US20040071625A1 - Process for producing crystalline graphite nanofibers - Google Patents
Process for producing crystalline graphite nanofibers Download PDFInfo
- Publication number
- US20040071625A1 US20040071625A1 US10/625,069 US62506903A US2004071625A1 US 20040071625 A1 US20040071625 A1 US 20040071625A1 US 62506903 A US62506903 A US 62506903A US 2004071625 A1 US2004071625 A1 US 2004071625A1
- Authority
- US
- United States
- Prior art keywords
- carbon
- catalyst
- nanofibers
- nanofiber
- bimetallic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
- D01F9/1278—Carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
Definitions
- This invention relates to a process for producing substantially crystalline graphitic carbon nanofibers comprised of graphite sheets.
- the graphite sheets are substantially parallel to the longitudinal axis of the carbon nanofiber.
- These carbon nanofibers are produced by contacting a bulk iron, or an iron:copper bimetallic, or an iron:nickel bimetallic catalyst with a mixture of carbon monoxide and hydrogen at temperatures from about 625° C. to about 725° C. for an effective amount of time.
- Nanostructure materials are quickly gaining importance for various potential commercial applications. Such applications include their use to store molecular hydrogen, to serve as catalyst supports, as reinforcing components for polymeric composites, and for use in various types of batteries.
- Carbon nanostructure materials are generally prepared from the decomposition of carbon-containing gases over selected catalytic metal surfaces at temperatures ranging from about 500° C. to about 1,200° C.
- U.S. Pat. Nos. 5,149,584 and 5,618,875 to Baker et al. teach carbon nanofibers as reinforcing components in polymer reinforced composites.
- the carbon nanofibers can either be used as is, or as part of a carbon-carbon structure comprised of carbon fibers having carbon nanofibers grown therefrom.
- the examples in these patents show the preparation of various carbon nanostructures by the decomposition of a mixture of ethylene and hydrogen in the presence of metal catalysts, such as iron, nickel, a nickel:copper alloy, an iron:copper alloy, etc.
- U.S. Pat. No. 5,413,866 to Baker et al. teaches carbon nanostructures characterized as having a shape that is selected from the group consisting of branched, spiral, and helical. These carbon nanostructures are taught as being prepared by depositing a catalyst containing at least one Group IB metal and at least one other metal, on a suitable refractory support, then subjecting the catalyst-treated support to a carbon-containing gas at a temperature from the decomposition temperature of the carbon-containing gas to the deactivation temperature of the catalyst.
- U.S. Pat. No. 5,458,784 also to Baker et al. teaches the use of the carbon nanostructures of U.S. Pat. No. 5,413,866 for removing contaminants from aqueous and gaseous steams; and U.S. Pat. No. 5,653,951 to Rodriguez et al. discloses and claims that molecular hydrogen can be stored in layered carbon nanostructure materials having specific distances between layers.
- the examples in these patents teach the aforementioned preparation methods, as well as the decomposition of a mixture of carbon monoxide and hydrogen in the presence of an iron powder catalyst at 600° C. All of the above referenced US patents are incorporated herein by reference.
- substantially crystalline graphitic carbon nanofibers comprised of graphite sheets that are substantially parallel to the longitudinal axis of the nanofibers, wherein the distance between the graphite sheets is from about 0.335 nm to about 0.67 nm, and having a crystallinity greater than about 95%.
- the distance between the graphite sheets is from about 0.335 and 0.40 nm.
- a process for producing substantially crystalline graphitic carbon nanofibers which process comprises reacting a mixture of CO/H 2 in the presence of a bulk powder catalyst comprised of iron, iron:copper bimetallic, or iron:nickel bimetallic for an effective amount of time at a temperature from about 625° C. to about 725° C.
- the catalyst is an iron:copper bimetallic catalyst wherein the ratio of iron to copper is from about 1:99 to about 99:1 and the ratio of CO to H 2 is from about 95:5 to about 5:95, preferably from about 80:20 to about 20:80.
- FIG. 1 a is a representation of a platelet carbon nanofiber, which is comprised of substantially graphite sheets that are substantially perpendicular to the longitudinal axis, or growth axis, of the nanofiber.
- FIG. 1 b is a representation of a cylindrical carbon nanostructure that is comprised of continuous carbon sheets and is in the form of tube within a tube within a tube and having a substantially hollow center.
- FIG. 1 c is a representation of a ribbon carbon nanofiber of the present invention that is comprised of graphitic sheets that are substantially parallel to the longitudinal axis of the nanofiber.
- FIG. 1 d is a representation of a faceted tubular carbon nanofiber of the present invention and is comprised of continuous sheets of graphic carbon but having multifaceted flat faces.
- the graphitic sheets are also substantially parallel to the longitudinal axis of the nanofiber.
- FIG. 1 e is a representation of a herringbone carbon nanofiber wherein the graphitic platelets or sheets are at an angle to the longitudinal axis of the nanofiber.
- the carbon nanofibers of the present invention possess novel structures in which graphite sheets, constituting the nanostructure, are aligned in a direction that is substantially parallel to the growth axis (longitudinal axis) of the nanofiber.
- the carbon nanofibers are sometimes referred to herein as “ribbon” nanofibers and multifaceted tubular nanofibers.
- the carbon nanostructures of the present invention are distinguished from the so-called “fibrils” or cylindrical carbon nanostructures.
- the terms “carbon nanofibers” and “carbon nanostructures” are sometimes used interchangeably herein.
- the graphite sheets that compose the nanostructures of the present invention are either discontinuous sheets or faceted flat-faced tubular structures.
- cylindrical carbon nanostructures are composed of continuous circular graphite sheets and can be represented by tube within a tube structure having a substantially hollow center.
- the carbon nanofibers of the present invention have a unique set of properties, that includes: (i) a nitrogen surface area from about 40 to 300 m 2 /g; (ii) an electrical resistivity of 0.4 ohm ⁇ cm to 0.1 ohm ⁇ cm; (iii) a crystallinity from about 95% to 100%; and (iv) a spacing between adjacent graphite sheets of 0.335 nm to about 1.1 nm, preferably from about 0.335 nm to about 0.67 nm, and more preferably from about 0.335 to about 0.40 nm.
- the catalysts used to prepare the carbon nanofibers of the present invention are bulk metals in powder form wherein the metal is selected from the group consisting of iron, iron:copper bimetallics, and iron:nickel bimetallics. It is well established that the ferromagnetic metals, iron, cobalt, and nickel, are active catalysts for the growth of carbon nanofibers during decomposition of certain hydrocarbons or carbon monoxide. Efforts are now being directed at modifying the catalytic behavior of these metals, with respect to nanofiber growth, by introducing other metals and non-metals into the system. In this respect, copper is an enigma, appearing to be relatively inert towards carbon deposition during the CO/H 2 reaction.
- Fe or the combination of Cu or Ni with Fe has such a dramatic effect on carbon nanofiber growth in the CO/H 2 system in the temperature range of about 625° C. to about 725° C.
- Iron:copper catalysts are preferred for preparing the carbon nanostructures of the present invention.
- the average powder particle size of the metal catalyst will range from about 0.25 nanometers to about 5 micrometer, preferably from about 1 nanometer to about 3 micrometers and more preferably from about 2.5 nanometers to about 1 micrometer.
- the ratio of the two metals can be any effective ratio that will produce substantially crystalline carbon nanofibers in which the graphite sheets are substantially parallel to the longitudinal axis of the nanofiber, at temperatures from about 625° C. to about 725° C. in the presence of a mixture of CO/H 2 .
- the ratio of iron to either copper or nickel will typically be from about 1:99 to about 99:1, preferably from about 5:95 to about 95:5, more preferably from about 3:7 to about 7:3; and most preferably from about 6:4 to about 7:3.
- the bimetallic catalyst can be prepared by any suitable technique.
- One preferred technique is by co-precipitation of aqueous solutions containing soluble salts of the two metals.
- Preferred salts include the nitrates, sulfates, and chlorides of iron, copper, and nickel particularly the nitrates.
- the resulting precipitates are dried and calcined to convert the salts to the mixed metal oxides.
- the calcined metal powders are then reduced at an effective temperature and for an effective time.
- the catalyst powders used in the present invention are preferably prepared by the co-precipitation of aqueous solutions containing appropriate amounts of iron, nickel and copper nitrates using ammonium bicarbonate.
- the precipitates were dried overnight at about 110° C. before being calcined in air at 400° C. to convert the carbonates into mixed metal oxides.
- the calcined powders are then reduced in hydrogen for 20 hours at 400° C. Following this treatment the reduced catalyst is cooled to room temperature in a helium environment before being passivated in a 2% oxygen/helium mixture for 1 hour at about room temperature (24° C.).
- carbon nanostructures can be prepared by reacting a catalyst in a heating zone with the vapor of a suitable carbon-containing compound. While the art teaches a wide variety of carbon-containing compounds as being suitable, the inventors hereof have found that only a mixture of CO and H 2 will yield carbon nanofibers with unexpected high crystallinities in the unique structures of nanofibers of the present invention in the temperature range of about 625° C. to about 725° C. That is, crystallinities greater than about 95%, preferably greater than 97% more preferably greater than 98%, and most preferably substantially 100%.
- nanofibers After the nanofibers are grown, it may be desirable to treat them with an aqueous solution of an inorganic acid, such as a mineral acid, to remove any excess catalyst particles.
- suitable mineral acids include sulfuric acid, nitric acid, and hydrochloric acid. Preferred is hydrochloric acid.
- intercalation involves incorporating an appropriate intercalation compound between platelets.
- Intercalation compounds suitable for graphite structures are comprehensively discussed in Applications of Graphite Intercalation Compounds, by M. Inagaki, Journal of Material Research, Vol 4, No.6, November/December 1989, which is incorporated herein by reference.
- the preferred intercalation compounds for use with the nanofibers of the present invention are alkali and alkaline-earth metals.
- the limit to which the spacing of the graphite sheets will be increased for purposes of the present invention will be that point wherein the carbon nanofibers no longer can be characterized as graphitic. That is, the spacing can become so large that the carbon now has properties different than those of graphite. In most cases the electro-conductivity is enhanced. It is important for the practice of the present invention that the carbon nanofibers maintain the basal plane structure representative of graphite.
- a major advantage of the graphite nanofibers of the present invention over other graphitic materials is their flexibility with regard to modification of surface chemistry.
- the carbon nanostructures of the present invention contain a substantial number of edge sites, which are also referred to as edge regions.
- the edge regions of the nanostructures of the present invention can be made either basic (introduction of NH 4 + groups) or acidic (addition of COOH ⁇ groups) by use of appropriate methods.
- oxygenated groups hydroxyl, peroxide, ether, keto or aldehyde
- These groups in turn can react with organic compounds to house unique structures for separations.
- Polar groups will promote the interaction of carbon edge atoms with other polar groups such as water.
- the interaction of graphitic materials with aqueous solutions can be greatly enhanced due to the presence of acid, basic or neutral functionality.
- the total amount of solid carbon formed in any given experiment was determined at the completion of the reaction by weight difference.
- the composition of the gas phase was measured at regular intervals by taking samples of the inlet and outlet streams, which were then analyzed by gas chromatography using a 30 m megabore (CS-Q) capillary column in a Varian 3400 GC unit. Carbon and hydrogen atom balances, in combination with the relative concentrations of the respective components, were applied to obtain the various product yields. In order to obtain reproducible carbon deposition data it was necessary to follow an identical protocol for each experiment.
- Nanofiber Structure Catalyst C 2 H 4 /H 2 CO/H 2 Fe No nanofiber growth Platelet Ni Straight amorphous No nanofiber growth nanofibers Co Straight amorphous No nanofiber growth nanofibers Fe—Ni Straight coiled & branched Faceted Tubular/Ribbon “herring-bone” Ni—Cu Straight coiled & branched No nanofiber growth “herring-bone” Co—Cu Amorphous straight, No nanofiber growth Coiled & branched Fe—Cu Straight coiled & branched Platelet “herring-bone”
- a carbon nanofiber having graphite sheets at an angle to the longitudinal axis of the nanofiber is referred to as a “herringbone structure”.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
- Inorganic Fibers (AREA)
Abstract
A process for producing substantially crystalline graphitic carbon nanofibers comprised of graphite sheets. The graphite sheets are substantially parallel to the longitudinal axis of the carbon nanofiber. These carbon nanofibers are produced by contacting a bulk iron, or an iron:copper bimetallic, or an iron:nickel bimetallic catalyst with a mixture of carbon monoxide and hydrogen at temperatures from about 625° C. to about 725° C. for an effective amount of time.
Description
- This application is a division of U.S. Ser. No. 09/902,113 filed Jul. 10, 2001 which is a continuation-in-part of U.S. Ser. No. 09/659,441 filed Sep. 8, 2000 now U.S. Pat. No. 6,537,515.
- 1. Field of the Invention
- This invention relates to a process for producing substantially crystalline graphitic carbon nanofibers comprised of graphite sheets. The graphite sheets are substantially parallel to the longitudinal axis of the carbon nanofiber. These carbon nanofibers are produced by contacting a bulk iron, or an iron:copper bimetallic, or an iron:nickel bimetallic catalyst with a mixture of carbon monoxide and hydrogen at temperatures from about 625° C. to about 725° C. for an effective amount of time.
- 2. Description of Related Art
- Nanostructure materials, particularly carbon nanostructure materials, are quickly gaining importance for various potential commercial applications. Such applications include their use to store molecular hydrogen, to serve as catalyst supports, as reinforcing components for polymeric composites, and for use in various types of batteries. Carbon nanostructure materials are generally prepared from the decomposition of carbon-containing gases over selected catalytic metal surfaces at temperatures ranging from about 500° C. to about 1,200° C.
- U.S. Pat. Nos. 5,149,584 and 5,618,875 to Baker et al. teach carbon nanofibers as reinforcing components in polymer reinforced composites. The carbon nanofibers can either be used as is, or as part of a carbon-carbon structure comprised of carbon fibers having carbon nanofibers grown therefrom. The examples in these patents show the preparation of various carbon nanostructures by the decomposition of a mixture of ethylene and hydrogen in the presence of metal catalysts, such as iron, nickel, a nickel:copper alloy, an iron:copper alloy, etc.
- Also, U.S. Pat. No. 5,413,866 to Baker et al. teaches carbon nanostructures characterized as having a shape that is selected from the group consisting of branched, spiral, and helical. These carbon nanostructures are taught as being prepared by depositing a catalyst containing at least one Group IB metal and at least one other metal, on a suitable refractory support, then subjecting the catalyst-treated support to a carbon-containing gas at a temperature from the decomposition temperature of the carbon-containing gas to the deactivation temperature of the catalyst.
- U.S. Pat. No. 5,458,784 also to Baker et al. teaches the use of the carbon nanostructures of U.S. Pat. No. 5,413,866 for removing contaminants from aqueous and gaseous steams; and U.S. Pat. No. 5,653,951 to Rodriguez et al. discloses and claims that molecular hydrogen can be stored in layered carbon nanostructure materials having specific distances between layers. The examples in these patents teach the aforementioned preparation methods, as well as the decomposition of a mixture of carbon monoxide and hydrogen in the presence of an iron powder catalyst at 600° C. All of the above referenced US patents are incorporated herein by reference.
- While various carbon nanostructures and their uses are taught in the art, there is still a need for improvements before such nanostructure materials can reach their full commercial and technical potential. For example, while the art broadly discloses carbon nanostructures having crystallinities from about 5 to 95%, it has heretofore not been possible to produce carbon nanostructures with crystallinities greater than about 95%.
- In accordance with the present invention, there is provided substantially crystalline graphitic carbon nanofibers comprised of graphite sheets that are substantially parallel to the longitudinal axis of the nanofibers, wherein the distance between the graphite sheets is from about 0.335 nm to about 0.67 nm, and having a crystallinity greater than about 95%.
- In a preferred embodiment, the distance between the graphite sheets is from about 0.335 and 0.40 nm.
- Also in accordance with the present invention, there is provided a process for producing substantially crystalline graphitic carbon nanofibers which process comprises reacting a mixture of CO/H2 in the presence of a bulk powder catalyst comprised of iron, iron:copper bimetallic, or iron:nickel bimetallic for an effective amount of time at a temperature from about 625° C. to about 725° C.
- In a preferred embodiment, the catalyst is an iron:copper bimetallic catalyst wherein the ratio of iron to copper is from about 1:99 to about 99:1 and the ratio of CO to H2 is from about 95:5 to about 5:95, preferably from about 80:20 to about 20:80.
- FIG. 1a is a representation of a platelet carbon nanofiber, which is comprised of substantially graphite sheets that are substantially perpendicular to the longitudinal axis, or growth axis, of the nanofiber.
- FIG. 1b is a representation of a cylindrical carbon nanostructure that is comprised of continuous carbon sheets and is in the form of tube within a tube within a tube and having a substantially hollow center.
- FIG. 1c is a representation of a ribbon carbon nanofiber of the present invention that is comprised of graphitic sheets that are substantially parallel to the longitudinal axis of the nanofiber.
- FIG. 1d is a representation of a faceted tubular carbon nanofiber of the present invention and is comprised of continuous sheets of graphic carbon but having multifaceted flat faces. The graphitic sheets are also substantially parallel to the longitudinal axis of the nanofiber.
- FIG. 1e is a representation of a herringbone carbon nanofiber wherein the graphitic platelets or sheets are at an angle to the longitudinal axis of the nanofiber.
- The carbon nanofibers of the present invention possess novel structures in which graphite sheets, constituting the nanostructure, are aligned in a direction that is substantially parallel to the growth axis (longitudinal axis) of the nanofiber. The carbon nanofibers are sometimes referred to herein as “ribbon” nanofibers and multifaceted tubular nanofibers. The carbon nanostructures of the present invention are distinguished from the so-called “fibrils” or cylindrical carbon nanostructures. The terms “carbon nanofibers” and “carbon nanostructures” are sometimes used interchangeably herein. The graphite sheets that compose the nanostructures of the present invention are either discontinuous sheets or faceted flat-faced tubular structures. On the other hand, cylindrical carbon nanostructures, or “fibrils” are composed of continuous circular graphite sheets and can be represented by tube within a tube structure having a substantially hollow center. In addition, the carbon nanofibers of the present invention have a unique set of properties, that includes: (i) a nitrogen surface area from about 40 to 300 m2/g; (ii) an electrical resistivity of 0.4 ohm·cm to 0.1 ohm·cm; (iii) a crystallinity from about 95% to 100%; and (iv) a spacing between adjacent graphite sheets of 0.335 nm to about 1.1 nm, preferably from about 0.335 nm to about 0.67 nm, and more preferably from about 0.335 to about 0.40 nm.
- The catalysts used to prepare the carbon nanofibers of the present invention are bulk metals in powder form wherein the metal is selected from the group consisting of iron, iron:copper bimetallics, and iron:nickel bimetallics. It is well established that the ferromagnetic metals, iron, cobalt, and nickel, are active catalysts for the growth of carbon nanofibers during decomposition of certain hydrocarbons or carbon monoxide. Efforts are now being directed at modifying the catalytic behavior of these metals, with respect to nanofiber growth, by introducing other metals and non-metals into the system. In this respect, copper is an enigma, appearing to be relatively inert towards carbon deposition during the CO/H2 reaction. Thus, it is unexpected that Fe or the combination of Cu or Ni with Fe has such a dramatic effect on carbon nanofiber growth in the CO/H2 system in the temperature range of about 625° C. to about 725° C. Preferably from about 650° C. to about 725° C., and more preferably from about 670° C. to about 725° C. Iron:copper catalysts are preferred for preparing the carbon nanostructures of the present invention.
- The average powder particle size of the metal catalyst will range from about 0.25 nanometers to about 5 micrometer, preferably from about 1 nanometer to about 3 micrometers and more preferably from about 2.5 nanometers to about 1 micrometer. When the catalyst is a bimetallic catalyst, the ratio of the two metals can be any effective ratio that will produce substantially crystalline carbon nanofibers in which the graphite sheets are substantially parallel to the longitudinal axis of the nanofiber, at temperatures from about 625° C. to about 725° C. in the presence of a mixture of CO/H2. The ratio of iron to either copper or nickel will typically be from about 1:99 to about 99:1, preferably from about 5:95 to about 95:5, more preferably from about 3:7 to about 7:3; and most preferably from about 6:4 to about 7:3. The bimetallic catalyst can be prepared by any suitable technique. One preferred technique is by co-precipitation of aqueous solutions containing soluble salts of the two metals. Preferred salts include the nitrates, sulfates, and chlorides of iron, copper, and nickel particularly the nitrates. The resulting precipitates are dried and calcined to convert the salts to the mixed metal oxides. The calcined metal powders are then reduced at an effective temperature and for an effective time.
- The catalyst powders used in the present invention are preferably prepared by the co-precipitation of aqueous solutions containing appropriate amounts of iron, nickel and copper nitrates using ammonium bicarbonate. The precipitates were dried overnight at about 110° C. before being calcined in air at 400° C. to convert the carbonates into mixed metal oxides. The calcined powders are then reduced in hydrogen for 20 hours at 400° C. Following this treatment the reduced catalyst is cooled to room temperature in a helium environment before being passivated in a 2% oxygen/helium mixture for 1 hour at about room temperature (24° C.).
- It is known that carbon nanostructures can be prepared by reacting a catalyst in a heating zone with the vapor of a suitable carbon-containing compound. While the art teaches a wide variety of carbon-containing compounds as being suitable, the inventors hereof have found that only a mixture of CO and H2 will yield carbon nanofibers with unexpected high crystallinities in the unique structures of nanofibers of the present invention in the temperature range of about 625° C. to about 725° C. That is, crystallinities greater than about 95%, preferably greater than 97% more preferably greater than 98%, and most preferably substantially 100%.
- After the nanofibers are grown, it may be desirable to treat them with an aqueous solution of an inorganic acid, such as a mineral acid, to remove any excess catalyst particles. Non-limiting examples of suitable mineral acids include sulfuric acid, nitric acid, and hydrochloric acid. Preferred is hydrochloric acid.
- It is within the scope of this invention to increase the spacing between the graphite sheets by any suitable means, such as by intercalation. Intercalation involves incorporating an appropriate intercalation compound between platelets. Intercalation compounds suitable for graphite structures are comprehensively discussed inApplications of Graphite Intercalation Compounds, by M. Inagaki, Journal of Material Research, Vol 4, No.6, November/December 1989, which is incorporated herein by reference. The preferred intercalation compounds for use with the nanofibers of the present invention are alkali and alkaline-earth metals. The limit to which the spacing of the graphite sheets will be increased for purposes of the present invention will be that point wherein the carbon nanofibers no longer can be characterized as graphitic. That is, the spacing can become so large that the carbon now has properties different than those of graphite. In most cases the electro-conductivity is enhanced. It is important for the practice of the present invention that the carbon nanofibers maintain the basal plane structure representative of graphite.
- A major advantage of the graphite nanofibers of the present invention over other graphitic materials is their flexibility with regard to modification of surface chemistry. For example, the carbon nanostructures of the present invention contain a substantial number of edge sites, which are also referred to as edge regions. The edge regions of the nanostructures of the present invention can be made either basic (introduction of NH4 + groups) or acidic (addition of COOH− groups) by use of appropriate methods. Furthermore, the presence of oxygenated groups (hydroxyl, peroxide, ether, keto or aldehyde) that are neither acidic nor basic in nature can impart polarity to the graphite structure. These groups in turn can react with organic compounds to house unique structures for separations. Polar groups will promote the interaction of carbon edge atoms with other polar groups such as water. As a consequence, the interaction of graphitic materials with aqueous solutions can be greatly enhanced due to the presence of acid, basic or neutral functionality.
- The distribution of polar groups in active carbon (non-graphitic) occurs in a random fashion, whereas the graphitic nanofibers of the present invention, such sites are located at the edges of the graphene layers. Addition of oxygenated groups can be achieved by selected oxidation treatments including treatment with peroxides, nitric acid, potassium permanganate, etc. Functionality can also be incorporated by electrochemical oxidation, at for example 2.3 volts for various periods of time. The nature of the groups will be dependent upon the oxidation time and the voltage. Polar sites can also be eliminated by reduction, out-gassing in vacuum at 1000° C. or treatment in hydrazine at about 35° C. Following this procedure, the graphite nanofiber will become hydrophobic. Theodoridou and coworkers, (Met. 14, 125 (1986)), demonstrated that very efficient surface oxidation of carbon fibers can be achieved by d.c. oxidation or repetitive anodic oxidation and cathodic reduction of the material in acidic, alkaline or neutral aqueous media. It was believed that this method had the advantage over other procedures in that thick layers of surface oxides could be produced without damaging the fiber structure. These workers also capitalized on the conductive properties of graphitized carbon fibers to introduce various noble metals onto such materials via the use of electrochemical procedures. The possibility of controlling the functionality of the graphite surface could have a direct impact on both the chemistry of the supported metal particles and their morphological characteristics.
- The present invention will be illustrated in more detail with reference to the following examples, which should not be construed to be limiting in scope of the present invention.
- Gas flow reactor experiments were carried out in a horizontal quartz tube (40 mm i.d. and 90 cm long) contained in a Lindberg tube furnace, at temperatures over the range of about 450° C. to 700° C. Gas flow rates to the reactor were regulated by MKS mass flow controllers. In a typical experiment, 50 mg of given catalyst powder was dispersed in a substantially uniform manner along the base of a ceramic boat, which was subsequently placed at the center of the reactor tube. After reduction of the sample at 600° C. for 2 hours, the system was flushed with helium and brought to the desired temperature level before being reacted with in the CO/H2 mixture for a period of 2 hours. The total amount of solid carbon formed in any given experiment was determined at the completion of the reaction by weight difference. The composition of the gas phase was measured at regular intervals by taking samples of the inlet and outlet streams, which were then analyzed by gas chromatography using a 30 m megabore (CS-Q) capillary column in a Varian 3400 GC unit. Carbon and hydrogen atom balances, in combination with the relative concentrations of the respective components, were applied to obtain the various product yields. In order to obtain reproducible carbon deposition data it was necessary to follow an identical protocol for each experiment.
- The structural details of the carbon materials resulting from the interaction of the CO/H2 mixtures with the various powdered bimetallic catalysts were examined in a JEOL 2000 EX II transmission electron microscope that was fitted with a high resolution pole piece capable of providing a lattice resolution of 0.18 nm. Temperature programmed oxidation studies (TPO) of the various carbon materials were carried out in a Cahn 2000 microbalance in the presence of a CO2/Ar (1:1) mixture at a heating rate of 5°/min. The degree of crystallization of a given type of carbon nanostructure was determined from a comparison of the oxidation profile of two standard materials, amorphous carbon and single crystal graphite when treated under the same conditions.
- In the first set of experiments selected Fe:Cu catalysts were heated in the presence of a CO/H2 (4:1) mixture at temperatures ranging from 450° C. to 700° C. Table I below shows the number of grams of carbon nanofibers per weight of catalyst produced after a period of 2 hours at each temperature. In each case the optimum yield of carbon nanofibers was generated at temperatures between 550° C. and 600° C. The most active catalysts were those that contained a larger fraction of iron than copper.
TABLE I Effect of Temperature on the amount of Carbon Nanofibers (grams/grams of Catalyst) from the Decomposition of CO/H2 over selected Fe:Cu Powders Temperature (° C.) Fe:Cu (1:9) Fe:Cu (3:7) Fe:Cu (7:3) 450 1.10 1.15 1.31 500 2.55 4.15 10.83 525 4.48 550 6.14 9.81 12.02 600 7.86 10.15 11.55 625 5.07 650 3.72 4.21 4.40 700 1.24 1.15 1.31 - A second series of experiments was carried out at 550° C. under conditions where selected Fe:Cu catalysts were heated in CO/H2 mixtures in which the percent of H2 was progressively increased. The data presented in Table II below shows that the number of grams of carbon nanofibers per weight of catalyst produced after 2.5 hours reached a maximum for each system when the reactant gas contained between 20 to 50% of hydrogen.
TABLE II Effect of Percent H2 in the CO/H2 reactant mixture on the amount of Carbon Nanofibers (grams/grams of Catalyst) formed over Fe:Cu Catalysts at 550° C. Catalyst 20% H2 50% H2 80% H2 Pure Fe 17.53 16.86 14.16 Fe-Cu (7:3) 16.63 17.23 12.96 Fe-Cu (5:5) 16.41 15.74 12.14 Fe-Cu (3:7) 13.78 13.71 12.51 Fe-Cu (1:9) 8.7 10.41 10.79 - Another set of experiments was performed at 600° C. under conditions where selected Fe:Cu catalysts were heated in CO/H2 mixtures in which the percent of H2 was progressively increased. The data presented in Table III below shows that in this case the number of grams of carbon nanofibers per weight of catalyst produced after 2.5 hours reached a maximum for each system when the reactant gas contained 20% of hydrogen.
TABLE III Effect of Percent H2 in the CO/H2 reactant mixture on the amount of Carbon Nanofibers (grams/grams of Catalyst) formed over Fe:Cu Catalysts at 600° C. Catalyst 20% H2 33% H2 50% H2 67% H2 80% H2 Fe-Cu (1:9) 7.86 7.37 7.11 5.26 3.96 Fe-Cu (3:7) 10.15 8.91 7.44 6.35 4.05 Fe-Cu (7:3) 11.85 9.33 8.99 4.77 3.23 - In a set of experiments carried out at 600° C. for 2 hours it was found that the number of grams of carbon nanofibers per weight of catalyst produced after 2.5 hours with a CO/H2 mixture was dependent upon the percentage of copper in the Fe:Cu bimetallic catalyst. It can be seen from Table IV below that as the fraction of copper exceeds 40% there is a gradual decrease in carbon nanofiber yield. It can also be seen that a catalyst containing pure copper does not produce carbon nanofibers.
TABLE IV The effect of catalyst composition on carbon nanofiber formation from the Fe-Cu catalyzed decomposition of CO/H2 (4:1) after 1.0 hours at 600° C. % Copper in catalyst Grams of carbon nanofibers/grams catalyst 0 8.8 30 11.65 50 11.60 70 10.25 80 9.10 90 7.35 95 4.70 100 0 - In a further set of experiments the overall degree of crystallinity of the carbon nanofibers produced from the interaction of selected Fe:Cu catalysts with a CO/H2 (4:1) mixture at 600° C. for 2.0 hours was determined from temperature programmed oxidation of the nanofibers in CO2. The characteristics of the controlled gasification of carbonaceous solids in CO2 provides a sensitive method of determining the structural perfection of such materials. The data shown in Table V below indicates that the degree of crystallinity of carbon nanofibers generated from an Fe—Cu (7:3) catalyst is significantly higher than that of the same type of nanofibers grown under identical reaction conditions on a pure iron catalyst.
TABLE V Percent reactivity of carbon nanofibers in CO2 as a function of reaction temperatures Carbon Material 805° C. 900° C. 950° C. 1000° C. 1050° C. Nanofibers from Fe 29.1% 52.0% 72.8% 86.2% 100.0% Nanofibers from 5.2% 12.8% 30.6% 57.0% 100.0% Fe-Cu (7:3) - In a series of characterization studies performed in a high resolution transmission electron microscope, small sections of carbon nanofibers grown from the decomposition of CO/H2 mixtures at 600° C. over various metal and bimetallic catalyst systems were examined and representative micrographs taken of each sample. A compilation of the observations made from inspection of several micrographs from each sample is given in Table VI below. Also included for comparison purposes are corresponding data for nanofibers grown from the interaction of the same series of catalysts with C2H4/H2 at 600° C.
TABLE VI Comparison of structural features of carbon nanofibers from the decomposition of CO/H2 (4:1) and C2H4/H2 (4:1) over various metal and bimetallic catalysts at 600° C. Nanofiber Structure Catalyst C2H4/H2 CO/H2 Fe No nanofiber growth Platelet Ni Straight amorphous No nanofiber growth nanofibers Co Straight amorphous No nanofiber growth nanofibers Fe—Ni Straight coiled & branched Faceted Tubular/Ribbon “herring-bone” Ni—Cu Straight coiled & branched No nanofiber growth “herring-bone” Co—Cu Amorphous straight, No nanofiber growth Coiled & branched Fe—Cu Straight coiled & branched Platelet “herring-bone” - A carbon nanofiber having graphite sheets at an angle to the longitudinal axis of the nanofiber is referred to as a “herringbone structure”.
- In another series of characterization studies, performed in a high resolution transmission electron microscope, samples of carbon nanofibers grown from the decomposition of CO/H2 mixtures over a powdered iron catalyst at temperatures over the range 550 to 670° C. were examined. The data presented in Table VII below indicates that there is a very narrow temperature window, 600 to 625° C., where the structures of the nanofibers are produced exclusively in the form of platelet structures. Below this temperature the solid carbon product is found to consist of a mixture of herring-bone and platelet conformations, whereas at temperatures of 650° C. there is a tendency for the structures to acquire a faceted tubular or ribbon arrangement, which becomes the only form at 670° C.
TABLE VII Characteristics of carbon nanofibers produced from the iron catalyzed decomposition of a CO/H2 (4:1) mixture as a function of reaction temperature Catalyst Temperature (° C.) Nanofiber Structure Fe 550 Herring-bone & Platelet Fe 580 Herring-bone & Platelet Fe 600 Platelet Fe 625 Platelet Fe 650 Platelet & Faceted Tubular/Ribbon Fe 670 Faceted Tubular/Ribbon - In another series of characterization studies, performed in a high resolution transmission electron microscope, samples of carbon nanofibers grown from the decomposition of CO/H2 mixtures over a powdered iron-copper (7:3) catalyst at temperatures over the range 550 to 670° C. were examined. The observations from these experiments are presented in Table VIII below.
TABLE VIII Characteristics of carbon nanofibers produced from the iron-copper (7:3) catalyzed decomposition of a CO/H2 (4:1) mixture as a function of reaction temperature Catalyst Temperature (° C.) Nanofiber Structure Fe-Cu (7:3) 550 Herring-bone & Platelet Fe-Cu (7:3) 575 Platelet Fe-Cu (7:3) 600 Platelet Fe-Cu (7:3) 625 Platelet Fe-Cu (7:3) 650 Platelet & Faceted Tubular/Ribbon Fe-Cu (7:3) 670 Faceted Tubular
Claims (19)
1. A process for producing a substantially crystalline graphitic nanofiber wherein at least a portion of which are comprised of graphite sheets that are substantially parallel to the longitudinal axis of the nanofiber, which process comprises reacting a mixture of CO/H2 in the presence of a catalyst selected from the group consisting of Fe, Fe:Cu bimetallic, and Fe:Ni bimetallic powder catalysts for an effective amount of time at a temperature from about 625° C. to about 725° C.
2. The process of claim 1 wherein said nanofibers are characterized as having separate and non-continuous substantially graphite sheets.
3. The process of claim 1 wherein said nanofibers are characterized as having continuous substantially graphite sheets forming a non-cylindrical multifaceted tubular structure.
4. The process of claim 1 wherein the catalyst is an Fe:Cu bimetallic wherein the ratio of Fe to Cu is from about 1:99 to about 99:1.
5. The process of claim 4 wherein the ratio of Fe to Cu is from about 3:7 to about 7:3.
6. The process of claim 5 wherein the ration of Fe to Cu is about 7:3 and the temperature is about 650° C.
7. The process of claim 1 wherein the catalyst is an Fe:Ni bimetallic wherein the ratio of Fe to Ni is from about 1:99 to about 99:1.
8. The process of claim 7 wherein the ratio of Fe to Ni is from about 3:7 to about 7:3
9. The process of claim 1 wherein the ratio of CO to H2 is from about 95:5 to about 5:95.
10. The process of claim 9 wherein the ratio of CO to H2 is from about 80:20 to about 20:80.
11. The process of claim 5 wherein the ratio of CO to H2 is from about 80:20 to about 20:80.
12. The process of claim 6 wherein the ratio of CO to H2 is about 80:20.
13. The process of claim 1 wherein the crystallinity of the nanofiber is greater than about 98%.
14. The process of claim 5 wherein the crystallinity of the nanofiber is greater than about 98%.
15. The process of claim 1 wherein the particle size of the bimetallic powder is from about 0.25 nanometers to about 5 micrometers.
16. The process of claim 14 wherein the particle size of the bimetallic powder is from about 2.5 nanometers to about 1 micrometer.
17. The product produced by the process of claim 1 .
18. The product produced by the process of claim 6 .
19. The product produced by the process of claim 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/625,069 US20040071625A1 (en) | 2000-09-08 | 2003-07-22 | Process for producing crystalline graphite nanofibers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/659,441 US6537515B1 (en) | 2000-09-08 | 2000-09-08 | Crystalline graphite nanofibers and a process for producing same |
US09/902,113 US20020054849A1 (en) | 2000-09-08 | 2001-07-10 | Crystalline graphite nanofibers and a process for producing same |
US10/625,069 US20040071625A1 (en) | 2000-09-08 | 2003-07-22 | Process for producing crystalline graphite nanofibers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/902,113 Division US20020054849A1 (en) | 2000-09-08 | 2001-07-10 | Crystalline graphite nanofibers and a process for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040071625A1 true US20040071625A1 (en) | 2004-04-15 |
Family
ID=27097820
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/902,113 Abandoned US20020054849A1 (en) | 2000-09-08 | 2001-07-10 | Crystalline graphite nanofibers and a process for producing same |
US10/625,069 Abandoned US20040071625A1 (en) | 2000-09-08 | 2003-07-22 | Process for producing crystalline graphite nanofibers |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/902,113 Abandoned US20020054849A1 (en) | 2000-09-08 | 2001-07-10 | Crystalline graphite nanofibers and a process for producing same |
Country Status (4)
Country | Link |
---|---|
US (2) | US20020054849A1 (en) |
EP (1) | EP1349808A4 (en) |
CA (1) | CA2420004A1 (en) |
WO (1) | WO2002020401A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050112050A1 (en) * | 2003-11-21 | 2005-05-26 | Pradhan Bhabendra K. | Process to reduce the pre-reduction step for catalysts for nanocarbon synthesis |
US20090226361A1 (en) * | 2008-03-05 | 2009-09-10 | Jessica Campos-Delgado | Cvd-grown graphite nanoribbons |
CN103811773A (en) * | 2012-11-14 | 2014-05-21 | 株式会社东芝 | Carbon material, method of manufacturing the same, and electrochemical cell using the same |
JP2014114205A (en) * | 2012-11-14 | 2014-06-26 | Toshiba Corp | Carbon material, method for producing the same, and electrochemical cell, oxygen reduction device and refrigerator using the same |
US20140235428A1 (en) * | 2011-07-21 | 2014-08-21 | Nanjing University | Supported bimetallic nanocomposite catalyst and the preparation method thereof |
US20140299364A1 (en) * | 2011-12-22 | 2014-10-09 | 3M Innovative Properties Company | Electrically conductive article with high optical transmission |
CN104638275A (en) * | 2013-11-08 | 2015-05-20 | 株式会社东芝 | Carbon material and production method thereof, electrochemical battery, deoxidation device, and refrigerator adopting the same |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6991363B2 (en) * | 2000-04-28 | 2006-01-31 | Premark Feg L.L.C. | Mixer with pivotable bowl |
US6849245B2 (en) * | 2001-12-11 | 2005-02-01 | Catalytic Materials Llc | Catalysts for producing narrow carbon nanostructures |
US6927250B2 (en) | 2002-08-15 | 2005-08-09 | Advanced Energy Technology Inc. | Graphite composites and methods of making such composites |
WO2004035883A2 (en) * | 2002-10-17 | 2004-04-29 | Nexen Nano Tech Co., Ltd | Fibrous nano-carbon and preparation method thereof |
AU2003273074A1 (en) * | 2002-10-17 | 2004-05-04 | Nexen Nano Tech Co., Ltd | Ultra-fine fibrous carbon and preparation method thereof |
US20050077503A1 (en) * | 2003-07-23 | 2005-04-14 | Takuya Gotou | Dispersion comprising thin particles having a skeleton consisting of carbons, electroconductive coating film, electroconductive composite material, and a process for producing them |
US20050025695A1 (en) * | 2003-07-28 | 2005-02-03 | Bhabendra Pradhan | Catalyst and process to produce nanocarbon materials in high yield and at high selectivity at reduced reaction temperatures |
WO2005033001A2 (en) * | 2003-09-03 | 2005-04-14 | Honda Motor Co., Ltd. | Methods for preparation of one-dimensional carbon nanostructures |
US8541054B2 (en) * | 2003-09-08 | 2013-09-24 | Honda Motor Co., Ltd | Methods for preparation of one-dimensional carbon nanostructures |
US8048940B2 (en) * | 2004-07-09 | 2011-11-01 | Vanderbilt University | Reactive graphitic carbon nanofiber reinforced polymeric composites showing enhanced flexural strength |
US7351360B2 (en) | 2004-11-12 | 2008-04-01 | International Business Machines Corporation | Self orienting micro plates of thermally conducting material as component in thermal paste or adhesive |
WO2006093989A2 (en) * | 2005-03-01 | 2006-09-08 | The Regents Of The University Of California | Preparation of graphitic articles |
JP4197729B2 (en) * | 2006-12-21 | 2008-12-17 | 昭和電工株式会社 | Carbon fiber and catalyst for carbon fiber production |
KR101443222B1 (en) * | 2007-09-18 | 2014-09-19 | 삼성전자주식회사 | Graphene pattern and process for preparing the same |
EP2419553A4 (en) | 2009-04-17 | 2014-03-12 | Seerstone Llc | Method for producing solid carbon by reducing carbon oxides |
US9096784B2 (en) * | 2010-07-23 | 2015-08-04 | International Business Machines Corporation | Method and system for allignment of graphite nanofibers for enhanced thermal interface material performance |
US20120189530A1 (en) * | 2011-01-20 | 2012-07-26 | Eden Energy Ltd. | System And Process For Producing Hydrogen And A Carbon Nanotube Product |
US9257359B2 (en) | 2011-07-22 | 2016-02-09 | International Business Machines Corporation | System and method to process horizontally aligned graphite nanofibers in a thermal interface material used in 3D chip stacks |
KR20130108816A (en) * | 2012-03-26 | 2013-10-07 | 삼성에스디아이 주식회사 | Secondry battery |
WO2013158161A1 (en) | 2012-04-16 | 2013-10-24 | Seerstone Llc | Methods and systems for capturing and sequestering carbon and for reducing the mass of carbon oxides in a waste gas stream |
US9796591B2 (en) | 2012-04-16 | 2017-10-24 | Seerstone Llc | Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products |
EP2838839B1 (en) | 2012-04-16 | 2020-08-12 | Seerstone LLC | Method for producing solid carbon by reducing carbon dioxide |
NO2749379T3 (en) | 2012-04-16 | 2018-07-28 | ||
EP2838844A4 (en) | 2012-04-16 | 2015-10-28 | Seerstone Llc | Methods for treating an offgas containing carbon oxides |
US9896341B2 (en) | 2012-04-23 | 2018-02-20 | Seerstone Llc | Methods of forming carbon nanotubes having a bimodal size distribution |
US10815124B2 (en) | 2012-07-12 | 2020-10-27 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
US9604848B2 (en) | 2012-07-12 | 2017-03-28 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
US9598286B2 (en) | 2012-07-13 | 2017-03-21 | Seerstone Llc | Methods and systems for forming ammonia and solid carbon products |
US9779845B2 (en) | 2012-07-18 | 2017-10-03 | Seerstone Llc | Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same |
US9650251B2 (en) | 2012-11-29 | 2017-05-16 | Seerstone Llc | Reactors and methods for producing solid carbon materials |
US9245813B2 (en) | 2013-01-30 | 2016-01-26 | International Business Machines Corporation | Horizontally aligned graphite nanofibers in etched silicon wafer troughs for enhanced thermal performance |
US9090004B2 (en) | 2013-02-06 | 2015-07-28 | International Business Machines Corporation | Composites comprised of aligned carbon fibers in chain-aligned polymer binder |
US9783421B2 (en) | 2013-03-15 | 2017-10-10 | Seerstone Llc | Carbon oxide reduction with intermetallic and carbide catalysts |
ES2900814T3 (en) | 2013-03-15 | 2022-03-18 | Seerstone Llc | Electrodes comprising nanostructured carbon |
WO2014150944A1 (en) | 2013-03-15 | 2014-09-25 | Seerstone Llc | Methods of producing hydrogen and solid carbon |
WO2014151138A1 (en) | 2013-03-15 | 2014-09-25 | Seerstone Llc | Reactors, systems, and methods for forming solid products |
US9586823B2 (en) | 2013-03-15 | 2017-03-07 | Seerstone Llc | Systems for producing solid carbon by reducing carbon oxides |
US9082744B2 (en) | 2013-07-08 | 2015-07-14 | International Business Machines Corporation | Method for aligning carbon nanotubes containing magnetic nanoparticles in a thermosetting polymer using a magnetic field |
US11752459B2 (en) | 2016-07-28 | 2023-09-12 | Seerstone Llc | Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same |
CN110922742A (en) * | 2019-10-31 | 2020-03-27 | 深圳市超导新材料有限公司 | Novel transparent conductive film and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5149584A (en) * | 1990-10-23 | 1992-09-22 | Baker R Terry K | Carbon fiber structures having improved interlaminar properties |
US5413866A (en) * | 1990-10-23 | 1995-05-09 | Baker; R. Terry K. | High performance carbon filament structures |
US5458784A (en) * | 1990-10-23 | 1995-10-17 | Catalytic Materials Limited | Removal of contaminants from aqueous and gaseous streams using graphic filaments |
US5618875A (en) * | 1990-10-23 | 1997-04-08 | Catalytic Materials Limited | High performance carbon filament structures |
US6479028B1 (en) * | 2000-04-03 | 2002-11-12 | The Regents Of The University Of California | Rapid synthesis of carbon nanotubes and carbon encapsulated metal nanoparticles by a displacement reaction |
US6537515B1 (en) * | 2000-09-08 | 2003-03-25 | Catalytic Materials Llc | Crystalline graphite nanofibers and a process for producing same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4900483A (en) * | 1987-10-29 | 1990-02-13 | Exxon Research And Engineering Company | Method of producing isotropically reinforced net-shape microcomposites |
JP2687794B2 (en) * | 1991-10-31 | 1997-12-08 | 日本電気株式会社 | Graphite fiber with cylindrical structure |
-
2001
- 2001-07-10 US US09/902,113 patent/US20020054849A1/en not_active Abandoned
- 2001-09-07 EP EP01968718A patent/EP1349808A4/en active Pending
- 2001-09-07 CA CA002420004A patent/CA2420004A1/en not_active Abandoned
- 2001-09-07 WO PCT/US2001/028199 patent/WO2002020401A1/en active Application Filing
-
2003
- 2003-07-22 US US10/625,069 patent/US20040071625A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5149584A (en) * | 1990-10-23 | 1992-09-22 | Baker R Terry K | Carbon fiber structures having improved interlaminar properties |
US5413866A (en) * | 1990-10-23 | 1995-05-09 | Baker; R. Terry K. | High performance carbon filament structures |
US5458784A (en) * | 1990-10-23 | 1995-10-17 | Catalytic Materials Limited | Removal of contaminants from aqueous and gaseous streams using graphic filaments |
US5618875A (en) * | 1990-10-23 | 1997-04-08 | Catalytic Materials Limited | High performance carbon filament structures |
US5653951A (en) * | 1995-01-17 | 1997-08-05 | Catalytic Materials Limited | Storage of hydrogen in layered nanostructures |
US6479028B1 (en) * | 2000-04-03 | 2002-11-12 | The Regents Of The University Of California | Rapid synthesis of carbon nanotubes and carbon encapsulated metal nanoparticles by a displacement reaction |
US6537515B1 (en) * | 2000-09-08 | 2003-03-25 | Catalytic Materials Llc | Crystalline graphite nanofibers and a process for producing same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050112050A1 (en) * | 2003-11-21 | 2005-05-26 | Pradhan Bhabendra K. | Process to reduce the pre-reduction step for catalysts for nanocarbon synthesis |
US20100029475A1 (en) * | 2003-11-21 | 2010-02-04 | Columbian Chemicals Co. | Process to Reduce the Pre-Reduction Step for Catalysts for Nanocarbon Synthesis |
US20090226361A1 (en) * | 2008-03-05 | 2009-09-10 | Jessica Campos-Delgado | Cvd-grown graphite nanoribbons |
US20140235428A1 (en) * | 2011-07-21 | 2014-08-21 | Nanjing University | Supported bimetallic nanocomposite catalyst and the preparation method thereof |
US9259724B2 (en) * | 2011-07-21 | 2016-02-16 | Nanjing University | Supported bimetallic nanocomposite catalyst and the preparation method thereof |
US20140299364A1 (en) * | 2011-12-22 | 2014-10-09 | 3M Innovative Properties Company | Electrically conductive article with high optical transmission |
US9668333B2 (en) * | 2011-12-22 | 2017-05-30 | 3M Innovative Properties Company | Electrically conductive article with high optical transmission |
CN103811773A (en) * | 2012-11-14 | 2014-05-21 | 株式会社东芝 | Carbon material, method of manufacturing the same, and electrochemical cell using the same |
JP2014114205A (en) * | 2012-11-14 | 2014-06-26 | Toshiba Corp | Carbon material, method for producing the same, and electrochemical cell, oxygen reduction device and refrigerator using the same |
CN104638275A (en) * | 2013-11-08 | 2015-05-20 | 株式会社东芝 | Carbon material and production method thereof, electrochemical battery, deoxidation device, and refrigerator adopting the same |
Also Published As
Publication number | Publication date |
---|---|
US20020054849A1 (en) | 2002-05-09 |
EP1349808A1 (en) | 2003-10-08 |
EP1349808A4 (en) | 2006-02-01 |
WO2002020401A1 (en) | 2002-03-14 |
CA2420004A1 (en) | 2002-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040071625A1 (en) | Process for producing crystalline graphite nanofibers | |
US6537515B1 (en) | Crystalline graphite nanofibers and a process for producing same | |
US6890506B1 (en) | Method of forming carbon fibers | |
US9409779B2 (en) | Catalyst for producing carbon nanotubes by means of the decomposition of gaseous carbon compounds on a heterogeneous catalyst | |
JP4033833B2 (en) | Method for selectively producing ordered carbon nanotubes in a fluidized bed | |
EP1455927B1 (en) | Method for producing carbon nanostructures | |
Jiao et al. | Single-walled tubes and encapsulated nanoparticles: comparison of structural properties of carbon nanoclusters prepared by three different methods | |
US7550129B2 (en) | Graphite nanofibers having graphite sheets parallel to the growth axis | |
WO2004035882A2 (en) | Ultra-fine fibrous carbon and preparation method thereof | |
US20030108479A1 (en) | Preparation of multifaceted Graphitic nanotubes | |
Dhore et al. | Synthesis and characterization of high yield multiwalled carbon nanotubes by ternary catalyst | |
Fazle Kibria et al. | Synthesis of carbon nanotubes over nickel–iron catalysts supported on alumina under controlled conditions | |
Yu et al. | Catalytic engineering of carbon nanotube production | |
US20030099592A1 (en) | Method for preparing carbon nanostructures | |
EP1404907A1 (en) | Crystalline graphite nanofibers and a process for producing same | |
US12195337B2 (en) | Long and narrow diameter carbon nanotubes and catalysts for producing same | |
JP2004324004A (en) | Carbon fiber and method for producing the same | |
KR100814677B1 (en) | Surface modification method of natural graphite using carbon nanofibers | |
WO2007083831A1 (en) | Platelet-type slit vapor-grown carbon fiber and process for production thereof | |
Priscillal et al. | Influence of Reaction Parameters on the Structural and Morphological Properties of Carbon Nanocoils Synthesized Using Al3Y and Effect of Rh Addition | |
Shivanna et al. | Fe-Ni nanoparticle-catalyzed controlled synthesis of multi-walled carbon nanotubes on CaCO3 | |
Khavarian et al. | Floating catalyst CVD synthesis of carbon nanotubes using iron (III) chloride: Influences of the growth parameters | |
Németh et al. | Controlling the structure of carbon deposit by nitrogen doping catalytic chemical vapor deposition synthesis | |
CN113101981B (en) | Preparation method of catalyst for preparing carbon nanotube | |
Baby et al. | Synthesis of Carbon Nanohelices Using Sn Based Bi-Metal Oxide Catalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |