US20040087001A1 - Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates - Google Patents

Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates Download PDF

Info

Publication number
US20040087001A1
US20040087001A1 US10/275,287 US27528702A US2004087001A1 US 20040087001 A1 US20040087001 A1 US 20040087001A1 US 27528702 A US27528702 A US 27528702A US 2004087001 A1 US2004087001 A1 US 2004087001A1
Authority
US
United States
Prior art keywords
hcmv
virus
fix
bac
recombinant vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/275,287
Inventor
Gabriele Hahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koenig and Bauer AG
Original Assignee
Koenig and Bauer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koenig and Bauer AG filed Critical Koenig and Bauer AG
Assigned to KOENIG & BAUER AKTIENGESELLSCHAFT reassignment KOENIG & BAUER AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOLZA-SCHUNEMANN, HANS-BERNHARD
Publication of US20040087001A1 publication Critical patent/US20040087001A1/en
Priority to US11/180,000 priority Critical patent/US7700350B2/en
Priority to US12/636,431 priority patent/US20100267121A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/245Herpetoviridae, e.g. herpes simplex virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16111Cytomegalovirus, e.g. human herpesvirus 5
    • C12N2710/16132Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16111Cytomegalovirus, e.g. human herpesvirus 5
    • C12N2710/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16111Cytomegalovirus, e.g. human herpesvirus 5
    • C12N2710/16141Use of virus, viral particle or viral elements as a vector
    • C12N2710/16143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16111Cytomegalovirus, e.g. human herpesvirus 5
    • C12N2710/16161Methods of inactivation or attenuation

Definitions

  • the present invention is concerned with recombinant vectors containing infectious genome sequences of human cytomegalovirus (HCMV) and being useful for the production of reconstituted HCMV virus retaining phenotypic characteristics of a clinical virus isolate including the ability to grow on endothelial cells and to induce microfusion events. Further, the invention concerns the use of such recombinant vectors for the production of reconstituted HCMV virus with the mentioned characteristics as well as the use of reconstituted infectious HCMV virus for the production of vaccines and/or antibodies against the virus.
  • HCMV human cytomegalovirus
  • FIG. 1 For embodiments of the invention are the use of reconstituted virus for the screening of drugs, the use of the recombinant vector and/or the reconstituted virus for studying genes and function of genes, as well as other uses.
  • a further subject of the present invention are HCMV virus mutants, in which the region UL130 to UL132 is either deleted or mutated in such a way that the ability to induce microfusion events is lost or in which the region UL128 to UL132 is deleted or mutated in such a way that PMNL (polymorphonuclear leukocytes) and/or HUVEC (human umbilical vein endothelial cells) tropism is reduced or lost.
  • Further embodiments are uses of such virus mutants or transfer of the genetic region UL132-128 of FIX-Bac into fibroblast adapted laboratory strains of HCMV (for example AD169) to regain PMNL and HUVEC tropism.
  • HCMV is a leading cause of birth defects when infection is acquired by HCMV-seronegative women during pregnancy (refs 1,2,3).
  • HCMV represents one of the major opportunistic pathogens in immunocompromised individuals, such as bone marrow and solid organs transplant recipients and patients with primary or acquired (AIDS) immune deficiency.
  • AIDS primary or acquired
  • HCMV has been demonstrated to be able to infect in vivo several tissues and a number of cell types (refs 1,4), providing a wide spectrum of symptomatic diseases and organ localizations in immunocompromised individuals (refs 5,6) or inducing defects in multiple organs during embryogenesis which can be summarized as “congenital HCMV syndrome”.
  • a striking in vivo characteristic of primary HCMV infection in immunocompetent individuals (ref 7) and of active HCMV infection in immunocompromised patients (ref 8) is the presence of infectious virus and viral materials in circulating polymorphonuclear leukocytes (PMNL) (refs 9,10).
  • PMNL polymorphonuclear leukocytes
  • HCMV-positive PMNL are a powerful vehicle for viral dissemination.
  • HCMV laboratory-adapted reference strains (AD169, Towne, Davis and Toledo) (refs 12,13) lost phenotypic characteristics thought to be important for pathogenicity “in vivo”. Examples of pathogenic characteristics of clinical isolates are: i) preferential cell-to-cell spread, ii) tropism for a broad spectrum of tissues, iii) ability to transfer infectious virus to PMNL. Laboratory-adapted strains lost these biologic characteristics during propagation in standard cell culture (human embryonic fibroblasts, HEF).
  • reference strains show a different genome organization with respect to clinical strains. In fact, clinical strains have 13.5 kb of additional genome sequence which present a particular orientation in clinical strains.
  • the generation of mutants for studying different phenotypic characteristics is extremely cumbersome and time consuming.
  • a first subject of the present invention is a recombinant vector containing DNA sequences of human cytomegalovirus (HCMV) and being useful for the production of reconstituted HCMV virus retaining phenotypic characteristics of a clinical virus isolate including the ability to grow on endothelial cells and to induce microfusion events, such recombinant vector being characterized in that it is obtainable by inserting the infectious genome from a clinical isolate of HCMV virus into a bacterial cloning vehicle.
  • HCMV human cytomegalovirus
  • a recombinant vector according to the present invention provides the possibility to in vitro produce a new reference strain for genetic analysis of HCMV strains circulating in vivo.
  • the vector according to the present invention provides a genetic background encoding phenotypic characteristics crucial for HCMV pathogenesis in vivo.
  • the recombinant vector according to the invention apart from providing the possibility to produce infectious virus in vitro, also represents a unique reagent for identifying viral genes and viral gene functions, which are crucial for HCMV pathogenesis. In fact, it retains the complete gene structure of HCMV strains present in vivo and virus produced therefrom retains key known pathogenetic characteristics, namely endothelial cell tropism and microfusion phenotype and most likely others like Nk-cell resistance and infection of broncho-epithelial cells and chondrocytes as well as dendritic cells, monocytes and/or macrophages. Maintainance and replication of the recombinant vector including the viral genome is dissociated from replication of the virus in cell culture, but is preserved by replication of the viral DNA in the bacterial system. This provides a solution to obtaining standard genetic material for biological studies.
  • the recombinant vector contains the complete infectious genome of HCMV and lacks only genes US2-US6 which are not required for virus replication nor for HUVEC or PMNL tropism.
  • virus mutants can be produced specifically by deleting or substituting parts of the DNA. This allows to study and map the gene functions of HCMV easily.
  • any bacterial cloning system can be used to insert HCMV DNA, as long as it retains the ability for DNA replication in suitable host cells and is able to coreplicate the viral DNA. It is preferred to use cloning vehicles that are present with a low copy number in the host cell to achieve better stability of the viral sequences in the recombinant vector.
  • the recombinant vector according to the invention is produced using a bacterial cloning vehicle that contains DNA sequences which are homologous to the HCMV DNA and insertion is effected by homologous recombination.
  • the bacterial cloning vehicle is a BAC system vector, as described in WO99/06582, which is already mentioned above. The disclosure of WO99/06582, especially as far as it relates to the preparation of vectors and insertion of viral genome, is herewith incorporated by reference.
  • An especially preferred recombinant vector is designated FIX-Bac-7 and has been deposited as described in the following. This recombinant vector is especially useful for studying functions of HCMV virus or producing HCMV virus, since it contains an infectious HCMV virus genome with preserved wildtype characteristics stably integrated into a BAC system vector.
  • FIX-Bac-7-vector can be propagated like a normal recombinant vector and does not lose the viral DNA or functions.
  • a further subject of the present invention is a bacterial culture which contains a recombinant vector according to the invention.
  • a bacterial culture is able to reproduce recombinant vector and preferably such a bacterial culture is an E.coli cell line, especially E.coli DH10B.
  • E.coli DH10B preferably such a bacterial culture is an E.coli cell line, especially E.coli DH10B.
  • such bacterial culture according to the invention contains at least one copy of FIX-Bac-7, and is designated FIX-Bac-7- E.coli DH10B.
  • This cell line has been deposited with the Deutsche Sammlung von Mikroorganismen und Zelikulturen GmbH-DSZM as DSM 13958 on Dec. 14, 2000.
  • HCMV virus retaining the phenotypic characteristics of a parental clinical isolate including the ability to grow on endothelial cells and to induce microfusion.
  • HCMV virus For the production of reconstituted HCMV virus it is preferred to transfect the recombinant vector into a suitable eukaryotic host cell and collect the reconstituted infectious virus after culturing of the cells.
  • a suitable eukaryotic host cell is a permissive cell which allows the virus to replicate and virus particles being formed.
  • the reconstituted infectious HCMV virus obtained according to the present invention can e.g. be used for the production of vaccines and/or antibodies. It can also be used for the screening of drugs for their antiviral activity as well as generally for other potential uses of virus. Such uses are further subjects of the present invention. It has been observed that in some cases the packaging of the virus particles is impaired, obviously due to the presence of vector sequences in addition to virus genome. In such a case it is preferred to remove the sequences of the cloning vehicle from the recombinant vector prior to replication and packaging.
  • a cloning vehicle that contains flanking sequences which are homologous to sequences of the virus to allow the removal of at least part of the cloning vehicle by homologous recombination or to flank the Bac vector with loxP sites for removal with cre recombinase.
  • flanking sequences which are homologous to sequences of the virus
  • Still further subjects of the present invention are the use of recombinant vectors according to the present invention for vaccine development and/or for the development and/or screening of substances which inhibit viral gene production on transcriptional and/or translational level.
  • Inhibition of viral gene product synthesis can be achieved by interference at transcriptional or translational level using established gene therapy approaches.
  • the region UL130 to UL132 of HCMV virus is responsible for the ability of the virus to induce microfusion events in PMNL and HUVEC tropism.
  • a virus mutant which is deleted or mutated in this region of the viral genome in such a way that the ability to induce microfusion or HUVEC tropism is lost, is a further subject of the present invention.
  • Such virus can easily be produced using the recombinant vector according to the present invention and deleting or mutating the mentioned region by methods that are known to the man in the art (see also Example 5).
  • the region UL128 to UL132 of HCMV virus is responsible for PMNL and/or HUVEC tropism.
  • the genetic region spanning UL131 to UL128 seems to confer PMNL tropism, whereas HUVEC tropism is encoded within the genetic region of UL132 to UL128 genes.
  • Mutants that contain deletions or mutations within this UL128 to UL132 region of HCMV virus are therefore another preferred embodiment of the present invention. Also for these mutants it is either possible to delete the complete region or to just partially delete or mutate the region and thereby reduce or prevent PMNL and/or HUVEC tropism.
  • Such HCMV virus mutants in comparison with RV-FIX-7 can advantageously be used for studying pathogenicity and its genetic basis. Especially studying interaction of adherent cells with wild-type virus in comparison with mutant virus will reveal further mechanisms of infection by HCMV virus.
  • Such use of the mutants and RV-FIX-7 therefore are a further preferred embodiment of the present invention.
  • the HCMV virus mutants which affect the genetic region UL132-128 of the invention, lacking the ability to induce microfusion, also have lost the ability to grow on endothelial cells. The cell tropism of this mutant is also changed. The virus mutant seems to indicate a potentially novel mechanism of HCMV infection by a cell to cell infection pathway not through the natural receptor but through cell fusion events.
  • these mutants and RV-FIX-7 are targets for the development of vaccines and/or antibodies or the design of small molecules and peptides. Such vaccines and antibodies will provide at least some protection against HCMV virus infection.
  • HCMV virus mutants and RV-FIX-7 are use in diagnostics, for drug screening, as attenuation marker, for the development of modified vectors, for the development of peptides or antisense genes or antisense RNA, which block the activity of the microfusion gene and wild-type virus and/or for the screening for such peptides, antisense genes or antisense RNA.
  • a still further use is the studying of innate as well as adapted immune surveillance and immune counterstrategies as e.g. NK-cell resistance of virally infected target cells, cytotoxic and helper T-cell recognition, impact of tissue tropism on HCMV latency and reactivation.
  • HLA-A,B,C classic and non classic (HLA-E, HLA-G, MIC A/B) MHC regulation on infected target cells (fibroblasts, endothelial cells, dendritic cells, trophoblasts, bronchoepithelial cells, smooth muscle cells) as well as induction or prevention of apoptosis and cell suicide.
  • target cells fibroblasts, endothelial cells, dendritic cells, trophoblasts, bronchoepithelial cells, smooth muscle cells
  • the examples of the present invention contain disclosure on several different mutants and transcriptional analyses that were used to track down the genetic regions responsible for microfusion as well as cell tropism. These mutants are especially preferred mutants according to the present invention and are further subjects of the pres nt invention.
  • HUVECs were infected with low MOI ( 1 A-B) or high MOI ( 1 C-D) with either clinical wild-type isolate VR1814 ( 1 A-C) or bac-cloned and reconstituted virus RV-FIX-7 ( 1 B-D). Staining was done with an ie1/2 mab as primary antibody and an anti-mouse peroxidase labelled mab as secondary antibody ( 1 A-D).
  • VR1814 ( 1 E) or RV-FIX-7 ( 1 F) infected HUVECs were cocultivated with peripheral blood polymorphonuclear leukocytes (PMNL) and the lower matrix phosphoprotein (pp65) was detected in the nuclei of PMNL by indirect immunofluorescence.
  • FIGS. 1 E-F demonstrate that RV-FIX-7 ( 1 F) retained the capability to infect HUVECs and induce microfusion as compared to WT virus VR1814 ( 1 E).
  • EcoRI lanes 1-6
  • BgIII lanes 7-12
  • Southern Blot analyses confirmed the correct integration of the gpt-bac cassette between US1 and US7.
  • EcoRI restriction cut a 5.9 kb band arises due to the integration of the gpt-Bac cassette.
  • An “a” sequence polymorphism could also be confirmed which arises due to a shuffling of “a” sequences at the internal and terminal repeats during the replication of HCMV.
  • M molecular weight marker 1 kb ladder.
  • DNA derived from individually grown FIX-Bac-7 clones (lane 1 and 6) or FIX-Bac-7 mutant clones ⁇ -ULB′ (lanes 2-3 and lanes 7-8) or ⁇ -ULB130-132 (lanes 4-5 and lanes 9-10) was digested with either HindIII (lanes 1-5) or BgIII (6-10), respectively, and run on a 0.5% agarose gel.
  • HindIII lanes 1-5) or BgIII (6-10
  • a novel band at around 6.5 kb arises in both mutant clones in the HindIII restriction cut.
  • An additional band at around 4.7 kb arises in the ⁇ -ULB′ clones in the HindIII cut as compared to the parallel clone FIX-Bac-7.
  • the generation and testing of the mutants is described in the text.
  • M molecular weight marker 1 kb ladder.
  • DNA derived from individually grown Towne-long-Bac (TowneL), Towne-short-Bac (TowneS), Phoebe-Bac, Powers-Bac and TB40E-Bac clones was digested with either EcoRI (lanes 1-2 and 4-6) or BgIII (lanes 8-9 and 11-13) and separated on a 0.5% agarose gel.
  • EcoRI las 1-2 and 4-6
  • BgIII las 8-9 and 11-13
  • M molecular weight marker 1 kb ladder.
  • the predicted bands can be detected by Southern Blot hybridization in the HindIII digest (FIG. 5 b ): a 6.5 kb and 4.7 kb band in ⁇ -UL/b′ (lane 2), a 6.5 kb and 1.3 kb band in ⁇ -UL130-132 (lane 3), a 7.5 kb and 1.3 kb band in ⁇ -UL132 (lane 4), a 7.0 kb and 2.2 kb band in ⁇ -UL131 (lane 5), a 6.0 kb and 2.8 kb band in ⁇ -UL130 (lane 6), a 6.0 kb and 2.8 kb band in ⁇ -UL130K (lane 7), a 5.2 kb and 3.6 kb band in ⁇ -UL128 (lane 8) and a 5.3 kb and 3.8 kb band in ⁇ -UL128K
  • M molecular weight marker 1 kb ladder.
  • FIG. 6 shows the following sequence comparisons:
  • FIG. 7 shows fast sequence alignment of
  • PAN1-FIX7 The sequence listing contains the following sequences: FIX7, SEQ ID NO:1 PAN1, SEQ ID NO:2 TB40E1, SEQ ID NO:3 TB40E4 SEQ ID NO:4 and the RACE sequences: Seq57-5-2-, SEQ ID NO:5 Seq3′-4-, SEQ ID NO:6 Seq3-10-, SEQ ID NO:7 Seq57-5-, SEQ ID NQ:8 Seq57-6-, SEQ ID NO:9 Seq 57-7-, SEQ ID NO:10 Seq72-1-10-, SEQ ID NO:11 Seq72-2-17-, SEQ ID NO:12 5eq72-2-4-, SEQ ID NO:13 5eq72-5-, SEQ ID NO:14 Seqrace(1)-, SEQ ID NO:15 Seq75-3-, SEQ ID NO:16 Seq74-4-, SEQ ID NO:17 Seq74-5-, SEQ ID NO:18 Seq74-8,
  • HCMV virus strain VR1814 was isolated from cervical secretions and passaged in HEF 43 times. Before BAC cloning, VR 1814 was cultured in HUVEC for 2 months. HUVEC (human umbelical vein endothelial cell)-tropism and PMNL-tropism of VR1814 were determined by: i) propagating VR1814 in primary HUVEC cultures (Revello et al., J. Gen. Virol., submitted) and ii) coculturing purified PMNL with HUVEC infected with VR1814, following by immunologic staining of positive PMNL (Revello, J. Clin. Invest. 1998; Gerna et al.)(FIG. 1A-E).
  • the HCMV recombinant virus was generated by homologous recombination in cell culture.
  • the plasmid pEB 1997 (Borst et al., J. Virol 73, 8320-8329, 1999) was linearized with the restriction enzyme XcmI.
  • pEB1997 contains a tk-gpt-bac-cassette flanked with HCMV homologous sequences of US1-US2 (nt 192648 to 193360) on the right side and US6-US7. (nt 195705-197398) on the left side of the cassette.
  • HFF cells human forescin fibroblasts (1 ⁇ 10 7 cells) were transfected with 35 ⁇ g of linearized plasmid pEB1997 using a Gene Pulser II (Biorad). Conditions of transfection were 960 ⁇ F, 220V. Cells were seeded in a T25 tissue culture flask and cultured overnight in DMEM supplemented with 5% FCS. After 24 h the monolayer was washed once with PBS and infected with an MOI 5 (moiety of infection) using the HUVEC grown clinical isolate VR1814 from Example 1 for 6 h. Cells were washed after infection and DMEM 5% FCS was added. Cells were cultured for 2 weeks until 100% CPE (cytopathogenic effect) was reached.
  • Infected cells and supernatant were used to infect a new flask of a confluent monolayer of HF cells for 6 hours. Cells were washed carefully with PBS and selection medium was applied containing (100 ⁇ M xanthine and 25 ⁇ M mycophenolic acid). After 3 weeks when 100% CPE was reached, cells and supernatant were used for two successive rounds of infection and selection in tissue culture.
  • the supernatant containing the circular intermediates was phenol/chloroform extracted once and subsequently precipitated in 21 ⁇ 2 volumes of 95% ethanol and 0.1 ⁇ 3 M Na-actetate (pH 5.2) for 24 h at ⁇ 20° C.
  • DNA was pelleted at 14000 rpm at 4° C. for 30 min and washed with 70% ethanol.
  • the dry DNA pellet was resuspended in 100 ⁇ l destilled water and allowed to dissolve for 24 h.
  • Twenty-five ⁇ l of viral DNA was electroporated into E.coli DH10B using a Gene Pulser II (Biorad). Conditions were 200 Ohm, 25 ⁇ F, 2.3 kV.
  • FIG. 1 shows the EcoRI and BgI II restriction pattern of 5 representative clones of FIX-Bac compared to WT-virus. Since the unit long (UL) and unit short (US) region of HCMV can flip relatively to each other, two isomeric forms can be observed in E.coli. Additional polymorphism is added by the number of “a” sequence repeats in the terminal and internal repeat region which vary in individual clones.
  • DNA was prepared using Nucleobond columns as previously described (ref 31). 1 ⁇ g of DNA was added to 10 ⁇ l Superfect (Gibco) and 80 ⁇ l of RPMI and incubated for 30 min to allow DNA complexes to form. A subconfluent layer of MRC-5 fibroblast in a 6 well dish seeded for 24 h was serum starved for 30 min in RPMI. Medium was completely removed after 30 min and replaced with 1 ml DMEM 5% FCS over 6 well. The DNA transfection mix was diluted with 100 ⁇ l of DMEM 5% FCS and added to the cells of a 6 well. After 4 h the transfection mix was removed and 2 ml of fresh DMEM 5% FCS was added per well. After 1 week cells were split into a new flask (T25) and cultured until 100% CPE is achieved.
  • Infectious viruses were reconstitued from transfection of FIX-Bac clones #1, #6, #7, #11 and #14 (referred to as RV-FIX-1, RV-FIX-6, RV-FIX-7, RV-FIX-11 and RV-FIX-14, respectively) in HEF cells. Reconstituted viruses (RV) were then assayed for HUVEC-tropism and PMNL-tropism as reported. All RV-FIX-Bac derived viruses retained the phenotype observed in the parental VR1814 isolate (FIG. 2).
  • the primers used for generation of the linear PCR fragments with plasmid pAcyc177 were as follows: P-ULb′: 5′-CGC TGT AGG GAT AAA TAG TGC GAT GGC GTT TGT GGG AGA ACG CAG TAG CGA TGG GTT GCG ACG TGC ACC GAT TTA TTC AAC AAA GCC ACG-3′ P-130: 5′-AAC GGC GTC AGG TCT TTG GGA CTC ATG ACG CGC GGT TTT CAA AAT TCC CTG CGC GCG CGA CGG GCG CCA GTG TTA CAA CCA ATT AAC C-3′ P-132: 5′-AAA CCA CGT CCT CGT CAC ACG TCG TTC GCG GAG ATA GCA AGA AAT CCA CGT CGC CAC ATC TCG AGA CGA TTT ATT CAA CAA AGC CAC G-3′
  • the mutant viruses were reconstituted in MRC-5 cells as described under Example 4a. Testing of the Delta-ULb′ and Delta-UL130-132 mutants for capacity to induce microfusion or efficiently infect endothelial cells reveiled a loss of both phenotypes.
  • the genetic region UL130-132 is inducing both microfusion and endothelial cell tropism and the deletion of the region in the clinical isolate leads to the loss of phenotype described.
  • a control mutant deleting the region UL45 in the genome of FIX-Bac-7 generated according to the same method (and referred to as Delta-UL45) retained the ability to induce microfusion and grow in endothelial cells.
  • PCR primers used for generation of this mutant were: P-45.1: 5′-GCC AGT GGT ACC ACT TGA GCA TCC TGG CCA GAA GCA CGT CGG GCG TCA TCC CCG AGT CAT AGT AGC GAT TTA TTC AAC AAA GCC ACG-3′
  • the capacity to induce microfusion may reflect a novel mechanism of HCMV to spread its genome from cell to cell and infect cells which do not express the as yet elusive natural receptor of HCMV. Consequently, the genetic region UL130-132 is a crucial determinant for tissue tropism and pathogenesis of HCMV.
  • FIG. 3 shows HindIII and BgIII restriction patterns of the FIX-Bac mutant clones in comparison to the parental clone (FIX-7).
  • Phoebe-Bac, Powers-Bac and TB40E-Bac were deposited with the Deutsche Sammlung für Mikroorganismen und Zelikulturen (DSZM), under DSM 14358 (Phoebe-Bac), DSM 14359 (Powers-Bac) and DSM 14360 (TB40E-Bac).
  • a linear PCR fragment was generated using the kanamycin resistance gene from plasmid pAcyc177 (New England Biolabs) as a template.
  • the primers used for generation of the linear PCR fragments have about 60 bp HCMV homolgous sequence on the 5′ and 3′ ends, respectively, and were designed as follows:
  • PCR was performed using the plasmid pAcyc177 as a template.
  • FIX-bac-7 mutants were generated in a recombinant proficient E.coli strain by transformation of the respective purified PCR product into the FIX-bac-7 containing E.coli strain.
  • the mutant clones were selected on chloramphenicol (12.5 ⁇ g/ml) and kanamycin (50 ⁇ g/ml) containing agarose plates. Subsequently, individual clones were picked and grown in Luria Bertani medium supplemented with chloramph nicol (12.5 ⁇ g/ml) and kanamycin (50 ⁇ g/ml). DNA of the resulting bacmid clones was analysed by restriction enzyme analyses and Southern Blot hybridization.
  • RV-FIX (reconstituted virus-FIX) mutant viruses were reconstituted from FIX-bac-7 mutant clones as previously described. Phenotypical testing for PMNL tropism and HUVEC tropism was also performed as previously described. Table 1 provides a summary of the virus mutant phenotypes. As a conclusion of phenotypical testing the mutant viruses we confer that PMNL tropism and induction of microfuesion events is encoded within the genetic region spanning UL131-UL128 genes and HUVEC tropism is encoded within the genetic region of UL-132-128 genes.
  • UL131-128 abrogates both HUVEC and PMN tropism phenotype and consequently the genetic region between UL131 and UL128 is essentially required for PMNL tropism and induction of microfusion events of clinical HCMV isolates. Additionally UL132 gene is contributing to the HUVEC phenotype of clinical isolates of HCMV. Taken together we have identified a genetic region (UL132-128) within clinical isolates of HCMV which encodes important pathogenicity features of clinical isolates.
  • the same region may also provide important pathogenicity factors for growth of clinical isolates in other cell types like dendritic cells, monocytes, macrophages, stem cells and may confer the resistance of clinical isolates of HCMV to NK cell recognition by coding for chemokine-like or cytokine-like factors.
  • the genetic region of UL132-128 identified in FIX-bac-7 is therefore an important target for drug design, gene therapy and vaccine dev lopment against HCMV.
  • AD169 will confer HUVEC tropism, PMNL tropism and microfusion phenotype characteristics to the fibroblast adapted AD169 laboratory strain or any other virus strain.
  • RACE rapid amplification of cDNA ends
  • Primer 57-GSP1 5′-CGG CAC ACA TCC AGC CGT TTG TGT TTC TTA 3′
  • Primer 72-GSP2-5′RACE-1 5′-TAA CGC TCT CCA GGT ACT GAT CCA GGC CCA-3′
  • Primer 73-GSP-5′RACE-2 5′-TCG TCA GTT TGT TGT GTA CGA CCT GGC GTG-3′
  • Primer 74-GSP2-5′RACE-3 5′-TAT TGG CCT CGG TGA ACG TCA ATC GCA CCT-3′
  • RACE cDNA ends
  • Primer 56-GSP2 5′-TGT GTC GGG TGT GGC TGT CTG TTT GTC TGT-3′
  • Primer 75-GSP2-3′RACE-1 5′-TCT GCT TCG TCA CCA CTT TCA CTG CCT GCT-3′
  • Primer 76-GSP2-3′RACE-2 5′-CGC AGA AGA ATG TTG CGA ATT CAT AAA CGT-3′
  • Primer 77-GSP2-3′RACE-3 5′-GCT GCG GTG TCC GGA CGG CGA AGT CTG CTA-3′
  • Primer 78-GSP2-3′RACE-4 5′-CCA GCT GGC AGA TTC CCA AAC TAA TGA AAG-3′.
  • PCR products were subsequently cloned into pT-Adv vector using the AdvanTAgeTMPCR Cloning Kit (Clontech) according to the manufacturers' guidance. Individual clones were screened for cDNA inserts by DNA preparation and EcoRI restriction cut. Insert containing clones were sequenced using M13 sequencing primers.
  • FIG. 6 A comparison of the FIX-Bac genomic sequence (designated VR) and individual RACE clones is depicted in FIG. 6:
  • the genomic sequence of the UL/b′ region of a clinical bacmid clone PAN1 is attached as sequence file (Seq Id No.2). Parts of the genomic sequence of the UL/b′ region of FlX7-Bac (Seq Id No. 1), TB40E1-Bac (Seq Id No.3) and TB40-E4-Bac (Seq Id No. 4) were also determined and are attached as sequencing files.
  • FIG. 7 the genomic sequences of PAN-Bac, FIX-Bac and TB40E-Bac were compared in a sequence alignment to the published genomic sequence of Toledo (gb:HCU 33331) and to each other using DNAman software:
  • RACE PCR analyses have identified several novel transcripts within the UL132 to UL128 region of FIX-bac.
  • Two transcripts (RACE clone 3-10, RACE clone1 and RACE clone 3′-4) are of particular interest. They show that one major transcript of about 2.0 kb is covering the whole UL131-128 region (see FIG. 6 a - c ).
  • RACE clone1, RACE clone 3′-4 and RACE clone 3-10 have a ployA tail and are spliced at the 3′ end (position 1721 nt to 1845 nt referred to FIG. 6 e ).
  • Both, RACE clone 1 and RACE clone 3′-4 have an additional splice at the 5′ end (position 331 nt to 440 nt referred to FIG. 6 e ).
  • the ATG start codon of these transcripts is at position nt 96 to nt 98 referred to FIG. 6 e ).
  • the predicted 5′ end of these three transcripts is presumably 10-50 bp upstream of the sequenced end of the clones (nt 50 to nt 100 referred to FIG. 6 e ). 5′ ends of other transcripts in the UL131-128 region are shown in FIG.
  • the genetic region of UL132 to UL128 is the genetic determinant for induction of microfusion, HUVEC and PMN tropism
  • the identified transcripts running through this region are candidates for therapeutic intervention, drug design, vaccine development, attenuation of virus virulence, spread and antigenicity of the virus, latency and reactivation as well as immunological control of HCMV by immune cells (NK cells, T-cells, B-cells, dendritic cells, endothelial cells and monocytes, macrophages, hematopoietic precursors and stem cells).
  • Ectopic transfer of the genetic region UL132-128 of FIX-Bac-7 or the respective identified cDNAs into a fibroblast adapted HCMV virus will confer microfusion characteristics, cell to cell spread of virus material, HUVEC and PMNL tropism and possibly other pathogenicity features to the respective virus.

Abstract

A recombinant vector containing infectious genome of human cytomegalovirus (HCMV) and being useful for the production of reconstituted HCMV virus retaining phenotypic characteristics of a clinical virus isolate including the ability to grow on endothelial cells and to induce microfusion is characterized in that it is obtainable by inserting DNA from a clinical isolate of HCMV virus into a bacterial cloning vehicle. Such vector can be used e.g. for production of reconstituted HCMV virus retaining the phenotypic characteristics of a parental clinical isolate and for studying genes and functions of genes of HCMV virus. A further aspect are mutant viruses and inter alia their use for studying aspects of infectivity of HCMV virus.

Description

  • The present invention is concerned with recombinant vectors containing infectious genome sequences of human cytomegalovirus (HCMV) and being useful for the production of reconstituted HCMV virus retaining phenotypic characteristics of a clinical virus isolate including the ability to grow on endothelial cells and to induce microfusion events. Further, the invention concerns the use of such recombinant vectors for the production of reconstituted HCMV virus with the mentioned characteristics as well as the use of reconstituted infectious HCMV virus for the production of vaccines and/or antibodies against the virus. Further embodiments of the invention are the use of reconstituted virus for the screening of drugs, the use of the recombinant vector and/or the reconstituted virus for studying genes and function of genes, as well as other uses. A further subject of the present invention are HCMV virus mutants, in which the region UL130 to UL132 is either deleted or mutated in such a way that the ability to induce microfusion events is lost or in which the region UL128 to UL132 is deleted or mutated in such a way that PMNL (polymorphonuclear leukocytes) and/or HUVEC (human umbilical vein endothelial cells) tropism is reduced or lost. Further embodiments are uses of such virus mutants or transfer of the genetic region UL132-128 of FIX-Bac into fibroblast adapted laboratory strains of HCMV (for example AD169) to regain PMNL and HUVEC tropism. [0001]
  • HCMV is a leading cause of birth defects when infection is acquired by HCMV-seronegative women during pregnancy ([0002] refs 1,2,3). In addition, HCMV represents one of the major opportunistic pathogens in immunocompromised individuals, such as bone marrow and solid organs transplant recipients and patients with primary or acquired (AIDS) immune deficiency. However, the pathogenesis of HCMV infection is not well understood. The main factor affecting research on this topic is recognized in the lack of the possibility of reproducing in vitro aspects of HCMV infection which are thought to be crucial in vivo. In particular, HCMV has been demonstrated to be able to infect in vivo several tissues and a number of cell types (refs 1,4), providing a wide spectrum of symptomatic diseases and organ localizations in immunocompromised individuals (refs 5,6) or inducing defects in multiple organs during embryogenesis which can be summarized as “congenital HCMV syndrome”. In addition, a striking in vivo characteristic of primary HCMV infection in immunocompetent individuals (ref 7) and of active HCMV infection in immunocompromised patients (ref 8), is the presence of infectious virus and viral materials in circulating polymorphonuclear leukocytes (PMNL) (refs 9,10). The latter is a major prognostic marker, which is highly predictive of disease progression in immunocompromised patients. Provided that the virus does not appear to fully replicate in PMNL, rather it can actively promote transfer of preformed viral particles to PMNL from productively infected cells by virus-induced microfusion events (ref 11), HCMV-positive PMNL are a powerful vehicle for viral dissemination.
  • In contrast, currently available HCMV laboratory-adapted reference strains (AD169, Towne, Davis and Toledo) ([0003] refs 12,13) lost phenotypic characteristics thought to be important for pathogenicity “in vivo”. Examples of pathogenic characteristics of clinical isolates are: i) preferential cell-to-cell spread, ii) tropism for a broad spectrum of tissues, iii) ability to transfer infectious virus to PMNL. Laboratory-adapted strains lost these biologic characteristics during propagation in standard cell culture (human embryonic fibroblasts, HEF). In addition, reference strains show a different genome organization with respect to clinical strains. In fact, clinical strains have 13.5 kb of additional genome sequence which present a particular orientation in clinical strains. Moreover, due to the intrinsic slow HCMV replication in cell culture, the generation of mutants for studying different phenotypic characteristics is extremely cumbersome and time consuming.
  • Consequently, it was the object of the present invention to provide a possibility to in vitro produce HCMV virus that still retains the pathogenic characteristics of clinical isolates. Further objects of the invention are to provide vectors containing the viral genome that allow to mutagenize the viral genome for e.g. studying the function of specific regions of the genome or to provide for mutated virus that can be used e.g. for vaccine production. [0004]
  • These objects are solved by the present invention as described in the following: [0005]
  • A first subject of the present invention is a recombinant vector containing DNA sequences of human cytomegalovirus (HCMV) and being useful for the production of reconstituted HCMV virus retaining phenotypic characteristics of a clinical virus isolate including the ability to grow on endothelial cells and to induce microfusion events, such recombinant vector being characterized in that it is obtainable by inserting the infectious genome from a clinical isolate of HCMV virus into a bacterial cloning vehicle. [0006]
  • Within the context of the present invention it has been observed that low passage clinical isolates retained both the broad cell tropism observed in vivo and the capability to transfer virus via microfusion to PMNL (ref 11). The invention is based on the surprising finding that cloning clinical isolates of HCMV virus in the so-called BAC system (WO99/06582) provides for the first time the possibility to in vitro produce HCMV virus that shows at least the most important characteristics of HCMV virus. These are above all the ability to grow on endothelial cells and to induce microfusion events to promote transfer of viral particles between cells. From the standpoint of the present knowledge about HCMV infection, these two characteristics seem to be most important for the infectivity of wild-type virus. Especially the use of the BAC system opens the possibility of propagation of stable HCMV genetic material in a heterologous biological system as e.g. [0007] E.coli. In particular, the accumulation of mutations during the HEF adaption procedure, which is ultimately responsible for the loss of broad tissue tropism by presently available reference laboratory adapted strains, is avoided. Thus, a recombinant vector according to the present invention provides the possibility to in vitro produce a new reference strain for genetic analysis of HCMV strains circulating in vivo. The vector according to the present invention provides a genetic background encoding phenotypic characteristics crucial for HCMV pathogenesis in vivo.
  • The recombinant vector according to the invention, apart from providing the possibility to produce infectious virus in vitro, also represents a unique reagent for identifying viral genes and viral gene functions, which are crucial for HCMV pathogenesis. In fact, it retains the complete gene structure of HCMV strains present in vivo and virus produced therefrom retains key known pathogenetic characteristics, namely endothelial cell tropism and microfusion phenotype and most likely others like Nk-cell resistance and infection of broncho-epithelial cells and chondrocytes as well as dendritic cells, monocytes and/or macrophages. Maintainance and replication of the recombinant vector including the viral genome is dissociated from replication of the virus in cell culture, but is preserved by replication of the viral DNA in the bacterial system. This provides a solution to obtaining standard genetic material for biological studies. [0008]
  • In a preferred embodiment of the present invention the recombinant vector contains the complete infectious genome of HCMV and lacks only genes US2-US6 which are not required for virus replication nor for HUVEC or PMNL tropism. However, it is also possible to produce mutants that lack at least part of the DNA or contain substitutions in the DNA. In this way, virus mutants can be produced specifically by deleting or substituting parts of the DNA. This allows to study and map the gene functions of HCMV easily. In principle any bacterial cloning system can be used to insert HCMV DNA, as long as it retains the ability for DNA replication in suitable host cells and is able to coreplicate the viral DNA. It is preferred to use cloning vehicles that are present with a low copy number in the host cell to achieve better stability of the viral sequences in the recombinant vector. [0009]
  • In a further preferred embodiment the recombinant vector according to the invention is produced using a bacterial cloning vehicle that contains DNA sequences which are homologous to the HCMV DNA and insertion is effected by homologous recombination. In an especially preferred embodiment the bacterial cloning vehicle is a BAC system vector, as described in WO99/06582, which is already mentioned above. The disclosure of WO99/06582, especially as far as it relates to the preparation of vectors and insertion of viral genome, is herewith incorporated by reference. [0010]
  • An especially preferred recombinant vector is designated FIX-Bac-7 and has been deposited as described in the following. This recombinant vector is especially useful for studying functions of HCMV virus or producing HCMV virus, since it contains an infectious HCMV virus genome with preserved wildtype characteristics stably integrated into a BAC system vector. FIX-Bac-7-vector can be propagated like a normal recombinant vector and does not lose the viral DNA or functions. [0011]
  • A further subject of the present invention is a bacterial culture which contains a recombinant vector according to the invention. Such bacterial culture is able to reproduce recombinant vector and preferably such a bacterial culture is an [0012] E.coli cell line, especially E.coli DH10B. In a most preferred embodiment such bacterial culture according to the invention contains at least one copy of FIX-Bac-7, and is designated FIX-Bac-7-E.coli DH10B. This cell line has been deposited with the Deutsche Sammlung von Mikroorganismen und Zelikulturen GmbH-DSZM as DSM 13958 on Dec. 14, 2000.
  • Further subjects of the present invention are uses of the recombinant vector according to the invention. One preferred use is the production of reconstituted HCMV virus retaining the phenotypic characteristics of a parental clinical isolate including the ability to grow on endothelial cells and to induce microfusion. [0013]
  • As described above, these two characteristics are considered as being most important for retaining the infectivity of wild-type HCMV. However, it is to be understood that within the context of the present invention also other characteristics of wild-type virus may be conserved during the production as described in claim. Especially features like HUVEC- and/or PMNL-tropism are also considered important and are preferably retained by the HCMV virus which is reconstituted according to the present invention. [0014]
  • For the production of reconstituted HCMV virus it is preferred to transfect the recombinant vector into a suitable eukaryotic host cell and collect the reconstituted infectious virus after culturing of the cells. [0015]
  • A suitable eukaryotic host cell is a permissive cell which allows the virus to replicate and virus particles being formed. The reconstituted infectious HCMV virus obtained according to the present invention can e.g. be used for the production of vaccines and/or antibodies. It can also be used for the screening of drugs for their antiviral activity as well as generally for other potential uses of virus. Such uses are further subjects of the present invention. It has been observed that in some cases the packaging of the virus particles is impaired, obviously due to the presence of vector sequences in addition to virus genome. In such a case it is preferred to remove the sequences of the cloning vehicle from the recombinant vector prior to replication and packaging. In such embodiment it is further preferred to use a cloning vehicle that contains flanking sequences which are homologous to sequences of the virus to allow the removal of at least part of the cloning vehicle by homologous recombination or to flank the Bac vector with loxP sites for removal with cre recombinase. For virus production from the recombinant vector it is again referred to WO99/06582 describing such methods in principle. [0016]
  • Still further subjects of the present invention are the use of recombinant vectors according to the present invention for vaccine development and/or for the development and/or screening of substances which inhibit viral gene production on transcriptional and/or translational level. [0017]
  • The concept of prophylactic vaccination using live attenuated viral strains led in the early 70ies to the generation of the Towne strain, after extensive passaging (>135 passages) of a clinical isolate of fibroblast culture. This live vaccine, when administered to humans, proved to be ineffective at protecting individuals from HCMV infections (refs 14-20). Strikingly, infection with vaccinal strain could raise antibody titers as well as cellular response. However, these responses were not protective. Today it is known that the Towne strain lost large genomic regions during fibroblast adaption. Other approaches include subunit vaccines again targeting gene products identified and characterized in attenuated strains. Finally, the generation of chimeric viruses using the Towne strain and a low passage isolate (Toledo) has been proposed ([0018] refs 12,13), however, both Towne and Toledo lack key characteristics associated with HCMV pathogenesis in vivo. In particular, they lack both endothelial cell tropism and the microfusion phenotype. Thus, using such a vaccine it was not possible to raise an efficient immunologic response against these important viral encoded functions.
  • The identification of genetic determinants for tissue tropism and body dissemination will lead to the design of better prophylactic and therapeutic vaccines. In this respect, the identification of the genetic determinants for endothelial cell tropism and for transfer of virus from productively infected cells to PMNL appear of particular importance. In fact, it is known that during active HCMV infection in immunocompromised patients endothelial cells are productively infected, while it is thought that endothelium might be the major reservoir for latent HCMV infection ([0019] refs 1,21-28). Finally, the importance of HCMV infected PMNL in viral dissemination is highlighted by (i) the possibility to detect such cells in immunocompetent persons only during primary infection, (ii) relation to viral transmission of HCMV to the fetus in pregnant women ( refs 2,3,7,29) and (iii) the tight correlation between the number of HCMV infected PMNL and the severity of clinical symptoms (ref 30). It is therefore evident that production of vaccines by using either the recombinant vector according to the invention or reconstituted infectious HCMV virus that is produced according to the invention opens the possibility to raise vaccines that not only raise antibodies but also protect the patient against HCMV infections and its consequences.
  • For drug discovery as well as for vaccine production, determinants for viral pathogenicity will be obvious targets for chemotherapeutic intervention. The generation of target specific antiviral drugs can be achieved in different ways: [0020]
  • 1. The identification of gene products responsible for crucial biological functions (tropism for particular cell types, microfusion) might lead to the reconstruction of biochemical systems for screening of large collections of compounds; helpful will also be a random transposon mutagenesis of FIX-Bac-7 and reconstitution of mutants from transposon libraries. [0021]
  • 2. Peptides or small molecules interfering with protein-protein interactions can be synthesized by available computer-assisted chemical modelling; [0022]
  • 3. Inhibition of viral gene product synthesis can be achieved by interference at transcriptional or translational level using established gene therapy approaches. [0023]
  • Therefore also the use of a recombinant vector or a reconstituted HCMV virus for the development and/or screening of substances which inhibit viral gene production on transcriptional and/or translational level are preferred embodiments of the present invention. [0024]
  • Within the investigational work of the present invention it has further been established that the region UL130 to UL132 of HCMV virus is responsible for the ability of the virus to induce microfusion events in PMNL and HUVEC tropism. Hence, a virus mutant which is deleted or mutated in this region of the viral genome in such a way that the ability to induce microfusion or HUVEC tropism is lost, is a further subject of the present invention. Such virus can easily be produced using the recombinant vector according to the present invention and deleting or mutating the mentioned region by methods that are known to the man in the art (see also Example 5). It is especially preferred to completely delete this region, however, partially deleting or mutating the region is also possible as long as the resulting mutant does not show microfusion induction or HUVEC tropism. Using the recombinant vector according to the present invention, it will be easily possible for the man in the art to track down the minimal mutation or deletion that is necessary to prevent induction of microfusion events or HUVEC tropism of a respective HCMV mutant. [0025]
  • It has further been established that the region UL128 to UL132 of HCMV virus is responsible for PMNL and/or HUVEC tropism. The genetic region spanning UL131 to UL128 seems to confer PMNL tropism, whereas HUVEC tropism is encoded within the genetic region of UL132 to UL128 genes. Mutants that contain deletions or mutations within this UL128 to UL132 region of HCMV virus are therefore another preferred embodiment of the present invention. Also for these mutants it is either possible to delete the complete region or to just partially delete or mutate the region and thereby reduce or prevent PMNL and/or HUVEC tropism. [0026]
  • Such HCMV virus mutants in comparison with RV-FIX-7 can advantageously be used for studying pathogenicity and its genetic basis. Especially studying interaction of adherent cells with wild-type virus in comparison with mutant virus will reveal further mechanisms of infection by HCMV virus. Such use of the mutants and RV-FIX-7 therefore are a further preferred embodiment of the present invention. The HCMV virus mutants which affect the genetic region UL132-128 of the invention, lacking the ability to induce microfusion, also have lost the ability to grow on endothelial cells. The cell tropism of this mutant is also changed. The virus mutant seems to indicate a potentially novel mechanism of HCMV infection by a cell to cell infection pathway not through the natural receptor but through cell fusion events. Thus, avoiding the need to exit the cell for reinfection, but rather spreading genetic material from cell to cell through a plasma bridge. Also these mutants and RV-FIX-7 are targets for the development of vaccines and/or antibodies or the design of small molecules and peptides. Such vaccines and antibodies will provide at least some protection against HCMV virus infection. [0027]
  • Further possible uses of the HCMV virus mutants and RV-FIX-7 according to the invention are use in diagnostics, for drug screening, as attenuation marker, for the development of modified vectors, for the development of peptides or antisense genes or antisense RNA, which block the activity of the microfusion gene and wild-type virus and/or for the screening for such peptides, antisense genes or antisense RNA. A still further use is the studying of innate as well as adapted immune surveillance and immune counterstrategies as e.g. NK-cell resistance of virally infected target cells, cytotoxic and helper T-cell recognition, impact of tissue tropism on HCMV latency and reactivation. Also studying the impact on classic (HLA-A,B,C) and non classic (HLA-E, HLA-G, MIC A/B) MHC regulation on infected target cells (fibroblasts, endothelial cells, dendritic cells, trophoblasts, bronchoepithelial cells, smooth muscle cells) as well as induction or prevention of apoptosis and cell suicide. [0028]
  • Such applications and uses will be well aware to the man in the art upon reading the disclosure of the present invention. Providing a stable system for in vitro production of infectious HCMV virus, tracking down the microfusion gene in the viral region UL131 to UL128 and the HUVEC cell tropism region between UL128 and UL132 as well as the provision of the possibility to easily produce virus mutants allow for the first time to study infectious HCMV virus activities and properties with a standardized virus strain, and the thus provided possibility to mutate in vitro a virus that corresponds to a clinical isolate opens tremendous possiblities for studying functions and ways of infections and their consequences for the infected person. [0029]
  • The possibility to produce infectious virus as well as mutants of infectious virus or antigens contained in the genome of the infectious virus opens new outlooks for vaccine development and drug design as well as drug screening. [0030]
  • The examples of the present invention contain disclosure on several different mutants and transcriptional analyses that were used to track down the genetic regions responsible for microfusion as well as cell tropism. These mutants are especially preferred mutants according to the present invention and are further subjects of the pres nt invention. [0031]
  • The present invention will be further explained by the following example and figures: [0032]
  • FIG. 1A-E [0033]
  • HUVECs were infected with low MOI ([0034] 1A-B) or high MOI (1C-D) with either clinical wild-type isolate VR1814 (1A-C) or bac-cloned and reconstituted virus RV-FIX-7 (1B-D). Staining was done with an ie1/2 mab as primary antibody and an anti-mouse peroxidase labelled mab as secondary antibody (1A-D). VR1814 (1E) or RV-FIX-7 (1F) infected HUVECs were cocultivated with peripheral blood polymorphonuclear leukocytes (PMNL) and the lower matrix phosphoprotein (pp65) was detected in the nuclei of PMNL by indirect immunofluorescence. FIGS. 1E-F demonstrate that RV-FIX-7 (1F) retained the capability to infect HUVECs and induce microfusion as compared to WT virus VR1814 (1E).
  • The pp65 staining was performed as described in Journal of Microbiology 36, 3585-3589, 1998. [0035]
  • FIG. 2[0036]
  • DNA derived from individually grown FIX-Bac clones (lanes 1-5 and lanes 7-11) or wild-type VR1814 ([0037] lanes 6 and 12) was digested with either EcoRI (lanes 1-6 or BgIII (lanes 7-12) and separated on a 0.5% agarose gel. The restriction cut and subsequent Southern Blot analyses confirmed the correct integration of the gpt-bac cassette between US1 and US7. In the EcoRI restriction cut a 5.9 kb band arises due to the integration of the gpt-Bac cassette. An “a” sequence polymorphism could also be confirmed which arises due to a shuffling of “a” sequences at the internal and terminal repeats during the replication of HCMV.
  • M: [0038] molecular weight marker 1 kb ladder.
  • Analyses were performed as previously described (Journal of Virology, 8320-8329, 1999). [0039]
  • FIG. 3[0040]
  • DNA derived from individually grown FIX-Bac-7 clones ([0041] lane 1 and 6) or FIX-Bac-7 mutant clones Δ-ULB′ (lanes 2-3 and lanes 7-8) or Δ-ULB130-132 (lanes 4-5 and lanes 9-10) was digested with either HindIII (lanes 1-5) or BgIII (6-10), respectively, and run on a 0.5% agarose gel. A novel band at around 6.5 kb arises in both mutant clones in the HindIII restriction cut. An additional band at around 4.7 kb arises in the Δ-ULB′ clones in the HindIII cut as compared to the parallel clone FIX-Bac-7. The generation and testing of the mutants is described in the text.
  • M: [0042] molecular weight marker 1 kb ladder.
  • FIG. 4[0043]
  • DNA derived from individually grown Towne-long-Bac (TowneL), Towne-short-Bac (TowneS), Phoebe-Bac, Powers-Bac and TB40E-Bac clones was digested with either EcoRI (lanes 1-2 and 4-6) or BgIII (lanes 8-9 and 11-13) and separated on a 0.5% agarose gel. The restriction cut and subsequent Southern Blot analyses confirmed the correct integration of the gpt-bac cassette between US1 and US6/7. In the EcoRI restriction cut a 5.9 kb band arises due to the integration of the gpt-Bac cassette. An “a” sequence polymorphism could also be confirmed which arises due to a shuffling of “a” sequences at the internal and terminal repeats during the replication of HCMV. [0044]
  • M: [0045] molecular weight marker 1 kb ladder.
  • Analyses were performed as previously described (Journal of Virology, 8320-8329, 1999). [0046]
  • FIGS. 5[0047] a and 5 b
  • DNA derived from individually grown FIX-bac-7 bacmid clones (lane 1) or FIX-bac-7 mutant bacmid clones Δ-UL/b′ (lane 2), Δ-UL130-132 (lane 3), Δ-UL132 (lane 4), Δ-UL131 (lane 5), A-UL130 (lane 6), A-UL130K (lane 7), Δ-UL128 (lane 8), Δ-UL128K (lane 9) was digested with either EcoRI (FIG. 5[0048] a) or HindIII (FIG. 5b), respectively; and run on a 0.5% agarose gel. By probing with the pAcyc 77 probe (for detection of the correct integration of the kanamycin resistance gene) the predicted bands can be detected by Southern Blot hybridization in the HindIII digest (FIG. 5b): a 6.5 kb and 4.7 kb band in Δ-UL/b′ (lane 2), a 6.5 kb and 1.3 kb band in Δ-UL130-132 (lane 3), a 7.5 kb and 1.3 kb band in Δ-UL132 (lane 4), a 7.0 kb and 2.2 kb band in Δ-UL131 (lane 5), a 6.0 kb and 2.8 kb band in Δ-UL130 (lane 6), a 6.0 kb and 2.8 kb band in Δ-UL130K (lane 7), a 5.2 kb and 3.6 kb band in Δ-UL128 (lane 8) and a 5.3 kb and 3.8 kb band in Δ-UL128K (lane 9).
  • M: [0049] molecular weight marker 1 kb ladder.
  • Analyses were performed as previously described (Journal of Virology, 8320-8329, 1999). [0050]
  • FIG. 6: shows the following sequence comparisons: [0051]
  • a) Comparison RACE clone1 to FIX genomic sequence; [0052]
  • b) RACE clone 3-10 to FIX genomic sequence; [0053]
  • c) RACE clone1 to RACE clone 3-10; [0054]
  • d) RACE clone1, 3-10, 75-3, 72-2-4 to FIX genomic sequence (designated VR7); [0055]
  • e) [0056] RACE clone 1, 3-4, 3-10, 75-3, 57-5-2, 57-5, 57-6, 72-8, 73-8, 74-5, 75-5 to FIX genomic sequence (designated VR7).
  • FIG. 7: shows fast sequence alignment of [0057]
  • a) FIX7-HCU 33331; [0058]
  • b) TB40E4-HCU 33331; [0059]
  • c) PAN1-HCU 33331; [0060]
  • d) TB40E4-FIX7; [0061]
  • e) TB40E1-TB40E4; [0062]
  • f) TB40E1-FIX7; [0063]
  • g) PAN1-TB40E4; [0064]
  • h) PAN1-FIX7. [0065]
    The sequence listing contains the
    following sequences:
    FIX7, SEQ ID NO:1
    PAN1, SEQ ID NO:2
    TB40E1, SEQ ID NO:3
    TB40E4 SEQ ID NO:4
    and the RACE sequences:
    Seq57-5-2-, SEQ ID NO:5
    Seq3′-4-, SEQ ID NO:6
    Seq3-10-, SEQ ID NO:7
    Seq57-5-, SEQ ID NQ:8
    Seq57-6-, SEQ ID NO:9
    Seq 57-7-, SEQ ID NO:10
    Seq72-1-10-, SEQ ID NO:11
    Seq72-2-17-, SEQ ID NO:12
    5eq72-2-4-, SEQ ID NO:13
    5eq72-5-, SEQ ID NO:14
    Seqrace(1)-, SEQ ID NO:15
    Seq75-3-, SEQ ID NO:16
    Seq74-4-, SEQ ID NO:17
    Seq74-5-, SEQ ID NO:18
    Seq74-8, SEQ ID NO:19
    Seq75-1-, SEQ ID NO:20
    Seq75-4-, SEQ ID NO:21
    Seq76-7-, SEQ ID NO:22
    Seq75-5-, SEQ ID NO:23
    Seq77-14- SEQ ID NO:24
    Seq73-8-, SEQ ID NO:25
    Seq75-17-, SEQ ID NO:26
    Seq72-8, SEQ ID NO:27
    Seq74-3-. SEQ ID NO:28
  • EXAMPLE 1 Characterization of VR1814
  • HCMV virus strain VR1814 was isolated from cervical secretions and passaged in HEF 43 times. Before BAC cloning, VR 1814 was cultured in HUVEC for 2 months. HUVEC (human umbelical vein endothelial cell)-tropism and PMNL-tropism of VR1814 were determined by: i) propagating VR1814 in primary HUVEC cultures (Revello et al., J. Gen. Virol., submitted) and ii) coculturing purified PMNL with HUVEC infected with VR1814, following by immunologic staining of positive PMNL (Revello, J. Clin. Invest. 1998; Gerna et al.)(FIG. 1A-E). [0066]
  • EXAMPLE 2 Cloning of the Clinical HCMV Isolate VR1814 as FIX (Fusion Inducing Factor X)-Bac (Bacterial Artificial Chromosome) in E.coli. Generation of the FIX Recombinant Containing the Bac Vector.
  • The HCMV recombinant virus was generated by homologous recombination in cell culture. The plasmid pEB 1997 (Borst et al., J. Virol 73, 8320-8329, 1999) was linearized with the restriction enzyme XcmI. pEB1997 contains a tk-gpt-bac-cassette flanked with HCMV homologous sequences of US1-US2 (nt 192648 to 193360) on the right side and US6-US7. (nt 195705-197398) on the left side of the cassette. HFF cells (human forescin fibroblasts) (1×10[0067] 7 cells) were transfected with 35 μg of linearized plasmid pEB1997 using a Gene Pulser II (Biorad). Conditions of transfection were 960 μF, 220V. Cells were seeded in a T25 tissue culture flask and cultured overnight in DMEM supplemented with 5% FCS. After 24 h the monolayer was washed once with PBS and infected with an MOI 5 (moiety of infection) using the HUVEC grown clinical isolate VR1814 from Example 1 for 6 h. Cells were washed after infection and DMEM 5% FCS was added. Cells were cultured for 2 weeks until 100% CPE (cytopathogenic effect) was reached. Infected cells and supernatant were used to infect a new flask of a confluent monolayer of HF cells for 6 hours. Cells were washed carefully with PBS and selection medium was applied containing (100 μM xanthine and 25 μM mycophenolic acid). After 3 weeks when 100% CPE was reached, cells and supernatant were used for two successive rounds of infection and selection in tissue culture.
  • EXAMPLE 3 Generation of the FIX-Bac in E.coli
  • After three rounds of selection in tissue culture the cell monolayer was washed with ice cold PBS and cells were lysed in 1 ml TES-buffer (10 mM Tris Cl pH 7.4, 10 mM EDTA pH 8.0, 0.6% SDS). To obtain circular viral intermediates a modified HIRT extraction was applied. The sticky lysate was poured into a 2 ml eppendorf vial and 0.3 ml 5 M NaCl was added and carefully mixed. After 24 h of incubation at 4° C. cellular DNA and proteins was pelleted out by centrifugation at 14.000 rpm for 30 min. The supernatant containing the circular intermediates was phenol/chloroform extracted once and subsequently precipitated in 2½ volumes of 95% ethanol and 0.1×3 M Na-actetate (pH 5.2) for 24 h at −20° C. DNA was pelleted at 14000 rpm at 4° C. for 30 min and washed with 70% ethanol. The dry DNA pellet was resuspended in 100 μl destilled water and allowed to dissolve for 24 h. Twenty-five μl of viral DNA was electroporated into [0068] E.coli DH10B using a Gene Pulser II (Biorad). Conditions were 200 Ohm, 25 μF, 2.3 kV. After incubation in LB for 2 hours at 37° C., bacteria were spun for 30 sec at 6000 rpm, resuspended in 100 μl of LB medium and plated onto agar plates containing chloramphenicol. After 48 h colonies were picked and grown in liquid culture for bacmid preparation as previously described (ref 31). FIG. 1 shows the EcoRI and BgI II restriction pattern of 5 representative clones of FIX-Bac compared to WT-virus. Since the unit long (UL) and unit short (US) region of HCMV can flip relatively to each other, two isomeric forms can be observed in E.coli. Additional polymorphism is added by the number of “a” sequence repeats in the terminal and internal repeat region which vary in individual clones.
  • EXAMPLE 4a Reconstitution of Infectious Virus From FIX-Bac
  • To recover infectious virus from FIX-Bac clones, DNA was prepared using Nucleobond columns as previously described (ref 31). 1 μg of DNA was added to 10 μl Superfect (Gibco) and 80 μl of RPMI and incubated for 30 min to allow DNA complexes to form. A subconfluent layer of MRC-5 fibroblast in a 6 well dish seeded for 24 h was serum starved for 30 min in RPMI. Medium was completely removed after 30 min and replaced with 1 ml DMEM 5% FCS over 6 well. The DNA transfection mix was diluted with 100 μl of [0069] DMEM 5% FCS and added to the cells of a 6 well. After 4 h the transfection mix was removed and 2 ml of fresh DMEM 5% FCS was added per well. After 1 week cells were split into a new flask (T25) and cultured until 100% CPE is achieved.
  • EXAMPLE 4b Phenotypic Characterization of Reconstitued RV-FIX-Bac-Viruses
  • Infectious viruses were reconstitued from transfection of FIX-[0070] Bac clones #1, #6, #7, #11 and #14 (referred to as RV-FIX-1, RV-FIX-6, RV-FIX-7, RV-FIX-11 and RV-FIX-14, respectively) in HEF cells. Reconstituted viruses (RV) were then assayed for HUVEC-tropism and PMNL-tropism as reported. All RV-FIX-Bac derived viruses retained the phenotype observed in the parental VR1814 isolate (FIG. 2).
  • EXAMPLE 5 Mutation
  • To identify the region in the FIX-Bac-7 genome responsible for microfusion induction and endothelial cell tropism, 13.8 kB of the ULb′ region were removed (mutant referred to as Delta-ULb′; primers P-ULb′ and P-132) using homologous recombination with a linear PCR fragment in a recombination proficient E.coli strain. A second mutant was generated which specifically deleted the beginning of ULb′ region namely UL130-132 (referred to as Delta-UL130-13; primers P-132 and P-130) which is inverted in orientation in the clinical isolates as compared to the low passage isolate Toledo. The primers used for generation of the linear PCR fragments with plasmid pAcyc177 (New England Biolabs) as a template were as follows: [0071]
    P-ULb′: 5′-CGC TGT AGG GAT AAA TAG TGC GAT GGC GTT
    TGT GGG AGA ACG CAG TAG CGA TGG GTT GCG ACG TGC
    ACC GAT TTA TTC AAC AAA GCC ACG-3′
    P-130: 5′-AAC GGC GTC AGG TCT TTG GGA CTC ATG ACG
    CGC GGT TTT CAA AAT TCC CTG CGC GCG CGA CGG GCG
    CCA GTG TTA CAA CCA ATT AAC C-3′
    P-132: 5′-AAA CCA CGT CCT CGT CAC ACG TCG TTC GCG
    GAG ATA GCA AGA AAT CCA CGT CGC CAC ATC TCG AGA
    CGA TTT ATT CAA CAA AGC CAC G-3′
  • The mutant viruses were reconstituted in MRC-5 cells as described under Example 4a. Testing of the Delta-ULb′ and Delta-UL130-132 mutants for capacity to induce microfusion or efficiently infect endothelial cells reveiled a loss of both phenotypes. Thus, the genetic region UL130-132 is inducing both microfusion and endothelial cell tropism and the deletion of the region in the clinical isolate leads to the loss of phenotype described. [0072]
  • A control mutant deleting the region UL45 in the genome of FIX-Bac-7 generated according to the same method (and referred to as Delta-UL45) retained the ability to induce microfusion and grow in endothelial cells. PCR primers used for generation of this mutant were: [0073]
    P-45.1: 5′-GCC AGT GGT ACC ACT TGA GCA TCC TGG CCA
    GAA GCA CGT CGG GCG TCA TCC CCG AGT CAT AGT AGC
    GAT TTA TTC AAC AAA GCC ACG-3′
    P-45.2: 5′-ACA CAT CGC ACA GAG ACT TTA TAA ACC GTA
    GTT GTC GGC GCC ATC TAG ACT CAC TTT ATT GAA AGC
    CAG TGT TAG AAC CAA TTA ACC-3′
  • Thus, the capacity to induce microfusion may reflect a novel mechanism of HCMV to spread its genome from cell to cell and infect cells which do not express the as yet elusive natural receptor of HCMV. Consequently, the genetic region UL130-132 is a crucial determinant for tissue tropism and pathogenesis of HCMV. [0074]
  • FIG. 3 shows HindIII and BgIII restriction patterns of the FIX-Bac mutant clones in comparison to the parental clone (FIX-7). [0075]
  • EXAMPLE 6
  • As further examples for feasibility of the cloning of clinical isolates of HCMV as bacterial artificial chromosomes in [0076] E.coli, the clinical isolates Phoebe, Powers and TB40E were cloned as bacmids according to the method described above. Additionally the vaccine strains Towne-long and Towne-short were cloned as bacmids to prove that the method of bac cloning is also feasible for cloning of vaccine strains fo HCMV.
  • Phoebe-Bac, Powers-Bac and TB40E-Bac were deposited with the Deutsche Sammlung für Mikroorganismen und Zelikulturen (DSZM), under DSM 14358 (Phoebe-Bac), DSM 14359 (Powers-Bac) and DSM 14360 (TB40E-Bac). [0077]
  • Analyses of the bacmids are shown in FIG. 4. [0078]
  • EXAMPLE 7 Generation of FIX-bac-7 Mutants
  • A linear PCR fragment was generated using the kanamycin resistance gene from plasmid pAcyc177 (New England Biolabs) as a template. The primers used for generation of the linear PCR fragments have about 60 bp HCMV homolgous sequence on the 5′ and 3′ ends, respectively, and were designed as follows: [0079]
  • Mutant D-UL130 [0080]
    P-130-for: 5′-GCG CCA CAC GCC CGG AGC CTC GAG TTC
    AGC GTG CGG CTC TTT GCC AAC TAG CCT GCG TCA CGG
    CGA TTT ATT CAA CAA AGC-3′
    P-130-rev: 5′-AAC GGC GTC AGG TCT TTG GGA CTC ATG
    ACG CGC GGT TTT CAA AAT TCC CTG CGC GCG CGA CGG
    GCG CCA GTG TTA CAA CCA ATT AAC C-3′
  • Mutant D-UL130K [0081]
    P-130-for-kons: 5′-CCC GGA GCC TCG AGT TCA GCG TGC
    GGC TCT TTG CCA ACT AGC CTG CGT CAC GGG AAA TAA
    TCG ATT TAT TCA ACA AAG CCA CG-3′
    P-130-rev: 5′-AAC GGC GTC AGG TCT TTG GGA CTC ATG
    ACG CGC GGT TTT CAA AAT TCC CTG CGC GCG CGA CGG
    GCG CCA GTG TTA CAA CCA ATT AAC C-3′
  • Mutant D-UL131 [0082]
    P-131-for: 5′-TGT CTT TCG GTT CCA ACT CTT TCC CCG
    CCC CAT CAC CTC GCC TGT ACT ATG TGT CGA TTT ATT
    CAA CAA AGC GAG G-3′
    P-131-r v: 5′-GCT AGT TGG CAA AGA GCC GCA CGC TGA
    ACT CGA GGC TCC GGG CGT GTG GCG GCC AGT GTT ACA
    ACC AAT TAA CC-3′
  • Mutant D-132 [0083]
    P-132-for: 5′-AAA CCA CGT CCT CGT CAC ACG TCG TTC
    GCG GAC ATA GCA AGA AAT CCA CGT CGC CAC ATC TCG
    AGA CGA TTT ATT CAA CAA AGC CAC G-3′
    P-132-rev: 5′-ATG AGA CAT CAT ACA CAT AGT ACA GGC
    GAG GTG ATG GGG CGG GGA AAG AGT TGG AAC CGA AAG
    5GCC AGT GTT ACA ACC-3′
  • Mutant D-128 [0084]
    P-128-for: 5′-GCA CCC ATC CCA ATC TCA TCG TTT GAG
    CCC GTC GCG CGC GCA GGG AAT TTT GAA AAC CGC GCG
    TCC GAT TTA TTC AAC AAA GCC ACG-3′
    P-128-rev: 5′-TCG CGC GAC ATG AAT TTA GTC GGC GAC
    AGA AAT CTC GAA ACG CGT ATT TCG GAC AAA CAC ACA
    TGC CAG TGT TAC AAC CAA TTA ACC-3′
  • Mutant D-128K [0085]
    P-128-for-kons: 5′-TGC GTT CTG TGG TGC GTC TGG ATC
    TGT CTC TCG ACG TTT CTG ATA GCC ATG TTC CAT CGA
    CGA TTT ATT CAA CAA AGC CAC G-3′
    P-128-kons2: 5-′-CGG CAC ACA TCC AGC CGT TTG TGT
    TTC TTA ACG CTC TCC AGG TAC TGA TCC AGG CCC ACG
    GCC AGT GTT ACA ACC AAT TAA-3′
  • PCR was performed using the plasmid pAcyc177 as a template. FIX-bac-7 mutants were generated in a recombinant proficient [0086] E.coli strain by transformation of the respective purified PCR product into the FIX-bac-7 containing E.coli strain. The mutant clones were selected on chloramphenicol (12.5 μg/ml) and kanamycin (50 μg/ml) containing agarose plates. Subsequently, individual clones were picked and grown in Luria Bertani medium supplemented with chloramph nicol (12.5 μg/ml) and kanamycin (50 μg/ml). DNA of the resulting bacmid clones was analysed by restriction enzyme analyses and Southern Blot hybridization.
  • EXAMPLE 8 Determination of the PMN- and HUVEC Phenotype of the RV-FIX Mutants
  • All RV-FIX (reconstituted virus-FIX) mutant viruses were reconstituted from FIX-bac-7 mutant clones as previously described. Phenotypical testing for PMNL tropism and HUVEC tropism was also performed as previously described. Table 1 provides a summary of the virus mutant phenotypes. As a conclusion of phenotypical testing the mutant viruses we confer that PMNL tropism and induction of microfuesion events is encoded within the genetic region spanning UL131-UL128 genes and HUVEC tropism is encoded within the genetic region of UL-132-128 genes. Disruption of the genes UL131-128 abrogates both HUVEC and PMN tropism phenotype and consequently the genetic region between UL131 and UL128 is essentially required for PMNL tropism and induction of microfusion events of clinical HCMV isolates. Additionally UL132 gene is contributing to the HUVEC phenotype of clinical isolates of HCMV. Taken together we have identified a genetic region (UL132-128) within clinical isolates of HCMV which encodes important pathogenicity features of clinical isolates. The same region may also provide important pathogenicity factors for growth of clinical isolates in other cell types like dendritic cells, monocytes, macrophages, stem cells and may confer the resistance of clinical isolates of HCMV to NK cell recognition by coding for chemokine-like or cytokine-like factors. The genetic region of UL132-128 identified in FIX-bac-7 is therefore an important target for drug design, gene therapy and vaccine dev lopment against HCMV. We expect that the transfer of the UL132-128 genetic region of FIX-bac into the laboratory strain AD169 will confer HUVEC tropism, PMNL tropism and microfusion phenotype characteristics to the fibroblast adapted AD169 laboratory strain or any other virus strain. [0087]
    TABLE 1
    Testing of PMNL-and HUVEC-tropism of RV-FIX mutant viruses
    experiment 1a experiment 2
    PMNL-tropism HUVEC-tropism
    RV-FIX WT positive growth on HUVEC
    RV-FIX D-UL/b′ negative no growth at
    passage 4
    RV-FIX D-UL130 negative no growth at
    passage 4
    RV-FIX D-UL131 negative no growth at
    passage 4
    RV-FIX D-UL132 positive no growth at
    passage 4
    RV-FIX D-UL130-132 negative no growth at
    passage 4
    RV-FIX D-UL130K negative no growth at
    passage 4
    RV-FIX D-UL128 negative no growth at
    passage 4
    RV-FIX D-UL128K negative no growth at
    passage 4
    RV-FIX D-UL45 positive growth on HUVEC
  • EXAMPLE 9 Transcript Mapping and Sequencing of the FIX-bac UL/b′ Region
  • For mapping of the transcripts spanning the UL132-128 [0088] region 5′ RACE (rapid amplification of cDNA ends) and 3′ RACE procedures were performed using the Clontech SMART™ RACE cDNA Amplification kit according to the manufacturers' instructions. RNA was generated from RV-FIX infected fibroblasts (MOI 0.1) at day 7 p.i. using the Qiagen RNA extraction and mRNA purification kits.
  • Gene Specific RACE Primers were as follows: [0089]
  • For rapid amplification of cDNA ends (RACE) from the 5′ RACE cDNA sample the following primers were used: [0090]
    Primer 57-GSP1: 5′-CGG CAC ACA TCC AGC CGT TTG TGT TTC TTA 3′
    Primer 72-GSP2-5′RACE-1: 5′-TAA CGC TCT CCA GGT ACT GAT CCA GGC CCA-3′
    Primer 73-GSP-5′RACE-2: 5′-TCG TCA GTT TGT TGT GTA CGA CCT GGC GTG-3′
    Primer 74-GSP2-5′RACE-3: 5′-TAT TGG CCT CGG TGA ACG TCA ATC GCA CCT-3′
  • For rapid amplification of cDNA ends (RACE) from the 3′ RACE cDNA sample the following primers were used: [0091]
    Primer 56-GSP2: 5′-TGT GTC GGG TGT GGC TGT CTG TTT GTC TGT-3′
    Primer 75-GSP2-3′RACE-1: 5′-TCT GCT TCG TCA CCA CTT TCA CTG CCT GCT-3′
    Primer 76-GSP2-3′RACE-2: 5′-CGC AGA AGA ATG TTG CGA ATT CAT AAA CGT-3′
    Primer 77-GSP2-3′RACE-3: 5′-GCT GCG GTG TCC GGA CGG CGA AGT CTG CTA-3′
    Primer 78-GSP2-3′RACE-4: 5′-CCA GCT GGC AGA TTC CCA AAC TAA TGA AAG-3′.
  • PCR products were subsequently cloned into pT-Adv vector using the AdvanTAge™PCR Cloning Kit (Clontech) according to the manufacturers' guidance. Individual clones were screened for cDNA inserts by DNA preparation and EcoRI restriction cut. Insert containing clones were sequenced using M13 sequencing primers. The respective sequences of the 3′RACE and 5′RACE clones are attached as individual sequencing files: Clones RACE1, 3-4, 3-10, 57-5-2, 57-5, 57-6, 57-7, 72-1-10, 72-2-4, 72-2-17, 72-5, 72-8, 73-8, 74-3, 74-4, 74-5, 74-8, 75-1, 75-3, 75-4, 75-5, 75-17, 76-7, 77-14. [0092]
  • A comparison of the FIX-Bac genomic sequence (designated VR) and individual RACE clones is depicted in FIG. 6: [0093]
  • a) Comparison RACE clone1 to FIX genomic sequence; [0094]
  • b) RACE clone 3-10 to FIX genomic sequence; [0095]
  • c) [0096] RACE clone 1 to RACE clone 3-10;
  • d) [0097] RACE clone 1, 3-10, 75-3, 72-2-4 to FIX genomic sequence (designated VR7);
  • e) [0098] RACE clone 1, 3-4, 3-10, 75-3, 57-5-2, 57-5, 57-6, 72-8, 73-8, 74-5, 75-5 to FIX genomic sequence (designated VR7)
  • The genomic sequence of the UL/b′ region of a clinical bacmid clone PAN1 is attached as sequence file (Seq Id No.2). Parts of the genomic sequence of the UL/b′ region of FlX7-Bac (Seq Id No. 1), TB40E1-Bac (Seq Id No.3) and TB40-E4-Bac (Seq Id No. 4) were also determined and are attached as sequencing files. In FIG. 7 the genomic sequences of PAN-Bac, FIX-Bac and TB40E-Bac were compared in a sequence alignment to the published genomic sequence of Toledo (gb:HCU 33331) and to each other using DNAman software: [0099]
  • Fast sequence alignment of [0100]
  • a) FIX7-HCU 33331; [0101]
  • b) TB40E4-HCU 33331; [0102]
  • c) PAN1-HCU 33331; [0103]
  • d) TB40E4-FIX7; [0104]
  • e) TB40E1-TB40E4; [0105]
  • f) TB40E1-FIX7; [0106]
  • g) PAN1-TB40E4; [0107]
  • h) PAN1-FIX7. [0108]
  • In summary, our RACE PCR analyses have identified several novel transcripts within the UL132 to UL128 region of FIX-bac. Two transcripts (RACE clone 3-10, RACE clone1 and [0109] RACE clone 3′-4) are of particular interest. They show that one major transcript of about 2.0 kb is covering the whole UL131-128 region (see FIG. 6a-c). RACE clone1, RACE clone 3′-4 and RACE clone 3-10 have a ployA tail and are spliced at the 3′ end (position 1721 nt to 1845 nt referred to FIG. 6e). Both, RACE clone 1 and RACE clone 3′-4 have an additional splice at the 5′ end (position 331 nt to 440 nt referred to FIG. 6e). The ATG start codon of these transcripts is at position nt 96 to nt 98 referred to FIG. 6e). The predicted 5′ end of these three transcripts is presumably 10-50 bp upstream of the sequenced end of the clones (nt 50 to nt 100 referred to FIG. 6e). 5′ ends of other transcripts in the UL131-128 region are shown in FIG. 6d-e) and could be mapped to nt 641 in clone 75-5; nt 717 in clone 57-5-2; nt 783 in clone 57-5; nt 438 in clone 74-5; nt 970 in clone 73-8 and nt 1150 in clone 72-8.
  • Since it was shown that the genetic region of UL132 to UL128 is the genetic determinant for induction of microfusion, HUVEC and PMN tropism, the identified transcripts running through this region are candidates for therapeutic intervention, drug design, vaccine development, attenuation of virus virulence, spread and antigenicity of the virus, latency and reactivation as well as immunological control of HCMV by immune cells (NK cells, T-cells, B-cells, dendritic cells, endothelial cells and monocytes, macrophages, hematopoietic precursors and stem cells). Ectopic transfer of the genetic region UL132-128 of FIX-Bac-7 or the respective identified cDNAs into a fibroblast adapted HCMV virus (for example AD169) will confer microfusion characteristics, cell to cell spread of virus material, HUVEC and PMNL tropism and possibly other pathogenicity features to the respective virus. [0110]
  • References [0111]
  • 1. Mocarski, E. S. 1996, Cytomegaloviruses and their replication. p. 2447-2492 in B. N. Fields, D. M. Knipe and P. M. Howley. Fields Virology 3rd edition Lippincott-Raven Publishers, Philadelphia, Pa. [0112]
  • 2. Revello, G. M. et al. 1999, Quantification of Human Cytomegalovirus DNA in Amniotic Fluid of Mothers of Congenitally Infected Fetuses in Journal of Clinical Microbiology, Vol. 37, No. 10, p. 3350-3352 [0113]
  • 3. Revello, G. M. et al. 1999, Prenatal Diagnostic and Prognostic Value of Human Cytomegalovirus Load and IgM Antibody Response in Blood of Congenitally Infected Fetuses in The Journal of Infectious Diseases, 180:1320-3 [0114]
  • 4. Brown J. M., Kaneshima H., Mocarski E. S. 1995, Dramatic Interstrain Differences in the Replication of Human Cytomegalovirus in SCID-hu mice, in The Journal of Infectious Diseases 171(6):1599-603 [0115]
  • 5. Baldanti F. et al. 1998, Use of the Human Cytomegalovirus (HCMV) Antigenemia Assay for Diagnosis and Monitoring of HCMV Infections and Detection of Antiviral Drug Resistance in the Immunocompromised in Journal of [0116] Clinical Virology 11, p. 51-60
  • 6. Gerna G. et al. 1991, Monitoring of Human Cytomegalovirus Infections and Ganciclovir Treatment in Heart Transplant Recipients by Determination of Viremia, Antigenemia, and DNAemia in The Journal of Infectious Diseases 164:488-98 [0117]
  • 7. Revello M. G. et al. 1994, Diagnosis of Human Cytomegalovirus Infection of the Nervous System by pp65 Detection in Polymorphonuclear Leukocytes of Cerebrospinal Fluid from AIDS Patients in The Journal of Infectious Diseases 170(5):1275-9 [0118]
  • 8. Gerna G. et al. 1998, Rising Levels of Human Cytomegalovirus (HCMV) Antigenemia During Initial Antiviral Treatment of Solid-Organ Transplant Recipients with Primary HCMV Infection in Journal of Clinical Microbiology, Vol. 36, No. 4, p. 1113-16 [0119]
  • 9. Gerna G. et al. 1998, Standardization of the Human Cytomegalovirus Antigenemia Assay by Means of In Vitro-Generated pp65-Positive Peripheral Blood Polymorphonuclear Leukocytes in Journal of Clinical Microbiology, Vol. 36, No. 12, p. 3585-89 [0120]
  • 10. Revello et al. 1998, In Vitro Generation of Human Cytomegalovirus pp65 Antigenemia Viremia, and LeukoDNAemia in J. Clin. Invest., Vol. 101, No. 12, p. 2686-92 [0121]
  • 11. Gerna G. et al. 2000, Human Cytomegalovirus Replicates Abortively in Polymorphonuclear Leukocytes After Transfer From Infected Endothelial Cells Via Transient Microfusion Events in Journal of Virology, 74(12):5629-38 [0122]
  • 12. Kemble et al. 1996, Defined Large-Scale Alteration of the Human Cytomegalovirus Genome Constructed by Cotransfection of Overlapping Cosmids in Journal of Virology, Vol. 79, No. 3, p. 2044-48 [0123]
  • 13. Cha T. A. 1996, Human Cytomegalovirus Clincal Isolates Carry at Least 19 Genes Not Found in Laboratory Strains in Journal of Virology, Vol. 70, No. 1, p. 78-83 [0124]
  • 14. Glazer J. P. t al., 1979, Live Cytomegalovirus Vaccination of Renal Transplant Candidates. A Preliminary Trial in Ann. Intern. Med., 91 (5):676-83 [0125]
  • 15. Plotkin S. A., Huygelen C. 1976, Cytomegalovirus Vaccine Prepared in WI-38 in Dev. Biol. Stand., 37:301-5 [0126]
  • 16. Plotkin S. A. et al. 1976, Clinical Trials of Immunization with the Towne 125 Strain of Human Cytomegalovirus in J. Infect. Dis, 134(5):470-5 [0127]
  • 17. Plotkin S. A. et al. 1975, Candidate Cytomegalovirus Strain for Human Vaccination in Infect. Immun., 12(3):521-7 [0128]
  • 18. Plotkin S. A. et al. 1984, Prevention of Cytomegalovirus Disease by Towne Strain Live Attenuated Vaccine in Birth Defects Orig. Artic. Ser. 20(1):271-87 [0129]
  • 19. Plotkin S. A. et al. 1984, Towne-Vaccine-Induced Prevention of Cytomegalovirus Disease after Renal Transplants in Lancet. 1 (8376):528-30 [0130]
  • 20. Quinnan G. V. et al. 1984, Comparative Virulence and Immunogenicity of the Towne Strain and a Nonattenuated Strain of Cytomegalovirus in Ann. Intern. Med. 101(4):478-83 [0131]
  • 21. Fish K. N. et al. 1998, Human Cytomegalovirus Persistently Infects Aortic Endothelial Cells in Journal of Virology 72(7):5661-8 [0132]
  • 22. Gerna G. et al. 1998, Circulating Cytomegalic Cells are Associated with High Human Cytomegalovirus (HCMV) Load in AIDS Patients with Late-Stage Disseminated HCMV Disease in J. Med. Virol. 55(1):64-74 [0133]
  • 23. Sinzger C. and Jahn G. 1996, Human Cytomegalovirus Cell Tropism and Pathogenesis in Intervirology 39(5-6):302-19 [0134]
  • 24. Sinzger C. et al. 1995, Fibroblasts, Epithelial Cells, Endothelial Cells and Smooth Muscle Cells are Major Targets of Human Cytomegalovirus Infection in Lung and Gastrointestinal Tissues in J. Gen. Virol. 76(Pt 4):741-50 [0135]
  • 25. Fish K. N. et al. 1995, Cytomegalovirus Persistence in Macrophages and Endothelial Cells in Scand. J. Infect. Dis. Suppl. 99:34-40 [0136]
  • 26. Percivalle E. et al. 1993, Circulating Endothelial Giant Cells Permissive for Human Cytomegalovirus (HCMV) are Detected in Disseminated HCMV Infections with Organ Involvement in J. Clin. Invest. 92(2):663-70 [0137]
  • 27. Kahl M. et al. 2000, Efficient Lytic Infection of Human Arterial Endothelial Cells by Human Cytomegalovirus Strains in J. Virol 74(16):7628-35 [0138]
  • 28. Kas-Deelen A. M. et al. 2000, Uninfected and Cytomegalic Endothelial Cells in Blood During Cytomegalovirus Infection: Effect of Acute Rejection in J. Infect. Dis. 181(2):721-4 [0139]
  • 29. Revello M. G. et al. 1998, Human Cytomegalovirus in Blood of Immunocompetent Persons during Primary Infection: Prognostic Implications for Pregnancy in The Journal of Infectious Disease 177:1170-5 [0140]
  • 30. Gerna G. et al. 1998, Rising Levels of Human Cytomegalovirus (HCMV) Antigenemia during Initial Antiviral Treatment of Solid-Organ Transplant Recipients with Primary HCMV Infection in Journal of Clinical Microbiology, Vol. 36, No. 4, p. 1113-1{circumflex over ( )}6 [0141]
  • 31. Borst E. M. et al. 1999, Cloning of the Human Cytomegalovirus (HCMV) Genome as an Infectious Bacterial Artificial Chromosome in [0142] Escherichia coli: a New Approach for Construction in HCMV Mutants in Journal of Virology, Vol. 73, No. 10, p. 8320-8329
  • 1 58 1 7646 DNA Human cytomegalovirus 1 actgtggcta gaaactggtt acctgtgaag atggctgact atcctgttgt gtcctggaaa 60 agctttcagc gtcgtaggtg gactttgcag tatgcgggtt agtgaagtta tgtcatttat 120 ttacgtttac gatctcgtat tacaaaccgc ggagaggatg ataccgttcg gccccatgag 180 ttatttttat tcttccggta ggaggcatga agcctctggt gatgcttatt ttgctgagta 240 tgctattggc atgcataggg aaaactgaaa tatgcaaacc cgaagaagtg caattaggaa 300 atcagtgttg tcccccatgt aaacaaggat atcgtgttac aggacaatgt acgcaatata 360 cgagtacaac atgtacactt tgccctaacg gtacgtatgt atcagggctt tacaattgta 420 ccaattgcac tgagtgtaat gacactgagg ttacaattcg taactgcact tccactaata 480 acaccgtatg cgcatctaag aattatacgt cgttgtccgt tccaggcgtc caacatcata 540 agcaacgaca aaatcatacc gcacatgtaa ccgtcaaaca agggaaaagt ggtcgtcata 600 ctctagcctg gttgtccctc ttcatctttc tcgtgggtat catactttta attctctatc 660 ttatagccgc ctatcggagt gagagatgcc aacagtgttg ctcaatcggc aaaattttct 720 accgcaccct gtaagcttcc tgttgttgtt tttacatcac ggtgcgatga agtcacacag 780 ataattacag atgagctgtt catatttttt attatttttt ccaattcctg cactaaaaaa 840 agaagcactt tacggaaccg tgtctgaata tctgtgggga atttaggtac tttttgccga 900 cgtcaggaaa aataagctgt cgcctacata agagcccggt gctatcgtgc tgtcactctt 960 tcttgttgcc ttcgatgtac ggcgtcctgg ctcattacta ctccttcatc agtagcccca 1020 gcgttatggt taattttaaa catcataacg ccgtgcagct gttgtgtgca cggacccgag 1080 acggcactgc cggatgggaa cgtttaaccc atcatgcgtc gtatcacgcg aactatgggg 1140 catacgccgt gttgatggct acatcgcaaa gaaagtccct agtgttacat cgatacagtg 1200 ccgtgacagc cgtggccctg cagctcatgc ctgttgagat gctccgtaag ctagatcagt 1260 cggactgggt acggggtgcc tggatcgtgt cagagacttt tccaaccagc gaccccaaag 1320 gattttggag cgacgatgac tcctcgatgg gtggaagtga tgattgatga tgagaacctg 1380 acaagaaaga cgagagagaa attcagagct gtcattgtag aattagtcta gattcctgat 1440 aataaacggt atcgattttg aaacctaatt gacgtgtgat cgatttttaa acctgtgtgt 1500 tgtgtgattg attggtatgt ggggggatcc gatttcaaag gggggtactt atcgggaatt 1560 gatgtgtcat ggacgcagtt ttgagtgatt ttccgggaat accggatatt acgaattgat 1620 gtaagttacg tcagtaatta agtcaggatg cggtttattt tcggtttgct gattggtctt 1680 gtaatcgtgt atacgtatta ttatgaagta caaagtacgg aactacgttg cccatgcact 1740 aatggtttac acgatccttt atatggcata ttttatgctg gtcgtgaccc tccacgtcct 1800 cccggttgtg aaaaagatca atattattta aaacctccca aaggtaaagc tgtatgctta 1860 ggtccacatc atcatttatc aatatggctc aatggtcaaa atagtagttt atggcacaaa 1920 gtgctggtga cgggaaaaaa cggtaatgga ccacacgtaa ctaagaaagg tgactttcct 1980 agaggtcgaa aaaatataat gatttagctt aatatggata tatacgatag ctgataaatt 2040 ttccacgaaa aaggataacg caatatgttt ttgatatggt gctaacatgg ttacatcatt 2100 cgattataaa ctcgcatatc aaacttttat cggtaccaca cctgtcattg accgcatata 2160 tgttatttac cgtgtgtttc ccggtccatc ttttagaatt ggaagattac gacaggcgtt 2220 gtcgttgtaa caaccaaatt ctgttgaata ccctgccggt cggaactcaa ctgcttaagc 2280 caatcgcagc gagcgaaagc tgcaatcgtc aggaagtgct ggctatttta aaggacaaag 2340 gaaccaagtg tctcaatcct aacgcgcaag ccgtgcgtcg tcacatcaac cggctatttt 2400 ttcggttaat cttagacgag gaacaacgca tttacgacgt agtgtctacc aatattgagt 2460 tcggtgcctg gccagtccct acggcctaca aagcctttct ctggaaatac gccaagaaac 2520 ttaattacca ctactttaga ctgcgttggt gatcatgtcc ctattttacc gtgcggtagc 2580 cctgggcacg ctgagcgctc tggtgtggta tagcactagt atcctggcag agattaacga 2640 agaatcctgc tcctcatctt ctgtggacca cgaagactgc gaggaaccgg acgagatcgt 2700 tcgcgaagag caagactatc gggctctgct ggccttttcc ctagtgattt gcggtacgct 2760 cctcgtcact tgtgtgatct gagacgtcat gctggtagcg tttatgagtc gggcggtggc 2820 cggcacgccg catttcctaa cccgcgcagc atgttgcgct tgctgttcac gctcgtccta 2880 ctggccctcc acgggccgtc tgtcaacgct agccgcgact atgtgcatgt tcggctactg 2940 agctaccgag gcgaccccct ggtcttcaag cacacttttt cgggtgtgcg tcgacccttc 3000 accgagctag gctgggctgt gtgtcgcgac tgggacagta tgcattgcac gcctttctgg 3060 tctaccgatc tggagcagat gaccgactcg gtgcgacgtt acagcacggt gagccccggc 3120 aaggaagtga cgcttcagct tcacgggaac caaaccgtac agccgtcgtt tctaagcttt 3180 acgtgccgcc tgcagctaga acccgtggtg gaaaatgttg gcctctacgt ggcctacgtg 3240 gtcaacgacg gtgaacgccc acagcagttt tttacaccgc aagtagacgt ggtacgcttt 3300 gctctatatc tagaaacgct ctcccggatc gtggaaccgt tagaatcagg tcgcctggca 3360 gtggaatttg atacgcctga cctagctctg gcgcccgatt tagtaagcag cctcttcgtg 3420 gccggacacg gcgagaccga cttttacatg aactggacgc tgcgtcgcag tcagacccac 3480 tacctggagg agatggcctt acaggtggag attctaaagc cccgcggcgt acgtcaccgc 3540 gctattatcc accatcctaa gctacagccg ggcgttggcc tgtggataga tttctgcgtg 3600 taccgctaca acgcgcgcct gacccgcggc tacgtacgat acaccctgtc accgaaagcg 3660 cgcttgcccg caaaagcaga gggttggctg gtgtcactag acagattcat cgtgcagtac 3720 ctcaacacat tgctgattac aatgatggcg gcgatatggg ctcgcgtttt gataacctac 3780 ctggtgtcgc ggcgtcggta gaggcttgcg gaaaccacgt cctcgtcaca cgtcgttcgc 3840 ggacatagca agaaattcac gtcgccacgt ctcgagaatg ccggccccgc ggggtcccct 3900 tcgcgcaaca ttcctggccc tggtcgcgtt cggattgctg tttcagatag acctcagcga 3960 cgctacaaat gtgaccaaca gcacaaacgt ccctactagc accagcagca gaaatagcgt 4020 cgacaacgcc acgagtagcg gacccacgac cgggatcaac atgaccacca cccacgagtc 4080 ttccgttcac aacgtgcgca atgacaaaat catgaaagtg ctggctatcc tcttctacat 4140 cgtgacaggc acctccattt tcagcttcat agcggtactc atcgcggtag tttactcctc 4200 gtgttgcaag cacccgggcc gctttcgttt cgccgacgaa gaagccgtca atctgttgga 4260 cgacacggac gacagtggcg gcagcagccc gtttggcagc ggttcccgac gaggttctca 4320 gatccccgcc ggattttgtt cctcgagccc ttatcagcgg ttggaaactc gggactggga 4380 cgaggaggag gaggcgtccg cggcccgcga gcgcatgaaa catgatcctg agaacgtcat 4440 ctatttcaga aaggatggca acttggacac gtcgttcgtg aatcccaatt atgggagagg 4500 ctcgcctttg accatcgaat ctcacctctc ggacaatgag gaggacccca tcaggtacta 4560 cgtctcggtg tacgatgaac tgaccgcctc ggaaatggaa gaaccttcca acagcaccag 4620 ctggcagatt cccaaactaa tgaaagttgc tacgcaaccc gtctcgctca gagatcccga 4680 gtacgactag gctttttttt ttgtctttcg gttccaactc tttccccgcc ccatcacctc 4740 gcctatacta tgtgtatgat gtctcataat aaagctctct ttctcagtct gcaacatgcg 4800 gctgtgtcgg gtgtggctgt ctgtttgtct gtgcgccgtg gtgctgggtc agtgccagcg 4860 ggagaccgca gaaaaaaacg attattaccg agtaccgcat tactgggacg cgtgctctcg 4920 cgcgctgcct gaccaaaccc gttacaagta tgtggaacag ctcgtggacc tcacgttgaa 4980 ctaccactac gatgcgagcc acggcttgga caactttgac gtgctcaaga ggtgagggta 5040 cgcgctaaag gtgtatgaca acgggaaggt aagggcgaac gggtaacggg taggtaaccg 5100 catggggtgt gaaatgacgt tcggaacctg tgcttgcaga atcaacgtga ccgaggtgtc 5160 gttgctcatc agcgacttta gacgtcagaa ccgtcgcggc ggcaccaaca aaaggaccac 5220 gttcaacgcc gccggttcgc tggcgcctca cgcccggagc ctcgagttca gcgtgcggct 5280 ctttgccaac tagcctgcgt cacgggaaat aatatgctac ggcttctgct tcgtcaccac 5340 tttcactgcc tgcttctgtg cgcggtttgg gcaacgccct gtctggcgtc tccgtggttc 5400 acgctaacgg cgaaccagaa tccgtccccg ccatggtcta aactgacgta tcccaaaccg 5460 catgacgcgg cgacgtttta ctgtcctttt ctctatccct cgcccccacg gtccccctcg 5520 caattcccgg ggttccagcg ggtatcaacg ggtcccgagt gtcgcaacga gaccctgtat 5580 ctgctgtaca accgggaagg ccagaccttg gtggagagaa gctccacctg ggtgaaaaag 5640 gtgatctggt atctgagcgg tcgcaatcag accatcctcc aacggatgcc ccgaacggct 5700 tcgaaaccga gcgacggaaa cgtgcagatc agcgtggaag acgccaagat ttttggagcg 5760 cacatggtgc ccaagcagac caagctgcta cgcttcgtcg tcaacgatgg cacgcgttat 5820 cagatgtgtg tgatgaagct ggagagctgg gcccacgtct tccgggacta cagcgtgtct 5880 tttcaggtgc gattgacgtt caccgaggcc aataaccaga cttacacctt ctgtacccat 5940 cccaatctca tcgtttgagc ccgtcgcgcg cgcagggaat tttgaaaacc gcgcgtcatg 6000 agtcccaaag acctgacgcc gttcttgacg acgttgtggc tgctattggg tcacagccgc 6060 gtgccgcggg tgcgcgcaga agaatgttgc gaattcataa acgtcaacca cccgccggaa 6120 cgctgttacg atttcaaaat gtgcaatcgc ttcaccgtcg cgtacgtatt tttatgattg 6180 tctgcgttct gtggtgcgtc tggatttgtc tctcgacgtt tctgatagcc atgttccatc 6240 gacgatcctc gggaatgcca gagtagattt tcatgaatcc acaggctgcg gtgtccggac 6300 ggcgaagtct gctacagtcc cgagaaaacg gctgagattc gcgggatcgt caccaccatg 6360 acccattcat tgacacgcca ggtcgtacac aacaaactga cgagctgcaa ctacaatccg 6420 taagtctctt cctcgagggc cttacagcct atgggaaagt aagacagagg gacaaaacat 6480 cattaaaaaa aaagtctaat ttcacgtttt gtaccccccc ttcccctccg tgttgtaggt 6540 tatacctcga agctgacggg cgaatacgct gcggcaaagt gaacgacaag gcgcagtacc 6600 tgctgggcgc cgctggcagc gttccctatc gatggatcaa cctggaatac gacaagataa 6660 cccggatcgt gggcctggat cagtacctgg agagcgttaa aaaacacaaa cggctggatg 6720 tgtgccgcgc taaaatgggc tatatgctgc agtgaataat aaaatgtgtg tttgtccgaa 6780 atacgcgttt tgagatttct gtcgccgact aaattcatgt cgcgcgatag tggtgtttat 6840 cgccgataga gatggcgata ttggaaaaat cgatatttga aaatatggca tattgaaaat 6900 gtcgccgatg tgagtttctg tgtaactgat atcgccattt ttccaaaagt gatttttggg 6960 catacgcgat atctggcgat agcgcttata tcgtttacgg gggatggcga tagacgactt 7020 tggtgacttg ggcgattctg tgtgtcgcaa atatcgcagt ttcgatatag gtgacagacg 7080 atatgaggct atatcgccga tagaggcgac atcaagctgg cacatggcca atgcatatcg 7140 atctatacat tgaatcaata ttggccatta gccatattat tcattggtta tatagcataa 7200 atcaatattg gctattggcc attgcatacg ttgtatccat atcataatat gtacatttat 7260 attggctcat gtccaacatt accgccatgt tgacattgat tattgactag ttattaatag 7320 taatcaatta cggggtcatt agttcatagc ccatatatgg agttccgcgt tacataactt 7380 acggtaaatg gcccgcctgg ctgaccgccc aacgaccccc gcccattgac gtcaataatg 7440 acgtatgttc ccatagtaac gccaataggg actttccatt gacgtcaatg ggtggagtat 7500 ttacggtaaa ctgcccactt ggcagtacat caagtgtatc atatgccaag tacgccccct 7560 attgacgtca atgacggtaa atggcccgcc tggcattatg cccagtacat gaccttatgg 7620 gactttccta ctggcagtac atctac 7646 2 16570 DNA Human cytomegalovirus 2 ttttcgggac ggtcggttaa cgtgggtttc aggggaaagc tgtaagcacg ggaaaggagc 60 gctgataggc gaggcaacgc acgaaggtcc aagcggcggc ggcgccgact tccaccatca 120 ggccaacgac cagcatccgc agcagcagcg cccaggcgat ctcgcgctcg acgacggcta 180 cggcgacgag gcagaacatc tcaacccaga cgacaagcgc caggaggtag agcacggccg 240 gaaagaccgc gggcgttaac atctagtcgc ggagaaggaa acaaaaacgg ttgaaaacgg 300 ggactgcgga gttgctttgt tcaggagacg acgacgggag cgaacgggat ggcgctggat 360 acgctagcgg ggctggctat ctgcgtgggt ctagtcatgg gtgtcaccgt gatcgcgtcg 420 tgcgcgctgc tggtgtttta ttattgcgat gagagagggg atggccgtcc gtcgaagctg 480 ttgcaacgta gcattcgacg ttggcgacac ggccttagca ccgaatcctt aaccgctatc 540 ctgccggacg gttcgtccac ggagcagaag atctaccaca cgcgacttta agtcgcggag 600 gaagttacgt gggtaggagg gcaccgtgcc ccgaggcggc gacgggctag cgtataacaa 660 gccgcgcgac atcgggcgag cggcggtgag acagacgcgg gcacgtcggt ggcgatagcc 720 atgagttcca gcaacaatct cgatccctgg attcccgtgt gcgtcgtggt agtcatgacc 780 tccgtagtcc tgttcgcagg tctgcacgtg tacctgtggt acgttcggcg gcagctggtg 840 gcgttctgcc tggagaaggt gtgcgtccgc tgctgcggta aagatgagac gacgccgctg 900 gtggaggatg ccaaccgccg gccgagctgg agatggtgga agtgtcagac gagcgttact 960 aggagatcgc cgcggccgat gggcgccggc ggacgtgact cggcagccgc tgtagggata 1020 aatagtgcga tggcgtttgt gggagaacgc agtagcgatg ggttgcgacg tgcacgatcc 1080 ttcgtggcaa tgccaatggg gcgttcccac gattattgtg gcctggatag catgcgcggc 1140 cctgggaatt tggtgtttgg cgggatggtc gtcgaatttg tcttctggag ccggcattgc 1200 agccgtggtc ggctgttctg ttttcatgat tttcctttgc gcgtacctca tccgttaccg 1260 ggaattcttt aaagactccg taatcgacct cctcacctgc cgatgggttc gctactgcag 1320 ctgcagctgc aagtgcagct gcaaatgcat ctcgggcccc tgcagccgct gctgttcagc 1380 gtgttacaaa gagacgatga tttacgacat ggtccaatac ggtcatcgac ggcgtcccgg 1440 acacggcgac gatcccgaca gggtgatctg cgagatagtg gaaagtcccc cggtttcggc 1500 gccgacggtg tccgtccccc cgccgtcgga ggagtcccac cagcccgtca tcccaccgca 1560 gccgccagca ccgacatcgg aacccaaacc gaagaaaggt agggcgaaag ataaaccgaa 1620 gggtagaccg aaggacaaac ctccgtgtga accgacggtg agtccacaac caccgtcgca 1680 gccgacggcg atgcccggcg gtccgcccga cacgcctccc cccgccatgc cgcagatgcc 1740 acccggcgta gccgaggcgg tacaagctgc cgtgcaggcg gccgtggccg cgactctaca 1800 acaacaacag cagcagcatc agaccggaac gtaacccgcc cccggtgtga tgaggaattt 1860 tccgacttgg cccacatctc cttcctcagt gtttggacaa taaacacatt ccttgccaaa 1920 aaatgacgtt tccagaaatc caaggcataa atgtccgtac accggccctt cccgacacgg 1980 agtttgagat tccaagcagg agagaagatc atggtgtgga tatggctcgg cgtcgggctc 2040 ctcggcggta ccggactggc ttccctggtc ctggccattt ccttatttac ccagcgccga 2100 ggccgcaagc gatccgacga gacttcgtcg cgaggccggc tcccgggtgc tgcttctgat 2160 aagcgtggtg cctgcgcgtg ctgctatcga aatccgaaag aagacgtcgt cgagccgctg 2220 gatctggaac tggggctcat gcgggtggcc acccacccgc cgacgccgca ggtgccgcgg 2280 tgtacgtcgc tctacatagg agaggatggt ctgccgatag ataaacccga gtttcctccg 2340 gcgcggttcg aaatccccga cgtatccacg ccgggaacgc cgaccagcat cggccgatct 2400 ccgtcgcatt gctcctcgtt gagctctttg tcgtcttcga ccagcgtcga cacggtgctg 2460 catcagccgc cgccatcctg gaagccacct ccgccgcccg agcgcaagaa gcggccgcct 2520 acgccgccgg tccgggcccc caccacgcgg ctgtcgtcgc acaggccccc gacgccgata 2580 cccgcgccgc gtaagaacct gagcacgccg cccatcaaga aaacaccgcc gcccacgaaa 2640 cccaagccgg tcggctggac accgccggtg acacccaggc ccttcccgaa aacgccgacg 2700 ccacaaaagc cgccgcggaa tccgagacta ccacgcaccg tcggtctgga gaatctctcg 2760 aaagtgggac tctcgtgtcc ctgtccccga ccccgcacgc cgacggagcc gaccacgctg 2820 cctatcgtgt cggtttccga gttagccccg cctcctcgat ggtcggacat cgaggaactc 2880 ttggaaaagg cggtgcagag cgtcatgaag gacgctgagt ctatgcagat gacctgagac 2940 cgaaggagcg agcgcgtccg ttgtacagtt gtatagcagc acacgccttc cctctttttc 3000 accgcagcta agagagagaa agagagtatg tcagtcaagg gcgtggagat gccagaaatg 3060 acgtgggact tggacgttgg aaataaatgg cggcgtcgaa aggccctgag tcgcattcac 3120 cggttctggg aatgtcggct acgggtgtgg tggctgagtg acgccggcgt aagagaaacc 3180 gacccaccgc gtccccgacg ccgcccgact tggatgaccg cggtgtttca cgttatctgt 3240 gccgttttgc ttacgcttat gattatggcc atcggcgcgc tcatcgcgta cttaagatat 3300 tatcaccagg acagttggcg agacatgctc cacgatctat tttgcggctg tcattatccc 3360 gagaagtgcc gtcggcacca cgagcggcag agaaggagac ggcgagccat ggatgtgccc 3420 gacccggaac tcggcgaccc ggcccgccgg ccgttgaacg aagctatgta ctacggcagc 3480 ggctgtcgct tcgacacggt ggaaatggtg gacgagacga gacccgcgcc gccggcgctg 3540 tcgtcgcccg aaaccggcga cgatagcaac gacgacgcgg ttgccggcgg aggtgctggc 3600 ggggtaacat cacccgcgac tcgtacgacg tcgccgaacg cgctgctgcc ggaatggatg 3660 gatgcggtgc atgtggcggt ccaagccgcc gttcaagcga ccgtgcaagt aagtggcccg 3720 cgggagaacg ccgtatctcc cgctacgtaa gagggttgag ggggccgttc ccgcgcgagt 3780 gctgtacaaa agagagagac tgggacgtag atccggacag aggacggtca ccatggacga 3840 tctgccgctg aatgtcgggt tacccatcat cggcgtgatg ctcgtgctga tcgtggccat 3900 cctctgctat ctggcttacc actggcacga caccttcaaa ctagtgcgca tgtttctgag 3960 ctaccgctgg ctgatccgct gttgcgagct gtacggggag tacgagcgcc ggttcgcgga 4020 cctgtcgtct ctgggcctcg gcgccgtacg gcgggagtcg gacagacgat accgtttctc 4080 cgaacggccc gacgagatct tggtccgttg ggaggaagtg tcttcccagt gcagctacgc 4140 gtcgtcgcgg ataacagacc gccgcgcggg ttcatcgtct tcgtcgtcgg tccacgtcgc 4200 tagccagaga aacagcgtgc ctccgccgga catggcggtg acggcgccgc tgaccgacgt 4260 cgatctgttg aaacccgtga cgggatccgc gacgcagttc accaccgtag ccatggtaca 4320 ttatcatcaa gagtacacgt gaatgagaaa aagaaaaaag aggggagcgg atcgcgataa 4380 tgtcgctttg acattctctg ctcgatctac tcagcgtctg cacgaaacgg cgtccgcacg 4440 gaggcgagcc caagcgtatc tgcagcaagc ggttctttct ctcggtgatg gtggcagcat 4500 cggtggcggg agcttgttcg gacgatggac ggtgaggagt ccctggcgat caggcggctc 4560 ccgggtgtgg agttcaacgg gtggtaatgg tggcggtgat cggtgttaga aaacggtggc 4620 cctggcaaac atatatctac tgtaaatcct ctgctctgtt aataaaaagc acacttttca 4680 catgagttcg taattttatt gtgtagtgga aatttttacg tcattgggaa accccagaat 4740 gaaagagtat aatgtgcaca tcaccgggag ttccctgtca gtacgaatgt acacaacgcg 4800 ggttacatta cgataaactt tccggtaaaa caatgccgat acagcgtgta taacgctgat 4860 tgttacgaca aacgggttcg tatatcaatt atatagtaac ggacatgctg tggatactag 4920 ctttacttgc gcttaccgcg acagcgagtg agactactac aggcaccagt tctaattcca 4980 gtacttccac caatagcagc aacagtactg tagcaccaac cacgccatca gtagcatgcg 5040 ttcaagcttt tggcggcagt aattggacat ttccacagct cgcgctgctt gccgctagcg 5100 gctggacatt atctggactc cttctcttat ttacctgctg cttttgctgc ttttggctag 5160 tacgtaaaat ctgcagctgc tgcggcaact cctccgagtc agagagcaaa acaacccacg 5220 cgtacaccaa tgccgcattc acttcttccg acgcgacgct acccatgggc actacagggt 5280 cgtacactcc cccacaggac ggctcatttc cacctccgcc tcggtgacac agggtaaacc 5340 gaaaccaacg ttgaatctga cgcggtttcg gaaagcctga gacgtcactt tcacaatgac 5400 gttcgtagac acgttgatca taaaacaccg tagaggctaa ggcttcggta gggagacacc 5460 tcaactgttc ctgatgagca cccgcgctct catctcttca gacttgtcat gacccccgct 5520 cagactaacg ccactaccac cgtgcacccg cacgacgcaa aaaacggcag cggcggtagt 5580 gccctgccga ccctcgtcgt tttcggcttc atcgttacgc tacttttctt tctctttatg 5640 ctctactttt ggaacaacga cgtgttccgt aagctgctcc gctgcgcttg gatccagcgc 5700 tgctgcgacc gcttcgacgc gtggcaagac gaggtcatct accgtcgtcc atcacgtcgt 5760 tcccaaagcg acgacgagag tcgtactaac agcgtgtcat cgtacgttct tttatcaccc 5820 gcgtccgatg gcagttttga caacccggca ctgacagaag ccgtcgacag cgtggacgac 5880 tgggcgacca cctcggtttt ttacgccacg tccgacgaaa cggcggacac cgagcgccga 5940 gattcgcagc aactgctcat cgagcttccg ccggagccgc tcccgcccga tgtggtagcg 6000 gccatgcaga aagcggtgaa acgcgctgta cagaacgcgc tgcgccacag ccacgactct 6060 tggcagcttc atcagaccct gtgacgcaga tgaacgttcc ttcttaaaca tccgaggtag 6120 caatgagaca ggtcgcgtac cgccggcgac gcgagagttc ctgcgcggtg ctggtccacc 6180 acgtcggccg cgacggcgac ggcgaggagg aggcagcaaa aaagacctgc aaaaaaaccg 6240 gacgctcagt tgcgggcatc ccgggcgaga agctgcgtcg cacggtggtc accaccacgc 6300 cggcccgacg tttgagcggc cgacacacgg agcaggagca ggcgggcagc gtctctgtga 6360 aaaagggaag aaaagaatca tcatgtgccg cggggagtcg ctccgaactc tgccgtggct 6420 gttctgggcg ctgttgagct gcccgcgact cctcgaatat tcttcctctt cgttcccctt 6480 cgccaccgct gacatcgccg aaaagatgtg ggccgagaac tatgagacca cgtcgccggc 6540 gccggtgttg gtcgccgagg gagagcaagt taccatcccc tgcacggtca tgacacactc 6600 ctggcccatg gtttccattc gcgcacgttt ctgtcgttcc cacgacggta gcgacgagct 6660 catcctggac gccgtcaaag gccatcggct gatgaacgga ctccagtacc gcctgccgta 6720 cgccacttgg aatttctcgc agttgcatct cggccaaata ttctcgctta cttttaacgt 6780 atcgatggac acggccggca tgtacgagtg cgtgctgcgc aattacagcc acggcctcat 6840 catgcaacgc tttgtaattc tcacgcagct ggagacgctc agccggcccg atgaaccttg 6900 ttgcacaccg gcgttaggtc gctactcgtt gggagaccag atctggtcgc cgacgccctg 6960 gcgtctacgg aatcacgact gcggaacgta ccgcggcttt caacgcaact acttctatat 7020 cggccgcgcc gacgccgagg attgctggaa acccgcatgt ccggacgagg aacccgaccg 7080 ctgttggaca gtgatacagc gttaccggct ccccggcgac tgctaccgtt cgcagccaca 7140 cccgccgaaa tttttaccgg tgacgccagc accgccggcc gacatagaca ccgggatgtc 7200 tccctgggcc actcggggaa tcgcggcgtt tttaggattt tggagtattt ttaccgtatg 7260 tttcctatgc tacctgtgtt acctgcagtg ttgtggacgc tggtgtccca cgccgggaag 7320 gggacgacga ggcggtgagg gctatcgacg cctaccgact tacgatagtt accccggtgt 7380 tagaaagatg aagaggtgag aacacgcata aaataaaaaa atgagatatt aaaaaatgta 7440 gtgtgtgaag tgtgaatagt atgattaaaa tatgcggatt gaatgggcgt gtttgttatt 7500 cggatacttt gtgtcatccg ttgggagcga acggtcatta tcctatcgtt accacctgga 7560 atctaattca tctaccaacg tggtttgcaa cggaaacatt tccgtgtttg taaacggcac 7620 cctgggtgtt cggtatgacg ttacaatagg aatcggtagt ccatatccac tagtaggaca 7680 cctcacaatc ataagtcttg aatcttggtt taaaccttgg attttaaaca caacttacaa 7740 taaatatcca ttaaatacaa ctgaaacgtt ttataatgta gacgcggaaa atttacgtcg 7800 cgtatcccaa tatttctaca aactagggtg ggtaaaaacg agtttacaag aaaatcacac 7860 ctgtaacctc acaaacaata tacctaccta tgaatatcag gtaaacgtaa acaacacgga 7920 ttacctaaca ctaatatcct cgggatggca agaccatcta aactacacca ccataaatag 7980 tacacacttt aacctcacaa aatcgaacat aaccagcatt caaaaatatc tcaacactac 8040 ctgcatagaa agactccgta actacacctt ggagcccgta tacaccacaa ctatgcctca 8100 aaacgtaaca acacctcaac acataacaac cactctgtac acaacacctc caaatgcaat 8160 aacaattcaa gatacaactc aaagccatac tgtacagacg ccgtctttta acgacacaca 8220 taacgtgacg gaacacacgt taaacataag ctacgtttta tcacaaaaaa cgaataacac 8280 aacatcaccg tgggtatatg ccatacctat gggcgccaca gccacaatag gcgccagttt 8340 atatatcggg aaacacttta cgccggttag gtccgtatac gaagtatggc gcggtcagta 8400 aagatgattc tgattcaaca catatacccc ccacgatcct cgaacacctt acagcatatg 8460 agcaaaaaac aagaaagtat aaccacaatc acatttgggc gaataacacg ctgtcatcca 8520 ctaacgtcta ttaatctaat gtttaacggg agctgtactg tcgccgttaa aatgtccatg 8580 ggagtcaatg tacctgggta accgctgtca gccttggtga caggtgtaat cacagctgcc 8640 acataactca cgaagcctcc aatcacagca gcacacacaa tcctaacgcc attggcgtgt 8700 ataaaagttc ggaaaactcg acggttgtac ggcacgacaa atcgatgtag tggtatgtgt 8760 ttccagcggg gaccgtgtgc ggtctcttag gttcgctata ctgtggctgg aaactggtta 8820 cctgtgaaga tggctgacta tcctgttctg tcctggaaaa actttcagcg tcgtaggtgg 8880 actttgcagt atgcggatta gtgaagttat gtcatttatt tacgtttacg atctcgtatt 8940 acaaaccgcg gagaggatga taccgttcgg ccccatgagt tatttttatt cttccggtag 9000 gaggcatgaa gcctctggtg atgctcatct gcttcggtgt gtttttacta cagcttgggg 9060 gaagcaaaat gtgtaagccc gatgaggtga agctgggtaa ccaatgctgc ccgccatgcg 9120 gatcaggaca aaaagttaca aaagtgtgta cagagaatag tggcataacg tgtacactgt 9180 gcccaaacgg cacttatctc acagggcttt acaactgtac taattgtact caatgtaacg 9240 acactcagat cacggttcgt aactgcactt ccactaataa caccatatgc gcatctaaga 9300 atcatacatt gttttccact ccaggtgtcc aacatcacaa gcaacgacag caaaatcata 9360 ccgcacatgt aaccgtcaaa caagggaaaa gtggtcgtca tactctagcc tggttgtccc 9420 tcttcatctt tctcgtgggt atcatacttt taattctcta tcttatagcc gcctatcgga 9480 gtgagagatg ccaacagtgt tgctcaatcg gcaaaatttt ctaccgcacc ctgtaagctt 9540 cctgttgttg tttttacatc acggtacgat gaagtcacac agataattac agatgagctg 9600 ttcatatttt ttattatttt ttccaattcc tgcactaaaa aaagaagcac tttacggaac 9660 cgtgtctgaa tatctgtggg gaatttaggt actttttgcc gacgtcagga aaaataagct 9720 gtcgcctaca taagagcccg gttctatcgt gctgtcactc tttcttgttg ccttcgatgt 9780 acggcgtcct ggctcattac tactccttca tcagtagccc cagcgttatg gttaatttta 9840 agcatcataa cgctgtacag ctgttgtgtg cacggacccg agacggcact gccggatggg 9900 aacgtttaac ccatcatgcg tcgtatcacg cgaattatgg ggcatacgcc gtgttgatgg 9960 ctacatcgca aagaaagtcc ctagtgttac atcgatatag tgccgtgaca gccgtggccc 10020 tgcagctcat gcctgttgag atgctgcgca agctagacca gtcggactgg gtgcggggtg 10080 cctggatcgt gtcagagact tttccaacta gcgaccccaa aggattttgg agcgacgatg 10140 actcctcgat gggtggaagt gaagattgat gatgagaacc tgacaagaaa gacgatagag 10200 aaattcagag ctgtcattgt agaattagtc tagattcctg ataataaacg gtatcgattt 10260 tgaaacctaa ttgacgtgtg atcgattttt aaacctgtgt gttgtgtgat tgattggtac 10320 gtggggggat ccgatttcaa agggaggtag ttatcgggaa ttgatgtgtc atggacgcag 10380 ttttgagtga ttttccggga ataccggata ttacgaatta ctgtaagtga cgtcagaaat 10440 taaattataa tgcgtttaat ttttggttta ttgatcattt ttattgttac agatacatgt 10500 aacggcggtt ttggcactga aggtaatggt cgttgtgcat gcatagggta tcatcgactt 10560 ttaggacaat tgcctcgtgg aactttctgg ttaggacatt taccaccagg ctcacattgc 10620 ccaaagggac aagtcatgat aaagataggc caaggaccga tcgtctgttt atccgattat 10680 catcctttat ctaagtggat gtatggaaat cataaatctg gttcggaaac atggcttcag 10740 ataaaaatgg aaggtccaag aaatgctaca gtagtacaaa gatcgaatac tcgtccataa 10800 agataacgaa tgttcataag aattgtactt ttatatgtat gtaagtttat ggatctttat 10860 gtttgtcatc atatacatta gtagtaacat actcaacaca ctatgcgtgt acaatttgtt 10920 ttatagatcc gtagtgtaca ataaatatta cgataaattt ttaacgtcgg atacatttac 10980 gatactaaac gtactgtatt gcattttttg cacgatgttg acatcacatt gctgggctac 11040 aagatggcat aacaaattat tggtacgata cctgtcattg actatatata tgttactgac 11100 cgtatgtccc ctagccgtcc atcttttaga attggaagat tacgacagac gctgtcgttg 11160 taacaatcaa attctgttga atactctgcc aatcggaact gaattgctta agccaatcgc 11220 ggcgagcgaa agctgcaatc gtcaggaagt gctggctatt ttaaaggaca agggcaccaa 11280 gtgtctcaat cctaacgcgc aagccgtgcg tcgtcacatc aaccggctat tttttcggtt 11340 aatattagac gaggaacaac gcatttacga cgtagtgtct accaatattg agttcggtgc 11400 ctggccagtc cctacggcct acaaagcctt tctctggaaa tacgccaaga aactgaacta 11460 ccaccacttc agattgcgct ggtgatcatg tccctatttt accgtgcggt agccctgggc 11520 acactgagcg ctctggtgtg gtacagcact agtatcctgg cagaaattaa cgaagaatcc 11580 tgctcctcat cttctgtgga ccacgaagac tgcgaggaac cggacgagat cgttcgcgaa 11640 gagcaagact atcgggctct gctggccttt tccctagtga tttgcggtac gctcctcgtc 11700 acttgtgtga tctgagacgt catgctggta gcgtttatga gtcgggcggt ggccgacacg 11760 ccgcatttcc taacccgcgc agcatgttgc gcttgctgtt cacgctcgtc ctgctggccc 11820 tccacgggca gtctgtcggc gctagccgcg actatgtgca tgttcggcta ctgagctacc 11880 gaggcgaccc cctggtcttc aagcacactt tctcgggtgt gcgtcgaccc ttcaccgagc 11940 taggctgggc tgcgtgtcgc gactgggaca gtatgcattg cacacccttc tggtctaccg 12000 atctggagca gatgaccgac tcggtgcggc gttacagcac ggtgagcccc ggtaaggaag 12060 tgacgcttca gcttcacggg aaccaaaccg tacagccgtc gtttctaagc tttacgtgcc 12120 gcctgcagct agaacccgtg gtggaaaatg ttggcctcta cgtggcctac gtggtcaacg 12180 acggtgaacg cccacagcag ttttttacac cgcaggtaga cgtggtacgc tttgctctat 12240 atctagaaac gctctcccgg atcgtggaac cgttagaatc aggtcgcctg gcagtggaat 12300 ttgatacgcc tgacctagct ctggcgcccg atttagtaag cagcctcttc gtggccggac 12360 acggcgagac cgacttttac atgaactgga cgctgcgtcg cagtcagacc cactacctgg 12420 aggagatggc cttacaggtg gagattctaa agccacgcgg cgtacgtcac cgcgctatta 12480 tccaccatcc gaagctacag ccgggcgttg gcctgtggat agatttctgc gtgtaccgct 12540 acaacgcgcg cctgacccgc ggctacgtac gatacaccct gtcaccgaaa gcgcgcttgc 12600 ccgcaaaagc agagggttgg ctggtgtcac tagacagatt catcgtgcag tacctcaaca 12660 cattgctgat tacaatgatg gcggcgatat gggctcgcgt tttgataacc tacctggtgt 12720 cgcggcgtcg gtagaggctt gcggaaacca cgtcctcgtc acacgtcgtt cgcggacata 12780 gcaagaaatc cacgtcgcca cgtctcgaga atgccggccc cgcggggtct ccttcgcgca 12840 acattcctgg ccctggtcgc gttcgggttg ctgctttaca tggacttcag cgacgctaca 12900 aatatgacca gcagcacaaa cgtccctact agcaccagca gcagaaatac cgtcgagagc 12960 accacgagta gcgaacctac aaccgaaacc aacatgacca ccgcccgcga atcttccgtt 13020 cacgacgcgc gcaatgatga aatcatgaaa gtgctggcta tcctcttcta catcgtgaca 13080 ggcacctcca ttttcagctt catagcggta ctgatcgcgg tagtttactc ctcgtgttgc 13140 aagcacccgg gccgctttcg tttcgccgac gaagaggccg tcaacctgtt ggacgacacg 13200 gacgacagtg gcggtagcag cccgtttggc agcggttccc gacgaggttc tcagatcccc 13260 gccggatttt gttcctcgag cccttatcag cggttggaaa ctcgggactg ggacgaggag 13320 gaggaggcgt ccgcggcccg cgagcgcatg aaacatgatc ctgagaacgt catctatttc 13380 agaaaggatg gcaacttgga cacgtcgttc gtgaatccca attatgggag aggctcacct 13440 ttgaccatcg aatctcacct ctcggacaat gaggaggacc ccatcaggta ctacgtttcg 13500 gtgtacgatg aactgaccgc ctcggaaatg gaagaacctt cgaacagcac cagctggcag 13560 attcccaaac taatgaaagt tgccatgcaa cccgtctcgc tcagagatcc cgagtacgac 13620 taggcttttt tttttgtctt tcagttccaa ctctttcccc gccccatcac ctcgcctata 13680 ctatgtgtat gatgtctcat aataaagctt tctttctcag tctgcaacat gcggctgtgt 13740 cgggtgtggc tgtctgtttg tctgtgcgcc gtggtgctgg gtcagtgcca gcgggaaacc 13800 gcggaaaaaa acgattatta ccgagtaccg cattactggg acgcgtgctc tcgcgcgctg 13860 cccgaccaaa cccgttacaa gtatgtggaa cagctcgtgg acctcacgtt gaactaccac 13920 tacgatgcga gccacggctt ggacaacttt gacgtgctca agaggtgagg atacgcgcta 13980 aaggtgcatg acaacgggaa ggtaagggcg aacgggtaac gggtaagtaa ccgcatgggg 14040 tatgaaatga cgtttggaac ctgtgcttgc agaatcaacg tgaccgaggt gtcgttgctc 14100 atcagcgact ttagacgtca gaaccgtcgc ggcggcacca acaaaaggac cacgttcaac 14160 gccgccggtt cgctggcgcc gcacgcccgg agcctcgagt tcagcgtgcg gctctttgcc 14220 aactagcctg cgtcacggga aataatatgc tgcggcttct gcttcgtcac cactttcact 14280 gcctgcttct gtgcgcggtt tgggcaacgc cctgtctggc gtctccgtgg tcgacgctaa 14340 cggcaaacca gaatccgtcc ccgccatggt ctaaactgac gtattccaaa ccgcatgacg 14400 cggcgacgtt ttactgtcct tttttctatc cctcgccccc acggtccccc ttgcaattct 14460 cggggttcca gcaggtatca acgggtcccg agtgtcgcaa cgagaccctg tatctgctgt 14520 acaaccggga aggccagacc ttggtagaga gaagctccac ctgggtgaaa aaggtgatct 14580 ggtacctgag cggtcgcaac cagaccatcc ttcaacggat gccccgaacg gcttcgaaac 14640 cgagcgacgg aaacgtgcag atcagcgtgg aagacgccaa gatttttgga gcgcacatgg 14700 tgcccaagca gaccaagctg ctacgcttcg tcgtcaacga tggcacacgt tatcagatgt 14760 gtgtgatgaa gctggagagc tgagctcacg tcttccggga ctacagcgtg tcttttcagg 14820 tgcgattgac gttcaccgag gccaataacc agacttacac cttctgcacc catcccaatc 14880 tcatcgtttg agcccgtcgc gcgcgcaggg aattttgaaa accgcgcgtc atgagtccca 14940 aagacctgac gccgttcttg acggcgttgt ggctgctatt gggtcacagc cgcgtgccgc 15000 gggtgcgcgc agaagaatgt tgcgaattca taaacgtcaa ccacccgccg gaacgctgtt 15060 acgatttcaa aatgtgcaac cgcttcaccg tcgcgtacgt attttcatga ttgtctgcgt 15120 tctgtggtgc gtctggatct gtctctcgac gtttctgata gccatgttcc atcgacgatc 15180 ctcgggaatg ccagagtaga ttttcatgaa tccacaggct gcggtgtccg gacggcgaag 15240 tctgctacag tcccgagaaa acggctgaga ttcgcgggat cgtcaccacc atgacccatt 15300 cattgacgcg ccaggtcgta cacaacaaac tgacgagctg caactacaat ccgtaagtct 15360 cttcctcgag ggccttacag cttatgggaa agtaagacag agagggacaa aacatcatta 15420 aaaaaaaaaa gtctaatttc acgttttgta cccccccttc ccctccgtgt tgtaggttat 15480 acctcgaagc tgacgggcga atacgctgcg gcaaagtgaa cgacaaggcg cagtacctgc 15540 tgggcgccgc tggcagcgtt ccctatcgat ggatcaatct ggaatacgac aagataaccc 15600 ggatcgtggg cctggatcag tacctggaga gcgttaagaa acacaaacgg ctggatgtgt 15660 gccgcgctaa aatgggctat atgctgcagt gaataataaa atgtgtgttt gtccgaaata 15720 cgcgtttcga gatttctgtc gccgactaaa ttcatgtcgc gcgatagtgg tgtttatcgc 15780 cgatagagat ggcgatattg gaagaatcga tatttgaaaa tatggcatat tgaaaatgtc 15840 gccgatgtga gtttctgtgt aactgatatc gccattttta aaaaagtgat ttttgggcat 15900 atgcgatatc tggcgataac gcttatatcg tttacggggg atggcgatag acgactttgg 15960 cgacttgggc gattctgtgt gtcgcaaata tcgcagtttc gatataggtg acagacgata 16020 tgaggccata tcgccgatag aggcgacatc aagttggcac atggccaatg catatcgata 16080 tatacattga atcaatattg gccattagcc acattagtca ttggttatat agtataaatc 16140 aatattggct aatggccatt gcatacgttg tatctatatc ataatatgta catttatatt 16200 ggctcatatc caatataacc gccatgttga cattgattat tgattagtta ttaatagtaa 16260 tcaattacgg ggtcattagt tcatagccca tatatggagt tccgcgttac ataacttacg 16320 gtaaatggcc cgcctggctg accgcccaac gacccccgcc cattgacgtc aataatgacg 16380 tgagttccca tagtaacacc aatagggact ttccattgac gtcaatggga ggagtattta 16440 cggtaaactg cccacttggc agtacatcaa gtgtatcata tgccaagtac gccccctatt 16500 gacgtcaatg acggtaaatg gcccgcctgg cattatgccc agtacatgac cttacgggac 16560 tttcctactt 16570 3 6141 DNA Human cytomegalovirus 3 tttaaacctg tgtgttgtgt gattgattgg tacgtggggg gatccgattt caaagggagg 60 tagttatcgg gagttgatgt gtcatggacg tagttttgag tgattttccg ggaataccgg 120 atattacgaa ttactaatag tgacgtagat aataaaatta taatgcgatt tatttttagt 180 ctgtttggtc ttttgatcgc gttgtgctat aaggtggaaa gtgtggaact acgttgtcgg 240 tgtagcaatg gttcaaatca tcccgtattc ggcgtttttt gggtcggcta taaacctcca 300 gatcctacat gcgacaaaac gcaacacttt ttattacctc cccgacaaac acctgtatgt 360 ttgtctcctg atcattatct atcgaaatgg gttgatggca aacgaagtaa ctggtggcat 420 aaagtgttta taaagaaaaa ctctgataat ggaccacata tagaagacaa aagtgacacc 480 aatagacacc cgccttggcg actataattt tttataaatt gtaaaacgag ttggcaatat 540 cacgtatata gcgaaaaagg taatacaatg tgttttcgac atggttttga catggttaca 600 ccatccgatt ccaaattcgc acatcaaagt cttatcggta cgatacctgt atttgaccgc 660 atatgtgtta ttttccacgt gtcccctatt cgtctatctc ttagaattgg aagattacga 720 caagcgctgt cgttgcaaca accaaattct gttgaatacc ctgccagtcg gaactcaact 780 gcttaagcca atcgcagcga gcgaaagctg caatcgtcag gaagtgctgg ctattttaaa 840 ggacaagggc accaagtgtc tcaatcctaa cgcgcaagct gtgcgtcgtc acatcaaccg 900 gctatttttt cggttaatct tagacgaaga acaacgcatt tacgacgtag tgtctaccaa 960 tattgagttt ggtgcctggc cagcccctac ggcctacaaa gcctttctct ggaaatacgc 1020 caagaaattg aactaccacc acttcagact gcgctggtga tcatgtccct attttaccgt 1080 gcggtagctc tgggcacact aagcgctctg gtgtggtaca gcactagtat cctcgcagag 1140 attaacgaaa attcctgctc ctcatcttct gtggaccacg aagagtgtga ggaaccggac 1200 gagatcgttc gcgaagagca agactatcgg gctctgctgg ccttttccct agtgatttgc 1260 ggtacgctcc tcgtcacttg tgtgatctga gacgtcatgc tggtagtgtt tatgagtcgg 1320 gcggtggccg gcacgccgca tttcctaacc cgcgcagcat gttgcgcttg ctgttcacgc 1380 tcgtcctgct ggccctccac gggccgtctg tcaatgctag ccgcgactat gtgcatgttc 1440 ggctattgag ctaccgaggc gaccccctgg tcttcaagca cactttttcg ggtgtgcgtc 1500 gacccttcac cgagctaggc tgggctgcgt gtcgcgactg ggacagtatg cattgcacgc 1560 ccttctggtc taccgatccg gagcagatga ccgactcggt gcggcgttac agcacagtga 1620 gccccggcaa ggaagtgacg cttcagcttc acgggaacca aaccgtacag ccgtcgtttc 1680 taagctttac gtgccgcctg cagctagaac ccgtggtgga aaatgttggc ctctacgtgg 1740 cctacgtggt caacgacggt gaacgcccac agcagttttt tacaccgcag gtagacgtgg 1800 tacgctttgc tctatatcta gagacgctct cccggatcgt ggaaccgtta gaatcaggtc 1860 gcctggcagt ggaatttgat acgcctgacc tagctctggc gcccgattta gtaagcagcc 1920 tcttcgtggc cggacacggc gagaccgact tttacatgaa ctggacgctg cgtcgcagtc 1980 agacccacta cctggaggag atggccttac aggtggagat tctaaagccc cgcggcgtac 2040 gtcaccgcgc tattatccac catccgaagc tacagccggg cgttggcctg tggatagatt 2100 tctgcgtgta ccgctacaac gcgcgcctga cccgcggcta cgtacgatac accctgtcac 2160 cgaaagcgcg cttgcccgca aaagcagagg gttggctggt gtcactagac agattcatcg 2220 tgcagtacct caacacattg ctgattacaa tgatggcggc gatatgggct cgcgttttga 2280 taacctacct ggtgtcgcgg cgtcggtaga ggcttgcgga aaccacgtcc tcgtcacacg 2340 tcgttcgcgg acatagcaag aaatccacgt cgccacgtct cgagaatgcc ggccccgcgg 2400 ggtccccttc gcgcaacatt cctggccctg gtcgcgttcg ggttgctgct tcagatagac 2460 ctcagcgacg ctacgaatgt gaccagcagc acaaaagtcc ctactagcac cagcagcaga 2520 aatagcgtcg acaatgccac gagtagcgga cccacgaccg ggatcaacat gaccaccacc 2580 cacgagtctt ccgttcacag cgtgcgcaat gacgaaatca tgaaagtgct ggctatcctc 2640 ttctacatcg tgacaggcac ctccattttc agcttcatag cggtactgat cgcggtagtt 2700 tactcctcgt gttgcaagca cccgggccgc tttcgtttcg ccgacgaaga agccgtcaac 2760 ctgttggacg acacggacga cagtggcggt ggcagcccgt ttggcagcgg ttcccgacga 2820 ggttctcaga tccccgccgg attttgttcc tcgagccctt atcagcggtt ggaaactcgg 2880 gactgggacg aggaggagga ggcgtccgcg gcccgcgagc gcatgaaaca tgatcctgag 2940 aacgtcatct atttcagaaa ggatggcaac ttggacacgt cgttcgtgaa tcccaattat 3000 gggagaggct cgcctttgac catcgaatct cacctctcgg acaatgagga agaccccatc 3060 aggtactacg tctcggtgta cgatgaactg accgcctcgg aaatggaaga accttcgaac 3120 agcaccagct ggcagattcc caaactaatg aaagttgcca tgcaacccgt ctcgctcaga 3180 gatcccgagt acgactaggc tttttttttt ttatctttcg gttccaactc tttccccgcc 3240 ccatcacctc gcctatacta tgtgtatgat gtctcataat aaagctttct ttctcagtct 3300 gcaacatgcg gctgtgtcgg gtgtggctgt ctgtttgtct gtgcgccgtg gtgctgggtc 3360 agtgccagcg ggagaccgca gaaaaaaacg attattaccg agtaccgcat tactgggacg 3420 cgtgctctcg cgcgctgccc gaccaaaccc gttacaagta tgtggaacag ctcgtggacc 3480 tcacgttgaa ctaccactac gatgcgagcc acggcttgga caactttgac gtgctcaaga 3540 ggtgaggata cgcgctaaag gtgtatgaca acgggaaggt aagggcgaac gggtaacggg 3600 caggtaaccg catggggtgt gaaatgacgt tcggaacctg tgcttgcaga atcaacgtga 3660 ccgaggtgtc gttgctcatc agcgacttta gacgtcagaa ccgtcgcggc ggcaccaaca 3720 aaaggaccac gttcaacgcc gccggttcgc tggcgccgca cgcccggagc ctcgagttca 3780 gcgtgcggct ctttgccaac tagcctgcgt cacgggaaat aatatgctac ggcttctgct 3840 tcgtcaccac tttcactgcc tgcttctgtg cgcggtttgg gcaacgccct gtctggcgtc 3900 tccgtggtca acgctaacgg cgaaccagaa tccgtccccg ctatggtcta aactgacgta 3960 ttccaaaccg catgacgcgg cgacgtttta ctgtcctttt atctatccct cgcccccacg 4020 gtcccccttg caattctcgg ggttccagcg ggtattaacg ggtcccgagt gtcgcaacga 4080 gaccctgtat ctgctgtaca accgggaagg ccagaccttg gtggagagaa gctccacctg 4140 ggtgaaaaag gtgatctggt acctgagcgg tcgcaaccag accatcctcc aacggatgcc 4200 ccgaacggct tcaaaaccga gcgacggaaa cgtgcagatc agcgtggaag acgccaagat 4260 ttttggagcg cacatggtgc ccaagcagac caagctgcta cgcttcgtcg tcaacgatgg 4320 cacacgttat cagatgtgtg tgatgaagct ggagagctgg gctcacgtct tccgggacta 4380 cagcgtgtct tttcaggtgc gattgacgtt caccgaggcc aataaccaga cttacacctt 4440 ctgcacccat cccaatctca tcgtttgagc ccgtcgcgcg cgcagggaat tttgaaaacc 4500 gcgcgtcatg agtcccaaaa acctgacgcc gttcttgacg gcgttgtggc tgttattgga 4560 tcacagccgc gtgccgcggg tacgcgcaga agaatgttgc gaattcataa acgtcaacca 4620 cccgccggaa cgctgttacg atttcaaaat gtgcaatcgc ttcaccgtcg cgtacgtatt 4680 ttcatgattg tctgcgttct gtggtgcgtc tggatctgtc tctcgacgtt tctgatagcc 4740 atgttccatc gacgatcctc gggaatgcca gagtagattt tcatgaatcc acaggctgcg 4800 gtgtccggac ggcgaagtct gctacagtcc cgagaaaaac ggctgagatt cgcgggatcg 4860 tcaccaccat gacccattca ttgacacgcc aggtcgtaca caacaaactg acgagctgca 4920 actacaatcc gtaagtctct tcctcgaggg ccttacagcc tatgggagag taagacagag 4980 agggacaaaa catcattaaa aaaaaaagtc taatttcacg ttttgtaccc cccttccgtg 5040 ttgtaggtta tacctcgaag ctgacgggcg aatacgctgc ggcaaagtga acgacaaggc 5100 gcagtacctg ctgggcgccg ctggcagcgt tccctatcga tggatcaacc tggaatacga 5160 caagataacc cggatcgtgg gcctggatca gtacctggag agcgttaaga aacacaaacg 5220 gctggatgtg tgccgcgcta aaatgggcta tatgctgcag tgaataataa aatgtgtgtt 5280 tgtccgaaat acgcgttttg agatttctgt cgccgactaa attcatgtcg cgcgatagtg 5340 gtgtttatcg ccgatagaga tggcgatatt ggaaaaatca atatttgaaa atatggcata 5400 ttgaaaatgt cgccgatgtg agtttctgtg taactgatat cgccattttt ccaaaagtga 5460 tttttgggca tacgcgatat ctggcgatag cgcttatatc gtttacgggg gatggcgata 5520 gacgactttg gcgacttggg cgattcggtg tgtcgcaaat atcgcagttt cgatataggt 5580 gacagacgat atgaggccat atcgccgata gaggcgacat cgagttggca catggccaat 5640 ggatatcgat atatacattg catcaatatt ggccattagc catattagtc attggttata 5700 tagcgtaaat caatattggc taatggccat tgcatacgtt gcatctatat cataatgtgt 5760 acatttatat tggctcatgt ccaatatgac cgccatgttg acattgatta ttgactagtt 5820 attaatagta atcaattacg gggtcattag ttcatagccc atatatggag ttccgcgtta 5880 cataacttac ggtaaatggc ccgcctggct gaccgcccaa cgacccccgc ccattgacgt 5940 caataatgac gtgggttccc atagtaacgc caatagggac tttccattga cgtcaatggg 6000 aggagtattt acggtaaact gcccacttgg cagtacatca agtgtatcat atgccaagta 6060 cgccccctat tgacgtcaat gacggtaaat ggcccgcctg gcattatgcc cagtacatga 6120 ccttacggga ctttcctact t 6141 4 6138 DNA Human cytomegalovirus 4 tttaaacctg tgtgttgtgt gattgattgg tacgtggggg gatccgattt caaagggagg 60 tagttatcgg gagttgatgt gtcatggacg tagttttgag tgattttccg ggaataccgg 120 atattacgaa ttactgatag tgacgtagat aataaaatta taatgcgatt tatttttagt 180 ctgtttggtc ttttgatcgc gttgtgctat aaggtggaaa gtgtggaact acgttgtcgg 240 tgtagcaatg gttcaaatca tcccgtattc ggcgtttttt gggtcggcta taaacctcca 300 gatcctacat gcgacaaaac gcaacacttt ttattacctc cccgacaaac acctgtatgt 360 ttgtctcctg atcattatct atcgaaatgg gttgatggca aacgaagtaa ctggtggcat 420 aaagtgttta taaagaaaaa ctctgataat ggaccacata tagaagacaa aagtgacacc 480 aatagacacc cgccttggcg actataattt tttataaatt gtaaaacgag ttggcaatat 540 cacgtatata gcgaaaaagg taatacaatg tgttttcgac atggttttga catggttaca 600 ccatccgatt ccaaattcgc acatcaaagt cttatcggta cgatacctgt atttgaccgc 660 atatgtgtta ttttccacgt gtcccctatt cgtctatctc ttagaattgg aagattacga 720 caagcgctgt cgttgcaaca accaaattct gttgaatacc ctgccagtcg gaactcaact 780 gcttaagcca atcgcagcga gcgaaagctg caatcgtcag gaagtgctgg ctattttaaa 840 ggacaagggc accaagtgtc tcaatcctaa cgcgcaagct gtgcgtcgtc acatcaaccg 900 gctatttttt cggttaatct tagacgaaga acaacgcatt tacgacgtag tgtctaccaa 960 tattgagttt ggtgcctggc cagcccctac ggcctacaaa gcctttctct ggaaatacgc 1020 caagaaattg aactaccacc acttcagact gcgctggtga tcatgtccct attttaccgt 1080 gcggtagctc tgggcacact aagcgctctg gtgtggtaca gcactagtat cctcgcagag 1140 attaacgaaa attcctgctc ctcatcttct gtggaccacg aagagtgtga ggaaccggac 1200 gagatcgttc gcgaagagca agactatcgg gctctgctgg ccttttccct agtgatttgc 1260 ggtacgctcc tcgtcacttg tgtgatctga gacgtcatgc tggtagtgtt tatgagtcgg 1320 gcggtggccg gcacgccgca tttcctaacc cgcgcagcat gttgcgcttg ctgttcacgc 1380 tcgtcctgct ggccctccac gggccgtctg tcaatgctag ccgcgactat gtgcatgttc 1440 ggctattgag ctaccgaggc gaccccctgg tcttcaagca cactttttcg ggtgtgcgtc 1500 gacccttcac cgagctaggc tgggctgcgt gtcgcgactg ggacagtatg cattgcacgc 1560 ccttctggtc taccgatccg gagcagatga ccgactcggt gcggcgttac agcacagtga 1620 gccccggcaa ggaagtgacg cttcagcttc acgggaacca aaccgtacag ccgtcgtttc 1680 taagctttac gtgccgcctg cagctagaac ccgtggtgga aaatgttggc ctctacgtgg 1740 cctacgtggt caacgacggt gaacgcccac agcagttttt tacaccgcag gtagacgtgg 1800 tacgctttgc tctatatcta gagacgctct cccggatcgt ggaaccgtta gaatcaggtc 1860 gcctggcagt ggaatttgat acgcctgacc tagctctggc gcccgattta gtaagcagcc 1920 tcttcgtggc cggacacggc gagaccgact tttacatgaa ctggacgctg cgtcgcagtc 1980 agacccacta cctggaggag atggccttac aggtggagat tctaaagccc cgcggcgtac 2040 gtcaccgcgc tattatccac catccgaagc tacagccggg cgttggcctg tggatagatt 2100 tctgcgtgta ccgctacaac gcgcgcctga cccgcggcta cgtacgatac accctgtcac 2160 cgaaagcgcg cttgcccgca aaagcagagg gttggctggt gtcactagac agattcatcg 2220 tgcagtacct caacacattg ctgattacaa tgatggcggc gatatgggct cgcgttttga 2280 taacctacct ggtgtcgcgg cgtcggtaga ggcttgcgga aaccacgtcc tcgtcacacg 2340 tcgttcgcgg acatagcaag aaatccacgt cgccacgtct cgagaatgcc ggccccgcgg 2400 ggtccccttc gcgcaacatt cctggccctg gtcgcgttcg ggttgctgct tcagatagac 2460 ctcagcgacg ctacgaatgt gaccagcagc acaaaagtcc ctactagcac cagcagcaga 2520 aatagcgtcg acaatgccac gagtagcgga cccacgaccg ggatcaacat gaccaccacc 2580 cacgagtctt ccgttcacag cgtgcgcaat gacgaaatca tgaaagtgct ggctatcctc 2640 ttctacatcg tgacaggcac ctccattttc agcttcatag cggtactgat cgcggtagtt 2700 tactcctcgt gttgcaagca cccgggccgc tttcgtttcg ccgacgaaga agccgtcaac 2760 ctgttggacg acacggacga cagtggcggt ggcagcccgt ttggcagcgg ttcccgacga 2820 ggttctcaga tccccgccgg attttgttcc tcgagccctt atcagcggtt ggaaactcgg 2880 gactgggacg aggaggagga ggcgtccgcg gcccgcgagc gcatgaaaca tgatcctgag 2940 aacgtcatct atttcagaaa ggatggcaac ttggacacgt cgttcgtgaa tcccaattat 3000 gggagaggct cgcctttgac catcgaatct cacctctcgg acaatgagga agaccccatc 3060 aggtactacg tctcggtgta cgatgaactg accgcctcgg aaatggaaga accttcgaac 3120 agcaccagct ggcagattcc caaactaatg aaagttgcca tgcaacccgt ctcgctcaga 3180 gatcccgagt acgactaggc tttttttttt ttatctttcg gttccaactc tttccccgcc 3240 ccatcacctc gcctatacta tgtgtatgat gtctcataat aaagctttct ttctcagtct 3300 gcaacatgcg gctgtgtcgg gtgtggctgt ctgtttgtct gtgcgccgtg gtgctgggtc 3360 agtgccagcg ggagaccgca gaaaaaaacg attattaccg agtaccgcat tactgggacg 3420 cgtgctctcg cgcgctgccc gaccaaaccc gttacaagta tgtggaacag ctcgtggacc 3480 tcacgttgaa ctaccactac gatgcgagcc acggcttgga caactttgac gtgctcaaga 3540 ggtgaggata cgcgctaaag gtgtatgaca acgggaaggt aagggcgaac gggtaacggg 3600 caggtaaccg catggggtgt gaaatgacgt tcggaacctg tgcttgcaga atcaacgtga 3660 ccgaggtgtc gttgctcatc agcgacttta gacgtcagaa ccgtcgcggc ggcaccaaca 3720 aaaggaccac gttcaacgcc gccggttcgc tggcgccgca cgcccggagc ctcgagttca 3780 gcgtgcggct ctttgccaac tagcctgcgt cacgggaaat aatatgctac ggcttctgct 3840 tcgtcaccac tttcactgcc tgcttctgtg cgcggtttgg gcaacgccct gtctggcgtc 3900 tccgtggtca acgctaacgg cgaaccagaa tccgtccccg ctatggtcta aactgacgta 3960 ttccaaaccg catgacgcgg cgacgtttta ctgtcctttt atctatccct cgcccccacg 4020 gtcccccttg caattctcgg ggttccagcg ggtattaacg ggtcccgagt gtcgcaacga 4080 gaccctgtat ctgctgtaca accgggaagg ccagaccttg gtggagagaa gctccacctg 4140 ggtgaaaaag gtgatctggt acctgagcgg tcgcaaccag accatcctcc aacggatgcc 4200 ccgaacggct tcaaaaccga gcgacggaaa cgtgcagatc agcgtggaag acgccaagat 4260 ttttggagcg cacatggtgc ccaagcagac caagctgcta cgcttcgtcg tcaacgatgg 4320 cacacgttat cagatgtgtg tgatgaagct ggagagctgg gctcacgtct tccgggacta 4380 cagcgtgtct tttcaggtgc gattgacgtt caccgaggcc aataaccaga cttacacctt 4440 ctgcacccat cccaatctca tcgtttgagc ccgtcgcgcg cgcagggaat tttgaaaacc 4500 gcgcgtcatg agtcccaaaa acctgacgcc gttcttgacg gcgttgtggc tgttattgga 4560 tcacagccgc gtgccgcggg tacgcgcaga agaatgttgc gaattcataa acgtcaacca 4620 cccgccggaa cgctgttacg atttcaaaat gtgcaatcgc ttcaccgtcg cgtacgtatt 4680 ttcatgattg tctgcgttct gtggtgcgtc tggatctgtc tctcgacgtt tctgatagcc 4740 atgttccatc gacgatcctc gggaatgcca gagtagattt tcatgaatac acaggctgcg 4800 gtgtccggac ggcgaagtct gctacagtcc cgagaaaacg gctgagattc gcgggatcgt 4860 caccaccatg acccattcat tgacacgcca ggtcgtacac aacaaactga cgagctgcaa 4920 ctacaatccg taagtctctt cctcgagggc cttacagcct atgggagagt aagacagaga 4980 gggacaaaac atcattaaaa aaaaaagtct aatttcacgt tttgtacccc ccttccgtgt 5040 tgtaggttat acctcgaagc tgacgggcga atacgctgcg gcaaagtgaa cgacaaggcg 5100 cagtacctgc tgggcgccgc tggcagcgtt ccctatcgat ggatcaacct ggaatacgac 5160 aagataaccc ggatcgtggg cctggatcag tacctggaga gcgttaagaa acacaaacgg 5220 ctggatgtgt gccgcgctaa aatgggctat atgctgcagt gaataataaa atgtgtgttt 5280 gtccgaaata cgcgttttga gatttctgtc gccgactaaa ttcatgtcgc gcgatagtgg 5340 tgtttatcgc cgatagagat ggcgatattg gaaaaatcaa tatttgaaaa tatggcatat 5400 tgaaaatgtc gccgatgtga gtttctgtgt aactgatatc gccatttttc caaaagtgat 5460 ttttgggcat acgcgatatc tggcgatagc gcttatatcg tttacggggg atggcgatag 5520 acgactttgg cgacttgggc gattcggtgt gtcgcaaata tcgcagtttc gatataggtg 5580 acagacgata tgaggccata tcgccgatag aggcgacatc gagttggcac atggccaatg 5640 gatatcgata tatacattgc atcaatattg gccattagcc atattagtca ttggttatat 5700 agcgtaaatc aatattggct aatggccatt gcatacgttg catctatatc ataatgtgta 5760 catttatatt ggctcatgtc caatatgacc gccatgttga cattgattat tgactagtta 5820 ttaatagtaa tcaattacgg ggtcattagt tcatagccca tatatggagt tccgcgttac 5880 ataacttacg gtaaatggcc cgcctggctg accgcccaac gacccccgcc cattgacgtc 5940 aataatgacg tgggttccca tagtaacgcc aatagggact ttccattgac gtcaatggga 6000 ggagtattta cggtaaactg cccacttggc agtacatcaa gtgtatcata tgccaagtac 6060 gccccctatt gacgtcaatg acggtaaatg gcccgcctgg cattatgccc agtacatgac 6120 cttacgggac tttcctac 6138 5 1245 DNA Human cytomegalovirus 5 cggcacacat ccagccgttt gtgtttctta acgctctcca ggtactgatc caggcccacg 60 atccgggtta tcttgtcgta ttccaggttg atccatcgat agggaacgct gccagcggcg 120 cccagcaggt actgcgcctt gtcgttcact ttgccgcagc gtattcgccc gtcagcttcg 180 aggtataacg gattgtagtt gcagctcgtc agtttgttgt gtacgacctg gggtgtcaat 240 gaatgggtca tggtggtgac gatcccgcga atctcagccg ttttctcggg actgtagcag 300 acttcgccgt ccggacaccg cagcctgtgg attcatgaaa atctactctg gcattcccga 360 ggatcgtcga tggaacatgg ctatcagaaa cgtcgagaga cagatccaga cgcaccacag 420 aacgcagaca atcatgaaaa tacgtacgcg acggtgaagc gattgcacat tttgaaatcg 480 taacagcgtt ccggcgggtg gttgacgttt atgaattcgc aacattcttc tgcgcgtacc 540 cgcggcacgc ggctgtgacc caatagcagc cacaacgccg tcaagaacgg cgtcaggttt 600 ttgggactca tgacgcgcgg ttttcaaaat tccctgcgcg cgcgacgggc tcaaacgatg 660 agattgggat gggtgcagaa ggtgtaagtc tggttattgg cctcggtgaa cgtcaatcgc 720 acctgaaaag acacgctgta gtcccggaag acgtgggccc agctctccag tttcatcaca 780 cacatctgat aacgtgtgcc gtcgttgacg acgaaacgta gcagcttggt ctgcttgggc 840 accatgtgcg ctccaaaaat cttggcgtct tccacgctga tctgcacgtt tccgtcgctc 900 ggtttcgaag ccgttcgggg catccgttgg aggatggtct gattgcgacc gctcagatac 960 cagatcacct ttttcaccca ggtggagctt ctctccacca aggtctggcc ttcccggttg 1020 tacagcagat acagggtctc gttgcgacac tcgggacccg ttgatacccg ctggaacccc 1080 gggaattgcg agggggaccg tgggggcgag ggatagagaa aaggacagta aaacgtcgcc 1140 gcgtcatgcg gtttgggata cgtcagttta gaccatggcg gggacggatt ctccccgcgt 1200 actctgcgtt gttaccactg cttgccctat agtgagtcgt attag 1245 6 1814 DNA Human cytomegalovirus 6 tgtgtcgggt gtggctgtct gtttgtctgt gcgccgtggt gctgggtcag tgccagcggg 60 agaccgcaga aaaaaacgat tattaccgag taccgcatta ctgggacgcg tgctctcgcg 120 cgctgcctga ccaaacccgt tacaagtatg tggaacagct cgtggacctc acgttgaact 180 accactacga tgcgagccac ggcttggaca actttgacgt gctcaagaga atcaacgtga 240 ccgaggtgtc gttgctcatc agcgacttta gacgtcagaa ccgtcgcggc ggcaccaaca 300 aaaggaccac gttcaacgcc gccggttcgc tggcgcctca cgcccggagc ctcgagttca 360 gcgtgcggct ctttgccaac tagcctgcgt cacgggaaat aatatgctac ggcttctgct 420 tcgtcaccac tttcactgcc tgcttctgtg cgcggtttgg gcaacgccct gtctggcgtc 480 tccgtggttc acgctaacgg cgaaccagaa tccgtccccg ccatggtcta aactgacgta 540 tcccaaaccg catgacgcgg cgacgtttta ctgtcctttt ctctatccct cgcccccacg 600 gtccccctcg caattcccgg ggttccagcg ggtatcaacg ggtcccgagt gtcgcaacga 660 gaccctgtat ctgctgtaca accgggaagg ccagaccttg gtggagagaa gctccacctg 720 ggtgaaaaag gtgatctggt atctgagcgg tcgcaatcag accatcctcc aacggatgcc 780 ccgaacggct tcgaaaccga gcgacggaaa cgtgcagatc agcgtggaag acgccaagat 840 ttttggagcg cacatggtgc ccaagcagac caagctgcta cgtttcgtcg tcaacgatgg 900 cacacgttat cagatgtgtg tgatgaaact ggagagctgg gcccacgtct tccgggacta 960 cagcgtgtct tttcaggtgc gattgacgtt caccgaggcc aataaccaga cttacacctt 1020 ctgcacccat cccaatctca tcgtttgagc ccgtcgcgcg cgcagggaat tttgaaaacc 1080 gcgcgtcatg agtcccaaaa acctgacgcc gttcttgacg gcgttgtggc tgctattggg 1140 tcacagccgc gtgccgcggg tacgcgcaga agaatgttgc gaattcataa acgtcaacca 1200 cccgccggaa cgctgttacg atttcaaaat gtgcaatcgc ttcaccgtcg cgtacgtatt 1260 ttcatgattg tctgcgttct gtggtgcgtc tggatctgtc tctcgacgtt tctgatagcc 1320 atgttccatc gacgatcctc gggaatgcca gagtagattt tcatgaatcc acaggctgcg 1380 gtgtccggac ggcgaagtct gctacagtcc cgagaaaacg gctgagattc gcgggatcgt 1440 caccaccatg acccattcat tgacacgcca ggtcgtacac aacaaactga cgagctgcaa 1500 ctacaatccg ttatacctcg aagctgacgg gcgaatacgc tgcggcaaag tgaacgacaa 1560 ggcgcagtac ctgctgggcg ccgctggcag cgttccctat cgatggatca acctggaata 1620 cgacaagata acccggatcg tgggcctgga tcagtacctg gagagcgtta agaaacacaa 1680 acggctggat gtgtgccgcg ctaaaatggg ctatatgctg cagtgaataa taaaatgtgt 1740 gtttgtcaaa aaaaaaaaaa aaaaaaagta ctctgcgttg ttaccactgc ttgccctata 1800 gtgagtcgta ttag 1814 7 1951 DNA Human cytomegalovirus 7 gaattcggct ttgtgtcggg taaggctgtc tgtttgtctg tgcgccgtgg tgctgggtca 60 gtgccagcgg gagaccgcag aaaaaaacga ttattaccga gtaccgcatt actgggacgc 120 gtgctctcgc gcgctgcctg accaaacccg ttacaagtat gtggaacagc tcgtggacct 180 cacgttgaac taccactacg atgcgagcca cggcttggac aactttgacg tgctcaagag 240 gtgagggtac gcgctaaagg tgtatgacaa cgggaaggta agggcgaacg ggtaacgggt 300 aggtaaccgc atggggtgtg aaatgacgtt cggaacctgt gcttgcagaa tcaacgtgac 360 cgaggtgtcg ttgctcatca gcgactttag acgtcagaac cgtcgcggcg gcaccaacaa 420 aaggaccacg ttcaacgccg ccggttcgct ggcgcctcac gcccggagcc tcgagttcag 480 cgtgcggctc tttgccaact agcctgcgtc acgggaaata atatgctacg gcttctgctt 540 cgtcacactt tcactgcctg cttctgtgcg cggtttgggc aacgccctgt ctggcgtctc 600 cgtggttcac gctaacggcg aaccagaatc cgtccccgcc atggtctaaa ctgacgtatc 660 ccaaaccgca tgacgcggcg acgttttact gtccttttct ctatccctcg cccccacggt 720 ccccctcgca attcccgggg ttccagcggg tatcaacggg tcccgagtgt cgcaacgaga 780 ccctgtatct gctgtacaac cgggaaggcc agaccttggt ggagagaagc tccacctggg 840 tgaaaaaggc gatctggtat ctgagcggtc gcaatcagac catcctccaa cggatgcccc 900 gaacggcttc gaaaccgagc gacggaaacg tgcagatcag cgtggaagac gccaagattt 960 ttggagcgca catggtgccc aagcagacca agctgctacg tttcgtcgtc aacgatggca 1020 cacgttatca gatgtgtgtg atgaaactgg agagctgggc ccacgtcttc cgggactaca 1080 gcgtgtcttt tcaggtgcga ttgacgttca ccgaggccaa taaccagact tacaccttct 1140 gcacccatcc caatctcatt gtttgagccc gtcgcgcgcg cagggaattt tgaaaaccgc 1200 gcgtcatgag tcccaaaaac ctgacgccgt tcttgacggc gttgtggctg ctattgggtc 1260 acagccgcgt gccgcgggta cgcgcagaag aatgttgcga attcataaac gtcaaccacc 1320 cgccggaacg ctgttacgat ttcaaaatgt gcaatcgctt caccgtcgcg tacgtatttt 1380 catgattgtc tgcgttctgt ggtgcgtctg gatctgtctc tcgacgtttc tgatagccat 1440 gttccatcga cgatcctcgg gaatgccaga gtagattttc atgaatccac aggctgcggt 1500 gtccggacgg cgaagtctgc tacagtcccg agaaaacggc tgagattcgc gggatcgtca 1560 ccaccatgac ccattcattg acacgccagg tcgtacacaa caaactgacg agctgcaact 1620 acaatccgtt atacctcgaa gctgacgggc gaatacgctg cggcaaagtg aacgacaagg 1680 cgcagtacct gctgggcgcc gctggcagcg ttccctatcg atggatcaac ctggaatacg 1740 acaagataac ccggatcgtg ggcctggatc agtacctgga gagcgttaag aaacacaaac 1800 ggctggatgt gtgccgcgct aaaatgggct atatgctgca gtgaataata aaatgtgtgt 1860 ttgtccggaa aaaaaaaaaa aaaagaaaaa aaagtactct gcgttgttac cactgcttgc 1920 cctatagtga gtcgtattag aagccgaatt c 1951 8 651 DNA Human cytomegalovirus 8 gaattcggct tctaatacga ctcactatag ggcaagcagt ggtaacaacg cagagtacgc 60 gggggtcctt ttctctatcc ctcgccccca cggtccccct cgcaattccc ggggttccag 120 cgggtatcaa cgggtcccga gtgtcgcaac gagaccctgt atctgctgta caaccgggaa 180 ggccagacct tggtggagag aagctccacc tgggtgaaaa aggtgatctg gtatctgagc 240 ggtcgcaatc agaccatcct ccaacggatg ccccgaacgg cttcgaaacc gagcgacgga 300 aacgtgcaga tcagcgtgga agacgccaag atttttggag cgcacatggt gcccaagcag 360 accaagctgc tacgtttcgt cgtcaacgat ggcacacgtt atcagatgtg tgtgatgaaa 420 ctggagagct gggcccacgt cttccgggac tacagcgtgt cttttcaggt gcgattgacg 480 ttcaccgagg ccaataacca gacttacacc ttctgcaccc atcccaatct catcgtttga 540 gcccgtcgcg cgcgcaggga attttgaaaa ccgcgcgtca tgagtcccaa aaacctgacg 600 ccgttcttga cggcgttgtg gctgctattg ggtcacagcc gcgtgccgcg g 651 9 581 DNA Human cytomegalovirus 9 gaattcggct tcggcacaca tccagccgtt tgtgtttctt aacgctctcc aggtactgat 60 ccaggcccac gatccgggtt atcttgtcgt attccaggtt gatccatcga tagggaacgc 120 tgccagcggc gcccagcagg tactgcgcct tgtcgttcac tttgccgcag cgtattcgcc 180 cgtcagcttc gaggtataac ggattgtagt tgcagctcgt cagtttgttg tgtacgacct 240 ggcgtgtcaa tgaatgggtc atggtggtga cgatcccgcg aatctcagcc gttttctcgg 300 gactgtagca gacttcgccg tccggacacc gcagcctgtg gattcatgaa aatctactct 360 ggcattcccg gggatcgtcg atggaacatg gctatcagaa acgtcgagag acagatccag 420 acgcaccaca gaacgcagac gatcatgaaa atacgtacgc gacggtgaag cgattgcaca 480 ttttgaaatc gtaacagcgt tccggcgggt gtttgacgtt tatgaattcg caacattctt 540 ctgcgcgtac ccgcggcacg cggctgtgac ccaatagcag c 581 10 547 DNA Human cytomegalovirus 10 gaattcggct tcggcacaca tccagccgtt tgtgtttctt aacgctctcc aggtactgat 60 ccaggcccac gatccgggtt atcttgtcgt attccaggtt gatccatcga tagggaacgc 120 tgccagcggc gcccagcagg tactgcgcct tgtcgttcac tttgccgcag cgtattcgcc 180 cgtcagcttc gaggtataac ggattgtagt tgcagctcgt cagtttgttg tgtacgacct 240 ggcgtgtcaa tgaatgggtc atggtggtga cgatcccgcg aatctcagcc gttttctcgg 300 gactgtagca gacttcgccg tccggacacc gcagcctgtg gattcatgaa aatctactct 360 ggcattcccg aggatcgtcg atggaacatg gctatcagaa acgtcgagag acagatccag 420 acgcaccaca gaacgcagac aatcatgaaa atacccccgg tactctgcgt tgttaccact 480 gcttcccgcg tactctgcgt tgttaccact gcttgcccta tagtgagtcg tattagaagc 540 cgaattc 547 11 253 DNA Human cytomegalovirus 11 gaattcggct tctaatacga ctcactatag ggcctggatc agtacctgga gagcgttagt 60 gggcctggat cagtacctgg agagcgttag tgggcctgga tcagtacctg gagagcgtta 120 gtgggcctgg atcagtacct ggagagcgtt agtgggcctg gatcagtacc tggagagcgt 180 tagtgggcct ggatcagtac ctggagagcg ttagtgggcc tggaagtacc tggagagcgt 240 taaagccgaa ttc 253 12 614 DNA Human cytomegalovirus 12 gaattcggct taacctctcc aggtactgat ccaggcccac gatccgggtt atcttgtcgt 60 attccaggtt gatccatcga tagggaacgc tgccagcggc gcccagcagg tactgcgcct 120 tgtcgttcac tttgccgcag cgtattcgcc cgtcagcttc gaggtataac ggattgtagt 180 tgcagctcgt cagtttgttg tgtacgacct ggcgtgtcaa tgaatgggtc atggtggtga 240 cgatcccgcg aatctcagcc gttttctcgg gactgtagca gacttcgccg tccggacacc 300 gcagcctgtg gattcatgaa aatctactct ggcattcccg aggatcgtcg atggaacatg 360 gctatcagaa acgtcgagag acagatccag acgcaccaca gaacgcagac aatcatgaaa 420 atacgtacgc gacggtgaag cgattgcaca ttttgaaatc gtaacagcgt tccggcgggt 480 ggttgacgtt tatgaattcg caacattctt ctgcgcgtac ccgcggcacg cggctgtgac 540 ccaatagcag ccacaacgcc gtcaagaacg gcgtcaggtt tttgggactc atgacgcgcg 600 gttttcaaaa ttcc 614 13 767 DNA Human cytomegalovirus 13 gaattcggct ttaacgctct ccaggtactg atccaggccc acgtcttccg ggactacagc 60 gtgtcttttc aggtgcgatt gacgttcacc gaggccaata accagactta caccttctgc 120 acccatccca atctcatcgt ttgagcccgt cgcgcgcgca tgaaaaccgc gcgtcatgag 180 tcccaaaaac ctgacgccgt tcttgacggc gttgtggctg ctattgggtc acagccgcgt 240 gccgcgggta cgcgcagaag aatgttgcga attcataaac gtcaaccacc cgccggaacg 300 ctgttacgat ttcaaaatgt gcaatcgctt caccgtcgcg tacgtatttt catgattgtc 360 tgcgttctgt ggtgcgtctg gatctgtctc tcgacgtttc tgatagccat gttccatcga 420 cgatcctcgg gaatgccaga gtagattttc atgaatccac aggctgcggt gtccggacgg 480 cgaagtctgc tacagtcccg agaaaacggc tgagattcgc gggatcgtca ccaccatgac 540 ccattcattg acacgccagg tcgtacacaa caaactgacg agctgcaact acaatccgtt 600 atacctcgaa gctgacgggc gaatacgctg cggcaaagtg aacgacaagg cgcagtacct 660 gctgggcgcc gctggcagcg ttccctagat ggatcaacct ggaatacgac aagataaccc 720 ggatcgtggg cctggatcag tacctggaga gcgttaaagc cgaattc 767 14 577 DNA Human cytomegalovirus 14 gaattcggct taatacgact cactataggg caagcagtgg taacaacgca gagtacgcgg 60 ggcagaagaa tgttgcgaat tcataaacgt caaccacccg ccggaacgct gttacgattt 120 caaaatgtgc aatcgcttca ccgtcgcgta cgtattttca tgattgtctg cgttctgtgg 180 tgcgtctgga tctgtctctc gacgtttctg atagccatgt tccatcgacg atcctcggga 240 atgccagagt agattttcat gaatccacag gctgcggtgt ccggacggcg aagtctgcta 300 cagtcccgag aaaacggctg agattcgcgg gatcgtcacc accatgaccc attcattgac 360 acgccaggcc gtacacaaca aactgacgag ctgcaactac aatccgttat acctcgaagc 420 tgacgggcga atacgctgcg gcaaagtgaa cgacaaggcg cagtacctgc tgggcgccgc 480 tggcagcgtt ccctatcgat ggatcaacct ggaatacgac aagataaccc ggatcgtggg 540 cctggatcag tacctggaga gcgttaaagc cgaattc 577 15 1778 DNA Human cytomegalovirus 15 ttgtgtcggg tgtggctgtc tgtttgtctg tgcgccgtgg tgctgggtca gtgccagcgg 60 gagaccgcag aaaaaaacga ttattaccga gtaccgcatt actgggacgc gtgctctcgc 120 gcgctgcctg accaaacccg ttacaagtat gtggaacagc tcgtggacct cacgttgaac 180 taccactacg atgcgagcca cggcttggac aactttgacg tgctcaagag aatcaacgtg 240 accgaggtgt cgttgctcat cagcgacttt agacgtcaga accgtcgcgg cggcaccaac 300 aaaaggacca cgttcaacgc cgccggttcg ctggcgcctc acgcccggag cctcgagttc 360 agcgtgcggc tctttgccaa ctagcctgcg tcacgggaaa taatatgcta cggcttctgc 420 ttcgtcacca ctttcactgc ctgcttctgt gcgcggtttg ggcaacgccc tgtctggcgt 480 ctccgtggtt cacgctaacg gcgaaccaga atccgtcccc gccatggtct aaactgacgt 540 atcccaaacc gcatgacgcg gcgacgtttt actgtccttt tctctatccc tcgcccccac 600 ggtccccctc gcaattcccg gggttccagc gggtatcaac gggtcccgag tgtcgcaacg 660 agaccctgta tctgctgtac aaccgggaag gccagacctt ggtggagaga agctccacct 720 gggtgaaaaa ggtgatctgg tatctgagcg gtcgcaatca gaccatcctc caacggatgc 780 cccgaacggc ttcgaaaccg agcgacggaa acgtgcagat cagcgtggaa gacgccaaga 840 tttttggagc gcacatggtg cccaagcaga ccaagctgct acgtttcgtc gtcaacgatg 900 gcacacgtta tcagatgtgt gtgatgaaac tggagagctg ggcccacgtc ttccgggact 960 acagcgtgtc ttttcaggtg cgattgacgt tcaccgaggc caataaccag acttacacct 1020 tctgcaccca tcccaatctc atcgtttgag cccgtcgcgc gcgcagggaa ttttgaaaac 1080 cgcgcgtcat gagtcccaaa aacctgacgc cgttcttgac ggcgttgtgg ctgctattgg 1140 gtcacagccg cgtgccgcgg gtacgcgcag aagaatgttg cgaattcata aacgtcaacc 1200 acccgccgga acgctgttac gatttcaaaa tgtgcaatcg cttcaccgtc gcgtacgtat 1260 tttcatgatt gtctgcgttc tgtggtgcgt ctggatctgt ctctcgacgt ttctgatagc 1320 catgttccat cgacgatcct cgggaatgcc agagtagatt ttcatgaatc cacaggctgc 1380 ggtgtccgga cggcgaagtc tgctacagtc ccgagaaaac ggctgagatt cgcgggatcg 1440 tcaccaccat gacccattca ttgacacgcc aggtcgtaca caacaaactg acgagctgca 1500 actacaatcc gttatacctc gaagctgacg ggcgaatacg ctgcggcaaa gtgaacgaca 1560 aggcgcagta cctgctgggc gccgctggca gcgttcccta tcgatggatc aacctggaat 1620 acgacaagat aacccggatc gtgggcctgg atcagtacct ggagagcgtt aagaaacaca 1680 aacggctgga tgtgtgccgc gctaaaatgg gctatatgct gcagtgaata ataaaatgtg 1740 tgtttgtccg aaaaaaaaaa aaaaaaaaaa aaaaaaaa 1778 16 1422 DNA Human cytomegalovirus 16 gaattcggct ttctgcttcg tcaccacttt cactgcctgc ttctgtgcgc ggtttgggca 60 acgccctgtc tggcgtctcc gtggttcacg ctaacggcga accagaatcc gtccccgcca 120 tggtctaaac tgacgtatcc caaaccgcat gacgcggcga cgttttactg tccttttctc 180 tatccctcgc ccccacggtc cccctcgcaa ttcccggggt tccagcgggt atcaacgggt 240 cccgagtgtc gcaacgagac cctgtatctg ctgtacaacc gggaaggcca gaccttggtg 300 gagagaagct ccacctgggt gaaaaaggtg atctggtatc tgagcggtcg caatcagacc 360 atcctccaac ggatgccccg aacggcttcg aaaccgagcg acggaaacgt gcagatcagc 420 gtggaagacg ccaagatttt tggagcgcac atggtgccca agcagaccaa gctgctacgt 480 ttcgtcgtca acgatggcac acgttatgtg tgatgaaact ggagagctgg gcccacgtct 540 tccgggacta cagcgtgtct tttcaggtgc gattgacgtt caccgaggcc aataaccaga 600 cttacacctt ctgcacccat cccaatctca tcgtttgagc ccgtcgcgcg cgcagggaat 660 tttgaaaacc gcgcgtcatg agtcccaaaa acctgacgcc gttcttgacg gcgttgtggc 720 tgctattggg tcacagccgc gtgccgcggg tacgcgcaga agaatgttgc gaattcataa 780 acgtcaacca cccgccggaa cgctgttacg atttcaaaat gtgcaatcgc ttcaccgtcg 840 cgtacgtatt ttcatgattg tctgcgttct gtggtgcgtc tggatctgtc tctcgacgtt 900 tctgatagcc atgttccatc gacgatcctc gggaatgcca gagtagattt tcatgaatcc 960 acaggctgcg gtgtccggac ggcgaagtct gctacagtcc cgagaaaacg gctgagattc 1020 gcgggatcgt caccaccatg acccattcat tgacacgcca ggtcgtacac aacaaactga 1080 cgagctgcaa ctacaatccg ttatacctcg aagctgacgg gcgaatacgc tgcggcaaag 1140 tgaacgacaa ggcgcagtac ctgctgggcg ccgctggcag cgttccctat cgatggatca 1200 acctggaata cgacaagata acccggatcg tgggcctgga tcagtacctg gagagcgtta 1260 agaaacacaa acggctggat gtgtgccgcg ctaaaatggg ctatatgctg cagtgaataa 1320 taaaatgtgt gtttgtccaa aaaaaaaaaa aaaaaaaaaa aaaagtactc tgcgttgtta 1380 ccactgcttg ccctatagtg agtcgtatta gaagccgaat tc 1422 17 510 DNA Human cytomegalovirus 17 gaattcggct tctaatacga ctcactatag ggcaagcagt ggtaacaacg cagagtacgc 60 ggggactgtc cttttctcta tccctcgccc ccacggtccc cctcgcaatt cccggggttc 120 cagcgggtat caacgggtcc cgagtgtcgc aacgagaccc tgtatctgct gtacaaccgg 180 gaaggccaga ccttggtgga gagaagctcc acctgggtga aaaaggtgat ctggtatctg 240 agcggtcgca atcagaccat cctccaacgg atgccccgaa cggcttcgaa accgagcgac 300 ggaaacgtgc agatcagcgt ggaagacgcc aagatttttg gagcgcacat ggtgcccaag 360 cagaccaagc tgctacgttt cgtcgtcaac gatggcacac gttatcagat gtgtgtgatg 420 aaactggaga gctgggccca cgtcttccgg gactacagcg tgtcttttca ggtgcgattg 480 acgttcaccg aggccaataa agccgaattc 510 18 686 DNA Human cytomegalovirus 18 gaattcggct tctaatacga ctcactatag ggcaagcagt ggtaacaacg cagagtacgc 60 ggggcactac gatgcgagcc acggcttgga caactttgac gtgctcaaga gaatcaacgt 120 gaccgaggtg tcgttgctca tcagcgactt tagacgtcag aaccatcgcg gcggcaccaa 180 caaaaggacc acgttcaacg ccgccggttc gctggcgcct cacgcccgga gcctcgagtt 240 cagcgtgcgg ctccttgcca actagcctgc gtcacgggaa ataatatgct acggcttctg 300 cttcgtcacc actttcactg cctgcttctg tgcgcggttt gggcaacgcc ctgtctggcg 360 tctccgtggt tcacgctaac ggcgaaccag aatccgtccc cgccatggtc taaactgacg 420 tatcccaaac cgcatgacgc ggcgacgttt tgctgtcctt ttctctatcc ctcgccccca 480 cggtccccct cgcaattccc ggggttccag cgggtatcaa cgggtcccga gtgtcgcaac 540 gagaccctgt atctgctgta caaccgggaa ggccagacct tggtggagag aagctccacc 600 tgggtgaaaa aggtgatctg gtatctgagc ggtcgcaatc agaccatcct ccaacggatg 660 ccccgaacgg cttcgaaacc gagcga 686 19 670 DNA Human cytomegalovirus 19 gaattcggct tctaatacga ctcactatag ggcaagcagt ggtaacaacg cagagtacgc 60 ggggagaacc gtcgcggcgg caccaacaaa aggaccacgt tcaacgccgc cggttcgctg 120 gcgcctcacg cccggagcct cgagttcagc gtgcggctct ttgccaacta gcctgcgtca 180 cgggaaataa tatgctacgg cttctgcttc gtcaccactt tcactgcctg cttctgtgcg 240 cggtttgggc aacgccctgt ctggcgtctc cgtggttcac gctaacggcg aaccagaatc 300 cgtccccgcc atggtctaaa ctgacgtatc ccaaaccgca tgacgcggcg acgttttact 360 gtccttttct ctatccctcg cccccacggt ccccctcgca attcccgggg ttccagcggg 420 tatcaacggg tcccgagtgt cgcaacgaga ccctgtatct gctgtacaac cgggaaggcc 480 agaccttggt ggagagaagc tccacctggg tgaaaaaggt gatctggtat ctgagcggtc 540 gcaatcagac catcctccaa cggatgcccc gaacggcttc gaaaccgagc gacggaaacg 600 tgcagatcag cgtggaagac gccaagattt ttggagcgca catggtgccc aagcagacca 660 agctgctacg 670 20 226 DNA Human cytomegalovirus 20 gaattcggct tctaatacga ctcactatag ggcaagcagt ggtaacaacg cagagtactt 60 tttttttttt tttttttttt ttttttggga tacgtcagtt tagaccatgg cggggacgga 120 ttctggttcg ccgttagcgt gaaccacgga gacgccagac agggcgttgc ccaaaccgcg 180 cacagaagca ggcagtgaag tggtgacgaa gcagaaagcc gaattc 226 21 653 DNA Human cytomegalovirus 21 gaattcggct ttctgcttcg tcaccacttc actgcctgct tctgtgcgcg gtttgggcaa 60 cgccctgtct ggcgtctccg tggttcacgc taacggcgaa ccagaatccg tccccgccat 120 ggtctaaact gacgtatccc aaaccgcatg acgcggcgac gttttactgt ccttttctct 180 atccctcgcc cccacggtcc ccctcgcaat tcccggggtt ccagcgggta tcaacgggtc 240 ccgagtgtcg caacgagacc ctgtatctgc tgtacaaccg ggaaggccag accttggtgg 300 agagaagctc cacctgggtg aaaaaggtga tctggtatct gagcggtcac aatcagacca 360 tcctccaacg gatgccccga acggcttcga aaccgagcga cggaaacgtg cagatcagcg 420 tggaagacgc caagattttt ggagcgcaca tggtgcccaa gcagaccaag ctgctacgtt 480 tcgtcgtcaa cgatggcaca cgttatcaga tgtgtgtgat gaaactggag agctgggccc 540 acgtcttccg ggactacgac aagataaccc ggatcgtggg cctggatcag tacctggaga 600 gcgttaagaa acacaaacgg ctggatgtgt gccgcgctaa aatgggctat atg 653 22 607 DNA Human cytomegalovirus 22 gaattcggct tcgcagaaga atgttgcgaa ttcataaacg tcaaccaccc gccggaacgc 60 tgttacgatt tcaaaatgtg caatcgcttc accgtcgcgt acgtattttc atgattgtct 120 gcgttctgtg gtgcgtctgg atctgtctct cgacgtttct gatagccatg ttccatcgac 180 gatcctcggg aatgccagag tagattttca tgaatccaca ggctgcggtg tccggacggc 240 gaagtctgct acagtcccga gaaaacggct gagattcgcg ggatcgtcac caccatgacc 300 cattcattga cacgccaggt cgtacacaac aaactgacga gctgcaacta caatccgtta 360 tacctcgaag ctgacgggcg aatacgctgc ggcaaagtga acgacaaggc gcagtacctg 420 ctgggcgccg ctggcagcgt tccctatcga tggatcaacc tggaatacga caagataacc 480 cggatcgtgg gcctggatca gtacctggag agcgttaaga aacacaaacg gctggatgtg 540 tgccgcgcta aaatgggcta tatgctgcag tgaataataa aatgtgtgtt tgtccggaaa 600 aaaaaaa 607 23 658 DNA Human cytomegalovirus 23 gaattgtctg cttcgtcacc atttcactgc ctgcttctgt gcgcggtttg ggcaacgccc 60 tgtctggcgt ctccgtggtt cacgctaacg gcgaaccaga atccgtcccc gccatggtct 120 aaactgacgt atcccaaacc gcatgacgcg gcgacgtttt actgtccttt tctctatccc 180 tcgcccccac ggtccccctc gcaattcccg gggttccagc gggtatcaac gggtcccgag 240 tgtcgcaacg agaccctgta tctgctgtac aaccgggaag gccagacctt ggtggagaga 300 agctccacct gggtgaaaaa ggtgatctgg tatctgagcg gtcgcaatca gaccatcctc 360 caacggatgc cccgaacggc ttcgaaaccg agcgacggaa acgtgcagat cagcgtggaa 420 gacgccaaga tttttggagc gcacatggtg cccaagcaga ccaagctgct acgtttcgtc 480 gtcaacgatg gcacacgtta tcagatgtgt gtgatgaaac tggagagctg ggcccacgtc 540 ttccgggact acagcgtgtc ttttcaggtg cgattgacgt tcaccgaggc caataaccag 600 acttacacct tctgcaccca tcccaatctc atcgtttgag cccgtcgcgc gcgcaggg 658 24 503 DNA Human cytomegalovirus 24 gaattcggct tctaatacga ctcactatag ggcaagcagc ggtaacaacg cagagtactt 60 tttttttttt tttttttttt tttttttgga caaacacaca gtttattatt cactgcagca 120 tatagcccat tttagcgcgg cacacatcca gccgtttgtg tttcttaacg ctctccaggt 180 actgatccag gcccacgatc cgggttatct tgtcgtattc caggttgatc catcgatagg 240 gaacgctgcc agcggcgccc agcaggtact gcgccttgtc gttcactttg ccgcagcgta 300 ttcgcccgtc agcttcgagg tataacggat tgtagttgca gctcgtcagt ttgttgtgta 360 cgacctggcg tgtcaatgaa tgggtcatgg tggtgacgat cccgcgaatc tcagccgttt 420 tctcgggact gtagcagact tcgccgtccg gacaccgcag caagccgaat tccagcacac 480 tggcggccgt tactagtgga tcc 503 25 636 DNA Human cytomegalovirus 25 gaattcggct tctaatacga ctcactatag ggcaagcagt ggtaacaacg cagagtacgc 60 gggggaccat cctccaacgg atgccccgaa cggcttcgaa accgagcgac ggaaacgtgc 120 agatcagcgt ggaagacgcc aagatttttg gagcgcacat ggtgcccaag cagaccaagc 180 tgctacgttt cgtcgtcaac gatggcacac gttatcagat gtgtgtgatg aaactggaga 240 gctgggccca cgtcttccgg gactacagcg tgtcttttca ggtgcgattg acgttcaccg 300 aggccaataa ccagacttac accttctgca cccatcccaa tctcatcgtt tgagcccgtc 360 gcgcgcgcag ggaattttga aaaccgcgcg tcatgagtcc caaaaacctg acgccgttct 420 tgacggcgtt gtggctgcta ttgggtcaca gccgcgtgcc gcgggtacgc gcagaagaat 480 gttgcgaatt cataaacgtc aaccacccgc cggaacgctg ttacgatttc aaaatgtgca 540 atcgcttcac cgtcgcgtac gtattttcat gattgtctgc gttctgtggt gcgtctggat 600 ctgtctctcg acgtttctga tagccatgtt ccatcg 636 26 1432 DNA Human cytomegalovirus 26 gaattcggct ttctgcttcg tcaccacttt cactgcctgc ttctgtgcgc ggtttgggca 60 acgccctgtc tggcgtctcc gtggttcacg ctaacggcga accagaatcc gtccccgcca 120 tggtctaaac tgacgtatcc caaaccgcat gacgcggcga cgttttactg tccttttctc 180 tatccctcgc ccccacggtc cccctcgcaa ttcccggggt tccagcgggt atcaacgggt 240 cccgagtgtc gcaacgagac cctgtatctg ctgtacaacc gggaaggcca gaccttggtg 300 gagagaagct ccacctaggt gaaaaaggtg atctggtatc tgagcggtcg caatcagacc 360 atcctccaac ggatgccccg aacggcttcg aaaccgagcg acggaaacgt gcagatcagc 420 gtggaagacg ccaagatttt tggagcgcac atggtgccca agcagaccaa gctgctacgt 480 ttcgtcgtca acgatggcac acgttatcag atgtgtgtga tgaaactgga gagctgggcc 540 cacgtcttcc gggactacag cgtgtctttt caggtgcgat tgacgttcac cgaggccaat 600 aaccagactt acaccttctg cacccatccc aatctcatcg tttgagcccg tcgcgcgcgc 660 agggaatttt gaaaaccgcg cgtcatgagt cccaaaaacc tgacgccgtt cttgacggcg 720 ttgtggctgc tattgggtca cagccgcgtg ccgcgggtac gcgcagaaga atgttgcgaa 780 ttcataaacg tcaaccaccc gccggaacgc tgttacgatt tcaaaatgtg caatcgcttc 840 accgtcgcgt acgtattttc atgattgtct gcgttctgtg gtgcgtctgg atctgtctct 900 cgacgtttct gatagccatg ttccatcgac gatcctcggg aatgccagag tagattttca 960 tgaatccaca ggctgcggtg tccggacggc gaagtctgct acagtcccga gaaaacggct 1020 gagattcgcg ggatcgtcac caccatgacc cattcattga cacgccaggt cgtacacaac 1080 aaactgacga gctgcaacta caatccgtta tacctcgaag ctgacgggcg aatacgctgc 1140 ggcaaagtga acgacaaggc gcagtacctg ctgggcgccg ctggcagcgt tccctatcga 1200 tggatcaacc tggaatacga caagataacc cggatcgtgg gcctggatca gtacctggag 1260 agcgttaaga aacacaaacg gctggatgtg tgccgcgcta aaatgggcta tatgctgcag 1320 tgaataataa aatgtgtgtt tgtccaaaaa aaaaaaaaaa aaaaaaaaaa aaaagtactc 1380 tgcgttgtta ccactgcttg ccctatagtg agtcgtatta gaagccgaat tc 1432 27 880 DNA Human cytomegalovirus 27 taacgctctc caggtactga tccaggccca cgatccgggt tatcttgtcg tattccaggt 60 tgatccatcg atagggaacg ctgccagcgg cgcccagcag gtactgcgcc ttgtcgttca 120 ctttgccgca gcgtattcgc ccgtcagctt cggggtataa cctacaacac ggaggggaag 180 gggggtacaa aacgtgaaat tagacttttt tttttttaat gatgttttgt ccctctctgt 240 cttactctcc cataggctgt aaggccctag aggaagagac ttacggattg tagttgcagc 300 tcgtcagttt gttgtgtacg acctggcgtg tcaatgaatg ggtcatggtg gtgacgatcc 360 cgcgaatctc agccgttttc tcgggactgt agcagacttc gccgtccgga caccgcagcc 420 tgtggattca tgaaaatcta ctctggcatt cccgaggatc gtcgatggaa catggctatc 480 agaaacgtcg agagacagat ccagacgcac cacagaacgc agacaatcat gaaaatacgt 540 acgcgacggt gaagcgattg cacattttga aatcgtaaca gcgttccggc gggtggttga 600 cgtttatgaa ttcgcaacat tcttctgcgc gtacccgcgg cacgcggctg tgacccaata 660 gcagccacaa cgccgtcaag aacggcgtca ggtttttggg actcatgacg cgcggttttc 720 aaaattccct gcgcgcgcga cgggctcaaa cgatgagatt gggatgggtg cagaaggtgt 780 aagtctggtt attggcctcg gtgaacgtca atcgcacctg aaaagacgcg ctgtagtccc 840 ggaagacgtg ggcctggatc agtacctgga gagcgttaga 880 28 417 DNA Human cytomegalovirus 28 gaattcggct tctaatacga ctcactatag ggcaagcagt ggtaacaacg cagagtacgc 60 ggggaccctg tatctgctgt acaaccggga aggccagacc ttggtggaga gaagctccac 120 ctgggtgaaa aaggtgatct ggtatctgag cggtcgcaat cagaccatcc tccaacggat 180 gccccgaacg gcttcgaaac cgagcgacgg aaacgtgcag atcagcgtgg aagacgccaa 240 gatttttgga gcgcacgtgg tgcccaagca gaccaagctg ctacgtttcg tcgtcaacga 300 tggcacacgt tatcagatgt gtgtgatgaa actggagagc tgggcccacg tcttccggga 360 ctacagcgtg tcttttcagg tgcgattacg ttcaccgagg ccaataaagc cgaattc 417 29 90 DNA Artificial Sequence primer 29 cgctgtaggg ataaatagtg cgatggcgtt tgtgggagaa cgcagtagcg atgggttgcg 60 acgtgcaccg atttattcaa caaagccacg 90 30 87 DNA Artificial Sequence primer 30 aacggcgtca ggtctttggg actcatgacg cgcggttttc aaaattccct gcgcgcgcga 60 cgggcgccag tgttacaacc aattaac 87 31 88 DNA Artificial Sequence primer 31 aaaccacgtc ctcgtcacac gtcgttcgcg gacatagcaa gaaatccacg tcgccacatc 60 tcgagacgat ttattcaaca aagccacg 88 32 87 DNA Artificial Sequence primer 32 gccagtggta ccacttgagc atcctggcca gaagcacgtc gggcgtcatc cccgagtcat 60 agtagcgatt tattcaacaa agccacg 87 33 87 DNA Artificial Sequence primer 33 acacatcgca cacagacttt ataaaccgta gttgtcggcg ccatctagac tcactttatt 60 gaaagccagt gttacaacca attaacc 87 34 81 DNA Artificial Sequence primer 34 gcgccacacg cccggagcct cgagttcagc gtgcggctct ttgccaacta gcctgcgtca 60 cggcgattta ttcaacaaag c 81 35 83 DNA Artificial Sequence primer 35 cccggagcct cgagttcagc gtgcggctct ttgccaacta gcctgcgtca cgggaaataa 60 tcgatttatt caacaaagcc acg 83 36 76 DNA Artificial Sequence primer 36 tgtctttcgg ttccaactct ttccccgccc catcacctcg cctgtactat gtgtcgattt 60 attcaacaaa gccacg 76 37 74 DNA Artificial Sequence primer 37 gctagttggc aaagagccgc acgctgaact cgaggctccg ggcgtgtggc ggccagtgtt 60 acaaccaatt aacc 74 38 78 DNA Artificial Sequence primer 38 atgagacatc atacacatag tacaggcgag gtgatggggc ggggaaagag ttggaaccga 60 aaggccagtg ttacaacc 78 39 87 DNA Artificial Sequence primer 39 gcacccatcc caatctcatc gtttgagccc gtcgcgcgcg cagggaattt tgaaaaccgc 60 gcgtccgatt tattcaacaa agccacg 87 40 87 DNA Artificial Sequence primer 40 tcgcgcgaca tgaatttagt cggcgacaga aatctcgaaa cgcgtatttc ggacaaacac 60 acatgccagt gttacaacca attaacc 87 41 82 DNA Artificial Sequence primer 41 tgcgttctgt ggtgcgtctg gatctgtctc tcgacgtttc tgatagccat gttccatcga 60 cgatttattc aacaaagcca cg 82 42 81 DNA Artificial Sequence primer 42 cggcacacat ccagccgttt gtgtttctta acgctctcca ggtactgatc caggcccacg 60 gccagtgtta caaccaatta a 81 43 30 DNA Artificial Sequence primer 43 cggcacacat ccagccgttt gtgtttctta 30 44 30 DNA Artificial Sequence primer 44 taacgctctc caggtactga tccaggccca 30 45 30 DNA Artificial Sequence primer 45 tcgtcagttt gttgtgtacg acctggcgtg 30 46 30 DNA Artificial Sequence primer 46 tattggcctc ggtgaacgtc aatcgcacct 30 47 30 DNA Artificial Sequence primer 47 tgtgtcgggt gtggctgtct gtttgtctgt 30 48 31 DNA Artificial Sequence primer 48 tctgcttcgt caccactttt cactgcctgc t 31 49 30 DNA Artificial Sequence primer 49 cgcagaagaa tgttgcgaat tcataaacgt 30 50 30 DNA Artificial Sequence primer 50 gctgcggtgt ccggacggcg aagtctgcta 30 51 30 DNA Artificial Sequence primer 51 ccagctggca gattcccaaa ctaatgaaag 30 52 1245 DNA Human cytomegalovirus 52 ctaatacgac tcactatagg gcaagcagtg gtaacaacgc agagtacgcg gggagaatcc 60 gtccccgcca tggtctaaac tgacgtatcc caaaccgcat gacgcggcga cgttttactg 120 tccttttctc tatccctcgc ccccacggtc cccctcgcaa ttcccggggt tccagcgggt 180 atcaacgggt cccgagtgtc gcaacgagac cctgtatctg ctgtacaacc gggaaggcca 240 gaccttggtg gagagaagct ccacctgggt gaaaaaggtg atctggtatc tgagcggtcg 300 caatcagacc atcctccaac ggatgccccg aacggcttcg aaaccgagcg acggaaacgt 360 gcagatcagc gtggaagacg ccaagatttt tggagcgcac atggtgccca agcagaccaa 420 gctgctacgt ttcgtcgtca acgacggcac acgttatcag atgtgtgtga tgaaactgga 480 gagctgggcc cacgtcttcc gggactacag cgtgtctttt caggtgcgat tgacgttcac 540 cgaggccaat aaccagactt acaccttctg cacccatccc aatctcatcg tttgagcccg 600 tcgcgcgcgc agggaatttt gaaaaccgcg cgtcatgagt cccaaaaacc tgacgccgtt 660 cttgacggcg ttgtggctgc tattgggtca cagccgcgtg ccgcgggtac gcgcagaaga 720 atgttgcgaa ttcataaacg tcaaccaccc gccggaacgc tgttacgatt tcaaaatgtg 780 caatcgcttc accgtcgcgt acgtattttc atgattgtct gcgttctgtg gtgcgtctgg 840 atctgtctct cgacgtttct gatagccatg ttccatcgac gatcctcggg aatgccagag 900 tagattttca tgaatccaca ggctgcggtg tccggacggc gaagtctgct acagtcccga 960 gaaaacggct gagattcgcg ggatcgtcac caccatgacc cattcattga caccccaggt 1020 cgtacacaac aaactgacga gctgcaacta caatccgtta tacctcgaag ctgacgggcg 1080 aatacgctgc ggcaaagtga acgacaaggc gcagtacctg ctgggcgccg ctggcagcgt 1140 tccctatcga tggatcaacc tggaatacga caagataacc cggatcgtgg gcctggatca 1200 gtacctggag agcgttaaga aacacaaacg gctggatgtg tgccg 1245 53 568 DNA Human cytomegalovirus 53 gctgctattg ggtcacagcc gcgtgccgcg ggtacgcgca gaagaatgtt gcgaattcat 60 aaacgtcaaa cacccgccgg aacgctgtta cgatttcaaa atgtgcaatc gcttaccgtc 120 gcgtacgtat tttcatgatc gtctgcgttc tgtggtgcgt ctggatctgt ctctcgacgt 180 ttctgatagc catgttccat cgacgatccc cgggaatgcc agagtagatt ttcatgaatc 240 cacaggctgc ggtgtccgga cggcgaagtc tgctacagtc ccgagaaaac ggctgagatt 300 cgcgggatcg tcaccaccat acccattcat tgacacgcca ggtcgtacac aacaaactga 360 cgagctgcaa ctacaatccg ttatacctcg aagctcacgg gcgaatacgc tgcggcaaag 420 tgaacgacaa ggcgcagtac ctgctgggcg ccgctggcag cgttccctat cgatggatca 480 acctggaata cgacaagata acccggatcg tgggcctgga tcagtacctg gagagcgtta 540 agaaacacaa acggctggat gtgtgccg 568 54 787 DNA Human cytomegalovirus 54 ctaatacgac tcactatagg gcaagcagtg gtaacaacgc agagtacgcg ggggaccatc 60 ctccaacgga tgccccgaac ggcttcgaaa ccgagcgacg gaaacgtgca gatcagcgtg 120 gaagacgcca agatttttgg agcgcacatg gtgcccaagc agaccaagct gctacgtttc 180 gtcgtcaacg atggcacacg ttatcagatg tgtgtgatga aactggagag ctgggcccac 240 gtcttccggg actacagcgt gtcttttcag gtgcgattga cgttcaccga ggccaataac 300 cagacttaca ccttctgcac ccatcccaat ctcatcgttt gagcccgtcg cgcgcgcagg 360 gaattttgaa aaccgcgcgt catgagtccc aaaaacctga cgccgttctt gacggcgttg 420 tggctgctat tgggtcacag ccgcgtgccg cgggtacgcg cagaagaatg ttgcgaattc 480 ataaacgtca accacccgcc ggaacgctgt tacgatttca aaatgtgcaa tcgcttcacc 540 gtcgcgtacg tattttcatg attgtctgcg ttctgtggtg cgtctggatc tgtctctcga 600 cgtttctgat agccatgttc catcgacgat cctcgggaat gccagagtag attttcatga 660 atccacaggc tgcggtgtcc ggacggcgaa gtctgctaca gtcccgagaa aacggctgag 720 attcgcggga tcgtcaccac catgacccat tcattgacac gccaggtcgt acacaacaaa 780 ctgacga 787 55 1292 DNA Human cytomegalovirus 55 tctgcttcgt caccatttca ctgcctgctt ctgtgcgcgg tttgggcaac gccctgtctg 60 gcgtctccgt ggttcacgct aacggcgaac cagaatccgt ccccgccatg gtctaaactg 120 acgtatccca aaccgcatga cgcggcgacg ttttactgtc cttttctcta tccctcgccc 180 ccacggtccc cctcgcaatt cccggggttc cagcgggtat caacgggtcc cgagtgtcgc 240 aacgagaccc tgtatctgct gtacaaccgg gaaggccaga ccttggtgga gagaagctcc 300 acctgggtga aaaaggtgat ctggtatctg agcggtcgca atcagaccat cctccaacgg 360 atgccccgaa cggcttcgaa accgagcgac ggaaacgtgc agatcagcgt ggaagacgcc 420 aagatttttg gagcgcacat ggtgcccaag cagaccaagc tgctacgttt cgtcgtcaac 480 gatggcacac gttatcagat gtgtgtgatg aaactggaga gctgggccca cgtcttccgg 540 gactacagcg tgtcttttca ggtgcgattg acgttcaccg aggccaataa ccagacttac 600 accttctgca cccatcccaa tctcatcgtt tgagcccgtc gcgcgcgcag ggaattttga 660 aaaccgcgcg tcatgagtcc caaaaacctg acgccgttct tgacggcgtt gtggctgcta 720 ttgggtcaca gccgcgtgcc gcgggtacgc gcagaagaat gttgcgaatt cataaacgtc 780 aaccacccgc cggaacgctg ttacgatttc aaaatgtgca atcgcttcac cgtcgcgctg 840 cggtgtccgg acggcgaagt ctgctacagt cccgagaaaa cggctgagat tcgcgggatc 900 gtcaccacca tgacccattc attgacacgc caggtcgtac acaacaaact gacgagctgc 960 aactacaatc cgttatacct cgaagctgac gggcgaatac gctgcggcaa agtgaacgac 1020 aaggcgcaac aaggcgcagt acctgctggg cgccgctggc agcgttccct atcgatggat 1080 caacctggaa tacgacaaga taacccggat cgtgggcctg gatcagtacc tggagagcgt 1140 taagaaacac aaacggctgg atgtgtgccg cgctaaaatg ggctatatgc tgcagtgaat 1200 aataaaatgt gtgtttgtac aaaaaaaaaa aaaaaaaaaa aaaaagtact ctgcgttgtt 1260 accactgctt gccctatagt gagtcgtatt ag 1292 56 7650 DNA Human cytomegalovirus 56 actgtggctg gaaactggtt acctgtgaag atggctaact atcctgttct gtcctggaaa 60 aacttttggc gtcgtaggtg gactttgcag tatgcgggtt agtgaagtta tgtcatttat 120 ttacgtttac gatctcgtat tacaaaccgc ggagaggatg ataccgttcg gccccatgag 180 ttatttttat tcttccggta ggaggcatga agcctctgat aatgctcatc tgctttgctg 240 tgatattatt gcagcttgga gtgactaaag tgtgtcagca taatgaagtg caactgggca 300 atgagtgctg ccctccgtgt ggttcgggac aaagagttac taaagtatgc acggattata 360 ccagtgtaac gtgtacccct tgccccaacg gcacgtatgt atcgggactt tacaactgta 420 ccgattgcac tcaatgtaac gtcactcagg tcatgattcg taactgcact tccaccaata 480 ataccgtatg cgcacctaag aaccatacgt acttttccac tccaggcgtc caacatcaca 540 aacaacgaca gcaaaatcat accgcacata taaccgtcaa acaaggaaaa agcggtcgtc 600 atactctagc ctggttgtct ctctttatct ttcttgtggg tatcatactt ttaattctct 660 atcttatagc cgcctatcgg agtgagagat gccaacagtg ttgctcaatc ggcaaaattt 720 tctaccgcac cctgtaagct tcctgttgtt gtttttacat cacggtacga tgaagtcaca 780 cagataatta cagatgagct gttcatattt tttattattt tttccaattc ctgcactaaa 840 aaaagaagca ctttacggaa ccgtgtctga gtatctgtgg ggaatttagg tactttttgc 900 cgacgtcagg aaaaataagt gtcgcctaca taagagcccg gtgctatcgt gctgtcactc 960 tttcttgttg ccttcgatgt acggcgtcct ggctcattac tactccttca tcagtagccc 1020 cagcgttatg gttaatttta agcatcataa cgccgtgcag ctgttatgtg cacggacccg 1080 agacgcactg ccggatggga acgtttaacc catcatgcgt cgtatcacgc gaactacggg 1140 gcatacgccg tgttgatggc tacatcgcaa agaaagtccc tagtgttaca tcgatacagt 1200 gccgtgacag ccgtggccct gcagctcatg cctgttgaga tcgtccgcaa gctagatcag 1260 tcggactggg tgcggggtgc ctggatcgtg tcagagactt ttccaactag cgaccccaaa 1320 ggagtttgga gcgacgatga ctcctcgatg ggtggaagtg atgattgatg atgagaacct 1380 gacaagaaag acgagagaga aatttagagc tgtcattgta gaattagtct agattcctga 1440 taataaacag tatcgatttt gaaacctaat tgacgtgtga tcgattttta aacctctgtg 1500 ttgtgtgatt gattggtatg tggggggatc cgatttcaaa ggggggtact tatcgggaat 1560 tgatgtgtca tggacgcagt tttgagcgat tttccgggaa taccggatat tacgaattac 1620 tggtagtgac gtagataata aaattataat gcgattaatt tttggtgcgt tgattatttt 1680 tttagcatat gtgtatcatt atgaggtgaa tggaacagaa ttacgctgca gatgtcttca 1740 tagaaaatgg ccgcctaata aaattatatt gggtaattat tggcttcatc gcgatcccag 1800 agggcccgga tgcgataaaa atgaacattt attgtatcca gacggaagga aaccgcctgg 1860 acctggagta tgtttatcgc ccgatcacct cttctcaaaa tggttagaca aacacaacga 1920 taataggtgg tataatgtta acataacgaa atcaccagga ccgagacgaa taaatataac 1980 cttgataggt gttagaggat aatatttaat gtatgttttc aaacagacaa gttcgttaaa 2040 acaaaatatt acagtatgtg tttaatatgg tgctaacatg gttgcaccat ccggtttcaa 2100 actcgcatat caatctgtta tcggtacgac acctgtcatt aatcgcatat atgttactta 2160 ccatatgtcc cctagccgtc catgttttag aactagaaga ttacgacagg cgctgccgtt 2220 gcaacaacca aattctgttg aataccctgc cggtcggaac cgaattgctt aagccaatcg 2280 cagcgagcga aagctgcaat cgtcaggaag tgctggctat tttaaaggac aagggaacca 2340 agtgtctcaa tcctaacgcg caagccgtgc gtcgtcacat caaccggcta ttttttcggt 2400 taatcttaga cgaggaacaa cgcatttacg acgtagtgtc taccaatatt gagttcggtg 2460 cctggccagt ccctacggcc tacaaagcct ttctttggaa atacgccaag agactgaact 2520 accaccactt cagactgcgc tggtgatcat gtccctattt taccgtgcgg tagctctggg 2580 cacgctaagc gctttggtgt ggtacagcac tagcatcctc gcagagatta acgaaaattc 2640 ctgctcctca tcttctgcgg atcacgaaga ctgcgaggaa ccggacgaga tcgttcgcga 2700 agagcaagac tatcgggctc tgctggcctt ttccctagtg atttgcggta cgctcctcgt 2760 cacttgtgtg atctgagacg tcatgctggt agcgtttatg agtcgggcgg tggccgacac 2820 gccgcatttc ctaacccgcg cagcatgttg cgcttgctgt tcacgctcgt cctgctggcc 2880 ctccacgggc agtctgtcgg cgctagccgc gactatgtgc atgttcggct actgagctac 2940 cgaggcgacc ccctggtctt caagcacact ttctcgggtg tgcgtcgacc cttcaccgag 3000 ctaggctggg ctgcgtgtcg cgactgggac agtatgcatt gcacaccctt ctggtctacc 3060 gatctggagc agatgaccga ctcggtgcgg cgttacagca cggtgagccc cggcaaggaa 3120 gtgacgcttc agcttcacgg gaaccaaacc gtacagccgt cgtttctaag ctttacgtgc 3180 cgcctgcagc tagaacccgt ggtggaaaat gttggcctct acgtggccta cgtggtcaac 3240 gacggcgaac gcccacaaca gttttttaca ccgcaggtag acgtggtacg ctttgctcta 3300 tatctagaaa cactctcccg gatcgtggaa ccgttagaat caggtcgcct ggcagtggaa 3360 tttgatacgc ctgacctagc tctggcgccc gatttagtaa gcagcctctt cgtggccgga 3420 cacggcgaga ccgactttta catgaactgg acgctgcgtc gcagtcagac ccactacctg 3480 gaggagatgg ccttacaggt ggagattcta aaaccccgcg gcgtacgtca ccgcgctatt 3540 atccaccatc cgaagctaca gccgggcgtt ggcctgtgga tagatttctg cgtgtaccgc 3600 tacaacgcgc gcctgacccg cggctacgta cgatacaccc tgtcaccgaa agcgcgcttg 3660 cccgcaaaag cagagggttg gctggtgtca ctagacagat tcatcgtgca gtacctcaac 3720 acattgctga ttacaatgat ggcggcgata tgggctcgcg ttttgataac ctacctggtg 3780 tcgcggcgtc ggtagaggct tgcggaaacc acgtcctcgt cacacgtcgt tcgcggacat 3840 agcaagaaat ccacgtcgcc acatctcgag aatgccggcc ttgcggggtc cccttcgcgc 3900 aacattcctg gccctggtcg cgttcgggtt gctgcttcag atagacctca gcgacgctac 3960 gaatgtgacc agcagcacaa aagtccctac tagcaccagc aacagaaata acgtcgacaa 4020 cgccacgagt agcggaccca caaccgggat caacatgacc accacccacg agtcttccgt 4080 tcacaacgtg cgcaataacg agatcatgaa agtgctggct atcctcttct acatcgtgac 4140 aggcacctcc attttcagct tcatagcggt actgatcgcg gtagtttact cctcgtgttg 4200 caagcacccg ggccgctttc gtttcgccga cgaagaggcc gtcaacctgt tggacgacac 4260 ggacgacagt ggcggcagca gcccgtttgg cagcggttcc cgacgaggtt ctcagatccc 4320 cgccggattt tgttcctcga gcccttatca gcggttggaa actcgggact gggacgagga 4380 ggaggaggcg tccgcggccc gcgagcgcat gaaacatgat cctgagaacg tcatctattt 4440 cagaaaggat ggcaacttgg acacgtcgtt cgtgaatccc aattatggga gaggctcgcc 4500 tttgaccatc gaatctcacc tctcggacaa tgaggaggac cccatcaggt actacgtttc 4560 ggtgtacgat gaactgaccg cctcggaaat ggaagaacct tcgaacagca ccagctggca 4620 gattcccaaa ctaatgaaag ttgccatgca acccgtctcg ctcagagatc ccgagtacga 4680 ctaggctttt ttttttgtct ttcggttcca actctttccc cgccccatca cctcgcctgt 4740 actatgtgta tgatgtctca taataaagct ttctttctca gtctgcaaca tgcagctgtg 4800 tcgggtgtgg ctgtctgttt gtctgtgcgc cgtggtgctg ggtcagtgcc agcgggaaac 4860 cgcggaaaaa aacgattatt accgagtacc gcattactgg gacgcgtgct ctcgcgcgct 4920 gcccgaccaa acccgttaca agtatgtgga acagctcgtg gacctcacgt tgaactacca 4980 ctacgatgcg agccacggct tggacaactt tgacgtgctc aagaggtgag ggtacgcgct 5040 aaaggtgcat gacaacggga aggtaagggc gaacgggtaa cggctaagta accgcatggg 5100 gtatgaaatg acgtttggaa cctgtgcttg cagaatcaac gtgaccgagg tgtcgttgct 5160 catcagcgac tttagacgtc agaaccgtcg cggcggcacc aacaaaagga ccacgttcaa 5220 cgccgccggt tcgctggcgc cacacgcccg gagcctcgag ttcagcgtgc ggctctttgc 5280 caactagcct gcgtcacggg aaataatatg ctgcggcttc tgcttcgtca ccactttcac 5340 tgcctgcttc tgtgcgcggt ttgggcaacg ccctgtctgg cgtctccgtg gtcgacgcta 5400 acggcaaacc agaatccgtc cccgccatgg tctaaactga cgtattccaa accgcatgac 5460 gcggcgacgt tttactgtcc ttttctctat ccctcgcccc cacggtcccc cttgcaattc 5520 tcggggttcc agcaggtatc aacgggtccc gagtgtcgca acgagaccct gtatctgctg 5580 tacaaccggg aaggccagac cttggtggag agaagctcca cctgggtgaa aaaggtgatc 5640 tggtatctga gcggtcgcaa ccagaccatc ctccaacgga tgccccaaac ggcttcgaaa 5700 ccgagcgacg gaaacgtgca gatcagcgtg gaagacgcca agatttttgg agcgcacatg 5760 gtgcccaagc agaccaagct gctacgcttc gtcgtcaacg atggcacgcg ttatcagatg 5820 tgtgtgatga agctggagag ctgggcccac gtcttccggg actacagcgt gtcttttcag 5880 gtgcgattga cgttcaccga ggccaataac cagacttaca ccttctgtac ccatcccaat 5940 ctcatcattt gagcccgtcg cgcgcgcagg gaattttgaa aaccgcgcgt catgagtccc 6000 aaagacctga cgccgttctt gacgacgttg tggctgctat tgggtcacag ccgcgtgccg 6060 cgggtgcgcg cagaagaatg ttgcgaattc ataaacgtca accacccgcc ggaacgctgt 6120 tacgatttca aaatgtgcaa tcgcttcacc gtcgcgtacg tattttcatg attgtctgcg 6180 ttctgtggtg cgtctggatt tgtctctcga cgtttctgat agccatgttc catcgacgat 6240 cctcgggaat gccagagtag attttcatga atccacaggc tgcggtgtcc ggacggcgaa 6300 gtctgctaca gtcccgagaa aacggctgag attcgcggga tcgtcaccac catgacccat 6360 tcattgacac gccaggtcgt acacaacaaa ctgacgagct gcaactacaa tccgtaagtc 6420 tcttcctcga gggccttaca gcctatggga gagtaagaca gagagggaca aaacatcatt 6480 aaaaaaaaaa gtctaatttc acgttttgta ccccccttcc cctccgtgtt gtagcccatc 6540 ggccgcggcg atctcctagt aacactcgtc cgacacttcc accatctcca gctcggccgg 6600 cggttcggca tcctctacca gcggcgtcgt ctcatctttg ccgcagcagc ggacgcacac 6660 cttctccagg cagaacgcca ccagctgccg ccgaacgtac cacaggtaca cgtgcagacc 6720 tgcgaacagg actacggagg tcatgaccac cacgacgcac acgggaatcc agggatcgag 6780 attgttgctg gaactcgcta tcgccaccga cgtgcccgcg tctgtctcac cgccgctcgc 6840 ccgatgtcgc gcggcttgtt atacgctagc ccgtcgccgc ctcggggcac ggtgccctcc 6900 tacccacgta acttcctccg tgacttaaag tcgcgtgtgg tagatctcct gctccgtgga 6960 cgaaccgtcc ggcaggatag cggttaagga ttcggtgcta aggccgtgtc gccaacgtcg 7020 aatgctacgt tgcaacagct tcgacggacg gccatcccct ctctcatcgc aataataaaa 7080 caccagcagc gcgcacgacg cgatcacggt gacacccatg attagaccca cgcagatagc 7140 cagccccgct agcgtatcta gcgccatccc gttcgctccc gttgtctcct gagcgaagca 7200 acttctcggt ccccgttttc aacagttttt gtttccttct ccgcgactag atgttaacgc 7260 ccgcggtctt tccggccgtg ctctacctcc tggcgcttgt cgtctgggtt gagatgttct 7320 gcctcgtcgc cgtagccgtc gtcgagcgcg agatcgcctg ggcgctgctg ctgcggatgc 7380 tggtcgttgg cctgatggtg gaagtcggcg ccgccgccgc ttggaccttc gtgcgttgtc 7440 ttgcctatca gcgctccttc cccgtgctta cggccttccc ctgaaaccca cgttaaccga 7500 ccgtcccaaa aacgccggtg ttaacacagg aaaaaaagaa accacgcagg aaccgcgcag 7560 gaaccacgcg gaacatggga cactatctgg aaatcctgtt caacgtcatc gtcttcactc 7620 tgctgctcgg cgtcatggtc agtatcgtcg 7650 57 6136 DNA Human cytomegalovirus 57 tttaaacctc tgtgttgtgt gattgattgg tatgtggggg gatccgattt caaagggggg 60 tacttatcgg gaattgatgt gtcatggacg cagttttgag cgattttccg ggaataccgg 120 atattacgaa ttactggtag tgacgtagat aataaaatta taatgcgatt aatttttggt 180 gcgttgatta tttttttagc atatgtgtat cattatgagg tgaatggaac agaattacgc 240 tgcagatgtc ttcatagaaa atggccgcct aataaaatta tattgggtaa ttattggctt 300 catcgcgatc ccagagggcc cggatgcgat aaaaatgaac atttattgta tccagacgga 360 aggaaaccgc ctggacctgg agtatgttta tcgcccgatc acctcttctc aaaatggtta 420 gacaaacaca acgataatag gtggtataat gttaacataa cgaaatcacc aggaccgaga 480 cgaataaata taaccttgat aggtgttaga ggataatatt taatgtatgt tttcaaacag 540 acaagttcgt taaaacaaaa tattacagta tgtgtttaat atggtgctaa catggttgca 600 ccatccggtt tcaaactcgc atatcaatct gttatcggta cgacacctgt cattaatcgc 660 atatatgtta cttaccatat gtcccctagc cgtccatgtt ttagaactag aagattacga 720 caggcgctgc cgttgcaaca accaaattct gttgaatacc ctgccggtcg gaaccgaatt 780 gcttaagcca atcgcagcga gcgaaagctg caatcgtcag gaagtgctgg ctattttaaa 840 ggacaaggga accaagtgtc tcaatcctaa cgcgcaagcc gtgcgtcgtc acatcaaccg 900 gctatttttt cggttaatct tagacgagga acaacgcatt tacgacgtag tgtctaccaa 960 tattgagttc ggtgcctggc cagtccctac ggcctacaaa gcctttcttt ggaaatacgc 1020 caagagactg aactaccacc acttcagact gcgctggtga tcatgtccct attttaccgt 1080 gcggtagctc tgggcacgct aagcgctttg gtgtggtaca gcactagcat cctcgcagag 1140 attaacgaaa attcctgctc ctcatcttct gcggatcacg aagactgcga ggaaccggac 1200 gagatcgttc gcgaagagca agactatcgg gctctgctgg ccttttccct agtgatttgc 1260 ggtacgctcc tcgtcacttg tgtgatctga gacgtcatgc tggtagcgtt tatgagtcgg 1320 gcggtggccg acacgccgca tttcctaacc cgcgcagcat gttgcgcttg ctgttcacgc 1380 tcgtcctgct ggccctccac gggcagtctg tcggcgctag ccgcgactat gtgcatgttc 1440 ggctactgag ctaccgaggc gaccccctgg tcttcaagca cactttctcg ggtgtgcgtc 1500 gacccttcac cgagctaggc tgggctgcgt gtcgcgactg ggacagtatg cattgcacac 1560 ccttctggtc taccgatctg gagcagatga ccgactcggt gcggcgttac agcacggtga 1620 gccccggcaa ggaagtgacg cttcagcttc acgggaacca aaccgtacag ccgtcgtttc 1680 taagctttac gtgccgcctg cagctagaac ccgtggtgga aaatgttggc ctctacgtgg 1740 cctacgtggt caacgacggc gaacgcccac aacagttttt tacaccgcag gtagacgtgg 1800 tacgctttgc tctatatcta gaaacactct cccggatcgt ggaaccgtta gaatcaggtc 1860 gcctggcagt ggaatttgat acgcctgacc tagctctggc gcccgattta gtaagcagcc 1920 tcttcgtggc cggacacggc gagaccgact tttacatgaa ctggacgctg cgtcgcagtc 1980 agacccacta cctggaggag atggccttac aggtggagat tctaaaaccc cgcggcgtac 2040 gtcaccgcgc tattatccac catccgaagc tacagccggg cgttggcctg tggatagatt 2100 tctgcgtgta ccgctacaac gcgcgcctga cccgcggcta cgtacgatac accctgtcac 2160 cgaaagcgcg cttgcccgca aaagcagagg gttggctggt gtcactagac agattcatcg 2220 tgcagtacct caacacattg ctgattacaa tgatggcggc gatatgggct cgcgttttga 2280 taacctacct ggtgtcgcgg cgtcggtaga ggcttgcgga aaccacgtcc tcgtcacacg 2340 tcgttcgcgg acatagcaag aaatccacgt cgccacatct cgagaatgcc ggccttgcgg 2400 ggtccccttc gcgcaacatt cctggccctg gtcgcgttcg ggttgctgct tcagatagac 2460 ctcagcgacg ctacgaatgt gaccagcagc acaaaagtcc ctactagcac cagcaacaga 2520 aataacgtcg acaacgccac gagtagcgga cccacaaccg ggatcaacat gaccaccacc 2580 cacgagtctt ccgttcacaa cgtgcgcaat aacgagatca tgaaagtgct ggctatcctc 2640 ttctacatcg tgacaggcac ctccattttc agcttcatag cggtactgat cgcggtagtt 2700 tactcctcgt gttgcaagca cccgggccgc tttcgtttcg ccgacgaaga ggccgtcaac 2760 ctgttggacg acacggacga cagtggcggc agcagcccgt ttggcagcgg ttcccgacga 2820 ggttctcaga tccccgccgg attttgttcc tcgagccctt atcagcggtt ggaaactcgg 2880 gactgggacg aggaggagga ggcgtccgcg gcccgcgagc gcatgaaaca tgatcctgag 2940 aacgtcatct atttcagaaa ggatggcaac ttggacacgt cgttcgtgaa tcccaattat 3000 gggagaggct cgcctttgac catcgaatct cacctctcgg acaatgagga ggaccccatc 3060 aggtactacg tttcggtgta cgatgaactg accgcctcgg aaatggaaga accttcgaac 3120 agcaccagct ggcagattcc caaactaatg aaagttgcca tgcaacccgt ctcgctcaga 3180 gatcccgagt acgactaggc tttttttttt gtctttcggt tccaactctt tccccgcccc 3240 atcacctcgc ctgtactatg tgtatgatgt ctcataataa agctttcttt ctcagtctgc 3300 aacatgcagc tgtgtcgggt gtggctgtct gtttgtctgt gcgccgtggt gctgggtcag 3360 tgccagcggg aaaccgcgga aaaaaacgat tattaccgag taccgcatta ctgggacgcg 3420 tgctctcgcg cgctgcccga ccaaacccgt tacaagtatg tggaacagct cgtggacctc 3480 acgttgaact accactacga tgcgagccac ggcttggaca actttgacgt gctcaagagg 3540 tgagggtacg cgctaaaggt gcatgacaac gggaaggtaa gggcgaacgg gtaacggcta 3600 agtaaccgca tggggtatga aatgacgttt ggaacctgtg cttgcagaat caacgtgacc 3660 gaggtgtcgt tgctcatcag cgactttaga cgtcagaacc gtcgcggcgg caccaacaaa 3720 aggaccacgt tcaacgccgc cggttcgctg gcgccacacg cccggagcct cgagttcagc 3780 gtgcggctct ttgccaacta gcctgcgtca cgggaaataa tatgctgcgg cttctgcttc 3840 gtcaccactt tcactgcctg cttctgtgcg cggtttgggc aacgccctgt ctggcgtctc 3900 cgtggtcgac gctaacggca aaccagaatc cgtccccgcc atggtctaaa ctgacgtatt 3960 ccaaaccgca tgacgcggcg acgttttact gtccttttct ctatccctcg cccccacggt 4020 cccccttgca attctcgggg ttccagcagg tatcaacggg tcccgagtgt cgcaacgaga 4080 ccctgtatct gctgtacaac cgggaaggcc agaccttggt ggagagaagc tccacctggg 4140 tgaaaaaggt gatctggtat ctgagcggtc gcaaccagac catcctccaa cggatgcccc 4200 aaacggcttc gaaaccgagc gacggaaacg tgcagatcag cgtggaagac gccaagattt 4260 ttggagcgca catggtgccc aagcagacca agctgctacg cttcgtcgtc aacgatggca 4320 cgcgttatca gatgtgtgtg atgaagctgg agagctgggc ccacgtcttc cgggactaca 4380 gcgtgtcttt tcaggtgcga ttgacgttca ccgaggccaa taaccagact tacaccttct 4440 gtacccatcc caatctcatc atttgagccc gtcgcgcgcg cagggaattt tgaaaaccgc 4500 gcgtcatgag tcccaaagac ctgacgccgt tcttgacgac gttgtggctg ctattgggtc 4560 acagccgcgt gccgcgggtg cgcgcagaag aatgttgcga attcataaac gtcaaccacc 4620 cgccggaacg ctgttacgat ttcaaaatgt gcaatcgctt caccgtcgcg tacgtatttt 4680 catgattgtc tgcgttctgt ggtgcgtctg gatttgtctc tcgacgtttc tgatagccat 4740 gttccatcga cgatcctcgg gaatgccaga gtagattttc atgaatccac aggctgcggt 4800 gtccggacgg cgaagtctgc tacagtcccg agaaaacggc tgagattcgc gggatcgtca 4860 ccaccatgac ccattcattg acacgccagg tcgtacacaa caaactgacg agctgcaact 4920 acaatccgta agtctcttcc tcgagggcct tacagcctat gggagagtaa gacagagagg 4980 gacaaaacat cattaaaaaa aaaagtctaa tttcacgttt tgtacccccc ttcccctccg 5040 tgttgtagcc catcggccgc ggcgatctcc tagtaacact cgtccgacac ttccaccatc 5100 tccagctcgg ccggcggttc ggcatcctct accagcggcg tcgtctcatc tttgccgcag 5160 cagcggacgc acaccttctc caggcagaac gccaccagct gccgccgaac gtaccacagg 5220 tacacgtgca gacctgcgaa caggactacg gaggtcatga ccaccacgac gcacacggga 5280 atccagggat cgagattgtt gctggaactc gctatcgcca ccgacgtgcc cgcgtctgtc 5340 tcaccgccgc tcgcccgatg tcgcgcggct tgttatacgc tagcccgtcg ccgcctcggg 5400 gcacggtgcc ctcctaccca cgtaacttcc tccgtgactt aaagtcgcgt gtggtagatc 5460 tcctgctccg tggacgaacc gtccggcagg atagcggtta aggattcggt gctaaggccg 5520 tgtcgccaac gtcgaatgct acgttgcaac agcttcgacg gacggccatc ccctctctca 5580 tcgcaataat aaaacaccag cagcgcgcac gacgcgatca cggtgacacc catgattaga 5640 cccacgcaga tagccagccc cgctagcgta tctagcgcca tcccgttcgc tcccgttgtc 5700 tcctgagcga agcaacttct cggtccccgt tttcaacagt ttttgtttcc ttctccgcga 5760 ctagatgtta acgcccgcgg tctttccggc cgtgctctac ctcctggcgc ttgtcgtctg 5820 ggttgagatg ttctgcctcg tcgccgtagc cgtcgtcgag cgcgagatcg cctgggcgct 5880 gctgctgcgg atgctggtcg ttggcctgat ggtggaagtc ggcgccgccg ccgcttggac 5940 cttcgtgcgt tgtcttgcct atcagcgctc cttccccgtg cttacggcct tcccctgaaa 6000 cccacgttaa ccgaccgtcc caaaaacgcc ggtgttaaca caggaaaaaa agaaaccacg 6060 caggaaccgc gcaggaacca cgcggaacat gggacactat ctggaaatcc tgttcaacgt 6120 catcgtcttc actctg 6136 58 15549 DNA Human cytomegalovirus 58 cgctgtaggg ataaatagtg cgatggcgtt tgtgggagaa cgcagtagcg atgggttgcg 60 acgtgcacga tccttcgtgg caatgccaat ggggcgttcc cacgattatc gtggcctgga 120 taacatgcgc ggctttagga atttggtgtt tggcgggatc gtcggcggat gtctcttcgg 180 gacccggcat cgcagccgta gtcggctgtt ctgttttcat gattttcctc tgcgcgtatc 240 tcatccgtta ccgggaattc ttcaaagact ccgtaatcga cctccttacc tgccgatggg 300 ttcgctactg cagctgcagc tgtaagtgca gctgcaaatg catctcgggc ccctgtagcc 360 gctgctgttc agcgtgttac aaggagacga tgatttacga catggtccaa tacggtcatc 420 gacggcgtcc cggacacggc gacgatcccg acagggtgat ctgcgagata gtcgagagtc 480 ccccggtttc ggcgccgacg gtgtccgtcc ccccgccgtc ggaggagtcc caccagcccg 540 tcatcccacc gcagccgcca gcaccgacat cggaacccaa accgaagaaa ggtagggcga 600 aagataaacc gaagggtaga ccgaaagaca aacctccgtg cgaaccgacg gtgagttcac 660 aaccaccgtc gcagccgacg gcaatgcccg gcggtccgcc cgacgcgcct ccccccgcca 720 tgccgcagat gccacccggc gtggccgagg cggtacaagc tgccgtgcag gcggccgtgg 780 ccgcggctct acaacaacag cagcagcatc agaccggaac gtaacccgcc cccggtgcga 840 taaggaattt tccgacttgg cgcacatctc cttcctcaat gtttggacaa taaacacatt 900 ccttgccaaa aaatgacgtt tccagaaatc caaggcataa atgtccgtac accggccctt 960 cccaacacgg agtttgagat tccaagcagg agagaagatc atggtgtgga tatggctcgg 1020 catcgggctc ctcggcggta ccggactggc ttccctggtc ctggccattt ccttatttac 1080 ccagcgccga ggccgcaagc gatccgacga gacttcgtcg cgaggccggc tcccgggtgc 1140 tgcttctgat aagcgtggtg cctgcgcgtg ctgctatcga aatccgaaag aagacgtcgt 1200 cgagccgctg gatctggaac tggggctcat gcgggtggac acccacccgc cgacgccgca 1260 ggtgccgcgg tgtacgtcgc tctacatagg agaggatggt ctgccgatag ataaacccga 1320 gtttcctccg gcgcggttcg agatccccga cgtatccacg ccgggaacgc cgaccagcat 1380 cggccgatct ccgtcgcatt gctcctcgtc gagctctttg tcgtcctcga ccagcgtcga 1440 cacggtgctg tatcagccgc cgccatcctg gaagccacct ccgccgcccg ggcgcaagaa 1500 gcggccgcct acgccgccgg tccgggcccc caccacgcgg ctgtcgtcgc acagaccccc 1560 gacgccgata cccgcgccgc gtaagaacct gagcacgccg cccaccaaga aaacgccgcc 1620 gcccacgaaa cccaagccgg tcggctggac accgccggtg acacccaggc ccttcccgaa 1680 aacgccgacg ccacaaaagc cgccgcggaa tccgagacta ccgcgcaccg tcggtctgga 1740 gaatctctcg aaggtgggac tctcgtgtcc ctgtccccga ccccgcacgc cgacggagcc 1800 gaccacgctg cctatcgtgt cggtttccga gctagccccg cctcctcgat ggtcggacat 1860 cgaggaactc ttggaacagg cggtgcagag cgtcatgaag gacgccgagt cgatgcagat 1920 gacctgagac cgaaagagcg agcgcgtccg ttgtacagtt gtatagcagc acacgccttc 1980 cctctttttc accgcagcta agagagagaa agagagtatg tcagtcaagg gcgtggagat 2040 gccagaaatg acgtgggact tggacgttag aaataaatgg cggcgtcgaa aggccctgag 2100 tcgcattcac cggttctggg aatgtcggct acgggtgtgg tggctgagtg acgccggcgt 2160 aagagaaacc gacccaccgc gtccccgacg ccgcccgact tggatgaccg cggtgtttca 2220 cgttatctgt gccgttttgc ttacgcttat gattatggcc atcggcgcgc tcatcgcgta 2280 cttaagatat taccaccagg acagttggcg agacatgctc cacgatctat tttgcggctg 2340 tcattatccc gagaagtgcc gtcggcacca cgagcggcag agaaggagac ggcaagccat 2400 ggatgtgccc gacccggaac tcggcgaccc ggcccgccgg ccgttgaacg gagctatgta 2460 ctacggcagc ggctgtcgct tcgacacggt ggaaatggtg gacgagacga gacccgcgcc 2520 gccggcgctg tcatcgcccg aaaccggcga cgatagcaac gacgacgcgg ttgccggcgg 2580 aggtgctggc ggggtaacat cacccgcgac tcgtacgacg tcgccgaacg cactgctgcc 2640 agaatggatg gatgcggtgc atgtggcggt ccaagccgcc gttcaagcga ccgtgcaagt 2700 aagtggcccg cgggagaacg ccgtatctcc cgctacgtaa gagggttgag ggggccgttc 2760 ccgcgcgagt gctgtacaaa agagagagac tgggacgtag atccggacag aggacggtca 2820 ccatggacga tctgccgctg aatgtcgggt tacccatcat cggcgtgatg ctcgtgctga 2880 tcgtggccat cctctgctat ctggcttacc actggcacga caccttcaaa ctggtgcgca 2940 tgtttctgag ctaccgctgg ctgatccgct gttgcgagct gtacggggag tacgagcgcc 3000 ggttcgcgga cctgtcgtct ctgggcctcg gcgccgtacg gcgggagtcg gacagacgat 3060 accgtttctc cgaacggccc gacgagatct tggtccgttg ggaggaagtg tcttcccagt 3120 gcagctacgc gtcgtcgcgg ataacagacc gccgtgtggg ttcatcgtct tcgtcgtcgg 3180 tccacgtcgc tagccagaga aacagcgtgc ctccgccgga catggcggtg acggcgccgc 3240 tgaccgacgt cgatctgttg aaacccgtga cgggatccgc gacgcagttc accaccgtag 3300 ccatggtaca ttatcatcaa gagtacacgt gaatgagaaa aagaaaaaag aggggagcgg 3360 atcgcgataa tgtcgctttg acattctctg ctcgatctac tcagcgtctg cacgaaacgg 3420 catccgcacg gaggcgagcc caagcgtatc tgcagcaagc ggttctttcc ctcggtgatg 3480 gtggcagcat cggtggcggg agcttgttcg gacgatggac ggtgaggagt ccctggcgat 3540 caggcggctc ccgggtgtgg agttcaacgg gtggtaatgg tggcggtgat cggtgttaga 3600 aaacggtggc cctggcaaac atatatctac tgtaaaccct ctgctctgtt aataaaaagc 3660 acacttttca catgagttcg taattttatt gtgtagtgga aatttttacg tcattgggaa 3720 accccagaat gaaagagtat aatgtgcata tcaccggggg ttccctgtca gtacgaatgt 3780 acacaacgcg ggttacatta cgataaactt tccggtaaaa cgatgccgat acagcgtgta 3840 taacgctgat tgttacgaca aacgagttgg tatatccatt atatagtaac gaacatgctg 3900 tggatattag ttttatttgc actcgccgca tcggcgagtg aaaccactac aggtaccagc 3960 tctaattcca gtcaatctac tagtgctacc gccaacacga ccgtatcgac atgtattaat 4020 gcctctaacg gcagtagctg gacagtacca cagctcgcgc tgcttgccgc tagcggctgg 4080 acattatctg gactccttct cttatttacc tgctgctttt gctgcttttg gctagtacgt 4140 aaaatctgca gctgctgcgg caactcctcc gagtcagaga gcaaaacaac ccacgcgtac 4200 accaatgccg cattcacttc ttccgacgca acgttaccca tgggcactac agggtcgtac 4260 actcccccac aggacggctc atttccacct ccgcctcggt gacgtaggct aaaccgaaac 4320 ccacgttgaa cctaacgcgg tttcggaagg cctgagacgt cactttcaca atgacgtccg 4380 tatacacgtt catcataaaa caccgtagag gctaaggctt cggtagggag agacctcaac 4440 tgttcctgat gagcacccgt gctctcatct cttcagactt gtcatgaccc ccgctcagac 4500 taacgcgact accaccgtgc acccgcacga cgcaaaaaac ggcagcggcg gtagtgccct 4560 gccgaccctc gtcgttttcg gctttatcgt tacgctactt ttctttctct ttatgctcta 4620 cttttggaac aacgacgtgt tccgtaagct gctccgtgcg cttggatcca gcgctgttgc 4680 gaccgcttcg acgcgtggca agacgaggtc atctaccgtc gtccatcacg tcgttcccag 4740 agcgacgacg agagtcgtac taacagcgtg tcatcgtacg ttcttttatc acccgcgtcc 4800 gatggcggtt ttgacaaccc ggcactgaca gaggccgtcg acagcgtgga cgactgggcg 4860 accacctcgg ttttctacgc cacgtccgac gaaacggcgg acgccgagcg ccgagactcg 4920 cagcaactgc tcatcgagct tccgccggag ccgctcccgc ccgacgtggt ggcggccatg 4980 cagaaagcag tgaaacgcgc tgtacagaac gcactacgac acagccacga ctcttggcag 5040 cttcatcaga ccctgtgacg ccagatgaac gttccttctt aaacatccga ggtagcaatg 5100 agacaggtcg cgtaccgccg gcgacgcgag agttcctgcg cggtgctggt ccaccacgtc 5160 ggccgcgacg gcgacggcga gggggaggca gcaaaaaaga cctgcaaaaa aaccggacgc 5220 tcagttgcgg gcatcccggg cgagaagctg cgtcgcacgg tggtcaccac cacgccggcc 5280 cgacgtttga gcggccgaca cacggagcag gagcaggcgg gcatgcgtct ctgtgaaaaa 5340 gggaagaaaa gaatcatcat gtgccgccgg gagtcgctcc gaactctgcc gtggctgttc 5400 tgggtgctgt tgagctgccc gcgactcctc gaatattctt cctcttcgtt ccccttcgcc 5460 accgctgaca ttgccgaaaa gatgtgggcc gagaattatg agaccacgtc gccggcgccg 5520 gtgttggtcg ccgagggaga gcaagttacc atcccctgca cggtcatgac acactcctgg 5580 cccatggtct ccattcgcgc acgtttctgt cgttcccacg acggcagcga cgagctcatc 5640 ctggacgccg tcaaaggcca tcggctgatg aacggactcc agtaccgcct gccgtacgcc 5700 acttggaatt tctcgcaatt gcatctcggc caaatattct cgcttacttt taacgtatcg 5760 atggacacag ccggcatgta cgaatgcgtg ctacgcaact acagccacgg cctcatcatg 5820 caacgcttcg taattctcac gcagctggag acgctcagcc ggcccgacga accttgctgc 5880 acaccggcgt taggtcgcta ctcgctggga gaccagatct ggtcgccgac gccctggcgt 5940 ctacggaatc acgactgcgg aacgtaccgc ggctttcaac gcaactactt ctatatcggc 6000 cgcgccgacg ccgaggattg ctggaaaccc gcatgtccgg acgaggaacc cgaccgctgt 6060 tggacagtga tacagcgtta ccggctcccc ggcgactgct accgttcgca gccacacccg 6120 ccgaaatttt taccggtgac gccagcaccg ccggccgaca tagacaccgg gatgtctccc 6180 tgggccactc ggggaatcgc ggcgtttttg gggttttgga gtatttttac cgtatgtttc 6240 ctatgctacc tgtgttatct gcagtgttgt ggacgctggt gtcccacgcc gggaagggga 6300 cgacgaggcg gtgagggcta tcgacgccta ccgacttacg atagttaccc cggtgttaga 6360 aagatgaaga ggtgagaaca cgtataaaat aaaaaaataa tatgttaaaa aatgcagtgt 6420 gtgaagtgtg aatagtgtga ttaaaatatg cggattgaat gggtgtggtg gttattcgga 6480 tactttgtgt catccgttgg gagcgaacgg tcattatcct atcgttacca cttggaatct 6540 aattcatcta ccaacgtggt ttgcaacgga aacatttccg tgtttgtaaa cggcacccta 6600 ggtgtgcggt ataacattac ggtaggaatc agttcgtctt tattaatagg acaccttact 6660 atacaagtat tggaatcatg gttcacaccc tgggtccaaa ataaaagtta caacaaacaa 6720 cccctaggtg acactgaaac gctttataat atagatagcg aaaacattca tcgcgtatct 6780 caatattttc acacaagatg gataaaatct ctgcaagaga atcacacttg cgacctcaca 6840 aacagtacac ctacctatac atatcaagta aacgtgaaca acacgaatta cctaacacta 6900 acatcctcgg gatggcaaga ccgtctaaat tacaccgtca taaatagtac acactttaac 6960 ctcacagaat cgaacataac cagcattcaa aaatatctca acactacctg catagaaaga 7020 ctccgtaact acaccttgga gtccgtatac accacaactg tgcctcaaaa cataacaaca 7080 tctcaacacg caacaaccac tatgcacaca atacctccaa atacaataac aattcaaaat 7140 acaactcaaa gccatactgt acagacgccg tcttttaacg acacacataa cgtgacgaaa 7200 cacacgttaa acataagcta cgttttatca caaaaaacga ataacacaac atcaccgtgg 7260 atatatgcca tacctatggg cgctacagcc acaataggcg ccggtttata tatcgggaaa 7320 cactttacgc cggttaagtt cgtatacgag gtatggcgcg gtcagtaaag acgattcgga 7380 ttcaacacat atactcccca cgatcctcga acaccttaca gcatatgagc aaaaaacaag 7440 aaagtatagc cacaatcaca tttgggcgaa taacatgctg tcatccacta gcgtctatta 7500 atctaatgtt taacgggagc tgtactgtca ccgttaaaat atccatggga atcaacgggt 7560 caaccaacgt ccatcagctt gtgattgtgc tccatctggg taaccgctgt cagccttggc 7620 gacaggtgta atcacagctg tcacataact cacgaagcct ccaatcacag cagcacacat 7680 agtcctaacg ccattggcgt gtataaaagt tcggaaaact tgacggttgt acggcacgac 7740 aaatcgatgt agtggtatgt ttttccagca gagaccgtgt gcggtctctt aggttcgcta 7800 tactgtggct ggaaactggt tacctgtgaa gatggctaac tatcctgttc tgtcctggaa 7860 aaacttttgg cgtcgtaggt ggactttgca gtatgcgggt tagtgaagtt atgtcattta 7920 tttacgttta cgatctcgta ttacaaaccg cggagaggat gataccgttc ggccccatga 7980 gttattttta ttcttccggt aggaggcatg aagcctctga taatgctcat ctgctttgct 8040 gtgatattat tgcagcttgg agtgactaaa gtgtgtcagc ataatgaagt gcaactgggc 8100 aatgagtgct gccctccgtg tggttcggga caaagagtta ctaaagtatg cacggattat 8160 accagtgtaa cgtgtacccc ttgccccaac ggcacgtatg tatcgggact ttacaactgt 8220 accgattgca ctcaatgtaa cgtcactcag gtcatgattc gtaactgcac ttccaccaat 8280 aataccgtat gcgcacctaa gaaccatacg tacttttcca ctccaggcgt ccaacatcac 8340 aaacaacgac agcaaaatca taccgcacat ataaccgtca aacaaggaaa aagcggtcgt 8400 catactctag cctggttgtc tctctttatc tttcttgtgg gtatcatact tttaattctc 8460 tatcttatag ccgcctatcg gagtgagaga tgccaacagt gttgctcaat cggcaaaatt 8520 ttctaccgca ccctgtaagc ttcctgttgt tgtttttaca tcacggtacg atgaagtcac 8580 acagataatt acagatgagc tgttcatatt ttttattatt ttttccaatt cctgcactaa 8640 aaaaagaagc actttacgga accgtgtctg agtatctgtg gggaatttag gtactttttg 8700 ccgacgtcag gaaaaataag tgtcgcctac ataagagccc ggtgctatcg tgctgtcact 8760 ctttcttgtt gccttcgatg tacggcgtcc tggctcatta ctactccttc atcagtagcc 8820 ccagcgttat ggttaatttt aagcatcata acgccgtgca gctgttatgt gcacggaccc 8880 gagacgcact gccggatggg aacgtttaac ccatcatgcg tcgtatcacg cgaactacgg 8940 ggcatacgcc gtgttgatgg ctacatcgca aagaaagtcc ctagtgttac atcgatacag 9000 tgccgtgaca gccgtggccc tgcagctcat gcctgttgag atcgtccgca agctagatca 9060 gtcggactgg gtgcggggtg cctggatcgt gtcagagact tttccaacta gcgaccccaa 9120 aggagtttgg agcgacgatg actcctcgat gggtggaagt gatgattgat gatgagaacc 9180 tgacaagaaa gacgagagag aaatttagag ctgtcattgt agaattagtc tagattcctg 9240 ataataaaca gtatcgattt tgaaacctaa ttgacgtgtg atcgattttt aaacctctgt 9300 gttgtgtgat tgattggtat gtggggggat ccgatttcaa aggggggtac ttatcgggaa 9360 ttgatgtgtc atggacgcag ttttgagcga ttttccggga ataccggata ttacgaatta 9420 ctggtagtga cgtagataat aaaattataa tgcgattaat ttttggtgcg ttgattattt 9480 ttttagcata tgtgtatcat tatgaggtga atggaacaga attacgctgc agatgtcttc 9540 atagaaaatg gccgcctaat aaaattatat tgggtaatta ttggcttcat cgcgatccca 9600 gagggcccgg atgcgataaa aatgaacatt tattgtatcc agacggaagg aaaccgcctg 9660 gacctggagt atgtttatcg cccgatcacc tcttctcaaa atggttagac aaacacaacg 9720 ataataggtg gtataatgtt aacataacga aatcaccagg accgagacga ataaatataa 9780 ccttgatagg tgttagagga taatatttaa tgtatgtttt caaacagaca agttcgttaa 9840 aacaaaatat tacagtatgt gtttaatatg gtgctaacat ggttgcacca tccggtttca 9900 aactcgcata tcaatctgtt atcggtacga cacctgtcat taatcgcata tatgttactt 9960 accatatgtc ccctagccgt ccatgtttta gaactagaag attacgacag gcgctgccgt 10020 tgcaacaacc aaattctgtt gaataccctg ccggtcggaa ccgaattgct taagccaatc 10080 gcagcgagcg aaagctgcaa tcgtcaggaa gtgctggcta ttttaaagga caagggaacc 10140 aagtgtctca atcctaacgc gcaagccgtg cgtcgtcaca tcaaccggct attttttcgg 10200 ttaatcttag acgaggaaca acgcatttac gacgtagtgt ctaccaatat tgagttcggt 10260 gcctggccag tccctacggc ctacaaagcc tttctttgga aatacgccaa gagactgaac 10320 taccaccact tcagactgcg ctggtgatca tgtccctatt ttaccgtgcg gtagctctgg 10380 gcacgctaag cgctttggtg tggtacagca ctagcatcct cgcagagatt aacgaaaatt 10440 cctgctcctc atcttctgcg gatcacgaag actgcgagga accggacgag atcgttcgcg 10500 aagagcaaga ctatcgggct ctgctggcct tttccctagt gatttgcggt acgctcctcg 10560 tcacttgtgt gatctgagac gtcatgctgg tagcgtttat gagtcgggcg gtggccgaca 10620 cgccgcattt cctaacccgc gcagcatgtt gcgcttgctg ttcacgctcg tcctgctggc 10680 cctccacggg cagtctgtcg gcgctagccg cgactatgtg catgttcggc tactgagcta 10740 ccgaggcgac cccctggtct tcaagcacac tttctcgggt gtgcgtcgac ccttcaccga 10800 gctaggctgg gctgcgtgtc gcgactggga cagtatgcat tgcacaccct tctggtctac 10860 cgatctggag cagatgaccg actcggtgcg gcgttacagc acggtgagcc ccggcaagga 10920 agtgacgctt cagcttcacg ggaaccaaac cgtacagccg tcgtttctaa gctttacgtg 10980 ccgcctgcag ctagaacccg tggtggaaaa tgttggcctc tacgtggcct acgtggtcaa 11040 cgacggcgaa cgcccacaac agttttttac accgcaggta gacgtggtac gctttgctct 11100 atatctagaa acactctccc ggatcgtgga accgttagaa tcaggtcgcc tggcagtgga 11160 atttgatacg cctgacctag ctctggcgcc cgatttagta agcagcctct tcgtggccgg 11220 acacggcgag accgactttt acatgaactg gacgctgcgt cgcagtcaga cccactacct 11280 ggaggagatg gccttacagg tggagattct aaaaccccgc ggcgtacgtc accgcgctat 11340 tatccaccat ccgaagctac agccgggcgt tggcctgtgg atagatttct gcgtgtaccg 11400 ctacaacgcg cgcctgaccc gcggctacgt acgatacacc ctgtcaccga aagcgcgctt 11460 gcccgcaaaa gcagagggtt ggctggtgtc actagacaga ttcatcgtgc agtacctcaa 11520 cacattgctg attacaatga tggcggcgat atgggctcgc gttttgataa cctacctggt 11580 gtcgcggcgt cggtagaggc ttgcggaaac cacgtcctcg tcacacgtcg ttcgcggaca 11640 tagcaagaaa tccacgtcgc cacatctcga gaatgccggc cttgcggggt ccccttcgcg 11700 caacattcct ggccctggtc gcgttcgggt tgctgcttca gatagacctc agcgacgcta 11760 cgaatgtgac cagcagcaca aaagtcccta ctagcaccag caacagaaat aacgtcgaca 11820 acgccacgag tagcggaccc acaaccggga tcaacatgac caccacccac gagtcttccg 11880 ttcacaacgt gcgcaataac gagatcatga aagtgctggc tatcctcttc tacatcgtga 11940 caggcacctc cattttcagc ttcatagcgg tactgatcgc ggtagtttac tcctcgtgtt 12000 gcaagcaccc gggccgcttt cgtttcgccg acgaagaggc cgtcaacctg ttggacgaca 12060 cggacgacag tggcggcagc agcccgtttg gcagcggttc ccgacgaggt tctcagatcc 12120 ccgccggatt ttgttcctcg agcccttatc agcggttgga aactcgggac tgggacgagg 12180 aggaggaggc gtccgcggcc cgcgagcgca tgaaacatga tcctgagaac gtcatctatt 12240 tcagaaagga tggcaacttg gacacgtcgt tcgtgaatcc caattatggg agaggctcgc 12300 ctttgaccat cgaatctcac ctctcggaca atgaggagga ccccatcagg tactacgttt 12360 cggtgtacga tgaactgacc gcctcggaaa tggaagaacc ttcgaacagc accagctggc 12420 agattcccaa actaatgaaa gttgccatgc aacccgtctc gctcagagat cccgagtacg 12480 actaggcttt tttttttgtc tttcggttcc aactctttcc ccgccccatc acctcgcctg 12540 tactatgtgt atgatgtctc ataataaagc tttctttctc agtctgcaac atgcagctgt 12600 gtcgggtgtg gctgtctgtt tgtctgtgcg ccgtggtgct gggtcagtgc cagcgggaaa 12660 ccgcggaaaa aaacgattat taccgagtac cgcattactg ggacgcgtgc tctcgcgcgc 12720 tgcccgacca aacccgttac aagtatgtgg aacagctcgt ggacctcacg ttgaactacc 12780 actacgatgc gagccacggc ttggacaact ttgacgtgct caagaggtga gggtacgcgc 12840 taaaggtgca tgacaacggg aaggtaaggg cgaacgggta acggctaagt aaccgcatgg 12900 ggtatgaaat gacgtttgga acctgtgctt gcagaatcaa cgtgaccgag gtgtcgttgc 12960 tcatcagcga ctttagacgt cagaaccgtc gcggcggcac caacaaaagg accacgttca 13020 acgccgccgg ttcgctggcg ccacacgccc ggagcctcga gttcagcgtg cggctctttg 13080 ccaactagcc tgcgtcacgg gaaataatat gctgcggctt ctgcttcgtc accactttca 13140 ctgcctgctt ctgtgcgcgg tttgggcaac gccctgtctg gcgtctccgt ggtcgacgct 13200 aacggcaaac cagaatccgt ccccgccatg gtctaaactg acgtattcca aaccgcatga 13260 cgcggcgacg ttttactgtc cttttctcta tccctcgccc ccacggtccc ccttgcaatt 13320 ctcggggttc cagcaggtat caacgggtcc cgagtgtcgc aacgagaccc tgtatctgct 13380 gtacaaccgg gaaggccaga ccttggtgga gagaagctcc acctgggtga aaaaggtgat 13440 ctggtatctg agcggtcgca accagaccat cctccaacgg atgccccaaa cggcttcgaa 13500 accgagcgac ggaaacgtgc agatcagcgt ggaagacgcc aagatttttg gagcgcacat 13560 ggtgcccaag cagaccaagc tgctacgctt cgtcgtcaac gatggcacgc gttatcagat 13620 gtgtgtgatg aagctggaga gctgggccca cgtcttccgg gactacagcg tgtcttttca 13680 ggtgcgattg acgttcaccg aggccaataa ccagacttac accttctgta cccatcccaa 13740 tctcatcatt tgagcccgtc gcgcgcgcag ggaattttga aaaccgcgcg tcatgagtcc 13800 caaagacctg acgccgttct tgacgacgtt gtggctgcta ttgggtcaca gccgcgtgcc 13860 gcgggtgcgc gcagaagaat gttgcgaatt cataaacgtc aaccacccgc cggaacgctg 13920 ttacgatttc aaaatgtgca atcgcttcac cgtcgcgtac gtattttcat gattgtctgc 13980 gttctgtggt gcgtctggat ttgtctctcg acgtttctga tagccatgtt ccatcgacga 14040 tcctcgggaa tgccagagta gattttcatg aatccacagg ctgcggtgtc cggacggcga 14100 agtctgctac agtcccgaga aaacggctga gattcgcggg atcgtcacca ccatgaccca 14160 ttcattgaca cgccaggtcg tacacaacaa actgacgagc tgcaactaca atccgtaagt 14220 ctcttcctcg agggccttac agcctatggg agagtaagac agagagggac aaaacatcat 14280 taaaaaaaaa agtctaattt cacgttttgt accccccttc ccctccgtgt tgtagcccat 14340 cggccgcggc gatctcctag taacactcgt ccgacacttc caccatctcc agctcggccg 14400 gcggttcggc atcctctacc agcggcgtcg tctcatcttt gccgcagcag cggacgcaca 14460 ccttctccag gcagaacgcc accagctgcc gccgaacgta ccacaggtac acgtgcagac 14520 ctgcgaacag gactacggag gtcatgacca ccacgacgca cacgggaatc cagggatcga 14580 gattgttgct ggaactcgct atcgccaccg acgtgcccgc gtctgtctca ccgccgctcg 14640 cccgatgtcg cgcggcttgt tatacgctag cccgtcgccg cctcggggca cggtgccctc 14700 ctacccacgt aacttcctcc gtgacttaaa gtcgcgtgtg gtagatctcc tgctccgtgg 14760 acgaaccgtc cggcaggata gcggttaagg attcggtgct aaggccgtgt cgccaacgtc 14820 gaatgctacg ttgcaacagc ttcgacggac ggccatcccc tctctcatcg caataataaa 14880 acaccagcag cgcgcacgac gcgatcacgg tgacacccat gattagaccc acgcagatag 14940 ccagccccgc tagcgtatct agcgccatcc cgttcgctcc cgttgtctcc tgagcgaagc 15000 aacttctcgg tccccgtttt caacagtttt tgtttccttc tccgcgacta gatgttaacg 15060 cccgcggtct ttccggccgt gctctacctc ctggcgcttg tcgtctgggt tgagatgttc 15120 tgcctcgtcg ccgtagccgt cgtcgagcgc gagatcgcct gggcgctgct gctgcggatg 15180 ctggtcgttg gcctgatggt ggaagtcggc gccgccgccg cttggacctt cgtgcgttgt 15240 cttgcctatc agcgctcctt ccccgtgctt acggccttcc cctgaaaccc acgttaaccg 15300 accgtcccaa aaacgccggt gttaacacag gaaaaaaaga aaccacgcag gaaccgcgca 15360 ggaaccacgc ggaacatggg acactatctg gaaatcctgt tcaacgtcat cgtcttcact 15420 ctgctgctcg gcgtcatggt cagtatcgtc gcttggtact tcacgtgaac caccgtcgtc 15480 ccggtttaaa aaccatcatc gacggccgtt ataaagccac ccggacacgc gccgcggcac 15540 ttgcctacg 15549

Claims (30)

1. Recombinant vector containing infectious genome of human cytomegalovirus (HCMV) and being useful for the production of reconstituted HCMV virus retaining phenotypic characteristics of a clinical virus isolate including the ability to grow on endothelial cells, to induce microfusion and to spread viral material from HUVEC to PMNL, characterized in that it is obtainable by inserting DNA from a clinical isolate of HCMV virus into a bacterial cloning vehicle.
2. Recombinant vector according to claim 1 which contains the complete infectious DNA of HCMV.
3. Recombinant vector according to claims 1 or 2, characterized in that the bacterial cloning vehicle contains DNA sequences which are homologous to the HCMV DNA and insertion is effected by homologous recombination.
4. Recombinant vector according to anyone of claims 1 to 3, wherein the bacterial cloning vehicle is a BAC system vector.
5. Recombinant vector according to anyone of claims 1 to 4 and designated FIX-Bac-7.
6. Bacterial cell line containing a recombinant vector according to anyone of claims 1 to 5.
7. Bacterial cell line according to claim 6 which is an E.coli cell line.
8. Bacterial cell line according to claims 6 or 7, designated FIX-Bac-7-E.coli DH10B and deposited as DSM 13958 containing at least one copy of FIX-Bac-7.
9. Use of a recombinant vector according to anyone of claims 1 to 5 or a bacterial cell line according to anyone of claims 6 to 8 for the production of reconstituted HCMV virus retaining the phenotypic characteristics of a parental clinical isolate including the ability to grow on endothelial cells, to induce microfusion and to spread viral material from HUVEC to PMNL.
10. Use according to claim 9 wherein a recombinant vector according to anyone of claims 1 to 5 is transfected into suitable eukaryotic host cells and reconstituted infectious virus is collected after culturing said cells.
11. Use according to claim 9 or 10, wherein the reconstituted HCMV virus further retains HUVEC- and/or PMNL-tropism of a parental clinical virus isolate.
12. Use of reconstituted infectious HCMV virus produced according to claims 9, 10 or 11 for the production of vaccines and/or antibodies against HCMV virus.
13. Use of reconstituted infectious HCMV virus produced according to claims 9, 10 or 11 for the screening of drugs or small molecules for their antiviral activity.
14. Use of a recombinant vector according to anyone of claims 1 to 5 for studying genes and function of genes of HCMV virus.
15. Use of a recombinant vector according to anyone of claims 1 to 5 for the preparation of virus mutants by modifying, deleting, randomly deleting or substituting parts of the viral DNA.
16. Use according to claim 15, wherein the genes which are responsible for microfusion and/or tissue tropism are modified.
17. Use of a recombinant vector according to anyone of claims 1 to 5 for vaccine development.
18. Use of a recombinant vector according to anyone of claims 1 to 5 for the development and/or screening of substances which inhibit viral gene production on trancriptional and/or translational level.
19. HCMV virus mutant, wherein the region UL130 to UL132 is either deleted or mutated in such a way that the ability to induce microfusion and/or to infect endothelial cells is lost.
20. HCMV virus mutant, wherein the region UL128 to UL132 is either deleted or mutated in such a way that the ability to induce microfusion, PMNL and/or HUVEC tropism is reduced or lost.
21. Use of RV-FIX or a HCMV virus mutant according to claim 19 or 20 for studying pathogenicity, and especially studying adapted and innate immune surveillance or immune counterstrategies, studying NK-cell recognition, B-cell recognition, T-cell recognition, complement regulation, studying MHC regulation ((classic (HLA-A,B,C) and nonclassic (HLA-E,G; MIC-A, MIC-B)), studying trophoblast infection for mechanism of fetal loss during pregnancy, studying induction and prevention of apoptosis and cellular suicide, studying and modification of anti-apoptotic and proapoptotic viral genes and cellular genes for virally induced transformation of infected cells, studying soluble viral factors (cytokine-like or chemokine-like) and effects on cell migration and cell signalling, studying of latency and reactivation in virally infected endothelial cells, progenitor cells and hematopoietic stem cells as well as mature cells (dendritic cells, monocytes, macrophages, thrombocytes).
22. Use of RV-FIX or a HCMV virus mutant according to claim 19 or 20 for studying cell adherence of wild-type virus in comparison with mutant virus.
23. Use of RV-FIX or a HCMV virus mutant according to claim 19 or 20 for studying essential or non-essential genes as targets for chemotherapeutical intervention.
24. Use of RV-FIX or a HCMV virus mutant according to claim 19 or 20 for the development of vaccines and/or antibodies and small therapeutic molecules.
25. Use of RV-FIX or a HCMV virus mutant according to claim 19 or 20 for diagnostics, for drug screening, as attenuation marker, for the development of modified vectors, for the development of or the screening for peptides or antisense genes or antisense RNA which block the activity of the microfusion gene and/or endothelial cell tropism in wild-type virus.
26. Use of FIX-Bac-7 as vector for gene therapy.
27. Process for inducing recovery of microfusion, HUVEC and PMNL tropism as well as possibly other pathogenicity features by transfer of the UL132-128 genetic region or-respective cDNAs from FIX-Bac or RV-FIX and of any HCMV clinical isolate into any other virus strain or Bac cloned virus.
28. Use of the UL131-128 or UL132-UL128 transcripts of FIX-bac or RV-FIX and of any HCMV clinical isolate for pathogenicity studies, therapeutic intervention, vaccine development, vector development or drug screening.
29. Use of the genetic region UL132-128 or transcripts /cDNAs of this region of FIX-bac or RV-FIX to construct cell lines to study the mechanism of microfusion or PMNL and HUVEC tropism.
30. Use of FIX-Bac, Phoebe-Bac Powers-Bac, TB40E-Bac, TowneL-Bac, TowneS-Bac or the respective reconstituted Bac-derived viruses and virus mutants for vaccine development, drug screening, gene therapy, pathogenicity studies of HCMV in vitro and in vivo.
US10/275,287 2001-02-21 2002-02-21 Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates Abandoned US20040087001A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/180,000 US7700350B2 (en) 2001-02-21 2005-07-13 Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates
US12/636,431 US20100267121A1 (en) 2001-02-21 2009-12-11 Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP01104171.2 2001-02-21
EP01104171 2001-02-21
EP10116044.7 2001-07-02
EP01116044 2001-07-02
PCT/EP2002/001867 WO2002066629A2 (en) 2001-02-21 2002-02-21 Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/001867 A-371-Of-International WO2002066629A2 (en) 2001-02-21 2002-02-21 Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/180,000 Continuation US7700350B2 (en) 2001-02-21 2005-07-13 Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates

Publications (1)

Publication Number Publication Date
US20040087001A1 true US20040087001A1 (en) 2004-05-06

Family

ID=26076487

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/275,287 Abandoned US20040087001A1 (en) 2001-02-21 2002-02-21 Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates
US11/180,000 Expired - Fee Related US7700350B2 (en) 2001-02-21 2005-07-13 Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates
US12/636,431 Abandoned US20100267121A1 (en) 2001-02-21 2009-12-11 Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/180,000 Expired - Fee Related US7700350B2 (en) 2001-02-21 2005-07-13 Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates
US12/636,431 Abandoned US20100267121A1 (en) 2001-02-21 2009-12-11 Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates

Country Status (7)

Country Link
US (3) US20040087001A1 (en)
EP (1) EP1368465B1 (en)
AT (1) ATE488583T1 (en)
AU (1) AU2002247733B2 (en)
CA (1) CA2438322A1 (en)
DE (1) DE60238309D1 (en)
WO (1) WO2002066629A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140348863A1 (en) * 2011-10-12 2014-11-27 Alessia Bianchi Cmv antigens and uses thereof
US9346874B2 (en) 2009-12-23 2016-05-24 4-Antibody Ag Binding members for human cytomegalovirus

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2654563A1 (en) * 2006-06-07 2007-12-21 The Trustees Of Princeton University Cytomegalovirus surface protein complex for use in vaccines and as a drug target
PE20141433A1 (en) 2008-07-16 2014-10-19 Inst Research In Biomedicine NEUTRALIZING ANTIBODIES OF HUMAN CYTOMEGALOVIRUS
CA2793959C (en) 2010-03-25 2019-06-04 Oregon Health & Science University Cmv glycoproteins and recombinant vectors
HUE037227T2 (en) 2010-05-14 2018-08-28 Univ Oregon Health & Science Recombinant HCMV and RHCMV vectors and uses thereof
SI2691530T1 (en) 2011-06-10 2018-08-31 Oregon Health & Science University Cmv glycoproteins and recombinant vectors
LT2964769T (en) * 2013-03-05 2018-12-10 Oregon Health & Science University Cytomegalovirus vectors enabling control of t cell targeting
UA120938C2 (en) 2014-07-16 2020-03-10 Орегон Хелс Енд Сайєнс Юніверсіті Human cytomegalovirus comprising exogenous antigens
BR112017017092A2 (en) 2015-02-10 2018-06-26 Univ Oregon Health & Science methods and compositions useful in generating non-canonical cd8 + t cell responses
US10688164B2 (en) 2015-11-20 2020-06-23 Oregon Health & Science University CMV vectors comprising microRNA recognition elements
US10611800B2 (en) 2016-03-11 2020-04-07 Pfizer Inc. Human cytomegalovirus gB polypeptide
CA3028002A1 (en) 2016-06-27 2018-01-04 Juno Therapeutics, Inc. Method of identifying peptide epitopes, molecules that bind such epitopes and related uses
AU2017346788A1 (en) 2016-10-18 2019-05-02 Oregon Health & Science University Cytomegalovirus vectors eliciting T cells restricted by major histocompatibility complex E molecules
US10577763B2 (en) * 2017-04-25 2020-03-03 MZC Foundation, Inc. Apparatus, system, and method for smart roadway stud control and signaling
US11629172B2 (en) 2018-12-21 2023-04-18 Pfizer Inc. Human cytomegalovirus gB polypeptide
TWI810589B (en) 2020-06-21 2023-08-01 美商輝瑞股份有限公司 Human cytomegalovirus gb polypeptide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19733364A1 (en) * 1997-08-01 1999-02-04 Koszinowski Ulrich H Prof Method of cloning a large virus genome

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9346874B2 (en) 2009-12-23 2016-05-24 4-Antibody Ag Binding members for human cytomegalovirus
US20140348863A1 (en) * 2011-10-12 2014-11-27 Alessia Bianchi Cmv antigens and uses thereof

Also Published As

Publication number Publication date
CA2438322A1 (en) 2002-08-29
EP1368465A2 (en) 2003-12-10
ATE488583T1 (en) 2010-12-15
US20060019369A1 (en) 2006-01-26
AU2002247733B2 (en) 2007-12-13
EP1368465B1 (en) 2010-11-17
WO2002066629A8 (en) 2003-02-27
DE60238309D1 (en) 2010-12-30
US7700350B2 (en) 2010-04-20
WO2002066629A2 (en) 2002-08-29
WO2002066629A3 (en) 2003-10-09
WO2002066629A9 (en) 2004-01-15
US20100267121A1 (en) 2010-10-21

Similar Documents

Publication Publication Date Title
US20040087001A1 (en) Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates
Landolfo et al. The human cytomegalovirus
Bublot et al. Genetic relationships between bovine herpesvirus 4 and the gammaherpesviruses Epstein-Barr virus and herpesvirus saimiri
DK2753364T3 (en) CONDITIONING REPLYING CYTOMEGALOVIRUS AS VACCINE AGAINST CMV
Tang et al. Human herpesvirus 6 encoded glycoprotein Q1 gene is essential for virus growth
AU2002247733A1 (en) Recombinant vector containing infectious human cytomegalovirus genome with preserved wild-type characteristics of clinical isolates
Borst et al. Development of a cytomegalovirus vector for somatic gene therapy
Hahn et al. Cloning of the genomes of human cytomegalovirus strains Toledo, TownevarRIT3, and Townelong as BACs and site-directed mutagenesis using a PCR-based technique
US6291236B1 (en) Human cytomegalovirus DNA sequences
Isom et al. Characterization of guinea pig cytomegalovirus DNA
ZA200501193B (en) Non-human herpesviruses as vectors.
Ackermann Herpesviruses: a brief overview
Bommareddy et al. Generation and validation of recombinant herpes simplex type 1 viruses (HSV-1) using CRISPR/Cas9 genetic disruption
Gogev et al. Biosafety of herpesvirus vectors
Tan Functional analysis of accessory factors involved in human cytomegalovirus DNA replication
US7589071B1 (en) Large capacity viral amplicon using a minimal orilyt from human cytomegalovirus
CA2154854C (en) Immortalized lymphocytes for production of viral-free proteins
Holak Investigation of murine cytomegalovirus US22 gene family members m139 and m142
Siregar The establishment of a recombinant system for Papiine alphaherpesvirus 2
Kaufer et al. Herpesvirus telomeres allow efficient integration into host chromosomes and mobilization of quiescent viral genomes
Langhoff et al. Pneumonitis in human cytomegalovirus infection
Koszinowski et al. Gabriele Hahn, Hanna Khan, Fausto Baldanti, Ulrich H.
Dunn Characterization of coding and non-coding regions of the human cytomegalovirus genome
Neubauer Characterization of the genome of baboon cytomegalovirus strain (OCOM4-37) isolated from the olive baboon, Papio cynocephalus anubis
Jervey Regulation of the HCMV UL98 promoter by cooperation of the cyclic AMP response element and gamma interferon response element

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOENIG & BAUER AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOLZA-SCHUNEMANN, HANS-BERNHARD;REEL/FRAME:014026/0515

Effective date: 20030422

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION