US20040108872A1 - Voltage-controlled delay line with reduced timing errors and jitters - Google Patents
Voltage-controlled delay line with reduced timing errors and jitters Download PDFInfo
- Publication number
- US20040108872A1 US20040108872A1 US10/250,171 US25017103A US2004108872A1 US 20040108872 A1 US20040108872 A1 US 20040108872A1 US 25017103 A US25017103 A US 25017103A US 2004108872 A1 US2004108872 A1 US 2004108872A1
- Authority
- US
- United States
- Prior art keywords
- delay
- clock signal
- delay cell
- reference clock
- output port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 102100040862 Dual specificity protein kinase CLK1 Human genes 0.000 description 29
- 101000749294 Homo sapiens Dual specificity protein kinase CLK1 Proteins 0.000 description 28
- 230000000630 rising effect Effects 0.000 description 24
- 102100040844 Dual specificity protein kinase CLK2 Human genes 0.000 description 22
- 101000749291 Homo sapiens Dual specificity protein kinase CLK2 Proteins 0.000 description 22
- 238000000034 method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 230000001360 synchronised effect Effects 0.000 description 10
- 230000001934 delay Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 244000045947 parasite Species 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/13—Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
- H03K5/133—Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/15—Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors
- H03K5/15013—Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs
- H03K5/15026—Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs with asynchronously driven series connected output stages
- H03K5/1504—Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs with asynchronously driven series connected output stages using a chain of active delay devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/081—Details of the phase-locked loop provided with an additional controlled phase shifter
- H03L7/0812—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
- H03L7/0816—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the controlled phase shifter and the frequency- or phase-detection arrangement being connected to a common input
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K2005/00013—Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
- H03K2005/00019—Variable delay
- H03K2005/00026—Variable delay controlled by an analog electrical signal, e.g. obtained after conversion by a D/A converter
- H03K2005/00032—Dc control of switching transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K2005/00013—Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
- H03K2005/0015—Layout of the delay element
- H03K2005/00195—Layout of the delay element using FET's
- H03K2005/00208—Layout of the delay element using FET's using differential stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/089—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
- H03L7/0891—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
Definitions
- the present invention relates to a voltage-controlled delay line. More specifically, the present invention discloses a voltage-controlled delay line with an improved interconnection among delay cells for reducing timing errors and jitters.
- processing, exchanging, and distributing digital information exists in a broad spectrum of fields.
- digital devices such as mobile phones, personal digital assistants (PDAs), information applicants (IAS) that are connected to a computer network, and personal computers are utilized to conveniently handle digital information.
- the digital device processes, exchanges, and distributes digital information
- the digital device requires triggers generated from a clock signal to process digital data that are sequentially transmitted.
- a central processing unit (CPU) of a personal computer coordinates data transmitted among digital circuits and data processed among the digital circuits with the help of triggers generated from a clock signal.
- a clock signal is necessary to let the mobile phone correctly transmit and receive Wireless signals.
- the mobile phone functions as a receiver to receive incoming digital signals.
- the mobile phone has to establish a local clock signal synchronized with a timing associated with the incoming digital signals outputted from a base station. Therefore, the mobile phone successfully transmits wireless signals to the base station and correctly receives-wireless signals outputted from the base station according to the local clock signal synchronized with clock signal used by the base station.
- a well-known technique for generating a synchronous clock signal based on a reference clock signal is widely adopted.
- a frequency associated with one of two synchronous clock signals is multiplied or divided to further obtain two synchronous clock signals with different frequencies for conveniently handling digital data.
- a digital mobile communication system when a mobile phone, which functions as a receiver, needs to establish a local clock signal according to timing of received signals, the received signals have weak amplitudes so that the driving capacity of the received signals is poor. Therefore, a synchronous clock having a greater driving capacity and corresponding to timing of received signals is necessary to drive the mobile phone to work properly.
- a circuit which is capable of generating a synchronous clock signal according to a reference clock signal, is called a phase lock loop (PLL).
- PLL phase lock loop
- One embodiment of the prior art PLL is a so-called delay lock loop (DLL).
- FIG. 1 is block diagram of a prior art DLL 10 .
- the DLL 10 has a clock generator 11 , a voltage-controlled delay line 12 , a phase detector 14 , a charge pump 16 , and two differential-to-single-ended converters 18 a , 18 b .
- the clock generator 11 simultaneously outputs a first reference clock signal CLK_REF+ and a second reference clock signal CLK_REF ⁇ , where a phase difference between the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF ⁇ is equal to 180 degrees. That is, the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF ⁇ are out of phase.
- the voltage-controlled delay line 12 therefore, respectively delays the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF ⁇ to generate a first delay clock signal CLK_DL+ and a second delay clock signal CLK_DL ⁇ .
- the differential-to-signal-ended converter 18 a outputs a first comparison signal CLK 1 based on a magnitude difference between the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF ⁇ .
- a period of the first comparison signal CLK 1 is identical to a period of the first reference clock signal CLK_REF+, and the period of the first comparison signal CLK 1 is identical to a period of the second reference clock signal CLK_REF ⁇ as well.
- the differential-to-single-ended converter 18 b outputs a second comparison signal CLK 2 based on a magnitude difference between the first delay clock signal CLK_DL+ and the second delay clock signal CLK_DL ⁇ .
- a period of the second comparison signal CLK 2 is theoretically identical to a period of the first delay clock signal CLK_DL+, and the period of the second comparison signal CLK 2 is identical to a period of the second delay clock signal CLK_DL ⁇ as well.
- the phase detector 14 judges if the first delay clock signal CLK_DL+ and the first reference clock signal CLK_REF+ are in phase according to phases of the first comparison signal CLK 1 and the second comparison signal CLK 2 .
- the phase detector 14 also judges if the second delay clock signal CLK_DL ⁇ and the second reference clock signal CLK_REF ⁇ are in phase according to phases of the first comparison signal CLK 1 and the second comparison signal CLK 2 .
- phase detector 14 After the phase detector 14 compares phases of the first reference clock signal CLK 1 and the second reference clock signal CLK 2 , the phase detector 14 outputs control signals UP, DOWN to the charge pump 16 according to the reference clock signal CLK 1 leading the second reference clock signal CLK 2 or the reference clock signal CLK 1 lagging the second reference clock signal CLK 2 .
- the charge pump 16 After the charge pump 16 receives the control signal DOWN, the charge pump 16 raises voltage level of a control voltage Vpump.
- the increased control voltage Vpump drives the voltage-controlled delay line 12 to delay the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF ⁇ through a longer delay time.
- the charge pump 16 lowers voltage level of the control voltage Vpump.
- the decreased control voltage Vpump drives the voltage-controlled delay line 12 to delay the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF ⁇ through a shorter delay time.
- FIG. 2 is a first timing diagram illustrating a phase lock process
- FIG. 3 is a second timing diagram illustrating the phase lock process.
- the waveforms from top to bottom respectively represent the first comparison signal CLK 1 , the second comparison signal CLK 2 , the control signal UP, the control signal DOWN, and time.
- the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF ⁇ which correspond to the first comparison clock CLK 1
- the voltage-controlled delay line 12 outputs the first delay clock signal CLK_DL+ and the second delay clock CLK_DL ⁇ , which correspond to the second comparison signal CLK 2 , after a delay time (t 2 ⁇ t 1 ).
- the rising edge of the second comparison clock CLK 2 at time t 2 leads the rising edge of the first comparison signal CLK 1 at time t 3 . That is, the phase of the second comparison signal CLK 2 leads the phase of the first comparison signal CLK 1 .
- the delay time (t 2 ⁇ t 1 ) introduced by the voltage-controlled delay line 12 is less than the period (t 3 ⁇ t 1 ) corresponding to the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF ⁇ . Therefore, the currently adopted delay time should be increased. Therefore, the phase detector 14 outputs the control signal DOWN at time t 2 to the charge pump 16 for raising the control voltage Vpump.
- the first comparison signal CLK 1 forms a rising edge at time t 3 .
- the control signal UP is issued by the phase detector 14 during an interval Î . While the phase detector 14 resets the control signal UP, the control signal DOWN is reset as well. Therefore, the control signal UP and the control signal DOWN are both reset at time t 3 +Î .
- the delay time is now adjusted to be (t 4 ⁇ t 3 ). Because the rising edge of the second comparison signal CLK 2 at time t 4 still leads the rising edge of the first comparison signal CLK 1 at time t 5 , the phase detector 14 outputs the control signal DOWN at time t 4 to the charge pump 16 .
- the phase detector 14 When the first comparison signal CLK 1 generates the rising edge at time t 5 , the phase detector 14 outputs the control signal UP during the interval Î . Then, the control signal UP and the control signal DOWN are both reset at time t 5 +Î .
- the first comparison signal CLK 1 and the second comparison signal CLK 2 are in phase at time t 6 . That is, the first comparison signal CLK 1 and the second comparison signal CLK 2 form rising edges simultaneously at time t 6 . Therefore, the phase detector 14 outputs the control signals UP, DOWN to the charge pump 16 during the same interval Î . In other words, the control signals UP, DOWN are both reset at time t 6 +Î .
- the charge pump 16 therefore holds currently adopted control voltage Vpump without being altered to drive the voltage-controlled delay line 12 for locking the first and second reference clock signals CLK_REF+, CLK_REF ⁇ and the in phase first and second delay clock signals CLK_DL+, CLK_DL ⁇ corresponding to the first and second reference clock signals CLK_REF+, CLK_REF ⁇ .
- the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF ⁇ which correspond to the first comparison clock CLK 1 , are inputted into the voltage-controlled delay line 12 at time t 1 .
- the voltage-controlled delay line 12 outputs the first delay clock signal CLK_DL+ and the second delay clock CLK_DL ⁇ , which correspond to the second comparison signal CLK 2 , after a delay time (t 2 ⁇ t 1 ).
- the rising edge of the second comparison clock CLK 2 at time t 3 lags the rising edge of the first comparison signal.
- CLK 1 at time t 2 that is, phase of the second comparison signal CLK 2 lags phase of the first comparison signal CLK 1 .
- the delay time (t 3 ⁇ t 1 ) introduced by the voltage-controlled delay line 12 is greater than the period (t 2 ⁇ t 1 ) corresponding to the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF ⁇ . Therefore, the currently adopted delay time should be cut down. Therefore, the phase detector 14 outputs the control signal UP at time t 2 to the charge pump 16 for decreasing the control voltage Vpump.
- the second comparison signal CLK 1 forms a rising edge at time t 3 .
- the control signal DOWN is issued by the phase detector 14 during an interval Î .
- the phase detector 14 resets the control signal DOWN
- the control signal UP is reset as well. Therefore, the control signal UP and the control signal DOWN are both simultaneously reset at time t 3 +Î .
- the delay time is now adjusted to be (t 5 ⁇ t 2 ). Because the rising edge of the second comparison signal CLK 2 at time t 5 still lags the rising edge of the first comparison signal CLK 1 at time t 4 , the phase detector 14 outputs the control signal UP at time t 4 to the charge pump 16 . When the second comparison signal CLK 2 generates the rising edge at time t 5 , the detector 14 outputs the control signal DOWN during the interval Î . Then, the control signal UP and the control signal DOWN are both reset at time t 5 +Î .
- the first comparison signal CLK 1 and the second comparison signal CLK 2 are in phase at time t 6 . That is, the first comparison signal CLK 1 and the second comparison signal CLK 2 form rising edges simultaneously at time t 6 . Therefore, the phase detector 14 outputs the control signals UP, DOWN to the charge pump 16 during the same intervalÎ . In other words, the control signals UP, DOWN are both reset at time t 6 +Î .
- the charge pump 16 holds currently adopted control voltage Vpump without being altered to drive the voltage-controlled delay line 12 for locking the first and second reference clock signals CLK_REF+, CLK REF ⁇ and the in phase first and second delay clock signals CLK_DL+, CLK_DL ⁇ corresponding to the first and second reference clock signals CLK_REF+, CLK_REF ⁇ .
- FIG. 4 is a diagram of the voltage-controlled delay line 12 shown in FIG. 1
- FIG. 5 is a circuit diagram of a delay cell 20 shown in FIG. 4.
- the voltage-controlled delay line 12 has a plurality of delay cells 20 that are cascaded in series.
- An output port out+ of a delay cell 20 is electrically connected to an input port in+ of a following delay cell.
- an output port out ⁇ of a delay cell 20 is electrically connected to an input port in ⁇ of a following delay cell.
- the delay cell 20 corresponds to a symmetrical circuit structure, and has a first circuit 22 , a second circuit 24 , and a current source 26 .
- a voltage Vb is used to control current value provided by the current source 26
- the control voltage Vpump outputted from the charge pump 16 is used to control current values corresponding to the first circuit 22 and the second circuit 24 .
- the first circuit 22 and the second circuit 24 operational characteristics of both circuits are mismatched owing to the advanced semiconductor process. That is, when the same control voltage Vpump is inputted to the delay cell 20 , the first circuit 22 and the second circuit 24 generate different voltage variations so that currents passing through the first circuit 22 and the second circuit 24 differ. Not only is the delay time associated with the input port in+ and the output port out+ different from the delay time associated with the input port in ⁇ and the output port out ⁇ , but the phase difference between the input port in+ and the output port out+ and the phase difference between the input port in ⁇ and the output port out ⁇ both deviate from a predetermined value.
- the voltage-controlled delay line 12 has ten delay cells 20 , and the input port and the corresponding output port of each delay cell 20 corresponds to a delay time Td.
- the voltage-controlled delay line 12 has a delay cell 20 with mismatched first and second circuits 22 , 24 . Therefore, with regard to the first circuit 22 , the corresponding delay time becomes Td+dT instead.
- the delay time of the second circuit 24 then becomes Td ⁇ dT owing to the above-mentioned symmetrical circuit structure.
- the voltage-controlled delay line 12 delays the first reference clock signal CLK_REF+ by a total delay time 10 *Td+dT for outputting the first delay clock signal CLK_DL+.
- the voltage-controlled delay line 12 delays the second reference clock signal CLK_REF ⁇ by a total delay time 10 *Td ⁇ dT for outputting the second delay clock signal CLK_DL ⁇ .
- each delay cell having mismatched first and second circuits 22 , 24 corresponds to a specific degree of influence upon the associated delay time. In the end, problems with respect to timing errors between the first and second reference clock signals CLK_REF+, CLK_REF ⁇ and the first and second delay clock signals CLK_DL+, CLK_DL ⁇ are introduced.
- the timing errors certainly cause the periods corresponding to the delay clock signals CLK_DL+, CLK_DL ⁇ to change continuously. Therefore, the jitters corresponding to the delay clock signals CLK_DL+, CLK_DL ⁇ are great.
- the chip size increases and the related parasite capacitance increases owing to an enlarged trace width.
- an additional calibration circuit is utilized to solve the above-mentioned mismatch problem without increasing component size, the hardware complexity will increase to raise an overall product cost.
- the preferred embodiment of the claimed invention discloses a voltage-controlled delay line.
- the voltage-controlled delay line includes a clock generator for generating a first reference clock signal and a second reference clock signal, and a voltage-controlled delay line for delaying the first reference clock signal by a predetermined delay time to generate a first delay clock signal and delaying the second reference clock signal by the predetermined delay time to generate a second delay clock signal.
- the first reference clock signal and the first delay clock signal are in phase and the second reference clock signal and the second delay clock signal are in phase.
- the voltage-controlled delay line includes a plurality of delay cells, and each delay cell has a first input port, a second input port, a first output port, and a second output port.
- the delay cells include a first delay cell, a second delay cell, a third delay cell, and a fourth delay cell.
- a first input port of the first delay cell is electrically connected to the clock generator for receiving the first reference clock signal.
- a first input port of the second delay cell is electrically connected to a first output port of the first delay cell through a first input port and a first output port of at least a fifth delay cell.
- a first output port of the second delay cell is electrically connected to a second input port of the first delay cell.
- a second input port of the second delay cell is electrically connected to a second output port of the first delay cell through a first input port and a first output port of at least a sixth delay cell and a second input port and a second output port of at least a fifth delay cell.
- a first input port of the third delay cell is electrically connected to the clock generator for receiving the second reference clock signal a second input port of the third delay cell electrically connected to a second output port of the second delay cell.
- a first input port of the fourth delay cell is electrically connected to a first output port of the third delay cell through a second output port and a second input port of at least a fifth delay cell and a first output port and a first input port of at least a sixth delay cell.
- a second input port of the fourth delay cell is electrically connected to a second output port of the third delay cell through a second input port and a second output port of at least a sixth delay cell.
- a first output port of the fourth delay cell is used for outputting the first delay clock signal.
- a second output port of the fourth delay cell is used for outputting the second delay clock signal.
- a total amount of the fifth delay cells is equal to a total amount of the sixth delay cells.
- the claimed voltage-controlled delay line either connects a first output port of one delay cell and a second input port of another delay cell where the first output port of one delay cell and the second input port of another delay cell correspond to the same phase, or connects a first input port of one delay cell and a second output port of another delay cell where the first output port of one delay cell and the second input port of another delay cell correspond to the same phase.
- the first and second input ports of a delay cell are not simultaneously connected to the corresponding first and second output ports of an adjacent delay cell. Therefore, the timing errors associated with adjacent delay cells are independent so that the timing errors and the corresponding jitters are reduced.
- FIG. 1 is block diagram of a prior art delay lock loop.
- FIG. 2 is a first timing diagram illustrating a phase lock process.
- FIG. 3 is a second timing diagram illustrating the phase lock process.
- FIG. 4 is a diagram of a voltage-controlled delay line shown in FIG. 1.
- FIG. 5 is a circuit diagram of a delay cell shown in FIG. 4.
- FIG. 6 is a diagram of a voltage-controlled delay line according to the present invention.
- FIG. 7 is a phase diagram of output signals generated from delay cells shown in FIG. 6.
- FIG. 6 is a diagram of a voltage-controlled delay line 30 according to the present invention
- FIG. 7 is a phase diagram of output signals generated from delay cells 20 shown in FIG. 6.
- the voltage-controlled delay line 30 includes a plurality of delay cells 20 .
- the delay cell 20 on the preferred embodiment has a circuit structure identical to the circuit structure shown in FIG. 5.
- the voltage-controlled delay line 30 in the preferred embodiment only has delay cells whose amount corresponds to an even number such as ten. That is, ten delay cells DL 1 ⁇ DL 10 within the voltage-controlled delay line 30 are used to illustrate functionality of the voltage-controlled delay line 30 .
- the voltage-controlled delay line 30 is primarily used to delay the first reference clock signal CLK_REF+ to output the first delay clock signal CLK_DL+ where the first reference clock signal CLK_REF+ and the first delay clock signal CLK_DL+ are in phase.
- the rising edge of the first delay clock signal CLK_DL+ is synchronized with the rising edge of the first reference clock signal CLK_REF+. Therefore, an interval between the rising edge of the first delay clock signal CLK_DL+ and the rising edge of the first reference clock signal CLK_REF+ is equal to an integralmultiple of the period of the first reference clock signal CLK_REF+.
- the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF ⁇ are out of phase so that phase of the first reference clock signal CLK_REF+ and phase of the second reference clock signal CLK_REF ⁇ differs by 180 degrees.
- the voltage-controlled delay line 30 also delays the second reference clock signal CLK_REF ⁇ to output the second delay clock signal CLK_DL ⁇ where the second reference clock signal CLK_REF ⁇ and the second delay clock signal CLK_DL ⁇ are in phase.
- the rising edge of the second delay clock signal CLK_DL ⁇ is synchronized with the rising edge of the second reference clock signal CLK_REF ⁇ . Therefore, an interval between the rising edge of the second delay clock signal CLK_DL ⁇ and the rising edge of the second reference clock signal CLK_REF ⁇ is equal to an integralmultiple of the period of the second reference clock signal CLK_REF ⁇ .
- period of the first reference clock signal CLK_REF+ is equal to period of the second reference clock signal CLK_REF ⁇ .
- each of the delay cells DL 1 ⁇ DL 10 corresponds to a delay time (1/10)*T. From the viewpoint of the phase relationship, each delay cell DL 1 ⁇ DL 10 makes an output signal and an input signal correspond to a phase difference (360 ⁇ °/10). It is known that the first reference clock signal CLK_REF+ and the first delay clock signal CLK_DL+ are in phase. As shown in FIG. 7, when the first reference clock signal CLK_REF+ corresponds to phase 0 ⁇ °, the first delay clock signal CLK_DL+ corresponds to phase 0 ⁇ °as well.
- Each of the delay cells DL 1 ⁇ DL 10 corresponds to the phase difference (360 ⁇ °/10) when processing the first reference clock signal CLK_REF+. Therefore, output signals CLK 1 + ⁇ CLK 9 + outputted from delay cells DL 1 ⁇ DL 9 counterclockwise divide the 360 degrees associated with one period T, and the distribution result of the output signals CLK 1 + ⁇ CLK 9 + is shown in FIG. 7.
- The-first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF ⁇ are out of phase so that the phase difference between the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF ⁇ is equal to 180 degrees. Therefore, when the first reference clock signal CLK_REF+ corresponds to 0 ⁇ °, the second reference clock signal CLK_REF ⁇ then corresponds to 180 ⁇ °.
- the output signals CLK 1 , ⁇ ⁇ CLK 9 ⁇ outputted from delay cells DL 1 ⁇ DL 9 counterclockwise divide the 360 degrees associated with one period T, and the distribution result of the output signals CLK 1 ⁇ ⁇ CLK 9 ⁇ is shown in FIG. 7. It is obvious that one phase corresponds to different output signals.
- the output signal CLK 1 ⁇ generated from the delay cell DL 1 and the output signal CLK 6 + generated from the delay cell DL 6 are in phase.
- the output signal CLK 1 ⁇ and output signal CLK 6 + are capable of substituting for each other without affecting functionality of the voltage-controlled delay line 30 .
- the output signal CLK 1 ⁇ is used to the output signal CLK 6 + outputted from the delay cell DL 6 for driving the next delay cell DL 7 , and the output signal CLK 6 + is then used to replace the output signal CLK 1 ⁇ generated from the delay cell DL 1 for driving the next delay cell DL 2 .
- each group of the output signals CLK 2 ⁇ , CLK 7 +, the output signals CLK 3 ⁇ , CLK 8 +, and the output signals CLK 4 ⁇ , CLK 9 + corresponds to the same substitution rule mentioned above to establish the interconnection within the voltage-controlled delay line 30 shown in FIG. 6.
- any phase shown in FIG. 7 is capable of corresponding to a plurality of output signals.
- the voltage-controlled delay line 30 shown in FIG. 6 is a preferred embodiment where the above-mentioned substitution rule is applied to each group of the output signals CLK 1 ⁇ , CLK 6 +, output signals CLK 2 ⁇ , CLK 7 +, output signals CLK 3 ⁇ , CLK 8 +, and output signals CLK 4 ⁇ , CLK 9 +.
- different output signals corresponding to the same phase can substitute for each other to adjust interconnection between delay cells 20 within the prior art voltage-controlled delay line 12 shown in FIG. 4.
- Î 1 that deviate from the ideal delay time Td. Please note that only the delay cell DL 1 with the deviation ⁇ Î 1 is used to illustrate operation of the claimed voltage-controlled delay line 30 for simplicity. However, each of the delay cells DL 1 ⁇ DL 10 actually has a corresponding deviation owing to its own mismatched circuit structure.
- the delay cell DL 1 imposes the delay time Td ⁇ Î 1 on the first reference clock signal CLK_REF+ to generate the output signal CLK 1 + that is then transmitted to the next delay cell DL 2 .
- the total delay time for the first reference clock signal CLK_REF+ becomes 2 Td ⁇ Î 1.
- the total delay time for the first reference clock signal CLK_REF+ becomes 5 Td ⁇ Î 1.
- output signal CLK 5 + of the delay cell DL 5 is substituted for the second reference clock signal CLK_REF ⁇ , and the output signal CLK 5 + is then inputted into the delay cell DL 1 . Therefore, the total delay time imposed on the first reference clock signal CLK_REF+ becomes 6 Td, that is, 5 Td ⁇ Î 1+Td Î 1.
- output signal CLK 1 ⁇ of the delay cell DL 1 substitutes the output signal CLK 6 + of the delay cell DL 6 , and is transmitted to the delay cell DL 7 . Therefore, with contribution of the delay cell DL 7 , the total delay time becomes 7 Td.
- the delay cells DL 1 , DL 2 , DL 3 , DL 4 , DL 5 , DL 1 , DL 7 , DL 3 , DL 9 , DL 5 , DL 6 DL 7 , DL 8 , DL 9 , DL 10 are sequentially activated to delay the first reference clock signal CLK_REF+ for generating the second delay clock signal CLK_DL ⁇ .
- the total delay time imposed on the first reference clock signal CLK_REF+ is equal to 15 Td. Therefore, the simultaneously introduced deviations +Î 1 and ⁇ Î 1 owing to the mismatched circuit structure inside the delay cell DL 1 are automatically cancelled during the whole delay process for generating the second delay clock signal CLK_DL ⁇ .
- the delay cells DL 6 , DL 2 , DL 8 , DL 4 , DL 10 are sequentially activated to delay the second reference clock signal CLK_REF ⁇ for generating the first delay clock signal CLK_DL+ according to the circuit structure shown in FIG. 6. Therefore, when the first delay clock signal CLK_DL+ is outputted, the total delay time corresponding to the first delay clock signal CLK_DL+ is equal to 5 Td.
- each of the delay cells DL 1 ⁇ DL 10 in the preferred embodiment is not sequentially activated to delay received signals.
- the preferred embodiment alters interconnection among the delay cells DL 1 ⁇ DL 10 in the prior art voltage-controlled delay line 12 to adjust the prior art execution sequence associated with the delay cells DL 1 ⁇ DL 10 in the prior art voltage-controlled delay line 12 .
- the output signals corresponding to the same phase can substitute each other to further average timing errors such as +Î 1 and ⁇ Î 1 so the timing errors affecting the voltage-controlled delay line 30 are greatly reduced.
- the delay cells DL 1 ⁇ DL 10 are cascaded in series.
- one delay cell generates a timing error, and directly introduces the timing error to the next delay cell for superposing the timing error on the timing error of the next delay cell. Therefore, the timing errors associated with adjacent delay cells are dependent.
- two input ports in+, in ⁇ of one delay cell are electrically connected to output ports out+, out ⁇ respectively belonging to different delay cells. Taking the delay cell DL 2 shown in FIG.
- one input port is electrically connected to one output port of the delay cell DL 1 , but another input port of the delay cell DL 2 is electrically connected to output port of the delay cell DL 6 .
- the timing errors of adjacent delay cells are independent.
- the claimed voltage-controlled delay line 30 is capable of greatly reducing jitters. It is noteworthy that the traces connecting the delay cells introduce parasite capacitance to the voltage-controlled delay line 30 . Therefore, the circuit layout for the claimed voltage-controlled delay line 30 is designed to make both output ports of one delay cell correspond to the same loading to prevent the traces from being mismatched to affect operation of the claimed voltage-controlled delay line 30 .
- the claimed voltage-controlled delay line either connects a first output port of one delay cell and a second input port of another delay cell where the first output port of one delay cell and the second input port of another delay cell correspond to the same phase, or connects a first input port of one delay cell and a second output port of another delay cell where the first output port of one delay cell and the second input port of another delay cell correspond to the same phase.
- the first and second input ports of a delay cell are not simultaneously connected to the corresponding first and second output ports of an adjacent delay cell.
- the claimed voltage-controlled delay line only alters interconnection among delay cells of the prior art voltage-controlled delay line. Therefore, no additional circuit component is needed. It is easy to implement the desired interconnection within the claimed voltage-controlled delay line, and the timing errors and jitters are greatly reduced to improve performance of the prior art voltage-controlled delay line.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Pulse Circuits (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Dram (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to a voltage-controlled delay line. More specifically, the present invention discloses a voltage-controlled delay line with an improved interconnection among delay cells for reducing timing errors and jitters.
- 2. Description of the Prior Art
- Processing, exchanging, and distributing digital information exists in a broad spectrum of fields. For example, digital devices such as mobile phones, personal digital assistants (PDAs), information applicants (IAS) that are connected to a computer network, and personal computers are utilized to conveniently handle digital information. When the digital device processes, exchanges, and distributes digital information, the digital device requires triggers generated from a clock signal to process digital data that are sequentially transmitted. For instance, a central processing unit (CPU) of a personal computer coordinates data transmitted among digital circuits and data processed among the digital circuits with the help of triggers generated from a clock signal. In addition, with regard to a mobile phone, a clock signal is necessary to let the mobile phone correctly transmit and receive Wireless signals. Suppose that the mobile phone functions as a receiver to receive incoming digital signals. In the beginning, the mobile phone has to establish a local clock signal synchronized with a timing associated with the incoming digital signals outputted from a base station. Therefore, the mobile phone successfully transmits wireless signals to the base station and correctly receives-wireless signals outputted from the base station according to the local clock signal synchronized with clock signal used by the base station.
- During a digital information processing procedure triggered by clock signals, a well-known technique for generating a synchronous clock signal based on a reference clock signal is widely adopted. In digital circuits, a frequency associated with one of two synchronous clock signals is multiplied or divided to further obtain two synchronous clock signals with different frequencies for conveniently handling digital data. In addition, it is possible to generate a synchronous clock signal with a greater driving capacity according to a reference clock signal. With regard to a digital mobile communication system, when a mobile phone, which functions as a receiver, needs to establish a local clock signal according to timing of received signals, the received signals have weak amplitudes so that the driving capacity of the received signals is poor. Therefore, a synchronous clock having a greater driving capacity and corresponding to timing of received signals is necessary to drive the mobile phone to work properly.
- A circuit, which is capable of generating a synchronous clock signal according to a reference clock signal, is called a phase lock loop (PLL). One embodiment of the prior art PLL is a so-called delay lock loop (DLL). Please refer to FIG. 1, which is block diagram of a
prior art DLL 10. TheDLL 10 has a clock generator 11, a voltage-controlleddelay line 12, aphase detector 14, acharge pump 16, and two differential-to-single-ended converters delay line 12, therefore, respectively delays the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF− to generate a first delay clock signal CLK_DL+ and a second delay clock signal CLK_DL−. The differential-to-signal-ended converter 18 a outputs a first comparison signal CLK1 based on a magnitude difference between the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF−. A period of the first comparison signal CLK1 is identical to a period of the first reference clock signal CLK_REF+, and the period of the first comparison signal CLK1 is identical to a period of the second reference clock signal CLK_REF− as well. Similarly, the differential-to-single-ended converter 18 b outputs a second comparison signal CLK2 based on a magnitude difference between the first delay clock signal CLK_DL+ and the second delay clock signal CLK_DL−. - A period of the second comparison signal CLK2 is theoretically identical to a period of the first delay clock signal CLK_DL+, and the period of the second comparison signal CLK2 is identical to a period of the second delay clock signal CLK_DL− as well. Then, the
phase detector 14 judges if the first delay clock signal CLK_DL+ and the first reference clock signal CLK_REF+ are in phase according to phases of the first comparison signal CLK1 and the second comparison signal CLK2. In addition, thephase detector 14 also judges if the second delay clock signal CLK_DL− and the second reference clock signal CLK_REF− are in phase according to phases of the first comparison signal CLK1 and the second comparison signal CLK2. When either rising edges or falling edges of the first delay clock signal CLK_DL+ and the first reference clock signal CLK_REF+ differ by an integral multiple of the period of first reference clock signal CLK_REF+, the first delay clock signal CLK_DL+ and the first reference clock signal CLK_REF+ are in phase. Similarly, when either rising edges or falling edges of the second delay clock signal CLK_DL− and the second reference clock signal CLK_REF− differ by an integral multiple of the period of second reference clock signal CLK_REF−, the second delay clock signal CLK_DL− and the second reference clock signal CLK_REF− are in phase. - After the
phase detector 14 compares phases of the first reference clock signal CLK1 and the second reference clock signal CLK2, thephase detector 14 outputs control signals UP, DOWN to thecharge pump 16 according to the reference clock signal CLK1 leading the second reference clock signal CLK2 or the reference clock signal CLK1 lagging the second reference clock signal CLK2. After thecharge pump 16 receives the control signal DOWN, thecharge pump 16 raises voltage level of a control voltage Vpump. With regard to voltage-controlleddelay line 12, the increased control voltage Vpump drives the voltage-controlleddelay line 12 to delay the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF− through a longer delay time. On the other hand, after thecharge pump 16 receives the control signal UP, thecharge pump 16 lowers voltage level of the control voltage Vpump. With regard to voltage-controlleddelay line 12, the decreased control voltage Vpump drives the voltage-controlleddelay line 12 to delay the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF− through a shorter delay time. - Please refer to FIG. 2 and FIG. 3. FIG. 2 is a first timing diagram illustrating a phase lock process, and FIG. 3 is a second timing diagram illustrating the phase lock process. Within FIG. 2 and FIG. 3, the waveforms from top to bottom respectively represent the first comparison signal CLK1, the second comparison signal CLK2, the control signal UP, the control signal DOWN, and time. For example, the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF−, which correspond to the first comparison clock CLK1, are inputted into the voltage-controlled
delay line 12 at time t1. The voltage-controlleddelay line 12 outputs the first delay clock signal CLK_DL+ and the second delay clock CLK_DL−, which correspond to the second comparison signal CLK2, after a delay time (t2−t1). - As shown in FIG. 2, the rising edge of the second comparison clock CLK2 at time t2 leads the rising edge of the first comparison signal CLK1 at time t3. That is, the phase of the second comparison signal CLK2 leads the phase of the first comparison signal CLK1. In other words, the delay time (t2−t1) introduced by the voltage-controlled
delay line 12 is less than the period (t3−t1) corresponding to the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF−. Therefore, the currently adopted delay time should be increased. Therefore, thephase detector 14 outputs the control signal DOWN at time t2 to thecharge pump 16 for raising the control voltage Vpump. - The first comparison signal CLK1 forms a rising edge at time t3. At the same time, the control signal UP is issued by the
phase detector 14 during an interval Î. While thephase detector 14 resets the control signal UP, the control signal DOWN is reset as well. Therefore, the control signal UP and the control signal DOWN are both reset at time t3+Î. As shown in FIG. 2, the delay time is now adjusted to be (t4−t3). Because the rising edge of the second comparison signal CLK2 at time t4 still leads the rising edge of the first comparison signal CLK1 at time t5, thephase detector 14 outputs the control signal DOWN at time t4 to thecharge pump 16. - When the first comparison signal CLK1 generates the rising edge at time t5, the
phase detector 14 outputs the control signal UP during the interval Î. Then, the control signal UP and the control signal DOWN are both reset at time t5+Î. The first comparison signal CLK1 and the second comparison signal CLK2 are in phase at time t6. That is, the first comparison signal CLK1 and the second comparison signal CLK2 form rising edges simultaneously at time t6. Therefore, thephase detector 14 outputs the control signals UP, DOWN to thecharge pump 16 during the same interval Î. In other words, the control signals UP, DOWN are both reset at time t6+Î. - Because the both control signals UP, DOWN have the same power to affect the control voltage Vpump, the
charge pump 16 therefore holds currently adopted control voltage Vpump without being altered to drive the voltage-controlleddelay line 12 for locking the first and second reference clock signals CLK_REF+, CLK_REF− and the in phase first and second delay clock signals CLK_DL+, CLK_DL− corresponding to the first and second reference clock signals CLK_REF+, CLK_REF−. - Please refer to FIG. 3, the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF−, which correspond to the first comparison clock CLK1, are inputted into the voltage-controlled
delay line 12 at time t1. The voltage-controlleddelay line 12 outputs the first delay clock signal CLK_DL+ and the second delay clock CLK_DL−, which correspond to the second comparison signal CLK2, after a delay time (t2−t1). As shown in FIG. 3, the rising edge of the second comparison clock CLK2 at time t3 lags the rising edge of the first comparison signal. CLK1 at time t2. That is, phase of the second comparison signal CLK2 lags phase of the first comparison signal CLK1. In other words, the delay time (t3−t1) introduced by the voltage-controlleddelay line 12 is greater than the period (t2−t1) corresponding to the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF−. Therefore, the currently adopted delay time should be cut down. Therefore, thephase detector 14 outputs the control signal UP at time t2 to thecharge pump 16 for decreasing the control voltage Vpump. - The second comparison signal CLK1 forms a rising edge at time t3. At the same time, the control signal DOWN is issued by the
phase detector 14 during an interval Î. While thephase detector 14 resets the control signal DOWN, the control signal UP is reset as well. Therefore, the control signal UP and the control signal DOWN are both simultaneously reset at time t3+Î. As shown in FIG. 3, the delay time is now adjusted to be (t5−t2). Because the rising edge of the second comparison signal CLK2 at time t5 still lags the rising edge of the first comparison signal CLK1 at time t4, thephase detector 14 outputs the control signal UP at time t4 to thecharge pump 16. When the second comparison signal CLK2 generates the rising edge at time t5, thedetector 14 outputs the control signal DOWN during the interval Î. Then, the control signal UP and the control signal DOWN are both reset at time t5+Î. -
- Because the both control signals UP, DOWN have the same power to affect the control voltage Vpump, the
charge pump 16, therefore, holds currently adopted control voltage Vpump without being altered to drive the voltage-controlleddelay line 12 for locking the first and second reference clock signals CLK_REF+, CLK REF− and the in phase first and second delay clock signals CLK_DL+, CLK_DL− corresponding to the first and second reference clock signals CLK_REF+, CLK_REF−. - Please refer to FIG. 4 and FIG. 5. FIG. 4 is a diagram of the voltage-controlled
delay line 12 shown in FIG. 1, and FIG. 5 is a circuit diagram of adelay cell 20 shown in FIG. 4. The voltage-controlleddelay line 12 has a plurality ofdelay cells 20 that are cascaded in series. An output port out+ of adelay cell 20 is electrically connected to an input port in+ of a following delay cell. Similarly, an output port out− of adelay cell 20 is electrically connected to an input port in− of a following delay cell. As shown in FIG. 5, thedelay cell 20 corresponds to a symmetrical circuit structure, and has afirst circuit 22, asecond circuit 24, and acurrent source 26. A voltage Vb is used to control current value provided by thecurrent source 26, and the control voltage Vpump outputted from thecharge pump 16 is used to control current values corresponding to thefirst circuit 22 and thesecond circuit 24. However, with development of the semiconductor process, the size of chips have become smaller. Therefore, the circuits formed on the same chip are much closer together than before. With regard to the deep sub-micro process, one circuit component might easily affect another circuit component. - For the
first circuit 22 and thesecond circuit 24, operational characteristics of both circuits are mismatched owing to the advanced semiconductor process. That is, when the same control voltage Vpump is inputted to thedelay cell 20, thefirst circuit 22 and thesecond circuit 24 generate different voltage variations so that currents passing through thefirst circuit 22 and thesecond circuit 24 differ. Not only is the delay time associated with the input port in+ and the output port out+ different from the delay time associated with the input port in− and the output port out−, but the phase difference between the input port in+ and the output port out+ and the phase difference between the input port in− and the output port out− both deviate from a predetermined value. For instance, if the voltage-controlleddelay line 12 has tendelay cells 20, and the input port and the corresponding output port of eachdelay cell 20 corresponds to a delay time Td. The voltage-controlleddelay line 12 has adelay cell 20 with mismatched first andsecond circuits first circuit 22, the corresponding delay time becomes Td+dT instead. On the other hand, the delay time of thesecond circuit 24 then becomes Td−dT owing to the above-mentioned symmetrical circuit structure. - It is shown in FIG. 4 that the voltage-controlled
delay line 12 delays the first reference clock signal CLK_REF+ by atotal delay time 10*Td+dT for outputting the first delay clock signal CLK_DL+. However, the voltage-controlleddelay line 12 delays the second reference clock signal CLK_REF− by atotal delay time 10*Td−dT for outputting the second delay clock signal CLK_DL−. It is obvious that each delay cell having mismatched first andsecond circuits - At the same time, the timing errors certainly cause the periods corresponding to the delay clock signals CLK_DL+, CLK_DL− to change continuously. Therefore, the jitters corresponding to the delay clock signals CLK_DL+, CLK_DL− are great. If the component size is increased to prevent the above-mentioned mismatch problem when utilizing the deep sub-micro process to manufacture the
DLL 10, the chip size increases and the related parasite capacitance increases owing to an enlarged trace width. However, if an additional calibration circuit is utilized to solve the above-mentioned mismatch problem without increasing component size, the hardware complexity will increase to raise an overall product cost. - It is therefore a primary objective of this invention to provide a voltage-controlled delay line capable of reducing timing errors and jitters.
- Briefly summarized, the preferred embodiment of the claimed invention discloses a voltage-controlled delay line. The voltage-controlled delay line includes a clock generator for generating a first reference clock signal and a second reference clock signal, and a voltage-controlled delay line for delaying the first reference clock signal by a predetermined delay time to generate a first delay clock signal and delaying the second reference clock signal by the predetermined delay time to generate a second delay clock signal. The first reference clock signal and the first delay clock signal are in phase and the second reference clock signal and the second delay clock signal are in phase.
- The voltage-controlled delay line includes a plurality of delay cells, and each delay cell has a first input port, a second input port, a first output port, and a second output port. The delay cells include a first delay cell, a second delay cell, a third delay cell, and a fourth delay cell. A first input port of the first delay cell is electrically connected to the clock generator for receiving the first reference clock signal. A first input port of the second delay cell is electrically connected to a first output port of the first delay cell through a first input port and a first output port of at least a fifth delay cell. A first output port of the second delay cell is electrically connected to a second input port of the first delay cell. A second input port of the second delay cell is electrically connected to a second output port of the first delay cell through a first input port and a first output port of at least a sixth delay cell and a second input port and a second output port of at least a fifth delay cell. A first input port of the third delay cell is electrically connected to the clock generator for receiving the second reference clock signal a second input port of the third delay cell electrically connected to a second output port of the second delay cell. A first input port of the fourth delay cell is electrically connected to a first output port of the third delay cell through a second output port and a second input port of at least a fifth delay cell and a first output port and a first input port of at least a sixth delay cell. A second input port of the fourth delay cell is electrically connected to a second output port of the third delay cell through a second input port and a second output port of at least a sixth delay cell. A first output port of the fourth delay cell is used for outputting the first delay clock signal. A second output port of the fourth delay cell is used for outputting the second delay clock signal. In addition, a total amount of the fifth delay cells is equal to a total amount of the sixth delay cells.
- It is an advantage of the claimed invention that the claimed voltage-controlled delay line either connects a first output port of one delay cell and a second input port of another delay cell where the first output port of one delay cell and the second input port of another delay cell correspond to the same phase, or connects a first input port of one delay cell and a second output port of another delay cell where the first output port of one delay cell and the second input port of another delay cell correspond to the same phase. In other words, the first and second input ports of a delay cell are not simultaneously connected to the corresponding first and second output ports of an adjacent delay cell. Therefore, the timing errors associated with adjacent delay cells are independent so that the timing errors and the corresponding jitters are reduced.
- These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment, which is illustrated in the various figures and drawings.
- FIG. 1 is block diagram of a prior art delay lock loop.
- FIG. 2 is a first timing diagram illustrating a phase lock process.
- FIG. 3 is a second timing diagram illustrating the phase lock process.
- FIG. 4 is a diagram of a voltage-controlled delay line shown in FIG. 1.
- FIG. 5 is a circuit diagram of a delay cell shown in FIG. 4.
- FIG. 6 is a diagram of a voltage-controlled delay line according to the present invention.
- FIG. 7 is a phase diagram of output signals generated from delay cells shown in FIG. 6.
- Please refer to FIG. 6 and FIG. 7. FIG. 6 is a diagram of a voltage-controlled
delay line 30 according to the present invention, and FIG. 7 is a phase diagram of output signals generated fromdelay cells 20 shown in FIG. 6. The voltage-controlleddelay line 30 includes a plurality ofdelay cells 20. Please note that thedelay cell 20 on the preferred embodiment has a circuit structure identical to the circuit structure shown in FIG. 5. In addition, in order to describe conveniently features of the present invention, the voltage-controlleddelay line 30 in the preferred embodiment only has delay cells whose amount corresponds to an even number such as ten. That is, ten delay cells DL1˜DL10 within the voltage-controlleddelay line 30 are used to illustrate functionality of the voltage-controlleddelay line 30. - As mentioned above, the voltage-controlled
delay line 30 is primarily used to delay the first reference clock signal CLK_REF+ to output the first delay clock signal CLK_DL+ where the first reference clock signal CLK_REF+ and the first delay clock signal CLK_DL+ are in phase. In other words, the rising edge of the first delay clock signal CLK_DL+ is synchronized with the rising edge of the first reference clock signal CLK_REF+. Therefore, an interval between the rising edge of the first delay clock signal CLK_DL+ and the rising edge of the first reference clock signal CLK_REF+ is equal to an integralmultiple of the period of the first reference clock signal CLK_REF+. The first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF− are out of phase so that phase of the first reference clock signal CLK_REF+ and phase of the second reference clock signal CLK_REF− differs by 180 degrees. - Similarly, the voltage-controlled
delay line 30 also delays the second reference clock signal CLK_REF− to output the second delay clock signal CLK_DL− where the second reference clock signal CLK_REF− and the second delay clock signal CLK_DL− are in phase. In other words, the rising edge of the second delay clock signal CLK_DL− is synchronized with the rising edge of the second reference clock signal CLK_REF−. Therefore, an interval between the rising edge of the second delay clock signal CLK_DL− and the rising edge of the second reference clock signal CLK_REF− is equal to an integralmultiple of the period of the second reference clock signal CLK_REF−. It is noteworthy that period of the first reference clock signal CLK_REF+ is equal to period of the second reference clock signal CLK_REF−. - The following description associated with the preferred embodiment describes the voltage-controlled
delay line 30 locking one period T of the first reference clock signal CLK_REF+. Therefore, each of the delay cells DL1˜DL10 corresponds to a delay time (1/10)*T. From the viewpoint of the phase relationship, each delay cell DL1˜DL10 makes an output signal and an input signal correspond to a phase difference (360°/10). It is known that the first reference clock signal CLK_REF+ and the first delay clock signal CLK_DL+ are in phase. As shown in FIG. 7, when the first reference clock signal CLK_REF+ corresponds to phase 0°, the first delay clock signal CLK_DL+ corresponds to phase 0°as well. Each of the delay cells DL1˜DL10 corresponds to the phase difference (360°/10) when processing the first reference clock signal CLK_REF+. Therefore, output signals CLK1+˜CLK9+ outputted from delay cells DL1˜DL9 counterclockwise divide the 360 degrees associated with one period T, and the distribution result of the output signals CLK1+˜CLK9+ is shown in FIG. 7. - The-first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF− are out of phase so that the phase difference between the first reference clock signal CLK_REF+ and the second reference clock signal CLK_REF− is equal to 180 degrees. Therefore, when the first reference clock signal CLK_REF+ corresponds to 0°, the second reference clock signal CLK_REF− then corresponds to 180°. Similarly, the output signals CLK1,−˜CLK9− outputted from delay cells DL1˜DL9 counterclockwise divide the 360 degrees associated with one period T, and the distribution result of the output signals CLK1−˜CLK9− is shown in FIG. 7. It is obvious that one phase corresponds to different output signals. For instance, the output signal CLK1− generated from the delay cell DL1 and the output signal CLK6+ generated from the delay cell DL6 are in phase. In other words, the output signal CLK1− and output signal CLK6+ are capable of substituting for each other without affecting functionality of the voltage-controlled
delay line 30. - In the preferred embodiment, the output signal CLK1− is used to the output signal CLK6+ outputted from the delay cell DL6 for driving the next delay cell DL7, and the output signal CLK6+ is then used to replace the output signal CLK1− generated from the delay cell DL1 for driving the next delay cell DL2. Similarly, each group of the output signals CLK2−, CLK7+, the output signals CLK3−, CLK8+, and the output signals CLK4−, CLK9+ corresponds to the same substitution rule mentioned above to establish the interconnection within the voltage-controlled
delay line 30 shown in FIG. 6. - It is noteworthy that the total amount of
delay cells 20 needs to equal an even number in order to make output signals correspond to the phase relation shown in FIG. 7. In other words, any phase shown in FIG. 7 is capable of corresponding to a plurality of output signals. In addition, the voltage-controlleddelay line 30 shown in FIG. 6 is a preferred embodiment where the above-mentioned substitution rule is applied to each group of the output signals CLK1−, CLK6+, output signals CLK2−, CLK7+, output signals CLK3−, CLK8+, and output signals CLK4−, CLK9+. However, based on the phase relation shown in FIG. 7, different output signals corresponding to the same phase (the output signals CLK2−, CLK7+ for example) can substitute for each other to adjust interconnection betweendelay cells 20 within the prior art voltage-controlleddelay line 12 shown in FIG. 4. - Operation of the voltage-controlled
delay line 30 is described as follows. As shown in FIG. 4, it is obvious that thefirst circuit 22 and thesecond circuit 24 are symmetrical and are electrically connected to the samecurrent source 26. For example, if one delay time is equal to Td+Î, another delay time is certainly equal to Td-Î owing to the symmetrical circuit structure. On the other hand, if one delay time is equal to Td-Î, another delay time is certainly equal to Td+Î owing to the symmetrical circuit structure. That is, when output port out+ and input port in+ in each of the delay cells DL1˜DL10 correspond to a delay time Td±Î, output port out− and input port in− in each of the delay cells DL1˜DL10 will correspond to a delay time Td -
-
-
Î 1 that deviate from the ideal delay time Td. Please note that only the delay cell DL1 with the deviation ±Π1 is used to illustrate operation of the claimed voltage-controlleddelay line 30 for simplicity. However, each of the delay cells DL1˜DL10 actually has a corresponding deviation owing to its own mismatched circuit structure. - After the first reference clock signal CLK_REF+ is inputted into the delay cell DL1, the delay cell DL1 imposes the delay time Td±
Î 1 on the first reference clock signal CLK_REF+ to generate the output signal CLK1 + that is then transmitted to the next delay cell DL2. With the contribution of the delay cell DL2, the total delay time for the first reference clock signal CLK_REF+ becomes 2 Td±Π1. Similarly, with the help of the following delay cells DL3, DL4, DL5, the total delay time for the first reference clock signal CLK_REF+ becomes 5 Td±Π1. Please note that output signal CLK5+ of the delay cell DL5 is substituted for the second reference clock signal CLK_REF−, and the output signal CLK5+ is then inputted into the delay cell DL1. Therefore, the total delay time imposed on the first reference clock signal CLK_REF+ becomes 6 Td, that is, 5 Td±Π1+Td Î 1. At the same time, output signal CLK1− of the delay cell DL1 substitutes the output signal CLK6+ of the delay cell DL6, and is transmitted to the delay cell DL7. Therefore, with contribution of the delay cell DL7, the total delay time becomes 7 Td. Based on the circuit structure shown in FIG. 6, the delay cells DL1, DL2, DL3, DL4, DL5, DL1, DL7, DL3, DL9, DL5, DL6 DL7, DL8, DL9, DL10 are sequentially activated to delay the first reference clock signal CLK_REF+ for generating the second delay clock signal CLK_DL−. - It is obvious that the total delay time imposed on the first reference clock signal CLK_REF+ is equal to 15 Td. Therefore, the simultaneously introduced deviations +
Î 1 and −Î 1 owing to the mismatched circuit structure inside the delay cell DL1 are automatically cancelled during the whole delay process for generating the second delay clock signal CLK_DL−. In addition, after the second reference clock signal CLK_REF− is inputted into the delay cell DL6, the delay cells DL6, DL2, DL8, DL4, DL10 are sequentially activated to delay the second reference clock signal CLK_REF− for generating the first delay clock signal CLK_DL+ according to the circuit structure shown in FIG. 6. Therefore, when the first delay clock signal CLK_DL+ is outputted, the total delay time corresponding to the first delay clock signal CLK_DL+ is equal to 5 Td. - With regard to timing errors caused by the symmetrical circuit structure within each of the delay cells DL1˜DL10 of the voltage-controlled
delay line 30, each of the delay cells DL1˜DL10 in the preferred embodiment is not sequentially activated to delay received signals. The preferred embodiment alters interconnection among the delay cells DL1˜DL10 in the prior art voltage-controlleddelay line 12 to adjust the prior art execution sequence associated with the delay cells DL1˜DL10 in the prior art voltage-controlleddelay line 12. According to the phase relation shown in FIG. 7, the output signals corresponding to the same phase can substitute each other to further average timing errors such as +Î 1 and −Î 1 so the timing errors affecting the voltage-controlleddelay line 30 are greatly reduced. - Within the prior art voltage-controlled
delay line 12 shown in FIG. 4, the delay cells DL1˜DL10 are cascaded in series. In other words, one delay cell generates a timing error, and directly introduces the timing error to the next delay cell for superposing the timing error on the timing error of the next delay cell. Therefore, the timing errors associated with adjacent delay cells are dependent. However, within the claimed voltage-controlleddelay line 30, two input ports in+, in− of one delay cell are electrically connected to output ports out+, out− respectively belonging to different delay cells. Taking the delay cell DL2 shown in FIG. 6 for example, one input port is electrically connected to one output port of the delay cell DL1, but another input port of the delay cell DL2 is electrically connected to output port of the delay cell DL6. In other words, the timing errors of adjacent delay cells are independent. - According to H. Gian, R. Raf, “A 65-mW, 10-bit, 40-M samples BiCMOS Nyquist ADC in 0.8 mm2”, IEEE J.Solid-State Circuits, Vol. 34, no. 12, pp. 1796˜1802, December 1999, it is well-known that if a random timing error associated with the delay cell in the prior art voltage-controlled
delay line 12 is equal to Ï□, a random timing error associated with the delay cell in the claimed voltage-controlleddelay line 30 then becomes - Because the timing errors make the periods of the first and second delay clock signals CLK_DL+, CLK_DL− alter continuously, jitters associated to the first and second delay clock signals CLK_DL+, CLK_DL− are generated. Therefore, when the random timing error is reduced to be the original random timing error, a jitter corresponding to the claimed voltage-controlled
delay line 30 is certainly reduced to be of the original jitter corresponding to the prior art voltage-controlleddelay line 12. - In addition, an experimental result of a peak-to-peak jitter corresponding to a worst case associated with adjacent periods shows that the claimed voltage-controlled
delay line 30 is capable of greatly reducing jitters. It is noteworthy that the traces connecting the delay cells introduce parasite capacitance to the voltage-controlleddelay line 30. Therefore, the circuit layout for the claimed voltage-controlleddelay line 30 is designed to make both output ports of one delay cell correspond to the same loading to prevent the traces from being mismatched to affect operation of the claimed voltage-controlleddelay line 30. - In contrast to the prior art voltage-controlled delay line, the claimed voltage-controlled delay line either connects a first output port of one delay cell and a second input port of another delay cell where the first output port of one delay cell and the second input port of another delay cell correspond to the same phase, or connects a first input port of one delay cell and a second output port of another delay cell where the first output port of one delay cell and the second input port of another delay cell correspond to the same phase. In other words, the first and second input ports of a delay cell are not simultaneously connected to the corresponding first and second output ports of an adjacent delay cell. The claimed voltage-controlled delay line only alters interconnection among delay cells of the prior art voltage-controlled delay line. Therefore, no additional circuit component is needed. It is easy to implement the desired interconnection within the claimed voltage-controlled delay line, and the timing errors and jitters are greatly reduced to improve performance of the prior art voltage-controlled delay line.
- Those skilled in the art will readily observe that numerous modifications and alterations of the device may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Claims (10)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91135601A | 2002-12-09 | ||
TW091135601 | 2002-12-09 | ||
TW091135601A TW569543B (en) | 2002-12-09 | 2002-12-09 | Voltage controlled delay line with reduced timing errors and jitters |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040108872A1 true US20040108872A1 (en) | 2004-06-10 |
US6756818B1 US6756818B1 (en) | 2004-06-29 |
Family
ID=32466593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/250,171 Expired - Lifetime US6756818B1 (en) | 2002-12-09 | 2003-06-10 | Voltage-controlled delay line with reduced timing errors and jitters |
Country Status (2)
Country | Link |
---|---|
US (1) | US6756818B1 (en) |
TW (1) | TW569543B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100062970A1 (en) * | 2006-08-18 | 2010-03-11 | Emisphere Technologies Inc. | Synthesis of propyl phenoxy ethers and use as delivery agents |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6460001B1 (en) * | 2000-03-29 | 2002-10-01 | Advantest Corporation | Apparatus for and method of measuring a peak jitter |
US7088163B1 (en) * | 2004-09-24 | 2006-08-08 | National Semiconductor Corporation | Circuit for multiplexing a tapped differential delay line to a single output |
US7868678B2 (en) * | 2008-07-03 | 2011-01-11 | Infineon Technologies Ag | Configurable differential lines |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5970110A (en) * | 1998-01-09 | 1999-10-19 | Neomagic Corp. | Precise, low-jitter fractional divider using counter of rotating clock phases |
US6426662B1 (en) * | 2001-11-12 | 2002-07-30 | Pericom Semiconductor Corp. | Twisted-ring oscillator and delay line generating multiple phases using differential dividers and comparators to match delays |
US6492851B2 (en) * | 2000-03-30 | 2002-12-10 | Nec Corporation | Digital phase control circuit |
-
2002
- 2002-12-09 TW TW091135601A patent/TW569543B/en not_active IP Right Cessation
-
2003
- 2003-06-10 US US10/250,171 patent/US6756818B1/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5970110A (en) * | 1998-01-09 | 1999-10-19 | Neomagic Corp. | Precise, low-jitter fractional divider using counter of rotating clock phases |
US6492851B2 (en) * | 2000-03-30 | 2002-12-10 | Nec Corporation | Digital phase control circuit |
US6426662B1 (en) * | 2001-11-12 | 2002-07-30 | Pericom Semiconductor Corp. | Twisted-ring oscillator and delay line generating multiple phases using differential dividers and comparators to match delays |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100062970A1 (en) * | 2006-08-18 | 2010-03-11 | Emisphere Technologies Inc. | Synthesis of propyl phenoxy ethers and use as delivery agents |
Also Published As
Publication number | Publication date |
---|---|
TW200410497A (en) | 2004-06-16 |
US6756818B1 (en) | 2004-06-29 |
TW569543B (en) | 2004-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10511312B1 (en) | Metastable-free output synchronization for multiple-chip systems and the like | |
US10355852B2 (en) | Lock detector for phase lock loop | |
US11374558B2 (en) | Measurement and correction of multiphase clock duty cycle and skew | |
US8680903B2 (en) | Locked loop circuit with clock hold function | |
US8058913B2 (en) | DLL-based multiphase clock generator | |
US7668524B2 (en) | Clock deskewing method, apparatus, and system | |
KR101405702B1 (en) | Apparatus and method for multi-phase clock generation | |
US7151398B2 (en) | Clock signal generators having programmable full-period clock skew control | |
US20040041604A1 (en) | Phase jumping locked loop circuit | |
US20090002082A1 (en) | Multiphase signal generator | |
US9246480B2 (en) | Method for performing phase shift control in an electronic device, and associated apparatus | |
US8718216B2 (en) | Digital phase detector with zero phase offset | |
US7555089B2 (en) | Data edge-to-clock edge phase detector for high speed circuits | |
US8427208B2 (en) | Phase interpolator and semiconductor circuit device | |
US6922091B2 (en) | Locked loop circuit with clock hold function | |
EP1382118B1 (en) | System and method for multiple-phase clock generation | |
US6756818B1 (en) | Voltage-controlled delay line with reduced timing errors and jitters | |
EP1618461B1 (en) | Deskew system in a clock distribution network using a pll and a dll | |
US11569805B2 (en) | Minimum intrinsic timing utilization auto alignment on multi-die system | |
US6977539B1 (en) | Clock signal generators having programmable full-period clock skew control and methods of generating clock signals having programmable skews | |
CN112350695B (en) | Phase interpolator system, chip and electronic device | |
US7170963B2 (en) | Clock recovery method by phase selection | |
US10659059B2 (en) | Multi-phase clock generation circuit | |
EP1495544B1 (en) | System with phase jumping locked loop circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MEDIATEK INC., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, SHEN-IUAN;SUN, CHIH-HAO;CHANG, HSIANG-HUI;REEL/FRAME:013717/0515 Effective date: 20030609 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: MEDIATEK INC., TAIWAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE(S) FROM MEDIATEK INC. TO MEDIATEK INC. AND NATIONAL TAIWAN UNIVERSITY. PREVIOUSLY RECORDED ON REEL 013717 FRAME 0515;ASSIGNORS:LIU, SHEN-IUAN;SUN, CHIH-HAO;CHANG, HSIANG-HUI;REEL/FRAME:020218/0202;SIGNING DATES FROM 20070522 TO 20071126 Owner name: NATIONAL TAIWAN UNIVERSITY, TAIWAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE(S) FROM MEDIATEK INC. TO MEDIATEK INC. AND NATIONAL TAIWAN UNIVERSITY. PREVIOUSLY RECORDED ON REEL 013717 FRAME 0515;ASSIGNORS:LIU, SHEN-IUAN;SUN, CHIH-HAO;CHANG, HSIANG-HUI;REEL/FRAME:020218/0202;SIGNING DATES FROM 20070522 TO 20071126 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |