US20040097190A1 - Mobile unit position determination using RF signal repeater - Google Patents
Mobile unit position determination using RF signal repeater Download PDFInfo
- Publication number
- US20040097190A1 US20040097190A1 US10/715,621 US71562103A US2004097190A1 US 20040097190 A1 US20040097190 A1 US 20040097190A1 US 71562103 A US71562103 A US 71562103A US 2004097190 A1 US2004097190 A1 US 2004097190A1
- Authority
- US
- United States
- Prior art keywords
- signal
- repeater
- base station
- mobile
- tags
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2603—Arrangements for wireless physical layer control
- H04B7/2606—Arrangements for base station coverage control, e.g. by using relays in tunnels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S11/00—Systems for determining distance or velocity not using reflection or reradiation
- G01S11/02—Systems for determining distance or velocity not using reflection or reradiation using radio waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0273—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves using multipath or indirect path propagation signals in position determination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/14—Determining absolute distances from a plurality of spaced points of known location
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/155—Ground-based stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/26—Cell enhancers or enhancement, e.g. for tunnels, building shadow
Definitions
- Embodiments of the invention relate to RF signal repeaters and more particularly, to the use of an RF signal repeater having an electronic signature imposed upon the repeated signal to allow identification of the signal repeater.
- Wireless data services are used for remote access of e-mail, mobile Internet browsing, company information and others.
- operator need to support perceived data rates of 64 kbps or greater.
- GSM networks two such services are General Packet Radio Service (GPRS) and Enhanced Data for GSM Evolution (EDGE). Both bring packet data connectivity to the GSM market at a variety of data rates.
- GPRS General Packet Radio Service
- EDGE Enhanced Data for GSM Evolution
- both services will shift the data transmission to a lower data rate, using more redundancy (channel coding) in the transmission to offset the lowered SNR.
- channels coding channel coding
- users will find that their realized data rate will decrease by a significant percentage when moved from locations near a cell base station toward the cell edges due to increased channel interference (C/I) and reduced signal-to-noise ratios (SNR).
- C/I channel interference
- SNR signal-to-noise ratios
- less than 20% of a cell area is estimated to be capable of the peak GPRS data rate in a coverage limited deployment.
- One way to increase the data rates for these services would be to locate RF repeaters within a cell that retransmit the base station signals to handsets remote from the cell's base station. Similarly, the RF repeater could retransmit handset signals to the cell's base station.
- An inherent problem of repeating a signal transmission with little or no frequency translation is that the retransmitted signal may feedback into an RF repeater's receiving antenna. This unstable feedback problem is analogous to the familiar “howl” heard at public events when a speaker's microphone is too close to the loudspeakers.
- One way to combat this feedback problem would be the use of directional antennas in the RF repeater. For example, one directional antenna would be directed towards the base station and another directional antenna would be directed towards the mobile unit.
- the RF repeater would not know the position of the mobile unit and would thus use an omni-directional antenna to communicate with the mobile unit. Moreover, even with the use of directional antennas, near field effects are very unpredictable and could cause substantial feedback. In contrast, frequency translation provides better isolation—the RF repeater would transmit and receive signals with the mobile unit on a different frequency band than that used to transmit and receive signals with the base station.
- U.S. Pat. No. 5,970,410 discloses a wireless system architecture employing RF signal repeaters using frequency translation to permit a single home base station to communicate with mobile stations in a plurality of cells.
- this reference discloses the use of frequency translated repeaters [they are referred to as “translator base stations” but do not perform the conventional demodulation and modulation functions of a base station], the repeaters are used to extend the coverage of a home base station to additional cells. No teaching is made to use translators to increase the throughput of wireless communications within a given cell.
- U.S. Pat. No. 5,787,344 discloses an array of repeaters arranged in respective cell areas about a base station within a given cell.
- the repeaters in the array may each be allocated different transmission frequencies. Such an arrangement of frequency translating repeaters is complicated if a transmission frequency of the base station is frequency hopping over time. If the signal to be repeated is not frequency hopped, the repeaters could be identified by their particular transmission frequency. If however, the repeaters had to repeat a frequency hopped signal, a given mobile unit would have to know what frequency hopping pattern would be followed by the repeater it is currently communicating with. This, in turn, would require a means for the mobile unit to identify a particular repeater within the array of repeaters. However, no teachings were made in U.S. Pat. No. 5,787,344 for enabling such an identification.
- LMU Location Measurement Units
- TOA time of arrival
- RF repeaters are used to boost the mobile transmitted signals at the periphery of the coverage area.
- a handset may be 2 miles due north of an RF repeater that in turn is 2 miles due east of a base station.
- the straight line distance between the handset and the base station is the hypotenuse (2.84 miles) of the right triangle formed by the handset, RF repeater, and base station.
- the actual path taken between the handset and the base station would be 4 miles: the 2 miles between the handset and the RF repeater and the 2 miles between the RF repeater and the base station.
- the use of an RF repeater thus results in significant location measurement errors for the repeated mobile signals.
- One method for solving the erroneous E911 LMU distance calculation problem would be to co-locate an LMU next to each RF repeater along with a means for communicating the distance measurement information back to a network-based mobile location center.
- This method is inefficient in at least two ways: first, it requires an LMU at every repeater site which adds to costs and makes each repeater site bulkier; and second, a separate data link or additional data bits are needed to transmit the distance information to the base station.
- the invention provides in one aspect an RF signal repeater that repeats signals transmitted between a mobile unit and a base station and received at the RF signal repeater in a given cell of a cellular wireless network.
- the RF signal repeater frequency translates the repeated signals.
- the frequency translation may be on signals directed towards a mobile unit (forward link) and/or on signals directed towards the base station (reverse link).
- a Location Measurement Unit (LMU) is provided that can demodulate the electronic tagging performed by a RF signal repeater. By demodulating the electronic tagging, the LMU can identify the particular RF signal repeater that originated the repeated signal. LMUs may be co-located with either base stations or mobile units.
- FIG. 2 shows a conceptual block diagram of an RF repeater with uplink signal tagging according to one embodiment of the invention.
- FIG. 5 shows the interaction between the location measurement unit and the mobile location center according to the present invention.
- the invention provides RF repeaters with the ability to enhance signal to noise and interference ratios over selected areas within a given cell, in particular to enable high data rate transmissions provided by modem wireless data services. Additionally, the invention provides RF repeaters with the ability to tag signals passing through the repeater with unique electronic signatures so that the true locations of the transmitting mobile units can be identified.
- FIG. 1 is an illustration of a wireless communications cell site with additional high throughput coverage area provided by a RF signal repeater.
- a base station 10 has a defined coverage area or cell site 11 .
- signals propagate form the base station 10 through the cell 11 their strength will decrease. This drop in signal strength may adversely affect the realized data rates in current and proposed wireless data services.
- Two such wireless data services are GPRS and EDGE, both of which provide packet data capabilities for GSM cellular systems. For example, as GPRS is deployed, users will find that their realized data rate will decrease from 21.4 Kbps/time slot while located near a base station to 9.05 Kbps/time slot at cell sites remote from the base station.
- the invention may not be implemented on other types of wireless networks such as a CDMA ANSI-95 network, TDMA IS-136, DECT, or the various IMT-2000 proposed architectures.
- the frequency translation may be to other frequency bands as well.
- a base station operating in the PCS band could be translated by the signal repeater to communicate with a mobile unit on the P-GSM 900 band or on bands made available in upcoming frequency auctions.
- the RF signal repeater 20 may also tag the repeated signal with an electronic signature so that repeated signals may be distinguished from signals originating at either a mobile unit (not illustrated) or a base station 10 .
- This electronic signature may comprise either amplitude, polarization, phase, or frequency modulation of the repeated signal. Regardless of the particular modulation chosen, it is preferably performed digitally to improve the demodulation and identification of a particular electronic signature.
- a form of digital modulation for each would be a binary phase shift keying (BPSK) or a frequency shift keying (FSK) modulation, respectively.
- BPSK binary phase shift keying
- FSK frequency shift keying
- a binary or M-ary code could be imposed on the repeated signal. This code uniquely identifies a given RF signal repeater.
- the digital modulation is imposed upon the requested signal by the RF signal repeater.
- the repeated signal contains the digital information being transmitted between a mobile unit and a base station. Shifts in the digital modulation between a given digital state (or chip) will occur either synchronously or asynchronously with transitions between bits in the digital information. Because a given burst will be garbled if the chip transition occurs while the burst is being transmitted, the digital modulation is preferably synchronous with the burst timing such that the chip transition occurs between bursts. For example, in a GSM network, the chip transition would be timed to occur in the guard times between TMDA data frames.
- a conventional GSM mobile unit will transmit in one of 8 times slots (burst periods) per TDMA data frame. Because these GSM mobile units may not be phase coherent from a burst in one TDMA frame to a burst in another TDMA frame, a phase modulation scheme such as BPSK would impose a phase modulation onto a random phase, resulting in another random phase for repeated signals based upon transmissions from a mobile unit. Thus, although phase modulation would be suitable for phase coherent transmissions (for example, GSM base stations are phase coherent burst-to-burst on the CO RF channel), an FSK modulation scheme is preferable for repeating GSM mobile unit transmissions.
- Doppler-shifted Because mobile units may be moving with respect to the base station, their transmissions may be Doppler-shifted.
- the Doppler shift is dependent on the frequency and the speed of the mobile unit. For example, at 1850 MHz (PCS band) for a mobile unit traveling towards a base station at 160 mph, the apparent frequency of signals received from the base station (one-way Doppler) will be increased by nearly 500 Hz. In turn, the signals received at the base station from the mobile unit (two-way Doppler) will be increased by approximately 1 kHz.
- PCS band PCS band
- an FSK scheme whose frequency shifts are within the range of acceptable Doppler shifts is a convenient way to provide the RF signal repeater's electronic signature on repeated signals.
- the FSK shifts in frequency could be+/ ⁇ 300 Hz.
- FIG. 2 shows a conceptual block diagram of an RF repeater with an uplink (mobile station to base station) signal tagging according to the invention.
- the RF repeater with an uplink (mobile station to base station) signal tagging according to the invention.
- the uplink mobile station to base station
- the RF signal repeater 20 performs frequency translation on the repeated signal.
- the base station After reception by antenna 22 , the base station (note that other filtering and mixing stages known in the art are omitted for clarity) enters mixer 24 for mixing with signal provided by a local oscillator. By beating the base station signal with the local oscillator signal 26 , the base station signal is translated in frequency. The translated signal is amplified by power amplifier 27 before transmission by antenna 23 to form a repeated-translated base station signal for reception by a mobile unit.
- GSM base stations and mobile units are equipped to frequency shift their signals in 200 kHz steps when operating in the PCS band.
- mixers 24 and 30 produce their frequency translations in 200 kHz steps and the base station and mobile station are informed which frequency (channel) the repeated signals will be on, the RF signal repeater 20 may be used in a GSM network without requiring extensive reconfiguration of the network.
- GSM mobile stations transmit in a given time slot per TDMA frame.
- the base station will command the mobile station to adjust the timing of its time slot transmission by a certain amount of timing advance.
- This timing advance adjusts for the propagation delay between the mobile station and the base station and ensures that the mobile station's signal will arrive at the base station in its proper time slot.
- the FSK modulation to be synchronous with repeated data, must also receive a timing advance. This timing advance and other control information may be provided to the RF signal repeater 20 through the use of a GSM mobile equivalent 60 .
- the mobile equivalent 60 would perform the functions of a GSM handset by demodulating and detecting transmissions from the base station but would not need to possess speakers, microphone, or vocoder. Hence, the term “mobile equivalent” rather than “mobile unit.”
- the base station through the GSM mobile equivalent 60 , could command the RF signal repeater to use the required timing advance, which GSM channel the RF signal repeater should frequency translate the repeated signals to, and the FSK sequence and amount of FSK frequency shift. If the GSM mobile equivalent 60 supports GPRS, these commands could be sent to the GSM mobile equivalent 60 as packet data.
- the frequency hopping pattern is cyclic with a maximum period of about 391 seconds.
- Each TDMA data frame within the frequency hopping cycle is numbered sequentially.
- the GSM mobile equivalent 60 may use this TDMA numbering to synchronize the FSK modulation to the frame number of GSM “time.” In this manner, a receiver operating to decode a particular FSK chip sequence need not search through every possible code phase if the receiver is also aware of the particular GSM fame number.
- the RF signal repeater 20 can introduce signal tagging on both the downlink and uplink signals.
- the antennas 22 and 23 , diplexers 25 , power amplifiers 27 and 35 , mixers 24 and 30 , SSB mixer 45 , NCO 50 and GSM mobile equivalent 60 are arranged as discussed with respect to FIG. 2.
- an additional SSB mixer 65 modulates the local oscillator signal 26 with 1 and 0 signals provided by NCO 70 .
- a downlink FSK modulator controller 75 controls the NCO 70 to provide the required FSK modulation. Unlike the uplink FSK modulator controller 55 , no timing advance is required for the downlink signal tagging.
- the frequency translation of all N translator modules 61 would, of course, have to be coordinated to keep the translated-repeated signals in band, prevent frequency conflicts between individual translator modules 61 , and prevent frequency conflicts with other nearby base stations.
- the transmit/receive module supporting channel CO does not frequency hop, whereas the N ⁇ 1 other transmit/receive modules may frequency hop.
- a single GSM equivalent 60 could support the N translator modules 61 .
- module 61 is in reference to a signal repeater supporting both uplink and downlink signal tagging, an embodiment supporting only uplink or downlink signal tagging would be constructed analogously.
- the repeater should account for the frequency hopping to perform properly.
- the frequency hopping may be cyclic or non-cyclic.
- the mobile unit and base station will each cycle through an integer N number of Absolute Radio Frequency Channel Numbers (ARFCNs) in a period of N TDMA frames.
- ARFCNs Absolute Radio Frequency Channel Numbers
- a base station having a cyclic frequency hopping pattern with a period of 3 TDMA frames could use ARFCNs 1 , 3 , and 5 .
- the base station would thus transmit on channel 1 for a given TDMA frame, on channel 3 for the next TDMA frame, and then channel 5 for the next TDMA frame. The cycle would then repeat over the following three TDMA frames and so on.
- the PCS frequency band because the mobile unit is required to transmit on an ARFCN separated by 80 MHz from the ARFCN utilized by the base station, a knowledge of what ARFCN the base station will transmit on also indicates the corresponding ARFCN the mobile unit must transmit on. In other bands, the duplex spacing is specified implicitly by the specific ARFCN in an analogous manner.
- a mobile station uses its current cell allocation, which is the last CA received on the BCCH.
- the current CA may be changed by some messages sent on the main signaling link containing a CA, such as the ASSIGNMENT COMMAND, HANDOVER COMMAND, and FREQUENCY REDEFINITION messages.
- a mobile station Having obtained the MA from the CA, a mobile station will determine the number N of ARFCNs within the MA, where 1 ⁇ N ⁇ 64.
- a mobile unit will generate a Mobile Allocation Index (MAI) as an index to the MA to select the ARFCN from the MA on a frame-by-frame basis.
- GSM protocol establishes the algorithms (collectively known as the hopping sequence generator) used by the mobile unit to generate the MAI from parameters such as the hopping sequence number transmitted in, e.g., the channel assignment message.
- An embodiment of the invention performs a frequency hopping transform by defining an extended Mobile Allocation (MA).
- the extended MA would consist of two parts: a forward link translation table, and a reverse link translation table. Each entry or index into the translation table would return not only the frequency (which may be given by the ARFCN) but also an offset.
- the offset represents the frequency duplex offset between the uplink and downlink signals. Because the offset is specified, the signal repeater could translate from one frequency band to other bands having different frequency duplex offsets. For example, GSM systems have a different frequency offset in the 900 MHz band (45 MHz) than the one used at 1800 MHz band (80 MHz).
- the extended MA provides a great deal of flexibility in designing a hopping transform.
- a base station that is frequency hopping from TDMA frame to TDMA frame could be translated by a signal repeater to mobile station that does not frequency hop at all.
- the signal repeater could provide a fixed but large amount of frequency translation to each burst such that the mobile station is on a different band than that used by the base station.
- an arbitrary frequency hopping pattern used by the base station could be transformed into another arbitrary frequency hopping pattern by the signal repeater, provided that collisions between the translated signals and signals from neighboring cells are substantially avoided. In this fashion, no frequency channels need be reserved for exclusive use in the “backhaul” link between a signal repeater and a base station.
- a repeater-repeater antenna for communicating between RF signal repeaters be directional just as the RF signal repeater to base station antenna 22 is in FIGS. 2 and 3.
- the RF signal repeater may use antenna switching to support the directional repeater-to-repeater traffic and the omni-directional repeater-to-mobile station traffic. This antenna switching could occur on a time slot by time slot basis under control of the GSM mobile equivalent.
- the electronic signature of signal tagging performed by the invention allows repeated signals to be uniquely associated with the RF signal repeater that originated the repeated signals.
- One application that may use the signal tagging information is mobile unit position measurement provided by Location Measurement Units (LMU). These measurement methods provide the network with an estimate of the location of a mobile unit, such as for emergency 911 (E911) mobile phone service.
- Location Measurement Units (LMU) may be inserted into the network to calculate a mobile unit's position. Under the LCS network reference model found in 03.71 (T1P1.5/99-565), an LMU may be associated with the mobile station (LMU-A) or with the network side, e.g., the base station (LMU-B).
- An LMU-A measures the time of arrival (TOA) or time difference of arrival (TDOA) of base station downlink signals using normal bursts and dummy bursts.
- An LMU-B measures the TOA or TDOA of mobile unit uplink signals based on access bursts generated in response to an RR_HANDOVER_COMMAND signal.
- FIG. 4 shows a conceptual block diagram of a location measurement unit (LMU-B) 100 with circuitry to detect tagged signals according to the invention.
- the base stations may include the LMU-B 100 to identify the location of a mobile unit.
- the LMU-B 100 comprises a diplexed antenna 110 , a filter/diplexer 115 , amplifiers 120 , a mixer 125 , IF chain 130 and I/Q demodulator 135 .
- This portion of the LMU-B 100 implementation is disclosed for illustrative purposes only. Other implementations of this portion of the LMU-B will be understood by those skilled in the art.
- the LMU-B 100 additionally incorporates a time of arrival (TOA) receiver 140 to measure the propagation time delay between the mobile unit and LMU, and subsequently, this time delay measurement may be converted to a distance measurement, assuming straight line propagation.
- TOA time of arrival
- the FSK modulation As shown in FIGS. 2 and 3.
- These unique signal tags are detected by the frequency discriminator 145 in the LMU-B that detects the signal tags to generate the repeater tag ID.
- the TOA measurements and repeater tag ID are coupled to the Mobile Location Center (MLC) 150 .
- the MLC 150 determines the true position of the mobile unit from the TOA receiver measurements, the reported repeater tag ID information, and a database 155 which includes geographical coordinates of the identified repeater(s) and any involved base stations.
- An LMU-A would be constructed similarly, having a TOA processing receiver and a frequency discriminator to demodulate the FSK sequence. Regardless of whether it is installed in an LMU-A or LMU-B, the frequency discriminator may be an arctangent based frequency discriminator. Turning now to FIG. 6, the operation of such a discriminator is demonstrated. At a given time t 1 , the phase of the signal is represented by the I,Q vector t 1 . At a later time t 2 , the phase is represented by the I, Q vector t 2 . The instantaneous frequency is given by the ratio of the angle, ⁇ between the two vectors and the time difference between t 1 and t 2 .
- an I n Q n ⁇ 1 -I n ⁇ 1 Q n style discriminator may be used, although it may not possess the same gain invariance and threshold performance.
- a data assisted frequency estimator such as described in “An Efficient Carrier Recovery Scheme for GSM Receivers,” M. Luise and R. Reggiannini, IEEE CTMC/GLOBECOM '92, Orlando Fla. may also be used and will take advantage of the burst training and synchronization sequences.
- an LMU may simplify its decoding of the FSK signature.
- the LMU may identify the base station synchronization either through receiving the RR_HANDOVER_COMMAND signal or by receiving the Synchronization Channel (SCH). The LMU will then not need to search a multiplicity of FSK code phases to decode a particular FSK sequence.
- SCH Synchronization Channel
- the coding of the FSK sequences should seek to maximize the minimum distance between codes.
- a number of different coding schemes are suitable such as Gold, Kasami, or Maximum Length (ML) codes.
- ML Maximum Length
- the coding scheme may depend upon which type of bursts are used.
- the frequency burst and dummy bursts have essentially the same structure except for the specific length 142 “fixed bits” used.
- the frequency discriminator may increase its predetection integration times by a factor of 7.4 dB relative to those used with Normal Burst (NB).
- a dual code structure may be preferable; one scheme for the normal bursts and another for the frequency bursts/dummy bursts that takes much longer to read.
- An additional code structure is also desirable so that a mobile station may determine, while in an idle mode, whether the mobile station is receiving a signal directly from a base station or, instead, is receiving a repeated (and possibly translated) base station signal via the signal repeater. This is desirable so that the mobile station may know, for example, what the appropriate Mobile Allocation (MA) and frequency translation is for a given signal.
- a new System Information (SI) element in the Broadcast Control Channel (BCCH) may be used to identify the Cell Allocation (which indirectly provides the MA) for each signal repeater a mobile unit may be communicating with.
- SI System Information
- BCCH Broadcast Control Channel
- a unique FSK sequence is imposed on the BCCH signal by the repeating signal repeater. As with the FSK sequence imposed on the frequency bursts, this sequence may be the same as that used on the normal bursts or may be different.
- a mobile station may identify which signal repeater repeated the signal.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Relay Systems (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
A RF signal repeater system is added to a wireless communications network which increases user data rates at the periphery of the cellular coverage area by boosting the downlink (base station to mobile user) signal and uplink (mobile user to base station) signal. The RF signal repeater system includes a signal tagging means that adds a unique electronic signature to the repeated signal such that position determination errors due to a non-line of sight propagation path can be corrected. The repeated signal is received and processed with a location measurement unit to determine the time of arrival and to extract the signal tag of the repeated signal. The time of arrival measurement and recovered signal tag are then processed at a mobile location center to determine the true position of the transmitter.
Description
- This divisional application claims the benefit of pending U.S. application Ser. No. 10/173,912 for RF Signal Repeater in Mobile Communications Systems, filed Jun. 17, 2002, which is a continuation application of U.S. application Ser. No. 09/596,653, filed on Jun. 19, 2000.
- Embodiments of the invention relate to RF signal repeaters and more particularly, to the use of an RF signal repeater having an electronic signature imposed upon the repeated signal to allow identification of the signal repeater.
- Wireless data services are used for remote access of e-mail, mobile Internet browsing, company information and others. To attract new and existing subscribers to data services, operator need to support perceived data rates of 64 kbps or greater. Within GSM networks, two such services are General Packet Radio Service (GPRS) and Enhanced Data for GSM Evolution (EDGE). Both bring packet data connectivity to the GSM market at a variety of data rates. To support the high data rates in either service, however, requires increasing the signal-to-noise ratio (SNR) at the receiving handset. As a handset user travels further from a transmitting base station, the SNR must inevitably drop. For both GPRS and EDGE receivers, as the SNR drops, the bit error rate at the receiver will increase. In response, both services will shift the data transmission to a lower data rate, using more redundancy (channel coding) in the transmission to offset the lowered SNR. Thus, users will find that their realized data rate will decrease by a significant percentage when moved from locations near a cell base station toward the cell edges due to increased channel interference (C/I) and reduced signal-to-noise ratios (SNR). Typically, less than 20% of a cell area is estimated to be capable of the peak GPRS data rate in a coverage limited deployment.
- One way to increase the data rates for these services would be to locate RF repeaters within a cell that retransmit the base station signals to handsets remote from the cell's base station. Similarly, the RF repeater could retransmit handset signals to the cell's base station. An inherent problem of repeating a signal transmission with little or no frequency translation is that the retransmitted signal may feedback into an RF repeater's receiving antenna. This unstable feedback problem is analogous to the familiar “howl” heard at public events when a speaker's microphone is too close to the loudspeakers. One way to combat this feedback problem would be the use of directional antennas in the RF repeater. For example, one directional antenna would be directed towards the base station and another directional antenna would be directed towards the mobile unit. Ordinarily, however, the RF repeater would not know the position of the mobile unit and would thus use an omni-directional antenna to communicate with the mobile unit. Moreover, even with the use of directional antennas, near field effects are very unpredictable and could cause substantial feedback. In contrast, frequency translation provides better isolation—the RF repeater would transmit and receive signals with the mobile unit on a different frequency band than that used to transmit and receive signals with the base station.
- U.S. Pat. No. 5,970,410 discloses a wireless system architecture employing RF signal repeaters using frequency translation to permit a single home base station to communicate with mobile stations in a plurality of cells. Although this reference discloses the use of frequency translated repeaters [they are referred to as “translator base stations” but do not perform the conventional demodulation and modulation functions of a base station], the repeaters are used to extend the coverage of a home base station to additional cells. No teaching is made to use translators to increase the throughput of wireless communications within a given cell. U.S. Pat. No. 5,787,344 discloses an array of repeaters arranged in respective cell areas about a base station within a given cell.
- The repeaters in the array may each be allocated different transmission frequencies. Such an arrangement of frequency translating repeaters is complicated if a transmission frequency of the base station is frequency hopping over time. If the signal to be repeated is not frequency hopped, the repeaters could be identified by their particular transmission frequency. If however, the repeaters had to repeat a frequency hopped signal, a given mobile unit would have to know what frequency hopping pattern would be followed by the repeater it is currently communicating with. This, in turn, would require a means for the mobile unit to identify a particular repeater within the array of repeaters. However, no teachings were made in U.S. Pat. No. 5,787,344 for enabling such an identification.
- If RF signal repeaters are used to increase the throughput of wireless communication in a given cell, care must be taken not to interfere with the conventional cellular telephony functions. In particular, use of an RF signal repeater will interfere with estimating the location of a mobile unit—wireless networks are currently being enhanced to provide position measurement capability. These measurement methods provide the network with an estimate of the location of a mobile unit, such as for emergency 911 (E911) mobile phone service. Location Measurement Units (LMU) may be inserted either at the base station or at the mobile unit with time of arrival (TOA) signal processing means to estimate the distance from the mobile unit to the base station, assuming straight-line radio propagation.
- Such straight-line radio propagation would not be present if RF repeaters are used to boost the mobile transmitted signals at the periphery of the coverage area. For example, a handset may be 2 miles due north of an RF repeater that in turn is 2 miles due east of a base station. The straight line distance between the handset and the base station is the hypotenuse (2.84 miles) of the right triangle formed by the handset, RF repeater, and base station. However, the actual path taken between the handset and the base station would be 4 miles: the 2 miles between the handset and the RF repeater and the 2 miles between the RF repeater and the base station. The use of an RF repeater thus results in significant location measurement errors for the repeated mobile signals.
- One method for solving the erroneous E911 LMU distance calculation problem would be to co-locate an LMU next to each RF repeater along with a means for communicating the distance measurement information back to a network-based mobile location center. This method is inefficient in at least two ways: first, it requires an LMU at every repeater site which adds to costs and makes each repeater site bulkier; and second, a separate data link or additional data bits are needed to transmit the distance information to the base station.
- Accordingly, there is a need for RF repeaters with the ability to enhance signal to noise and interference ratios over selected areas within a cell site, in particular to enable high data rate transmissions required by a wireless data system without interfering with an efficient location estimation of a mobile unit.
- The invention provides in one aspect an RF signal repeater that repeats signals transmitted between a mobile unit and a base station and received at the RF signal repeater in a given cell of a cellular wireless network. To provide isolation between the signals received at the RF signal repeater and the repeated signals, the RF signal repeater frequency translates the repeated signals. The frequency translation may be on signals directed towards a mobile unit (forward link) and/or on signals directed towards the base station (reverse link).
- In accordance with another aspect of the invention, a RF signal repeater is provided for repeating signals transmitted between a mobile unit and a base station. The RF signal repeater tags the repeated signal with an electronic signature so that signals passing between a mobile unit and a base station and through the RF signal repeater may be identified. The tagging may be on repeated signals in the forward link and/or on repeated signals in reverse link. The RF signal repeater may perform the electronic tagging through amplitude, phase, or frequency modulation. The modulation may be either analog or digital modulation. In embodiments of the invention utilizing digital modulation, shifts between chips in the digital modulation may be made synchronously between transmitted data frames in the repeated signal.
- In accordance with another aspect of the invention, a Location Measurement Unit (LMU) is provided that can demodulate the electronic tagging performed by a RF signal repeater. By demodulating the electronic tagging, the LMU can identify the particular RF signal repeater that originated the repeated signal. LMUs may be co-located with either base stations or mobile units.
- Other and further advantages of the invention will be further understood and appreciated by those skilled in the art by reference to the following-specification, claims and drawings.
- The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention, and together with the description, serve to explain the principles of the invention. Similar reference characters denote corresponding features consistently throughout the drawings.
- FIG. 1 is an illustration of a wireless communications cell site with additional high throughput coverage area provided by a RF signal repeater.
- FIG. 2 shows a conceptual block diagram of an RF repeater with uplink signal tagging according to one embodiment of the invention.
- FIG. 3 shows a conceptual block diagram of an RF repeater with uplink and downlink signal tagging according to one embodiment of the invention.
- FIG. 4 shows a conceptual block diagram of a location measurement unit with circuitry to detect tagged signals according to the present invention.
- FIG. 5 shows the interaction between the location measurement unit and the mobile location center according to the present invention.
- FIG. 6 illustrates the operation of an arctangent frequency discriminator.
- Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals indicate like elements throughout the several views.
- The invention provides RF repeaters with the ability to enhance signal to noise and interference ratios over selected areas within a given cell, in particular to enable high data rate transmissions provided by modem wireless data services. Additionally, the invention provides RF repeaters with the ability to tag signals passing through the repeater with unique electronic signatures so that the true locations of the transmitting mobile units can be identified.
- FIG. 1 is an illustration of a wireless communications cell site with additional high throughput coverage area provided by a RF signal repeater. A
base station 10 has a defined coverage area orcell site 11. As signals propagate form thebase station 10 through thecell 11, their strength will decrease. This drop in signal strength may adversely affect the realized data rates in current and proposed wireless data services. Two such wireless data services are GPRS and EDGE, both of which provide packet data capabilities for GSM cellular systems. For example, as GPRS is deployed, users will find that their realized data rate will decrease from 21.4 Kbps/time slot while located near a base station to 9.05 Kbps/time slot at cell sites remote from the base station. Indeed, it may be shown that less than 20% of a typical cell's area is estimated to support the peak data rate offered by GPRS. A similar situation will exist for future EDGE deployments with delivered data rates ranging from approximately 59.2 Kbps/time slot to 8.8 Kbps/time slot.Area 12 in FIG. 1 illustrates a region incell 11 that would support the high data rate mode of a wireless service such as GPRS. ARF signal repeater 20 or a plurality of repeaters may be strategically added within thecell site 11 to enhance signal to noise and interference ratios in particular areas of thecell 11 to again provide the high data rate enjoyed inarea 12. For example, theRF signal repeater 20 would receive the signals from thebase station 10 and retransmit them as repeated signals, enabling the high data rate inregion 21. - As previously discussed herein, the
RF signal repeater 20 may provide isolation between the received signals and the repeated signals by frequency translating the repeated signals. Because GSM networks are already configured to support frequency hopping wherein the mobile station and the base station transceiver (BTS) may transmit within each time division multiple access (TDMA) data frame on a different carrier frequency (the carrier frequencies are spaced 200 kHz apart), a RF signal repeater within a GSM network could readily perform the frequency translation by translating the received signal to a different GSM carrier frequency. GSM networks will thus be assumed for the remaining discussion. That is not to imply, however, that the invention may not be implemented on other types of wireless networks such as a CDMA ANSI-95 network, TDMA IS-136, DECT, or the various IMT-2000 proposed architectures. Moreover, the frequency translation may be to other frequency bands as well. For example, a base station operating in the PCS band could be translated by the signal repeater to communicate with a mobile unit on the P-GSM 900 band or on bands made available in upcoming frequency auctions. - In addition to providing isolation between the received signals and the repeated signals, the
RF signal repeater 20 may also tag the repeated signal with an electronic signature so that repeated signals may be distinguished from signals originating at either a mobile unit (not illustrated) or abase station 10. This electronic signature may comprise either amplitude, polarization, phase, or frequency modulation of the repeated signal. Regardless of the particular modulation chosen, it is preferably performed digitally to improve the demodulation and identification of a particular electronic signature. For example, for phase modulation and frequency modulation, a form of digital modulation for each would be a binary phase shift keying (BPSK) or a frequency shift keying (FSK) modulation, respectively. Using digital modulation, a binary or M-ary code could be imposed on the repeated signal. This code uniquely identifies a given RF signal repeater. - The digital modulation is imposed upon the requested signal by the RF signal repeater. The repeated signal contains the digital information being transmitted between a mobile unit and a base station. Shifts in the digital modulation between a given digital state (or chip) will occur either synchronously or asynchronously with transitions between bits in the digital information. Because a given burst will be garbled if the chip transition occurs while the burst is being transmitted, the digital modulation is preferably synchronous with the burst timing such that the chip transition occurs between bursts. For example, in a GSM network, the chip transition would be timed to occur in the guard times between TMDA data frames. A conventional GSM mobile unit will transmit in one of 8 times slots (burst periods) per TDMA data frame. Because these GSM mobile units may not be phase coherent from a burst in one TDMA frame to a burst in another TDMA frame, a phase modulation scheme such as BPSK would impose a phase modulation onto a random phase, resulting in another random phase for repeated signals based upon transmissions from a mobile unit. Thus, although phase modulation would be suitable for phase coherent transmissions (for example, GSM base stations are phase coherent burst-to-burst on the CO RF channel), an FSK modulation scheme is preferable for repeating GSM mobile unit transmissions.
- Because mobile units may be moving with respect to the base station, their transmissions may be Doppler-shifted. The Doppler shift is dependent on the frequency and the speed of the mobile unit. For example, at 1850 MHz (PCS band) for a mobile unit traveling towards a base station at 160 mph, the apparent frequency of signals received from the base station (one-way Doppler) will be increased by nearly 500 Hz. In turn, the signals received at the base station from the mobile unit (two-way Doppler) will be increased by approximately 1 kHz. Because GSM components can accommodate these frequency shifts (which would typically be smaller in practice since most mobile units travel considerably under 160 mph), an FSK scheme whose frequency shifts are within the range of acceptable Doppler shifts is a convenient way to provide the RF signal repeater's electronic signature on repeated signals. For example, the FSK shifts in frequency could be+/−300 Hz.
- FIG. 2 shows a conceptual block diagram of an RF repeater with an uplink (mobile station to base station) signal tagging according to the invention. In FIG. 2, the
- RF repeater comprises one
antenna 22 for transmissions with the base station. Because the base station is fixed in position,antenna 22 is preferably a directional antenna whose beam is directed towards the base station. Anotherantenna 23 is used for transmissions with the mobile unit. In contrast to the base station, the mobile unit's location is usually unpredictable, requiringantenna 23 to be omni-directional or sectorized. Both antennas are coupled to diplexers 25 to enable each antenna to receive and transmit signals. - To prevent unstable feedback between the
antennas RF signal repeater 20 performs frequency translation on the repeated signal. Consider the received base station transmissions. After reception byantenna 22, the base station (note that other filtering and mixing stages known in the art are omitted for clarity) entersmixer 24 for mixing with signal provided by a local oscillator. By beating the base station signal with thelocal oscillator signal 26, the base station signal is translated in frequency. The translated signal is amplified bypower amplifier 27 before transmission byantenna 23 to form a repeated-translated base station signal for reception by a mobile unit. Similarly, the mobile station signal, after reception by antenna 23 (and passing through filtering, amplifying and mixing stages known in the art and omitted for clarity), passes throughmixer 30 to form a translated mobile station signal. This translated mobile station signal is amplified inpower amplifier 35 before transmission byantenna 22 to form a repeated-translated mobile station for reception by the base station. To form the uplink signal tagging or electronic signature, thelocal oscillator signal 40 is mixed in a single sideband (SSB)mixer 45 having in-phase (I) and quadrature (Q) inputs. A numerically controlled oscillator (NCO) provides the I and Q inputs under the control of theFSK modulator controller 55. TheFSK modulator controller 55 controls the I and Q inputs to shift the local oscillator signal up or down in frequency according to the particular type of FSK modulation chosen to identify the particularRF signal repeater 20 producing the repeated uplink signal. - As discussed earlier, GSM base stations and mobile units are equipped to frequency shift their signals in 200 kHz steps when operating in the PCS band. Thus, if
mixers RF signal repeater 20 may be used in a GSM network without requiring extensive reconfiguration of the network. - Since GSM components will also tolerate 300 Hz shifts to adjust for expected Doppler shifts in the PCS band, the
FSK modulator controller 55 preferably shifts thelocal oscillator signal 40 in +/−300 Hz shifts. Note that a typical GSM signal has a bandwidth considerably in excess of 300 Hz. Thus, if a double sideband mixer were used to produce the FSK modulation in 300 Hz shifts, the translated signal would have overlapping spectrums of the upper sideband and the lower sideband. The use of aSSB mixer 45 avoids this spectral smearing or aliasing. - GSM mobile stations transmit in a given time slot per TDMA frame. To ensure a mobile station's signal does not collide with another mobile station's signal, the base station will command the mobile station to adjust the timing of its time slot transmission by a certain amount of timing advance. This timing advance adjusts for the propagation delay between the mobile station and the base station and ensures that the mobile station's signal will arrive at the base station in its proper time slot. The FSK modulation, to be synchronous with repeated data, must also receive a timing advance. This timing advance and other control information may be provided to the
RF signal repeater 20 through the use of a GSM mobile equivalent 60. The mobile equivalent 60 would perform the functions of a GSM handset by demodulating and detecting transmissions from the base station but would not need to possess speakers, microphone, or vocoder. Hence, the term “mobile equivalent” rather than “mobile unit.” The base station, through the GSM mobile equivalent 60, could command the RF signal repeater to use the required timing advance, which GSM channel the RF signal repeater should frequency translate the repeated signals to, and the FSK sequence and amount of FSK frequency shift. If the GSM mobile equivalent 60 supports GPRS, these commands could be sent to the GSM mobile equivalent 60 as packet data. The GSM mobile equivalent 60, through use of frequency corrections bursts (FB) present on the same non-frequency hopping carrier (designated CO) as the Broadcast Control Channel (BCCH) sent by the base station, would permit theRF signal repeater 20 to discipline its master oscillator, lowering costs. In addition, the GSM mobile equivalent 60 could dynamically control the number of RF channels supported if multiple co-located instantiations of the RF signal repeater are present at the same site. Moreover, the GSM mobile equivalent 60 could assist setup of the RF signal repeater by conveying PA settings, nominal LO values, and diagnostic information. - A squelch circuit (not illustrated) may be included with the
RF signal repeater 20. As is known in the art, a squelch circuit would enable theRF signal repeater 20 to respond only when the received signals, either from the base station or the mobile unit, are of a sufficient strength to justify repetition. If theRF signal repeater 20 did not incorporate a squelch circuit, it may repeat “signals” when neither the base station or the mobile unit is signaling, thus amplifying and broadcasting noise. The threshold of determining whether signal is or is not present could be dynamically controlled through the GSM mobile equivalent 60. In general, the threshold would increase as the channel to interference ratio (C/I) decreased. - In a GSM network, the frequency hopping pattern is cyclic with a maximum period of about 391 seconds. Each TDMA data frame within the frequency hopping cycle is numbered sequentially. The GSM mobile equivalent60 may use this TDMA numbering to synchronize the FSK modulation to the frame number of GSM “time.” In this manner, a receiver operating to decode a particular FSK chip sequence need not search through every possible code phase if the receiver is also aware of the particular GSM fame number.
- Turning now to FIG. 3, in another embodiment, the
RF signal repeater 20 can introduce signal tagging on both the downlink and uplink signals. Theantennas power amplifiers mixers SSB mixer 45,NCO 50 and GSM mobile equivalent 60 are arranged as discussed with respect to FIG. 2. To tag the downlink signal, anadditional SSB mixer 65 modulates thelocal oscillator signal 26 with 1 and 0 signals provided byNCO 70. A downlinkFSK modulator controller 75 controls theNCO 70 to provide the required FSK modulation. Unlike the uplinkFSK modulator controller 55, no timing advance is required for the downlink signal tagging. - The signal paths and components described between
diplexers 25 form atranslator module 61 that repeats signals transmitted between a base station and a mobile unit. Note that a single base station may have a plurality of transmit-receive modules. For example, a GSM base station may have N such modules because of the multiple frequency channels available across a frequency band. Each transmit-receive module would support its own 8 time slots in a given TDMA frame. Each base station transmit-receive module could in turn be supported by itsown translator module 61 to perform the frequency translation and signal tagging of the invention. The frequency translation of allN translator modules 61 would, of course, have to be coordinated to keep the translated-repeated signals in band, prevent frequency conflicts betweenindividual translator modules 61, and prevent frequency conflicts with other nearby base stations. The transmit/receive module supporting channel CO does not frequency hop, whereas the N−1 other transmit/receive modules may frequency hop. A single GSM equivalent 60 could support theN translator modules 61. Althoughmodule 61 is in reference to a signal repeater supporting both uplink and downlink signal tagging, an embodiment supporting only uplink or downlink signal tagging would be constructed analogously. - If the signal repeater must repeat signals that are frequency hopped, such as GSM signals, the repeater should account for the frequency hopping to perform properly. In a GSM system, the frequency hopping may be cyclic or non-cyclic. In a cyclic frequency hopping system, the mobile unit and base station will each cycle through an integer N number of Absolute Radio Frequency Channel Numbers (ARFCNs) in a period of N TDMA frames. For example, a base station having a cyclic frequency hopping pattern with a period of 3 TDMA frames could use
ARFCNs 1, 3, and 5. The base station would thus transmit onchannel 1 for a given TDMA frame, on channel 3 for the next TDMA frame, and then channel 5 for the next TDMA frame. The cycle would then repeat over the following three TDMA frames and so on. In the PCS frequency band, because the mobile unit is required to transmit on an ARFCN separated by 80 MHz from the ARFCN utilized by the base station, a knowledge of what ARFCN the base station will transmit on also indicates the corresponding ARFCN the mobile unit must transmit on. In other bands, the duplex spacing is specified implicitly by the specific ARFCN in an analogous manner. - In a non-cyclic frequency hopping system, the base station may transmit on an arbitrary ARFCN in a given TDMA frame. The entire pattern of ARFCNs chosen will repeat every 391 seconds. Regardless of whether a base station is following a cyclic or non-cyclic frequency hopping pattern, a mobile unit must be aware of the frequency hopping patterns used by base stations in adjacent cells because the mobile unit may be required to handoff to these base stations as a mobile unit travels from cell-to-cell. A mobile unit may generate the proper ARFCN through use of the Mobile Allocation (MA) sent in the channel assignment message. The MA allocation is a subset of the Cell Allocation (CA). If frequency hopping is applied, the cell allocation is present in the message used to decode the mobile allocation. If the cell allocation is not included, a mobile station uses its current cell allocation, which is the last CA received on the BCCH. The current CA may be changed by some messages sent on the main signaling link containing a CA, such as the ASSIGNMENT COMMAND, HANDOVER COMMAND, and FREQUENCY REDEFINITION messages.
- Having obtained the MA from the CA, a mobile station will determine the number N of ARFCNs within the MA, where 1<N<64. A mobile unit will generate a Mobile Allocation Index (MAI) as an index to the MA to select the ARFCN from the MA on a frame-by-frame basis. GSM protocol establishes the algorithms (collectively known as the hopping sequence generator) used by the mobile unit to generate the MAI from parameters such as the hopping sequence number transmitted in, e.g., the channel assignment message.
- An embodiment of the invention performs a frequency hopping transform by defining an extended Mobile Allocation (MA). The extended MA would consist of two parts: a forward link translation table, and a reverse link translation table. Each entry or index into the translation table would return not only the frequency (which may be given by the ARFCN) but also an offset. The offset represents the frequency duplex offset between the uplink and downlink signals. Because the offset is specified, the signal repeater could translate from one frequency band to other bands having different frequency duplex offsets. For example, GSM systems have a different frequency offset in the 900 MHz band (45 MHz) than the one used at 1800 MHz band (80 MHz). The extended MA provides a great deal of flexibility in designing a hopping transform. For example, a base station that is frequency hopping from TDMA frame to TDMA frame could be translated by a signal repeater to mobile station that does not frequency hop at all. Alternatively, the signal repeater could provide a fixed but large amount of frequency translation to each burst such that the mobile station is on a different band than that used by the base station. Moreover, an arbitrary frequency hopping pattern used by the base station could be transformed into another arbitrary frequency hopping pattern by the signal repeater, provided that collisions between the translated signals and signals from neighboring cells are substantially avoided. In this fashion, no frequency channels need be reserved for exclusive use in the “backhaul” link between a signal repeater and a base station.
- For certain applications such as indoor, rural, or tunnel environments, it may prove desirable to chain RF signal repeaters together to repeat signals between a base station and a mobile unit. In such applications, it would be preferable that a repeater-repeater antenna for communicating between RF signal repeaters be directional just as the RF signal repeater to
base station antenna 22 is in FIGS. 2 and 3. Thus, the RF signal repeater may use antenna switching to support the directional repeater-to-repeater traffic and the omni-directional repeater-to-mobile station traffic. This antenna switching could occur on a time slot by time slot basis under control of the GSM mobile equivalent. - In embodiments of the invention supporting RF signal repeater chaining, the signal tagging will need to be coordinated to uniquely identify all the RF signal repeaters used in a particular chaining sequence. Because the GSM mobile equivalent can identify the TDMA frame number currently being broadcast, the chaining may be synchronized to the GSM cycle. RF signal repeaters at a particular chain depth would impose their signature sequences (e.g., FSK sequences) while other RF signal repeaters at other chain depths do not. A receiver could then decode the signal path by identifying the sequence of RF signal repeaters used in a given chaining sequence.
- The electronic signature of signal tagging performed by the invention allows repeated signals to be uniquely associated with the RF signal repeater that originated the repeated signals. One application that may use the signal tagging information is mobile unit position measurement provided by Location Measurement Units (LMU). These measurement methods provide the network with an estimate of the location of a mobile unit, such as for emergency 911 (E911) mobile phone service. Location Measurement Units (LMU) may be inserted into the network to calculate a mobile unit's position. Under the LCS network reference model found in 03.71 (T1P1.5/99-565), an LMU may be associated with the mobile station (LMU-A) or with the network side, e.g., the base station (LMU-B). An LMU-A measures the time of arrival (TOA) or time difference of arrival (TDOA) of base station downlink signals using normal bursts and dummy bursts. An LMU-B measures the TOA or TDOA of mobile unit uplink signals based on access bursts generated in response to an RR_HANDOVER_COMMAND signal.
- FIG. 4 shows a conceptual block diagram of a location measurement unit (LMU-B)100 with circuitry to detect tagged signals according to the invention. In existing and proposed wireless networks, the base stations may include the LMU-
B 100 to identify the location of a mobile unit. The LMU-B 100 comprises adiplexed antenna 110, a filter/diplexer 115,amplifiers 120, amixer 125, IFchain 130 and I/Q demodulator 135. This portion of the LMU-B 100 implementation is disclosed for illustrative purposes only. Other implementations of this portion of the LMU-B will be understood by those skilled in the art. In the present invention, the LMU-B 100 additionally incorporates a time of arrival (TOA)receiver 140 to measure the propagation time delay between the mobile unit and LMU, and subsequently, this time delay measurement may be converted to a distance measurement, assuming straight line propagation. However, with the addition of RF signal repeaters to the network, errors in the position determination will be introduced because the assumption of straight line propagation is no longer valid. Hence, unique signal tags are introduced by the FSK modulation as shown in FIGS. 2 and 3. These unique signal tags are detected by thefrequency discriminator 145 in the LMU-B that detects the signal tags to generate the repeater tag ID. - Turning now to FIG. 5, the TOA measurements and repeater tag ID are coupled to the Mobile Location Center (MLC)150. The
MLC 150 determines the true position of the mobile unit from the TOA receiver measurements, the reported repeater tag ID information, and adatabase 155 which includes geographical coordinates of the identified repeater(s) and any involved base stations. - An LMU-A would be constructed similarly, having a TOA processing receiver and a frequency discriminator to demodulate the FSK sequence. Regardless of whether it is installed in an LMU-A or LMU-B, the frequency discriminator may be an arctangent based frequency discriminator. Turning now to FIG. 6, the operation of such a discriminator is demonstrated. At a given time t1, the phase of the signal is represented by the I,Q vector t1. At a later time t2, the phase is represented by the I, Q vector t2. The instantaneous frequency is given by the ratio of the angle, ΔΘ between the two vectors and the time difference between t1 and t2. Alternatively, an InQn−1-In−1Qn style discriminator may be used, although it may not possess the same gain invariance and threshold performance. A data assisted frequency estimator such as described in “An Efficient Carrier Recovery Scheme for GSM Receivers,” M. Luise and R. Reggiannini, IEEE CTMC/GLOBECOM '92, Orlando Fla. may also be used and will take advantage of the burst training and synchronization sequences.
- In embodiments of the invention wherein the RF signal repeater includes a GSM mobile equivalent such that the FSK signature sequences are synchronized to the cyclic TDMA frame structure of the controlling base station, an LMU may simplify its decoding of the FSK signature. The LMU may identify the base station synchronization either through receiving the RR_HANDOVER_COMMAND signal or by receiving the Synchronization Channel (SCH). The LMU will then not need to search a multiplicity of FSK code phases to decode a particular FSK sequence.
- The coding of the FSK sequences, under synchronized conditions, should seek to maximize the minimum distance between codes. A number of different coding schemes are suitable such as Gold, Kasami, or Maximum Length (ML) codes. For an LMU-A, which must identify a particular RF signal repeater through either normal bursts or frequency bursts/dummy bursts, the coding scheme may depend upon which type of bursts are used. The frequency burst and dummy bursts have essentially the same structure except for the specific length142 “fixed bits” used. For such bursts, the frequency discriminator may increase its predetection integration times by a factor of 7.4 dB relative to those used with Normal Burst (NB). At a relatively low SNR, this corresponds to a roughly 15 dB improvement in frequency discriminator output SNR, allowing a major reduction in FSK bit error rate. Thus, at low signal levels, a dual code structure may be preferable; one scheme for the normal bursts and another for the frequency bursts/dummy bursts that takes much longer to read.
- An additional code structure is also desirable so that a mobile station may determine, while in an idle mode, whether the mobile station is receiving a signal directly from a base station or, instead, is receiving a repeated (and possibly translated) base station signal via the signal repeater. This is desirable so that the mobile station may know, for example, what the appropriate Mobile Allocation (MA) and frequency translation is for a given signal. A new System Information (SI) element in the Broadcast Control Channel (BCCH) may be used to identify the Cell Allocation (which indirectly provides the MA) for each signal repeater a mobile unit may be communicating with. To identify which signal repeater has repeated the signal, a unique FSK sequence is imposed on the BCCH signal by the repeating signal repeater. As with the FSK sequence imposed on the frequency bursts, this sequence may be the same as that used on the normal bursts or may be different. By listening solely to the BCCH, a mobile station may identify which signal repeater repeated the signal.
- Those of ordinary skill will appreciate that many different embodiments of the invention may be constructed. For example, rather than employ FSK modulation to perform the signal tagging, BPSK modulation may be used. Moreover, the RF signal repeaters of the invention may be used in other TDMA or CDMA networks in addition to GSM networks. Thus, it is understood that other embodiments of the present invention can be fabricated and be within the spirit and scope of the appended claims.
Claims (26)
1. An apparatus comprising:
a discriminator to detect unique signal tags in signals sent from a transmitter, the unique signal tags generated by signal repeaters, to demodulate signal tags, and to generate repeater IDs from the signal tags; and
a TOA (time of arrival) receiver to measure a propagation time delay for the signals from the transmitter;
the discriminator and TOA receiver being coupled to a location center (LC) to determine a position of the transmitter based on the TOA receiver measurements and the repeater IDs.
2. The apparatus of claim 1 , wherein the transmitter comprises a mobile unit, and the location center comprises a mobile location center (MLC).
3. The apparatus of claim 2 , wherein the MLC determines the position of the transmitter based on the TOA receiver measurements and the repeater ID by looking up the TOA receiver measurements and the repeater ID in a database that includes geographical coordinates of the repeater corresponding to the repeater ID and a number of corresponding base stations.
4. A system comprising:
a receiver to receive an electronically tagged signal generated by a signal repeater, the original signal being sent from a transmitter;
a corresponding location management unit coupled to the base station to demodulate the tagged signal, and to generate a repeater ID signal therefrom; and
a location center coupled to the location management unit to determine the position of the transmitter based on the TOA receiver measurements and the repeater ID.
5. The system of claim 4 , wherein the transmitter comprises a mobile unit, and the location center comprises a mobile location center (MLC).
6. The system of claim 5 , wherein the mobile location center determines the position of the transmitter based on the TOA receiver measurements and the repeater tag ID by looking up the TOA receiver measurements and the repeater tag ID in a database that includes geographical coordinates of the repeater corresponding to the repeater tag ID and a number of corresponding base stations.
7. A location measurement unit (LMU) comprising:
a time of arrival (TOA) receiver to receive signals from a mobile unit and to measure a propagation time delay between the mobile unit and the LMU;
a discriminator to detect signal tags in the received signals, the tags identifying a repeater through which the signal was received;
a database having geographical coordinates of identified repeaters; and
a mobile location center (MLC) to determine a position of the mobile unit from the TOA receiver measurements, and the repeater IDs using the database.
8. The unit of claim 7 , wherein the MLC converts the propagation time delay measurements to distance measurements.
9. The unit of claim 7 , wherein the signal tags comprise frequency shift keying (FSK) modulation.
10. The unit of claim 7 , further comprising a diplexed antenna coupled to the TOA receiver.
11. The unit of claim 7 , further comprising a filter/diplexer coupled to the diplexed antenna.
12. The unit of claim 7 , further comprising an I/Q demodulator coupled to the frequency discriminator.
13. A cellular telephony base station comprising:
a diplexed antenna;
a time of arrival (TOA) receiver coupled to the antenna to receive signals from a cellular telephone and to measure a propagation time delay between the telephone and the base station;
a frequency discriminator to detect signal tags in the received signals, the tags identifying a repeater through which the signal was received;
a mobile location center (MLC) to determine a position of the cellular telephone from the TOA receiver measurements, and the repeater IDs.
14. The base station of claim 13 , wherein the signal tags comprise frequency shift keying (FSK) modulation.
15. The base station of claim 13 , further comprising a database having geographical coordinates of identified repeaters, and wherein the MLC determines the position using the database.
16. A method comprising:
receiving signals from a mobile unit;
measuring the propagation time delay of the received signals;
detecting tags in the received signals to generate a repeater ID for each signal containing a tag, the tags identifying a repeater through which the signal was received;
determining a position of the mobile unit from the TOA receiver measurements, and the repeater IDs.
17. The method of claim 16 , wherein receiving signals comprises receiving signals at a time of arrival (TOA) receiver of a location measurement unit.
18. The method of claim 17 , wherein measuring the propagation time delay comprises measuring the propagation time delay between the mobile unit and the TOA receiver.
19. The method of claim 16 , wherein detecting tags comprises detecting tags at a frequency discriminator of the location measurement unit.
20. The method of claim 16 , wherein detecting tags comprises detecting a frequency shift by comparing a frequency of a received signal to a frequency of a second signal from the same repeater.
21. The method of claim 20 , wherein the second signal comprises a synchronization channel signal.
22. The method of claim 16 , wherein the tags comprise a modulation signature applied to the received signal by the identified repeater.
23. The method of claim 22 , wherein the modulation signature comprises a frequency shift keying (FSK) modulation.
24. The method of claim 16 , wherein determining a position comprises converting the propagation time delay measurements to distance measurements.
25. The method of claim 16 , wherein determining a position comprises applying the repeater IDs to a database, the database including geographical coordinates of repeaters.
26. The method of claim 16 , wherein determining a position comprises determining a position on an arctangent basis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/715,621 US20040097190A1 (en) | 2000-06-19 | 2003-11-18 | Mobile unit position determination using RF signal repeater |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/596,653 US6501955B1 (en) | 2000-06-19 | 2000-06-19 | RF signal repeater, mobile unit position determination system using the RF signal repeater, and method of communication therefor |
US10/173,912 US6839539B2 (en) | 2000-06-19 | 2002-06-17 | RF signal repeater in mobile communications systems |
US10/715,621 US20040097190A1 (en) | 2000-06-19 | 2003-11-18 | Mobile unit position determination using RF signal repeater |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/173,912 Division US6839539B2 (en) | 2000-06-19 | 2002-06-17 | RF signal repeater in mobile communications systems |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040097190A1 true US20040097190A1 (en) | 2004-05-20 |
Family
ID=24388141
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/596,653 Expired - Lifetime US6501955B1 (en) | 2000-06-19 | 2000-06-19 | RF signal repeater, mobile unit position determination system using the RF signal repeater, and method of communication therefor |
US10/173,912 Expired - Lifetime US6839539B2 (en) | 2000-06-19 | 2002-06-17 | RF signal repeater in mobile communications systems |
US10/715,621 Abandoned US20040097190A1 (en) | 2000-06-19 | 2003-11-18 | Mobile unit position determination using RF signal repeater |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/596,653 Expired - Lifetime US6501955B1 (en) | 2000-06-19 | 2000-06-19 | RF signal repeater, mobile unit position determination system using the RF signal repeater, and method of communication therefor |
US10/173,912 Expired - Lifetime US6839539B2 (en) | 2000-06-19 | 2002-06-17 | RF signal repeater in mobile communications systems |
Country Status (7)
Country | Link |
---|---|
US (3) | US6501955B1 (en) |
JP (1) | JP4238027B2 (en) |
CN (1) | CN100499904C (en) |
AU (1) | AU2001266747A1 (en) |
GB (1) | GB2381705A (en) |
MY (1) | MY126128A (en) |
WO (1) | WO2001099444A1 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020115448A1 (en) * | 2000-11-16 | 2002-08-22 | Messay Amerga | Position determination in a wireless communication system with detection and compensation for repeaters |
US20030123401A1 (en) * | 2001-11-20 | 2003-07-03 | Dean Richard F. | Reverse link power controlled repeater |
US20030181216A1 (en) * | 2002-03-20 | 2003-09-25 | Quanta Computer Inc. | System and method for mobile station to handle resource collision between tasks |
US20040147221A1 (en) * | 2002-11-08 | 2004-07-29 | Leonid Sheynblat | Apparatus and method for determining the location of a repeater |
US20040266338A1 (en) * | 2003-06-27 | 2004-12-30 | Rowitch Douglas Neal | Synthetic path diversity repeater |
US20050096066A1 (en) * | 2003-10-31 | 2005-05-05 | Samsung Electronics Co., Ltd. | Method for decision of time delay by repeater in mobile communication network |
US20050130672A1 (en) * | 2001-10-25 | 2005-06-16 | Dean Richard F. | Method and system for determining mobile station position |
US20060034351A1 (en) * | 2004-08-13 | 2006-02-16 | Spotwave Wireless Inc. | Monitoring stability of an on-frequency repeater |
US20060148401A1 (en) * | 2004-12-02 | 2006-07-06 | Spotwave Wireless Canada Inc. | Method and apparatus for enabling generation of a low error timing reference for a signal received via a repeater |
GB2425440A (en) * | 2005-04-22 | 2006-10-25 | Toshiba Res Europ Ltd | Circumferentially positioned bridging stations provide coverage around a base station |
US20070008875A1 (en) * | 2002-12-10 | 2007-01-11 | Data Flow Systems, Inc. | Smart frequency-hopping control mechanism for mitigating against triggering silent radio squelch circuits by sub-channel transmissions from spectral reuse transceiver |
US20070060157A1 (en) * | 2005-02-04 | 2007-03-15 | Toshiba American Research, Inc | Collaborative communication for wireless local area networks |
US20070106721A1 (en) * | 2005-11-04 | 2007-05-10 | Philipp Schloter | Scalable visual search system simplifying access to network and device functionality |
WO2007078032A1 (en) * | 2006-01-02 | 2007-07-12 | Dong-Sik Choi | Interference cancellation repeater |
US20080062906A1 (en) * | 2004-04-05 | 2008-03-13 | Kenneth Baker | Repeater that Reports Detected Neighbors |
US20080071750A1 (en) * | 2006-09-17 | 2008-03-20 | Nokia Corporation | Method, Apparatus and Computer Program Product for Providing Standard Real World to Virtual World Links |
US20080071749A1 (en) * | 2006-09-17 | 2008-03-20 | Nokia Corporation | Method, Apparatus and Computer Program Product for a Tag-Based Visual Search User Interface |
US20080071988A1 (en) * | 2006-09-17 | 2008-03-20 | Nokia Corporation | Adaptable Caching Architecture and Data Transfer for Portable Devices |
US20080081555A1 (en) * | 2006-10-03 | 2008-04-03 | Wireless Data Communication Co., Ltd | Unified communication repeater |
US20080132185A1 (en) * | 2002-01-02 | 2008-06-05 | Elliott Karl E | Wireless communication enabled meter and network |
US20090053993A1 (en) * | 2004-04-05 | 2009-02-26 | Qualcomm Incorporated | Repeater with positioning capabilities |
US20090073915A1 (en) * | 2006-04-28 | 2009-03-19 | Huawei Technologies Co., Ltd. | Apparatus, system and method for implementing mobile communication |
US20090150433A1 (en) * | 2007-12-07 | 2009-06-11 | Nokia Corporation | Method, Apparatus and Computer Program Product for Using Media Content as Awareness Cues |
US20090161963A1 (en) * | 2007-12-20 | 2009-06-25 | Nokia Corporation | Method. apparatus and computer program product for utilizing real-world affordances of objects in audio-visual media data to determine interactions with the annotations to the objects |
US20100094895A1 (en) * | 2008-10-15 | 2010-04-15 | Nokia Corporation | Method and Apparatus for Providing a Media Object |
US7778596B2 (en) | 2004-07-29 | 2010-08-17 | Qualcomm Incorporated | Airlink sensing watermarking repeater |
EP2426504A1 (en) * | 2010-09-06 | 2012-03-07 | Alcatel Lucent | Distance measurements for localization of mobile terminals in a radio network |
US10419100B2 (en) | 2012-05-07 | 2019-09-17 | Andrew Wireless Systems Gmbh | Doppler shift correction sub-system for communication device |
EP4221296A4 (en) * | 2020-11-06 | 2024-03-27 | Vivo Mobile Communication Co., Ltd. | Node identification method and apparatus, device, and readable storage medium |
Families Citing this family (145)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999037047A1 (en) | 1998-01-16 | 1999-07-22 | Symbol Technologies, Inc. | INFRASTRUCTURE FOR WIRELESS LANSs |
US6996080B1 (en) * | 1999-07-23 | 2006-02-07 | Itt Manufacturing Enterprises, Inc. | Chip-synchronous CDMA multiplexer and method resulting in constant envelope signals |
US6785510B2 (en) * | 2000-03-09 | 2004-08-31 | Salbu Resarch & Development (Proprietary) Limited | Routing in a multi-station network |
US7173922B2 (en) * | 2000-03-17 | 2007-02-06 | Symbol Technologies, Inc. | Multiple wireless local area networks occupying overlapping physical spaces |
US7173923B2 (en) * | 2000-03-17 | 2007-02-06 | Symbol Technologies, Inc. | Security in multiple wireless local area networks |
US8265637B2 (en) * | 2000-08-02 | 2012-09-11 | Atc Technologies, Llc | Systems and methods for modifying antenna radiation patterns of peripheral base stations of a terrestrial network to allow reduced interference |
FI109839B (en) * | 2000-08-22 | 2002-10-15 | Nokia Corp | A method for locating a mobile station |
US20020025779A1 (en) * | 2000-08-25 | 2002-02-28 | Knight Clifford Lee | Wireless communications methods and systems using a remote, self-contained cell site |
US7107075B2 (en) * | 2000-08-25 | 2006-09-12 | Bellsouth Intellectual Property Corporation | Wireless communications methods and systems using a remote, self-contained communications antenna unit |
US7016331B1 (en) * | 2000-09-05 | 2006-03-21 | Cisco Technology, Inc. | Method of handoff control in an enterprise code division multiple access wireless system |
US20020058476A1 (en) * | 2000-11-13 | 2002-05-16 | Huslig Daniel J. | Apparatus,system and method for transmitting upstream and downstream signals in a cellular communication system having a wireless backhaul |
US7016332B2 (en) * | 2000-12-05 | 2006-03-21 | Science Applications International Corporation | Method and system for a remote downlink transmitter for increasing the capacity of a multiple access interference limited spread-spectrum wireless network |
US7113745B2 (en) * | 2001-02-21 | 2006-09-26 | Ericsson Inc. | Method to achieve diversity in a communication network |
KR100744362B1 (en) * | 2001-09-26 | 2007-07-30 | 삼성전자주식회사 | Device and method for suppressing interference of reverse link in in-building mobile communication system |
US7062224B2 (en) * | 2002-01-09 | 2006-06-13 | Qualcomm Incorporated | Method and system for identifying and monitoring repeater traffic in a code division multiple access system |
US20030083008A1 (en) * | 2001-10-25 | 2003-05-01 | Baker Kenneth R. | Method and system for identifying repeater traffic in a code divsion multiple access system |
US20030125045A1 (en) * | 2001-12-27 | 2003-07-03 | Riley Wyatt Thomas | Creating and using base station almanac information in a wireless communication system having a position location capability |
AU2002360755A1 (en) * | 2001-12-27 | 2003-07-24 | Qualcomm, Incorporated | Creating and using base station almanac information in a wireless communication system having a position location capability |
EP1516505B1 (en) | 2002-06-21 | 2008-10-29 | Nokia Corporation | Signal path detection for wireless networks including repeaters |
EP1525678B1 (en) | 2002-06-21 | 2008-07-30 | QUALCOMM Incorporated | Wireless local area network repeater |
US7295808B2 (en) * | 2002-09-05 | 2007-11-13 | Soliman Samir S | Method of and system for calibrating a repeater |
US8885688B2 (en) | 2002-10-01 | 2014-11-11 | Qualcomm Incorporated | Control message management in physical layer repeater |
WO2004062305A1 (en) | 2002-12-16 | 2004-07-22 | Widefi, Inc. | Improved wireless network repeater |
KR101012629B1 (en) | 2002-10-11 | 2011-02-09 | 퀄컴 인코포레이티드 | Reducing loop effects in a wireless local area network repeater |
US8078100B2 (en) | 2002-10-15 | 2011-12-13 | Qualcomm Incorporated | Physical layer repeater with discrete time filter for all-digital detection and delay generation |
DE60322440D1 (en) | 2002-10-15 | 2008-09-04 | Qualcomm Inc | WLAN REPEATER WITH AUTOMATIC GAIN CONTROL FOR ADVANCED NET COVER |
US7546084B2 (en) * | 2002-10-16 | 2009-06-09 | Andrew Llc | System and method of operation for network overlay geolocation system with repeaters |
WO2004036525A2 (en) * | 2002-10-16 | 2004-04-29 | Andrew Corporation | A system and method for estimating the multi-path delays in a signal using a spatially blind antenna array |
US7230935B2 (en) | 2002-10-24 | 2007-06-12 | Widefi, Inc. | Physical layer repeater with selective use of higher layer functions based on network operating conditions |
US8412106B2 (en) | 2002-11-04 | 2013-04-02 | Xr Communications, Llc | Directed wireless communication |
CN100588133C (en) | 2002-11-15 | 2010-02-03 | 高通股份有限公司 | Wireless local area network repeater with detection |
EP1427115A1 (en) | 2002-12-06 | 2004-06-09 | TDK Corporation | Antenna switching circuit |
CA2453902A1 (en) * | 2003-01-30 | 2004-07-30 | Brian A. Harron | Gimballed reflector mounting platform |
US7307666B2 (en) * | 2003-01-30 | 2007-12-11 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through The Communications Research Centre Canada | Transmitter identification system |
EP2456104A1 (en) | 2003-02-10 | 2012-05-23 | Nielsen Media Research, Inc. | Methods and apparatus to adaptively gather audience measurement data |
US6961367B2 (en) * | 2003-02-24 | 2005-11-01 | Qualcomm, Incorporated | Forward link repeater frequency watermarking scheme |
US7016688B2 (en) * | 2003-02-24 | 2006-03-21 | Qualcomm, Incorporated | Forward link repeater delay watermarking system |
ES2352546T3 (en) * | 2003-02-24 | 2011-02-21 | Qualcomm Incorporated | FREQUENCY WATER BRAND SYSTEM OF A DIRECT LINK REPEATER. |
US7130642B2 (en) * | 2003-03-03 | 2006-10-31 | Qualcomm Incorporated | Method and apparatus for performing position determination in a wireless communication network with repeaters |
US7881249B2 (en) * | 2003-04-17 | 2011-02-01 | Qualcomm Incorporated | Method and apparatus for determining repeater use in wireless communications |
KR100598149B1 (en) | 2003-04-28 | 2006-07-07 | (주)에프알텍 | The method and Apparatus for obtaining location of mobile terminal in repeaters coverage areas |
US7174133B2 (en) * | 2003-05-16 | 2007-02-06 | Agilent Technologies, Inc. | Systems and methods for determining the delay offsets of communication systems |
WO2004105273A1 (en) * | 2003-05-20 | 2004-12-02 | Neo Telecom Co., Ltd. | Method and system for tracking the position of mobile communication terminal |
WO2005002124A2 (en) * | 2003-06-24 | 2005-01-06 | Andrew Corporation | Method for sparse network deployment accuracy enhancements |
US7123928B2 (en) | 2003-07-21 | 2006-10-17 | Qualcomm Incorporated | Method and apparatus for creating and using a base station almanac for position determination |
GB2405290B (en) * | 2003-08-21 | 2006-04-26 | Motorola Inc | Wireless communication system and wireless communication repeater for use therein |
US7400856B2 (en) * | 2003-09-03 | 2008-07-15 | Motorola, Inc. | Method and apparatus for relay facilitated communications |
US7486233B2 (en) * | 2003-09-03 | 2009-02-03 | Telefonaktiebolaget L M Ericsson (Publ) | Method and system of positioning |
US8018893B2 (en) * | 2003-09-03 | 2011-09-13 | Motorola Mobility, Inc. | Method and apparatus for relay facilitated communications |
KR100683906B1 (en) * | 2003-09-16 | 2007-02-15 | 주식회사 에치에프알 | Method and System for Providing Location Finding Service by Using Frequency Offset |
US7925205B2 (en) * | 2003-09-17 | 2011-04-12 | Andrew Llc | System and method of operation for network overlay geolocation system with repeaters |
WO2005048610A2 (en) * | 2003-09-26 | 2005-05-26 | Andrew Corporation | System and method of operation for network overlay geolocation system with repeaters using am golay hadamard signatures |
US20050153712A1 (en) * | 2004-01-08 | 2005-07-14 | Ken Osaka | Method and system for determining mobile unit location by aggregation of tagged signals from a distributed antenna system |
ATE394765T1 (en) * | 2004-02-19 | 2008-05-15 | Koninkl Philips Electronics Nv | METHOD AND DEVICE FOR TRANSMITTING THE EXISTENCE OF AN EMERGENCY SITUATION WITHOUT CLEARLY IDENTIFYING THE SOURCE OF THE TRANSMISSION |
KR100573203B1 (en) * | 2004-03-17 | 2006-04-24 | 에스케이 텔레콤주식회사 | Method and System for Determining Position of Terminal by Using Location Detector in GPS Satellite-Invisible Area |
WO2005106523A1 (en) | 2004-04-02 | 2005-11-10 | Qualcomm Incorporated | Methods and apparatuses for beacon assisted position determination systems |
US8027642B2 (en) | 2004-04-06 | 2011-09-27 | Qualcomm Incorporated | Transmission canceller for wireless local area network |
US7310064B2 (en) * | 2004-04-29 | 2007-12-18 | Novariant Inc. | Rebroadcasting method and system for navigation signals |
CN100553318C (en) * | 2004-05-12 | 2009-10-21 | 韩国电子通信研究院 | The equipment of common-frequency repeater and method |
US8078099B2 (en) * | 2004-05-12 | 2011-12-13 | Andrew, Llc | System and method for identifying the path or devices on the path of a communication signal using (1+r(t)) amplitude modulation |
JP4960223B2 (en) * | 2004-05-13 | 2012-06-27 | クゥアルコム・インコーポレイテッド | Non-frequency conversion repeater for detection and media access control |
AU2005251169B2 (en) * | 2004-05-26 | 2010-07-15 | Zboost, Llc | Wireless repeater for a duplex communication system implementing a protection based on oscillation detection |
US20080259787A1 (en) * | 2004-05-28 | 2008-10-23 | Symbol Technologies, Inc. | Backup cell controller |
US7269387B2 (en) * | 2004-05-28 | 2007-09-11 | Lucent Technologies Inc. | Method and apparatus for determining a distance between a base station and a mobile unit |
EP1769645A4 (en) | 2004-06-03 | 2010-07-21 | Qualcomm Inc | Frequency translating repeater with low cost high performance local oscillator architecture |
US20110034122A1 (en) * | 2004-09-17 | 2011-02-10 | Andrew, Llc | System and Method of Operation For Network Overlay Geolocation System With Repeaters |
KR100664066B1 (en) | 2004-10-04 | 2007-01-03 | 주식회사 컨버시스 | Method and apparatus which searches mobile position in TDD wireless network |
US8059727B2 (en) | 2005-01-28 | 2011-11-15 | Qualcomm Incorporated | Physical layer repeater configuration for increasing MIMO performance |
US7233770B2 (en) * | 2005-03-07 | 2007-06-19 | Harris Corporation | Communications system using separate receive and transmit frequency hopping hopsets |
WO2006106692A1 (en) * | 2005-03-30 | 2006-10-12 | Matsushita Electric Industrial Co., Ltd. | Wireless communication apparatus and wireless communication method |
EP1882374A4 (en) | 2005-05-17 | 2008-05-21 | Andrew Corp | Method and apparatus for determining coupled path loss |
CN1306850C (en) * | 2005-06-10 | 2007-03-21 | 重庆邮电学院 | Mobile terminal tracing-positioning system based on hand-held relay and positioning method therefor |
US20070010207A1 (en) * | 2005-07-05 | 2007-01-11 | Dooley John A | System and method for the ultra-precise analysis and characterization of RF propagation dynamics in wireless communication networks |
US7257040B2 (en) * | 2005-09-27 | 2007-08-14 | Macronix International Co., Ltd. | Fast pre-charge circuit and method of providing same for memory devices |
US20070076645A1 (en) * | 2005-09-30 | 2007-04-05 | Vandrunen Paul J | Signal repeater system |
KR100893832B1 (en) * | 2005-10-18 | 2009-04-17 | 삼성전자주식회사 | Apparatus and method for supporting multi link in multi-hop relay cellular network with using two frequency bands |
US20090005061A1 (en) * | 2005-12-30 | 2009-01-01 | Trueposition, Inc. | Location quality of service indicator |
US20070155489A1 (en) * | 2005-12-30 | 2007-07-05 | Frederic Beckley | Device and network enabled geo-fencing for area sensitive gaming enablement |
US8150421B2 (en) * | 2005-12-30 | 2012-04-03 | Trueposition, Inc. | User plane uplink time difference of arrival (U-TDOA) |
US7734249B1 (en) | 2006-03-01 | 2010-06-08 | Sprint Spectrum L.P. | Method and system for reporting usage of a repeater in wireless communications |
MX2007015979A (en) | 2006-03-31 | 2009-04-07 | Nielsen Media Res Inc | Methods, systems, and apparatus for multi-purpose metering. |
US20070268846A1 (en) * | 2006-03-31 | 2007-11-22 | Widefi, Inc. | Enhanced physical layer repeater for operation in WiMAX systems |
JP4788905B2 (en) * | 2006-05-01 | 2011-10-05 | 日本電気株式会社 | Mobile communication system and base station antenna proximity determination method |
US8000702B2 (en) | 2006-05-16 | 2011-08-16 | Andrew, Llc | Optimizing location services performance by combining user plane and control plane architectures |
US8000701B2 (en) | 2006-05-16 | 2011-08-16 | Andrew, Llc | Correlation mechanism to communicate in a dual-plane architecture |
US8019339B2 (en) | 2006-05-16 | 2011-09-13 | Andrew Llc | Using serving area identification in a mixed access network environment |
WO2008036401A2 (en) | 2006-09-21 | 2008-03-27 | Qualcomm Incorporated | Method and apparatus for mitigating oscillation between repeaters |
BRPI0717378A2 (en) | 2006-10-26 | 2013-10-29 | Qualcomm Inc | REPEATER TECHNIQUES FOR MULTIPLE INPUTS AND MULTIPLE OUTPUTS USING FLEX COMFORTERS. |
WO2008050553A1 (en) * | 2006-10-27 | 2008-05-02 | Panasonic Corporation | Wireless communication apparatus and wireless communication method |
CN101192870B (en) * | 2006-11-20 | 2011-08-24 | 中兴通讯股份有限公司 | A relay system for mobile communication |
GB0700801D0 (en) * | 2007-01-16 | 2007-02-21 | Nortel Networks Ltd | Shared radio backhaul system |
CA2677087A1 (en) | 2007-02-05 | 2008-08-14 | Andrew Corporation | System and method for optimizing location estimate of mobile unit |
US8005050B2 (en) | 2007-03-23 | 2011-08-23 | Lgc Wireless, Inc. | Localization of a mobile device in distributed antenna communications system |
CN101663818B (en) | 2007-03-27 | 2013-07-10 | 飞思卡尔半导体公司 | Apparatus for varying a dynamic range |
US8902933B2 (en) | 2007-05-02 | 2014-12-02 | Tyco Fire & Security Gmbh | Wireless communication system |
NZ581379A (en) | 2007-05-22 | 2013-02-22 | Telstra Corp Ltd | A repeater system for extending cell coverage by repeating a signal at an alternate frequency |
KR101048444B1 (en) | 2007-09-03 | 2011-07-11 | 삼성전자주식회사 | Location Estimation Device and Method in Wireless Communication System |
US8170585B2 (en) | 2007-11-14 | 2012-05-01 | Andrew, Llc | Ranging in UMTS networks |
US8447319B2 (en) | 2007-11-15 | 2013-05-21 | Andrew Llc | System and method for locating UMTS user equipment using measurement reports |
US7800530B2 (en) | 2007-12-07 | 2010-09-21 | Andrew, Llc | Method and system for providing assistance data for A-GPS location of handsets in wireless networks |
US7995969B2 (en) * | 2008-01-10 | 2011-08-09 | Sony Corporation | Millimeter wave power conversion |
JP4998288B2 (en) * | 2008-01-28 | 2012-08-15 | 富士通株式会社 | Wireless communication system |
US8213955B2 (en) | 2008-05-01 | 2012-07-03 | Andrew, Llc | Network measurement report caching for location of mobile devices |
JP5117284B2 (en) * | 2008-06-05 | 2013-01-16 | 株式会社東芝 | FM demodulator and FM receiver |
US8295763B2 (en) * | 2008-06-23 | 2012-10-23 | Andrew Llc | System and method for identifying the path or devices on the path of a communication signal using (1+r(T)) amplitude modulation |
US8988197B2 (en) * | 2008-09-03 | 2015-03-24 | Checkpoint Systems, Inc. | RFID repeater for range extension in modulated backscatter systems |
US8073463B2 (en) | 2008-10-06 | 2011-12-06 | Andrew, Llc | System and method of UMTS UE location using uplink dedicated physical control channel and downlink synchronization channel |
US8478228B2 (en) | 2008-10-20 | 2013-07-02 | Qualcomm Incorporated | Mobile receiver with location services capability |
US8762519B2 (en) | 2008-10-28 | 2014-06-24 | Andrew Llc | System and method for providing location services for multiple access networks from a single location server |
US8035557B2 (en) | 2008-11-24 | 2011-10-11 | Andrew, Llc | System and method for server side detection of falsified satellite measurements |
US8160609B2 (en) | 2008-11-26 | 2012-04-17 | Andrew Llc | System and method for multiple range estimation location |
US8249622B2 (en) | 2008-11-26 | 2012-08-21 | Andrew, Llc | System and method for multiple range estimation location |
US8380222B2 (en) | 2008-11-26 | 2013-02-19 | Andrew Llc | System and method for multiple range estimation location |
US7916071B2 (en) | 2008-12-23 | 2011-03-29 | Andrew, Llc | System and method for determining a reference location of a mobile device |
US8135339B2 (en) * | 2008-12-31 | 2012-03-13 | Andrew Llc | System and method for feedback cancellation in repeaters |
US8391884B2 (en) | 2009-03-26 | 2013-03-05 | Andrew Llc | System and method for managing created location contexts in a location server |
US9001811B2 (en) | 2009-05-19 | 2015-04-07 | Adc Telecommunications, Inc. | Method of inserting CDMA beacon pilots in output of distributed remote antenna nodes |
US8290510B2 (en) | 2009-06-11 | 2012-10-16 | Andrew Llc | System and method for SUPL held interworking |
US9279879B2 (en) * | 2009-06-26 | 2016-03-08 | Qualcomm Incorporated | Positioning in the presence of passive distributed elements |
US8600297B2 (en) | 2009-07-28 | 2013-12-03 | Qualcomm Incorporated | Method and system for femto cell self-timing and self-locating |
WO2011016804A1 (en) | 2009-08-05 | 2011-02-10 | Andrew Llc | System and method for hybrid location in an lte network |
US8217832B2 (en) | 2009-09-23 | 2012-07-10 | Andrew, Llc | Enhancing location accuracy using multiple satellite measurements based on environment |
US8289210B2 (en) | 2009-10-15 | 2012-10-16 | Andrew Llc | Location measurement acquisition adaptive optimization |
US8188920B2 (en) | 2009-10-15 | 2012-05-29 | Andrew, Llc | Location measurement acquisition optimization with Monte Carlo simulation |
US8948687B2 (en) * | 2009-12-11 | 2015-02-03 | Andrew Llc | System and method for determining and controlling gain margin in an RF repeater |
US20110171973A1 (en) | 2010-01-08 | 2011-07-14 | Andrew, Llc | System and Method for Mobile Location By Proximity Detection |
US8718673B2 (en) | 2010-05-21 | 2014-05-06 | Maple Acquisition Llc | System and method for location assurance of a mobile device |
US8958754B2 (en) | 2010-09-29 | 2015-02-17 | Andrew, Llc | System and method for sub-coherent integration for geo-location using weak or intermittent signals |
US8489122B2 (en) | 2010-12-09 | 2013-07-16 | Andrew Llc | System and method for total flight time ratio pattern matching |
EP2676500A1 (en) | 2011-02-14 | 2013-12-25 | Andrew LLC | Method for mobile location by dynamic clustering |
US8774837B2 (en) | 2011-04-30 | 2014-07-08 | John Anthony Wright | Methods, systems and apparatuses of emergency vehicle locating and the disruption thereof |
US9715001B2 (en) | 2011-06-13 | 2017-07-25 | Commscope Technologies Llc | Mobile location in a remote radio head environment |
US9423508B2 (en) | 2012-01-12 | 2016-08-23 | Commscope Technologies Llc | Autonomous Transmit Chain Delay Measurements |
US8897813B2 (en) | 2012-02-03 | 2014-11-25 | Andrew Llc | LTE user equipment positioning system and method |
JP5956260B2 (en) * | 2012-07-06 | 2016-07-27 | 株式会社東海理化電機製作所 | Propagation time measurement device |
US9282366B2 (en) | 2012-08-13 | 2016-03-08 | The Nielsen Company (Us), Llc | Methods and apparatus to communicate audience measurement information |
US9088332B2 (en) * | 2012-10-05 | 2015-07-21 | Telefonaktiebolaget L M Ericsson (Publ) | Mitigation of interference from a mobile relay node to heterogeneous networks |
US9651653B2 (en) | 2012-12-24 | 2017-05-16 | Qualcomm Incorporated | Positioning reference signal (PRS) generation for multiple transmit antenna systems |
US20150116162A1 (en) | 2013-10-28 | 2015-04-30 | Skycross, Inc. | Antenna structures and methods thereof for determining a frequency offset based on a differential magnitude |
US9699499B2 (en) | 2014-04-30 | 2017-07-04 | The Nielsen Company (Us), Llc | Methods and apparatus to measure exposure to streaming media |
CN104022812A (en) * | 2014-06-26 | 2014-09-03 | 武汉虹信通信技术有限责任公司 | Intelligent microwave repeater |
US9482742B1 (en) | 2015-05-12 | 2016-11-01 | Qualcomm Incorporated | Positioning reference signal (PRS) generation for multiple transmit antenna systems |
US9628955B1 (en) | 2016-08-10 | 2017-04-18 | Sprint Communications Company L.P. | Repeater chain location determination based on a repeater chain identifier in a wireless communication network |
US10321418B2 (en) * | 2016-09-02 | 2019-06-11 | Cellphone-Mate, Inc. | Radio frequency signal booster |
US9867007B1 (en) | 2016-11-29 | 2018-01-09 | Sprint Communications Company L.P. | Fine distance determination for user equipment (UE) that are served by wireless repeater chains |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4799062A (en) * | 1987-04-27 | 1989-01-17 | Axonn Corporation | Radio position determination method and apparatus |
US5223816A (en) * | 1992-01-17 | 1993-06-29 | Levinson Samuel H | Security and communication system with location detection |
US5483241A (en) * | 1994-05-09 | 1996-01-09 | Rockwell International Corporation | Precision location of aircraft using ranging |
US5708963A (en) * | 1995-02-24 | 1998-01-13 | Scientific-Atlanta, Inc. | Method and apparatus for using satellites for reverse path communication in direct-to-home subscription information systems |
US5945949A (en) * | 1997-01-13 | 1999-08-31 | Lucent Technologies Inc. | Mobile station position determination in a wireless communication system |
US5978650A (en) * | 1997-01-21 | 1999-11-02 | Adc Telecommunications, Inc. | System and method for transmitting data |
US6108364A (en) * | 1995-08-31 | 2000-08-22 | Qualcomm Incorporated | Time division duplex repeater for use in a CDMA system |
US6236365B1 (en) * | 1996-09-09 | 2001-05-22 | Tracbeam, Llc | Location of a mobile station using a plurality of commercial wireless infrastructures |
US6266008B1 (en) * | 1991-12-10 | 2001-07-24 | Charles D. Huston | System and method for determining freight container locations |
US6377782B1 (en) * | 1999-03-01 | 2002-04-23 | Mediacell, Inc. | Method and apparatus for communicating between a client device and a linear broadband network |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4317217A (en) * | 1980-08-11 | 1982-02-23 | Motorola, Inc. | Tag generator for a same-frequency repeater |
US4383331A (en) * | 1981-07-02 | 1983-05-10 | Motorola, Inc. | Method and means of preventing oscillations in a same-frequency repeater |
-
2000
- 2000-06-19 US US09/596,653 patent/US6501955B1/en not_active Expired - Lifetime
-
2001
- 2001-06-06 JP JP2002504163A patent/JP4238027B2/en not_active Expired - Fee Related
- 2001-06-06 GB GB0300620A patent/GB2381705A/en not_active Withdrawn
- 2001-06-06 AU AU2001266747A patent/AU2001266747A1/en not_active Abandoned
- 2001-06-06 WO PCT/US2001/018379 patent/WO2001099444A1/en active Application Filing
- 2001-06-06 CN CNB018114377A patent/CN100499904C/en not_active Expired - Fee Related
- 2001-06-20 MY MYPI20012730A patent/MY126128A/en unknown
-
2002
- 2002-06-17 US US10/173,912 patent/US6839539B2/en not_active Expired - Lifetime
-
2003
- 2003-11-18 US US10/715,621 patent/US20040097190A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4799062A (en) * | 1987-04-27 | 1989-01-17 | Axonn Corporation | Radio position determination method and apparatus |
US6266008B1 (en) * | 1991-12-10 | 2001-07-24 | Charles D. Huston | System and method for determining freight container locations |
US5223816A (en) * | 1992-01-17 | 1993-06-29 | Levinson Samuel H | Security and communication system with location detection |
US5483241A (en) * | 1994-05-09 | 1996-01-09 | Rockwell International Corporation | Precision location of aircraft using ranging |
US5708963A (en) * | 1995-02-24 | 1998-01-13 | Scientific-Atlanta, Inc. | Method and apparatus for using satellites for reverse path communication in direct-to-home subscription information systems |
US6108364A (en) * | 1995-08-31 | 2000-08-22 | Qualcomm Incorporated | Time division duplex repeater for use in a CDMA system |
US6236365B1 (en) * | 1996-09-09 | 2001-05-22 | Tracbeam, Llc | Location of a mobile station using a plurality of commercial wireless infrastructures |
US5945949A (en) * | 1997-01-13 | 1999-08-31 | Lucent Technologies Inc. | Mobile station position determination in a wireless communication system |
US5978650A (en) * | 1997-01-21 | 1999-11-02 | Adc Telecommunications, Inc. | System and method for transmitting data |
US6377782B1 (en) * | 1999-03-01 | 2002-04-23 | Mediacell, Inc. | Method and apparatus for communicating between a client device and a linear broadband network |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8700749B2 (en) | 2000-01-31 | 2014-04-15 | Endeavor Ip, Inc. | Wireless communication enabled meter and network |
US8855019B2 (en) | 2000-01-31 | 2014-10-07 | Endeavor Meshtech, Inc. | Wireless communication enabled meter and network |
US20020115448A1 (en) * | 2000-11-16 | 2002-08-22 | Messay Amerga | Position determination in a wireless communication system with detection and compensation for repeaters |
US7039418B2 (en) * | 2000-11-16 | 2006-05-02 | Qualcomm Incorporated | Position determination in a wireless communication system with detection and compensation for repeaters |
US7590383B2 (en) * | 2001-10-25 | 2009-09-15 | Qualcomm Incorporated | Determining mobile station position using base station identification and a repeater discriminant |
US20050130672A1 (en) * | 2001-10-25 | 2005-06-16 | Dean Richard F. | Method and system for determining mobile station position |
US20030123401A1 (en) * | 2001-11-20 | 2003-07-03 | Dean Richard F. | Reverse link power controlled repeater |
US8665774B2 (en) | 2001-11-20 | 2014-03-04 | Qualcomm Incorporated | Reverse link power-controlled repeater |
US7924751B2 (en) | 2001-11-20 | 2011-04-12 | Qualcomm Incorporated | Reverse link power controlled repeater |
US8019836B2 (en) | 2002-01-02 | 2011-09-13 | Mesh Comm, Llc | Wireless communication enabled meter and network |
US20080132185A1 (en) * | 2002-01-02 | 2008-06-05 | Elliott Karl E | Wireless communication enabled meter and network |
US20030181216A1 (en) * | 2002-03-20 | 2003-09-25 | Quanta Computer Inc. | System and method for mobile station to handle resource collision between tasks |
US7831263B2 (en) | 2002-11-08 | 2010-11-09 | Qualcomm Incorporated | Apparatus and method for determining the location of a repeater |
US20040147221A1 (en) * | 2002-11-08 | 2004-07-29 | Leonid Sheynblat | Apparatus and method for determining the location of a repeater |
US7616606B2 (en) * | 2002-12-10 | 2009-11-10 | Adapt4, Llc | Mechanism for avoiding triggering silent radio squelch circuits |
US20070008875A1 (en) * | 2002-12-10 | 2007-01-11 | Data Flow Systems, Inc. | Smart frequency-hopping control mechanism for mitigating against triggering silent radio squelch circuits by sub-channel transmissions from spectral reuse transceiver |
US7580672B2 (en) * | 2003-06-27 | 2009-08-25 | Qualcomm Incorporated | Synthetic path diversity repeater |
US20040266338A1 (en) * | 2003-06-27 | 2004-12-30 | Rowitch Douglas Neal | Synthetic path diversity repeater |
US20050096066A1 (en) * | 2003-10-31 | 2005-05-05 | Samsung Electronics Co., Ltd. | Method for decision of time delay by repeater in mobile communication network |
US7400890B2 (en) * | 2003-10-31 | 2008-07-15 | Samsung Electronics Co., Ltd. | Method for decision of time delay by repeater in mobile communication network |
US9118380B2 (en) | 2004-04-05 | 2015-08-25 | Qualcomm Incorporated | Repeater with positioning capabilities |
US8514764B2 (en) | 2004-04-05 | 2013-08-20 | Qualcomm Incorporated | Repeater that reports detected neighbors |
US20090053993A1 (en) * | 2004-04-05 | 2009-02-26 | Qualcomm Incorporated | Repeater with positioning capabilities |
US20080062906A1 (en) * | 2004-04-05 | 2008-03-13 | Kenneth Baker | Repeater that Reports Detected Neighbors |
US7778596B2 (en) | 2004-07-29 | 2010-08-17 | Qualcomm Incorporated | Airlink sensing watermarking repeater |
US20060034351A1 (en) * | 2004-08-13 | 2006-02-16 | Spotwave Wireless Inc. | Monitoring stability of an on-frequency repeater |
US20060148401A1 (en) * | 2004-12-02 | 2006-07-06 | Spotwave Wireless Canada Inc. | Method and apparatus for enabling generation of a low error timing reference for a signal received via a repeater |
US7843867B2 (en) * | 2005-02-04 | 2010-11-30 | Toshiba America Research, Inc. | Collaborative communication for wireless local area networks |
US20070060157A1 (en) * | 2005-02-04 | 2007-03-15 | Toshiba American Research, Inc | Collaborative communication for wireless local area networks |
GB2425440B (en) * | 2005-04-22 | 2008-05-21 | Toshiba Res Europ Ltd | Wireless communications system |
GB2425440A (en) * | 2005-04-22 | 2006-10-25 | Toshiba Res Europ Ltd | Circumferentially positioned bridging stations provide coverage around a base station |
US20070106721A1 (en) * | 2005-11-04 | 2007-05-10 | Philipp Schloter | Scalable visual search system simplifying access to network and device functionality |
US9600584B2 (en) | 2005-11-04 | 2017-03-21 | Nokia Technologies Oy | Scalable visual search system simplifying access to network and device functionality |
US8849821B2 (en) | 2005-11-04 | 2014-09-30 | Nokia Corporation | Scalable visual search system simplifying access to network and device functionality |
WO2007078032A1 (en) * | 2006-01-02 | 2007-07-12 | Dong-Sik Choi | Interference cancellation repeater |
US20090073915A1 (en) * | 2006-04-28 | 2009-03-19 | Huawei Technologies Co., Ltd. | Apparatus, system and method for implementing mobile communication |
US8775452B2 (en) | 2006-09-17 | 2014-07-08 | Nokia Corporation | Method, apparatus and computer program product for providing standard real world to virtual world links |
US20080071750A1 (en) * | 2006-09-17 | 2008-03-20 | Nokia Corporation | Method, Apparatus and Computer Program Product for Providing Standard Real World to Virtual World Links |
US9678987B2 (en) | 2006-09-17 | 2017-06-13 | Nokia Technologies Oy | Method, apparatus and computer program product for providing standard real world to virtual world links |
US20080071988A1 (en) * | 2006-09-17 | 2008-03-20 | Nokia Corporation | Adaptable Caching Architecture and Data Transfer for Portable Devices |
US20080071749A1 (en) * | 2006-09-17 | 2008-03-20 | Nokia Corporation | Method, Apparatus and Computer Program Product for a Tag-Based Visual Search User Interface |
US20080081555A1 (en) * | 2006-10-03 | 2008-04-03 | Wireless Data Communication Co., Ltd | Unified communication repeater |
US20090150433A1 (en) * | 2007-12-07 | 2009-06-11 | Nokia Corporation | Method, Apparatus and Computer Program Product for Using Media Content as Awareness Cues |
US20110096992A1 (en) * | 2007-12-20 | 2011-04-28 | Nokia Corporation | Method, apparatus and computer program product for utilizing real-world affordances of objects in audio-visual media data to determine interactions with the annotations to the objects |
US20090161963A1 (en) * | 2007-12-20 | 2009-06-25 | Nokia Corporation | Method. apparatus and computer program product for utilizing real-world affordances of objects in audio-visual media data to determine interactions with the annotations to the objects |
US8935292B2 (en) | 2008-10-15 | 2015-01-13 | Nokia Corporation | Method and apparatus for providing a media object |
US20100094895A1 (en) * | 2008-10-15 | 2010-04-15 | Nokia Corporation | Method and Apparatus for Providing a Media Object |
EP2426504A1 (en) * | 2010-09-06 | 2012-03-07 | Alcatel Lucent | Distance measurements for localization of mobile terminals in a radio network |
TWI486079B (en) * | 2010-09-06 | 2015-05-21 | Alcatel Lucent | Distance measurements for localization of mobile terminals in a radio network |
WO2012031816A1 (en) * | 2010-09-06 | 2012-03-15 | Xalcatel Lucent | Distance measurements for localization of mobile terminals in a radio network |
US10419100B2 (en) | 2012-05-07 | 2019-09-17 | Andrew Wireless Systems Gmbh | Doppler shift correction sub-system for communication device |
EP4221296A4 (en) * | 2020-11-06 | 2024-03-27 | Vivo Mobile Communication Co., Ltd. | Node identification method and apparatus, device, and readable storage medium |
Also Published As
Publication number | Publication date |
---|---|
WO2001099444B1 (en) | 2002-03-21 |
WO2001099444A1 (en) | 2001-12-27 |
CN1437828A (en) | 2003-08-20 |
MY126128A (en) | 2006-09-29 |
GB2381705A (en) | 2003-05-07 |
CN100499904C (en) | 2009-06-10 |
US20020155838A1 (en) | 2002-10-24 |
GB0300620D0 (en) | 2003-02-12 |
US6501955B1 (en) | 2002-12-31 |
JP2004501585A (en) | 2004-01-15 |
US6839539B2 (en) | 2005-01-04 |
JP4238027B2 (en) | 2009-03-11 |
AU2001266747A1 (en) | 2002-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6839539B2 (en) | RF signal repeater in mobile communications systems | |
US10330771B2 (en) | Method and system for user equipment location determination on a wireless transmission system | |
US6839333B1 (en) | TDMA-TDD/FDD radio communication system and channel selection method and apparatus for such a system | |
US6370185B1 (en) | Translating repeater system with improved backhaul efficiency | |
EP0808532B1 (en) | Frequency hopped return link with net entry channel for a satellite personal communications system | |
US5533011A (en) | Dual distributed antenna system | |
US6700882B1 (en) | Method and apparatus for increasing throughput and/or capacity in a TDMA system | |
EP0806096B1 (en) | Network entry channel for cdma systems | |
EP1890509B1 (en) | Relay station, radio base station and communication method | |
US8682311B2 (en) | Multi-hop booster | |
JPS6335025A (en) | Digital radio transmission system | |
JP2002111571A (en) | Radio repeater | |
JP2008048425A (en) | Multi-hop wireless communication system, network management entity, source apparatus, intermediate apparatus, transmission method and computer program | |
EP1032995A1 (en) | Broadcast network selection techniques for hybrid radiocommunication systems comprising both a cellular communication system and a radio broadcast system | |
JPS6232853B2 (en) | ||
US8160491B2 (en) | GPS synchronization method for mobile wireless networks | |
US5854784A (en) | Power-saving method for providing synchronization in a communications system | |
RU2009123164A (en) | METHOD FOR SYNCHRONIZING A RADIO COMMUNICATION SYSTEM DISTRIBUTED BY RADIO COMMUNICATION CELLS | |
US6415161B1 (en) | Mobile communication system with transmitting systems with different outputting power | |
US7333469B2 (en) | Method for deep paging | |
KR101191183B1 (en) | method for transmitting and receiving data using a plurality of carriers | |
US7277405B2 (en) | Timing recovery and cross talk prevention in the presence of co-channel interference | |
KR20000048938A (en) | Improved synchronization of a receiver with a transmitter using nonlinear transformation metrics | |
AU692383C (en) | Frequency hopped return link with net entry channel for a satellite personal communications system | |
WO1999027655A2 (en) | Method for connection establishment, and transceiver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |