US20040077015A1 - Detection of Mycoplasma in patients with chronic fatigue syndrome and related disorders - Google Patents

Detection of Mycoplasma in patients with chronic fatigue syndrome and related disorders Download PDF

Info

Publication number
US20040077015A1
US20040077015A1 US10/715,220 US71522003A US2004077015A1 US 20040077015 A1 US20040077015 A1 US 20040077015A1 US 71522003 A US71522003 A US 71522003A US 2004077015 A1 US2004077015 A1 US 2004077015A1
Authority
US
United States
Prior art keywords
mycoplasma
species
fermentans
hominis
penetrans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/715,220
Inventor
Aristo Vojdani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33309357&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040077015(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US10/715,220 priority Critical patent/US20040077015A1/en
Publication of US20040077015A1 publication Critical patent/US20040077015A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the present invention relates to detection of at least one Mycoplasma species, including Mycoplasma fermentans, Mycoplasma hominis and Mycoplasma penetrans , in blood samples of patients with chronic fatigue syndrome, fibromyalgia and rheumatoid arthritis.
  • CFS Chronic Fatigue Syndrome
  • viruses can be reactivated in some CFS patients, including HTLV-II, Epstein-Barr virus (EBV), cytomegalovirus (CMV), herpes simplex viruses (HSV) 1 and 2, and human herpes viruses 6, 7 and 8. It is believed that virus reactivation could be occurring secondarily to some immunologic disturbance (National Institutes of Health Publication No. 96-484, 1996; Nicolson et al., Int. J. Occup. Med. Immunol. Toxicol. 5:69-78, 1996).
  • Mycoplasmas are bacteria belong to the class Mollicutes. They are the smallest free-living, self-replicating bacteria known. They have no cell wall and a very limited genome of between 600 and 1,500 kilobases which makes them highly dependent on their host for survival.
  • the mycoplasma species M. fermentans, M. hominis and M. penetrans have been isolated from individuals suffering from primary a typical pneumonia, urogenital infections, rheumatoid arthritis (RA) and AIDS-related infections (Hayes et al., Infect. Immun. 64:3419-3424, 1996; Schaeverbeke et al., Br. J. Rheumatol. 36:310-314, 1997; Montagnier et al., Clin. Infect. Dis. 17(Suppl. 1):S309-315, 1993).
  • One embodiment of the present invention is a method for determining an increased likelihood of the presence of chronic fatigue syndrome (CFS), fibromyalgia (FMS) or rheumatoid arthritis (RA) in an individual, comprising the steps of: isolating peripheral blood mononuclear cells (PBMC) from the individual; and detecting the presence of at least one mycoplasma species in said PBMC, wherein the presence of at least one of these species indicates an increased likelihood of the presence of CFS, FMS or RA.
  • the species is M. fermentans, M. hominis or M. penetrans .
  • the detecting step comprises a polynucleotide amplificaiton reaction.
  • the detecting step comprises multiplex PCR.
  • the detecting step comprises Southern hybridization or dot blot hybridization.
  • the amplification reaction comprises use of two or more oligonucleotide primers selected from the group consisting of the sequences shown in SEQ ID NOS: 3-8.
  • the primers shown in SEQ ID NOS: 3-8 Preferably, the primers shown in SEQ ID NOS: 3-8.
  • the amplification reaction comprises use of two or more oligonucleotide primers having sequences shown in SEQ ID NOS: 3 and 4 so as to amplify a 206 base pair region of M. fermentans DNA.
  • the amplificaiton reaction comprises use of the primers having sequences shown in SEQ ID NOS: 5 and 6 so as to amplify a 170 base pair region of M. hominis DNA.
  • the amplification reaction comprises use of the primers having sequences shown in SEQ ID NOS: 7 and 8 so as to amplify a 407 base pair region of M. penetrans DNA.
  • the detecting step comprises detecting two or more mycoplasma species.
  • the two or more species are selected from the group consisting of M. fermentans, M. hominis and M. penetrans .
  • all three of these species are detected.
  • the two or more species are simultaneously detected. More preferably, all three species are simultaneously detected.
  • FIG. 1 is an agarose gel showing multiplex polymerase chain reaction (PCR) amplified products generated from CFS patient DNA samples. Lanes 1 and 11 are DNA size markers. Lane 2 shows a 280 bp Mycoplasma (M.) genus amplification product. Lane 3 shows M. genus and 206 bp Mycoplasma fermentans . Lane 4 shows M. genus and 170 bp M. hominis . Lane 5 shows M. genus and 470 bp M. penetrans . Lane 6 shows M. genus, M. fermentans and M. hominis . Lane 7 shows M. genus, M. fermentans and M. penetrans . Lane 8 shows M. genus, M. hominis and M. penetrans . Lane 9 shows M. genus, M. fermentans, M. hominis and M. penetrans . Lane 10 is a non-CFS control sample showing no mycoplasma infection.
  • M. Mycoplasma
  • Lane 3
  • FIG. 2 is a graph showing the percentage of mycoplasma infections in patients with chronic fatigue syndrome (CFS).
  • the CFS group is represented by the solid bars and the controls are represented by the open bars.
  • the present invention provides methods for detecting an increased likelihood of the presence of CFS, FMS or RA in an individual by detecting the presence of at least one Mycoplasma species in PBMC from the individual.
  • the Mycoplasma species are M. fermentans, M. hominis and M. penetrans .
  • any method suitable for the detection of Mycoplasma species can be used, including Southern hybridization, dot blot hybridization and polynucleotide amplification, polynucleotide amplification methods are preferred.
  • any nucleic acid amplification method preferably PCR-based amplification methods, can be used, including reverse transcriptase PCR (RT-PCR), quantitative competitive PCR (QC-PCR) and any other modified PCR, to detect the presence of Mycoplasma DNA or RNA.
  • RT-PCR reverse transcriptase PCR
  • QC-PCR quantitative competitive PCR
  • Multiplex PCR is preferred because it combines the rapidity, sensitivity, and specificity of conventional PCR with multiple species detection and differentiation, in effect alleviating the cost, reagent usage and labor of individual reactions to achieve the same result.
  • the multiplex PCR method uses one set of oligonucleotide primers which are specific for a highly conserved region among all members of the genus mycoplasma, along with one or more other primer sets which are specific for various Mycoplasma species, such as M. fermentans, M. hominis and M. penetrans .
  • Mycoplasma species such as M. fermentans, M. hominis and M. penetrans .
  • amplification of a particular region specific to the genome of each of these species is exemplified below, the amplification of any genome region unique to a particular Mycoplasama species is within the scope of the present invention
  • two or more Mycoplasma species are detected.
  • the PCR amplification reaction uses two or more of the oligonucleotide primers in SEQ ID NOS: 3-8.
  • the two or more Mycoplasma species can be detected either separately or simultaneously.
  • the percentage of M. genus infection was 52, 54, and 49%, respectively, while only 15% of healthy control individuals were infected.
  • M. fermentans was detected in 32, 35, and 23%;
  • M. hominis was detected in 9, 8, and 11%;
  • M. penetrans was detected in 6, 4, and 7% of CFS, FMS and RA patients, respectively.
  • M. fermentans, M. hominis and M. penetrans were detected in 8, 3 and 2% of the healthy control subjects, respectively.
  • M. fermentans infection averaged 32% over the combined sample sets with the highest infection rate found in FMS patients (35%), and the lowest in RA patient samples (23%).
  • M. hominis was detected at an average of 8% over the combined sample sets with the highest infection rate found in RA patient samples (11%), and the lowest in FMS patient samples (8%).
  • penetrans was detected at an average of 5% over the combined sample sets, with the highest infection rate found in RA patient samples (7%), and the lowest in FMS patient samples (4%). There were mycoplasma infections detected by the genus-specific primer set that were not identified by the three species-specific primer sets used in this assay. This indicates that patients from each sample set are infected with other mycoplasma species that remain to be identified.
  • This assay provides a rapid and cost efficient procedure for screening cell cultures or clinical samples for the presence of three potentially pathogenic species of mycoplasma with a high level of sensitivity and specificity.
  • the present method can be combined with one or more other methods for determining an increased likelihood of the presence of CFS to increase the certainty of diagnosis thereof.
  • Such methods include those described in U.S. Pat. Nos. 5,776,690, 5, 766, 859, 5,830,668, and 5,853,996, the entire contents of which are hereby incorporated by reference.
  • a collection of samples from 20 different cell lines was obtained from the American Type Culture Collection (ATCC; Rockville, Md.) and different research laboratories throughout the Los Angeles area. Each sample was tested for mycoplasma contamination by direct agar cultivation, Hoechst stain or PCR in the facility from which the samples were obtained. If the samples were contaminated with mycoplasma, the causative species was identified by a series of single species PCR assays.
  • Cell line samples were obtained from ATCC or outside laboratories. Each sample was tested for mycoplasma contamination at the facility from which they were obtained by direct agar cultivation, Hoechst stain or PCR. The contaminating species was determined by single-species PCR. The cell lines were used to assess the specificity of the multiplex PCR by correlating the results with the single-species PCR.
  • the optimized mycoplasma multiplex PCR was also found to maintain a constant detection limit when presented with varying combinations and concentrations of each mycoplasma species.
  • the assay was able to detect each target sequence without any cross-reaction or interference from background DNA.
  • the amplified products from actual clinical samples which consisted of M. penetrans (407 bp), M. genus (280 bp), M. fermentans (206 bp), and M. hominis (170 bp) were clearly detectable when visualized by agarose gel electrophoresis (FIG. 1).
  • a total of 100 CFS patients were chosen for this study from various clinics throughout the country. The ages of the CFS patients ranged from 25 to 62 years with a median age of 44 years. All subjects in this study met the epidemiological case definition of CFS established by the Centers for Disease Control and Prevention (CDC., Atlanta, Ga.) (Fukuda et al., Ann. Intern. Med. 121:953-959, 1994). At the time of evaluation and according to medical history, all patients complained of fatigue, while 80% of patients complained of exhaustion, sleep disorders, arthralgia myalgia and sore throat. Each patient had been ill for 1-5 years, and any other conditions that may cause CFS-like symptoms excluded individuals from the study. A total of 100 age- and sex-matched control subjects were chosen for this study. Each of these individuals was reported to be healthy after routine examinations. All blood samples were obtained under identical conditions to eliminate variation between samples.
  • M. fermentans and M. hominis were grown in ATCC Culture Medium 243 MYCOPLASMA MEDIUM.
  • M. penetrans was grown in ATCC Culture Medium 988 SPIROPLASMA MEDIUM SP-4.
  • Each culturing procedure was conducted according to the specific instruction for each mycoplasma species provided by ATCC. Briefly, the lyophilized bacterial pellets were resuspended in their respective medium and allowed to revive under culture conditions of 37° C. and 5% CO 2 for 48 hours to minimize cell loss. A 10-fold serial dilution ranging from 10-1 to 10-8 was prepared from each stock culture. A volume of 0-1 ml of each of the M. fermentans and M.
  • hominis cultures was plated on solid medium in duplicate and incubated for a period of six weeks. The colonies were counted under a microscope to determine the colony forming unit (CFU) values which were used to determine the bacterial cell count of the stock culture.
  • CFU colony forming unit
  • the M. penetrans bacterial cell copy number was determined by incubating the 10-fold dilution series in 1 ml of broth at 37° C. and 5% CO 2 until any sign of growth could be determined. The most obvious signs of growth were broth indicator color change, any sign of sediment or turbidity when compared to an uninnoculated control tube containing only growth medium. The final dilution in the series where bacterial growth was observed was used to determine the bacterial cell count. This method was used because M. penetrans does not easily grow in solid medium as it is much more fastidious than M. fermentans and M. hominis.
  • Total DNA was extracted and purified using methods described by Sambrook et al. (Molecular Cloning: a Laboratory Manual , Cold Spring Harbor Laboratory Press, cold Spring Harbor, N.Y., 1989). Briefly, 10 ml of blood was collected in tubes containing acid citrate dextrose (ACD) solution A (Becton-Dickinson, Franklin Lakes, N.J.) gently layered over Histopaque (Sigma, St. Louis, Mo.) and centrifuged at 2,000 rpm for 30 min. PBMC were collected and washed twice with PBS, pH 7.4. DNA from PBMC and cell lines was extracted by the same method.
  • ACD acid citrate dextrose
  • the cells were treated with 10 mM Tris-HCI, pH 8.0, 1 mM EDTA (TE), 1% SDS containing 20 ⁇ g/ml proteinase K for 2 h at 55° C.
  • DNA was extracted with phenol/chloroform/isoamyl alcohol (25:24:1) and precipitated with 0.1 volume of 3 M sodium acetate and 2 volumes of absolute ethanol, then incubated at ⁇ 20° C. overnight.
  • Samples were centrifuged at 14,000 ⁇ g for 20 min, and the pellets were dried in a centrivap concentrator (Labconco, Kansas City, Mo.) for 12 min at 60° C.
  • DNA pellets were resuspended in 100 ⁇ l TE.
  • the DNA concentration and purity were determined spectrophotometrically by measuring the absorbance at 260 and 280 nm. Human genomic DNA sample concentrations were standardized at 0.2 mg/ml and stored at ⁇ 20° C. until used.
  • Primer set 1 5′-GGGAGCAAACAGGATTAGATACCCT-3′ (SEQ ID NO: 1) and
  • 5′-TGCACCATCTGTCACTCTGTTAACCTC-3′ are mycoplasma genus specific primers which amplify a 280 bp region in all species of mycoplasma (van Kuppeveld et al., Appl. Environ, Microbiol. 60149-152, 1994). Primer set 2, 5′-GGACTATTGTCTAAACAATTTCCC-3′ (SEQ ID NO: 3) and 5′-GGTTATTCG[0027]
  • ATTTCTAAATCGCCT-3′ (SEQ ID NO: 4) specifically amplify a 206 bp region of the M. fermentans genome (Hawkins et al., j. Infect. Dis. 165581-585, 1992).
  • Primer set 3 5′-ATACATGCATGTCGAGCGAG-3′ (SEQ ID NO: 5) and 5′-CATCTTTTAGTG
  • GCGCCTTAC-3′ (SEQ ID NO: 6) are specific for a 170 bp region of the M. hominis genome (Grau et al., Mol. Cell. Probes 8139-148, 1994). Primer set 4, 5′-CATGCA
  • AGTCGGACGAAGCA-3′ (SEQ ID NO: 7) and 5′-AGCATTTCCTCTTCTTACAA-3′ (SEQ ID NO: 8) are specific for a 407 bp region of the M. penetrans genome (Grau et al; supra.).
  • the multiplex PCR reaction components and cycling parameters were determined through a number of initial trial amplifications. Every aspect of the reaction which could affect the amplification efficiency was manipulated in different combinations to achieve optimal results, including DNA and reagent concentrations, annealing temperatures and mycoplasma cell copy numbers.
  • the optimal primer concentrations were determined by experimenting with equal and staggered primer concentrations to generate equal products from each primer set. (Bej et al., Mol. Cell. Probes 4:353-365, 1990).
  • the optimized reaction was carried out in a final volume of 100 ⁇ l and each reaction mixture contained 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl 2 , 200 ⁇ M of each dNTP, 50 pmol of each oligonucleotide primer, 2.5 units of Taq polymerase and 1 ⁇ g of DNA.
  • the DNA amplification was performed in a GENE AMP 9600 thermal cycler (Perkin-Elmer, Norwalk, Conn.).
  • the reaction parameters consisted an initial 3 min denaturation step at 94° C., followed by 40 amplification cycles consisting of a denaturation step at 94° C. for 45 s, an annealing step at 55° C.
  • M. fermentans was detected in 32, 35, and 23%; M. hominis was detected in 9, 8, and 11%, and M. penetrans was detected in 6, 4, and 7% of CFS, FMS, and RA patients, respectively.
  • M. fermentans, M. hominis and M. penetrans were detected in 8, 3 and 2% of the healthy control subjects, respectively (Table 3; FIG. 2).
  • PBMC peripheral blood mononuclear cells
  • a second procedure was used to confirm the detection limit results generated by the initial sensitivity level experiment.
  • Known quantities of purified mycoplasma DNA were added to 1 ⁇ g of human genomic DNA and subjected to multiplex PCR.
  • the added DNA quantities were converted into bacterial cell copy numbers using the genome size of each mycoplasma species. This procedure enabled greater control to be maintained over the number of DNA templates which were added to the reaction than was possible by the first method. By implementing this method, any uncertainty created by the former method was eliminated, and the multiplex PCR detection limit was confirmed for each mycoplasma species.
  • Each mycoplasma species that was targeted in the assay was detectable at different bacterial cell copy numbers present amount 1 ⁇ g of human genomic DNA.
  • the mycoplasma genus and M. fermentans primer sets had a detection limit of seven bacterial cells per ⁇ g of human DNA, whereas the M. hominis primer set was slightly less sensitive, with the ability to detect none mycoplasma cells per ⁇ g of human DNA.
  • the M. penetrans primer set had the lowest sensitivity overall, with the ability to detect 15 copies of that species in the presence of 1 ⁇ g of human genomic DNA.
  • the bacterial cell copy number detection limits were confirmed by the use of purified mycoplasma DNA.
  • the mycoplasma genus primer set was able to amplify the predicted 280 bp region of each mycoplasma species, and did not react with any of the non-mycoplasma DNA controls.
  • reaction specificity was checked for the possibility of cross-reactions with other mycoplasma species and closely related Gram-positive bacteria.
  • the reaction fidelity was assessed by adding 100 ng of purified DNA from M. genitalium (ATCC 49123), M. orale (ATCC 23714), M. pirum (ATCC 25960), M. pneumoniae (ATCC 15531), M.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method for determining an increased likelihood of the presence of chronic fatigue syndrome (CFS), fibromyalgia (FMS), or rheumatoid arthritis (RA) in an individual, comprising isolating blood cells from the individual and determining the presence of one or more Mycoplasma species present in the blood cells, wherein the presence of one or more Mycoplasma species indicates an increased likelihood of the presence of CFS, FMS, RA or GWS.

Description

    PRIORITY CLAIM
  • This application is a continuation of pending application Ser. No. 09/283,655, filed Apr. 1, 1999 and application Ser. No. 09/620,375, filed Jul. 20, 2000, now abandoned. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to detection of at least one Mycoplasma species, including [0003] Mycoplasma fermentans, Mycoplasma hominis and Mycoplasma penetrans, in blood samples of patients with chronic fatigue syndrome, fibromyalgia and rheumatoid arthritis.
  • 2. Description of the Related Art [0004]
  • Chronic Fatigue Syndrome (CFS) is an illness with increasingly reported frequency in the United States and other industrialized countries (Straus, [0005] Rev. Infect. Dis. 13(Suppl. 1):S2-S7, 1991). CFS is characterized by prolonged and debilitating fatigue with multiple non-specific symptoms such as headaches, recurring sore throats, muscle and joint pains and cognitive complaints. Profound fatigue, the hallmark of the disorder, can appear suddenly or gradually and persists throughout the course of the illness. Unlike the short-term disability of an acute viral infection, for example, CFS symptoms by definition linger for at least six months and often for years (Fukuda et al., Ann. Intern. Med. 121:953-959, 1994). Physicians can evaluate patients with persistent fatigue of undetermined cause using guidelines developed by the international CFS study group (Fukuda et al., Fed. Pract. 12:12-17, 1995).
  • Despite multidisciplinary investigations of CFS, its etiology remains unknown and no specific diagnostic tests or therapies for CFS exist. In about one third of cases, the sudden onset follows a respiratory, gastrointestinal, or other acute infection with flu-like symptoms, including mononucleosis (Mawle et al., [0006] Infect. Agents Dis. 2:333-341, 1994). No published data implicate a specific virus or other microbes as the cause of CFS. However, it appears that infectious agents, among other stressors, can precipitate the syndrome (National Institutes of Health Publication No. 96-484, 1996). A variety of common viruses can be reactivated in some CFS patients, including HTLV-II, Epstein-Barr virus (EBV), cytomegalovirus (CMV), herpes simplex viruses (HSV) 1 and 2, and human herpes viruses 6, 7 and 8. It is believed that virus reactivation could be occurring secondarily to some immunologic disturbance (National Institutes of Health Publication No. 96-484, 1996; Nicolson et al., Int. J. Occup. Med. Immunol. Toxicol. 5:69-78, 1996).
  • It has been well documented that individuals who suffer from fibromyalgia (FMS) exhibit many of the same symptoms found in CFS (Buchwald et al., [0007] Arch. Intern. Med. 154:2049-2053, 1994; Ziem et al., Arch. Intern. Med. 154:1913, 1995). These two illnesses are so similar that for years many medical practitioners have considered them to be the same condition. They are still regarded as closely associated with the exception of a few distinction criteria. Patients suffering from rheumatoid arthritis (RA) also exhibit certain symptoms characteristic of CFS and FMS. Although RA exhibits a narrower spectrum of clinical symptoms than the other disorders, it does exhibit a significant overlap of symptoms found in each condition.
  • Mycoplasmas are bacteria belong to the class Mollicutes. They are the smallest free-living, self-replicating bacteria known. They have no cell wall and a very limited genome of between 600 and 1,500 kilobases which makes them highly dependent on their host for survival. The mycoplasma species [0008] M. fermentans, M. hominis and M. penetrans have been isolated from individuals suffering from primary a typical pneumonia, urogenital infections, rheumatoid arthritis (RA) and AIDS-related infections (Hayes et al., Infect. Immun. 64:3419-3424, 1996; Schaeverbeke et al., Br. J. Rheumatol. 36:310-314, 1997; Montagnier et al., Clin. Infect. Dis. 17(Suppl. 1):S309-315, 1993).
  • Rapid reliable detection techniques are of great importance in a clinical diagnostic setting. Current methods of mycoplasma detection by culture are difficult and may take as long as five weeks to generate results which may be inconclusive or inaccurate. Mycoplasma may also be detected by the presence of antibodies directed against mycoplasma species. although this assay has a rapid turnaround time, it may lack sensitivity and specificity. Molecular methods such as DNA probes and polymerase chain reaction (PCR) techniques have also been used to detect Mycoplasma (Rasin et al., [0009] Mol. Cell. Probes 8:497-511, 1994; van Kuppeveld et al., Appl. Environ. Microbiol. 58:2606-2615, 1992; Hopert et al., J. Immunol. Meth. 164:91-100, 1993).
  • The practical use of PCR has been extended to multiple primer systems to meet the increased demand for multi-species detection assays (Wang et al., [0010] Mol. Cell. Probes 11:211-216, 1997; Kulski et al., J. Clin. Microbiol. 33:668-674, 1995). Multiplex PCR allows for the simultaneous detection and differentiation of multiple species with a high level of sensitivity and specificity.
  • There is an ongoing need for methods of identifying the three mycoplasma species mentioned above, and for detecting CFS infection. The present invention addresses this need. [0011]
  • SUMMARY OF THE INVENTION
  • One embodiment of the present invention is a method for determining an increased likelihood of the presence of chronic fatigue syndrome (CFS), fibromyalgia (FMS) or rheumatoid arthritis (RA) in an individual, comprising the steps of: isolating peripheral blood mononuclear cells (PBMC) from the individual; and detecting the presence of at least one mycoplasma species in said PBMC, wherein the presence of at least one of these species indicates an increased likelihood of the presence of CFS, FMS or RA. In one aspect of this preferred embodiment, the species is [0012] M. fermentans, M. hominis or M. penetrans. Preferably, the detecting step comprises a polynucleotide amplificaiton reaction. More preferably, the detecting step comprises multiplex PCR. Alternatively, the detecting step comprises Southern hybridization or dot blot hybridization. In one aspect of this preferred embodiment, the amplification reaction comprises use of two or more oligonucleotide primers selected from the group consisting of the sequences shown in SEQ ID NOS: 3-8. Preferably, the primers shown in SEQ ID NOS: 3-8. In one aspect of this preferred embodiment, the amplification reaction comprises use of two or more oligonucleotide primers having sequences shown in SEQ ID NOS: 3 and 4 so as to amplify a 206 base pair region of M. fermentans DNA. In another aspect of this preferred embodiment, the amplificaiton reaction comprises use of the primers having sequences shown in SEQ ID NOS: 5 and 6 so as to amplify a 170 base pair region of M. hominis DNA. In another aspect of this preferred embodiment, the amplification reaction comprises use of the primers having sequences shown in SEQ ID NOS: 7 and 8 so as to amplify a 407 base pair region of M. penetrans DNA. Preferably, the detecting step comprises detecting two or more mycoplasma species. Advantageously, the two or more species are selected from the group consisting of M. fermentans, M. hominis and M. penetrans. Preferably, all three of these species are detected. Preferably, the two or more species are simultaneously detected. More preferably, all three species are simultaneously detected.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an agarose gel showing multiplex polymerase chain reaction (PCR) amplified products generated from CFS patient DNA samples. Lanes 1 and 11 are DNA size markers. Lane 2 shows a 280 bp Mycoplasma (M.) genus amplification product. Lane 3 shows [0013] M. genus and 206 bp Mycoplasma fermentans. Lane 4 shows M. genus and 170 bp M. hominis. Lane 5 shows M. genus and 470 bp M. penetrans. Lane 6 shows M. genus, M. fermentans and M. hominis. Lane 7 shows M. genus, M. fermentans and M. penetrans. Lane 8 shows M. genus, M. hominis and M. penetrans. Lane 9 shows M. genus, M. fermentans, M. hominis and M. penetrans. Lane 10 is a non-CFS control sample showing no mycoplasma infection.
  • FIG. 2 is a graph showing the percentage of mycoplasma infections in patients with chronic fatigue syndrome (CFS). The CFS group is represented by the solid bars and the controls are represented by the open bars.[0014]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention provides methods for detecting an increased likelihood of the presence of CFS, FMS or RA in an individual by detecting the presence of at least one Mycoplasma species in PBMC from the individual. In a preferred embodiment, the Mycoplasma species are [0015] M. fermentans, M. hominis and M. penetrans. Although any method suitable for the detection of Mycoplasma species can be used, including Southern hybridization, dot blot hybridization and polynucleotide amplification, polynucleotide amplification methods are preferred. It is contemplated that any nucleic acid amplification method, preferably PCR-based amplification methods, can be used, including reverse transcriptase PCR (RT-PCR), quantitative competitive PCR (QC-PCR) and any other modified PCR, to detect the presence of Mycoplasma DNA or RNA. Multiplex PCR is preferred because it combines the rapidity, sensitivity, and specificity of conventional PCR with multiple species detection and differentiation, in effect alleviating the cost, reagent usage and labor of individual reactions to achieve the same result. The multiplex PCR method uses one set of oligonucleotide primers which are specific for a highly conserved region among all members of the genus mycoplasma, along with one or more other primer sets which are specific for various Mycoplasma species, such as M. fermentans, M. hominis and M. penetrans. Although amplification of a particular region specific to the genome of each of these species is exemplified below, the amplification of any genome region unique to a particular Mycoplasama species is within the scope of the present invention In a preferred embodiment, two or more Mycoplasma species are detected. In another preferred embodiment, the PCR amplification reaction uses two or more of the oligonucleotide primers in SEQ ID NOS: 3-8. In any of the embodiments discussed above, the two or more Mycoplasma species can be detected either separately or simultaneously.
  • The multiplex PCR method was applied to DNA extracted from PBMC of individuals with CFS (n=100), FMS (n=40) and RA (n=60). The percentage of [0016] M. genus infection was 52, 54, and 49%, respectively, while only 15% of healthy control individuals were infected. M. fermentans was detected in 32, 35, and 23%; M. hominis was detected in 9, 8, and 11%; and M. penetrans was detected in 6, 4, and 7% of CFS, FMS and RA patients, respectively. M. fermentans, M. hominis and M. penetrans were detected in 8, 3 and 2% of the healthy control subjects, respectively.
  • These results indicate that not only is mycoplasma infection occurring at a statistically significant rate in patients with CFS and related conditions over healthy controls, but also that [0017] M. fermentans was detected at a significantly higher rate over M. hominis and M. penetrans in each sample set. M. fermentans infection averaged 32% over the combined sample sets with the highest infection rate found in FMS patients (35%), and the lowest in RA patient samples (23%). M. hominis was detected at an average of 8% over the combined sample sets with the highest infection rate found in RA patient samples (11%), and the lowest in FMS patient samples (8%). M. penetrans was detected at an average of 5% over the combined sample sets, with the highest infection rate found in RA patient samples (7%), and the lowest in FMS patient samples (4%). There were mycoplasma infections detected by the genus-specific primer set that were not identified by the three species-specific primer sets used in this assay. This indicates that patients from each sample set are infected with other mycoplasma species that remain to be identified.
  • This assay provides a rapid and cost efficient procedure for screening cell cultures or clinical samples for the presence of three potentially pathogenic species of mycoplasma with a high level of sensitivity and specificity. [0018]
  • The present method can be combined with one or more other methods for determining an increased likelihood of the presence of CFS to increase the certainty of diagnosis thereof. Such methods include those described in U.S. Pat. Nos. 5,776,690, 5, 766, 859, 5,830,668, and 5,853,996, the entire contents of which are hereby incorporated by reference. [0019]
  • Example 1 Cell Lines
  • A collection of samples from 20 different cell lines was obtained from the American Type Culture Collection (ATCC; Rockville, Md.) and different research laboratories throughout the Los Angeles area. Each sample was tested for mycoplasma contamination by direct agar cultivation, Hoechst stain or PCR in the facility from which the samples were obtained. If the samples were contaminated with mycoplasma, the causative species was identified by a series of single species PCR assays. These samples were used to determine the detection capabilities of the multiplex PCR by comparing the results of single-species PCR assays conducted by outside laboratories to the multiplex PCR described in Example 5 (Table 1) The multiplex PCR had a correlation of 100% when compared to the results of single-species PCR assays conducted by independent laboratories on the same set of samples from 20 different cell lines. (Table 1). [0020]
    TABLE 1
    Correlation of single-species polymerase chain reaction
    (PCR) with multiplex PCR on cell-line samples
    Mycoplasma Contaminating Multiplex PCR
    Cell line contamination species by PCR M. genus fermentans hominis penetrans
    K-562 Yes fermentans + +
    Daudi No
    Raji Yes hominis + +
    MOLT-4 Yes orale +
    HeLa Yes hominis & + + +
    fermentans
    Jiyoye No
    6T-CEM Yes fermentans + +
    J-A1886 Yes hominis + +
    J-111 Yes hominis + +
    WI-1003 Yes pneumoniae +
    AGR-ON Yes fermentans + +
    6T-CEM 20 Yes hominis + +
    H9/HTLV-IIIB Yes penetrans + +
    T84 Yes fermentans + +
    HCT 116 No
    MOLT-3 Yes orale +
    CCRF-CEM Yes hominis + + +
    UACC-893 No
    NC-37 Yes fermentans & + + +
    penetrans
  • Cell line samples were obtained from ATCC or outside laboratories. Each sample was tested for mycoplasma contamination at the facility from which they were obtained by direct agar cultivation, Hoechst stain or PCR. The contaminating species was determined by single-species PCR. The cell lines were used to assess the specificity of the multiplex PCR by correlating the results with the single-species PCR. [0021]
  • The optimized mycoplasma multiplex PCR was also found to maintain a constant detection limit when presented with varying combinations and concentrations of each mycoplasma species. When the multiplex PCR was applied to clinical samples, the assay was able to detect each target sequence without any cross-reaction or interference from background DNA. The amplified products from actual clinical samples which consisted of [0022] M. penetrans (407 bp), M. genus (280 bp), M. fermentans (206 bp), and M. hominis (170 bp) were clearly detectable when visualized by agarose gel electrophoresis (FIG. 1).
  • Example 2 Clinical Specimens
  • A total of 100 CFS patients were chosen for this study from various clinics throughout the country. The ages of the CFS patients ranged from 25 to 62 years with a median age of 44 years. All subjects in this study met the epidemiological case definition of CFS established by the Centers for Disease Control and Prevention (CDC., Atlanta, Ga.) (Fukuda et al., [0023] Ann. Intern. Med. 121:953-959, 1994). At the time of evaluation and according to medical history, all patients complained of fatigue, while 80% of patients complained of exhaustion, sleep disorders, arthralgia myalgia and sore throat. Each patient had been ill for 1-5 years, and any other conditions that may cause CFS-like symptoms excluded individuals from the study. A total of 100 age- and sex-matched control subjects were chosen for this study. Each of these individuals was reported to be healthy after routine examinations. All blood samples were obtained under identical conditions to eliminate variation between samples.
  • Example 3 Mycoplasma Strains and Culture Conditions
  • The different strains of each mycoplasma species used in the standardization of the multiplex PCR and their source is shown in Table 23. [0024]
    TABLE 2
    Mycoplasma species and strains used to standardize
    the multiplex polymerase chain reaction
    Species Strain Source
    Mycoplasma fermentans PG18 ATCC 19989
    G11 [G] ATCC 15474
    Mycoplasma hominis H34 ATCC 15056
    132 ATCC 43521
    183 ATCC 43522
    Mycoplasma penetrans GTU-54-6A1 ATCC 55252
  • [0025] M. fermentans and M. hominis were grown in ATCC Culture Medium 243 MYCOPLASMA MEDIUM. M. penetrans was grown in ATCC Culture Medium 988 SPIROPLASMA MEDIUM SP-4. Each culturing procedure was conducted according to the specific instruction for each mycoplasma species provided by ATCC. Briefly, the lyophilized bacterial pellets were resuspended in their respective medium and allowed to revive under culture conditions of 37° C. and 5% CO2 for 48 hours to minimize cell loss. A 10-fold serial dilution ranging from 10-1 to 10-8 was prepared from each stock culture. A volume of 0-1 ml of each of the M. fermentans and M. hominis cultures was plated on solid medium in duplicate and incubated for a period of six weeks. The colonies were counted under a microscope to determine the colony forming unit (CFU) values which were used to determine the bacterial cell count of the stock culture. The M. penetrans bacterial cell copy number was determined by incubating the 10-fold dilution series in 1 ml of broth at 37° C. and 5% CO2 until any sign of growth could be determined. The most obvious signs of growth were broth indicator color change, any sign of sediment or turbidity when compared to an uninnoculated control tube containing only growth medium. The final dilution in the series where bacterial growth was observed was used to determine the bacterial cell count. This method was used because M. penetrans does not easily grow in solid medium as it is much more fastidious than M. fermentans and M. hominis.
  • Example 4 DNA Isolation
  • Total DNA was extracted and purified using methods described by Sambrook et al. (Molecular Cloning: [0026] a Laboratory Manual, Cold Spring Harbor Laboratory Press, cold Spring Harbor, N.Y., 1989). Briefly, 10 ml of blood was collected in tubes containing acid citrate dextrose (ACD) solution A (Becton-Dickinson, Franklin Lakes, N.J.) gently layered over Histopaque (Sigma, St. Louis, Mo.) and centrifuged at 2,000 rpm for 30 min. PBMC were collected and washed twice with PBS, pH 7.4. DNA from PBMC and cell lines was extracted by the same method. The cells were treated with 10 mM Tris-HCI, pH 8.0, 1 mM EDTA (TE), 1% SDS containing 20 μg/ml proteinase K for 2 h at 55° C. DNA was extracted with phenol/chloroform/isoamyl alcohol (25:24:1) and precipitated with 0.1 volume of 3 M sodium acetate and 2 volumes of absolute ethanol, then incubated at −20° C. overnight. Samples were centrifuged at 14,000×g for 20 min, and the pellets were dried in a centrivap concentrator (Labconco, Kansas City, Mo.) for 12 min at 60° C. DNA pellets were resuspended in 100 μl TE. The DNA concentration and purity were determined spectrophotometrically by measuring the absorbance at 260 and 280 nm. Human genomic DNA sample concentrations were standardized at 0.2 mg/ml and stored at −20° C. until used.
  • Example 5 Multiplex PCR
  • The four sets of oligonucleotide primers were selected based on their ability to efficiently amplify specific target sequences under the same reaction conditions. Primer set 1, 5′-GGGAGCAAACAGGATTAGATACCCT-3′ (SEQ ID NO: 1) and [0027]
  • 5′-TGCACCATCTGTCACTCTGTTAACCTC-3′ (SEQ ID NO: 2) are mycoplasma genus specific primers which amplify a 280 bp region in all species of mycoplasma (van Kuppeveld et al., Appl. Environ, Microbiol. 60149-152, 1994). Primer set 2, 5′-GGACTATTGTCTAAACAATTTCCC-3′ (SEQ ID NO: 3) and 5′-GGTTATTCG[0027][0028]
  • ATTTCTAAATCGCCT-3′ (SEQ ID NO: 4) specifically amplify a 206 bp region of the [0029] M. fermentans genome (Hawkins et al., j. Infect. Dis. 165581-585, 1992). Primer set 3, 5′-ATACATGCATGTCGAGCGAG-3′ (SEQ ID NO: 5) and 5′-CATCTTTTAGTG
  • GCGCCTTAC-3′ (SEQ ID NO: 6) are specific for a 170 bp region of the [0030] M. hominis genome (Grau et al., Mol. Cell. Probes 8139-148, 1994). Primer set 4, 5′-CATGCA
  • AGTCGGACGAAGCA-3′ (SEQ ID NO: 7) and 5′-AGCATTTCCTCTTCTTACAA-3′ (SEQ ID NO: 8) are specific for a 407 bp region of the [0031] M. penetrans genome (Grau et al; supra.).
  • The multiplex PCR reaction components and cycling parameters were determined through a number of initial trial amplifications. Every aspect of the reaction which could affect the amplification efficiency was manipulated in different combinations to achieve optimal results, including DNA and reagent concentrations, annealing temperatures and mycoplasma cell copy numbers. The optimal primer concentrations were determined by experimenting with equal and staggered primer concentrations to generate equal products from each primer set. (Bej et al., [0032] Mol. Cell. Probes 4:353-365, 1990). The optimized reaction was carried out in a final volume of 100 μl and each reaction mixture contained 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 200 μM of each dNTP, 50 pmol of each oligonucleotide primer, 2.5 units of Taq polymerase and 1 μg of DNA. The DNA amplification was performed in a GENE AMP 9600 thermal cycler (Perkin-Elmer, Norwalk, Conn.). The reaction parameters consisted an initial 3 min denaturation step at 94° C., followed by 40 amplification cycles consisting of a denaturation step at 94° C. for 45 s, an annealing step at 55° C. for 1 min and an extension step at 72° C. for 2 min. The final cycle was followed by an additional extension step at 72° C. for 10 min. A volume of 20 μl from each reaction was separated on a 1.8% agarose gel and stained with 0.5 μg/ml ethidium bromide. Amplified products were visualized under ultraviolet light.
  • When the optimized multiplex PCR was used to detect the presence of mycoplasmas in patients with CFS (n=100), FMS (n=40), RA (n=60), and healthy controls (n=100), it was found that the percentage of [0033] M. genus infection was 52, 54, and 49%, respectively, while only 15% of healthy control individuals were infected. M. fermentans was detected in 32, 35, and 23%; M. hominis was detected in 9, 8, and 11%, and M. penetrans was detected in 6, 4, and 7% of CFS, FMS, and RA patients, respectively. M. fermentans, M. hominis and M. penetrans were detected in 8, 3 and 2% of the healthy control subjects, respectively (Table 3; FIG. 2). These results indicate that not only is mycoplasma infection occurring at a statistically significant rate in CFS patients over healthy controls, but also that M. fermentans accounted for over half of the total mycoplasma infections in the CFS group. M. fermentans infection was 24% greater in CFS patients than in healthy matched control samples. M. hominis and M. penetrans were detected at a rate of 6 and 4% higher in the CFS group over the control group, respectively. A total of 3% of the CFS group had multiple mycoplasma infections of two species, and only 1% was infected with each of the three mycoplasma species identified by this assay. There were no multiple mycoplasma infections detected in the control group.
    TABLE 3
    Percentages of positive results from each sample group tested
    Mycoplasma CFS FMS RA Controls
    genus 52 54 49 15
    fermentans 32 35 23 8
    hominis 9 8 11 3
    penetrans 6 4 7 2
  • To determine the sensitivity of the multiplex PCR, PBMC were isolated from a healthy individual who was negative for all mycoplasma species by PCR. The cells were stained with 0.4% trypan blue (Sigma) and counted using a hemocytometer. Serial dilutions of the known mycoplasma stock cultures, which were determined by the previously described culture methods for each species, were added to equal numbers of PBMC (1×10[0034] 6). DNA was extracted from each sample using the previously described extraction procedure and each sample was subjected to multiplex PCR. This method was used because it most accurately resembles the natural state of mycoplasma infected clinical samples, but it does create the possibility of generating inaccurate detection limit values. This method allows for the possibility that some non-viable mycoplasma cells may have been added to the negative control PBMC following the culturing procedure. These cells would have been overlooked when determining the CFU value, but still have contributed their genome to the reaction. This would alter the sensitivity level of the assay by giving a lower detection limit than was actually achieved.
  • A second procedure was used to confirm the detection limit results generated by the initial sensitivity level experiment. Known quantities of purified mycoplasma DNA were added to 1 μg of human genomic DNA and subjected to multiplex PCR. The added DNA quantities were converted into bacterial cell copy numbers using the genome size of each mycoplasma species. This procedure enabled greater control to be maintained over the number of DNA templates which were added to the reaction than was possible by the first method. By implementing this method, any uncertainty created by the former method was eliminated, and the multiplex PCR detection limit was confirmed for each mycoplasma species. [0035]
  • Various concentrations and combinations of mycoplasma cell copies of each species were also introduced into the same reaction ranging from 1 to 50 cell copies per μg of human genomic DNA. This was done to determine the ability of the multiplex PCCR to detect multiple species in the same reaction and the level of sensitivity at which it does so. The lowest number of mycoplasma cell copies where all species were clearly visible using agarose gel electrophoresis was considered to be the detection limit for the assay. [0036]
  • Each mycoplasma species that was targeted in the assay was detectable at different bacterial cell copy numbers present amount 1 μg of human genomic DNA. The mycoplasma genus and [0037] M. fermentans primer sets had a detection limit of seven bacterial cells per μg of human DNA, whereas the M. hominis primer set was slightly less sensitive, with the ability to detect none mycoplasma cells per μg of human DNA. The M. penetrans primer set had the lowest sensitivity overall, with the ability to detect 15 copies of that species in the presence of 1 μg of human genomic DNA. The bacterial cell copy number detection limits were confirmed by the use of purified mycoplasma DNA. There was no cross-reaction with any of the species-specific primer sets when presented with control DNA from other mycoplasma species. The mycoplasma genus primer set was able to amplify the predicted 280 bp region of each mycoplasma species, and did not react with any of the non-mycoplasma DNA controls.
  • The reaction specificity was checked for the possibility of cross-reactions with other mycoplasma species and closely related Gram-positive bacteria. The reaction fidelity was assessed by adding 100 ng of purified DNA from [0038] M. genitalium (ATCC 49123), M. orale (ATCC 23714), M. pirum (ATCC 25960), M. pneumoniae (ATCC 15531), M. arthritidis (ATCC 35943), Clostridium innocuum (ATCC 14501), Clostridium ramosum (ATCC 25582), Bacillus subtilis (ATCC 6051) and Escherichia coli (ATCC 11775) to the reaction mixture in the absence and presence of negative control human genomic DNA and subjecting the samples to amplification under the conditions previously described.
  • It should be noted that the present invention is not limited to only those embodiments described in the Detailed Description. Any embodiment that retains the spirit of the present invention should be considered to be within its scope. However, the invention is only limited by the scope of the following claims. [0039]
  • 1 8 1 25 DNA Artificial Sequence Synthetic oligonucleotide primer 1 gggagcaaac aggattagat accct 25 2 27 DNA Artificial Sequence Synthetic oligonucleotide primer 2 tgcaccatct gtcactctgt taacctc 27 3 24 DNA Artificial Sequence Synthetic oligonucleotide primer 3 ggactattgt ctaaacaatt tccc 24 4 24 DNA Artificial Sequence Synthetic oligonucleotide primer 4 ggttattcga tttctaaatc gcct 24 5 20 DNA Artificial Sequence Synthetic oligonucleotide primer 5 atacatgcat gtcgagcgag 20 6 21 DNA Artificial Sequence Synthetic oligonucleotide primer 6 catcttttag tggcgcctta c 21 7 20 DNA Artificial Sequence Synthetic oligonucleotide primer 7 catgcaagtc ggacgaagca 20 8 20 DNA Artificial Sequence Synthetic oligonucleotide primer 8 agcatttcct cttcttacaa 20

Claims (14)

What is claimed is:
1. A method for determining an increased likelihood of the presence of chronic fatigue syndrome (CFS), fibromyalgia (FMS), or rheumatoid arthritis (RA) in an individual, comprising the steps of:
isolating peripheral blood mononuclear cells (PBMC) from said individual; and
detecting the presence of at least one mycoplasma species in said PBMC, wherein the presence of at least one of said species indicates an increased likelihood of the presence of CFS, FMS or RA.
2. The method of claim 1, wherein the species detected is selected from the group consisting of M. fermentans, M. hominis and M. penetrans.
3. The method of claim 1, wherein said detecting step comprises a polynucleotide amplification reaction.
4. The method of claim 3, wherein said detecting step comprises multiplex PCR.
5. The method of claim 1, wherein said detecting step comprises Southern hybridization or dot blot hybridization.
6. The method of claim 3, wherein said amplification reaction comprises use of two or more oligonucleotide primers selected from the group consisting of the sequences shown in SEQ ID NOS: 3-8.
7. The method of claim 6, wherein the the amplification reaction comprises use of the primers having sequences shown in SEQ ID NOS: 3 and 4 so as to amplify a 206 base pair region of M. fermentans DNA.
8. The method of claim 6, wherein the the amplification reaction comprises use of the primers having sequences shown in SEQ ID NOS: 5 and 6 so as to amplify a 170 base pair region of M. hominis DNA.
9. The method of claim 6, wherein the the amplification reaction comprises use of the primers having sequences shown in SEQ ID NOS: 7 and 8 so as to amplify a 407 base pair region of M. penetrans DNA.
10. The method of claim 1, wherein the detecting step comprises detecting two or more mycoplasma species.
11. The method of claim 10, wherein the two or more species are selected from the group consisting of M. fermentans, M. hominis and M. penetrans.
12. The method of claim 11, wherein M. fermentans, M. hominis and M. penetrans are all detected.
13. The method of claim 10, wherein the two or more species are simultaneously detected.
14. The method of claim 12, wherein M. fermentans, M. hominis and M. penetrans are detected simultaneously.
US10/715,220 1999-04-01 2003-11-17 Detection of Mycoplasma in patients with chronic fatigue syndrome and related disorders Abandoned US20040077015A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/715,220 US20040077015A1 (en) 1999-04-01 2003-11-17 Detection of Mycoplasma in patients with chronic fatigue syndrome and related disorders

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/283,655 US6815161B1 (en) 1999-04-01 1999-04-01 Detection of Mycoplasma in patients with chronic fatigue syndrome and related disorders
US62037500A 2000-07-20 2000-07-20
US10/715,220 US20040077015A1 (en) 1999-04-01 2003-11-17 Detection of Mycoplasma in patients with chronic fatigue syndrome and related disorders

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09/283,655 Continuation US6815161B1 (en) 1999-04-01 1999-04-01 Detection of Mycoplasma in patients with chronic fatigue syndrome and related disorders
US62037500A Continuation 1999-04-01 2000-07-20

Publications (1)

Publication Number Publication Date
US20040077015A1 true US20040077015A1 (en) 2004-04-22

Family

ID=33309357

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/283,655 Expired - Fee Related US6815161B1 (en) 1999-04-01 1999-04-01 Detection of Mycoplasma in patients with chronic fatigue syndrome and related disorders
US10/715,220 Abandoned US20040077015A1 (en) 1999-04-01 2003-11-17 Detection of Mycoplasma in patients with chronic fatigue syndrome and related disorders

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/283,655 Expired - Fee Related US6815161B1 (en) 1999-04-01 1999-04-01 Detection of Mycoplasma in patients with chronic fatigue syndrome and related disorders

Country Status (1)

Country Link
US (2) US6815161B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011053871A2 (en) * 2009-10-30 2011-05-05 Life Technologies Corporation Multi-primer assay for mycoplasma detection
CN116334257A (en) * 2022-12-02 2023-06-27 上海探实生物科技有限公司 Rapid chip type mycoplasma detection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098599A1 (en) * 2008-03-05 2009-09-09 Deutsches Krebsforschungszentrum, Stiftung des öffentlichen Rechts Composition comprising an oligonucleotide mixture for the detection of contaminations in cell cultures
CN106520922A (en) * 2016-10-11 2017-03-22 上海柯莱逊生物技术有限公司 Mycoplasma detection kit and method for cultivating immune cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765859A (en) * 1991-12-09 1998-06-16 Nowell; Corbett Weldon Modular squatdown wheeled suspension system
US5765690A (en) * 1997-07-16 1998-06-16 The Mead Corporation Article tray
US5830668A (en) * 1996-12-13 1998-11-03 Immunosciences Lab, Inc. Detection of chronic fatigue syndrome

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622471A1 (en) 1993-04-30 1994-11-02 EG&G SEALOL, INC. Composite material comprising chromium carbide and a solid lubricant for use as a high velocity oxy-fuel spray coating
US5705332A (en) 1994-04-25 1998-01-06 University Of Hawaii Detection and identification of Salmonella and Shigella
US5776690A (en) 1996-10-07 1998-07-07 Vojdani; Aristo Detection of chronic fatigue syndrome by decreased levels of RNase L inhibitor mRNA

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765859A (en) * 1991-12-09 1998-06-16 Nowell; Corbett Weldon Modular squatdown wheeled suspension system
US5830668A (en) * 1996-12-13 1998-11-03 Immunosciences Lab, Inc. Detection of chronic fatigue syndrome
US5853996A (en) * 1996-12-13 1998-12-29 Immunosciences Lab, Inc. Detection of chronic fatigue syndrome by increased apoptosis and cell cycle arrest of peripheral blood mononuclear cells
US5765690A (en) * 1997-07-16 1998-06-16 The Mead Corporation Article tray

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011053871A2 (en) * 2009-10-30 2011-05-05 Life Technologies Corporation Multi-primer assay for mycoplasma detection
US20110111403A1 (en) * 2009-10-30 2011-05-12 Life Technologies Corporation Multi-primer assay for mycoplasma detection
WO2011053871A3 (en) * 2009-10-30 2011-09-29 Life Technologies Corporation Multi-primer assay for mycoplasma detection
US9850545B2 (en) 2009-10-30 2017-12-26 Life Technologies Corporation Multi-primer assay for Mycoplasma detection
CN116334257A (en) * 2022-12-02 2023-06-27 上海探实生物科技有限公司 Rapid chip type mycoplasma detection method

Also Published As

Publication number Publication date
US6815161B1 (en) 2004-11-09

Similar Documents

Publication Publication Date Title
Choppa et al. Multiplex PCR for the detection ofMycoplasma fermentans, M. hominisandM. penetransin cell cultures and blood samples of patients with chronic fatigue syndrome
Miyamoto et al. Development of a new seminested PCR method for detection of Legionella species and its application to surveillance of legionellae in hospital cooling tower water
Nicolson et al. Multiple co‐infections (mycoplasma, chlamydia, human herpes virus‐6) in blood of chronic fatigue syndrome patients: association with signs and symptoms
Schaeverbeke et al. Systematic detection of mycoplasmas by culture and polymerase chain reaction (PCR) procedures in 209 synovial fluid samples.
Razin DNA probes and PCR in diagnosis of mycoplasma infections
Abele-Horn et al. Molecular approaches to diagnosis of pulmonary diseases due to Mycoplasma pneumoniae
Messmer et al. Application of a nested, multiplex PCR to psittacosis outbreaks
Way et al. Specific detection of Salmonella spp. by multiplex polymerase chain reaction
Leyla et al. Comparison of polymerase chain reaction and bacteriological culture for the diagnosis of sheep brucellosis using aborted fetus samples
Nagpal et al. Sensitive quantification of Clostridium perfringens in human feces by quantitative real-time PCR targeting alpha-toxin and enterotoxin genes
Keid et al. Diagnosis of canine brucellosis: comparison between serological and microbiological tests and a PCR based on primers to 16S-23S rDNA interspacer
Smyth et al. Methods for identifying methicillin resistancein Staphylococcus aureus
Luk et al. An enzyme-linked immunosorbent assay to detect PCR products of the rfbS gene from serogroup D salmonellae: a rapid screening prototype
Perola et al. Persistent Legionella pneumophila colonization of a hospital water supply: efficacy of control methods and a molecular epidemiological analysis
Bernards et al. Outbreak of septicaemia in neonates caused by Acinetobacter junii investigated by amplified ribosomal DNA restriction analysis (ARDRA) and four typing methods
Vojdani et al. Multiplex PCR for the detection of mycoplasma fermentans, m. hominis, and m. penetrans in patients with chronic fatigue syndrome, fibromyalgia, rheumatoid arthritis, and Gulf War syndrome
Hardegen et al. A set of novel multiplex Taqman real-time PCRs for the detection of diarrhoeagenic Escherichia coli and its use in determining the prevalence of EPEC and EAEC in a university hospital
Rodríguez-Lázaro et al. Internally controlled real-time PCR method for quantitative species-specific detection and vapA genotyping of Rhodococcus equi
Conrads et al. Simultaneous detection of Bacteroides forsythus and Prevotella intermedia by 16S rRNA gene-directed multiplex PCR
Alamian et al. A novel PCR assay for detecting Brucella abortus and Brucella melitensis
Batinga et al. Comparative application of IS711-based polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) for canine brucellosis diagnosis
Jonas et al. Comparison of PCR-based methods for typing Escherichia coli
Pruckler et al. Detection by polymerase chain reaction of all common Mycoplasma in a cell culture facility
Lynn et al. Genetic typing of the porin protein of Neisseria gonorrhoeae from clinical noncultured samples for strain characterization and identification of mixed gonococcal infections
Kazi et al. Association of herpes viruses with mild, moderate and severe chronic periodontitis

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION