8870811B2 (en) | 2006-08-31 | 2014-10-28 | Fresenius Medical Care Holdings, Inc. | Peritoneal dialysis systems and related methods |
US20080125693A1 (en) * | 2006-08-31 | 2008-05-29 | Gavin David A | Peritoneal dialysis systems and related methods |
US20080097283A1 (en) * | 2006-08-31 | 2008-04-24 | Plahey Kulwinder S | Data communication system for peritoneal dialysis machine |
WO2008027967A1 (en) * | 2006-08-31 | 2008-03-06 | Fresenius Medical Care Holdings, Inc. | Data communication system for peritoneal dialysis machine |
EP2059277B1 (en) | 2006-08-31 | 2015-08-19 | Fresenius Medical Care Holdings, Inc. | Data communication system for peritoneal dialysis machine |
US8862198B2 (en) | 2006-09-10 | 2014-10-14 | Abbott Diabetes Care Inc. | Method and system for providing an integrated analyte sensor insertion device and data processing unit |
US8333714B2 (en) | 2006-09-10 | 2012-12-18 | Abbott Diabetes Care Inc. | Method and system for providing an integrated analyte sensor insertion device and data processing unit |
US9808186B2 (en) | 2006-09-10 | 2017-11-07 | Abbott Diabetes Care Inc. | Method and system for providing an integrated analyte sensor insertion device and data processing unit |
US10362972B2 (en) | 2006-09-10 | 2019-07-30 | Abbott Diabetes Care Inc. | Method and system for providing an integrated analyte sensor insertion device and data processing unit |
WO2008032238A2 (en) * | 2006-09-13 | 2008-03-20 | Koninklijke Philips Electronics N. V. | Device for automatic adjustment of the dose of melatonin and/or delivery of melatonin |
WO2008032238A3 (en) * | 2006-09-13 | 2008-11-06 | Koninkl Philips Electronics Nv | Device for automatic adjustment of the dose of melatonin and/or delivery of melatonin |
US20090281518A1 (en) * | 2006-09-13 | 2009-11-12 | Koninklijke Philips Electronics N.V. | Device for automatic adjustment of the dose of melatonin and/or delivery of melatonin |
US9357959B2 (en) | 2006-10-02 | 2016-06-07 | Abbott Diabetes Care Inc. | Method and system for dynamically updating calibration parameters for an analyte sensor |
US8515517B2 (en) | 2006-10-02 | 2013-08-20 | Abbott Diabetes Care Inc. | Method and system for dynamically updating calibration parameters for an analyte sensor |
US9629578B2 (en) | 2006-10-02 | 2017-04-25 | Abbott Diabetes Care Inc. | Method and system for dynamically updating calibration parameters for an analyte sensor |
US10342469B2 (en) | 2006-10-02 | 2019-07-09 | Abbott Diabetes Care Inc. | Method and system for dynamically updating calibration parameters for an analyte sensor |
US9839383B2 (en) | 2006-10-02 | 2017-12-12 | Abbott Diabetes Care Inc. | Method and system for dynamically updating calibration parameters for an analyte sensor |
US8075513B2 (en) | 2006-10-13 | 2011-12-13 | Plc Medical Systems, Inc. | Patient connection system for a balance hydration unit |
US9259175B2 (en) | 2006-10-23 | 2016-02-16 | Abbott Diabetes Care, Inc. | Flexible patch for fluid delivery and monitoring body analytes |
US10070810B2 (en) | 2006-10-23 | 2018-09-11 | Abbott Diabetes Care Inc. | Sensor insertion devices and methods of use |
US9788771B2 (en) | 2006-10-23 | 2017-10-17 | Abbott Diabetes Care Inc. | Variable speed sensor insertion devices and methods of use |
US11234621B2 (en) | 2006-10-23 | 2022-02-01 | Abbott Diabetes Care Inc. | Sensor insertion devices and methods of use |
US11724029B2 (en) | 2006-10-23 | 2023-08-15 | Abbott Diabetes Care Inc. | Flexible patch for fluid delivery and monitoring body analytes |
US10363363B2 (en) | 2006-10-23 | 2019-07-30 | Abbott Diabetes Care Inc. | Flexible patch for fluid delivery and monitoring body analytes |
US11282603B2 (en) | 2006-10-25 | 2022-03-22 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
US9113828B2 (en) | 2006-10-25 | 2015-08-25 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
US9814428B2 (en) | 2006-10-25 | 2017-11-14 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
US8211016B2 (en) | 2006-10-25 | 2012-07-03 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
US8216137B2 (en) | 2006-10-25 | 2012-07-10 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
US10194868B2 (en) | 2006-10-25 | 2019-02-05 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
US11722229B2 (en) | 2006-10-26 | 2023-08-08 | Abbott Diabetes Care Inc. | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
US9882660B2 (en) | 2006-10-26 | 2018-01-30 | Abbott Diabetes Care Inc. | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
US8135548B2 (en) | 2006-10-26 | 2012-03-13 | Abbott Diabetes Care Inc. | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
US10903914B2 (en) | 2006-10-26 | 2021-01-26 | Abbott Diabetes Care Inc. | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
US8718958B2 (en) | 2006-10-26 | 2014-05-06 | Abbott Diabetes Care Inc. | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
US10007759B2 (en) | 2006-10-31 | 2018-06-26 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US12073941B2 (en) | 2006-10-31 | 2024-08-27 | Abbott Diabetes Care Inc. | Infusion device and methods |
US11508476B2 (en) | 2006-10-31 | 2022-11-22 | Abbott Diabetes Care, Inc. | Infusion devices and methods |
US11837358B2 (en) | 2006-10-31 | 2023-12-05 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US8579853B2 (en) | 2006-10-31 | 2013-11-12 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US9064107B2 (en) | 2006-10-31 | 2015-06-23 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US11043300B2 (en) | 2006-10-31 | 2021-06-22 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US20080200802A1 (en) * | 2006-12-07 | 2008-08-21 | Philometron, Inc. | Platform for detection of tissue content and/or structural changes with closed-loop control in mammalian organisms |
US20080214919A1 (en) * | 2006-12-26 | 2008-09-04 | Lifescan, Inc. | System and method for implementation of glycemic control protocols |
US10617823B2 (en) | 2007-02-15 | 2020-04-14 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US8417545B2 (en) | 2007-02-15 | 2013-04-09 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US8121857B2 (en) | 2007-02-15 | 2012-02-21 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US10022499B2 (en) | 2007-02-15 | 2018-07-17 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US8676601B2 (en) | 2007-02-15 | 2014-03-18 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US8930203B2 (en) | 2007-02-18 | 2015-01-06 | Abbott Diabetes Care Inc. | Multi-function analyte test device and methods therefor |
US8732188B2 (en) | 2007-02-18 | 2014-05-20 | Abbott Diabetes Care Inc. | Method and system for providing contextual based medication dosage determination |
US12040067B2 (en) | 2007-02-18 | 2024-07-16 | Abbott Diabetes Care Inc. | Method and system for providing contextual based medication dosage determination |
US9636450B2 (en) | 2007-02-19 | 2017-05-02 | Udo Hoss | Pump system modular components for delivering medication and analyte sensing at seperate insertion sites |
US9095290B2 (en) | 2007-03-01 | 2015-08-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US9801545B2 (en) | 2007-03-01 | 2017-10-31 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US8123686B2 (en) | 2007-03-01 | 2012-02-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US20080234556A1 (en) * | 2007-03-20 | 2008-09-25 | Cardiac Pacemakers, Inc. | Method and apparatus for sensing respiratory activities using sensor in lymphatic system |
US11800992B2 (en) | 2007-04-05 | 2023-10-31 | Theranova, Llc | Device and method for safe access and automated therapy |
WO2008124644A1 (en) * | 2007-04-05 | 2008-10-16 | Velomedix, Inc | Automated therapy system and method |
US8100880B2 (en) | 2007-04-05 | 2012-01-24 | Velomedix, Inc. | Automated therapy system and method |
US20080262418A1 (en) * | 2007-04-05 | 2008-10-23 | Daniel Rogers Burnett | Automated Therapy System and Method |
US8480648B2 (en) | 2007-04-05 | 2013-07-09 | Velomedix, Inc. | Automated therapy system and method |
US20080249467A1 (en) * | 2007-04-05 | 2008-10-09 | Daniel Rogers Burnett | Device and Method for Safe Access to a Body Cavity |
US10349877B2 (en) | 2007-04-14 | 2019-07-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9402584B2 (en) | 2007-04-14 | 2016-08-02 | Abbott Diabetes Care Inc. | Method and apparatus for providing dynamic multi-stage signal amplification in a medical device |
US8140142B2 (en) | 2007-04-14 | 2012-03-20 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US7768387B2 (en) | 2007-04-14 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing dynamic multi-stage signal amplification in a medical device |
US8698615B2 (en) | 2007-04-14 | 2014-04-15 | Abbott Diabetes Care Inc. | Method and apparatus for providing dynamic multi-stage signal amplification in a medical device |
US8427298B2 (en) | 2007-04-14 | 2013-04-23 | Abbott Diabetes Care Inc. | Method and apparatus for providing dynamic multi-stage amplification in a medical device |
US10111608B2 (en) | 2007-04-14 | 2018-10-30 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US7948369B2 (en) | 2007-04-14 | 2011-05-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing dynamic multi-stage signal amplification in a medical device |
US8149103B2 (en) | 2007-04-14 | 2012-04-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing dynamic multi-stage amplification in a medical device |
US9743866B2 (en) | 2007-04-14 | 2017-08-29 | Abbott Diabetes Care Inc. | Method and apparatus for providing dynamic multi-stage signal amplification in a medical device |
US8937540B2 (en) | 2007-04-14 | 2015-01-20 | Abbott Diabetes Care Inc. | Method and apparatus for providing dynamic multi-stage signal amplification in a medical device |
US10194846B2 (en) | 2007-04-14 | 2019-02-05 | Abbott Diabetes Care Inc. | Method and apparatus for providing dynamic multi-stage signal amplification in a medical device |
US9008743B2 (en) | 2007-04-14 | 2015-04-14 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9615780B2 (en) | 2007-04-14 | 2017-04-11 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US11039767B2 (en) | 2007-04-14 | 2021-06-22 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9204827B2 (en) | 2007-04-14 | 2015-12-08 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US8461985B2 (en) | 2007-05-08 | 2013-06-11 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8665091B2 (en) | 2007-05-08 | 2014-03-04 | Abbott Diabetes Care Inc. | Method and device for determining elapsed sensor life |
US9035767B2 (en) | 2007-05-08 | 2015-05-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8456301B2 (en) | 2007-05-08 | 2013-06-04 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US9177456B2 (en) | 2007-05-08 | 2015-11-03 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US10178954B2 (en) | 2007-05-08 | 2019-01-15 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US9649057B2 (en) | 2007-05-08 | 2017-05-16 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US11696684B2 (en) | 2007-05-08 | 2023-07-11 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8362904B2 (en) | 2007-05-08 | 2013-01-29 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US10653317B2 (en) | 2007-05-08 | 2020-05-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US10952611B2 (en) | 2007-05-08 | 2021-03-23 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US9574914B2 (en) | 2007-05-08 | 2017-02-21 | Abbott Diabetes Care Inc. | Method and device for determining elapsed sensor life |
US7928850B2 (en) | 2007-05-08 | 2011-04-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US9949678B2 (en) | 2007-05-08 | 2018-04-24 | Abbott Diabetes Care Inc. | Method and device for determining elapsed sensor life |
US9314198B2 (en) | 2007-05-08 | 2016-04-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8149117B2 (en) | 2007-05-08 | 2012-04-03 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8593287B2 (en) | 2007-05-08 | 2013-11-26 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US9000929B2 (en) | 2007-05-08 | 2015-04-07 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8444560B2 (en) | 2007-05-14 | 2013-05-21 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8484005B2 (en) | 2007-05-14 | 2013-07-09 | Abbott Diabetes Care Inc. | Method and system for determining analyte levels |
US10119956B2 (en) | 2007-05-14 | 2018-11-06 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10653344B2 (en) | 2007-05-14 | 2020-05-19 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8260558B2 (en) | 2007-05-14 | 2012-09-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8682615B2 (en) | 2007-05-14 | 2014-03-25 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US7996158B2 (en) | 2007-05-14 | 2011-08-09 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10002233B2 (en) | 2007-05-14 | 2018-06-19 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8140312B2 (en) | 2007-05-14 | 2012-03-20 | Abbott Diabetes Care Inc. | Method and system for determining analyte levels |
US10143409B2 (en) | 2007-05-14 | 2018-12-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10463310B2 (en) | 2007-05-14 | 2019-11-05 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10976304B2 (en) | 2007-05-14 | 2021-04-13 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8571808B2 (en) | 2007-05-14 | 2013-10-29 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10634662B2 (en) | 2007-05-14 | 2020-04-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US11125592B2 (en) | 2007-05-14 | 2021-09-21 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10991456B2 (en) | 2007-05-14 | 2021-04-27 | Abbott Diabetes Care Inc. | Method and system for determining analyte levels |
US10261069B2 (en) | 2007-05-14 | 2019-04-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8560038B2 (en) | 2007-05-14 | 2013-10-15 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10045720B2 (en) | 2007-05-14 | 2018-08-14 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8239166B2 (en) | 2007-05-14 | 2012-08-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US11300561B2 (en) | 2007-05-14 | 2022-04-12 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9125548B2 (en) | 2007-05-14 | 2015-09-08 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9060719B2 (en) | 2007-05-14 | 2015-06-23 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9801571B2 (en) | 2007-05-14 | 2017-10-31 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9804150B2 (en) | 2007-05-14 | 2017-10-31 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8103471B2 (en) | 2007-05-14 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9797880B2 (en) | 2007-05-14 | 2017-10-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9558325B2 (en) | 2007-05-14 | 2017-01-31 | Abbott Diabetes Care Inc. | Method and system for determining analyte levels |
US10820841B2 (en) | 2007-05-14 | 2020-11-03 | Abbot Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8612163B2 (en) | 2007-05-14 | 2013-12-17 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8600681B2 (en) | 2007-05-14 | 2013-12-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10031002B2 (en) | 2007-05-14 | 2018-07-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9483608B2 (en) | 2007-05-14 | 2016-11-01 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US11828748B2 (en) | 2007-05-14 | 2023-11-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US11076785B2 (en) | 2007-05-14 | 2021-08-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US11119090B2 (en) | 2007-05-14 | 2021-09-14 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9737249B2 (en) | 2007-05-14 | 2017-08-22 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10943687B2 (en) | 2007-05-24 | 2021-03-09 | Tandem Diabetes Care, Inc. | Expert system for insulin pump therapy |
US11257580B2 (en) | 2007-05-24 | 2022-02-22 | Tandem Diabetes Care, Inc. | Expert system for insulin pump therapy |
US11848089B2 (en) | 2007-05-24 | 2023-12-19 | Tandem Diabetes Care, Inc. | Expert system for insulin pump therapy |
US8182692B2 (en) | 2007-05-29 | 2012-05-22 | Fresenius Medical Care Holdings, Inc. | Solutions, dialysates, and related methods |
US20080296226A1 (en) * | 2007-05-29 | 2008-12-04 | Fresenius Medical Care Holdings, Inc. | Solutions, Dialysates, and Related Methods |
US11298053B2 (en) | 2007-05-30 | 2022-04-12 | Tandem Diabetes Care, Inc. | Insulin pump based expert system |
US11986292B2 (en) | 2007-05-30 | 2024-05-21 | Tandem Diabetes Care, Inc. | Insulin pump based expert system |
US11576594B2 (en) | 2007-05-30 | 2023-02-14 | Tandem Diabetes Care, Inc. | Insulin pump based expert system |
US8613703B2 (en) | 2007-05-31 | 2013-12-24 | Abbott Diabetes Care Inc. | Insertion devices and methods |
US11373347B2 (en) | 2007-06-08 | 2022-06-28 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
US8597188B2 (en) | 2007-06-21 | 2013-12-03 | Abbott Diabetes Care Inc. | Health management devices and methods |
US11264133B2 (en) | 2007-06-21 | 2022-03-01 | Abbott Diabetes Care Inc. | Health management devices and methods |
US8617069B2 (en) | 2007-06-21 | 2013-12-31 | Abbott Diabetes Care Inc. | Health monitor |
US11276492B2 (en) | 2007-06-21 | 2022-03-15 | Abbott Diabetes Care Inc. | Health management devices and methods |
US11678821B2 (en) | 2007-06-29 | 2023-06-20 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
US9913600B2 (en) | 2007-06-29 | 2018-03-13 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
US8160900B2 (en) | 2007-06-29 | 2012-04-17 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
US10856785B2 (en) | 2007-06-29 | 2020-12-08 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
US8439960B2 (en) | 2007-07-09 | 2013-05-14 | Velomedix, Inc. | Hypothermia devices and methods |
US7768386B2 (en) | 2007-07-31 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9398872B2 (en) | 2007-07-31 | 2016-07-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor calibration |
US8834366B2 (en) | 2007-07-31 | 2014-09-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor calibration |
US9483615B2 (en) | 2007-08-10 | 2016-11-01 | Smiths Medical Asd, Inc. | Communication of original and updated pump parameters for a medical infusion pump |
US20090157202A1 (en) * | 2007-08-10 | 2009-06-18 | Smiths Medical Md | Therapy rules for closed loop programming of medical devices |
US7892197B2 (en) | 2007-09-19 | 2011-02-22 | Fresenius Medical Care Holdings, Inc. | Automatic prime of an extracorporeal blood circuit |
US20140052093A1 (en) * | 2007-10-09 | 2014-02-20 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US9463277B2 (en) * | 2007-10-09 | 2016-10-11 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US20140052091A1 (en) * | 2007-10-09 | 2014-02-20 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US20140052095A1 (en) * | 2007-10-09 | 2014-02-20 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US9827372B2 (en) * | 2007-10-09 | 2017-11-28 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US20180043096A1 (en) * | 2007-10-09 | 2018-02-15 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US9572936B2 (en) * | 2007-10-09 | 2017-02-21 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US9452259B2 (en) * | 2007-10-09 | 2016-09-27 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US9452258B2 (en) * | 2007-10-09 | 2016-09-27 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US9572935B2 (en) * | 2007-10-09 | 2017-02-21 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US20140052092A1 (en) * | 2007-10-09 | 2014-02-20 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US9586004B2 (en) * | 2007-10-09 | 2017-03-07 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US9457146B2 (en) * | 2007-10-09 | 2016-10-04 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US20170076068A1 (en) * | 2007-10-09 | 2017-03-16 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US11744943B2 (en) | 2007-10-09 | 2023-09-05 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US9597453B2 (en) * | 2007-10-09 | 2017-03-21 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US11160926B1 (en) | 2007-10-09 | 2021-11-02 | Dexcom, Inc. | Pre-connected analyte sensors |
US10653835B2 (en) * | 2007-10-09 | 2020-05-19 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US20140114278A1 (en) * | 2007-10-09 | 2014-04-24 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US20140052094A1 (en) * | 2007-10-09 | 2014-02-20 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US20140039383A1 (en) * | 2007-10-09 | 2014-02-06 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US20140128803A1 (en) * | 2007-10-09 | 2014-05-08 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US9414782B2 (en) | 2007-10-10 | 2016-08-16 | Optiscan Biomedical Corporation | Fluid component analysis systems and methods for glucose monitoring and control |
US8449524B2 (en) | 2007-10-10 | 2013-05-28 | Optiscan Biomedical Corporation | Fluid component analysis systems and methods for glucose monitoring and control |
US10173007B2 (en) | 2007-10-23 | 2019-01-08 | Abbott Diabetes Care Inc. | Closed loop control system with safety parameters and methods |
US8409093B2 (en) | 2007-10-23 | 2013-04-02 | Abbott Diabetes Care Inc. | Assessing measures of glycemic variability |
US8216138B1 (en) | 2007-10-23 | 2012-07-10 | Abbott Diabetes Care Inc. | Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration |
US9743865B2 (en) | 2007-10-23 | 2017-08-29 | Abbott Diabetes Care Inc. | Assessing measures of glycemic variability |
US11083843B2 (en) | 2007-10-23 | 2021-08-10 | Abbott Diabetes Care Inc. | Closed loop control system with safety parameters and methods |
US9439586B2 (en) | 2007-10-23 | 2016-09-13 | Abbott Diabetes Care Inc. | Assessing measures of glycemic variability |
US9804148B2 (en) | 2007-10-23 | 2017-10-31 | Abbott Diabetes Care Inc. | Analyte sensor with lag compensation |
US8374668B1 (en) | 2007-10-23 | 2013-02-12 | Abbott Diabetes Care Inc. | Analyte sensor with lag compensation |
US8377031B2 (en) | 2007-10-23 | 2013-02-19 | Abbott Diabetes Care Inc. | Closed loop control system with safety parameters and methods |
US9332934B2 (en) | 2007-10-23 | 2016-05-10 | Abbott Diabetes Care Inc. | Analyte sensor with lag compensation |
US10685749B2 (en) | 2007-12-19 | 2020-06-16 | Abbott Diabetes Care Inc. | Insulin delivery apparatuses capable of bluetooth data transmission |
WO2009082741A2 (en) * | 2007-12-24 | 2009-07-02 | Medtronic Minimed, Inc. | Infusion system with adaptive user interface |
WO2009082741A3 (en) * | 2007-12-24 | 2009-11-05 | Medtronic Minimed, Inc. | Handling of failure of signal reception of a glucose sensor signal at an external infusion device |
US9598210B2 (en) | 2007-12-27 | 2017-03-21 | Medtronic Minimed, Inc. | Reservoir pressure equalization systems and methods |
US11302433B2 (en) | 2008-01-07 | 2022-04-12 | Tandem Diabetes Care, Inc. | Diabetes therapy coaching |
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
US9770211B2 (en) | 2008-01-31 | 2017-09-26 | Abbott Diabetes Care Inc. | Analyte sensor with time lag compensation |
US9320468B2 (en) | 2008-01-31 | 2016-04-26 | Abbott Diabetes Care Inc. | Analyte sensor with time lag compensation |
US8473022B2 (en) | 2008-01-31 | 2013-06-25 | Abbott Diabetes Care Inc. | Analyte sensor with time lag compensation |
US9143569B2 (en) * | 2008-02-21 | 2015-09-22 | Dexcom, Inc. | Systems and methods for processing, transmitting and displaying sensor data |
US9020572B2 (en) * | 2008-02-21 | 2015-04-28 | Dexcom, Inc. | Systems and methods for processing, transmitting and displaying sensor data |
US20100331657A1 (en) * | 2008-02-21 | 2010-12-30 | Dexcom, Inc. | Systems and methods for processing, transmitting and displaying sensor data |
US20090240120A1 (en) * | 2008-02-21 | 2009-09-24 | Dexcom, Inc. | Systems and methods for processing, transmitting and displaying sensor data |
US11102306B2 (en) | 2008-02-21 | 2021-08-24 | Dexcom, Inc. | Systems and methods for processing, transmitting and displaying sensor data |
US8718739B2 (en) | 2008-03-28 | 2014-05-06 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
US9730623B2 (en) | 2008-03-28 | 2017-08-15 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
US8583205B2 (en) | 2008-03-28 | 2013-11-12 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
US9320462B2 (en) | 2008-03-28 | 2016-04-26 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
US11779248B2 (en) | 2008-03-28 | 2023-10-10 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
US10463288B2 (en) | 2008-03-28 | 2019-11-05 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
US8346335B2 (en) | 2008-03-28 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
US8252229B2 (en) | 2008-04-10 | 2012-08-28 | Abbott Diabetes Care Inc. | Method and system for sterilizing an analyte sensor |
US8802006B2 (en) | 2008-04-10 | 2014-08-12 | Abbott Diabetes Care Inc. | Method and system for sterilizing an analyte sensor |
US8690769B2 (en) | 2008-04-21 | 2014-04-08 | Philometron, Inc. | Metabolic energy monitoring system |
US20100049004A1 (en) * | 2008-04-21 | 2010-02-25 | Philometron, Inc. | Metabolic energy monitoring system |
US7826382B2 (en) | 2008-05-30 | 2010-11-02 | Abbott Diabetes Care Inc. | Close proximity communication device and methods |
US8737259B2 (en) | 2008-05-30 | 2014-05-27 | Abbott Diabetes Care Inc. | Close proximity communication device and methods |
US11770210B2 (en) | 2008-05-30 | 2023-09-26 | Abbott Diabetes Care Inc. | Close proximity communication device and methods |
US9541556B2 (en) | 2008-05-30 | 2017-01-10 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US8591410B2 (en) | 2008-05-30 | 2013-11-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US8509107B2 (en) | 2008-05-30 | 2013-08-13 | Abbott Diabetes Care Inc. | Close proximity communication device and methods |
US9184875B2 (en) | 2008-05-30 | 2015-11-10 | Abbott Diabetes Care, Inc. | Close proximity communication device and methods |
US11735295B2 (en) | 2008-05-30 | 2023-08-22 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US9831985B2 (en) | 2008-05-30 | 2017-11-28 | Abbott Diabetes Care Inc. | Close proximity communication device and methods |
US10327682B2 (en) | 2008-05-30 | 2019-06-25 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US8924159B2 (en) | 2008-05-30 | 2014-12-30 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US9795328B2 (en) | 2008-05-30 | 2017-10-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US9931075B2 (en) | 2008-05-30 | 2018-04-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US11621073B2 (en) | 2008-07-14 | 2023-04-04 | Abbott Diabetes Care Inc. | Closed loop control system interface and methods |
US10328201B2 (en) | 2008-07-14 | 2019-06-25 | Abbott Diabetes Care Inc. | Closed loop control system interface and methods |
US8876755B2 (en) | 2008-07-14 | 2014-11-04 | Abbott Diabetes Care Inc. | Closed loop control system interface and methods |
US11865299B2 (en) | 2008-08-20 | 2024-01-09 | Insulet Corporation | Infusion pump systems and methods |
US9610046B2 (en) | 2008-08-31 | 2017-04-04 | Abbott Diabetes Care Inc. | Closed loop control with improved alarm functions |
US9392969B2 (en) | 2008-08-31 | 2016-07-19 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
US9943644B2 (en) | 2008-08-31 | 2018-04-17 | Abbott Diabetes Care Inc. | Closed loop control with reference measurement and methods thereof |
US11679200B2 (en) | 2008-08-31 | 2023-06-20 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
US8622988B2 (en) | 2008-08-31 | 2014-01-07 | Abbott Diabetes Care Inc. | Variable rate closed loop control and methods |
US8734422B2 (en) | 2008-08-31 | 2014-05-27 | Abbott Diabetes Care Inc. | Closed loop control with improved alarm functions |
US9572934B2 (en) | 2008-08-31 | 2017-02-21 | Abbott DiabetesCare Inc. | Robust closed loop control and methods |
US10188794B2 (en) | 2008-08-31 | 2019-01-29 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
US8795252B2 (en) | 2008-08-31 | 2014-08-05 | Abbott Diabetes Care Inc. | Robust closed loop control and methods |
US9302045B2 (en) | 2008-09-12 | 2016-04-05 | Optiscan Biomedical Corporation | Fluid component analysis system and method for glucose monitoring and control |
US8417311B2 (en) | 2008-09-12 | 2013-04-09 | Optiscan Biomedical Corporation | Fluid component analysis system and method for glucose monitoring and control |
US11013439B2 (en) | 2008-09-30 | 2021-05-25 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US10045739B2 (en) | 2008-09-30 | 2018-08-14 | Abbott Diabetes Care Inc. | Analyte sensor sensitivity attenuation mitigation |
US11202592B2 (en) | 2008-09-30 | 2021-12-21 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US8986208B2 (en) | 2008-09-30 | 2015-03-24 | Abbott Diabetes Care Inc. | Analyte sensor sensitivity attenuation mitigation |
US11464434B2 (en) | 2008-09-30 | 2022-10-11 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US11484234B2 (en) | 2008-09-30 | 2022-11-01 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US8219173B2 (en) | 2008-09-30 | 2012-07-10 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US8744547B2 (en) | 2008-09-30 | 2014-06-03 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US9662056B2 (en) | 2008-09-30 | 2017-05-30 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US10980461B2 (en) | 2008-11-07 | 2021-04-20 | Dexcom, Inc. | Advanced analyte sensor calibration and error detection |
US9730650B2 (en) | 2008-11-10 | 2017-08-15 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
US11272890B2 (en) | 2008-11-10 | 2022-03-15 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
US9326707B2 (en) | 2008-11-10 | 2016-05-03 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
US11678848B2 (en) | 2008-11-10 | 2023-06-20 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
US8527208B2 (en) | 2008-11-17 | 2013-09-03 | Roche Diagnostics International Ag | Prandial blood glucose excursion optimization method via computation of time-varying optimal insulin profiles and system thereof |
US20100125241A1 (en) * | 2008-11-17 | 2010-05-20 | Disetronic Licensing, Ag | Prandial Blood Glucose Excursion Optimization Method Via Computation of Time-Varying Optimal Insulin Profiles and System Thereof |
US20100274217A1 (en) * | 2009-01-28 | 2010-10-28 | Da Silva J Ricardo | Fluid replacement device |
US10045734B2 (en) | 2009-01-28 | 2018-08-14 | Plc Medical Systems, Inc. | Fluid replacement device |
US11064939B2 (en) | 2009-01-28 | 2021-07-20 | Reprieve Cardiovascular, Inc. | Fluid replacement device |
US11992332B2 (en) | 2009-01-28 | 2024-05-28 | Reprieve Cardiovascular, Inc. | Fluid replacement device |
US8676513B2 (en) | 2009-01-29 | 2014-03-18 | Abbott Diabetes Care Inc. | Method and device for early signal attenuation detection using blood glucose measurements |
US9066709B2 (en) | 2009-01-29 | 2015-06-30 | Abbott Diabetes Care Inc. | Method and device for early signal attenuation detection using blood glucose measurements |
US8473220B2 (en) | 2009-01-29 | 2013-06-25 | Abbott Diabetes Care Inc. | Method and device for early signal attenuation detection using blood glucose measurements |
US8532935B2 (en) | 2009-01-29 | 2013-09-10 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
US10089446B2 (en) | 2009-01-29 | 2018-10-02 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
US8103456B2 (en) | 2009-01-29 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and device for early signal attenuation detection using blood glucose measurements |
US8224415B2 (en) | 2009-01-29 | 2012-07-17 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
US11464430B2 (en) | 2009-01-29 | 2022-10-11 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
US8560082B2 (en) | 2009-01-30 | 2013-10-15 | Abbott Diabetes Care Inc. | Computerized determination of insulin pump therapy parameters using real time and retrospective data processing |
USD957643S1 (en) | 2009-02-03 | 2022-07-12 | Abbott Diabetes Care Inc. | Analyte sensor device |
US9993188B2 (en) | 2009-02-03 | 2018-06-12 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11166656B2 (en) | 2009-02-03 | 2021-11-09 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
USD955599S1 (en) | 2009-02-03 | 2022-06-21 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
USD882432S1 (en) | 2009-02-03 | 2020-04-28 | Abbott Diabetes Care Inc. | Analyte sensor on body unit |
US9636068B2 (en) | 2009-02-03 | 2017-05-02 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11202591B2 (en) | 2009-02-03 | 2021-12-21 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11006870B2 (en) | 2009-02-03 | 2021-05-18 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
USD957642S1 (en) | 2009-02-03 | 2022-07-12 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
US11006871B2 (en) | 2009-02-03 | 2021-05-18 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11006872B2 (en) | 2009-02-03 | 2021-05-18 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11213229B2 (en) | 2009-02-03 | 2022-01-04 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US10786190B2 (en) | 2009-02-03 | 2020-09-29 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US9402544B2 (en) | 2009-02-03 | 2016-08-02 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
EP3254616A1 (en) * | 2009-02-04 | 2017-12-13 | Sanofi-Aventis Deutschland GmbH | Medical device and method for providing information for glycemic control |
US11135367B2 (en) | 2009-02-04 | 2021-10-05 | Sanofi-Aventis Deutschland Gmbh | Medical device and method for providing information for glycemic control |
WO2010089304A1 (en) * | 2009-02-04 | 2010-08-12 | Sanofi-Aventis Deutschland Gmbh | Medical device and method for providing information for glycemic control |
JP2012516732A (en) * | 2009-02-04 | 2012-07-26 | サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Medical device and method for providing information for blood glucose control |
CN102369029A (en) * | 2009-02-04 | 2012-03-07 | 赛诺菲-安万特德国有限公司 | Medical device and method for providing information for glycemic control |
US8730058B2 (en) | 2009-04-15 | 2014-05-20 | Abbott Diabetes Care Inc. | Analyte monitoring system having an alert |
US10009244B2 (en) | 2009-04-15 | 2018-06-26 | Abbott Diabetes Care Inc. | Analyte monitoring system having an alert |
US9178752B2 (en) | 2009-04-15 | 2015-11-03 | Abbott Diabetes Care Inc. | Analyte monitoring system having an alert |
US8497777B2 (en) | 2009-04-15 | 2013-07-30 | Abbott Diabetes Care Inc. | Analyte monitoring system having an alert |
US8467972B2 (en) | 2009-04-28 | 2013-06-18 | Abbott Diabetes Care Inc. | Closed loop blood glucose control algorithm analysis |
US9226701B2 (en) | 2009-04-28 | 2016-01-05 | Abbott Diabetes Care Inc. | Error detection in critical repeating data in a wireless sensor system |
US10194844B2 (en) | 2009-04-29 | 2019-02-05 | Abbott Diabetes Care Inc. | Methods and systems for early signal attenuation detection and processing |
US9310230B2 (en) | 2009-04-29 | 2016-04-12 | Abbott Diabetes Care Inc. | Method and system for providing real time analyte sensor calibration with retrospective backfill |
US10952653B2 (en) | 2009-04-29 | 2021-03-23 | Abbott Diabetes Care Inc. | Methods and systems for early signal attenuation detection and processing |
US10172518B2 (en) | 2009-04-29 | 2019-01-08 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US8483967B2 (en) | 2009-04-29 | 2013-07-09 | Abbott Diabetes Care Inc. | Method and system for providing real time analyte sensor calibration with retrospective backfill |
US8368556B2 (en) | 2009-04-29 | 2013-02-05 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US9693688B2 (en) | 2009-04-29 | 2017-07-04 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US11013431B2 (en) | 2009-04-29 | 2021-05-25 | Abbott Diabetes Care Inc. | Methods and systems for early signal attenuation detection and processing |
US10820842B2 (en) | 2009-04-29 | 2020-11-03 | Abbott Diabetes Care Inc. | Methods and systems for early signal attenuation detection and processing |
US9088452B2 (en) | 2009-04-29 | 2015-07-21 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US11116431B1 (en) | 2009-04-29 | 2021-09-14 | Abbott Diabetes Care Inc. | Methods and systems for early signal attenuation detection and processing |
US11298056B2 (en) | 2009-04-29 | 2022-04-12 | Abbott Diabetes Care Inc. | Methods and systems for early signal attenuation detection and processing |
US10617296B2 (en) | 2009-04-29 | 2020-04-14 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US9949639B2 (en) | 2009-04-29 | 2018-04-24 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US11872370B2 (en) | 2009-05-29 | 2024-01-16 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
US11793936B2 (en) | 2009-05-29 | 2023-10-24 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
US8613892B2 (en) | 2009-06-30 | 2013-12-24 | Abbott Diabetes Care Inc. | Analyte meter with a moveable head and methods of using the same |
US9517304B2 (en) | 2009-07-09 | 2016-12-13 | Medtronic Minimed, Inc. | Coordination of control commands and controller disable messages in a medical device system |
US9579454B2 (en) | 2009-07-09 | 2017-02-28 | Medtronic Minimed, Inc. | Coordination of control commands in a medical device system based on synchronization status between devices |
US8344847B2 (en) | 2009-07-09 | 2013-01-01 | Medtronic Minimed, Inc. | Coordination of control commands in a medical device system having at least one therapy delivery device and at least one wireless controller device |
US9987426B2 (en) | 2009-07-09 | 2018-06-05 | Medtronic Minimed, Inc. | Coordination of control commands in a medical device system based on synchronization status between devices |
US8798934B2 (en) | 2009-07-23 | 2014-08-05 | Abbott Diabetes Care Inc. | Real time management of data relating to physiological control of glucose levels |
US10827954B2 (en) | 2009-07-23 | 2020-11-10 | Abbott Diabetes Care Inc. | Continuous analyte measurement systems and systems and methods for implanting them |
US10872102B2 (en) | 2009-07-23 | 2020-12-22 | Abbott Diabetes Care Inc. | Real time management of data relating to physiological control of glucose levels |
US9795326B2 (en) | 2009-07-23 | 2017-10-24 | Abbott Diabetes Care Inc. | Continuous analyte measurement systems and systems and methods for implanting them |
EP3284494A1 (en) * | 2009-07-30 | 2018-02-21 | Tandem Diabetes Care, Inc. | Portable infusion pump system |
US20110152770A1 (en) * | 2009-07-30 | 2011-06-23 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US10434253B2 (en) | 2009-07-30 | 2019-10-08 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US11135362B2 (en) | 2009-07-30 | 2021-10-05 | Tandem Diabetes Care, Inc. | Infusion pump systems and methods |
US9211377B2 (en) | 2009-07-30 | 2015-12-15 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US8758323B2 (en) | 2009-07-30 | 2014-06-24 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US12042627B2 (en) | 2009-07-30 | 2024-07-23 | Tandem Diabetes Care, Inc. | Infusion pump systems and methods |
US11285263B2 (en) | 2009-07-30 | 2022-03-29 | Tandem Diabetes Care, Inc. | Infusion pump systems and methods |
US8287495B2 (en) | 2009-07-30 | 2012-10-16 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US8926561B2 (en) | 2009-07-30 | 2015-01-06 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US20110152824A1 (en) * | 2009-07-30 | 2011-06-23 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US8298184B2 (en) | 2009-07-30 | 2012-10-30 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US10660554B2 (en) | 2009-07-31 | 2020-05-26 | Abbott Diabetes Care Inc. | Methods and devices for analyte monitoring calibration |
US11234625B2 (en) | 2009-07-31 | 2022-02-01 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte monitoring and therapy management system accuracy |
US9936910B2 (en) | 2009-07-31 | 2018-04-10 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte monitoring and therapy management system accuracy |
US8718965B2 (en) | 2009-07-31 | 2014-05-06 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte monitoring system calibration accuracy |
US8478557B2 (en) | 2009-07-31 | 2013-07-02 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte monitoring system calibration accuracy |
US9226714B2 (en) | 2009-08-31 | 2016-01-05 | Abbott Diabetes Care Inc. | Displays for a medical device |
USRE47315E1 (en) | 2009-08-31 | 2019-03-26 | Abbott Diabetes Care Inc. | Displays for a medical device |
US10123752B2 (en) | 2009-08-31 | 2018-11-13 | Abbott Diabetes Care Inc. | Displays for a medical device |
US10772572B2 (en) | 2009-08-31 | 2020-09-15 | Abbott Diabetes Care Inc. | Displays for a medical device |
US8514086B2 (en) | 2009-08-31 | 2013-08-20 | Abbott Diabetes Care Inc. | Displays for a medical device |
US11241175B2 (en) | 2009-08-31 | 2022-02-08 | Abbott Diabetes Care Inc. | Displays for a medical device |
US9814416B2 (en) | 2009-08-31 | 2017-11-14 | Abbott Diabetes Care Inc. | Displays for a medical device |
US9968302B2 (en) | 2009-08-31 | 2018-05-15 | Abbott Diabetes Care Inc. | Analyte signal processing device and methods |
USD1010133S1 (en) | 2009-08-31 | 2024-01-02 | Abbott Diabetes Care Inc. | Analyte sensor assembly |
US10492685B2 (en) | 2009-08-31 | 2019-12-03 | Abbott Diabetes Care Inc. | Medical devices and methods |
US9186113B2 (en) | 2009-08-31 | 2015-11-17 | Abbott Diabetes Care Inc. | Displays for a medical device |
US8816862B2 (en) | 2009-08-31 | 2014-08-26 | Abbott Diabetes Care Inc. | Displays for a medical device |
US11045147B2 (en) | 2009-08-31 | 2021-06-29 | Abbott Diabetes Care Inc. | Analyte signal processing device and methods |
US11730429B2 (en) | 2009-08-31 | 2023-08-22 | Abbott Diabetes Care Inc. | Displays for a medical device |
US11202586B2 (en) | 2009-08-31 | 2021-12-21 | Abbott Diabetes Care Inc. | Displays for a medical device |
US10136816B2 (en) | 2009-08-31 | 2018-11-27 | Abbott Diabetes Care Inc. | Medical devices and methods |
US10456091B2 (en) | 2009-08-31 | 2019-10-29 | Abbott Diabetes Care Inc. | Displays for a medical device |
USD962446S1 (en) | 2009-08-31 | 2022-08-30 | Abbott Diabetes Care, Inc. | Analyte sensor device |
US10881355B2 (en) | 2009-08-31 | 2021-01-05 | Abbott Diabetes Care Inc. | Displays for a medical device |
US10429250B2 (en) | 2009-08-31 | 2019-10-01 | Abbott Diabetes Care, Inc. | Analyte monitoring system and methods for managing power and noise |
US8993331B2 (en) | 2009-08-31 | 2015-03-31 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods for managing power and noise |
US9549694B2 (en) | 2009-08-31 | 2017-01-24 | Abbott Diabetes Care Inc. | Displays for a medical device |
US9314195B2 (en) | 2009-08-31 | 2016-04-19 | Abbott Diabetes Care Inc. | Analyte signal processing device and methods |
US11150145B2 (en) | 2009-08-31 | 2021-10-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods for managing power and noise |
US10918342B1 (en) | 2009-08-31 | 2021-02-16 | Abbott Diabetes Care Inc. | Displays for a medical device |
US11635332B2 (en) | 2009-08-31 | 2023-04-25 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods for managing power and noise |
US8487758B2 (en) | 2009-09-02 | 2013-07-16 | Medtronic Minimed, Inc. | Medical device having an intelligent alerting scheme, and related operating methods |
US10349874B2 (en) | 2009-09-29 | 2019-07-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing notification function in analyte monitoring systems |
US9320461B2 (en) | 2009-09-29 | 2016-04-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing notification function in analyte monitoring systems |
US9750439B2 (en) | 2009-09-29 | 2017-09-05 | Abbott Diabetes Care Inc. | Method and apparatus for providing notification function in analyte monitoring systems |
US9750444B2 (en) | 2009-09-30 | 2017-09-05 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US9351669B2 (en) | 2009-09-30 | 2016-05-31 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US11259725B2 (en) | 2009-09-30 | 2022-03-01 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US10765351B2 (en) | 2009-09-30 | 2020-09-08 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US8185181B2 (en) | 2009-10-30 | 2012-05-22 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
US11207005B2 (en) | 2009-10-30 | 2021-12-28 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
US12048530B2 (en) | 2009-10-30 | 2024-07-30 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
US10117606B2 (en) | 2009-10-30 | 2018-11-06 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
US9050041B2 (en) | 2009-10-30 | 2015-06-09 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
US8386042B2 (en) | 2009-11-03 | 2013-02-26 | Medtronic Minimed, Inc. | Omnidirectional accelerometer device and medical device incorporating same |
US11690958B2 (en) | 2009-11-06 | 2023-07-04 | Crisi Medical Systems, Inc. | Medication injection site and data collection system |
US20150223732A1 (en) * | 2009-11-06 | 2015-08-13 | Crisi Medical Systems, Inc. | Medication Injection Site and Data Collection System |
US10503873B2 (en) * | 2009-11-06 | 2019-12-10 | Crisi Medical Systems, Inc. | Medication injection site and data collection system |
US20110152644A1 (en) * | 2009-12-18 | 2011-06-23 | Wolfgang Heck | Protective container for holding reusable diagnostic components |
US9610127B2 (en) | 2009-12-18 | 2017-04-04 | Roche Diabetes Care, Inc. | Protective container for holding reusable diagnostic components |
US8783102B2 (en) * | 2009-12-18 | 2014-07-22 | Roche Diagnostics Operations, Inc. | Protective container for holding reusable diagnostic components |
US8574201B2 (en) | 2009-12-22 | 2013-11-05 | Medtronic Minimed, Inc. | Syringe piston with check valve seal |
US8755269B2 (en) | 2009-12-23 | 2014-06-17 | Medtronic Minimed, Inc. | Ranking and switching of wireless channels in a body area network of medical devices |
US20110184653A1 (en) * | 2010-01-22 | 2011-07-28 | Lifescan, Inc. | Analyte testing method and system |
USD924406S1 (en) | 2010-02-01 | 2021-07-06 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
US11954273B2 (en) | 2010-03-10 | 2024-04-09 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
US11061491B2 (en) | 2010-03-10 | 2021-07-13 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
US9326709B2 (en) | 2010-03-10 | 2016-05-03 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
US10078380B2 (en) | 2010-03-10 | 2018-09-18 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
US11058334B1 (en) | 2010-03-24 | 2021-07-13 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
USD997362S1 (en) | 2010-03-24 | 2023-08-29 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
US11246519B2 (en) | 2010-03-24 | 2022-02-15 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US10881341B1 (en) | 2010-03-24 | 2021-01-05 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US10881340B2 (en) | 2010-03-24 | 2021-01-05 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
USD987830S1 (en) | 2010-03-24 | 2023-05-30 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
US11266335B2 (en) | 2010-03-24 | 2022-03-08 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US10772547B1 (en) | 2010-03-24 | 2020-09-15 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US11000216B2 (en) | 2010-03-24 | 2021-05-11 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
USD948722S1 (en) | 2010-03-24 | 2022-04-12 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
US11064922B1 (en) | 2010-03-24 | 2021-07-20 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US10010280B2 (en) | 2010-03-24 | 2018-07-03 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US9687183B2 (en) | 2010-03-24 | 2017-06-27 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US8764657B2 (en) | 2010-03-24 | 2014-07-01 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US10945649B2 (en) | 2010-03-24 | 2021-03-16 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US10952657B2 (en) | 2010-03-24 | 2021-03-23 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US10959654B2 (en) | 2010-03-24 | 2021-03-30 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US11013440B2 (en) | 2010-03-24 | 2021-05-25 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US9265453B2 (en) | 2010-03-24 | 2016-02-23 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US10292632B2 (en) | 2010-03-24 | 2019-05-21 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US9215992B2 (en) | 2010-03-24 | 2015-12-22 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US9186098B2 (en) | 2010-03-24 | 2015-11-17 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
CN101856525A (en) * | 2010-06-07 | 2010-10-13 | 包金明 | Medical infusion liquid drop speed monitoring method and device |
US8635046B2 (en) | 2010-06-23 | 2014-01-21 | Abbott Diabetes Care Inc. | Method and system for evaluating analyte sensor response characteristics |
US9572534B2 (en) | 2010-06-29 | 2017-02-21 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US10966644B2 (en) | 2010-06-29 | 2021-04-06 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US10959653B2 (en) | 2010-06-29 | 2021-03-30 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US11064921B2 (en) | 2010-06-29 | 2021-07-20 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US10973449B2 (en) | 2010-06-29 | 2021-04-13 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US11478173B2 (en) | 2010-06-29 | 2022-10-25 | Abbott Diabetes Care Inc. | Calibration of analyte measurement system |
US10092229B2 (en) | 2010-06-29 | 2018-10-09 | Abbott Diabetes Care Inc. | Calibration of analyte measurement system |
US10874338B2 (en) | 2010-06-29 | 2020-12-29 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US9622670B2 (en) | 2010-07-09 | 2017-04-18 | Potrero Medical, Inc. | Method and apparatus for pressure measurement |
US11213226B2 (en) | 2010-10-07 | 2022-01-04 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods |
US8603032B2 (en) | 2010-10-15 | 2013-12-10 | Medtronic Minimed, Inc. | Medical device with membrane keypad sealing element, and related manufacturing method |
US8603033B2 (en) | 2010-10-15 | 2013-12-10 | Medtronic Minimed, Inc. | Medical device and related assembly having an offset element for a piezoelectric speaker |
US8562565B2 (en) | 2010-10-15 | 2013-10-22 | Medtronic Minimed, Inc. | Battery shock absorber for a portable medical device |
US8474332B2 (en) | 2010-10-20 | 2013-07-02 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8495918B2 (en) | 2010-10-20 | 2013-07-30 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8479595B2 (en) | 2010-10-20 | 2013-07-09 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8690855B2 (en) * | 2010-12-22 | 2014-04-08 | Medtronic Minimed, Inc. | Fluid reservoir seating procedure for a fluid infusion device |
US9770553B2 (en) | 2010-12-22 | 2017-09-26 | Medtronic Minimed, Inc. | Monitoring the operating health of a force sensor in a fluid infusion device |
US10071200B2 (en) | 2010-12-22 | 2018-09-11 | Medtronic Minimed, Inc. | Fluid reservoir seating procedure for a fluid infusion device |
US8628510B2 (en) | 2010-12-22 | 2014-01-14 | Medtronic Minimed, Inc. | Monitoring the operating health of a force sensor in a fluid infusion device |
US9555190B2 (en) | 2010-12-22 | 2017-01-31 | Medtronic Minimed, Inc. | Fluid reservoir seating procedure for a fluid infusion device |
US8197444B1 (en) | 2010-12-22 | 2012-06-12 | Medtronic Minimed, Inc. | Monitoring the seating status of a fluid reservoir in a fluid infusion device |
US9895490B2 (en) | 2010-12-22 | 2018-02-20 | Medtronic Minimed, Inc. | Occlusion detection for a fluid infusion device |
US8870829B2 (en) | 2011-02-22 | 2014-10-28 | Medtronic Minimed, Inc. | Fluid infusion device and related sealing assembly for a needleless fluid reservoir |
US9393399B2 (en) | 2011-02-22 | 2016-07-19 | Medtronic Minimed, Inc. | Sealing assembly for a fluid reservoir of a fluid infusion device |
US9629992B2 (en) | 2011-02-22 | 2017-04-25 | Medtronic Minimed, Inc. | Fluid infusion device and related sealing assembly for a needleless fluid reservoir |
US9339639B2 (en) | 2011-02-22 | 2016-05-17 | Medtronic Minimed, Inc. | Sealing assembly for a fluid reservoir of a fluid infusion device |
US9463309B2 (en) | 2011-02-22 | 2016-10-11 | Medtronic Minimed, Inc. | Sealing assembly and structure for a fluid infusion device having a needled fluid reservoir |
US8945068B2 (en) | 2011-02-22 | 2015-02-03 | Medtronic Minimed, Inc. | Fluid reservoir having a fluid delivery needle for a fluid infusion device |
US9610431B2 (en) | 2011-02-22 | 2017-04-04 | Medtronic Minimed, Inc. | Pressure vented fluid reservoir having a movable septum |
US9839741B2 (en) | 2011-02-22 | 2017-12-12 | Medtronic Minimed, Inc. | Flanged sealing element and needle guide pin assembly for a fluid infusion device having a needled fluid reservoir |
US8864726B2 (en) | 2011-02-22 | 2014-10-21 | Medtronic Minimed, Inc. | Pressure vented fluid reservoir having a movable septum |
US9533132B2 (en) | 2011-02-22 | 2017-01-03 | Medtronic Minimed, Inc. | Pressure vented fluid reservoir for a fluid infusion device |
US8900206B2 (en) | 2011-02-22 | 2014-12-02 | Medtronic Minimed, Inc. | Pressure vented fluid reservoir for a fluid infusion device |
US9532737B2 (en) | 2011-02-28 | 2017-01-03 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US8614596B2 (en) | 2011-02-28 | 2013-12-24 | Medtronic Minimed, Inc. | Systems and methods for initializing a voltage bus and medical devices incorporating same |
US11534089B2 (en) | 2011-02-28 | 2022-12-27 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US11627898B2 (en) | 2011-02-28 | 2023-04-18 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US10136845B2 (en) | 2011-02-28 | 2018-11-27 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US9101305B2 (en) | 2011-03-09 | 2015-08-11 | Medtronic Minimed, Inc. | Glucose sensor product and related manufacturing and packaging methods |
US9616165B2 (en) | 2011-03-09 | 2017-04-11 | Medtronic Minimed, Inc. | Glucose sensor product |
US8564447B2 (en) | 2011-03-18 | 2013-10-22 | Medtronic Minimed, Inc. | Battery life indication techniques for an electronic device |
US9755452B2 (en) | 2011-03-18 | 2017-09-05 | Medtronic Minimed, Inc. | Power control techniques for an electronic device |
US9018893B2 (en) | 2011-03-18 | 2015-04-28 | Medtronic Minimed, Inc. | Power control techniques for an electronic device |
US9743862B2 (en) | 2011-03-31 | 2017-08-29 | Abbott Diabetes Care Inc. | Systems and methods for transcutaneously implanting medical devices |
US10835162B2 (en) | 2011-04-15 | 2020-11-17 | Dexcom, Inc. | Advanced analyte sensor calibration and error detection |
US10561354B2 (en) | 2011-04-15 | 2020-02-18 | Dexcom, Inc. | Advanced analyte sensor calibration and error detection |
US10610141B2 (en) | 2011-04-15 | 2020-04-07 | Dexcom, Inc. | Advanced analyte sensor calibration and error detection |
US10682084B2 (en) | 2011-04-15 | 2020-06-16 | Dexcom, Inc. | Advanced analyte sensor calibration and error detection |
US10624568B2 (en) | 2011-04-15 | 2020-04-21 | Dexcom, Inc. | Advanced analyte sensor calibration and error detection |
US10555695B2 (en) | 2011-04-15 | 2020-02-11 | Dexcom, Inc. | Advanced analyte sensor calibration and error detection |
US10722162B2 (en) | 2011-04-15 | 2020-07-28 | Dexcom, Inc. | Advanced analyte sensor calibration and error detection |
US9465420B2 (en) | 2011-10-31 | 2016-10-11 | Abbott Diabetes Care Inc. | Electronic devices having integrated reset systems and methods thereof |
US9069536B2 (en) | 2011-10-31 | 2015-06-30 | Abbott Diabetes Care Inc. | Electronic devices having integrated reset systems and methods thereof |
US9622691B2 (en) | 2011-10-31 | 2017-04-18 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
US11406331B2 (en) | 2011-10-31 | 2022-08-09 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
US9913619B2 (en) | 2011-10-31 | 2018-03-13 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
US9980669B2 (en) | 2011-11-07 | 2018-05-29 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods |
US9289179B2 (en) | 2011-11-23 | 2016-03-22 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US8710993B2 (en) | 2011-11-23 | 2014-04-29 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US9317656B2 (en) | 2011-11-23 | 2016-04-19 | Abbott Diabetes Care Inc. | Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof |
US9721063B2 (en) | 2011-11-23 | 2017-08-01 | Abbott Diabetes Care Inc. | Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof |
US10136847B2 (en) | 2011-11-23 | 2018-11-27 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US10939859B2 (en) | 2011-11-23 | 2021-03-09 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US11783941B2 (en) | 2011-11-23 | 2023-10-10 | Abbott Diabetes Care Inc. | Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof |
US9743872B2 (en) | 2011-11-23 | 2017-08-29 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US11205511B2 (en) | 2011-11-23 | 2021-12-21 | Abbott Diabetes Care Inc. | Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof |
US11391723B2 (en) | 2011-11-25 | 2022-07-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods of use |
US9339217B2 (en) | 2011-11-25 | 2016-05-17 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods of use |
US10082493B2 (en) | 2011-11-25 | 2018-09-25 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods of use |
US11179068B2 (en) | 2011-12-11 | 2021-11-23 | Abbott Diabetes Care Inc. | Analyte sensor devices, connections, and methods |
US11051725B2 (en) | 2011-12-11 | 2021-07-06 | Abbott Diabetes Care Inc. | Analyte sensor devices, connections, and methods |
USD903877S1 (en) | 2011-12-11 | 2020-12-01 | Abbott Diabetes Care Inc. | Analyte sensor device |
USD915602S1 (en) | 2011-12-11 | 2021-04-06 | Abbott Diabetes Care Inc. | Analyte sensor device |
USD915601S1 (en) | 2011-12-11 | 2021-04-06 | Abbott Diabetes Care Inc. | Analyte sensor device |
US9402570B2 (en) | 2011-12-11 | 2016-08-02 | Abbott Diabetes Care Inc. | Analyte sensor devices, connections, and methods |
USD1036674S1 (en) | 2011-12-11 | 2024-07-23 | Abbott Diabetes Care Inc. | Analyte sensor device |
US9931066B2 (en) | 2011-12-11 | 2018-04-03 | Abbott Diabetes Care Inc. | Analyte sensor devices, connections, and methods |
US9693713B2 (en) | 2011-12-11 | 2017-07-04 | Abbott Diabetes Care Inc. | Analyte sensor devices, connections, and methods |
US11051724B2 (en) | 2011-12-11 | 2021-07-06 | Abbott Diabetes Care Inc. | Analyte sensor devices, connections, and methods |
US9610401B2 (en) | 2012-01-13 | 2017-04-04 | Medtronic Minimed, Inc. | Infusion set component with modular fluid channel element |
US10141882B2 (en) | 2012-03-20 | 2018-11-27 | Medtronic Minimed, Inc. | Motor health monitoring and medical device incorporating same |
US9379652B2 (en) | 2012-03-20 | 2016-06-28 | Medtronic Minimed, Inc. | Motor health monitoring and medical device incorporating same |
US9379653B2 (en) | 2012-03-20 | 2016-06-28 | Medtronic Minimed, Inc. | Dynamic pulse-width modulation motor control and medical device incorporating same |
US8603026B2 (en) | 2012-03-20 | 2013-12-10 | Medtronic Minimed, Inc. | Dynamic pulse-width modulation motor control and medical device incorporating same |
US9344024B2 (en) | 2012-03-20 | 2016-05-17 | Medtronic Minimed, Inc. | Occlusion detection using pulse-width modulation and medical device incorporating same |
US8603027B2 (en) | 2012-03-20 | 2013-12-10 | Medtronic Minimed, Inc. | Occlusion detection using pulse-width modulation and medical device incorporating same |
US8523803B1 (en) | 2012-03-20 | 2013-09-03 | Medtronic Minimed, Inc. | Motor health monitoring and medical device incorporating same |
US10228663B2 (en) | 2012-03-20 | 2019-03-12 | Medtronic Minimed, Inc. | Dynamic pulse-width modulation motor control and medical device incorporating same |
US10258736B2 (en) | 2012-05-17 | 2019-04-16 | Tandem Diabetes Care, Inc. | Systems including vial adapter for fluid transfer |
US9555186B2 (en) | 2012-06-05 | 2017-01-31 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US11676694B2 (en) | 2012-06-07 | 2023-06-13 | Tandem Diabetes Care, Inc. | Device and method for training users of ambulatory medical devices |
US10391242B2 (en) | 2012-06-07 | 2019-08-27 | Medtronic Minimed, Inc. | Diabetes therapy management system for recommending bolus calculator adjustments |
US20130331961A1 (en) * | 2012-06-11 | 2013-12-12 | General Electric Company | Data exchange system providing flexible and robust handling of units of measure |
US9333292B2 (en) | 2012-06-26 | 2016-05-10 | Medtronic Minimed, Inc. | Mechanically actuated fluid infusion device |
US9757518B2 (en) | 2012-06-26 | 2017-09-12 | Medtronic Minimed, Inc. | Mechanically actuated fluid infusion device |
US10232112B2 (en) | 2012-08-21 | 2019-03-19 | Medtronic Minimed, Inc. | Reservoir plunger position monitoring and medical device incorporating same |
US9517303B2 (en) | 2012-08-21 | 2016-12-13 | Medtronic Minimed, Inc. | Reservoir plunger position monitoring and medical device incorporating same |
US8808269B2 (en) | 2012-08-21 | 2014-08-19 | Medtronic Minimed, Inc. | Reservoir plunger position monitoring and medical device incorporating same |
US11628250B2 (en) | 2012-08-30 | 2023-04-18 | Medtronic Minimed, Inc. | Temporary target glucose values for temporary reductions in fluid delivery |
US9662445B2 (en) | 2012-08-30 | 2017-05-30 | Medtronic Minimed, Inc. | Regulating entry into a closed-loop operating mode of an insulin infusion system |
US11986633B2 (en) | 2012-08-30 | 2024-05-21 | Medtronic Minimed, Inc. | Sensor model supervisor for temporary reductions in fluid delivery by a fluid delivery device |
US9526834B2 (en) | 2012-08-30 | 2016-12-27 | Medtronic Minimed, Inc. | Safeguarding measures for a closed-loop insulin infusion system |
US9878096B2 (en) | 2012-08-30 | 2018-01-30 | Medtronic Minimed, Inc. | Generation of target glucose values for a closed-loop operating mode of an insulin infusion system |
US10345291B2 (en) | 2012-08-30 | 2019-07-09 | Abbott Diabetes Care Inc. | Dropout detection in continuous analyte monitoring data during data excursions |
US10496797B2 (en) | 2012-08-30 | 2019-12-03 | Medtronic Minimed, Inc. | Blood glucose validation for a closed-loop operating mode of an insulin infusion system |
US9623179B2 (en) | 2012-08-30 | 2017-04-18 | Medtronic Minimed, Inc. | Safeguarding techniques for a closed-loop insulin infusion system |
US9849239B2 (en) | 2012-08-30 | 2017-12-26 | Medtronic Minimed, Inc. | Generation and application of an insulin limit for a closed-loop operating mode of an insulin infusion system |
US10130767B2 (en) | 2012-08-30 | 2018-11-20 | Medtronic Minimed, Inc. | Sensor model supervisor for a closed-loop insulin infusion system |
US10758674B2 (en) | 2012-08-30 | 2020-09-01 | Medtronic Minimed, Inc. | Safeguarding measures for a closed-loop insulin infusion system |
US10132793B2 (en) | 2012-08-30 | 2018-11-20 | Abbott Diabetes Care Inc. | Dropout detection in continuous analyte monitoring data during data excursions |
US10656139B2 (en) | 2012-08-30 | 2020-05-19 | Abbott Diabetes Care Inc. | Dropout detection in continuous analyte monitoring data during data excursions |
US9364609B2 (en) | 2012-08-30 | 2016-06-14 | Medtronic Minimed, Inc. | Insulin on board compensation for a closed-loop insulin infusion system |
US10942164B2 (en) | 2012-08-30 | 2021-03-09 | Abbott Diabetes Care Inc. | Dropout detection in continuous analyte monitoring data during data excursions |
US11950936B2 (en) | 2012-09-17 | 2024-04-09 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
US9968306B2 (en) | 2012-09-17 | 2018-05-15 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
US11612363B2 (en) | 2012-09-17 | 2023-03-28 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
US11896371B2 (en) | 2012-09-26 | 2024-02-13 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
US9907492B2 (en) | 2012-09-26 | 2018-03-06 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
US10842420B2 (en) | 2012-09-26 | 2020-11-24 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
US9675290B2 (en) | 2012-10-30 | 2017-06-13 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
US9801577B2 (en) | 2012-10-30 | 2017-10-31 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
US10188334B2 (en) | 2012-10-30 | 2019-01-29 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
US9513104B2 (en) | 2012-11-15 | 2016-12-06 | Medtronic Minimed, Inc. | Systems and methods for alignment and detection of a consumable component |
US8870818B2 (en) | 2012-11-15 | 2014-10-28 | Medtronic Minimed, Inc. | Systems and methods for alignment and detection of a consumable component |
US9522223B2 (en) | 2013-01-18 | 2016-12-20 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9107994B2 (en) | 2013-01-18 | 2015-08-18 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9033924B2 (en) | 2013-01-18 | 2015-05-19 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9308321B2 (en) | 2013-02-18 | 2016-04-12 | Medtronic Minimed, Inc. | Infusion device having gear assembly initialization |
US11607492B2 (en) | 2013-03-13 | 2023-03-21 | Tandem Diabetes Care, Inc. | System and method for integration and display of data of insulin pumps and continuous glucose monitoring |
USD938457S1 (en) | 2013-03-13 | 2021-12-14 | Tandem Diabetes Care, Inc. | Medical device display screen or portion thereof with graphical user interface |
US9962486B2 (en) | 2013-03-14 | 2018-05-08 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US9772386B2 (en) | 2013-03-15 | 2017-09-26 | Fresenius Medical Care Holdings, Inc. | Dialysis system with sample concentration determination device using magnet and radio frequency coil assemblies |
US10874336B2 (en) | 2013-03-15 | 2020-12-29 | Abbott Diabetes Care Inc. | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
US9180243B2 (en) | 2013-03-15 | 2015-11-10 | Tandem Diabetes Care, Inc. | Detection of infusion pump conditions |
US10451572B2 (en) | 2013-03-15 | 2019-10-22 | Fresenius Medical Care Holdings, Inc. | Medical fluid cartridge with related systems |
US10371775B2 (en) | 2013-03-15 | 2019-08-06 | Fresenius Medical Care Holdings, Inc. | Dialysis system with radio frequency device within a magnet assembly for medical fluid sensing and concentration determination |
US9474475B1 (en) | 2013-03-15 | 2016-10-25 | Abbott Diabetes Care Inc. | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
US10433773B1 (en) | 2013-03-15 | 2019-10-08 | Abbott Diabetes Care Inc. | Noise rejection methods and apparatus for sparsely sampled analyte sensor data |
US9433718B2 (en) | 2013-03-15 | 2016-09-06 | Fresenius Medical Care Holdings, Inc. | Medical fluid system including radio frequency (RF) device within a magnetic assembly, and fluid cartridge body with one of multiple passageways disposed within the RF device, and specially configured cartridge gap accepting a portion of said RF device |
US9713664B2 (en) | 2013-03-15 | 2017-07-25 | Fresenius Medical Care Holdings, Inc. | Nuclear magnetic resonance module for a dialysis machine |
US9597439B2 (en) | 2013-03-15 | 2017-03-21 | Fresenius Medical Care Holdings, Inc. | Medical fluid sensing and concentration determination using radio frequency energy and a magnetic field |
US9566377B2 (en) | 2013-03-15 | 2017-02-14 | Fresenius Medical Care Holdings, Inc. | Medical fluid sensing and concentration determination in a fluid cartridge with multiple passageways, using a radio frequency device situated within a magnetic field |
US10076285B2 (en) | 2013-03-15 | 2018-09-18 | Abbott Diabetes Care Inc. | Sensor fault detection using analyte sensor data pattern comparison |
US8920381B2 (en) | 2013-04-12 | 2014-12-30 | Medtronic Minimed, Inc. | Infusion set with improved bore configuration |
US10661037B2 (en) * | 2013-06-25 | 2020-05-26 | Socpra Sciences Et Génie S.E.C. | Indirect measurement in a total liquid ventilation system |
US11957877B2 (en) | 2013-07-19 | 2024-04-16 | Dexcom, Inc. | Time averaged basal rate optimizer |
US10821229B2 (en) | 2013-07-19 | 2020-11-03 | Dexcom, Inc. | Time averaged basal rate optimizer |
US11813433B2 (en) | 2013-07-19 | 2023-11-14 | Dexcom, Inc. | Time averaged basal rate optimizer |
US9795732B2 (en) | 2013-07-19 | 2017-10-24 | Medtronic Minimed, Inc. | Detecting unintentional motor motion and infusion device incorporating same |
US10112011B2 (en) | 2013-07-19 | 2018-10-30 | Dexcom, Inc. | Time averaged basal rate optimizer |
US12064591B2 (en) | 2013-07-19 | 2024-08-20 | Insulet Corporation | Infusion pump system and method |
US9433731B2 (en) | 2013-07-19 | 2016-09-06 | Medtronic Minimed, Inc. | Detecting unintentional motor motion and infusion device incorporating same |
US10124113B2 (en) | 2013-08-13 | 2018-11-13 | Medtronic Minimed, Inc. | Detecting conditions associated with medical device operations using matched filters |
US9402949B2 (en) | 2013-08-13 | 2016-08-02 | Medtronic Minimed, Inc. | Detecting conditions associated with medical device operations using matched filters |
US12033737B2 (en) | 2013-08-21 | 2024-07-09 | Medtronic Minimed, Inc. | Streamed communication of updated control information to a medical device via an intermediate device |
US9889257B2 (en) | 2013-08-21 | 2018-02-13 | Medtronic Minimed, Inc. | Systems and methods for updating medical devices |
US11024408B2 (en) | 2013-08-21 | 2021-06-01 | Medtronic Minimed, Inc. | Medical devices and related updating methods and systems |
US9880528B2 (en) | 2013-08-21 | 2018-01-30 | Medtronic Minimed, Inc. | Medical devices and related updating methods and systems |
US9259528B2 (en) | 2013-08-22 | 2016-02-16 | Medtronic Minimed, Inc. | Fluid infusion device with safety coupling |
US10188789B2 (en) | 2013-08-22 | 2019-01-29 | Medtronic Minimed, Inc. | Fluid infusion device with safety coupling |
US9565718B2 (en) | 2013-09-10 | 2017-02-07 | Tandem Diabetes Care, Inc. | System and method for detecting and transmitting medical device alarm with a smartphone application |
US9750878B2 (en) | 2013-12-11 | 2017-09-05 | Medtronic Minimed, Inc. | Closed-loop control of glucose according to a predicted blood glucose trajectory |
US9750877B2 (en) | 2013-12-11 | 2017-09-05 | Medtronic Minimed, Inc. | Predicted time to assess and/or control a glycemic state |
US10105488B2 (en) | 2013-12-12 | 2018-10-23 | Medtronic Minimed, Inc. | Predictive infusion device operations and related methods and systems |
US9849240B2 (en) | 2013-12-12 | 2017-12-26 | Medtronic Minimed, Inc. | Data modification for predictive operations and devices incorporating same |
US12017044B2 (en) | 2013-12-12 | 2024-06-25 | Medtronic Minimed, Inc. | Predictive infusion device operations and related methods and systems |
US10960136B2 (en) | 2013-12-12 | 2021-03-30 | Medtronic Minimed, Inc. | Predictive infusion device operations and related methods and systems |
US9694132B2 (en) | 2013-12-19 | 2017-07-04 | Medtronic Minimed, Inc. | Insertion device for insertion set |
US10918785B2 (en) | 2013-12-26 | 2021-02-16 | Tandem Diabetes Care, Inc. | Integration of infusion pump with remote electronic device |
US10213547B2 (en) | 2013-12-26 | 2019-02-26 | Tandem Diabetes Care, Inc. | Safety processor for a drug delivery device |
US11383027B2 (en) | 2013-12-26 | 2022-07-12 | Tandem Diabetes Care, Inc. | Integration of infusion pump with remote electronic device |
US9486571B2 (en) | 2013-12-26 | 2016-11-08 | Tandem Diabetes Care, Inc. | Safety processor for wireless control of a drug delivery device |
US11911590B2 (en) | 2013-12-26 | 2024-02-27 | Tandem Diabetes Care, Inc. | Integration of infusion pump with remote electronic device |
US10478551B2 (en) | 2013-12-26 | 2019-11-19 | Tandem Diabetes Care, Inc. | Integration of infusion pump with remote electronic device |
US9737656B2 (en) | 2013-12-26 | 2017-08-22 | Tandem Diabetes Care, Inc. | Integration of infusion pump with remote electronic device |
US10806851B2 (en) | 2013-12-26 | 2020-10-20 | Tandem Diabetes Care, Inc. | Wireless control of a drug delivery device |
US11229382B2 (en) | 2013-12-31 | 2022-01-25 | Abbott Diabetes Care Inc. | Self-powered analyte sensor and devices using the same |
US11386996B2 (en) | 2014-01-30 | 2022-07-12 | Insulet Netherlands B.V. | Therapeutic product delivery system and method of pairing |
US10166331B2 (en) | 2014-02-06 | 2019-01-01 | Medtronic Minimed, Inc. | Automatic closed-loop control adjustments and infusion systems incorporating same |
US9861748B2 (en) | 2014-02-06 | 2018-01-09 | Medtronic Minimed, Inc. | User-configurable closed-loop notifications and infusion systems incorporating same |
US11241535B2 (en) | 2014-02-06 | 2022-02-08 | Medtronic Minimed, Inc. | User-configurable closed-loop notifications and infusion systems incorporating same |
US9399096B2 (en) | 2014-02-06 | 2016-07-26 | Medtronic Minimed, Inc. | Automatic closed-loop control adjustments and infusion systems incorporating same |
US9072425B1 (en) * | 2014-03-04 | 2015-07-07 | Stuart Bogema | Method of providing a proper on-site evidence chain for a combined drug test/DNA preservation protocol |
US10639419B2 (en) | 2014-03-17 | 2020-05-05 | Plc Medical Systems, Inc. | Fluid therapy method |
US11696985B2 (en) | 2014-03-17 | 2023-07-11 | Reprieve Cardiovascular, Inc. | Fluid therapy method |
US9610402B2 (en) | 2014-03-24 | 2017-04-04 | Medtronic Minimed, Inc. | Transcutaneous conduit insertion mechanism with a living hinge for use with a fluid infusion patch pump device |
US9987422B2 (en) | 2014-03-24 | 2018-06-05 | Medtronic Minimed, Inc. | Fluid infusion patch pump device with automatic startup feature |
US10034976B2 (en) | 2014-03-24 | 2018-07-31 | Medtronic Minimed, Inc. | Fluid infusion patch pump device with automatic fluid system priming feature |
US10286135B2 (en) | 2014-03-28 | 2019-05-14 | Fresenius Medical Care Holdings, Inc. | Measuring conductivity of a medical fluid |
US11717225B2 (en) | 2014-03-30 | 2023-08-08 | Abbott Diabetes Care Inc. | Method and apparatus for determining meal start and peak events in analyte monitoring systems |
US10001450B2 (en) | 2014-04-18 | 2018-06-19 | Medtronic Minimed, Inc. | Nonlinear mapping technique for a physiological characteristic sensor |
US10232113B2 (en) | 2014-04-24 | 2019-03-19 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for regulating insulin on board |
US11344674B2 (en) | 2014-04-24 | 2022-05-31 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for regulating insulin on board |
US9681828B2 (en) | 2014-05-01 | 2017-06-20 | Medtronic Minimed, Inc. | Physiological characteristic sensors and methods for forming such sensors |
US10275572B2 (en) | 2014-05-01 | 2019-04-30 | Medtronic Minimed, Inc. | Detecting blockage of a reservoir cavity during a seating operation of a fluid infusion device |
US10007765B2 (en) | 2014-05-19 | 2018-06-26 | Medtronic Minimed, Inc. | Adaptive signal processing for infusion devices and related methods and systems |
US10274349B2 (en) | 2014-05-19 | 2019-04-30 | Medtronic Minimed, Inc. | Calibration factor adjustments for infusion devices and related methods and systems |
US10152049B2 (en) | 2014-05-19 | 2018-12-11 | Medtronic Minimed, Inc. | Glucose sensor health monitoring and related methods and systems |
US9833563B2 (en) | 2014-09-26 | 2017-12-05 | Medtronic Minimed, Inc. | Systems for managing reservoir chamber pressure |
US9839753B2 (en) | 2014-09-26 | 2017-12-12 | Medtronic Minimed, Inc. | Systems for managing reservoir chamber pressure |
US10279126B2 (en) | 2014-10-07 | 2019-05-07 | Medtronic Minimed, Inc. | Fluid conduit assembly with gas trapping filter in the fluid flow path |
US9833564B2 (en) | 2014-11-25 | 2017-12-05 | Medtronic Minimed, Inc. | Fluid conduit assembly with air venting features |
US10195341B2 (en) | 2014-11-26 | 2019-02-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US9987420B2 (en) | 2014-11-26 | 2018-06-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US11636938B2 (en) | 2014-12-04 | 2023-04-25 | Medtronic Minimed, Inc. | Methods for operating mode transitions and related infusion devices and systems |
US9943645B2 (en) | 2014-12-04 | 2018-04-17 | Medtronic Minimed, Inc. | Methods for operating mode transitions and related infusion devices and systems |
US11031114B2 (en) | 2014-12-04 | 2021-06-08 | Medtronic Minimed, Inc | Methods for operating mode transitions and related infusion devices and systems |
AU2015355337B2 (en) * | 2014-12-04 | 2018-10-11 | Medtronic Minimed, Inc. | Advance diagnosis of infusion device operating mode viability |
KR20200045005A (en) * | 2014-12-04 | 2020-04-29 | 메드트로닉 미니메드 인코포레이티드 | Advance diagnosis of infusion device operating mode viability |
AU2020204039B2 (en) * | 2014-12-04 | 2021-04-01 | Medtronic Minimed, Inc. | Advance diagnosis of infusion device operating mode viability |
KR20170085110A (en) * | 2014-12-04 | 2017-07-21 | 메드트로닉 미니메드 인코포레이티드 | Advance diagnosis of infusion device operating mode viability |
CN106133731A (en) * | 2014-12-04 | 2016-11-16 | 美敦力迷你迈德公司 | The diagnosis in advance of infusion apparatus operational mode feasibility |
KR102306738B1 (en) | 2014-12-04 | 2021-09-30 | 메드트로닉 미니메드 인코포레이티드 | Advance diagnosis of infusion device operating mode viability |
CN110101939A (en) * | 2014-12-04 | 2019-08-09 | 美敦力迷你迈德公司 | The diagnosis in advance of infusion apparatus operational mode feasibility |
US9636453B2 (en) * | 2014-12-04 | 2017-05-02 | Medtronic Minimed, Inc. | Advance diagnosis of infusion device operating mode viability |
AU2019200150B2 (en) * | 2014-12-04 | 2020-04-23 | Medtronic Minimed, Inc. | Advance diagnosis of infusion device operating mode viability |
KR102105745B1 (en) | 2014-12-04 | 2020-04-28 | 메드트로닉 미니메드 인코포레이티드 | Advance diagnosis of infusion device operating mode viability |
US10363366B2 (en) | 2014-12-04 | 2019-07-30 | Medtronic Minimed, Inc. | Advance diagnosis of infusion device operating mode viability |
US11633536B2 (en) | 2014-12-04 | 2023-04-25 | Medtronic Minimed, Inc. | Advance diagnosis of operating mode viability |
US9937292B2 (en) | 2014-12-09 | 2018-04-10 | Medtronic Minimed, Inc. | Systems for filling a fluid infusion device reservoir |
US10307535B2 (en) | 2014-12-19 | 2019-06-04 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for preemptive alerting |
US11744942B2 (en) | 2014-12-19 | 2023-09-05 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for preemptive alerting |
US11191896B2 (en) | 2014-12-19 | 2021-12-07 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for preemptive alerting |
US10265031B2 (en) | 2014-12-19 | 2019-04-23 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for automatic alert clearing |
US11596740B2 (en) | 2015-02-18 | 2023-03-07 | Insulet Corporation | Fluid delivery and infusion devices, and methods of use thereof |
US10307528B2 (en) | 2015-03-09 | 2019-06-04 | Medtronic Minimed, Inc. | Extensible infusion devices and related methods |
US10449298B2 (en) | 2015-03-26 | 2019-10-22 | Medtronic Minimed, Inc. | Fluid injection devices and related methods |
US10213139B2 (en) | 2015-05-14 | 2019-02-26 | Abbott Diabetes Care Inc. | Systems, devices, and methods for assembling an applicator and sensor control device |
USD980986S1 (en) | 2015-05-14 | 2023-03-14 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
US10674944B2 (en) | 2015-05-14 | 2020-06-09 | Abbott Diabetes Care Inc. | Compact medical device inserters and related systems and methods |
US10137243B2 (en) | 2015-05-26 | 2018-11-27 | Medtronic Minimed, Inc. | Infusion devices with distributed motor control and related operating methods |
US9999721B2 (en) | 2015-05-26 | 2018-06-19 | Medtronic Minimed, Inc. | Error handling in infusion devices with distributed motor control and related operating methods |
US10575767B2 (en) | 2015-05-29 | 2020-03-03 | Medtronic Minimed, Inc. | Method for monitoring an analyte, analyte sensor and analyte monitoring apparatus |
US9879668B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and an optical sensor |
US9878095B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and multiple sensor contact elements |
US10010668B2 (en) | 2015-06-22 | 2018-07-03 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and a force sensor |
US9987425B2 (en) | 2015-06-22 | 2018-06-05 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and sensor contact elements |
US9993594B2 (en) | 2015-06-22 | 2018-06-12 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and rotor position sensors |
US11553883B2 (en) | 2015-07-10 | 2023-01-17 | Abbott Diabetes Care Inc. | System, device and method of dynamic glucose profile response to physiological parameters |
US11027064B2 (en) | 2015-08-21 | 2021-06-08 | Medtronic Minimed, Inc. | Methods for providing sensor site rotation feedback and related infusion devices and systems |
US11872372B2 (en) | 2015-08-21 | 2024-01-16 | Medtronic Minimed, Inc. | Identification of sites for sensing arrangements |
US10867012B2 (en) | 2015-08-21 | 2020-12-15 | Medtronic Minimed, Inc. | Data analytics and insight delivery for the management and control of diabetes |
US10293108B2 (en) | 2015-08-21 | 2019-05-21 | Medtronic Minimed, Inc. | Infusion devices and related patient ratio adjustment methods |
US10664569B2 (en) | 2015-08-21 | 2020-05-26 | Medtronic Minimed, Inc. | Data analytics and generation of recommendations for controlling glycemic outcomes associated with tracked events |
US12057214B2 (en) | 2015-08-21 | 2024-08-06 | Medtronic Minimed, Inc. | Personalized event detection |
US11338086B2 (en) | 2015-08-21 | 2022-05-24 | Medtronic Minimed, Inc. | Infusion devices and related patient ratio adjustment methods |
US11857765B2 (en) | 2015-08-21 | 2024-01-02 | Medtronic Minimed, Inc. | Personalized parameter modeling methods and related devices and systems |
US10201657B2 (en) | 2015-08-21 | 2019-02-12 | Medtronic Minimed, Inc. | Methods for providing sensor site rotation feedback and related infusion devices and systems |
US10463297B2 (en) | 2015-08-21 | 2019-11-05 | Medtronic Minimed, Inc. | Personalized event detection methods and related devices and systems |
US11484651B2 (en) | 2015-08-21 | 2022-11-01 | Medtronic Minimed, Inc. | Personalized parameter modeling methods and related devices and systems |
US10543314B2 (en) | 2015-08-21 | 2020-01-28 | Medtronic Minimed, Inc. | Personalized parameter modeling with signal calibration based on historical data |
US10478557B2 (en) | 2015-08-21 | 2019-11-19 | Medtronic Minimed, Inc. | Personalized parameter modeling methods and related devices and systems |
US10117992B2 (en) | 2015-09-29 | 2018-11-06 | Medtronic Minimed, Inc. | Infusion devices and related rescue detection methods |
US11501867B2 (en) | 2015-10-19 | 2022-11-15 | Medtronic Minimed, Inc. | Medical devices and related event pattern presentation methods |
US11666702B2 (en) | 2015-10-19 | 2023-06-06 | Medtronic Minimed, Inc. | Medical devices and related event pattern treatment recommendation methods |
US11075006B2 (en) | 2015-10-23 | 2021-07-27 | Medtronic Minimed, Inc. | Medical devices and related methods and systems for data transfer |
US10146911B2 (en) | 2015-10-23 | 2018-12-04 | Medtronic Minimed, Inc. | Medical devices and related methods and systems for data transfer |
US10037722B2 (en) | 2015-11-03 | 2018-07-31 | Medtronic Minimed, Inc. | Detecting breakage in a display element |
US10449306B2 (en) | 2015-11-25 | 2019-10-22 | Medtronics Minimed, Inc. | Systems for fluid delivery with wicking membrane |
US11638781B2 (en) | 2015-12-29 | 2023-05-02 | Tandem Diabetes Care, Inc. | System and method for switching between closed loop and open loop control of an ambulatory infusion pump |
US11929158B2 (en) | 2016-01-13 | 2024-03-12 | Insulet Corporation | User interface for diabetes management system |
US12106837B2 (en) | 2016-01-14 | 2024-10-01 | Insulet Corporation | Occlusion resolution in medication delivery devices, systems, and methods |
US11857763B2 (en) | 2016-01-14 | 2024-01-02 | Insulet Corporation | Adjusting insulin delivery rates |
US10589038B2 (en) | 2016-04-27 | 2020-03-17 | Medtronic Minimed, Inc. | Set connector systems for venting a fluid reservoir |
US11724027B2 (en) | 2016-09-23 | 2023-08-15 | Insulet Corporation | Fluid delivery device with sensor |
US11097051B2 (en) | 2016-11-04 | 2021-08-24 | Medtronic Minimed, Inc. | Methods and apparatus for detecting and reacting to insufficient hypoglycemia response |
US12064599B2 (en) | 2016-11-04 | 2024-08-20 | Medtronic Minimed, Inc. | Management of insufficient hypoglycemia response |
US12115339B2 (en) | 2016-11-28 | 2024-10-15 | Medtronic Minimed, Inc. | Interactive guidance for medical devices |
CN108143400A (en) * | 2016-12-02 | 2018-06-12 | 杏旭天利医疗器械(北京)有限公司 | Body temperature measuring device, system and method |
US10238030B2 (en) | 2016-12-06 | 2019-03-26 | Medtronic Minimed, Inc. | Wireless medical device with a complementary split ring resonator arrangement for suppression of electromagnetic interference |
US12076160B2 (en) | 2016-12-12 | 2024-09-03 | Insulet Corporation | Alarms and alerts for medication delivery devices and systems |
US10272201B2 (en) | 2016-12-22 | 2019-04-30 | Medtronic Minimed, Inc. | Insertion site monitoring methods and related infusion devices and systems |
US11969579B2 (en) | 2017-01-13 | 2024-04-30 | Insulet Corporation | Insulin delivery methods, systems and devices |
US12042630B2 (en) | 2017-01-13 | 2024-07-23 | Insulet Corporation | System and method for adjusting insulin delivery |
US11071478B2 (en) | 2017-01-23 | 2021-07-27 | Abbott Diabetes Care Inc. | Systems, devices and methods for analyte sensor insertion |
US10532165B2 (en) | 2017-01-30 | 2020-01-14 | Medtronic Minimed, Inc. | Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device |
US10500135B2 (en) | 2017-01-30 | 2019-12-10 | Medtronic Minimed, Inc. | Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device |
US11908562B2 (en) | 2017-02-07 | 2024-02-20 | Medtronic Minimed, Inc. | Infusion system consumables and related calibration methods |
US10552580B2 (en) | 2017-02-07 | 2020-02-04 | Medtronic Minimed, Inc. | Infusion system consumables and related calibration methods |
US10363365B2 (en) | 2017-02-07 | 2019-07-30 | Medtronic Minimed, Inc. | Infusion devices and related consumable calibration methods |
US10646649B2 (en) | 2017-02-21 | 2020-05-12 | Medtronic Minimed, Inc. | Infusion devices and fluid identification apparatuses and methods |
US11672910B2 (en) | 2017-02-21 | 2023-06-13 | Medtronic Minimed, Inc. | Infusion devices and fluid identification apparatuses and methods |
US11207463B2 (en) | 2017-02-21 | 2021-12-28 | Medtronic Minimed, Inc. | Apparatuses, systems, and methods for identifying an infusate in a reservoir of an infusion device |
US11596330B2 (en) | 2017-03-21 | 2023-03-07 | Abbott Diabetes Care Inc. | Methods, devices and system for providing diabetic condition diagnosis and therapy |
US11135345B2 (en) | 2017-05-10 | 2021-10-05 | Fresenius Medical Care Holdings, Inc. | On demand dialysate mixing using concentrates |
US11752246B2 (en) | 2017-05-10 | 2023-09-12 | Fresenius Medical Care Holdings, Inc. | On demand dialysate mixing using concentrates |
US11116898B2 (en) * | 2017-06-26 | 2021-09-14 | Abbott Diabetes Care Inc. | Artificial pancreas integrated CGM architectures and designs |
US20180369479A1 (en) * | 2017-06-26 | 2018-12-27 | Abbott Diabetes Care Inc. | Artificial Pancreas Integrated CGM Architectures and Designs |
US20210402093A1 (en) * | 2017-06-26 | 2021-12-30 | Abbott Diabetes Care Inc. | Artificial Pancreas Integrated CGM Architectures and Designs |
US11943876B2 (en) | 2017-10-24 | 2024-03-26 | Dexcom, Inc. | Pre-connected analyte sensors |
US11350862B2 (en) | 2017-10-24 | 2022-06-07 | Dexcom, Inc. | Pre-connected analyte sensors |
US11706876B2 (en) | 2017-10-24 | 2023-07-18 | Dexcom, Inc. | Pre-connected analyte sensors |
US11382540B2 (en) | 2017-10-24 | 2022-07-12 | Dexcom, Inc. | Pre-connected analyte sensors |
US11331022B2 (en) | 2017-10-24 | 2022-05-17 | Dexcom, Inc. | Pre-connected analyte sensors |
USD1020794S1 (en) | 2018-04-02 | 2024-04-02 | Bigfoot Biomedical, Inc. | Medication delivery device with icons |
US11850045B2 (en) | 2018-05-04 | 2023-12-26 | Dexcom, Inc. | Systems and methods relating to an analyte sensor system having a battery located within a disposable base |
US12090301B2 (en) | 2018-05-04 | 2024-09-17 | Insulet Corporation | Safety constraints for a control algorithm based drug delivery system |
US20190336048A1 (en) * | 2018-05-04 | 2019-11-07 | Dexcom, Inc. | Systems and methods for power management in analyte sensor system |
US11565043B2 (en) | 2018-05-04 | 2023-01-31 | Insulet Corporation | Safety constraints for a control algorithm based drug delivery system |
US11504031B2 (en) * | 2018-05-04 | 2022-11-22 | Dexcom, Inc. | Systems and methods for power management in analyte sensor system |
USD875766S1 (en) | 2018-08-10 | 2020-02-18 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD875765S1 (en) | 2018-08-10 | 2020-02-18 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD880496S1 (en) | 2018-08-20 | 2020-04-07 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD864219S1 (en) | 2018-08-20 | 2019-10-22 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD1014513S1 (en) | 2018-08-20 | 2024-02-13 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD980232S1 (en) | 2018-08-20 | 2023-03-07 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD918227S1 (en) | 2018-08-20 | 2021-05-04 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD864218S1 (en) | 2018-08-20 | 2019-10-22 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD864217S1 (en) | 2018-08-20 | 2019-10-22 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD882622S1 (en) | 2018-08-22 | 2020-04-28 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
USD875767S1 (en) | 2018-08-23 | 2020-02-18 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
US11628251B2 (en) | 2018-09-28 | 2023-04-18 | Insulet Corporation | Activity mode for artificial pancreas system |
US11565039B2 (en) | 2018-10-11 | 2023-01-31 | Insulet Corporation | Event detection for drug delivery system |
US11504458B2 (en) | 2018-10-17 | 2022-11-22 | Fresenius Medical Care Holdings, Inc. | Ultrasonic authentication for dialysis |
US20220088304A1 (en) * | 2018-11-30 | 2022-03-24 | President And Fellows Of Harvard College | Systems and methods for closed-loop control of insulin-glucose dynamics |
USD1024090S1 (en) | 2019-01-09 | 2024-04-23 | Bigfoot Biomedical, Inc. | Display screen or portion thereof with graphical user interface associated with insulin delivery |
US11464908B2 (en) | 2019-02-18 | 2022-10-11 | Tandem Diabetes Care, Inc. | Methods and apparatus for monitoring infusion sites for ambulatory infusion pumps |
USD1002852S1 (en) | 2019-06-06 | 2023-10-24 | Abbott Diabetes Care Inc. | Analyte sensor device |
US12093681B2 (en) | 2019-07-16 | 2024-09-17 | Beta Bionics, Inc. | Ambulatory medicament device with security override passcode |
US11957876B2 (en) | 2019-07-16 | 2024-04-16 | Beta Bionics, Inc. | Glucose control system with automated backup therapy protocol generation |
US11941392B2 (en) | 2019-07-16 | 2024-03-26 | Beta Bionics, Inc. | Ambulatory medical device with malfunction alert prioritization |
US11801344B2 (en) | 2019-09-13 | 2023-10-31 | Insulet Corporation | Blood glucose rate of change modulation of meal and correction insulin bolus quantity |
WO2021055531A1 (en) * | 2019-09-17 | 2021-03-25 | The Trustees Of Indiana University | Syringe pump controller |
US11935637B2 (en) | 2019-09-27 | 2024-03-19 | Insulet Corporation | Onboarding and total daily insulin adaptivity |
US11957875B2 (en) | 2019-12-06 | 2024-04-16 | Insulet Corporation | Techniques and devices providing adaptivity and personalization in diabetes treatment |
US11833329B2 (en) | 2019-12-20 | 2023-12-05 | Insulet Corporation | Techniques for improved automatic drug delivery performance using delivery tendencies from past delivery history and use patterns |
US12036389B2 (en) | 2020-01-06 | 2024-07-16 | Insulet Corporation | Prediction of meal and/or exercise events based on persistent residuals |
USD931306S1 (en) | 2020-01-20 | 2021-09-21 | Tandem Diabetes Care, Inc. | Display screen or portion thereof with graphical user interface |
US11551802B2 (en) | 2020-02-11 | 2023-01-10 | Insulet Corporation | Early meal detection and calorie intake detection |
US11547800B2 (en) | 2020-02-12 | 2023-01-10 | Insulet Corporation | User parameter dependent cost function for personalized reduction of hypoglycemia and/or hyperglycemia in a closed loop artificial pancreas system |
US11986630B2 (en) | 2020-02-12 | 2024-05-21 | Insulet Corporation | Dual hormone delivery system for reducing impending hypoglycemia and/or hyperglycemia risk |
US11324889B2 (en) | 2020-02-14 | 2022-05-10 | Insulet Corporation | Compensation for missing readings from a glucose monitor in an automated insulin delivery system |
US11607493B2 (en) | 2020-04-06 | 2023-03-21 | Insulet Corporation | Initial total daily insulin setting for user onboarding |
US11684716B2 (en) | 2020-07-31 | 2023-06-27 | Insulet Corporation | Techniques to reduce risk of occlusions in drug delivery systems |
US12115351B2 (en) | 2020-09-30 | 2024-10-15 | Insulet Corporation | Secure wireless communications between a glucose monitor and other devices |
US11594314B2 (en) | 2020-12-07 | 2023-02-28 | Beta Bionics, Inc. | Modular blood glucose control systems |
USD1006235S1 (en) | 2020-12-21 | 2023-11-28 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
USD982762S1 (en) | 2020-12-21 | 2023-04-04 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
USD999913S1 (en) | 2020-12-21 | 2023-09-26 | Abbott Diabetes Care Inc | Analyte sensor inserter |
US11904140B2 (en) | 2021-03-10 | 2024-02-20 | Insulet Corporation | Adaptable asymmetric medicament cost component in a control system for medicament delivery |
US12121700B2 (en) | 2021-07-16 | 2024-10-22 | Insulet Corporation | Open-loop insulin delivery basal parameters based on insulin delivery records |
US12126995B2 (en) | 2021-09-01 | 2024-10-22 | Abbott Diabetes Care Inc. | Secured communications in medical monitoring systems |
US11738144B2 (en) | 2021-09-27 | 2023-08-29 | Insulet Corporation | Techniques enabling adaptation of parameters in aid systems by user input |
US11439754B1 (en) | 2021-12-01 | 2022-09-13 | Insulet Corporation | Optimizing embedded formulations for drug delivery |
US12121701B2 (en) | 2022-01-24 | 2024-10-22 | Insulet Corporation | Systems and methods for incorporating co-formulations of insulin in an automatic insulin delivery system |
US12097355B2 (en) | 2023-01-06 | 2024-09-24 | Insulet Corporation | Automatically or manually initiated meal bolus delivery with subsequent automatic safety constraint relaxation |
Also Published As
Publication number | Publication date |
---|---|
US8622954B2 (en) | 2014-01-07 |
US20100280442A1 (en) | 2010-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8622954B2 (en) | Relay device for transferring information between a sensor system and a fluid delivery system | |
US11621073B2 (en) | Closed loop control system interface and methods | |
US9636456B2 (en) | System for providing blood glucose measurements to an infusion device | |
US20220257117A1 (en) | Ambulatory medical device and method for communication between medical devices | |
US8663103B2 (en) | Handheld medical device programmer | |
EP1525014B1 (en) | System for providing blood glucose measurements to an infusion device | |
US7901394B2 (en) | Physiological monitoring device for controlling a medication infusion device | |
WO2008016486A2 (en) | Watch controller for a medical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MEDTRONIC MINIMED, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAHMIRIAN, VARAZ;MORGAN, WAYNE A.;MOBERG, SHELDON B.;AND OTHERS;REEL/FRAME:014060/0434;SIGNING DATES FROM 20020417 TO 20030505 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |