US20040093954A1 - Pressure sensor and process for producing the pressure sensor - Google Patents

Pressure sensor and process for producing the pressure sensor Download PDF

Info

Publication number
US20040093954A1
US20040093954A1 US10/301,096 US30109602A US2004093954A1 US 20040093954 A1 US20040093954 A1 US 20040093954A1 US 30109602 A US30109602 A US 30109602A US 2004093954 A1 US2004093954 A1 US 2004093954A1
Authority
US
United States
Prior art keywords
pressure
semiconductor chip
housing
plastic compound
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/301,096
Other versions
US6732590B1 (en
Inventor
Alfred Gottlieb
Martin Schroder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Priority to US10/301,096 priority Critical patent/US6732590B1/en
Assigned to INFINEON TECHNOLOGIES AG reassignment INFINEON TECHNOLOGIES AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHRODER, MARTIN, GOTTLIEB, ALFRED
Application granted granted Critical
Publication of US6732590B1 publication Critical patent/US6732590B1/en
Publication of US20040093954A1 publication Critical patent/US20040093954A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/147Details about the mounting of the sensor to support or covering means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Definitions

  • the invention relates to a pressure sensor which is subjected to an external pressure, having a semiconductor chip which has a pressure-sensitive area, and a process for producing such a pressure sensor.
  • Such pressure sensors constructed on the basis of semiconductor materials and using what is known as the MEM technique or microelectromechanical technique are used for automotive applications, such as motor vehicle tires, and exhibit a high failure rate with increased requirements in relation to increased attack of aggressive media and increased accelerative loadings.
  • the pressure sensor has a semiconductor chip having a pressure-sensitive area which is subjected to an external pressure, and contact areas which are arranged on a pressure-insensitive area of the semiconductor chip.
  • the semiconductor chip is arranged in a hollow housing which has a housing base on which the semiconductor chip is adhesively bonded.
  • the hollow housing additionally has a housing wall which surrounds the semiconductor chip and through which flat conductors project with an internal section into a housing interior. External sections of the flat conductors project out of the housing wall.
  • Arranged between the contact areas of the semiconductor chip and the internal sections of the flat conductors are connecting elements which connect predetermined contact areas electrically to corresponding internal sections.
  • the connecting elements, the internal sections and the contact areas within the surrounding housing wall are covered by a first plastic compound.
  • the pressure-sensitive area of the semiconductor chip is at least partly covered by a second plastic compound. Because of its material characteristics, under the same external pressure loading, the first plastic compound is subjected to lower deformations than the second plastic compound.
  • This pressure sensor according to the invention has the advantage that, as a result of extensive covering of the pressure-insensitive areas within the housing of a first plastic compound with a negligible deformation, the deformation loadings at increased external pressure are reduced, in particular for deformation-sensitive components such as the connecting elements.
  • the highly deforming second plastic compound to a pressure-sensitive area of the sensor, the remaining areas and components within the housing are protected against distortions and displacements as a result of tensile, compressive and shear stresses during deformation of the pressure-sensitive area.
  • the pressure sensor according to the invention is able to satisfy the increased requirements on temperature-cycle resistance and pressure resistance and erosion resistance with respect to aggressive media without failing.
  • a pressure sensor protected in this way by two different plastic components can advantageously be used for continuous operational monitoring of the tire pressure in rotating vehicle tires up to a tire pressure of 100 MPa without it being possible to determine large temperature hysteresis values in the operating temperature range between ⁇ 50° C. and +150° C.
  • the scatter in the temperature response is likewise reduced as compared with pressure sensors merely having a silicone gel covering on all sides.
  • the first plastic compound preferably has a thermosetting plastic made of an epoxy resin or a silicone resin. These resins, with appropriate fillers, can exhibit a coefficient of thermal expansion which is matched to the coefficient of expansion of the semiconductor material and/or the material of the hollow housing.
  • the hollow housing has either a ceramic substance or a plastic material. In the ceramic substance or the plastic material, a transition layer of a flat conductor is embedded in such a way that an internal section of the flat conductor projects into the interior of the hollow housing and an outer section of the flat conductor projects outward from the housing wall.
  • the flat conductor is anchored in the hollow housing by the transition section.
  • the hollow housing can have a ledge on the housing inner wall, to which the internal section of the flat conductor is fitted. This ensures secure bonding of a bonding wire between a contact connection area of the internal section of the flat conductor and a bonding wire which is intended to connect the flat conductor to contact areas on the pressure-insensitive areas of the semiconductor chip.
  • the second plastic compound preferably has a plastic gel of a resilient elastomer based on silicone.
  • a resilient elastomer based on silicone.
  • Such resilient elastomers are based on dimethyl polysiloxane or phenyl polysiloxane and can be used for operating temperatures in the range from ⁇ 55° C. to +200° C. or ⁇ 120° C. to +200° C., depending on the base material.
  • a further preferred resilient elastomer is based on fluorosiloxane and can be used at operating temperatures between ⁇ 55° C. and +175° C. Fluorosiloxanes of this type can be used in particular for the vehicle sector, since they are resistant with respect to fuels and solvents.
  • the energy loss factor at a predefined pressure cycle frequency of the order of magnitude of minus four powers of ten, is extremely low, so that such a second plastic compound follows the deformations of the pressure-sensitive area of the semiconductor chip with negligible energy loss.
  • elastomers based on silicone have the advantage that they can form intensive adhesion to silicone resins. The risk of microcracks in the interface between the first plastic compound an the second plastic compound can therefore be reduced if a silicone resin is used as the first plastic compound and an elastomer based on silicone is used as the second plastic compound.
  • the hollow housing can have a housing cover with an opening which leaves the pressure-sensitive area and the second plastic compound free.
  • a housing cover of this type can advantageously be matched to the inner dimensions of the housing wall, by its external dimensions permitting a clearance fit with respect to the inner dimensions of the housing wall of the hollow housing. Following the application of the first plastic compound and still before the crosslinking of the resin, this housing cover is pressed onto said resin, at the same time any joints with respect to the housing wall being sealed off.
  • a second plastic compound can be introduced into the opening that leaves the pressure-sensitive area of the semiconductor chip free, before or else after the fitting of the housing cover.
  • the semiconductor chip has a hermetically sealed cavity under reference pressure.
  • This cavity can have a cylindrical shape which is surrounded by a rigid semiconductor wall of semiconductor chip material.
  • This cylindrical shape is sealed off on one side by a pressure-sensitive membrane of semiconductor chip material.
  • This membrane of semiconductor chip material can thus form the pressure-sensitive area of the semiconductor chip.
  • the membrane of semiconductor chip material can have at least one sputtered-on electrode a few nanometers thick, via which an electrical signal, which corresponds to the flexure of the membrane under pressure loading, can be generated.
  • the cavity in the semiconductor chip material is sealed off hermetically with respect to the housing base by means of a gas-tight adhesive layer between the housing base and the semiconductor wall. If, for example, a tire pressure is applied to the pressure sensor, the membrane of semiconductor chip material bulges inward, so that the distance between the electrode arranged on the membrane and an electrode fitted to the housing base decreases. In this way, for example, the resonant frequency of an RC tuned circuit or an LC tuned circuit may be shifted, so that the frequency shift represents a measure of the flexure of the membrane and therefore a measure of the external pressure with respect to the reference pressure in the cavity.
  • a pressure sensor of this type according to the invention has the advantage that, on account of the two different plastic covering compounds, it is protected against aggressive media and, secondly, on account of the resilience of the semiconductor chip material, it is able to measure large external pressure changes without being damaged and with a negligible energy or attenuation loss.
  • the flat conductors In order to be able to apply supply voltages and supply currents to the contact areas of the semiconductor chip and to be able to pick up pressure-specific electrical signals from the pressure sensor, the flat conductors have external sections projecting out of the housing wall of the hollow housing. These external sections of the flat conductors can be arranged at the level of an outer underside of the base or at the level of the inner upper side of the housing base. An arrangement at the level of the inner housing base ensures that the underside of the housing base consists entirely of hollow housing material, as a result of which the flat conductors are embedded in a better protected and better anchored manner in the housing wall of the hollow housing.
  • the anchoring of the flat conductors with their transition sections in the housing wall can be improved further if the flat conductors do not project rectilinearly through the housing wall but if the flat conductors additionally have a Z-shaped angled section within the housing wall.
  • the pressure sensor according to the invention can withstand external pressure loadings such as occur in vehicle tires and, furthermore, can withstand without damage extreme accelerations such as occur during the rotation of vehicle tires.
  • the pressure sensor according to the invention is therefore suitable to be arranged as a permanent pressure sensor in the rotating vehicle tire.
  • the pressure sensor can be used in motor vehicles at all locations which, firstly, are subjected to high mechanical loadings and, secondly, are subjected to environmental influences, in particular aggressive media.
  • a pressure sensor can be produced by the following process steps.
  • a hollow housing is provided, specifically with an incorporated semiconductor chip which has a pressure-sensitive area and pressure-insensitive areas.
  • the hollow housing also has an opening which leaves at least the pressure-sensitive area free.
  • the housing and the semiconductor chip are already connected to one another via corresponding electric connecting elements in such a way that external sections of flat conductors have access to the electrodes of the semiconductor chip.
  • the hollow housing with semiconductor chip and connecting elements is then covered by a first plastic compound, while sealing the surfaces of housing inner walls and also surfaces of the pressure-insensitive areas of the semiconductor chip.
  • a second plastic compound is then applied to the pressure-sensitive area of the semiconductor chip, while sealing the interfaces between the first and second plastic compound in a gas-tight manner.
  • the first plastic compound differs from the second plastic compound in that, given identical external pressure conditions, lower deformations occur in the first plastic compound.
  • This process has the advantage that a pressure sensor is formed which has a covering made of two different plastic components, which differ fundamentally in their deformation behavior. Thus, deformations which occur in the pressure-sensitive area are not transmitted to the deformation-sensitive connecting elements.
  • Both the application of a first plastic compound and the application of a second plastic compound can be carried out using a simple dispensing technique.
  • first plastic compound first of all which can be made of a deformation-resistant thermosetting plastic
  • resiliently deformable second plastic compound to the pressure-sensitive areas of the semiconductor chip by means of dispensing, spinning on or varnishing on.
  • a large number of semiconductor chips with pressure-sensitive areas, such as are required for incorporation in a hollow housing, can be produced simultaneously and in parallel in the following manner.
  • semiconductor chip positions are defined on a semiconductor wafer. Then, a plurality of cavities are etched in at the semiconductor chip positions from the rear side of the semiconductor wafer. This wet-chemical etching by means of alkalis or acids or dry etching by means of a reactive plasma is continued until a translucent and/or pressure-sensitive membrane remains on the upper side of the semiconductor chip, in the semiconductor chip positions.
  • Electrodes of this type can be structured as a capacitor plate or as a measuring strip or as a filter pattern as an electrode of a travelling wave amplifier.
  • Contact areas which are connected to the electrodes via conductor tracks, are then applied to the pressure-insensitive upper side of the semiconductor wafer, that is to say in the areas in which there is no membrane.
  • passive and active semiconductor components relating to integrated circuits and evaluation structures can already be introduced into the pressure-insensitive areas of the semiconductor chip.
  • the semiconductor wafer is divided up into individual semiconductor chips having a cavity and a pressure-sensitive membrane and also contact areas.
  • One advantage of this process is that, for a plurality of semiconductor chips, both the cavities for a reference pressure and also sensor electrodes, contact areas and control and evaluation circuits are produced in parallel and simultaneously on a semiconductor wafer.
  • hollow housings with a housing base can be pressure die-cast or pressure-pressed on a flat lead frame.
  • Pressure die-casting is used when hollow plastic housings are to be produced, while pressure pressing with subsequent sintering is preferred for hollow ceramic housings.
  • a flat lead frame of this type can have a plurality of hollow housings one behind an another on a flat conductor strip and in rows beside one another at appropriate component positions.
  • the semiconductor chips can then be bonded with their cavities onto the housing bases of the hollow housings, sealing off the cavities in a gas-fight manner.
  • the flat lead frame having a plurality of hollow housings, which now have the semiconductor chips can be put into a bonding machine, in which internal sections of the flat conductors are connected electrically to contact areas of the semiconductor chip via bonding wires.
  • a process of this type is also suitable for the mass production of pressure sensors, so that cost-effective production becomes possible.
  • the first plastic compound is already applied, in which the connecting elements are embedded.
  • the uncovered pressure-sensitive area of the semiconductor chip is then covered by the second plastic compound, as mentioned above.
  • a further housing cover can be fitted to the hollow housing, leaving the pressure-sensitive area free and leaving the second plastic compound free.
  • a pressure sensor according to the invention with an MEM structure has a pressure-transmitting layer in the form of a gel over the MEM structure, and this pressure-transmitting layer of gel can be reduced to a surface minimum without exerting stresses on the remaining part of the semiconductor chip, if the semiconductor chip is covered in a low-stress manner by means of two different processes and two different materials.
  • MEM structure micro electro mechanical structure
  • a pressure sensor of this type with MEM structure exhibits the following advantages in the functional tests:
  • the invention comprises a combination of globtop around the semiconductor chip and also on the pressure-insensitive surface of the semiconductor chip, and a pressure-transmitting silicone gel in the smallest possible amount on the pressure-sensitive area of the semiconductor chip.
  • FIG. 1 shows a schematic cross section through a pressure sensor of a first embodiment of the invention
  • FIG. 2 shows a plan view of the pressure sensor with semiconductor chip according to FIG. 1, leaving out plastic coverings of the pressure sensor
  • FIG. 3 shows a schematic cross section through a pressure sensor of a second embodiment of the invention.
  • FIG. 1 shows a schematic cross section through a pressure sensor 1 according to a first embodiment of the invention.
  • the pressure sensor 1 has substantially two components, namely a hollow housing 8 and a semiconductor chip 2 which is arranged in the hollow housing 8 .
  • the hollow housing 8 is trough-like and has an opening 18 on the upper side to an interior 12 which is closed off at the bottom by a housing base 9 .
  • the hollow housing 8 additionally has transition sections 32 of flat conductors 30 embedded in housing walls 10 . These flat conductors 30 project with external flat conductor sections 33 laterally out of the housing wall 10 .
  • the flat conductors 30 have internal sections 31 projecting into the interior 12 .
  • the internal sections 31 are arranged on a ledge 19 on the housing wall 10 and form a contact terminal area 14 which is suitable for a connecting element 14 in the form of a bonding wire 13 to be bonded on.
  • the contact terminal areas 11 of the internal sections 31 are provided with a coating which can be bonded.
  • the hollow housing 8 is pressure die-cast from a plastic housing compound in appropriate sensor positions on a flat lead frame.
  • the transition sections 32 of the flat conductors 30 are enclosed in the housing wall 10 and anchored in the latter.
  • the transition section 32 of the flat conductor is angled over in a Z shape.
  • the transition area 32 has a layer which improves adhesion for the plastic housing compound.
  • the semiconductor chip 2 is arranged on the substantially flat housing base 9 .
  • the semiconductor chip 2 has a cavity 3 which is etched into the semiconductor material from the rear side of the semiconductor chip 2 . This etching is carried out in such a way that a transparent and pressure-sensitive membrane 22 remains in the area of the upper side of the semiconductor chip 2 .
  • This membrane 22 is coupled to an electrode 5 of a few nanometers thickness in order to produce a capacitive electromechanical coupling.
  • the cavity 3 has a dimensionally stable, pressure-insensitive semiconductor wall 21 which bears contact areas 6 on its upper side.
  • the semiconductor wall 21 is fixed with its underside on the housing base 9 with a hermetically sealing, gas-tight adhesive layer 20 .
  • a further flat conductor is arranged on the housing base 9 as an electrode 23 .
  • electric connecting elements 14 in the form of bonding wires 13 lead to the internal sections 31 of the flat conductors 30 .
  • both supply voltages can be fed in and signal voltages can be tapped off.
  • the interior 12 is filled with a first plastic compound 15 , which simultaneously embeds the bonding wires 13 and seals off the interspace between the housing walls 26 and the semiconductor surfaces 25 in the pressure-insensitive area of the semiconductor chip 2 in a gas-tight manner.
  • a second plastic compound 16 of silicone based on fluoropolysiloxane forms a complete covering for the pressure-sensitive area 4 of the semiconductor chip 2 .
  • the second plastic compound 16 seals off the boundary layer 27 to the first plastic compound 15 in a gas-tight manner. While the first plastic compound 15 is relatively rigid and dimensionally stable, the second plastic compound 16 follows the movements of the membrane 22 in the pressure-sensitive area 4 of the semiconductor chip 2 . Therefore, firstly the semiconductor chip 2 , in particular in the pressure-sensitive area 4 , is protected against aggressive solvents and acids. Secondly, a reliable measured result from the pressure sensor 1 is provided as a result of the resilient properties of the second plastic layer 16 .
  • the temperature resistance of this silicone gel based on fluoropolysiloxane lies between ⁇ 55° C. and +175° C. Furthermore, this silicone gel has the advantage that it is resistant to fuel and solvents.
  • the first embodiment of the invention is therefore particularly suitable for continuous checking and measurement of the tire pressure of vehicles. Furthermore, a high acceleration resistance could be determined for this pressure sensor 1 , without the serviceability of the pressure sensor 1 being impaired.
  • a pressure sensor 1 of this type In order to produce a pressure sensor 1 of this type, first of all a plurality of semiconductor chips 2 is produced on a silicone wafer, the silicone wafer being etched at semiconductor chip positions from its rear side until cavities 3 are produced and until a transparent, thin silicone membrane 4 remains from the upper side. The electrodes 5 and the contact areas 6 are also further applied to the silicone wafer. In addition, evaluation circuits are arranged in a pressure-resistant area of the semiconductor material of the silicone wafer before the silicone wafer is divided up into individual semiconductor chips 2 .
  • a flat lead frame not shown here, is provided, to be specific having three sensor positions in a row and a plurality of sensor positions in appropriate columns.
  • Arranged in each of the sensor positions are flat conductors angled over in a Z shape, over which a plastic housing is molded in their transition section 32 .
  • both the ledge 19 and the flat housing base 9 are constructed to hold contact terminal areas 11 of the internal sections 31 of the flat conductors 30 .
  • the rear side of the semiconductor chip 2 is adhesively bonded in a gas-tight manner to the housing base 9 , so that a hermetically sealed cavity 3 is produced when the flat lead frame is fitted with semiconductor chips 2 .
  • This hermetically sealed cavity 3 is then at a reference pressure.
  • connecting elements 14 are produced between the contact terminal areas 11 and the contact areas 6 , by bonding wires 14 from the contact area 6 being bonded to the contact terminal area 11 .
  • a first plastic compound 15 is then applied in a globtop process, leaving the membrane 22 free, said compound consisting of a thermosetting plastic and being cured at a temperature of 150° C. for four hours.
  • the second plastic can then be applied in the form of a silicone gel which, as described above, is based on a fluoropolysilane and in this exemplary embodiment is cured for 30 minutes at 150° C. While the first plastic compound 15 exhibits a high dissipation factor of about 6 ⁇ 10 ⁇ 3 , the dissipation factor of the resilient silicone gel of the second plastic compound 16 is of the order of magnitude of 10 ⁇ 4 .
  • FIG. 2 shows a plan view of the pressure sensor 1 with semiconductor chip 2 according to FIG. 1, leaving out the plastic coverings of the first and second plastic layer 15 and 16 .
  • Components with the same functions as in FIG. 1 are identified by the same designations and not specifically explained. The same also applies to FIG. 3, which will be explained below.
  • FIG. 2 shows the housing 8 , which is surrounded by a housing outer edge 28 and which has housing inner walls 26 , a ledge 19 reducing the size of the interior 12 to hold the semiconductor chip 2 .
  • Internal sections 31 of the flat conductors 33 can be seen on the ledge 19 . These internal sections 31 serve at the same time as contact terminal areas 11 for connecting elements 14 which, in this embodiment, consist of bonding wires 13 .
  • These connecting elements 14 connect the contact terminal areas 11 to contact areas 6 on the upper side 35 of the semiconductor chip 2 .
  • the upper side 35 of the semiconductor chip 2 has a pressure-insensitive area 7 and a pressure-sensitive area 4 , a dashed line 34 indicating the boundary between the two areas.
  • the cylindrical cavity 3 arranged under the pressure-sensitive area 4 is sealed with respect to the upper side 3 by a membrane 22 of semiconductor material.
  • This membrane 22 is covered by an electrode 5 , which is connected to one of the contact areas 6 via a conductor track, not shown.
  • the structure illustrated in FIG. 2 becomes visible as soon as the hollow housing 8 is fitted with the semiconductor chips 2 and the contact areas 6 of the semiconductor chip 2 are connected to the contact terminal areas 11 on the housing ledge 19 via bonding wires 13 . Then, in order to complete the pressure sensor 1 , it is merely necessary for the first plastic compound 15 shown in FIG.
  • the contact areas 6 , the contact terminal areas 11 and the internal sections 31 of the flat conductors and the connecting elements 14 are covered by the first plastic compound 15 , leaving the pressure-sensitive area 4 free.
  • the second plastic compound 16 is then applied to the pressure-sensitive area 4 and to parts of the first plastic compound 16 .
  • FIG. 3 shows a schematic cross section through a pressure sensor 100 of a second embodiment of the invention.
  • the pressure sensor 100 according to FIG. 3 differs from the pressure sensor 1 according to FIG. 1 in that the first plastic compound 15 is covered by a disk-like housing cover 17 , while the second plastic compound 16 remains freely accessible via an opening 18 in the plastic housing cover 17 .
  • Two possibilities result for the fitting of the housing cover 17 .
  • the cover 17 was introduced into the soft plastic compound 15 before the application of the second plastic compound 16 and before the curing of the first plastic compound 15 , so that direct adhesion occurs between housing cover 17 and first plastic compound 15 . After that, the component without the second plastic compound 16 was then first heated to 150° C.
  • the second plastic compound 16 was then applied to the pressure-sensitive membrane 22 through the opening 18 in the housing cover 17 .
  • the opening 18 in the housing cover 17 can also be filled with the second plastic compound 16 , which is shown by the dashed hatching 36 in FIG. 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

The invention relates to a pressure sensor with an MEM structure (micro electro mechanical structure), which has a hollow housing (8) in which a semiconductor chip (2) with a pressure-sensitive area (4) is arranged. In its interior (12) and with parts of the semiconductor chip (2), the housing is covered by a first plastic compound (15), which has a lower level of deformation than a second plastic compound (16), which partly covers the pressure-sensitive area (4) of the semiconductor chip (2).

Description

  • The invention relates to a pressure sensor which is subjected to an external pressure, having a semiconductor chip which has a pressure-sensitive area, and a process for producing such a pressure sensor. [0001]
  • Such pressure sensors constructed on the basis of semiconductor materials and using what is known as the MEM technique or microelectromechanical technique are used for automotive applications, such as motor vehicle tires, and exhibit a high failure rate with increased requirements in relation to increased attack of aggressive media and increased accelerative loadings. [0002]
  • It is an object of the invention to provide a pressure sensor which withstands the increased requirements in relation to environmental influences, to accelerative and external pressure loadings and attacks of aggressive media. [0003]
  • This object is achieved by the subject of the independent claims. Advantageous developments of the invention emerge from the dependent claims. [0004]
  • According to the invention, the pressure sensor has a semiconductor chip having a pressure-sensitive area which is subjected to an external pressure, and contact areas which are arranged on a pressure-insensitive area of the semiconductor chip. The semiconductor chip is arranged in a hollow housing which has a housing base on which the semiconductor chip is adhesively bonded. The hollow housing additionally has a housing wall which surrounds the semiconductor chip and through which flat conductors project with an internal section into a housing interior. External sections of the flat conductors project out of the housing wall. Arranged between the contact areas of the semiconductor chip and the internal sections of the flat conductors are connecting elements which connect predetermined contact areas electrically to corresponding internal sections. [0005]
  • The connecting elements, the internal sections and the contact areas within the surrounding housing wall are covered by a first plastic compound. The pressure-sensitive area of the semiconductor chip is at least partly covered by a second plastic compound. Because of its material characteristics, under the same external pressure loading, the first plastic compound is subjected to lower deformations than the second plastic compound. [0006]
  • This pressure sensor according to the invention has the advantage that, as a result of extensive covering of the pressure-insensitive areas within the housing of a first plastic compound with a negligible deformation, the deformation loadings at increased external pressure are reduced, in particular for deformation-sensitive components such as the connecting elements. As a result of limiting the highly deforming second plastic compound to a pressure-sensitive area of the sensor, the remaining areas and components within the housing are protected against distortions and displacements as a result of tensile, compressive and shear stresses during deformation of the pressure-sensitive area. [0007]
  • The pressure sensor according to the invention is able to satisfy the increased requirements on temperature-cycle resistance and pressure resistance and erosion resistance with respect to aggressive media without failing. A pressure sensor protected in this way by two different plastic components can advantageously be used for continuous operational monitoring of the tire pressure in rotating vehicle tires up to a tire pressure of 100 MPa without it being possible to determine large temperature hysteresis values in the operating temperature range between −50° C. and +150° C. The scatter in the temperature response is likewise reduced as compared with pressure sensors merely having a silicone gel covering on all sides. [0008]
  • The first plastic compound preferably has a thermosetting plastic made of an epoxy resin or a silicone resin. These resins, with appropriate fillers, can exhibit a coefficient of thermal expansion which is matched to the coefficient of expansion of the semiconductor material and/or the material of the hollow housing. The hollow housing has either a ceramic substance or a plastic material. In the ceramic substance or the plastic material, a transition layer of a flat conductor is embedded in such a way that an internal section of the flat conductor projects into the interior of the hollow housing and an outer section of the flat conductor projects outward from the housing wall. [0009]
  • The flat conductor is anchored in the hollow housing by the transition section. In order to support the internal section, the hollow housing can have a ledge on the housing inner wall, to which the internal section of the flat conductor is fitted. This ensures secure bonding of a bonding wire between a contact connection area of the internal section of the flat conductor and a bonding wire which is intended to connect the flat conductor to contact areas on the pressure-insensitive areas of the semiconductor chip. [0010]
  • In the event of thermal loading, in particular the flat connections between bonding wire and contact connecting area and bonding wire and contact area are endangered if, in these intrinsically pressure-insensitive areas of the pressure sensor, highly deformable plastic protective layers made of a resilient elastomer are applied. It is therefore advantageous to protect these areas not serving as sensors against thermal stresses and severe deformations of a covering plastic compound such as the second plastic compound. Furthermore, the first plastic compound adheres both to the pressure-insensitive areas of the semiconductor chip and to the inner walls of the hollow housing, so that the interfaces between the first plastic compound and semiconductor chip and also between the first plastic compound and the hollow housing are protected against aggressive media. [0011]
  • The second plastic compound preferably has a plastic gel of a resilient elastomer based on silicone. In this case, the high resilience permits protection of a membrane of semiconductor material arranged underneath in the pressure-sensitive area of the semiconductor chip without hysteresis effects building up. Such resilient elastomers are based on dimethyl polysiloxane or phenyl polysiloxane and can be used for operating temperatures in the range from −55° C. to +200° C. or −120° C. to +200° C., depending on the base material. A further preferred resilient elastomer is based on fluorosiloxane and can be used at operating temperatures between −55° C. and +175° C. Fluorosiloxanes of this type can be used in particular for the vehicle sector, since they are resistant with respect to fuels and solvents. [0012]
  • For resilient elastomers of this type, based on silicone, the energy loss factor at a predefined pressure cycle frequency, of the order of magnitude of minus four powers of ten, is extremely low, so that such a second plastic compound follows the deformations of the pressure-sensitive area of the semiconductor chip with negligible energy loss. Furthermore, elastomers based on silicone have the advantage that they can form intensive adhesion to silicone resins. The risk of microcracks in the interface between the first plastic compound an the second plastic compound can therefore be reduced if a silicone resin is used as the first plastic compound and an elastomer based on silicone is used as the second plastic compound. [0013]
  • The hollow housing can have a housing cover with an opening which leaves the pressure-sensitive area and the second plastic compound free. A housing cover of this type can advantageously be matched to the inner dimensions of the housing wall, by its external dimensions permitting a clearance fit with respect to the inner dimensions of the housing wall of the hollow housing. Following the application of the first plastic compound and still before the crosslinking of the resin, this housing cover is pressed onto said resin, at the same time any joints with respect to the housing wall being sealed off. A second plastic compound can be introduced into the opening that leaves the pressure-sensitive area of the semiconductor chip free, before or else after the fitting of the housing cover. [0014]
  • In order to construct the semiconductor chip as a pressure sensor, the semiconductor chip has a hermetically sealed cavity under reference pressure. This cavity can have a cylindrical shape which is surrounded by a rigid semiconductor wall of semiconductor chip material. This cylindrical shape is sealed off on one side by a pressure-sensitive membrane of semiconductor chip material. This membrane of semiconductor chip material can thus form the pressure-sensitive area of the semiconductor chip. For this purpose, the membrane of semiconductor chip material can have at least one sputtered-on electrode a few nanometers thick, via which an electrical signal, which corresponds to the flexure of the membrane under pressure loading, can be generated. [0015]
  • The cavity in the semiconductor chip material is sealed off hermetically with respect to the housing base by means of a gas-tight adhesive layer between the housing base and the semiconductor wall. If, for example, a tire pressure is applied to the pressure sensor, the membrane of semiconductor chip material bulges inward, so that the distance between the electrode arranged on the membrane and an electrode fitted to the housing base decreases. In this way, for example, the resonant frequency of an RC tuned circuit or an LC tuned circuit may be shifted, so that the frequency shift represents a measure of the flexure of the membrane and therefore a measure of the external pressure with respect to the reference pressure in the cavity. A pressure sensor of this type according to the invention has the advantage that, on account of the two different plastic covering compounds, it is protected against aggressive media and, secondly, on account of the resilience of the semiconductor chip material, it is able to measure large external pressure changes without being damaged and with a negligible energy or attenuation loss. [0016]
  • In order to be able to apply supply voltages and supply currents to the contact areas of the semiconductor chip and to be able to pick up pressure-specific electrical signals from the pressure sensor, the flat conductors have external sections projecting out of the housing wall of the hollow housing. These external sections of the flat conductors can be arranged at the level of an outer underside of the base or at the level of the inner upper side of the housing base. An arrangement at the level of the inner housing base ensures that the underside of the housing base consists entirely of hollow housing material, as a result of which the flat conductors are embedded in a better protected and better anchored manner in the housing wall of the hollow housing. The anchoring of the flat conductors with their transition sections in the housing wall can be improved further if the flat conductors do not project rectilinearly through the housing wall but if the flat conductors additionally have a Z-shaped angled section within the housing wall. [0017]
  • The pressure sensor according to the invention can withstand external pressure loadings such as occur in vehicle tires and, furthermore, can withstand without damage extreme accelerations such as occur during the rotation of vehicle tires. The pressure sensor according to the invention is therefore suitable to be arranged as a permanent pressure sensor in the rotating vehicle tire. Furthermore, the pressure sensor can be used in motor vehicles at all locations which, firstly, are subjected to high mechanical loadings and, secondly, are subjected to environmental influences, in particular aggressive media. [0018]
  • A pressure sensor can be produced by the following process steps. [0019]
  • First of all, a hollow housing is provided, specifically with an incorporated semiconductor chip which has a pressure-sensitive area and pressure-insensitive areas. The hollow housing also has an opening which leaves at least the pressure-sensitive area free. The housing and the semiconductor chip are already connected to one another via corresponding electric connecting elements in such a way that external sections of flat conductors have access to the electrodes of the semiconductor chip. The hollow housing with semiconductor chip and connecting elements is then covered by a first plastic compound, while sealing the surfaces of housing inner walls and also surfaces of the pressure-insensitive areas of the semiconductor chip. During this application of a first plastic compound, the pressure-sensitive area of the semiconductor chip is left substantially free. A second plastic compound is then applied to the pressure-sensitive area of the semiconductor chip, while sealing the interfaces between the first and second plastic compound in a gas-tight manner. [0020]
  • Owning to its material characteristics and owing to its geometrical construction, the first plastic compound differs from the second plastic compound in that, given identical external pressure conditions, lower deformations occur in the first plastic compound. This process has the advantage that a pressure sensor is formed which has a covering made of two different plastic components, which differ fundamentally in their deformation behavior. Thus, deformations which occur in the pressure-sensitive area are not transmitted to the deformation-sensitive connecting elements. [0021]
  • Both the application of a first plastic compound and the application of a second plastic compound can be carried out using a simple dispensing technique. On the other hand, it is possible by means of molding to apply the first plastic compound first of all, which can be made of a deformation-resistant thermosetting plastic, and then to apply the resiliently deformable second plastic compound to the pressure-sensitive areas of the semiconductor chip by means of dispensing, spinning on or varnishing on. These techniques can also be carried out in an extremely inexpensive and cost-effective manner, so that the process costs remain low. [0022]
  • A large number of semiconductor chips with pressure-sensitive areas, such as are required for incorporation in a hollow housing, can be produced simultaneously and in parallel in the following manner. [0023]
  • First of all, semiconductor chip positions are defined on a semiconductor wafer. Then, a plurality of cavities are etched in at the semiconductor chip positions from the rear side of the semiconductor wafer. This wet-chemical etching by means of alkalis or acids or dry etching by means of a reactive plasma is continued until a translucent and/or pressure-sensitive membrane remains on the upper side of the semiconductor chip, in the semiconductor chip positions. [0024]
  • Then, electrodes can be applied selectively to the pressure-sensitive membranes on the semiconductor wafer, that is to say on its upper side. Electrodes of this type can be structured as a capacitor plate or as a measuring strip or as a filter pattern as an electrode of a travelling wave amplifier. Contact areas, which are connected to the electrodes via conductor tracks, are then applied to the pressure-insensitive upper side of the semiconductor wafer, that is to say in the areas in which there is no membrane. In addition, passive and active semiconductor components relating to integrated circuits and evaluation structures can already be introduced into the pressure-insensitive areas of the semiconductor chip. Finally, the semiconductor wafer is divided up into individual semiconductor chips having a cavity and a pressure-sensitive membrane and also contact areas. [0025]
  • One advantage of this process is that, for a plurality of semiconductor chips, both the cavities for a reference pressure and also sensor electrodes, contact areas and control and evaluation circuits are produced in parallel and simultaneously on a semiconductor wafer. [0026]
  • In parallel with the production of suitable semiconductor chips, hollow housings with a housing base, including the embedding of transition sections of flat conductors in housing walls, can be pressure die-cast or pressure-pressed on a flat lead frame. Pressure die-casting is used when hollow plastic housings are to be produced, while pressure pressing with subsequent sintering is preferred for hollow ceramic housings. A flat lead frame of this type can have a plurality of hollow housings one behind an another on a flat conductor strip and in rows beside one another at appropriate component positions. [0027]
  • In an automatic fitting machine, the semiconductor chips can then be bonded with their cavities onto the housing bases of the hollow housings, sealing off the cavities in a gas-fight manner. After fitting, the flat lead frame having a plurality of hollow housings, which now have the semiconductor chips, can be put into a bonding machine, in which internal sections of the flat conductors are connected electrically to contact areas of the semiconductor chip via bonding wires. A process of this type is also suitable for the mass production of pressure sensors, so that cost-effective production becomes possible. [0028]
  • Finally, as mentioned above, the first plastic compound is already applied, in which the connecting elements are embedded. The uncovered pressure-sensitive area of the semiconductor chip is then covered by the second plastic compound, as mentioned above. Finally, a further housing cover can be fitted to the hollow housing, leaving the pressure-sensitive area free and leaving the second plastic compound free. [0029]
  • In summary, it should be recorded that a pressure sensor according to the invention with an MEM structure (micro electro mechanical structure) has a pressure-transmitting layer in the form of a gel over the MEM structure, and this pressure-transmitting layer of gel can be reduced to a surface minimum without exerting stresses on the remaining part of the semiconductor chip, if the semiconductor chip is covered in a low-stress manner by means of two different processes and two different materials. For this purpose, in a trough-like body of a hollow housing, contact is made with the semiconductor chip and, by means of these two different processes, two different materials are applied. A pressure sensor of this type with MEM structure exhibits the following advantages in the functional tests: [0030]
  • low-stress encapsulation with improved accuracy of the MEM output, [0031]
  • improved adhesion between the encapsulation materials used, so that for the first time a required media compatibility for a tire pressure sensor is achieved, [0032]
  • for the first time, fulfilment of the required mechanical acceleration tests for such a tire pressure sensor, [0033]
  • optimization of the plastic compounds to the MEM structure of the semiconductor chip. [0034]
  • In essence, the invention comprises a combination of globtop around the semiconductor chip and also on the pressure-insensitive surface of the semiconductor chip, and a pressure-transmitting silicone gel in the smallest possible amount on the pressure-sensitive area of the semiconductor chip. [0035]
  • The invention will now be explained in more detail by using the appended figures, in which: [0036]
  • FIG. 1 shows a schematic cross section through a pressure sensor of a first embodiment of the invention, [0037]
  • FIG. 2 shows a plan view of the pressure sensor with semiconductor chip according to FIG. 1, leaving out plastic coverings of the pressure sensor, [0038]
  • FIG. 3 shows a schematic cross section through a pressure sensor of a second embodiment of the invention.[0039]
  • FIG. 1 shows a schematic cross section through a [0040] pressure sensor 1 according to a first embodiment of the invention. The pressure sensor 1 has substantially two components, namely a hollow housing 8 and a semiconductor chip 2 which is arranged in the hollow housing 8. The hollow housing 8 is trough-like and has an opening 18 on the upper side to an interior 12 which is closed off at the bottom by a housing base 9. The hollow housing 8 additionally has transition sections 32 of flat conductors 30 embedded in housing walls 10. These flat conductors 30 project with external flat conductor sections 33 laterally out of the housing wall 10. The flat conductors 30 have internal sections 31 projecting into the interior 12. The internal sections 31 are arranged on a ledge 19 on the housing wall 10 and form a contact terminal area 14 which is suitable for a connecting element 14 in the form of a bonding wire 13 to be bonded on. For this purpose, the contact terminal areas 11 of the internal sections 31 are provided with a coating which can be bonded.
  • In this first embodiment of the invention, the hollow housing [0041] 8 is pressure die-cast from a plastic housing compound in appropriate sensor positions on a flat lead frame. During the pressure die-casting, at the same time the transition sections 32 of the flat conductors 30 are enclosed in the housing wall 10 and anchored in the latter. For the purpose of improved anchoring, the transition section 32 of the flat conductor is angled over in a Z shape. In addition, the transition area 32 has a layer which improves adhesion for the plastic housing compound.
  • The [0042] semiconductor chip 2 is arranged on the substantially flat housing base 9. In order to form the pressure-sensitive area 4, the semiconductor chip 2 has a cavity 3 which is etched into the semiconductor material from the rear side of the semiconductor chip 2. This etching is carried out in such a way that a transparent and pressure-sensitive membrane 22 remains in the area of the upper side of the semiconductor chip 2. This membrane 22 is coupled to an electrode 5 of a few nanometers thickness in order to produce a capacitive electromechanical coupling. The cavity 3 has a dimensionally stable, pressure-insensitive semiconductor wall 21 which bears contact areas 6 on its upper side. The semiconductor wall 21 is fixed with its underside on the housing base 9 with a hermetically sealing, gas-tight adhesive layer 20.
  • In this first embodiment of the invention, a further flat conductor is arranged on the [0043] housing base 9 as an electrode 23. From the contact areas 6 on the pressure-insensitive semiconductor wall 21, electric connecting elements 14 in the form of bonding wires 13 lead to the internal sections 31 of the flat conductors 30. Via these bonding wires and via the electrode 23 on the housing base 9, both supply voltages can be fed in and signal voltages can be tapped off. The interior 12 is filled with a first plastic compound 15, which simultaneously embeds the bonding wires 13 and seals off the interspace between the housing walls 26 and the semiconductor surfaces 25 in the pressure-insensitive area of the semiconductor chip 2 in a gas-tight manner.
  • A [0044] second plastic compound 16 of silicone based on fluoropolysiloxane forms a complete covering for the pressure-sensitive area 4 of the semiconductor chip 2. At the same time, the second plastic compound 16 seals off the boundary layer 27 to the first plastic compound 15 in a gas-tight manner. While the first plastic compound 15 is relatively rigid and dimensionally stable, the second plastic compound 16 follows the movements of the membrane 22 in the pressure-sensitive area 4 of the semiconductor chip 2. Therefore, firstly the semiconductor chip 2, in particular in the pressure-sensitive area 4, is protected against aggressive solvents and acids. Secondly, a reliable measured result from the pressure sensor 1 is provided as a result of the resilient properties of the second plastic layer 16. Owing to the better deformability with respect to the first plastic layer 15, transmission of pressure with a low energy loss is achieved. By means of the covering with two different plastic compounds 15 and 16, it is further possible for a pressure of up to 100 MPa to be measured without microcracks occurring in the interfaces between the plastic compounds 15 and 16 and the material of the hollow housing and without the temperature response of the measurement exhibiting hysteresis from −50° C. to +150° C.
  • The temperature resistance of this silicone gel based on fluoropolysiloxane lies between −55° C. and +175° C. Furthermore, this silicone gel has the advantage that it is resistant to fuel and solvents. The first embodiment of the invention is therefore particularly suitable for continuous checking and measurement of the tire pressure of vehicles. Furthermore, a high acceleration resistance could be determined for this [0045] pressure sensor 1, without the serviceability of the pressure sensor 1 being impaired.
  • In order to produce a [0046] pressure sensor 1 of this type, first of all a plurality of semiconductor chips 2 is produced on a silicone wafer, the silicone wafer being etched at semiconductor chip positions from its rear side until cavities 3 are produced and until a transparent, thin silicone membrane 4 remains from the upper side. The electrodes 5 and the contact areas 6 are also further applied to the silicone wafer. In addition, evaluation circuits are arranged in a pressure-resistant area of the semiconductor material of the silicone wafer before the silicone wafer is divided up into individual semiconductor chips 2.
  • In parallel with this, for this first embodiment according to FIG. 1, a flat lead frame, not shown here, is provided, to be specific having three sensor positions in a row and a plurality of sensor positions in appropriate columns. Arranged in each of the sensor positions are flat conductors angled over in a Z shape, over which a plastic housing is molded in their [0047] transition section 32. In this case, both the ledge 19 and the flat housing base 9 are constructed to hold contact terminal areas 11 of the internal sections 31 of the flat conductors 30.
  • The rear side of the [0048] semiconductor chip 2 is adhesively bonded in a gas-tight manner to the housing base 9, so that a hermetically sealed cavity 3 is produced when the flat lead frame is fitted with semiconductor chips 2. This hermetically sealed cavity 3 is then at a reference pressure. After the hollow housings 8 have been fitted in every pressure-sensor position of the flat lead frame, connecting elements 14 are produced between the contact terminal areas 11 and the contact areas 6, by bonding wires 14 from the contact area 6 being bonded to the contact terminal area 11. A first plastic compound 15 is then applied in a globtop process, leaving the membrane 22 free, said compound consisting of a thermosetting plastic and being cured at a temperature of 150° C. for four hours. The second plastic can then be applied in the form of a silicone gel which, as described above, is based on a fluoropolysilane and in this exemplary embodiment is cured for 30 minutes at 150° C. While the first plastic compound 15 exhibits a high dissipation factor of about 6×10−3, the dissipation factor of the resilient silicone gel of the second plastic compound 16 is of the order of magnitude of 10−4.
  • FIG. 2 shows a plan view of the [0049] pressure sensor 1 with semiconductor chip 2 according to FIG. 1, leaving out the plastic coverings of the first and second plastic layer 15 and 16. Components with the same functions as in FIG. 1 are identified by the same designations and not specifically explained. The same also applies to FIG. 3, which will be explained below.
  • FIG. 2 shows the housing [0050] 8, which is surrounded by a housing outer edge 28 and which has housing inner walls 26, a ledge 19 reducing the size of the interior 12 to hold the semiconductor chip 2. Internal sections 31 of the flat conductors 33 can be seen on the ledge 19. These internal sections 31 serve at the same time as contact terminal areas 11 for connecting elements 14 which, in this embodiment, consist of bonding wires 13. These connecting elements 14 connect the contact terminal areas 11 to contact areas 6 on the upper side 35 of the semiconductor chip 2. The upper side 35 of the semiconductor chip 2 has a pressure-insensitive area 7 and a pressure-sensitive area 4, a dashed line 34 indicating the boundary between the two areas.
  • The [0051] cylindrical cavity 3 arranged under the pressure-sensitive area 4 is sealed with respect to the upper side 3 by a membrane 22 of semiconductor material. This membrane 22 is covered by an electrode 5, which is connected to one of the contact areas 6 via a conductor track, not shown. The structure illustrated in FIG. 2 becomes visible as soon as the hollow housing 8 is fitted with the semiconductor chips 2 and the contact areas 6 of the semiconductor chip 2 are connected to the contact terminal areas 11 on the housing ledge 19 via bonding wires 13. Then, in order to complete the pressure sensor 1, it is merely necessary for the first plastic compound 15 shown in FIG. 1 to be applied to the pressure-insensitive areas while sealing off the interface between housing inner walls 26, housing base 9, semiconductor chip outer edge 29 and the pressure-sensitive area 7 of the upper side of the semiconductor chip 2. In the process, at the same time the contact areas 6, the contact terminal areas 11 and the internal sections 31 of the flat conductors and the connecting elements 14 are covered by the first plastic compound 15, leaving the pressure-sensitive area 4 free. The second plastic compound 16 is then applied to the pressure-sensitive area 4 and to parts of the first plastic compound 16.
  • FIG. 3 shows a schematic cross section through a [0052] pressure sensor 100 of a second embodiment of the invention. The pressure sensor 100 according to FIG. 3 differs from the pressure sensor 1 according to FIG. 1 in that the first plastic compound 15 is covered by a disk-like housing cover 17, while the second plastic compound 16 remains freely accessible via an opening 18 in the plastic housing cover 17. Two possibilities result for the fitting of the housing cover 17. In this second embodiment of the invention, the cover 17 was introduced into the soft plastic compound 15 before the application of the second plastic compound 16 and before the curing of the first plastic compound 15, so that direct adhesion occurs between housing cover 17 and first plastic compound 15. After that, the component without the second plastic compound 16 was then first heated to 150° C. for four hours in order to cure and to crosslink the epoxy resin of the first plastic compound 15. The second plastic compound 16 was then applied to the pressure-sensitive membrane 22 through the opening 18 in the housing cover 17. During the application of the second plastic compound, the opening 18 in the housing cover 17 can also be filled with the second plastic compound 16, which is shown by the dashed hatching 36 in FIG. 3.

Claims (14)

1. A pressure sensor which has the following features:
a semiconductor chip (2) having
a pressure-sensitive area (4) which is subjected to an external pressure, and
contact areas (6), which are arranged on a pressure-insensitive area (7) of the semiconductor chip (2),
a hollow housing (8) having
a housing base (9) on which the semiconductor chip (2) is arranged
a housing wall (10) which surrounds the semiconductor chip (2) and through which flat conductors (30) project with an internal section (31) into a housing interior (12) and out of which external sections (33) of the flat conductors (30) project,
connecting elements (14), which connect the contact areas (6) electrically to the internal sections (31),
the connecting elements (14), the internal sections (31) and the contact areas (6) within the surrounding housing wall (10) being covered by a first plastic compound (15), and the pressure-sensitive area (4) being at least partly covered by a second plastic compound (16), the first plastic compound (15) being subjected to lower deformations than the second plastic compound (16), under the same pressure loading.
2. The pressure sensor as claimed in claim 1, characterized in that
the second plastic compound (16) is a plastic gel of a resilient elastomer based on silicone.
3. The pressure sensor as claimed in claim 1 or claim 2, characterized in that
the first (15) plastic compound has a thermosetting plastic, preferably an epoxy resin or a silicone resin.
4. The pressure sensor as claimed in one of the preceding claims, characterized in that
the hollow housing (8) has a housing cover (17) with an opening (18) which leaves the pressure-sensitive area (4) and the second plastic compound (16) free.
5. The pressure sensor as claimed in one of the preceding claims, characterized in that
the semiconductor chip (2) has a hermetically sealed cavity (3) under reference pressure.
6. The pressure sensor as claimed in claim 5, characterized in that
the cavity (3) has a cylindrical shape which has a rigid semiconductor wall (21) of semiconductor chip material and which is sealed off from a pressure-sensitive membrane (22) of the semiconductor chip material, which forms the pressure-sensitive area (4) of the semiconductor chip (2), a gas-tight adhesive layer (20) being provided between the semiconductor wall (21) and housing base (9) as a hermetic closure for the cavity (3).
7. The pressure sensor as claimed in one of the preceding claims, characterized in that
the external sections (33) of the flat conductor (30) are arranged at the level of an outer underside (24) of the housing base (9) or at the level of the housing base (9).
8. A vehicle tire having a pressure sensor (1) as claimed in one of the preceding claims.
9. A motor vehicle having a pressure sensor (1) as claimed in one of claims 1 to 7.
10. A process for producing a pressure sensor (1), which has the following process steps:
providing a hollow housing (8) with an incorporated semiconductor chip (2) which has a pressure-sensitive area (4) and pressure-insensitive areas (7), the hollow housing (8) having an opening (18) which leaves at least the pressure-sensitive area (4) free,
applying a first plastic compound (5) to pressure-insensitive areas (7) within the hollow housing (8) while sealing interfaces (25) between the first plastic compound (15) and surfaces of housing inner walls (26), and also surfaces of the pressure-insensitive areas (7),
applying a second plastic compound (16) to the pressure-sensitive area (4) of the semiconductor chip (2) while sealing the interface (27) between the first and second plastic compound (15, 16) in a gas-tight manner, the first plastic compound (15) being subjected to lower deformations than the second plastic compound (16) under the same external pressure conditions, on account of material characteristics.
11. The process as claimed in claim 10, characterized in that first of all semiconductor chips (2) with pressure-sensitive areas (4) are produced, by cavities (3) being etched out at a plurality of semiconductor chip positions from the rear side of a semiconductor wafer, until translucent and/or pressure-sensitive membranes (22) from the upper side are reached at the semiconductor chip positions, and by the semiconductor wafer being divided into semiconductor chips (2) following the selective application of electrodes (5) to the pressure-sensitive membranes (22) and contact areas (6) to the pressure-insensitive areas (7) of the semiconductor wafer.
12. The process as claimed in claim 10 or claim 11, characterized in that
hollow housings (8) with a housing base (9) are pressure die-cast on a flat lead frame, embedding transition sections (32) of flat conductors (30) in housing walls (10).
13. The process as claimed in claim 12, characterized in that the semiconductor chips (2) are bonded with their cavities (3) onto the housing bases (9) of the hollow housings (8), sealing off the cavities (3) in a gas-tight manner, and then internal sections (31) of the flat conductors (30) are connected to the contact areas (6) of the semiconductor chip (2) via bonding wires (13).
14. The process as claimed in claim 13, characterized in that following the application of the first and the second plastic compound (15, 16), a housing cover (17) having an opening (18) is fitted to the hollow housing (8), leaving the pressure-sensitive area (4) free.
US10/301,096 2002-11-20 2002-11-20 Pressure sensor and process for producing the pressure sensor Expired - Lifetime US6732590B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/301,096 US6732590B1 (en) 2002-11-20 2002-11-20 Pressure sensor and process for producing the pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/301,096 US6732590B1 (en) 2002-11-20 2002-11-20 Pressure sensor and process for producing the pressure sensor

Publications (2)

Publication Number Publication Date
US6732590B1 US6732590B1 (en) 2004-05-11
US20040093954A1 true US20040093954A1 (en) 2004-05-20

Family

ID=32229889

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/301,096 Expired - Lifetime US6732590B1 (en) 2002-11-20 2002-11-20 Pressure sensor and process for producing the pressure sensor

Country Status (1)

Country Link
US (1) US6732590B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050098840A1 (en) * 2003-11-07 2005-05-12 Matthias Fuertsch Micromechanical structural element having a diaphragm and method for producing such a structural element
US20140110801A1 (en) * 2012-10-22 2014-04-24 Leo M. Higgins, III Packaging for semiconductor sensor devices and methods
US20140224037A1 (en) * 2011-09-22 2014-08-14 The University Of Tokyo Tactile Sensor And Multi-Axial Tactile Sensor
US20140260678A1 (en) * 2013-03-15 2014-09-18 President And Fellows Of Harvard College Tactile sensor
US20140352446A1 (en) * 2013-06-04 2014-12-04 Murata Manufacturing Co., Ltd. Pressure sensor structure
US20160130134A1 (en) * 2012-09-10 2016-05-12 Invensense, Inc. Pre-molded mems device package having conductive column coupled to leadframe and cover
CN105679716A (en) * 2014-12-08 2016-06-15 阿尔卑斯电气株式会社 Pressure detection device
DE102017123175A1 (en) * 2017-10-05 2019-04-11 Infineon Technologies Ag Semiconductor component and method for its production
WO2022070571A1 (en) * 2020-09-30 2022-04-07 株式会社村田製作所 Pressure sensor and method for manufacturing same
US11307110B2 (en) * 2018-12-21 2022-04-19 Robert Bosch Gmbh Pressure-sensor assembly having a carrier substrate

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915605B2 (en) * 2002-06-12 2007-05-16 株式会社デンソー Pressure sensor device
JP4031742B2 (en) * 2003-08-27 2008-01-09 太平洋工業株式会社 Casing structure of transmitter for tire condition monitoring device
US7956451B2 (en) * 2004-12-18 2011-06-07 Agere Systems Inc. Packages for encapsulated semiconductor devices and method of making same
US8116102B2 (en) * 2007-12-26 2012-02-14 Infineon Technologies Ag Integrated circuit device and method of producing
FR2942316B1 (en) * 2009-02-13 2011-07-22 Commissariat Energie Atomique CONTACT FORCE SENSOR
US8618620B2 (en) * 2010-07-13 2013-12-31 Infineon Technologies Ag Pressure sensor package systems and methods
FR3000205B1 (en) * 2012-12-21 2015-07-31 Michelin & Cie IMPROVED PRESSURE SENSOR WITH SEALED HOUSING
US9562820B2 (en) 2013-02-28 2017-02-07 Mks Instruments, Inc. Pressure sensor with real time health monitoring and compensation
JP6228790B2 (en) * 2013-09-18 2017-11-08 アルプス電気株式会社 Pressure detecting device and intake pressure measuring device using the same
DE102014105861B4 (en) * 2014-04-25 2015-11-05 Infineon Technologies Ag Sensor device and method for producing a sensor device
US10514314B2 (en) * 2014-06-17 2019-12-24 Saginomiya Seisakusho, Inc. Sensor unit having a sensor chip and pressure detection device containing same
DE102018114077B4 (en) * 2018-06-13 2020-02-13 Danfoss A/S Pressure sensor assembly
US10836223B1 (en) 2019-12-17 2020-11-17 The Goodyear Tire & Rubber Company Encapsulated embedded tire sensor unit
CN112124013A (en) * 2020-08-25 2020-12-25 江苏理工学院 Intelligent tire testing system and testing method based on piezoelectric power generation material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043027A (en) * 1963-12-16 1977-08-23 Texas Instruments Incorporated Process for encapsulating electronic components in plastic
US4467522A (en) * 1981-04-11 1984-08-28 Giuseppe Marchisi Process for manufacturing plastic containers incorporating a heat disperser for integrated circuits
US5224261A (en) * 1987-01-22 1993-07-06 Morrill Glasstek, Inc. Method of making a sub-miniature electrical component, particularly a fuse
US5365655A (en) * 1991-02-18 1994-11-22 Schlumberger Industries Method of making an electronic module for a memory card and an electronic module thus obtained
US6228181B1 (en) * 1997-10-02 2001-05-08 Shigeo Yamamoto Making epitaxial semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043027A (en) * 1963-12-16 1977-08-23 Texas Instruments Incorporated Process for encapsulating electronic components in plastic
US4467522A (en) * 1981-04-11 1984-08-28 Giuseppe Marchisi Process for manufacturing plastic containers incorporating a heat disperser for integrated circuits
US5224261A (en) * 1987-01-22 1993-07-06 Morrill Glasstek, Inc. Method of making a sub-miniature electrical component, particularly a fuse
US5365655A (en) * 1991-02-18 1994-11-22 Schlumberger Industries Method of making an electronic module for a memory card and an electronic module thus obtained
US6228181B1 (en) * 1997-10-02 2001-05-08 Shigeo Yamamoto Making epitaxial semiconductor device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148077B2 (en) * 2003-11-07 2006-12-12 Robert Bosch Gmbh Micromechanical structural element having a diaphragm and method for producing such a structural element
US20050098840A1 (en) * 2003-11-07 2005-05-12 Matthias Fuertsch Micromechanical structural element having a diaphragm and method for producing such a structural element
US20140224037A1 (en) * 2011-09-22 2014-08-14 The University Of Tokyo Tactile Sensor And Multi-Axial Tactile Sensor
US9310265B2 (en) * 2011-09-22 2016-04-12 The University Of Tokyo Tactile sensor and multi-axial tactile sensor
US9573800B2 (en) * 2012-09-10 2017-02-21 Invensense, Inc. Pre-molded MEMS device package having conductive column coupled to leadframe and cover
US20160130134A1 (en) * 2012-09-10 2016-05-12 Invensense, Inc. Pre-molded mems device package having conductive column coupled to leadframe and cover
US20140110801A1 (en) * 2012-10-22 2014-04-24 Leo M. Higgins, III Packaging for semiconductor sensor devices and methods
US8946833B2 (en) * 2012-10-22 2015-02-03 Freescale Semiconductor, Inc. Packaging for semiconductor sensor devices and methods
US20140260678A1 (en) * 2013-03-15 2014-09-18 President And Fellows Of Harvard College Tactile sensor
US10488284B2 (en) 2013-03-15 2019-11-26 President And Fellows Of Harvard College Method of making a contact pressure sensor
US9625333B2 (en) * 2013-03-15 2017-04-18 President And Fellows Of Harvard College Tactile sensor
US20140352446A1 (en) * 2013-06-04 2014-12-04 Murata Manufacturing Co., Ltd. Pressure sensor structure
US9541464B2 (en) * 2013-06-04 2017-01-10 Murata Manufacturing Co., Ltd. Pressure sensor structure
JP2016109582A (en) * 2014-12-08 2016-06-20 アルプス電気株式会社 Pressure detection device
CN105679716A (en) * 2014-12-08 2016-06-15 阿尔卑斯电气株式会社 Pressure detection device
DE102017123175A1 (en) * 2017-10-05 2019-04-11 Infineon Technologies Ag Semiconductor component and method for its production
US10947109B2 (en) 2017-10-05 2021-03-16 Infineon Technologies Ag Semiconductor component and method for producing same
DE102017123175B4 (en) 2017-10-05 2024-02-22 Infineon Technologies Ag Semiconductor component and method for its production
US11307110B2 (en) * 2018-12-21 2022-04-19 Robert Bosch Gmbh Pressure-sensor assembly having a carrier substrate
WO2022070571A1 (en) * 2020-09-30 2022-04-07 株式会社村田製作所 Pressure sensor and method for manufacturing same

Also Published As

Publication number Publication date
US6732590B1 (en) 2004-05-11

Similar Documents

Publication Publication Date Title
US6732590B1 (en) Pressure sensor and process for producing the pressure sensor
US5973590A (en) Ultra thin surface mount wafer sensor structures and methods for fabricating same
US6401545B1 (en) Micro electro-mechanical system sensor with selective encapsulation and method therefor
KR101548384B1 (en) Encapsulation module method for production and use thereof
US4295117A (en) Pressure sensor assembly
US7900521B2 (en) Exposed pad backside pressure sensor package
US8359927B2 (en) Molded differential PRT pressure sensor
JP5511936B2 (en) Pressure measurement module
US6644125B1 (en) Pressure sensor
JP3620185B2 (en) Semiconductor sensor device
CN110655033B (en) Improved stress decoupling MEMS sensor
JP3671563B2 (en) Semiconductor device having a structure in which a mold IC is fixed to a case
CN205177811U (en) Semiconductor device packaging
CN101337652B (en) Packaging of contact surface of sensor element and packaging method thereof
EP2090873B1 (en) Integrated circuit package
CN108689382A (en) Micro electronmechanical sensing device further encapsulating structure and manufacturing process
US6313514B1 (en) Pressure sensor component
US20050103105A1 (en) Acceleration sensor system
US11506549B2 (en) Force sensor
US9640467B2 (en) Sensor arrangement and chip comprising additional fixing pins
CN111473893B (en) Force sensor
CN111646424B (en) Mechanical stress decoupling of microelectromechanical system (MEMS) elements with gel filling
JP4269487B2 (en) Manufacturing method of pressure sensor
DE20218044U1 (en) Pressure sensor, e.g. for tires, has first synthetic material covering connecting elements, inner sections and contact surfaces, more deformable synthetic material covering pressure-sensitive region
CN215439668U (en) Waterproof pressure measuring equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: INFINEON TECHNOLOGIES AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOTTLIEB, ALFRED;SCHRODER, MARTIN;REEL/FRAME:015150/0210;SIGNING DATES FROM 20021128 TO 20030203

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12