US20040107990A1 - Enhanced exhaust flow control feature - Google Patents

Enhanced exhaust flow control feature Download PDF

Info

Publication number
US20040107990A1
US20040107990A1 US10/379,956 US37995603A US2004107990A1 US 20040107990 A1 US20040107990 A1 US 20040107990A1 US 37995603 A US37995603 A US 37995603A US 2004107990 A1 US2004107990 A1 US 2004107990A1
Authority
US
United States
Prior art keywords
cavity
delivery
flow
pneumatic fluid
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/379,956
Inventor
Thanh Ho
Robert Herbst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bendix Commercial Vehicle Systems LLC
Original Assignee
Bendix Commercial Vehicle Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bendix Commercial Vehicle Systems LLC filed Critical Bendix Commercial Vehicle Systems LLC
Priority to US10/379,956 priority Critical patent/US20040107990A1/en
Assigned to BENDIX COMMERCIAL VEHICLE SYSTEMS, LLC reassignment BENDIX COMMERCIAL VEHICLE SYSTEMS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HERBST, ROBERT J., HO, THANH
Priority to AU2003298001A priority patent/AU2003298001B2/en
Priority to PCT/US2003/038773 priority patent/WO2004078546A1/en
Priority to CA2508745A priority patent/CA2508745C/en
Priority to MXPA05005940A priority patent/MXPA05005940A/en
Publication of US20040107990A1 publication Critical patent/US20040107990A1/en
Priority to US11/247,370 priority patent/US7255122B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T15/00Construction arrangement, or operation of valves incorporated in power brake systems and not covered by groups B60T11/00 or B60T13/00
    • B60T15/02Application and release valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2544Supply and exhaust type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve

Definitions

  • the present invention relates to a valve for quick release of pneumatic pressure in a pneumatic fluid system. It finds particular application with air brakes used in conjunction with heavy or commercial vehicles and will be described with particular reference thereto. The invention may be used in other applications without departing from the spirit and scope of the invention.
  • the actuator 3 for the brake valve When the actuator 3 for the brake valve is released (e.g., foot lifted from a brake pedal), the air flows from the brake chamber 4 to the actuator 3 through a fixed inlet orifice 1 . While the fixed inlet orifice does provide some pressure differential across the exhaust diaphragm, relatively little air, less than 50%, actually is exhausted through the exhaust port, and only slight improvements are realized for the release timing. Moreover, this method restricts the inlet capacity of the valve. Furthermore, this method does not sufficiently improve the release timing to meet the FMVSS 121 requirements.
  • Patent disclosure DE3938101A1 discusses reducing the vent time of a pressure control valve for improved release timing.
  • a “reflux” valve is placed directly in the inlet flow path, thus restricting the inlet flow.
  • Inclusion of a reflux valve that restricts inlet flow doesn't, however, provide both apply and release timing sufficient to meet, for example the requirements of FMVSS 121 .
  • Apply timing relates to how quickly the brakes are applied after pressing the brake pedal.
  • the enhancement for the release timing in disclosure DE3938101A1 degrades the performance of the valve for the apply timing. With the current sizing requirements of the antilock brake system (ABS) valve, it is not capable to meet both apply and release timing of FMVSS 121 using the “reflux” valve design.
  • ABS antilock brake system
  • the present invention provides a new and improved apparatus and method which addresses the above-referenced problems.
  • FIG. 1 illustrates a prior art valve
  • FIG. 2 illustrates a flow diverter as positioned during a brake application in accordance with one embodiment of the present invention
  • FIG. 3 illustrates a flow diverter as positioned during a brake release in accordance with one embodiment of the present invention
  • FIG. 4 illustrates a perspective view of the flow diverter in accordance with one embodiment of the present invention.
  • FIG. 5 illustrates a graph showing test data.
  • the delivery air of the air brake system valve is diverted to the exhaust port in order to limit the amount of air returning through the inlet port of the valve. In this manner, the release timing is improved without significantly increasing the apply timing.
  • the feature described below meets the required release timing of FMVSS 121 without significantly restricting the inlet capacity of the valve (see FIGS. 2 and 3) such that the required apply timing of FMVSS 121 is met.
  • the invention is not limited to features requiring compliance with FMVSS 121 release and apply timing requirements, but is discussed below in relation to features that will meet these requirements.
  • applying timing means the time from the first movement of the brake valve actuator (brake pedal) for the brake chamber to reach 60 psi with an initial service reservoir pressure of 100 psi.
  • release timing means the time from initial brake pedal movement (release) for a set of brake chambers initially at 95 psi to reach 5 psi.
  • use of the term “or” herein is the inclusive, and not the exclusive, use. See BRYAN A. GARNER, A DICTIONARY OF MODERN LEGAL USAGE 624 (2d Ed. 1995).
  • the release timing of a brake valve correlates to how quickly the pressure of the pneumatic fluid therein, often air, is released from the brake chamber 4 (see FIG. 1). The more quickly the pneumatic fluid pressure applied to the brake chamber 4 is released, the more quickly the brake will release.
  • the present invention provides for a restriction in the fluid flow from the brake chamber 4 to more quickly begin fluid communication with an exhaust port and to redirect more of the fluid to the exhaust port after the actuator 3 is released. This creates a pressure differential across the exhaust diaphragm 2 to unseat the exhaust diaphragm 2 and exhaust fluid. The greater the pressure differential, the more quickly the exhaust diaphragm 2 is unseated and the greater is the quantity and speed of the fluid exhausted.
  • the present invention provides a restriction that does not significantly reduce the incoming fluid flow upon application of the actuator 3 to engage the brake. Therefore, there is minimal reduction of the apply timing due to the restriction.
  • the restriction device herein called a flow diverter
  • the flow diverter When in the first position, the flow diverter does not significantly restrict fluid flow to actuate the brake.
  • the flow diverter diverts fluid flow to the exhaust by restricting the flow back in the direction of the actuator 3 .
  • the flow diverter may divert all or a portion of the fluid to the exhaust.
  • the flow diverter does not significantly reduce the apply timing, as does a conventional fixed inlet orifice 1 .
  • FIG. 2 illustrates a flow diverter 20 as positioned during a brake application, in accordance with one embodiment of the present invention.
  • FIG. 3 illustrates the flow diverter 20 as positioned during a brake release operation, in accordance with the embodiment illustrated in FIG. 2. Air flow paths of the delivery air during brake application and release are shown by arrows in FIGS. 2 and 3, respectively.
  • Flow diverter 20 moves freely within a bore 22 according to relative air pressures in a supply (inlet) cavity 24 and a delivery cavity 26 .
  • air from a service reservoir enters the supply (inlet) cavity 24 via an inlet/outlet port 30 when a brake valve 32 is actuated via, for example, a foot pedal 34 .
  • the air creates pressure in the supply cavity 24 and passes to a control side 36 of an exhaust diaphragm 40 .
  • the pressure created by the air at the control side 36 creates a stronger force on the exhaust diaphragm 40 than the pressure on the other side of the exhaust diaphragm 40 and urges the exhaust diaphragm 40 to seat against a housing wall 42 at a point 44 .
  • the exhaust diaphragm 40 will be biased to seat against the housing wall 42 at point 44 .
  • a portion of the other side of the exhaust diaphragm 40 is exposed to the pressure of delivery cavity 26 and a portion is exposed to the pressure of an exhaust port 46 .
  • the pressure of the exhaust port 46 is generally atmospheric pressure.
  • the seating of the exhaust diaphragm 40 at the point 44 creates a seal between the delivery cavity 26 and the exhaust port 46 .
  • the air creating pressure in the supply cavity 24 also passes through a passage 48 between a supply (hold) diaphragm 50 and a housing wall 52 .
  • a flow diverter 20 which is described in more detail below, is positioned within the bore 22 .
  • the air exits the bore 22 via a passage (not shown) into the delivery cavity 26 . Because of the seal created between the delivery cavity 26 and the wall 42 at point 44 , the air entering the delivery cavity 26 from the bore 22 does not pass to the exhaust port 46 ; instead, the air passes from the delivery cavity 26 to a delivery port 56 and then to a brake chamber 60 .
  • the flow diverter 20 includes a restrictor portion 100 and a spacer portion 102 .
  • the restrictor portion 100 is flat; furthermore, the spacer portion includes a plurality (e.g., four) of legs 102 a , 102 b , 102 c , 102 d .
  • an outer diameter of the restrictor portion 100 is sized to be smaller than an inner diameter of the bore 22 .
  • the outer diameter of the restrictor portion 100 is about 0.475 inches while the inner diameter of the bore 22 is about 0.490 inches.
  • the flow diverter 20 illustrated in FIGS. 2 and 4 represents only one embodiment and other embodiments including other designs, shapes, and/or dimensions of the flow diverter 20 relative to the bore 22 are contemplated.
  • the surface of restrictor portion 100 may be of any shape suitable for use, including regular or irregular polygons, such as rectangular, pentagonal, hexagonal, octagonal, or dodecahedral polygons.
  • the restrictor portion 100 is circular, if the cross-section of the bore 22 is circular.
  • the diameter of the restrictor portion 100 is dimensioned relative to the diameter of the bore 22 such that the restrictor portion 100 provides sufficient resistance to the flow of air to divert a sufficient amount, preferably at least about 50%, of the air in the delivery cavity 26 to the exhaust port 46 .
  • the flow diverter 20 also is dimensioned so that there is minimal restriction in the flow of air from supply cavity 24 to delivery cavity 26 .
  • the restriction is such that the desired apply timing may still be obtained.
  • the flow diverter 20 provides a restriction in the flow in this direction of no more than about 25%. Therefore, one of skill in the art may determine the optimum diameter of the restrictor portion 100 without undue experimentation.
  • the spacer portion 102 is illustrated with four legs 102 a , 102 b , 102 c , 102 d , there may be any number of legs, including three legs, so long as there is sufficient stability to enable the flow diverter 20 to divert the requisite air to the exhaust port 46 without significantly restricting the flow of air from the supply cavity 24 to the delivery cavity 26 when the brake valve 32 is actuated.
  • the number of legs may be chosen without departing from the spirit and scope of the invention.
  • the shape of the legs 102 a , 102 b , 102 c , 102 d is illustrated as rectangular prisms, but any suitable shape is contemplated, such as any suitable regular or irregular polygon, and is within the spirit and scope of the invention.
  • the shape of the legs 102 a , 102 b , 102 c , 102 d is to be selected such that there is minimal interference with air flow between the supply cavity 24 and the delivery cavity 26 , while providing sufficient support for the restrictor portion 100 .
  • the shape of the legs 102 a , 102 b , 102 c , 102 d may be selected to have tapering or curved portions to reduce the turbulent flow characteristics of the air and to reduce stress points on the flow diverter 20 .
  • the legs 102 a , 102 b , 102 c , 102 d have a triangular cross section.
  • the specific dimensions of the restrictor portion 100 and the spacer portion 102 may be selected based on the circumstances and parameters of each particular application without departing from the spirit and scope of the invention. Suitable dimensions may be determined without undue experimentation based on the measurement of the release timing and apply timing of the brake.
  • the flow diverter 20 may be a spherical ball or a cylindrical slug or other shape dimensioned such that, for example, the pressure of the air in the supply cavity 24 is sufficient to move the ball or slug substantially out of the way of the flow of air from the supply cavity 24 to the delivery cavity 26 , but the ball or slug interposes restriction in the flow of air from the delivery cavity 26 to the supply cavity 24 .
  • the flow diverter 20 need not have both a restrictor portion 100 and a spacer portion 102 , but may be provided as one portion.
  • the flow diverter 20 may also completely restrict any flow of air from the supply cavity 24 to the delivery cavity 26 . There need not be any leak by or flow of air back into the supply cavity 24 around or through the flow diverter 20 .
  • a flapper or check valve may be placed in or near the passage 48 that is in an open position when air is flowing from the supply cavity 24 to the delivery cavity 26 , but is in a closed position when air is no longer flowing in that direction.
  • the material from which the flow diverter 20 is made may be any conventional material selected, for example, based on cost, availability, weight, or any other parameter without departing from the spirit and scope of the invention.
  • the material is plastic, but metals, such as aluminum, are also suitable.
  • the specific material chosen may affect the restriction of fluid flow because of, for example, weight or surface smoothness, but the appropriate shape and dimensions for the chosen material may be determined without undue experimentation.
  • the flow diverter 20 is positioned in the bore 22 upon a brake application such that the flow diverter 20 does not substantially interfere with the flow of air from the supply cavity 24 to the delivery cavity 26 via the bore 22 .
  • the restrictor portion 100 is above the passage (not shown) from the bore 22 to the delivery cavity 26 .
  • the legs 102 a , 102 b , 102 c , 102 d are designed such that they do not substantially interfere with the flow of air from the bore 22 to the delivery cavity 26 upon brake application.
  • the flow diverter 20 allows minimally-restricted inlet flow during brake application and meters back flow during brake release.
  • the metering of back flow quickly induces a differential pressure across the exhaust diaphragm triggering the opening of the exhaust seat. This unseating results in the improved release timing that meets the FMVSS 121 timing requirements.
  • the flow diverter 20 is a flow-activated device having two positions of operation. During a brake application the flow diverter is moved by the application air to its minimally restricted open position. This allows the ABS valve to meet the FMVSS 121 apply timing requirement. During the brake application release, the flow of delivered air carries the flow diverter 20 to its metering position (see FIG. 3). At this position the flow diverter 20 diverts the majority of the air in the delivery cavity to the exhaust port 46 and restricts the amount of air returning to the inlet/outlet 30 of the valve 32 through the clearance between its outside diameter and the housing bore's inside diameter.
  • FIG. 5 illustrates a graph 200 of test data showing a reduction in the amount of time for releasing pressure in the delivery cavity 26 (see FIGS. 2 and 3) from 95 psi to 5 psi.
  • a line 202 shows that, for these dimensions, it took about 0.564 seconds to release the pressure without the flow diverter according to the present invention.
  • a line 204 shows that, for the same embodiment, it took about 0.267 seconds to release the pressure with the flow diverter according to the present invention.
  • the reduction in flow area for the air passing from the supply cavity 24 to the delivery cavity 26 imposed by the flow diverter 20 for three different tests was about 23.3%, about 23.8%, and about 23.9%, with an average of about 23.7%, or less than 25%.

Abstract

A valve for use in a pneumatic fluid system, such as an air brake system, is disclosed. The valve provides for fast release of pneumatic fluid from the delivery cavity through the exhaust port upon cessation of flow from the pneumatic fluid reservoir through the supply cavity. The valve includes a flow diverter that restricts fluid flow from the delivery cavity to the supply cavity when pneumatic fluid pressure in the supply cavity is less than that in the delivery cavity with minimal restriction of flow from the supply cavity to the delivery cavity when pressure in the supply cavity is greater than in the delivery cavity.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority from [0001] Provisional Application 60/431,305, filed Dec. 6, 2002, entitled Enhanced Exhaust Flow Control Feature, the entire disclosure of which is hereby incorporated by reference.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH & DEVELOPMENT
  • [0002] This invention was not made by an agency of the United States Government nor under contract with an agency of the United States Government.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a valve for quick release of pneumatic pressure in a pneumatic fluid system. It finds particular application with air brakes used in conjunction with heavy or commercial vehicles and will be described with particular reference thereto. The invention may be used in other applications without departing from the spirit and scope of the invention. [0003]
  • Some air brake valves used in the industry today (e.g., in Europe) do not meet release timing requirements of Federal Motor Vehicle Safety Standard (FMVSS) [0004] 121, Air Brake Systems. The release timing requirements relate to how quickly the brakes release after the brake pedal is allowed to return to its normal position. In order to use these valves in the worldwide market, the release timing must be improved to meet the requirements of this market. As shown in FIG. 1, current brake system valves utilize a fixed inlet orifice 1 to generate a pressure differential across an exhaust diaphragm 2 to enhance the release timing.
  • When the [0005] actuator 3 for the brake valve is released (e.g., foot lifted from a brake pedal), the air flows from the brake chamber 4 to the actuator 3 through a fixed inlet orifice 1. While the fixed inlet orifice does provide some pressure differential across the exhaust diaphragm, relatively little air, less than 50%, actually is exhausted through the exhaust port, and only slight improvements are realized for the release timing. Moreover, this method restricts the inlet capacity of the valve. Furthermore, this method does not sufficiently improve the release timing to meet the FMVSS 121 requirements.
  • Patent disclosure DE3938101A1 discusses reducing the vent time of a pressure control valve for improved release timing. In this disclosure a “reflux” valve is placed directly in the inlet flow path, thus restricting the inlet flow. Inclusion of a reflux valve that restricts inlet flow doesn't, however, provide both apply and release timing sufficient to meet, for example the requirements of FMVSS [0006] 121. Apply timing relates to how quickly the brakes are applied after pressing the brake pedal. The enhancement for the release timing in disclosure DE3938101A1 degrades the performance of the valve for the apply timing. With the current sizing requirements of the antilock brake system (ABS) valve, it is not capable to meet both apply and release timing of FMVSS 121 using the “reflux” valve design.
  • The present invention provides a new and improved apparatus and method which addresses the above-referenced problems.[0007]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the accompanying drawings which are incorporated in and constitute a part of the specification, embodiments of the invention are illustrated, which, together with a general description of the invention given above, and the detailed description given below, serve to exemplify the embodiments of this invention. [0008]
  • FIG. 1 illustrates a prior art valve; [0009]
  • FIG. 2 illustrates a flow diverter as positioned during a brake application in accordance with one embodiment of the present invention; and [0010]
  • FIG. 3 illustrates a flow diverter as positioned during a brake release in accordance with one embodiment of the present invention; [0011]
  • FIG. 4 illustrates a perspective view of the flow diverter in accordance with one embodiment of the present invention; and [0012]
  • FIG. 5 illustrates a graph showing test data.[0013]
  • DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENT
  • In order to provide decreased release timing, such as to meet the FMVSS [0014] 121 release timing requirements, the delivery air of the air brake system valve is diverted to the exhaust port in order to limit the amount of air returning through the inlet port of the valve. In this manner, the release timing is improved without significantly increasing the apply timing. The feature described below meets the required release timing of FMVSS 121 without significantly restricting the inlet capacity of the valve (see FIGS. 2 and 3) such that the required apply timing of FMVSS 121 is met. The invention is not limited to features requiring compliance with FMVSS 121 release and apply timing requirements, but is discussed below in relation to features that will meet these requirements.
  • As used herein, “apply timing” means the time from the first movement of the brake valve actuator (brake pedal) for the brake chamber to reach 60 psi with an initial service reservoir pressure of 100 psi. As used herein, “release timing” means the time from initial brake pedal movement (release) for a set of brake chambers initially at 95 psi to reach 5 psi. Unless otherwise specified, use of the term “or” herein is the inclusive, and not the exclusive, use. See [0015] BRYAN A. GARNER, A DICTIONARY OF MODERN LEGAL USAGE 624 (2d Ed. 1995).
  • The release timing of a brake valve correlates to how quickly the pressure of the pneumatic fluid therein, often air, is released from the brake chamber [0016] 4 (see FIG. 1). The more quickly the pneumatic fluid pressure applied to the brake chamber 4 is released, the more quickly the brake will release. The present invention provides for a restriction in the fluid flow from the brake chamber 4 to more quickly begin fluid communication with an exhaust port and to redirect more of the fluid to the exhaust port after the actuator 3 is released. This creates a pressure differential across the exhaust diaphragm 2 to unseat the exhaust diaphragm 2 and exhaust fluid. The greater the pressure differential, the more quickly the exhaust diaphragm 2 is unseated and the greater is the quantity and speed of the fluid exhausted. Unlike conventional valves that have some restriction, however, the present invention provides a restriction that does not significantly reduce the incoming fluid flow upon application of the actuator 3 to engage the brake. Therefore, there is minimal reduction of the apply timing due to the restriction.
  • Generally, the restriction device, herein called a flow diverter, has at least two positions-a first or open position when the pneumatic fluid flows to actuate the brake and a second or closed position when the brake is released. When in the first position, the flow diverter does not significantly restrict fluid flow to actuate the brake. When in the second position, the flow diverter diverts fluid flow to the exhaust by restricting the flow back in the direction of the [0017] actuator 3. The flow diverter may divert all or a portion of the fluid to the exhaust. Thus, the flow diverter does not significantly reduce the apply timing, as does a conventional fixed inlet orifice 1.
  • FIG. 2 illustrates a flow diverter [0018] 20 as positioned during a brake application, in accordance with one embodiment of the present invention. FIG. 3 illustrates the flow diverter 20 as positioned during a brake release operation, in accordance with the embodiment illustrated in FIG. 2. Air flow paths of the delivery air during brake application and release are shown by arrows in FIGS. 2 and 3, respectively. Flow diverter 20 moves freely within a bore 22 according to relative air pressures in a supply (inlet) cavity 24 and a delivery cavity 26.
  • As shown in FIG. 2, air from a service reservoir (not shown) enters the supply (inlet) [0019] cavity 24 via an inlet/outlet port 30 when a brake valve 32 is actuated via, for example, a foot pedal 34. The air creates pressure in the supply cavity 24 and passes to a control side 36 of an exhaust diaphragm 40. The pressure created by the air at the control side 36 creates a stronger force on the exhaust diaphragm 40 than the pressure on the other side of the exhaust diaphragm 40 and urges the exhaust diaphragm 40 to seat against a housing wall 42 at a point 44. Typically, the exhaust diaphragm 40 will be biased to seat against the housing wall 42 at point 44. A portion of the other side of the exhaust diaphragm 40 is exposed to the pressure of delivery cavity 26 and a portion is exposed to the pressure of an exhaust port 46. The pressure of the exhaust port 46 is generally atmospheric pressure. As will be discussed in more detail below, the seating of the exhaust diaphragm 40 at the point 44 creates a seal between the delivery cavity 26 and the exhaust port 46. At the same time, the air creating pressure in the supply cavity 24 also passes through a passage 48 between a supply (hold) diaphragm 50 and a housing wall 52.
  • After passing through the [0020] passage 48, the air passes into the bore 22. A flow diverter 20, which is described in more detail below, is positioned within the bore 22. The air exits the bore 22 via a passage (not shown) into the delivery cavity 26. Because of the seal created between the delivery cavity 26 and the wall 42 at point 44, the air entering the delivery cavity 26 from the bore 22 does not pass to the exhaust port 46; instead, the air passes from the delivery cavity 26 to a delivery port 56 and then to a brake chamber 60.
  • As shown in FIGS. 2 and 4, the [0021] flow diverter 20 includes a restrictor portion 100 and a spacer portion 102. In the illustrated embodiment, the restrictor portion 100 is flat; furthermore, the spacer portion includes a plurality (e.g., four) of legs 102 a, 102 b, 102 c, 102 d. Additionally, an outer diameter of the restrictor portion 100 is sized to be smaller than an inner diameter of the bore 22. In one embodiment, the outer diameter of the restrictor portion 100 is about 0.475 inches while the inner diameter of the bore 22 is about 0.490 inches. The flow diverter 20 illustrated in FIGS. 2 and 4 represents only one embodiment and other embodiments including other designs, shapes, and/or dimensions of the flow diverter 20 relative to the bore 22 are contemplated.
  • For example, the surface of [0022] restrictor portion 100 may be of any shape suitable for use, including regular or irregular polygons, such as rectangular, pentagonal, hexagonal, octagonal, or dodecahedral polygons. Preferably, the restrictor portion 100 is circular, if the cross-section of the bore 22 is circular. The diameter of the restrictor portion 100 is dimensioned relative to the diameter of the bore 22 such that the restrictor portion 100 provides sufficient resistance to the flow of air to divert a sufficient amount, preferably at least about 50%, of the air in the delivery cavity 26 to the exhaust port 46. The flow diverter 20 also is dimensioned so that there is minimal restriction in the flow of air from supply cavity 24 to delivery cavity 26. The restriction is such that the desired apply timing may still be obtained. Preferably, the flow diverter 20 provides a restriction in the flow in this direction of no more than about 25%. Therefore, one of skill in the art may determine the optimum diameter of the restrictor portion 100 without undue experimentation.
  • Moreover, while the spacer portion [0023] 102 is illustrated with four legs 102 a, 102 b, 102 c, 102 d, there may be any number of legs, including three legs, so long as there is sufficient stability to enable the flow diverter 20 to divert the requisite air to the exhaust port 46 without significantly restricting the flow of air from the supply cavity 24 to the delivery cavity 26 when the brake valve 32 is actuated. The number of legs may be chosen without departing from the spirit and scope of the invention.
  • The shape of the [0024] legs 102 a, 102 b, 102 c, 102 d is illustrated as rectangular prisms, but any suitable shape is contemplated, such as any suitable regular or irregular polygon, and is within the spirit and scope of the invention. The shape of the legs 102 a, 102 b, 102 c, 102d is to be selected such that there is minimal interference with air flow between the supply cavity 24 and the delivery cavity 26, while providing sufficient support for the restrictor portion 100. For example, the shape of the legs 102 a, 102 b, 102 c, 102 d may be selected to have tapering or curved portions to reduce the turbulent flow characteristics of the air and to reduce stress points on the flow diverter 20. In one design, the legs 102 a, 102 b, 102 c, 102d have a triangular cross section. There may also be ribs between the legs or otherwise provided, for example, to provide additional strength for the legs.
  • The specific dimensions of the [0025] restrictor portion 100 and the spacer portion 102 may be selected based on the circumstances and parameters of each particular application without departing from the spirit and scope of the invention. Suitable dimensions may be determined without undue experimentation based on the measurement of the release timing and apply timing of the brake.
  • Also, the [0026] flow diverter 20 may be a spherical ball or a cylindrical slug or other shape dimensioned such that, for example, the pressure of the air in the supply cavity 24 is sufficient to move the ball or slug substantially out of the way of the flow of air from the supply cavity 24 to the delivery cavity 26, but the ball or slug interposes restriction in the flow of air from the delivery cavity 26 to the supply cavity 24. Thus, the flow diverter 20 need not have both a restrictor portion 100 and a spacer portion 102, but may be provided as one portion.
  • Although the [0027] flow diverter 20 has been discussed thus far as restricting flow of air from the supply cavity 24 to the delivery cavity 26, but allowing some flow of air in this direction, the flow diverter 20 may also completely restrict any flow of air from the supply cavity 24 to the delivery cavity 26. There need not be any leak by or flow of air back into the supply cavity 24 around or through the flow diverter 20. For example, a flapper or check valve may be placed in or near the passage 48 that is in an open position when air is flowing from the supply cavity 24 to the delivery cavity 26, but is in a closed position when air is no longer flowing in that direction.
  • The material from which the [0028] flow diverter 20 is made may be any conventional material selected, for example, based on cost, availability, weight, or any other parameter without departing from the spirit and scope of the invention. Preferably, the material is plastic, but metals, such as aluminum, are also suitable. The specific material chosen may affect the restriction of fluid flow because of, for example, weight or surface smoothness, but the appropriate shape and dimensions for the chosen material may be determined without undue experimentation.
  • As illustrated in FIG. 2, the [0029] flow diverter 20 is positioned in the bore 22 upon a brake application such that the flow diverter 20 does not substantially interfere with the flow of air from the supply cavity 24 to the delivery cavity 26 via the bore 22. For example, the restrictor portion 100 is above the passage (not shown) from the bore 22 to the delivery cavity 26. The legs 102 a, 102 b, 102 c, 102 d are designed such that they do not substantially interfere with the flow of air from the bore 22 to the delivery cavity 26 upon brake application.
  • As shown in FIG. 3, when the [0030] brake valve 32 is no longer actuated (e.g., when the brake valve or foot pedal is released), air begins to flow from the control side 36 of the exhaust diaphragm 40 into the supply cavity 24. Air in the supply cavity 24 is exhausted via the inlet/outlet port 30, thereby causing a pressure drop in the supply cavity 24. Once the pressure in the supply cavity 24 drops, air begins to flow from the delivery cavity 26 to the supply cavity 24 via the bore 22. The flow diverter 20 is then positioned as shown in FIG. 3. The restrictor portion 100 reduces the amount of air that flows from the delivery cavity 26 to the supply cavity 24 via the bore 22 and passage 48.
  • Because a restricted amount of air is permitted to escape from the [0031] delivery cavity 26 via the bore 22 and, furthermore, because of the reduced pressure at the control side 36 of the exhaust diaphragm 40, the pressure of air in the delivery cavity 26 urges the exhaust diaphragm 40 to become unseated from the wall 42 at the point 44. Consequently, air passes from the delivery cavity 26 to the exhaust port 46 via a channel 62 defined between the exhaust diaphragm 40 and wall 42. More specifically, the higher pressure in the delivery cavity 26 unseats the exhaust diaphragm 40, directing the major portion of the delivery air flow out the exhaust port 46. The combination of low pressure on the control side 36 of the exhaust diaphragm 40 and high pressure on the seat side speeds the opening of the exhaust valve and the release timing of the valve.
  • As shown in FIGS. 2 and 3, the [0032] flow diverter 20 allows minimally-restricted inlet flow during brake application and meters back flow during brake release. The metering of back flow quickly induces a differential pressure across the exhaust diaphragm triggering the opening of the exhaust seat. This unseating results in the improved release timing that meets the FMVSS 121 timing requirements.
  • The [0033] flow diverter 20 is a flow-activated device having two positions of operation. During a brake application the flow diverter is moved by the application air to its minimally restricted open position. This allows the ABS valve to meet the FMVSS 121 apply timing requirement. During the brake application release, the flow of delivered air carries the flow diverter 20 to its metering position (see FIG. 3). At this position the flow diverter 20 diverts the majority of the air in the delivery cavity to the exhaust port 46 and restricts the amount of air returning to the inlet/outlet 30 of the valve 32 through the clearance between its outside diameter and the housing bore's inside diameter.
  • A valve available from Knorr Bremse with a part number of BR9164 was fitted with a [0034] flow restrictor 20 having three legs with substantially triangular cross sections. In this embodiment, the inner diameter of the bore 22 was about 0.490 inches and the outer diameter of the restrictor portion 100 was about 0.481 inches. FIG. 5 illustrates a graph 200 of test data showing a reduction in the amount of time for releasing pressure in the delivery cavity 26 (see FIGS. 2 and 3) from 95 psi to 5 psi. A line 202 shows that, for these dimensions, it took about 0.564 seconds to release the pressure without the flow diverter according to the present invention. Furthermore, a line 204 shows that, for the same embodiment, it took about 0.267 seconds to release the pressure with the flow diverter according to the present invention. The reduction in flow area for the air passing from the supply cavity 24 to the delivery cavity 26 imposed by the flow diverter 20 for three different tests was about 23.3%, about 23.8%, and about 23.9%, with an average of about 23.7%, or less than 25%.
  • While the present invention has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention, in its broader aspects, is not limited to the specific details, the representative apparatus, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicants' general inventive concept. [0035]

Claims (16)

We claim:
1. A valve for use in a pneumatic fluid system comprising:
a. a supply cavity for supplying pneumatic fluid;
b. a delivery cavity;
c. an exhaust port; and
d. a flow diverter disposed between the supply cavity and the delivery cavity;
wherein the flow diverter is in an open position when the fluid is communicated from the supply cavity to the delivery cavity and is in a closed position when the fluid is communicated from the delivery cavity to the supply cavity restricting pneumatic fluid flow such that the majority of pneumatic fluid in the delivery cavity is communicated to the exhaust port.
2. The valve of claim 1, wherein the flow diverter does not significantly restrict flow of the pneumatic fluid from the supply cavity to the delivery cavity.
3. The valve of claim 2, wherein the flow diverter reduces the flow area by no more than about 25%.
4. The valve of claim 1, wherein the pneumatic fluid is air.
5. The valve of claim 1, wherein the pneumatic fluid system comprises a vehicle air brake system.
6. The valve of claim 1, further comprising:
a. a housing wall disposed between the delivery cavity and the exhaust port; and
b. an exhaust diaphragm capable of seating against the housing wall.
7. The valve of claim 6, wherein when the pneumatic fluid is at a higher pressure in the delivery cavity than in the supply cavity, the flow diverter restricts flow of the pneumatic fluid from the delivery cavity to the supply cavity and the diaphragm is unseated from the housing wall, enabling communication of the pneumatic fluid from the delivery cavity to the exhaust port.
8. A valve for use in a pneumatic fluid system, comprising:
a. a supply cavity for supplying pneumatic fluid;
b. a delivery cavity in fluid communication with the supply cavity;
c. an exhaust port in fluid communication with the delivery cavity;
d. a housing wall disposed between the delivery cavity and the exhaust port;
e. an exhaust diaphragm capable of seating against the housing wall between the delivery cavity and the exhaust port; and
f. a flow diverter disposed between the supply cavity and the delivery cavity;
wherein the flow diverter allows the pneumatic fluid to be communicated to the delivery cavity from the supply cavity with minimal restriction by the flow diverter, and
wherein when the pneumatic fluid is at a higher pressure in the delivery cavity than in the supply cavity, the flow diverter restricts flow of the pneumatic fluid from the delivery cavity to the supply cavity, and the diaphragm is unseated from the housing wall, enabling communication of the pneumatic fluid from the delivery cavity to the exhaust port.
9. A valve for use in a pneumatic fluid system, comprising:
a. a supply cavity for supplying pneumatic fluid;
b. a delivery cavity in fluid communication with the supply cavity;
c. an exhaust port in fluid communication with the delivery cavity;
d. means for restricting the flow of pneumatic fluid from the delivery cavity to the supply cavity with minimal restriction of the flow of pneumatic fluid from the supply cavity to the delivery cavity; and
e. means for directing the flow of the majority of the pneumatic fluid in the delivery cavity from the delivery cavity to the exhaust port when pressure of the pneumatic fluid in the delivery cavity exceeds pressure of the pneumatic fluid in the supply cavity.
10. The valve of claim 9, wherein the means for restricting the flow of pneumatic fluid comprises a flow diverter between the supply cavity and the delivery cavity.
11. The valve of claim 9, wherein the means for restricting the flow of pneumatic fluid reduces the flow area for flow of pneumatic fluid from the supply cavity to the delivery cavity by no more than about 25%.
12. The valve of claim 9, wherein means for directing the flow of the majority of the pneumatic fluid comprises an exhaust diaphragm capable of seating against and unseating from a housing such that when pressure of the pneumatic fluid in the delivery cavity exceeds pressure of the pneumatic fluid in the supply cavity, the exhaust diaphragm unseats from the housing, providing a flow path for the pneumatic fluid between the delivery cavity and the exhaust port.
13. A quick release valve for use in a vehicle air brake system, comprising:
a. a supply cavity;
b. a delivery cavity;
c. an exhaust port; and
d. a flow diverter that has first and second positions;
wherein the supply cavity is in fluid communication with the delivery cavity when the flow diverter is in the first position and the delivery cavity is in fluid communication with the exhaust port when the flow diverter is in the second position.
14. A flow diverter for use in a valve in a pneumatic fluid system, comprising:
a. a restrictor portion; and
b. a spacing portion having at least one leg;
c. wherein the flow diverter is configured for placement in a bore between a supply cavity in fluid communication with a delivery cavity such that the flow diverter minimally restricts flow of pneumatic fluid when the fluid is being communicated to the delivery cavity from the supply cavity, but will significantly restrict flow of the pneumatic fluid from the delivery cavity to the supply cavity.
15. A method of rapidly exhausting air, with minimal restriction of air inlet flow, from an air brake valve having a supply cavity, a delivery cavity, an exhaust port, a housing, and an exhaust diaphragm seated against the housing, comprising:
a. restricting communication of the air from the delivery cavity to the supply cavity when pressure of the air in the delivery cavity is greater than pressure of the air in the supply cavity with minimal restriction of communication of the air from the supply cavity to the delivery cavity when pressure of the air in the supply cavity is greater than pressure of the air in the delivery cavity;
b. unseating the exhaust diaphragm from the housing when pressure of the air in the delivery cavity is greater than pressure of the air in the supply cavity; and
c. causing communication of the air from the delivery cavity to the exhaust port upon unseating the diaphragm from the housing.
16. The method of claim 15, wherein restricting communication of air is accomplished by a flow diverter that is in an open position when pressure of the air in the supply cavity is equal or greater than pressure of the air in the delivery cavity and in a closed position when pressure of the air in the delivery cavity is greater than pressure of the air in the supply cavity.
US10/379,956 2002-12-06 2003-03-05 Enhanced exhaust flow control feature Abandoned US20040107990A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/379,956 US20040107990A1 (en) 2002-12-06 2003-03-05 Enhanced exhaust flow control feature
AU2003298001A AU2003298001B2 (en) 2003-03-05 2003-12-05 Pneumatic valve with an enhanced exhaust flow control feature
PCT/US2003/038773 WO2004078546A1 (en) 2003-03-05 2003-12-05 Pneumatic valve with an enhanced exhaust flow control feature
CA2508745A CA2508745C (en) 2003-03-05 2003-12-05 Pneumatic valve with an enhanced exhaust flow control feature
MXPA05005940A MXPA05005940A (en) 2003-03-05 2003-12-05 Pneumatic valve with an enhanced exhaust flow control feature.
US11/247,370 US7255122B2 (en) 2002-12-06 2005-10-11 Enhanced exhaust flow control feature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43130502P 2002-12-06 2002-12-06
US10/379,956 US20040107990A1 (en) 2002-12-06 2003-03-05 Enhanced exhaust flow control feature

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/247,370 Division US7255122B2 (en) 2002-12-06 2005-10-11 Enhanced exhaust flow control feature

Publications (1)

Publication Number Publication Date
US20040107990A1 true US20040107990A1 (en) 2004-06-10

Family

ID=32474204

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/379,956 Abandoned US20040107990A1 (en) 2002-12-06 2003-03-05 Enhanced exhaust flow control feature
US11/247,370 Expired - Lifetime US7255122B2 (en) 2002-12-06 2005-10-11 Enhanced exhaust flow control feature

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/247,370 Expired - Lifetime US7255122B2 (en) 2002-12-06 2005-10-11 Enhanced exhaust flow control feature

Country Status (1)

Country Link
US (2) US20040107990A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0615837D0 (en) * 2006-08-09 2006-09-20 Univ Cambridge Tech Air braking system
US7648029B2 (en) * 2007-06-07 2010-01-19 Terence Chen Simplified rotatable anti-theft tool rack
US8260520B2 (en) * 2008-10-28 2012-09-04 Bendix Commercial Vehicle Systems Llc Heavy vehicle trailer ABS module
US9200753B2 (en) * 2012-08-02 2015-12-01 Bendix Commercial Vehicle Systems Llc Flow diverter valve and method
DE102014100187A1 (en) * 2014-01-09 2015-07-09 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Quick exhaust valve device for pneumatic actuators of pneumatic devices and pneumatic device with such a quick exhaust device
US11879551B2 (en) 2021-11-22 2024-01-23 Bendix Commercial Vehicle Systems Llc Pressure control valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134417A (en) * 1976-12-20 1979-01-16 Sloan Valve Company Quick release valve
US4577910A (en) * 1984-05-04 1986-03-25 American Standard Inc. Quick release valve arrangement
US4858638A (en) * 1987-11-10 1989-08-22 Sloan Valve Company Fast-acting quick release valve
US5078455A (en) * 1989-06-14 1992-01-07 Washington William E Differential pressure regulator quick release valve in a pneumatic braking system
US5118169A (en) * 1987-08-26 1992-06-02 Wabco Westinghouse Fahrzeugbremsen Gmbh Control valve device
US5425572A (en) * 1993-06-15 1995-06-20 Midland Brake, Inc. Quick-release valve for a vehicle air release brake system
US6386649B1 (en) * 1999-10-01 2002-05-14 Alliedsignal Truck Brake Systems Two solenoid pressure modulated relay valve with integral quick release function for ABS

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3340525A1 (en) 1983-11-09 1985-05-15 Joachim Dipl.-Ing. 7551 Bischweier Scholz FORCE CONTROLLED PRESSURE CONTROL VALVE
DE3938101A1 (en) 1989-11-16 1991-05-23 Bosch Gmbh Robert Pressure control valve for vehicle anti-locking braking system - has non-return valve providing shorter route to vent point for reverse press medium flow
US5918852A (en) * 1996-06-17 1999-07-06 Automatic Switch Company Wide flow range proportional flow valve
US6206487B1 (en) * 1997-09-02 2001-03-27 Akebono Brake Industry Co., Ltd. Brake pressure control device
DE19744389A1 (en) 1997-10-08 1999-04-15 Wabco Gmbh Valve with pressure medium inlet and outlet chambers connectable together by inlet valve
US6267135B1 (en) * 2000-05-03 2001-07-31 Honeywell Commerical Vehicle Systems Co. ABS modulator with damping foam on exhaust diaphragm

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134417A (en) * 1976-12-20 1979-01-16 Sloan Valve Company Quick release valve
US4577910A (en) * 1984-05-04 1986-03-25 American Standard Inc. Quick release valve arrangement
US5118169A (en) * 1987-08-26 1992-06-02 Wabco Westinghouse Fahrzeugbremsen Gmbh Control valve device
US4858638A (en) * 1987-11-10 1989-08-22 Sloan Valve Company Fast-acting quick release valve
US5078455A (en) * 1989-06-14 1992-01-07 Washington William E Differential pressure regulator quick release valve in a pneumatic braking system
US5425572A (en) * 1993-06-15 1995-06-20 Midland Brake, Inc. Quick-release valve for a vehicle air release brake system
US6386649B1 (en) * 1999-10-01 2002-05-14 Alliedsignal Truck Brake Systems Two solenoid pressure modulated relay valve with integral quick release function for ABS

Also Published As

Publication number Publication date
US20060096636A1 (en) 2006-05-11
US7255122B2 (en) 2007-08-14

Similar Documents

Publication Publication Date Title
US7255122B2 (en) Enhanced exhaust flow control feature
JP3030074B2 (en) Solenoid operated valve
US5647644A (en) Solenoid valve, especially for hydraulic brake systems with slip control
US4080005A (en) Empty-load fluid pressure brake system including proportioning valve
JP2000326717A (en) Vehicular car height adjusting device having air spring
US9327701B2 (en) Railroad control valve
US20030020329A1 (en) Modulator relay valve assembly and method
US5476243A (en) Electromagnetically actuated valve particularly for slip-controlled hydraulic brake systems in motor vehicles
JPH04154462A (en) Anti-skid brake control device
CA2508745C (en) Pneumatic valve with an enhanced exhaust flow control feature
US5794656A (en) Ball check valve with offset open ball movement
US8083293B2 (en) Empty/load brake control device with multi-stage sensing
JP2009530184A (en) Variable load control valve with test tip
JP2001030895A (en) Switchable solenoid valve used in brake system having anti-lock brake system
EP1112907B1 (en) Graduated release valve
US20050162007A1 (en) Graduated release/proportioning valve
WO1994012379A1 (en) Fluid pressure control valve
JPH0418584B2 (en)
JPH11180277A (en) Brake device for vehicle
JP2561813Y2 (en) solenoid valve
US4302057A (en) Pneumatic control valve
JP2653794B2 (en) Anti-lock brake
US2048337A (en) hewitt
AU2003260059A1 (en) Spherical seat inlet-exhaust valve
JPH0630583Y2 (en) Flow control valve for anti-skid device

Legal Events

Date Code Title Description
AS Assignment

Owner name: BENDIX COMMERCIAL VEHICLE SYSTEMS, LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HO, THANH;HERBST, ROBERT J.;REEL/FRAME:013848/0314

Effective date: 20030227

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION