US20040063923A1 - Molecular differences between species of the M. tuberculosis complex - Google Patents

Molecular differences between species of the M. tuberculosis complex Download PDF

Info

Publication number
US20040063923A1
US20040063923A1 US10/647,089 US64708903A US2004063923A1 US 20040063923 A1 US20040063923 A1 US 20040063923A1 US 64708903 A US64708903 A US 64708903A US 2004063923 A1 US2004063923 A1 US 2004063923A1
Authority
US
United States
Prior art keywords
tuberculosis
segment
dna
h37rv
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/647,089
Inventor
Marcel Behr
Peter Small
Gary Schoolnik
Michael Wilson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leland Stanford Junior University
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/647,089 priority Critical patent/US20040063923A1/en
Assigned to BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE reassignment BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WILSON, MICHAEL A., BEHR, MARCEL, SCHOOLNIK, GARY, SMALL, PETER
Publication of US20040063923A1 publication Critical patent/US20040063923A1/en
Priority to US11/143,401 priority patent/US7364740B2/en
Priority to US12/049,063 priority patent/US7700118B2/en
Priority to US12/753,330 priority patent/US20110206715A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • Tuberculosis is an ancient human scourge that continues to be an important public health problem worldwide. It is an ongoing epidemic of staggering proportions. Approximately one in every three people in the world is infected with Mycobacterium tuberculosis , and has a 10% lifetime risk of progressing from infection to clinical disease. Although tuberculosis can be treated, an estimated 2.9 million people died from the disease last year.
  • BCG live bacillus Calmette-Guerin
  • BCG has an interesting history. It is an attenuated strain of M. bovis, a very close relative of M. tuberculosis.
  • the M. bovis strain that became BCG was isolated from a cow in the late 1800's by a bacteriologist named Nocard, hence it was called Nocard's bacillus.
  • the attenuation of Nocard's bacillus took place from 1908 to 1921, over the course of 230 in vitro passages. Thereafter, it was widely grown throughout the world, resulting in additional hundreds and sometime thousands of in vitro passages.
  • New antituberculosis vaccines are urgently needed for the general population in endemic regions, for HIV-infected individuals, as well as health care professionals likely to be exposed to tubercle bacilli.
  • Recombinant DNA vaccines bearing protective genes from virulent M. tuberculosis are being developed using shuttle plasmids to transfer genetic material from one mycobacterial species to another, for example see U.S. Pat. No. 5,776,465. Tuberculosis vaccine development should be given a high priority in current medical research goals.
  • Mahairas et al. (1996) J Bacteriol 178(5):1274-1282 provides a molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. Subtractive genomic hybridization was used to identify genetic differences between virulent M. bovis and M. tuberculosis and avirulent BCG. U.S. Pat. No. 5,700,683 is directed to these genetic differences.
  • M. tb. Mycobacterium tuberculosis ( M. tb. ) genomic sequence is available at several internet sites.
  • Genetic markers are provided that distinguish between strains of the Mycobacterium tuberculosis complex, particularly between avirulent and virulent strains.
  • Strains of interest include M. bovis, M. bovis BCG strains, M. tuberculosis ( M. tb .) isolates, and bacteriophages that infect mycobacteria.
  • the genetic markers are used for assays, e.g. immunoassays, that distinguish between strains, such as to differentiate between BCG immunization and M. tb. infection.
  • the protein products may be produced and used as an immunogen, in drug screening, etc.
  • the markers are useful in constructing genetically modified M. tb or M. bovis cells having improved vaccine characteristics.
  • deletions are identified that serve as markers to distinguish between avirulent and virulent mycobacteria strains, including M. bovis, M. bovis BCG strains, M. tuberculosis ( M. tb. ) isolates, and bacteriophages that infect mycobacteria. These deletions are used as genetic markers to distinguish between the different mycobacteria.
  • the deletions may be introduced into M. tb. or M. bovis by recombinant methods in order to render a pathogenic strain avirulent.
  • the deleted genes are identified in the M. tb. genome sequence, and are then reintroduced by recombinant methods into BCG or other vaccine strains, in order to improve the efficacy of vaccination.
  • deletions of the invention are identified by comparative DNA hybridizations from genomic sequence of mycobacterium to a DNA microarray comprising representative sequences of the M. tb. coding sequences. The deletions are then mapped to the known M. tb. genome sequence in order to specifically identify the deleted gene(s), and to characterize nucleotide sequence of the deleted region.
  • Nucleic acids comprising the provided deletions and junctions are used in a variety of applications.
  • Hybridization probes may be obtained from the known M. tb. sequence which correspond to the deleted sequences. Such probes are useful in distinguishing between mycobacteria. For example, there is a 10% probability that an M. tb. infected person will progress to clinical disease, but that probability may vary depending of the particular infecting strain. Analysis for the presence or absence of the deletions provided below as “ M. tb variable” is used to distinguish between different M. tb strains. The deletions are also useful in identifying whether a patient that is positive for a tuberculin skin test has been infected with M. tb or with BCG.
  • mycobacteria are genetically altered to delete sequences identified herein as absent in attenuated strains, but present in pathogenic strains, e.g. deletions found in BCG but present in M. tb H37Rv.
  • Such genetically engineered strains may provide superior vaccines to the present BCG isolates in use.
  • BCG strains may be “reconstructed” to more closely resemble wild-type M. tb by inserting certain of the deleted sequences back into the genome. Since the protein products of the deleted sequences are expressed in virulent mycobacterial species, the encoded proteins are useful as immunogens for vaccination.
  • the attenuation (loss of virulence) in BCG is attributed to the loss of genetic material at a number of places throughout the genome.
  • the selection over time for fewer side-effects resulting from BCG immunization, while retaining cross-reactivity with the tuberculin skin test, has provided an excellent screen for those sequences that engender side effects.
  • the identification of deletions that vary between BCG isolates identifies such sequences, which may be used in drug screening and biological analysis for the role of the deleted genes in causing untoward side effects and pathogenicity.
  • the present invention provides nucleic acid sequences that are markers for specific mycobacteria, including M. tb., M. bovis, BCG and bacteriophage.
  • the deletions are listed in Table 1. The absence or presence of these marker sequences is characteristic of the indicated isolate, or strain. As such, they provide a unique characteristic for the identification of the indicated mycobacteria.
  • the deletions are identified by their M. tb. open reading frame (“Rv” nomenclature), which corresponds to a known genetic sequence, and may be accessed as previously cited.
  • the junctions of the deletions are provided by the designation of position in the publicly available M. tb. sequence.
  • the “Rv” column indicates public M. tb sequence, open reading frame.
  • the BCG strains were obtained as follows: TABLE 2 Strains employed in study of BCG phylogeny Name of strain Synonym Source Descriptors BCG-Russia Moscow ATCC #35740 BCG-Moreau Brazil ATCC #35736 BCG-Moreau Brazil IAF dated 1958 BCG-Moreau Brazil IAF dated 1961 BCG-Japan Tokyo ATCC #35737 BCG-Japan Tokyo IAF dated 1961 BCG-Japan Tokyo JATA vaccine strain BCG-Japan Tokyo JATA bladder cancer strain BCG-Japan Tokyo JATA clinical isolate-adenitis BCG-Sweden Gothenburg ATCC #35732 BCG-Sweden Gothenburg IAF dated 1958 BCG-Sweden Gothenburg SSI production lot, Copenhagen BCG-Phipps Philadelphia ATCC #35744 BCG-Denmark Danish 1331 ATCC #35733 BCG-Copenhagen ATCC #27290 BCG-
  • genomic DNA is isolated from two mycobacteria microbial cell cultures.
  • the two DNA preparations are labeled, where a different label is used for the first and second microbial cultures, typically using nucleotides conjugated to a fluorochrome that emits at a wavelength substantially different from that of the fluorochrome tagged nucleotides used to label the selected probe.
  • the strains used were the reference strain of Mycobacterium tuberculosis (H37Rv), other M. tb. laboratory strains, such as H37Ra, the O strain, M. tb. clinical isolates, the reference strain of Mycobacterium bovis , and different strains of Mycobacterium bovis BCG.
  • the two DNA preparations are mixed, and competitive hybridization is carried out to a microarray representing all of the open reading frames in the genome of the test microbe, usually H37Rv.
  • Hybridization of the labeled sequences is accomplished according to methods well known in the art.
  • the two probes are combined to provide for a competitive hybridization to a single microarray.
  • Hybridization can be carried out under conditions varying in stringency, preferably under conditions of high stringency (e.g., 4 ⁇ SSC, 10% SDS, 65° C.) to allow for hybridization of complementary sequences having extensive homology (e.g., having at least 85% sequence identity, preferably at least 90% sequence identity, more preferably having at least 95% sequence identity).
  • the target sequences are native sequences the hybridization is preferably carried out under conditions that allow hybridization of only highly homologous sequences (e.g., at least 95% to 100% sequence identity).
  • Two color fluorescent hybridization is utilized to assay the representation of the unselected library in relation to the selected library (i.e., to detect hybridization of the unselected probe relative to the selected probe). From the ratio of one color to the other, for any particular array element, the relative abundance of that sequence in the unselected and selected libraries can be determined. In addition, comparison of the hybridization of the selected and unselected probes provides an internal control for the assay. An absence of signal from the reference strain, as compared to H37Rv, is indicative that the open reading frame is deleted in the test strain. The deletion may be further mapped by Southern blot analysis, and by sequencing the regions flanking the deletion.
  • Microarrays can be scanned to detect hybridization of the selected and the unselected sequences using a custom built scanning laser microscope as described in Shalon et al., Genome Res. 6:639 (1996). A separate scan, using the appropriate excitation line, is performed for each of the two fluorophores used. The digital images generated from the scan are then combined for subsequent analysis. For any particular array element, the ratio of the fluorescent signal from the amplified selected cell population DNA is compared to the fluorescent signal from the unselected cell population DNA, and the relative abundance of that sequence in the selected and unselected library determined.
  • the term “deletion marker”, or “marker” is used to refer to those sequences of M. tuberculosis complex genomes that are deleted in one or more of the strains or species, as indicated in Table 1.
  • the bacteria of the M. tuberculosis complex include M. tuberculosis, M. bovis, and BCG, inclusive of varied isolates and strains within each species.
  • Nucleic acids of interest include all or a portion of the deleted region, particularly complete open reading frames, hybridization primers, promoter regions, etc.
  • junction or “deletion junction” is used to refer to nucleic acids that comprise the regions on both the 3′ and the 5′ sequence immediately flanking the deletion. Such junction sequences are preferably used as short primers, e.g. from about 15 nt to about 30 nt, that specifically hybridize to the junction, but not to a nucleic acid comprising the undeleted genomic sequence.
  • the deletion found in M. bovis corresponds to the nucleotide sequence of the M. tuberculosis H37Rv genome, segment 12: 17432,19335.
  • the junction comprises the regions upstream of position 17342, and downstream of 19335, e.g. a nucleic acid of 20 nucleotides comprising the sequence from H37Rv 17332-17342 joined to 19335-19345.
  • nucleic acids comprising a junction will include at least about 7 nucleotides from each flanking region, i.e. from the 3′ and from the 5′ sequences adjacent to the deletion, and may be about 10 nucleotides from each flanking region, up to about 15 nucleotides, or more.
  • Amplification primers that hybridize to the junction sequence, to the deleted sequence, and to the flanking non-deleted regions have a variety of uses, as detailed below.
  • the nucleic acid compositions of the subject invention encode all or a part of the deletion markers. Fragments may be obtained of the DNA sequence by chemically synthesizing oligonucleotides in accordance with conventional methods, by restriction enzyme digestion, by PCR amplification, etc. For the most part, DNA fragments will be at least about 25 nt in length, usually at least about 30 nt, more usually at least about 50 nt. For use in amplification reactions, such as PCR, a pair of primers will be used. The exact composition of the primer sequences is not critical to the invention, but for most applications the primers will hybridize to the subject sequence under stringent conditions, as known in the art.
  • primers that will generate an amplification product of at least about 50 nt, preferably at least about 100 nt.
  • Algorithms for the selection of primer sequences are generally known, and are available in commercial software packages. Amplification primers hybridize to complementary strands of DNA, and will prime towards each other.
  • the DNA will be obtained substantially free of other nucleic acid sequences that do not include a deletion marker sequence or fragment thereof, generally being at least about 50%, usually at least about 90% pure and are typically “recombinant”, i.e. flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome.
  • hybridization probes of one or more of the deletion sequences may be used in separate reactions or spatially separated on a solid phase matrix, or labeled such that they can be distinguished from each other. Assays may utilize nucleic acids that hybridize to one or more of the described deletions.
  • An array may include all or a subset of the deletion markers listed in Table 1. Usually such an array will include at least 2 different deletion marker sequences, i.e. deletions located at unique positions within the locus, and may include all of the provided deletion markers. Arrays of interest may further comprise other genetic sequences, particularly other sequences of interest for tuberculosis screening.
  • the oligonucleotide sequence on the array will usually be at least about 12 nt in length, may be the length of the provided deletion marker sequences, or may extend into the flanking regions to generate fragments of 100 to 200 nt in length.
  • Ramsay (1998) Nat. Biotech. 16:40-44; Hacia et al. (1996) Nature Genetics 14:441-447; Lockhart et al. (1996) Nature Biotechnol. 14:1675-1680; and De Risi et al. (1996) Nature Genetics 14:457-460.
  • Nucleic acids may be naturally occurring, e.g. DNA or RNA, or may be synthetic analogs, as known in the art. Such analogs may be preferred for use as probes because of superior stability under assay conditions.
  • Modifications in the native structure including alterations in the backbone, sugars or heterocyclic bases, have been shown to increase intracellular stability and binding affinity.
  • useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates.
  • Achiral phosphate derivatives include 3′-O′-5′-S-phosphorothioate, 3′-S-5′-O-phosphorothioate, 3′-CH 2 -5′-O-phosphonate and 3′-NH-5′-O-phosphoroamidate.
  • Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage.
  • Modification of the heterocyclic bases must maintain proper base pairing.
  • Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2′-deoxycytidine and 5-bromo-2′-deoxycytidine for deoxycytidine.
  • 5-propynyl-2′-deoxyuridine and 5-propynyl-2′-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively.
  • the specific deletion markers in Table 1 correspond to open reading frames of the M. tb genome, and therefore encode a polypeptide.
  • the subject markers may be employed for synthesis of a complete protein, or polypeptide fragments thereof, particularly fragments corresponding to functional domains; binding sites; etc.; and including fusions of the subject polypeptides to other proteins or parts thereof.
  • an expression cassette may be employed, providing for a transcriptional and translational initiation region, which may be inducible or constitutive, where the coding region is operably linked under the transcriptional control of the transcriptional initiation region, and a transcriptional and translational termination region.
  • Various transcriptional initiation regions may be employed that are functional in the expression host.
  • polypeptides may be isolated and purified in accordance with conventional ways.
  • a lysate may be prepared of the expression host and the lysate purified using HPLC, exclusion chromatography, gel electrophoresis, affinity chromatography, or other purification technique.
  • the purified polypeptide will generally be at least about 80% pure, preferably at least about 90% pure, and may be up to and including 100% pure. Pure is intended to mean free of other proteins, as well as cellular debris.
  • the polypeptide is used for the production of antibodies, where short fragments provide for antibodies specific for the particular polypeptide, and larger fragments or the entire protein allow for the production of antibodies over the surface of the polypeptide.
  • Antibodies may be raised to isolated peptides corresponding to particular domains, or to the native protein.
  • Antibodies are prepared in accordance with conventional ways, where the expressed polypeptide or protein is used as an immunogen, by itself or conjugated to known immunogenic carriers, e.g. KLH, pre-S HBsAg, other viral or eukaryotic proteins, or the like.
  • immunogenic carriers e.g. KLH, pre-S HBsAg, other viral or eukaryotic proteins, or the like.
  • Various adjuvants may be employed, with a series of injections, as appropriate.
  • the spleen is isolated, the lymphocytes immortalized by cell fusion, and then screened for high affinity antibody binding.
  • the immortalized cells, i.e. hybridomas, producing the desired antibodies may then be expanded.
  • the mRNA encoding the heavy and light chains may be isolated and mutagenized by cloning in E. coli , and the heavy and light chains mixed to further enhance the affinity of the antibody.
  • Alternatives to in vivo immunization as a method of raising antibodies include binding to phage “display” libraries, usually in conjunction with in vitro affinity maturation.
  • the antibody may be produced as a single chain, instead of the normal multimeric structure.
  • Single chain antibodies are described in Jost et al. (1994) J.B.C. 269:26267-73, and others.
  • DNA sequences encoding the variable region of the heavy chain and the variable region of the light chain are ligated to a spacer encoding at least about 4 amino acids of small neutral amino acids, including glycine and/or serine.
  • the protein encoded by this fusion allows assembly of a functional variable region that retains the specificity and affinity of the original antibody.
  • the deletions provided in Table 1 are useful for the identification of a mycobacterium as (a) variants of M. tb. (b) isolates of BCG (c) M. bovis strains or (d) carrying the identified mycobacterial bacteriophage, depending on the specific marker that is chosen. Such screening is particularly useful in determining whether a particular infection or isolate is pathogenic.
  • mycobacteria may refer to any member of the family Mycobacteriacaeae, including M. tuberculosis, M. avium complex, M. kansasii, M. scrofulaceum, M. bovis and M. leprae.
  • Means of detecting deletions are known in the art. Deletions may be identified through the absence or presence of the sequences in mRNA or genomic DNA, through analysis of junctional regions that flank the deletion, or detection of the gene product, or, particularly relating to the tuberculin skin test, by identification of antibodies that react with the encoded gene product.
  • deletions can be easily determined by the absence of hybridization, in many cases it is desirable to have a positive signal, in order to minimize artifactual negative readings.
  • the deletions may be detected by designing a primer that flanks the junction formed by the deletion. Where the deletion is present, a novel sequence is formed between the flanking regions, which can be detected by hybridization.
  • a primer will be sufficiently short that it will only hybridize to the junction, and will fail to form stable hybrids with either of the separate parts of the junction.
  • a number of methods are available for analyzing nucleic acids for the presence of a specific sequence. Where large amounts of DNA are available, genomic DNA is used directly. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis.
  • the nucleic acid may be amplified by conventional techniques, such as the polymerase chain reaction (PCR), to provide sufficient amounts for analysis.
  • PCR polymerase chain reaction
  • the use of the polymerase chain reaction is described in Saiki, et al. (1985) Science 239:487, and a review of current techniques may be found in Sambrook, et al. Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp.14.2-14.33.
  • Amplification may also be used to determine whether a polymorphism is present, by using a primer that is specific for the polymorphism.
  • various methods are known in the art that utilize oligonucleotide ligation, for examples see Riley et al. (1990) N.A.R. 18:2887-2890; and Delahunty et al. (1996) Am. J. Hum. Genet. 58:1239-1246.
  • a detectable label may be included in an amplification reaction.
  • Suitable labels include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2′,7′-dimethoxy-4′,5′-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2′,4′,7′,4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N′,N′-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, e.g.
  • the label may be a two stage system, where the amplified DNA is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label.
  • the label may be conjugated to one or both of the primers.
  • the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.
  • the sample nucleic acid e.g. amplified or cloned fragment, is analyzed by one of a number of methods known in the art.
  • the nucleic acid may be sequenced by dideoxy or other methods, and the sequence of bases compared to the deleted sequence. Hybridization with the variant sequence may also be used to determine its presence, by Southern blots, dot blots, etc.
  • the hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilized on a solid support, as described in U.S. Pat. No. 5,445,934, or in WO95/35505, may also be used as a means of detecting the presence of variable sequences.
  • Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), mismatch cleavage detection, and heteroduplex analysis in gel matrices are used to detect conformational changes created by DNA sequence variation as alterations in electrophoretic mobility.
  • SSCP Single strand conformational polymorphism
  • DGGE denaturing gradient gel electrophoresis
  • RFLP restriction fragment length polymorphism
  • the hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilized on a solid support may be used as a means of detecting the presence or absence of deleted sequences.
  • an array of oligonucleotides is provided, where discrete positions on the array are complementary to at least a portion of M. tb. genomic DNA, usually comprising at least a portion from the identified open reading frames.
  • Such an array may comprise a series of oligonucleotides, each of which can specifically hybridize to a nucleic acid, e.g. mRNA, cDNA, genomic DNA, etc.
  • Deletions may also be detected by amplification.
  • sequences are amplified that include a deletion junction, i.e. where the amplification primers hybridize to a junction sequence.
  • a junction will be formed, and the primer will hybridize, thereby allowing amplification of a detectable sequence.
  • the primer will not hybridize, and no amplification will take place.
  • amplification primers may be chosen such that amplification of the target sequence will only take place where the marker sequence is present.
  • the amplification products may be separated by size using any convenient method, as known in the art, including gel electrophoresis, chromatography, capillary electrophoresis, density gradient fractionation, etc.
  • Immunization with BCG typically leads to a positive response against tuberculin antigens in a skin test.
  • the subject invention has provided a number of open reading frame sequences that are present in M. tb isolates, but are absent in BCG.
  • a primary or a secondary screening method one may test for immunoreactivity of the patient with the polypeptides encoded by such deletion markers. Diagnosis may be performed by a number of methods.
  • the different methods all determine the presence of an immune response to the polypeptide in a patient, where a positive response is indicative of an M. tb infection.
  • the immune response may be determined by determination of antibody binding, or by the presence of a response to intradermal challenge with the polypeptide.
  • a dose of the deletion marker polypeptide, formulated as a cocktail of proteins or as individual protein species, in a suitable medium is injected subcutaneously into the patient.
  • the dose will usually be at least about 0.05 ⁇ g of protein, and usually not more than about 5 ⁇ g of protein.
  • a control comprising medium alone, or an unrelated protein will be injected nearby at the same time.
  • the site of injection is examined after a period of time for the presence of a wheal.
  • the wheal at the site of polypeptide injection is compared to that at the site of the control injection, usually by measuring the size of the wheal.
  • the skin test readings may be assessed by a variety of objective grading systems.
  • a positive result for the presence of an allergic condition will show an increased diameter at the site of polypeptide injection as compared to the control, usually at least about 50% increase in size, more usually at least 100% increase in size.
  • An alternative method for diagnosis depends on the in vitro detection of binding between antibodies in a patient sample and the subject polypeptides, either as a cocktail or as individual protein species, where the presence of specific binding is indicative of an infection.
  • Measuring the concentration of polypeptide specific antibodies in a sample or fraction thereof may be accomplished by a variety of specific assays. In general, the assay will measure the reactivity between a patient sample, usually blood derived, generally in the form of plasma or serum. The patient sample may be used directly, or diluted as appropriate, usually about 1:10 and usually not more than about 1:10,000. Immunoassays may be performed in any physiological buffer, e.g. PBS, normal saline, HBSS, dPBS, etc.
  • a conventional sandwich type assay is used.
  • a sandwich assay is performed by first attaching the polypeptide to an insoluble surface or support.
  • the polypeptide may be bound to the surface by any convenient means, depending upon the nature of the surface, either directly or through specific antibodies. The particular manner of binding is not crucial so long as it is compatible with the reagents and overall methods of the invention. They may be bound to the plates covalently or non-covalently, preferably non-covalently. Samples, fractions or aliquots thereof are then added to separately assayable supports (for example, separate wells of a microtiter plate) containing support-bound polypeptide. Preferably, a series of standards, containing known concentrations of antibodies is assayed in parallel with the samples or aliquots thereof to serve as controls.
  • Immune specific receptors may be labeled to facilitate direct, or indirect quantification of binding.
  • labels which permit direct measurement of second receptor binding include radiolabels, such as 3 H or 125 I, fluorescers, dyes, beads, chemilumninescers, colloidal particles, and the like.
  • labels which permit indirect measurement of binding include enzymes where the substrate may provide for a colored or fluorescent product.
  • the second receptors are antibodies labeled with a covalently bound enzyme capable of providing a detectable product signal after addition of suitable substrate.
  • suitable enzymes for use in conjugates include horseradish peroxidase, alkaline phosphatase, malate dehydrogenase and the like. Where not commercially available, such antibody-enzyme conjugates are readily produced by techniques known to those skilled in the art.
  • a competitive assay will be used.
  • a competitor to the antibody is added to the reaction mix.
  • the competitor and the antibody compete for binding to the polypeptide.
  • the competitor molecule will be labeled and detected as previously described, where the amount of competitor binding will be proportional to the amount of Immune present.
  • the concentration of competitor molecule will be from about 10 times the maximum anticipated Immune concentration to about equal concentration in order to make the most sensitive and linear range of detection.
  • antibodies may be used for direct determination of the presence of the deletion marker polypeptide.
  • Antibodies specific for the subject deletion markers as previously described may be used in screening immunoassays.
  • Samples, as used herein, include microbial cultures, biological fluids such as tracheal lavage, blood, etc. Also included in the term are derivatives and fractions of such fluids. Diagnosis may be performed by a number of methods. The different methods all determine the absence or presence of polypeptides encoded by the subject deletion markers. For example, detection may utilize staining of mycobacterial cells or histological sections, performed in accordance with conventional methods.
  • the antibodies of interest are added to the cell sample, and incubated for a period of time sufficient to allow binding to the epitope, usually at least about 10 minutes.
  • the antibody may be labeled with radioisotopes, enzymes, fluorescers, chemiluminescers, or other labels for direct detection.
  • a second stage antibody or reagent is used to amplify the signal.
  • Such reagents are well known in the art.
  • the primary antibody may be conjugated to biotin, with horseradish peroxidase-conjugated avidin added as a second stage reagent.
  • Final detection uses a substrate that undergoes a color change in the presence of the peroxidase.
  • the absence or presence of antibody binding may be determined by various methods, including microscopy, radiography, scintillation counting, etc.
  • An alternative method for diagnosis depends on the in vitro detection of binding between antibodies and the subject polypeptides in solution, e.g. a cell lysate. Measuring the concentration of binding in a sample or fraction thereof may be accomplished by a variety of specific assays.
  • a conventional sandwich type assay may be used.
  • a sandwich assay may first attach specific antibodies to an insoluble surface or support.
  • the particular manner of binding is not crucial so long as it is compatible with the reagents and overall methods of the invention. They may be bound to the plates covalently or non-covalently, preferably non-covalently.
  • the insoluble supports may be any compositions to which polypeptides can be bound, which is readily separated from soluble material, and which is otherwise compatible with the overall method.
  • the surface of such supports may be solid or porous and of any convenient shape.
  • suitable insoluble supports to which the receptor is bound include beads, e.g. magnetic beads, membranes and microtiter plates. These are typically made of glass, plastic (e.g. polystyrene), polysaccharides, nylon or nitrocellulose. Microtiter plates are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples.
  • Samples are then added to separately assayable supports (for example, separate wells of a microtiter plate) containing antibodies.
  • a series of standards containing known concentrations of the polypeptides is assayed in parallel with the samples or aliquots thereof to serve as controls.
  • each sample and standard will be added to multiple wells so that mean values can be obtained for each.
  • the incubation time should be sufficient for binding, generally, from about 0.1 to 3 hr is sufficient.
  • the insoluble support is generally washed of non-bound components.
  • a dilute non-ionic detergent medium at an appropriate pH, generally 7-8 is used as a wash medium. From one to six washes may be employed, with sufficient volume to thoroughly wash non-specifically bound proteins present in the sample.
  • a solution containing a second antibody is applied.
  • the antibody will bind with sufficient specificity such that it can be distinguished from other components present.
  • the second antibodies may be labeled to facilitate direct, or indirect quantification of binding.
  • labels that permit direct measurement of second receptor binding include radiolabels, such as 3 H or 125 I, fluorescers, dyes, beads, chemilumninescers, colloidal particles, and the like.
  • labels which permit indirect measurement of binding include enzymes where the substrate may provide for a colored or fluorescent product.
  • the antibodies are labeled with a covalently bound enzyme capable of providing a detectable product signal after addition of suitable substrate.
  • Suitable enzymes for use in conjugates include horseradish peroxidase, alkaline phosphatase, malate dehydrogenase and the like. Where not commercially available, such antibody-enzyme conjugates are readily produced by techniques known to those skilled in the art.
  • the incubation time should be sufficient for the labeled ligand to bind available molecules. Generally, from about 0.1 to 3 hr is sufficient, usually 1 hr sufficing.
  • the insoluble support is again washed free of non-specifically bound material.
  • the signal produced by the bound conjugate is detected by conventional means. Where an enzyme conjugate is used, an appropriate enzyme substrate is provided so a detectable product is formed.
  • Mycobacterium particularly those of the M. tuberculosis complex, are genetically engineered to contain specific deletions or insertions corresponding to the identified genetic markers.
  • attenuated BCG strains are modified to introduce deleted genes encoding sequences important in the establishment of effective immunity.
  • M. bovis or M. tuberculosis are modified by homologous recombination to create specific deletions in sequences that determine virulence, i.e. the bacteria are attenuated through recombinant techniques.
  • the M. tb open reading frame corresponding to one of the deletions in Table 1 is inserted into a vector that is maintained in M. bovis strains.
  • the native 5′ and 3′ flanking sequences are included, in order to provide for suitable regulation of transcription and translation.
  • exogenous promoters and other regulatory regions may be included.
  • Vectors and methods of transfection for BCG are known in the art. For example, U.S. Pat. No. 5,776,465, herein incorporated by reference, describes the introduction of exogenous genes into BCG.
  • the complete deleted region is replaced in BCG.
  • the junctions of the deletion are determined as compared to a wild type M. tb. or M. bovis sequence, for example as set forth in the experimental section.
  • the deleted region is cloned by any convenient method, as known in the art, e.g. PCR amplification of the region, restriction endonuclease digestion, chemical synthesis, etc.
  • the cloned region will further comprise flanking sequences of a length sufficient to induce homologous recombination, usually at least about 25 nt, more usually at least about 100 nt, or greater.
  • flanking sequences of a length sufficient to induce homologous recombination, usually at least about 25 nt, more usually at least about 100 nt, or greater.
  • Suitable vectors and methods are known in the art, for an example, see Norman et al. (1995) Mol. Microbiol. 16:755-760.
  • one or more of the deletions provided in Table 1 are introduced into a strain of M. tuberculosis or M. bovis.
  • a strain is reduced in virulence, e.g. H37Ra, etc.
  • Methods of homologous recombination in order to effect deletions in mycobacteria are known in the art, for example, see Norman et al., supra.; Ganjam et al. (1991) P.N.A.S. 88:5433-5437; and Aldovini et al. (1993) J. Bacteriol. 175:7282-7289.
  • Deletions may comprise an open reading frame identified in Table 1, or may extend to the full deletion, i.e. extending into flanking regions, and may include multiple open reading frames.
  • M. tb. is known to infect a variety of animals, and cells in culture.
  • mammalian macrophages preferably human macrophages, are infected.
  • alveolar or peripheral blood monocytes are infected at a 1:1 ratio (Silver et al. (1998) Infect Immun 66(3):1190-1199; Paul et al.
  • Vaccines may be formulated according to methods known in the art. Vaccines of the modified bacteria are administered to a host which may be exposed to virulent tuberculosis. In many countries where tuberculosis is endemic, vaccination may be performed at birth, with additional vaccinations as necessary. The compounds of the present invention are administered at a dosage that provides effective immunity while minimizing any side-effects. It is contemplated that the composition will be obtained and used under the guidance of a physician.
  • the formulation may be injected intramuscularly, intravascularly, subcutaneously, etc.
  • the dosage will be conventional.
  • the bacteria can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in semi-solid or liquid forms, such as solutions, injections, etc.
  • the following methods and excipients are merely exemplary and are in no way limiting.
  • the modified bacteria can be formulated into preparations for injections by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
  • Unit dosage forms for injection or intravenous administration may comprise the bacteria of the present invention in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.
  • unit dosage form refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of vaccine, calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle.
  • the specifications for the unit dosage forms of the present invention depend on the particular bacteria employed and the effect to be achieved, and the pharmacodynamics associated with each complex in the host.
  • the pharmaceutically acceptable excipients such as vehicles, adjuvants, carriers or diluents, are readily available to the public.
  • pharmaceutically acceptable auxiliary substances such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.
  • Transfer aqueous supernatant in 180 ⁇ l amounts to new tube using pipetter, being careful to leave behind solids and non-aqueous liquid.
  • Place 30 min at ⁇ 20 C. Spin 15 min at room temp in a microcentrifuge at 12,000 g. Discard supernatant; leave about 20 ⁇ l above pellet. Add 1 ml cold 70% ethanol and turn tube a few times upside down. Spin 5 min at room temp in a microcentrifuge. Discard supernatant; leave about 20 ⁇ l above the pellet. Spin 1 min in a microcentrifuge and discard cautiously the last 20 ⁇ l supernatant just above the pellet using a pipetter (P-20). Be sure that all traces of ethanol are removed.
  • DNA array was made by spotting DNA fragments onto glass microscope slides which were pretreated with poly-L-lysine. Spotting onto the array was accomplished by a robotic arrayer. The DNA was cross-linked to the glass by ultraviolet irradiation, and the free poly-L-lysine groups were blocked by treatment with 0.05% succinic anhydride, 50% 1-methyl-2-pyrrolidinone and 50% borate buffer.
  • the majority of spots on the array were PCR-derived products, produced by selecting over 9000 primer pairs designed to amplify the predicted open reading frames of the sequences strain H37Rv (ftp.sanger.ac.uk/pub/TB.seq). Some internal standards and negative control spots including plasmid vectors and non- M. tb. DNA were also on the array.
  • DNA labeling protocol Add 4 ⁇ g DNA in 20p H 2 O, 2 ml dN10N6 and 36 ⁇ l H 2 O. 2 ml DNA spike for each DNA sample, for total of 60 ⁇ l. Boil 3 minutes to denature DNA, then snap cool on ice water bath. Add 1 ⁇ l dNTP (5 mM ACG), 10 ⁇ l 10 buffer, 4 ⁇ l Klenow, 22 ⁇ l H 2 O to each tube. Add 3 ⁇ l of Cy3 or Cy5 dUTP, for total of 100 ⁇ p. Incubate 3 hours at 37 C. Add 11 ⁇ l 3M NaAc, 250 ⁇ l 100% EtOH to precipitate, store O/N at ⁇ 20 C. Centrifuge genomic samples 30 minutes at 13K to pellet precipitate. Discard supernatant, add 70% EtOH, spin 15 minutes, discard sup and speed-vac to dry. This provides DNA for two experiments.
  • DNA hybridization to microarray protocol Resuspend the labeled DNA in 11 ⁇ l dH 2 O (for 2 arrays). Run out 1 ⁇ l DNA on a 1.5% agarose gel to document sample to be hybridized. Of the remaining 10 ⁇ l of solution, half will be used for this hyb, and half will be left for later date. Take 5 ⁇ l of solution Cy3 and add to same amount of Cy5 solution, for total volume 10 ⁇ l mixed labeled DNA. Add 1 ⁇ l tRNA, 2.75 ⁇ l 20 ⁇ SSC, 0.4 ⁇ l SDS, for total volume 14.1%. Place on slide at array site, cover with 22 mm coverslip, put slide glass over and squeeze onto rubber devices, then hybridize 4 hours at 65 C.
  • wash buffer consisting of 1 ⁇ SSC with 0.05% SDS for about 2 minutes. Cover slip should fall off into bath. After 2 minutes in wash buffer, dip once into a bath with 0.06 ⁇ SSC, then rinse again in 0.06 ⁇ SSC in separate bath. Dry slides in centrifuge about 600 rpm. They are now ready for scanning.
  • Fluorescence scanning and data acquisition Fluorescence scanning was set for 20 microns/pixel and two readings were taken per pixel. Data for channel 1 was set to collect fluorescence from Cy3 with excitation at 520 nm and emission at 550-600 nm. Channel 2 collected signals excited at 647 nm and emitted at 660-705 nm, appropriate for Cy5. No neutral density filters were applied to the signal from either channel, and the photomultiplier tube gain was set to 5. Fine adjustments were then made to the photomultiplier gain so that signals collected from the two spots containing genomic DNA were equivalent.
  • this amplicon is then sequenced. A search of the genome database is performed to determine whether the sequence is exactly identical to one part of the Mycobacterium tuberculosis genome, and that the next part of the amplicon is exactly identical to another part of the Mycobacterium tuberculosis genome. This permits precise identification of the site of deletion.
  • tuberculosis 5 atgacagagc agcagtggaa tttcgcgggt atcgaggccg cggcaagcgc aatccaggga 60 aatgtcacgt ccattcattc cctccttgac gaggggaagc agtccctgac caagctcgca 120 gcggcctggg gcggtagcgg ttcggaggcg taccagggtg tccagcaaaa atgggacgcc 180 acggctaccg agctgaacaa cgcgctgcag aacctggcgc ggacgatcag cgaagccggt 240 caggcaatgg cttcgaccga aggcaacgtc actgggatgt tcgca 285 6 1998 DNA My
  • tuberculosis 15 gtgtcatttc tggtcgtggt tcccgagttc ttgacgtccg cggcagcgga tgtggagaac 60 ataggttcca cactgcgcgc ggcgaatgcc gcggctgccg cctcgaccac cgcgcttgcg 120 gccgctggcg ctgatgaggt atcggcggcg gtggcagcgc tgtttgccag gttcggtcag 180 gaatatcaag cggtcagcgc gcaggcgagc gctttccatc aacagttcgt gcagacgctg 240 aactcggcgt caggatcgta tgcggccgcg gaggcca
  • tuberculosis 17 gtgcgcatca agatcttcat gctggtcacg gctgtcgttt tgctctgttg ttcgggtgtg 60 gccacggccg cgcccaagac ctactgcgag gagttgaaag gcaccgatac cggccaggcg 120 tgccagattc aaatgtccga cccggctac aacatcaaca tcagcctgcc cagttactac 180 ccgaccaga agtcgctgga aaattacatc gcccagacgc gcgcgacaagtt cctcagcgcg 240 gccacatcgt ccactccacgcgaagccccc tacgaattga atatcacctc
  • tuberculosis 18 gtgcgcatca agatcttcat gctggtcacg gctgtcgttt tgctctgttg ttcgggtgtg 60 gccacggccg cgcccaagac ctactgcgag gagttgaaag gcaccgatac cggccaggcg 120 tgccagattc aaatgtccga cccggctac aacatcaaca tcagcctgcc cagttactac 180 ccgaccaga agtcgctgga aaattacatc gcccagacgc gcgcgacaagtt cctcagcgcg 240 gccacatcgt ccactccacgcgaagcccccc tacgaattga atatcacctc
  • tuberculosis 22 atgagccggc accacaacat cgtgatcgtc tgtgaccacg gccgcaaagg cgatggccgc 60 atcgaacacg agcgctgcga tcttgtcgcg ccgatcattt gggtcgacga gacccagggc 120 tggttaccgc aggcgccagc ggtggcaaca ttactcgacg acgacaacca gccgcgagcc 180 gttattggct tgccgcccaa cgagtctcgc ctacgacctg aaatgcgccg cgacgggtgg 240 gtgcggctgc actgggaatt cgcctgctg aggta
  • tuberculosis 23 gtgtcgacca tctaccatca tcgcggccgc gtagccgcac tgtctcgttc ccgcgcatcc 60 gacgatccg agttcatcgc cgcgaaacc gatctcgttg ccgcgaacat cgcggactac 120 ctcatccgca ccctcgcgcgc agcgccgccctgactgacg agcagcgcac ccggctggcc 180 gagctgctgc gccccgtgcg gcggtcaggc ggtgccga 219 24 396 DNA Mycobacteria tuberculosis 24 atgaccgccg gcgccggcgg gtcgcgcg a
  • tuberculosis 37 atgtctgaca gtgccacgga atacgacaag cttttcatcg gcggcaagtg gaccaaaccg 60 tcgacctccg atgttatcga ggtacgctgc ccagccactg gggaatatgt cggcaaggtg 120 ccgatggcgg ccgcgcgcga cgcgccgcgcgcgcgcga cgcggtcgcg cagcacgtgc ggcgttcgac 180 aacggccct ggcctcgac ccgcgcac gagcgtgcgg cggtgatcgc tgcggcggtc 240 aagatgctgg ctgagcgcaa ggacctgttc accaagc
  • tuberculosis 38 atggcacgct gcgatgtcct ggtctccgcc gactgggctg agagcaatct gcacgcgcg 60 aaggtcgttt tcgtcgaagt ggacgaggac accagtgcat atgaccgtga ccatattgcc 120 ggcgcgatca agttggactg gcgcaccgac ctgcaggatc cggtcaaacgacttcgtc 180 gacgcccagc aattctccaa gctgctgtcc gagcgtggca tcgccaacga ggacacggtg 240 atcctgtacg gcggcaacaa caattggttc gcctacg cgtactgg
  • tuberculosis 39 atgtgctctg gacccaagca aggactgaca ttgccggcca gcgtcgacct ggaaaagaa 60 acggtgatca ccggccgcgt agtggacggt gacggccagg ccgtggacggt gacggccagg ccgtgggcgg cgcgttcgtg 120 cggctgctgg actcctccga cgagttcacc gcggaggtcg tcgcgtcggc caccggcgat 180 ttccggttct tcgcgcgccc cggatcctgg acgctgcgcgcgcggatctgg acgctgcgcgcggcggcaac 240 ggcgacgcgg tgg
  • tuberculosis 40 atggccaatg tggtagctga aggtgcctac ccttactgtc ggctcactga tcagccgctg 60 agtgtggacg aagtgctagc cgccgtctcg ggccccgaac aaggcggcat tgtcatattt 120 gtgggaaacg tgcgtgacca caatgccggg catgatgtca cgcggttgtt ctacgaggcg 180 tatccgccga tggtgattcg gacattgatg tcgatcatcg gacggtgtga agacaaggcc 240 gagggtgtcc gcgttgctgt caccgg accggtgaat tgcaaatcggggggtg
  • tuberculosis 41 atgagtccgt ctccatcggc cctgctcgcc gaccacccgg accgcattcg ttggaacgcg 60 aaatacgagt gcgctgaccc cacggaggcg gtatttgcgc ccatatcctg gctcggcgac 120 gtgctgcagt tcggggtgcc agaagggccg gttctggaac tggcgtgcgg tcggtcggcggc 180 accgcgctgg ggctagccgc ggcgggccgc tgcgtgactg cgatcgacgttccgatacc 240 gcgttggttc agctcgagctcgacc 240 gcgttgg
  • tuberculosis 48 gtgaagcgag cgctcatcac cggaatcacc ggccaggacg gctcgtatct cgccgaactg 60 ctgctggcca aggggtatga ggttcacggg ctcatccggc gcgcttcgac gttcaacacc 120 tcgcggatcg atcacctcta cgtcgacccg caccaaccgg gcgcgcggct gttctgcac 180 tatggtgacc tgatcgacgg aacccggttg gtgaccctgc tgagcaccat cgaacccgacaccat cgaacccgac 240 gaggtgtaca acctggcggc gcagttcgacgacgacg
  • tuberculosis 49 atgaacgcgc acacctcggt cggcccgctt gaccgcgcgg cccgggtcta catcgccggg 60 catcgcggcc tggtcgggtc cgcgctgcta cgcacgtttg cgggcgcggg gttcaccaac 120 ctgctggtgc ggtcacgcgcgc cgagcttgat ctgacggatc gggccgcgac gttcgacttc 180 gttctcgagt cgaggccgca ggtcgtcatc gacgcggcgg ccgggtcgg cggcatcctg 240 gccaacgaca cctacccggc cgatttcctg t
  • tuberculosis 58 atgtcacgtc gagagtttt gacaaagctc actggcgcag gcgcagcggc attcctgatg 60 gactgggctg caccggtgat tgaaaggcc tacggcgccg ggccttgtcc cggacatttg 120 accgacatcg agcatatcgt gttgctgatg caggagaacc ggtcattcga ccactatttc 180 ggaacgcttt ccagcaccaa tgggttcaac gccgcgtcgc cggcattcca acaaatgggt 240 tggaacccca tgacgcaggc gttggacccc gcggggtca ccattccgttggac 300 accggaacccca tgac
  • tuberculosis 66 atgatccgat tggtccgtca ttcgatcgcc ctggtggccg ccggccttgc cgccgcattg 60 tcggggtgcg attcccacaa ctcgggatcg ctcggtgccg atccgcggca ggtgaccgtg 120 ttcggatccg ggcaagtgca gggtgtgccg gacacgttga tcgctgacgt cggcattcag 180 gtcaccgcgg ccgacgtcac cagcgcgatg aaccagacca atgatcgcca gcaagcggtg 240 atcgatgcac tggtgggtgc cggctggac cgcaaggaca tccgcaccac cagggtcacc
  • tuberculosis 72 atgggcgcac ctaccgaacg gttagttgat accaacggcg tgcgactgcg agtggtcgag 60 gccggtgagc ccggcgcacc cgtggtgata ctggcccacg gctttcccga actggcctat 120 tcatggagac accagattcc tgcgcttgcc gacgccggct accacgtgtt ggctccgat 180 cagcgcggtt acggcggatc gtctcgccca gaggcgatcg aggcctacga cattcaccgg 240 ttgaccgctg acctagtggg cctactagat gatgtcggtg ccgagcgggtctgggggtg
  • tuberculosis 81 atgatcatcg ttgtcgggat cggcgccgac ggcatgaccg gtctctccga gcattctcgc 60 tccgaattgc gcagggccac agtaatttac ggctcgaaac ggcaacttgc cctgctcgac 120 gataccgtca ccgccgagcg ctgggagtgg ccgacgccga tgctgccgc ggtgcaaggc 180 ctgtcaccgg atggggctga cctacacgtgtg gttgccagcg gcgacccgtt gttgcatggt 240 atcggctcca ccctgatccg gctgttcggc cacga
  • tuberculosis 112 atgagacgcg ggccgggtcg acaccgtttg cacgacgcgt ggtggacgct gatcctgttc 60 gcggtgatcg gggtggctgt cctggtgacg gcggtgtcct tcacgggcag cttgcggtcg 120 actgtgccgg tgacgctggc ggccgaccgc tccgggctgg tgatggactc cggcgccaag 180 gtcatgatgc gcggtgtgca ggtcggccgg gtcccaga tcggtcggat cgagtgggcc 240 cagaacgggg cgaccccgacc agatccggtg cacggagatcgaccccgacc a
  • tuberculosis 116 gtgaggatcg gcctgaccct ggtgatgatc gcggccgtgg tagcgagctg cggctggcgc 60 gggctgaatt cgctgccgct gcccggcacg cagggcaacg gcccggggtc cttcgcggtc 120 caggcgcagc tgccggatgt caacaacatc cagccgaact cgcgggtgcg ggttgccgac 180 gtgacggtcg gccacgtcac gaaaatcgag cgccaaggct ggcacgcgtt ggtgaccatg 240 cggctggatg gcgacgtcga ttgcccgcc aacgcaac
  • tuberculosis misc_feature (1)...(60) n A,T,C or G 130 antagtaatg tgcgagctga gcgatgtcgc cgctcccaaa aattaccaat ggttnggtca 60 131 60 DNA M. tuberculosis 131 agtagtaatg tgcgagctga gcgatgtcgc cgctcccaaa aattaccaat ggtttggtca 60 132 60 DNA M.
  • tuberculosis misc_feature (1)...(49) n A,T,C or G 136 gtggcctaca acggngctct ccgnggcgcg ggcgtaccgg atatcttag 49 137 49 DNA M. tuberculosis 137 gcggcctaca acggcgctct ccgcggcgcg ggcgtaccgg atatcttag 49

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Door And Window Frames Mounted To Openings (AREA)
  • Multicomponent Fibers (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Abstract

Specific genetic deletion are identified in mycobacteria isolates, including variations in the M. tuberculosis genome sequence between isolates, and numerous deletion present in BCG as compared to M. tb. These deletions are used as markers to distinguish between pathogenic and avirulent strains, and as a marker for particular M. tb isolates. Deletions specific to vaccine strains of BCG are useful in determining whether a positive tuberculin skin test is indicative of actual tuberculosis infection. The deleted sequences may be re-introduced into BCG to improve the efficacy of vaccination. Alternatively, the genetic sequence that corresponds to the deletion(s) are deleted from M. bovis or M. tuberculosis to attenuate the pathogenic bacteria.

Description

  • Tuberculosis is an ancient human scourge that continues to be an important public health problem worldwide. It is an ongoing epidemic of staggering proportions. Approximately one in every three people in the world is infected with [0001] Mycobacterium tuberculosis, and has a 10% lifetime risk of progressing from infection to clinical disease. Although tuberculosis can be treated, an estimated 2.9 million people died from the disease last year.
  • There are significant problems with a reliance on drug treatment to control active [0002] M. tuberculosis infections. Most of the regions having high infection rates are less developed countries, which suffer from a lack of easily accessible health services, diagnostic facilities and suitable antibiotics against M. tuberculosis. Even where these are available, patient compliance is often poor because of the lengthy regimen required for complete treatment, and multidrug-resistant strains are increasingly common.
  • Prevention of infection would circumvent the problems of treatment, and so vaccination against tuberculosis is widely performed in endemic regions. Around 100 million people a year are vaccinated with live bacillus Calmette-Guerin (BCG) vaccine. BCG has the great advantage of being inexpensive and easily administered under less than optimal circumstances, with few adverse reactions. Unfortunately, the vaccine is widely variable in its efficacy, providing anywhere from 0 to 80% protection against infection with [0003] M. tuberculosis.
  • BCG has an interesting history. It is an attenuated strain of [0004] M. bovis, a very close relative of M. tuberculosis. The M. bovis strain that became BCG was isolated from a cow in the late 1800's by a bacteriologist named Nocard, hence it was called Nocard's bacillus. The attenuation of Nocard's bacillus took place from 1908 to 1921, over the course of 230 in vitro passages. Thereafter, it was widely grown throughout the world, resulting in additional hundreds and sometime thousands of in vitro passages. Throughout its many years in the laboratory, there has been selection for cross-reaction with the tuberculin skin test, and for decreased side effects. The net results have been a substantially weakened pathogen, which may be ineffective in raising an adequate immune response.
  • New antituberculosis vaccines are urgently needed for the general population in endemic regions, for HIV-infected individuals, as well as health care professionals likely to be exposed to tubercle bacilli. Recombinant DNA vaccines bearing protective genes from virulent [0005] M. tuberculosis are being developed using shuttle plasmids to transfer genetic material from one mycobacterial species to another, for example see U.S. Pat. No. 5,776,465. Tuberculosis vaccine development should be given a high priority in current medical research goals.
  • RELEVANT LITERATURE
  • Mahairas et al. (1996) [0006] J Bacteriol 178(5):1274-1282 provides a molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. Subtractive genomic hybridization was used to identify genetic differences between virulent M. bovis and M. tuberculosis and avirulent BCG. U.S. Pat. No. 5,700,683 is directed to these genetic differences.
  • Cole et al. (1998) [0007] Nature 393:537-544 have described the complete genome of M. tuberculosis. To obtain the contiguous genome sequence, a combined approach was used that involved the systematic sequence analysis of selected large-insert clones as well as random small-insert clones from a whole-genome shotgun library. This culminated in a composite sequence of 4,411,529 base pairs, with a G+C content of 65.6%. 3,924 open reading frames were identified in the genome, accounting for ˜91% of the potential coding capacity.
  • [0008] Mycobacterium tuberculosis (M. tb.) genomic sequence is available at several internet sites.
  • SUMMARY OF THE INVENTION
  • Genetic markers are provided that distinguish between strains of the [0009] Mycobacterium tuberculosis complex, particularly between avirulent and virulent strains. Strains of interest include M. bovis, M. bovis BCG strains, M. tuberculosis (M. tb.) isolates, and bacteriophages that infect mycobacteria. The genetic markers are used for assays, e.g. immunoassays, that distinguish between strains, such as to differentiate between BCG immunization and M. tb. infection. The protein products may be produced and used as an immunogen, in drug screening, etc. The markers are useful in constructing genetically modified M. tb or M. bovis cells having improved vaccine characteristics.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Specific genetic deletions are identified that serve as markers to distinguish between avirulent and virulent mycobacteria strains, including [0010] M. bovis, M. bovis BCG strains, M. tuberculosis (M. tb.) isolates, and bacteriophages that infect mycobacteria. These deletions are used as genetic markers to distinguish between the different mycobacteria. The deletions may be introduced into M. tb. or M. bovis by recombinant methods in order to render a pathogenic strain avirulent. Alternatively, the deleted genes are identified in the M. tb. genome sequence, and are then reintroduced by recombinant methods into BCG or other vaccine strains, in order to improve the efficacy of vaccination.
  • The deletions of the invention are identified by comparative DNA hybridizations from genomic sequence of mycobacterium to a DNA microarray comprising representative sequences of the [0011] M. tb. coding sequences. The deletions are then mapped to the known M. tb. genome sequence in order to specifically identify the deleted gene(s), and to characterize nucleotide sequence of the deleted region.
  • Nucleic acids comprising the provided deletions and junctions are used in a variety of applications. Hybridization probes may be obtained from the known [0012] M. tb. sequence which correspond to the deleted sequences. Such probes are useful in distinguishing between mycobacteria. For example, there is a 10% probability that an M. tb. infected person will progress to clinical disease, but that probability may vary depending of the particular infecting strain. Analysis for the presence or absence of the deletions provided below as “M. tb variable” is used to distinguish between different M. tb strains. The deletions are also useful in identifying whether a patient that is positive for a tuberculin skin test has been infected with M. tb or with BCG.
  • In another embodiment of the invention, mycobacteria are genetically altered to delete sequences identified herein as absent in attenuated strains, but present in pathogenic strains, e.g. deletions found in BCG but present in [0013] M. tb H37Rv. Such genetically engineered strains may provide superior vaccines to the present BCG isolates in use. Alternatively, BCG strains may be “reconstructed” to more closely resemble wild-type M. tb by inserting certain of the deleted sequences back into the genome. Since the protein products of the deleted sequences are expressed in virulent mycobacterial species, the encoded proteins are useful as immunogens for vaccination.
  • The attenuation (loss of virulence) in BCG is attributed to the loss of genetic material at a number of places throughout the genome. The selection over time for fewer side-effects resulting from BCG immunization, while retaining cross-reactivity with the tuberculin skin test, has provided an excellent screen for those sequences that engender side effects. The identification of deletions that vary between BCG isolates identifies such sequences, which may be used in drug screening and biological analysis for the role of the deleted genes in causing untoward side effects and pathogenicity. [0014]
  • Identification of [0015] M. Tuberculosis Complex Deletion Markers
  • The present invention provides nucleic acid sequences that are markers for specific mycobacteria, including [0016] M. tb., M. bovis, BCG and bacteriophage. The deletions are listed in Table 1. The absence or presence of these marker sequences is characteristic of the indicated isolate, or strain. As such, they provide a unique characteristic for the identification of the indicated mycobacteria. The deletions are identified by their M. tb. open reading frame (“Rv” nomenclature), which corresponds to a known genetic sequence, and may be accessed as previously cited. The junctions of the deletions are provided by the designation of position in the publicly available M. tb. sequence.
    TABLE I
    SEQ ID rd rv_num orf_id breakpoint
    SEQ ID NO:1 RD01 Rv3871 MTV027.06 ″H37Rv, segment 160: 7534, 16989″
    SEQ ID NO: 2 RD01 Rv3872 MTV027.07 ″H37Rv, segment 160: 7534, 16989″
    SEQ ID NO: 3 RD01 Rv3873 MTV027.08 ″H37Rv, segment 160: 7534, 16989″
    SEQ ID NO: 4 RD01 Rv3874 MTV027.09 ″H37Rv, segment 160: 7534. 16989″
    SEQ ID NO: 5 RD01 Rv3875 M1V027.10 ″H37Rv, segment 160: 7534, 16989″
    SEQ ID NO: 6 RD01 Rv3876 MTV027.11 ″H37Rv, segment 160: 7534, 16989″
    SEQ ID NO: 7 RD01 Rv3877 MTV027.12 ″H37Rv, segment 160: 7534, 16989″
    SEQ ID NO: 8 RD01 Rv3878 M1V027.13 ″H37Rv, segment 160: 7534, 16989″
    SEQ ID NO: 9 RD01 Rv3879c MTV027.14c ″H37Rv, segment 160: 7534, 16989″
    SEQ ID NO: 10 RD02 Rv1988 MTCY39.31c ″H37Rv segment 88: 14211, segment 89: 8598″
    SEQ ID NO: 11 RD02 Rv1987 MTCY39.32c ″H37Rv segment 88: 14211, segment 89: 8598″
    SEQ ID NO: 12 RD02 Rv1986 MTCY39.33c ″H37Rv segment 88: 14211, segment 89: 8598″
    SEQ ID NO: 13 RD02 Rv1985c MTCY39.34 ″H37Rv segment 88: 14211, segment 89: 8598″
    SEQ ID NO: 14 RD02 Rv1984c MTCY39.35 ″H37Rv segment 88: 14211, segment 89: 8598″
    SEQ ID NO: 15 RD02 Rv1983 MTCY39.36c ″H37Rv segment 88: 14211, segment 89: 8598″
    SEQ ID NO: 16 RD02 Rv1982c MTCY39.37 ″H37Rv segment 88: 14211, segment 89: 8598″
    SEQ ID NO: 17 RD02 Rv1981c MTCY39.38 ″H37Rv segment 88: 14211, segment 89: 8598″
    SEQ ID NO: 18 RD02 Rv1980c MTCY39.39 ″H37Rv segment 88: 14211, segment 89: 8598″
    SEQ ID NO: 19 RD02 Rv1979c MTCY39.40 ″H37Rv segment 88: 14211, segment 89: 8598″
    SEQ ID NO: 20 RD02 Rv1978 MTV051.16 ″H37Rv segment 88: 14211, segment 89: 8598″
    SEQ ID NO: 21 RD03 Rv1586c MTCY336.18 ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 22 RD03 Rv1585c MTCY336.19 ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 23 RD03 Rv1584c MTCY336.20 ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 24 RD03 Rv1583c MTCY336.21 ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 25 RD03 Rv1582c MTCY336.22 ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 26 RD03 Rv1581c MTCY336.23 ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 27 RD03 Rv1580c MTCY336.24 ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 28 RD03 Rv1579c MTCY336.25 ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 29 RD03 Rv1578c MTCY336.26 ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 30 RD03 Rv1577c MTCY336.27 ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 31 RD03 Rv1576c MTCY336.28 ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 32 RD03 Rv1575 MTCY336.29c ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 33 RD03 Rv1574 MTCY336.30c ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 34 RD03 Rv1573 MTCY336.31c ″H37Rv, segment 70: 7677, 16923″
    SEQ ID NO: 35 RD04 Rv0221 MTCY08D5.16 ″H37Rv, segment 12: 17432, 19335″
    SEQ ID NO: 36 RD04 Rv0222 MTCY08D5.17 ″H37Rv, segment 12: 17432, 19335″
    SEQ ID NO: 37 RD04 Rv0223c MTCY08D5.18 ″H37Rv, segment 12: 17432, 19335″
    SEQ ID NO: 38 RD05 Rv3117 MTCY164.27 ″H37Rv, segment 135: 27437,30212″
    SEQ ID NO: 39 RD05 Rv3118 MTCY164.28 ″H37Rv, segment 135: 27437,30212″
    SEQ ID NO: 40 RD05 Rv3119 MTCY164.29 ″H37Rv, segment 135: 27437,30212″
    SEQ ID NO: 41 RD05 Rv3120 MTCY164.30 ″H37Rv, segment 135: 27437,30212″
    SEQ ID NO: 42 RD05 Rv3121 MTCY164.31 ″H37Rv, segment 135: 27437,30212″
    SEQ ID NO: 43 RD06 Rv1506c MTCY277.28c ″H37Rv, segment 65: 23614, 36347″
    SEQ ID NO: 44 RD06 Rv1507c MTCY277.29c ″H37Rv, segment 65: 23614, 36347″
    SEQ ID NO: 45 RD06 Rv1508c MTCY277.30c ″H37Rv, segment 65: 23614, 36347″
    SEQ ID NO: 46 RD06 Rv1509 MTCY277.31 ″H37Rv, segment 65: 23614, 36347″
    SEQ ID NO: 47 RD06 Rv1510 MTCY277.32 ″H37Rv, segment 65: 23614, 36347″
    SEQ ID NO: 48 RD06 Rv1511 MTCY277.33 ″H37Rv, segment 65: 23614, 36347″
    SEQ ID NO: 49 RD06 Rv1512 MTCY277.34 ″H37Rv, segment 65: 23614, 36347″
    SEQ ID NO: 50 RD06 Rv1513 MTCY277.35 ″H37Rv, segment 65: 23614, 36347″
    SEQ ID NO: 51 RD06 Rv1514c MTCY277.36c ″H37Rv, se ment 65: 23614, 36347″
    SEQ ID NO: 52 RD06 Rv1515c MTCY277.37c ″H37Rv, segment 65: 23614, 36347″
    SEQ ID NO: 53 RD06 Rv1516c MTCY277.38c ″H37Rv, segment 65: 23614, 36347″
    SEQ ID NO: 54 RD07 Rv2346c MTCY98.15c ″H37Rv, segment 103: 17622, 26584″
    SEQ ID NO: 55 RD07 Rv2347c MTCY98.16c ″H37Rv, segment 103: 17622, 26584″
    SEQ ID NO: 56 RD07 Rv2348c MTCY98.17c ″H37Rv, segment 103: 17622, 26584″
    SEQ ID NO: 57 RD07 Rv2349c MTCY98.18c ″H37Rv, segment 103: 17622, 26584″
    SEQ ID NO: 58 RD07 Rv2350c MTCY98.19c ″H37Rv, segment 103: 17622, 26584″
    SEQ ID NO: 59 RD07 Rv2351c MTCY98.20c ″H37Rv, segment 103: 17622, 26584″
    SEQ ID NO: 60 RD07 Rv2352c MTCY98.21c ″H37Rv, segment 103: 17622, 26584″
    SEQ ID NO: 61 RD07 Rv2353c MTCY98.22c ″H37Rv, segment 103: 17622, 26584″
    SEQ ID NO: 62 RD08 Rv0309 MTCY63.14 ″H37Rv, segment 16: 17018, 20446″
    SEQ ID NO: 63 RD08 Rv0310c MTCY63.15c ″H37Rv, segment 16: 17018, 20446″
    SEQ ID NO: 64 RD08 Rv0311 MTCY63.16 ″H37Rv, segment 16: 17018, 20446″
    SEQ ID NO: 65 RD08 Rv0312 MTCY63.17 ″H37Rv, segment 16: 17018, 20446″
    SEQ ID NO: 66 RD09 Rv3623 MTCY15C10.29c ″H37Rv, segment 153: 21131, segment 154: 2832″
    SEQ ID NO: 67 RD09 Rv3622c MTCY15C10.30 ″H37Rv, segment 153: 21131, segment 154: 2832″
    SEQ ID NO: 68 RD09 Rv3621c MTCY15C10.31 ″H37Rv, segment 153: 21131, segment 154: 2832″
    SEQ ID NO: 69 RD09 Rv3620c MTCY15C10.32 ″H37Rv, segment 153: 21131, segment 154: 2832″
    SEQ ID NO: 70 RD09 Rv3619c MTCY15C10.33 ″H37Rv, segment 153: 21131, segment 154: 2832″
    SEQ ID NO: 71 RD09 Rv3618 MTCY15C10.34c ″H37Rv, segment 153: 21131, segment 154: 2832″
    SEQ ID NO: 72 RD09 Rv3617 MTCY15C10.35c ″H37Rv, segment 153: 21131, segment 154: 2832″
    SEQ ID NO: 73 RD10 Rv1257c MTCY50.25 ″H37Rv segment 55: 3689, 6696″
    SEQ ID NO: 74 RD10 Rv1256c MTCY50.26 ″H37Rv segment 55: 3689, 6696″
    SEQ ID NO: 75 RD10 Rv1255c MTCY50.27 ″H37Rv segment 55: 3689, 6696″
    SEQ ID NO: 76 RD11 Rv3429 MTCY77.01 ″H37Rv, segment 145: 30303 to segment 146: 1475″
    SEQ ID NO: 77 RD11 Rv3428c MTCY78.01 ″H37Rv, segment 145: 30303 to segment 146: 1475″
    SEQ ID NO: 78 RD11 Rv3427c MTCY78.02 ″H37Rv, segment 145: 30303 to segment 146: 1475″
    SEQ ID NO: 79 RD11 Rv3426 MTCY78.03c ″H37Rv, segment 145: 30303 to segment 146: 1475″
    SEQ ID NO: 80 RD11 Rv3425 MTCY78.04c ″H37Rv, segment 145: 30303 to segment 146: 1475″
    SEQ ID NO: 81 RD12 Rv2072c MTCY49.11c ″H37Rv segment 93: 9301, 11331″
    SEQ ID NO: 82 RD12 Rv2073c MTCY49.12c ″H37Rv segment 93: 9301, 11331″
    SEQ ID NO: 83 RD12 Rv2074 MTCY49.13 ″H37Rv segment 93: 9301, 11331″
    SEQ ID NO: 84 RD12 Rv2075c MTCY49.14c ″H37Rv segment 93: 9301, 11331″
    SEQ ID NO: 85 RD13bis Rv2645 MTCY441.15 ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 86 RD13bis Rv2646 MTCY441.16 ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 87 RD13bis Rv2647 MTCY441.17 ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 88 RD13bis Rv2648 MTCY441.17A ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 89 RD13bis Rv2649 MTCY441.18 ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 90 RD13bis Rv2650c MTCY441.19 ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 91 RD13bis Rv2651c MTCY441.20c ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 92 RD13bis Rv2652c MTCY441.21c ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 93 RD13bis Rv2653c MTCY441.22c ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 94 RD13bis Rv2654c MTCY441.23c ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 95 RD13bis Rv2655c MTCY441.24c ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 96 RD13bis Rv2656c MTCY441.25c ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 97 RD13bis Rv2657c MTCY441.26c ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 98 RD13bis Rv2658c MTCY441.27c ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 99 RD13bis Rv2659c MTCY441.28c ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 100 RD13bis Rv2660c MTCY441.29c ″H37Rv, segment 118: 12475, 23455″
    SEQ ID NO: 101 RD14 Rv1766 MTCY28.32 ″H37Rv segment 79: 30573, 39642″
    SEQ ID NO: 102 RD14 Rv1767 MTCY28.33 ″H37Rv segment 79: 30573, 39642″
    SEQ ID NO: 103 RD14 Rv1768 MTCY28.34 ″H37Rv segment 79: 30573, 39642″
    SEQ ID NO: 104 RD14 Rv1769 MTCY28.35 ″H37Rv segment 79: 30573, 39642″
    SEQ ID NO: 105 RD14 Rv1770 MTCY28.36 ″H37Rv segment 79: 30573, 39642″
    SEQ ID NO: 106 RD14 Rv1771 MTCY28.37 ″H37Rv segment 79: 30573, 39642″
    SEQ ID NO: 107 RD14 Rv1772 MTCY28.38 ″H37Rv segment 79: 30573, 39642″
    SEQ ID NO: 108 RD14 Rv1773c MTCY28.39 ″H37Rv segment 79: 30573, 39642″
    SEQ ID NO: 109 RD15 Rv1963c MTV051.01c ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 110 RD15 Rv1964 MTV051.02 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 111 RD15 Rv1965 MTV051.03 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 112 RD15 Rv1966 MTV051.04 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 113 RD15 Rv1967 MTV051.05 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 114 RD15 Rv1968 MTV051.06 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 115 RD15 Rv1969 MTV051.07 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 116 RD15 Rv1970 MTV051.08 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 117 RD15 Rv1971 MTV051.09 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 118 RD15 Rv1972 MTV051.10 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 119 RD15 Rv1973 MTV051.11 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 120 RD15 Rv1974 MTV051.12 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 121 RD15 Rv1975 MTV051.13 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 122 RD15 Rv1976c MTV051.14 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 123 RD15 Rv1977 MTV051.15 ″H37Rv segment 88: 1153, 13873″
    SEQ ID NO: 124 RD16 Rv3405c MTCY78.23 ″H37Rv, segment 145: 5012, 12621″
    SEQ ID NO: 125 RD16 Rv3404c MTCY78.24 ″H37Rv, segment 145: 5012, 12621″
    SEQ ID NO: 126 RD16 Rv3403c MTCY78.25 ″H37Rv, segment 145: 5012, 12621″
    SEQ ID NO: 127 RD16 Rv3402c MTCY78.26 ″H37Rv, segment 145: 5012, 12621″
    SEQ ID NO: 128 RD16 Rv3401 MTCY78.27c ″H37Rv, segment 145: 5012, 12621″
    SEQ ID NO: 129 RD16 Rv3400 MTCY78.28c ″H37Rv, segment 145: 5012, 12621″
  • The “Rv” column indicates public [0017] M. tb sequence, open reading frame. The BCG strains were obtained as follows:
    TABLE 2
    Strains employed in study of BCG phylogeny
    Name of strain Synonym Source Descriptors
    BCG-Russia Moscow ATCC #35740
    BCG-Moreau Brazil ATCC #35736
    BCG-Moreau Brazil IAF dated 1958
    BCG-Moreau Brazil IAF dated 1961
    BCG-Japan Tokyo ATCC #35737
    BCG-Japan Tokyo IAF dated 1961
    BCG-Japan Tokyo JATA vaccine strain
    BCG-Japan Tokyo JATA bladder cancer strain
    BCG-Japan Tokyo JATA clinical isolate-adenitis
    BCG-Sweden Gothenburg ATCC #35732
    BCG-Sweden Gothenburg IAF dated 1958
    BCG-Sweden Gothenburg SSI production lot, Copenhagen
    BCG-Phipps Philadelphia ATCC #35744
    BCG-Denmark Danish 1331 ATCC #35733
    BCG-Copenhagen ATCC #27290
    BCG-Copenhagen IAF dated 1961
    BCG-Tice Chicago vaccine dated 1973
    BCG-Tice Chicago ATCC #35743
    BCG-Frappier Montreal IAF primary lot, 1973
    BCG-Frappier, Montreal-R IAF primary lot, 1973
    INH-resistant
    BCG-Frappier Montreal IAF passage 946
    BCG-Connaught Toronto CL bladder cancer treatment
    BCG-Birkhaug ATCC #35731
    BCG-Prague Czech SSI lyophilized 1968
    BCG-Glaxo vaccine dated 1973
    BCG-Glaxo ATCC #35741
    BCG-Pasteur IAF passage 888
    BCG-Pasteur IAF dated 1961
    BCG-Pasteur IP 1173P2-B
    BCG-Pasteur IP 1173P2-C
    BCG-Pasteur IP clinical isolate if #1
    BCG-Pasteur IP clinical isolate #2
    BCG-Pasteur ATCC #35734
  • In performing the initial screening method, genomic DNA is isolated from two mycobacteria microbial cell cultures. The two DNA preparations are labeled, where a different label is used for the first and second microbial cultures, typically using nucleotides conjugated to a fluorochrome that emits at a wavelength substantially different from that of the fluorochrome tagged nucleotides used to label the selected probe. The strains used were the reference strain of [0018] Mycobacterium tuberculosis (H37Rv), other M. tb. laboratory strains, such as H37Ra, the O strain, M. tb. clinical isolates, the reference strain of Mycobacterium bovis, and different strains of Mycobacterium bovis BCG.
  • The two DNA preparations are mixed, and competitive hybridization is carried out to a microarray representing all of the open reading frames in the genome of the test microbe, usually H37Rv. Hybridization of the labeled sequences is accomplished according to methods well known in the art. In a preferred embodiment, the two probes are combined to provide for a competitive hybridization to a single microarray. Hybridization can be carried out under conditions varying in stringency, preferably under conditions of high stringency (e.g., 4×SSC, 10% SDS, 65° C.) to allow for hybridization of complementary sequences having extensive homology (e.g., having at least 85% sequence identity, preferably at least 90% sequence identity, more preferably having at least 95% sequence identity). Where the target sequences are native sequences the hybridization is preferably carried out under conditions that allow hybridization of only highly homologous sequences (e.g., at least 95% to 100% sequence identity). [0019]
  • Two color fluorescent hybridization is utilized to assay the representation of the unselected library in relation to the selected library (i.e., to detect hybridization of the unselected probe relative to the selected probe). From the ratio of one color to the other, for any particular array element, the relative abundance of that sequence in the unselected and selected libraries can be determined. In addition, comparison of the hybridization of the selected and unselected probes provides an internal control for the assay. An absence of signal from the reference strain, as compared to H37Rv, is indicative that the open reading frame is deleted in the test strain. The deletion may be further mapped by Southern blot analysis, and by sequencing the regions flanking the deletion. [0020]
  • Microarrays can be scanned to detect hybridization of the selected and the unselected sequences using a custom built scanning laser microscope as described in Shalon et al., [0021] Genome Res. 6:639 (1996). A separate scan, using the appropriate excitation line, is performed for each of the two fluorophores used. The digital images generated from the scan are then combined for subsequent analysis. For any particular array element, the ratio of the fluorescent signal from the amplified selected cell population DNA is compared to the fluorescent signal from the unselected cell population DNA, and the relative abundance of that sequence in the selected and unselected library determined.
  • Nucleic Acid Compositions
  • As used herein, the term “deletion marker”, or “marker” is used to refer to those sequences of [0022] M. tuberculosis complex genomes that are deleted in one or more of the strains or species, as indicated in Table 1. The bacteria of the M. tuberculosis complex include M. tuberculosis, M. bovis, and BCG, inclusive of varied isolates and strains within each species. Nucleic acids of interest include all or a portion of the deleted region, particularly complete open reading frames, hybridization primers, promoter regions, etc.
  • The term “junction” or “deletion junction” is used to refer to nucleic acids that comprise the regions on both the 3′ and the 5′ sequence immediately flanking the deletion. Such junction sequences are preferably used as short primers, e.g. from about 15 nt to about 30 nt, that specifically hybridize to the junction, but not to a nucleic acid comprising the undeleted genomic sequence. For example, the deletion found in [0023] M. bovis, at Rv0221, corresponds to the nucleotide sequence of the M. tuberculosis H37Rv genome, segment 12: 17432,19335. The junction comprises the regions upstream of position 17342, and downstream of 19335, e.g. a nucleic acid of 20 nucleotides comprising the sequence from H37Rv 17332-17342 joined to 19335-19345.
  • Typically, such nucleic acids comprising a junction will include at least about 7 nucleotides from each flanking region, i.e. from the 3′ and from the 5′ sequences adjacent to the deletion, and may be about 10 nucleotides from each flanking region, up to about 15 nucleotides, or more. Amplification primers that hybridize to the junction sequence, to the deleted sequence, and to the flanking non-deleted regions have a variety of uses, as detailed below. [0024]
  • The nucleic acid compositions of the subject invention encode all or a part of the deletion markers. Fragments may be obtained of the DNA sequence by chemically synthesizing oligonucleotides in accordance with conventional methods, by restriction enzyme digestion, by PCR amplification, etc. For the most part, DNA fragments will be at least about 25 nt in length, usually at least about 30 nt, more usually at least about 50 nt. For use in amplification reactions, such as PCR, a pair of primers will be used. The exact composition of the primer sequences is not critical to the invention, but for most applications the primers will hybridize to the subject sequence under stringent conditions, as known in the art. It is preferable to chose a pair of primers that will generate an amplification product of at least about 50 nt, preferably at least about 100 nt. Algorithms for the selection of primer sequences are generally known, and are available in commercial software packages. Amplification primers hybridize to complementary strands of DNA, and will prime towards each other. [0025]
  • Usually, the DNA will be obtained substantially free of other nucleic acid sequences that do not include a deletion marker sequence or fragment thereof, generally being at least about 50%, usually at least about 90% pure and are typically “recombinant”, i.e. flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome. [0026]
  • For screening purposes, hybridization probes of one or more of the deletion sequences may be used in separate reactions or spatially separated on a solid phase matrix, or labeled such that they can be distinguished from each other. Assays may utilize nucleic acids that hybridize to one or more of the described deletions. [0027]
  • An array may include all or a subset of the deletion markers listed in Table 1. Usually such an array will include at least 2 different deletion marker sequences, i.e. deletions located at unique positions within the locus, and may include all of the provided deletion markers. Arrays of interest may further comprise other genetic sequences, particularly other sequences of interest for tuberculosis screening. The oligonucleotide sequence on the array will usually be at least about 12 nt in length, may be the length of the provided deletion marker sequences, or may extend into the flanking regions to generate fragments of 100 to 200 nt in length. For examples of arrays, see Ramsay (1998) [0028] Nat. Biotech. 16:40-44; Hacia et al. (1996) Nature Genetics 14:441-447; Lockhart et al. (1996) Nature Biotechnol. 14:1675-1680; and De Risi et al. (1996) Nature Genetics 14:457-460.
  • Nucleic acids may be naturally occurring, e.g. DNA or RNA, or may be synthetic analogs, as known in the art. Such analogs may be preferred for use as probes because of superior stability under assay conditions. Modifications in the native structure, including alterations in the backbone, sugars or heterocyclic bases, have been shown to increase intracellular stability and binding affinity. Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates. Achiral phosphate derivatives include 3′-O′-5′-S-phosphorothioate, 3′-S-5′-O-phosphorothioate, 3′-CH[0029] 2-5′-O-phosphonate and 3′-NH-5′-O-phosphoroamidate. Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage.
  • Sugar modifications are also used to enhance stability and affinity. The α-anomer of deoxyribose may be used, where the base is inverted with respect to the natural b-anomer. The 2′-OH of the ribose sugar may be altered to form 2′-O-methyl or 2′-O-allyl sugars, which provide resistance to degradation without comprising affinity. [0030]
  • Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2′-deoxycytidine and 5-bromo-2′-deoxycytidine for deoxycytidine. 5-propynyl-2′-deoxyuridine and 5-propynyl-2′-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively. [0031]
  • Polypeptide Compositions
  • The specific deletion markers in Table 1 correspond to open reading frames of the [0032] M. tb genome, and therefore encode a polypeptide. The subject markers may be employed for synthesis of a complete protein, or polypeptide fragments thereof, particularly fragments corresponding to functional domains; binding sites; etc.; and including fusions of the subject polypeptides to other proteins or parts thereof. For expression, an expression cassette may be employed, providing for a transcriptional and translational initiation region, which may be inducible or constitutive, where the coding region is operably linked under the transcriptional control of the transcriptional initiation region, and a transcriptional and translational termination region. Various transcriptional initiation regions may be employed that are functional in the expression host.
  • The polypeptides may be expressed in prokaryotes or eukaryotes in accordance with conventional ways, depending upon the purpose for expression. For large scale production of the protein, a unicellular organism, such as [0033] E. coli, B. subtilis, S. cerevisiae, or cells of a higher organism such as vertebrates, particularly mammals, e.g. COS 7 cells, may be used as the expression host cells. Small peptides can also be synthesized in the laboratory.
  • With the availability of the polypeptides in large amounts, by employing an expression host, the polypeptides may be isolated and purified in accordance with conventional ways. A lysate may be prepared of the expression host and the lysate purified using HPLC, exclusion chromatography, gel electrophoresis, affinity chromatography, or other purification technique. The purified polypeptide will generally be at least about 80% pure, preferably at least about 90% pure, and may be up to and including 100% pure. Pure is intended to mean free of other proteins, as well as cellular debris. [0034]
  • The polypeptide is used for the production of antibodies, where short fragments provide for antibodies specific for the particular polypeptide, and larger fragments or the entire protein allow for the production of antibodies over the surface of the polypeptide. Antibodies may be raised to isolated peptides corresponding to particular domains, or to the native protein. [0035]
  • Antibodies are prepared in accordance with conventional ways, where the expressed polypeptide or protein is used as an immunogen, by itself or conjugated to known immunogenic carriers, e.g. KLH, pre-S HBsAg, other viral or eukaryotic proteins, or the like. Various adjuvants may be employed, with a series of injections, as appropriate. For monoclonal antibodies, after one or more booster injections, the spleen is isolated, the lymphocytes immortalized by cell fusion, and then screened for high affinity antibody binding. The immortalized cells, i.e. hybridomas, producing the desired antibodies may then be expanded. For further description, see [0036] Monoclonal Antibodies: A Laboratory Manual, Harlow and Lane eds., Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y., 1988. If desired, the mRNA encoding the heavy and light chains may be isolated and mutagenized by cloning in E. coli, and the heavy and light chains mixed to further enhance the affinity of the antibody. Alternatives to in vivo immunization as a method of raising antibodies include binding to phage “display” libraries, usually in conjunction with in vitro affinity maturation.
  • The antibody may be produced as a single chain, instead of the normal multimeric structure. Single chain antibodies are described in Jost et al. (1994) [0037] J.B.C. 269:26267-73, and others. DNA sequences encoding the variable region of the heavy chain and the variable region of the light chain are ligated to a spacer encoding at least about 4 amino acids of small neutral amino acids, including glycine and/or serine. The protein encoded by this fusion allows assembly of a functional variable region that retains the specificity and affinity of the original antibody.
  • Use of Deletion Markers in Identification of Mycobacteria
  • The deletions provided in Table 1 are useful for the identification of a mycobacterium as (a) variants of [0038] M. tb. (b) isolates of BCG (c) M. bovis strains or (d) carrying the identified mycobacterial bacteriophage, depending on the specific marker that is chosen. Such screening is particularly useful in determining whether a particular infection or isolate is pathogenic. The term mycobacteria may refer to any member of the family Mycobacteriacaeae, including M. tuberculosis, M. avium complex, M. kansasii, M. scrofulaceum, M. bovis and M. leprae.
  • Means of detecting deletions are known in the art. Deletions may be identified through the absence or presence of the sequences in mRNA or genomic DNA, through analysis of junctional regions that flank the deletion, or detection of the gene product, or, particularly relating to the tuberculin skin test, by identification of antibodies that react with the encoded gene product. [0039]
  • While deletions can be easily determined by the absence of hybridization, in many cases it is desirable to have a positive signal, in order to minimize artifactual negative readings. In such cases the deletions may be detected by designing a primer that flanks the junction formed by the deletion. Where the deletion is present, a novel sequence is formed between the flanking regions, which can be detected by hybridization. Preferably such a primer will be sufficiently short that it will only hybridize to the junction, and will fail to form stable hybrids with either of the separate parts of the junction. [0040]
  • Diagnosis is performed by protein, DNA or RNA sequence and/or hybridization analysis of any convenient sample, e.g. cultured mycobacteria, biopsy material, blood sample, etc. Screening may also be based on the functional or antigenic characteristics of the protein. Immunoassays designed to detect the encoded proteins from deleted sequences may be used in screening. [0041]
  • A number of methods are available for analyzing nucleic acids for the presence of a specific sequence. Where large amounts of DNA are available, genomic DNA is used directly. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis. The nucleic acid may be amplified by conventional techniques, such as the polymerase chain reaction (PCR), to provide sufficient amounts for analysis. The use of the polymerase chain reaction is described in Saiki, et al. (1985) [0042] Science 239:487, and a review of current techniques may be found in Sambrook, et al. Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp.14.2-14.33. Amplification may also be used to determine whether a polymorphism is present, by using a primer that is specific for the polymorphism. Alternatively, various methods are known in the art that utilize oligonucleotide ligation, for examples see Riley et al. (1990) N.A.R. 18:2887-2890; and Delahunty et al. (1996) Am. J. Hum. Genet. 58:1239-1246.
  • A detectable label may be included in an amplification reaction. Suitable labels include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2′,7′-dimethoxy-4′,5′-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2′,4′,7′,4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N′,N′-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, e.g. [0043] 32P, 35S, 3H; etc. The label may be a two stage system, where the amplified DNA is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. The label may be conjugated to one or both of the primers. Alternatively, the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.
  • The sample nucleic acid, e.g. amplified or cloned fragment, is analyzed by one of a number of methods known in the art. The nucleic acid may be sequenced by dideoxy or other methods, and the sequence of bases compared to the deleted sequence. Hybridization with the variant sequence may also be used to determine its presence, by Southern blots, dot blots, etc. The hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilized on a solid support, as described in U.S. Pat. No. 5,445,934, or in WO95/35505, may also be used as a means of detecting the presence of variable sequences. Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), mismatch cleavage detection, and heteroduplex analysis in gel matrices are used to detect conformational changes created by DNA sequence variation as alterations in electrophoretic mobility. Alternatively, where a polymorphism creates or destroys a recognition site for a restriction endonuclease (restriction fragment length polymorphism, RFLP), the sample is digested with that endonuclease, and the products size fractionated to determine whether the fragment was digested. Fractionation is performed by gel or capillary electrophoresis, particularly acrylamide or agarose gels. [0044]
  • The hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilized on a solid support, as described in U.S. Pat. No. 5,445,934, or in WO95/35505, may be used as a means of detecting the presence or absence of deleted sequences. In one embodiment of the invention, an array of oligonucleotides is provided, where discrete positions on the array are complementary to at least a portion of [0045] M. tb. genomic DNA, usually comprising at least a portion from the identified open reading frames. Such an array may comprise a series of oligonucleotides, each of which can specifically hybridize to a nucleic acid, e.g. mRNA, cDNA, genomic DNA, etc.
  • Deletions may also be detected by amplification. In an embodiment of the invention, sequences are amplified that include a deletion junction, i.e. where the amplification primers hybridize to a junction sequence. In a nucleic acid sample where the marker sequence is deleted, a junction will be formed, and the primer will hybridize, thereby allowing amplification of a detectable sequence. In a nucleic acid sample where the marker sequence is present, the primer will not hybridize, and no amplification will take place. Alternatively, amplification primers may be chosen such that amplification of the target sequence will only take place where the marker sequence is present. The amplification products may be separated by size using any convenient method, as known in the art, including gel electrophoresis, chromatography, capillary electrophoresis, density gradient fractionation, etc. [0046]
  • In addition to the detection of deletions by the detection of junctions sequences, or detection of the marker sequences themselves, one may determine the presence or absence of the encoded protein product. The specific deletions in Table 1 correspond to open reading frames of the [0047] M. tb genome, and therefore encode polypeptides. Polypeptides are detected by means known in the art, including determining the presence of the specific polypeptide in a sample through biochemical, functional or immunological characterization. The detection of antibodies in patient serum that react with a polypeptide is of particular interest.
  • Immunization with BCG typically leads to a positive response against tuberculin antigens in a skin test. In people who have been immunized, which includes a significant proportion of the world population, it is therefore difficult to determine whether a positive test is the result of an immune reaction to the BCG vaccine, or to an ongoing [0048] M. tb. infection. The subject invention has provided a number of open reading frame sequences that are present in M. tb isolates, but are absent in BCG. As a primary or a secondary screening method, one may test for immunoreactivity of the patient with the polypeptides encoded by such deletion markers. Diagnosis may be performed by a number of methods. The different methods all determine the presence of an immune response to the polypeptide in a patient, where a positive response is indicative of an M. tb infection. The immune response may be determined by determination of antibody binding, or by the presence of a response to intradermal challenge with the polypeptide.
  • In one method, a dose of the deletion marker polypeptide, formulated as a cocktail of proteins or as individual protein species, in a suitable medium is injected subcutaneously into the patient. The dose will usually be at least about 0.05 μg of protein, and usually not more than about 5 μg of protein. A control comprising medium alone, or an unrelated protein will be injected nearby at the same time. The site of injection is examined after a period of time for the presence of a wheal. The wheal at the site of polypeptide injection is compared to that at the site of the control injection, usually by measuring the size of the wheal. The skin test readings may be assessed by a variety of objective grading systems. A positive result for the presence of an allergic condition will show an increased diameter at the site of polypeptide injection as compared to the control, usually at least about 50% increase in size, more usually at least 100% increase in size. [0049]
  • An alternative method for diagnosis depends on the in vitro detection of binding between antibodies in a patient sample and the subject polypeptides, either as a cocktail or as individual protein species, where the presence of specific binding is indicative of an infection. Measuring the concentration of polypeptide specific antibodies in a sample or fraction thereof may be accomplished by a variety of specific assays. In general, the assay will measure the reactivity between a patient sample, usually blood derived, generally in the form of plasma or serum. The patient sample may be used directly, or diluted as appropriate, usually about 1:10 and usually not more than about 1:10,000. Immunoassays may be performed in any physiological buffer, e.g. PBS, normal saline, HBSS, dPBS, etc. [0050]
  • In a preferred embodiment, a conventional sandwich type assay is used. A sandwich assay is performed by first attaching the polypeptide to an insoluble surface or support. The polypeptide may be bound to the surface by any convenient means, depending upon the nature of the surface, either directly or through specific antibodies. The particular manner of binding is not crucial so long as it is compatible with the reagents and overall methods of the invention. They may be bound to the plates covalently or non-covalently, preferably non-covalently. Samples, fractions or aliquots thereof are then added to separately assayable supports (for example, separate wells of a microtiter plate) containing support-bound polypeptide. Preferably, a series of standards, containing known concentrations of antibodies is assayed in parallel with the samples or aliquots thereof to serve as controls. [0051]
  • Immune specific receptors may be labeled to facilitate direct, or indirect quantification of binding. Examples of labels which permit direct measurement of second receptor binding include radiolabels, such as [0052] 3H or 125I, fluorescers, dyes, beads, chemilumninescers, colloidal particles, and the like. Examples of labels which permit indirect measurement of binding include enzymes where the substrate may provide for a colored or fluorescent product. In a preferred embodiment, the second receptors are antibodies labeled with a covalently bound enzyme capable of providing a detectable product signal after addition of suitable substrate. Examples of suitable enzymes for use in conjugates include horseradish peroxidase, alkaline phosphatase, malate dehydrogenase and the like. Where not commercially available, such antibody-enzyme conjugates are readily produced by techniques known to those skilled in the art.
  • In some cases, a competitive assay will be used. In addition to the patient sample, a competitor to the antibody is added to the reaction mix. The competitor and the antibody compete for binding to the polypeptide. Usually, the competitor molecule will be labeled and detected as previously described, where the amount of competitor binding will be proportional to the amount of Immune present. The concentration of competitor molecule will be from about 10 times the maximum anticipated Immune concentration to about equal concentration in order to make the most sensitive and linear range of detection. [0053]
  • Alternatively, antibodies may be used for direct determination of the presence of the deletion marker polypeptide. Antibodies specific for the subject deletion markers as previously described may be used in screening immunoassays. Samples, as used herein, include microbial cultures, biological fluids such as tracheal lavage, blood, etc. Also included in the term are derivatives and fractions of such fluids. Diagnosis may be performed by a number of methods. The different methods all determine the absence or presence of polypeptides encoded by the subject deletion markers. For example, detection may utilize staining of mycobacterial cells or histological sections, performed in accordance with conventional methods. The antibodies of interest are added to the cell sample, and incubated for a period of time sufficient to allow binding to the epitope, usually at least about 10 minutes. The antibody may be labeled with radioisotopes, enzymes, fluorescers, chemiluminescers, or other labels for direct detection. Alternatively, a second stage antibody or reagent is used to amplify the signal. Such reagents are well known in the art. For example, the primary antibody may be conjugated to biotin, with horseradish peroxidase-conjugated avidin added as a second stage reagent. Final detection uses a substrate that undergoes a color change in the presence of the peroxidase. The absence or presence of antibody binding may be determined by various methods, including microscopy, radiography, scintillation counting, etc. [0054]
  • An alternative method for diagnosis depends on the in vitro detection of binding between antibodies and the subject polypeptides in solution, e.g. a cell lysate. Measuring the concentration of binding in a sample or fraction thereof may be accomplished by a variety of specific assays. A conventional sandwich type assay may be used. For example, a sandwich assay may first attach specific antibodies to an insoluble surface or support. The particular manner of binding is not crucial so long as it is compatible with the reagents and overall methods of the invention. They may be bound to the plates covalently or non-covalently, preferably non-covalently. The insoluble supports may be any compositions to which polypeptides can be bound, which is readily separated from soluble material, and which is otherwise compatible with the overall method. The surface of such supports may be solid or porous and of any convenient shape. Examples of suitable insoluble supports to which the receptor is bound include beads, e.g. magnetic beads, membranes and microtiter plates. These are typically made of glass, plastic (e.g. polystyrene), polysaccharides, nylon or nitrocellulose. Microtiter plates are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. [0055]
  • Samples are then added to separately assayable supports (for example, separate wells of a microtiter plate) containing antibodies. Preferably, a series of standards, containing known concentrations of the polypeptides is assayed in parallel with the samples or aliquots thereof to serve as controls. Preferably, each sample and standard will be added to multiple wells so that mean values can be obtained for each. The incubation time should be sufficient for binding, generally, from about 0.1 to 3 hr is sufficient. After incubation, the insoluble support is generally washed of non-bound components. Generally, a dilute non-ionic detergent medium at an appropriate pH, generally 7-8, is used as a wash medium. From one to six washes may be employed, with sufficient volume to thoroughly wash non-specifically bound proteins present in the sample. [0056]
  • After washing, a solution containing a second antibody is applied. The antibody will bind with sufficient specificity such that it can be distinguished from other components present. The second antibodies may be labeled to facilitate direct, or indirect quantification of binding. Examples of labels that permit direct measurement of second receptor binding include radiolabels, such as [0057] 3H or 125I, fluorescers, dyes, beads, chemilumninescers, colloidal particles, and the like. Examples of labels which permit indirect measurement of binding include enzymes where the substrate may provide for a colored or fluorescent product. In a preferred embodiment, the antibodies are labeled with a covalently bound enzyme capable of providing a detectable product signal after addition of suitable substrate. Examples of suitable enzymes for use in conjugates include horseradish peroxidase, alkaline phosphatase, malate dehydrogenase and the like. Where not commercially available, such antibody-enzyme conjugates are readily produced by techniques known to those skilled in the art. The incubation time should be sufficient for the labeled ligand to bind available molecules. Generally, from about 0.1 to 3 hr is sufficient, usually 1 hr sufficing.
  • After the second binding step, the insoluble support is again washed free of non-specifically bound material. The signal produced by the bound conjugate is detected by conventional means. Where an enzyme conjugate is used, an appropriate enzyme substrate is provided so a detectable product is formed. [0058]
  • Other immunoassays are known in the art and may find use as diagnostics. Ouchterlony plates provide a simple determination of antibody binding. Western blots may be performed on protein gels or protein spots on filters, using a detection system specific for the polypeptide, conveniently using a labeling method as described for the sandwich assay. [0059]
  • Recombinant Mycobacterium
  • Mycobacterium, particularly those of the [0060] M. tuberculosis complex, are genetically engineered to contain specific deletions or insertions corresponding to the identified genetic markers. In particular, attenuated BCG strains are modified to introduce deleted genes encoding sequences important in the establishment of effective immunity. Alternatively, M. bovis or M. tuberculosis are modified by homologous recombination to create specific deletions in sequences that determine virulence, i.e. the bacteria are attenuated through recombinant techniques.
  • In order to stably introduce sequences into BCG, the [0061] M. tb open reading frame corresponding to one of the deletions in Table 1 is inserted into a vector that is maintained in M. bovis strains. Preferably, the native 5′ and 3′ flanking sequences are included, in order to provide for suitable regulation of transcription and translation. However, in special circumstances, exogenous promoters and other regulatory regions may be included. Vectors and methods of transfection for BCG are known in the art. For example, U.S. Pat. No. 5,776,465, herein incorporated by reference, describes the introduction of exogenous genes into BCG.
  • In one embodiment of the invention, the complete deleted region is replaced in BCG. The junctions of the deletion are determined as compared to a wild type [0062] M. tb. or M. bovis sequence, for example as set forth in the experimental section. The deleted region is cloned by any convenient method, as known in the art, e.g. PCR amplification of the region, restriction endonuclease digestion, chemical synthesis, etc. Preferably the cloned region will further comprise flanking sequences of a length sufficient to induce homologous recombination, usually at least about 25 nt, more usually at least about 100 nt, or greater. Suitable vectors and methods are known in the art, for an example, see Norman et al. (1995) Mol. Microbiol. 16:755-760.
  • In an alternative embodiment, one or more of the deletions provided in Table 1 are introduced into a strain of [0063] M. tuberculosis or M. bovis. Preferably such a strain is reduced in virulence, e.g. H37Ra, etc. Methods of homologous recombination in order to effect deletions in mycobacteria are known in the art, for example, see Norman et al., supra.; Ganjam et al. (1991) P.N.A.S. 88:5433-5437; and Aldovini et al. (1993) J. Bacteriol. 175:7282-7289. Deletions may comprise an open reading frame identified in Table 1, or may extend to the full deletion, i.e. extending into flanking regions, and may include multiple open reading frames.
  • The ability of the genetically altered mycobacterium to cause disease may be tested in one or more experimental models. For example, [0064] M. tb. is known to infect a variety of animals, and cells in culture. In one assay, mammalian macrophages, preferably human macrophages, are infected. In a comparison of virulent, avirulent and attenuated strains of the M. tuberculosis complex, alveolar or peripheral blood monocytes are infected at a 1:1 ratio (Silver et al. (1998) Infect Immun 66(3):1190-1199; Paul et al. (1996) J Infect Dis 174(1):105-112.) The percentages of cells infected by the strains and the initial numbers of intracellular organisms are equivalent, as were levels of monocyte viability up to 7 days following infection. However, intracellular growth reflects virulence, over a period of one or more weeks. Mycobacterial growth may be evaluated by acid-fast staining, electron microscopy, and colony-forming units (cfu) assays. Monocyte production of tumor necrosis factor alpha may also be monitored as a marker for virulence.
  • Other assays for virulence utilize animal models. The [0065] M. tb. complex bacteria are able to infect a wide variety of animal hosts. One model of particular interest is cavitary tuberculosis produced in rabbits by aerosolized virulent tubercle bacilli (Converse et al. (1996) Infect Immun 64(11):4776-4787). In liquefied caseum, the tubercle bacilli grow extracellularly for the first time since the onset of the disease and can reach such large numbers that mutants with antimicrobial resistance may develop. From a cavity, the bacilli enter the bronchial tree and spread to other parts of the lung and also to other people. Of the commonly used laboratory animals, the rabbit is the only one in which cavitary tuberculosis can be readily produced.
  • Vaccines may be formulated according to methods known in the art. Vaccines of the modified bacteria are administered to a host which may be exposed to virulent tuberculosis. In many countries where tuberculosis is endemic, vaccination may be performed at birth, with additional vaccinations as necessary. The compounds of the present invention are administered at a dosage that provides effective immunity while minimizing any side-effects. It is contemplated that the composition will be obtained and used under the guidance of a physician. [0066]
  • Conventional vaccine strains of BCG may be formulated in a combination vaccine with polypeptides identified in the present invention and produced as previously described, in order to improve the efficacy of the vaccine. [0067]
  • Various methods for administration may be employed. The formulation may be injected intramuscularly, intravascularly, subcutaneously, etc. The dosage will be conventional. The bacteria can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in semi-solid or liquid forms, such as solutions, injections, etc. The following methods and excipients are merely exemplary and are in no way limiting. [0068]
  • The modified bacteria can be formulated into preparations for injections by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives. Unit dosage forms for injection or intravenous administration may comprise the bacteria of the present invention in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier. [0069]
  • The term “unit dosage form,” as used herein, refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of vaccine, calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle. The specifications for the unit dosage forms of the present invention depend on the particular bacteria employed and the effect to be achieved, and the pharmacodynamics associated with each complex in the host. [0070]
  • The pharmaceutically acceptable excipients, such as vehicles, adjuvants, carriers or diluents, are readily available to the public. Moreover, pharmaceutically acceptable auxiliary substances, such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public. [0071]
  • The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the subject invention, and are not intended to limit the scope of what is regarded as the invention. Efforts have been made to ensure accuracy with respect to the numbers used (e.g. amounts, temperature, concentrations, etc.) but some experimental errors and deviations should be allowed for. Unless otherwise indicated, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees centigrade; and pressure is at or near atmospheric.[0072]
  • EXPERIMENTAL
  • Methods: [0073]
  • The technical methods used begin with extraction of whole genomic DNA from bacteria grown in culture. [0074]
  • Day 1 [0075]
  • Inoculate culture medium of choice (LJ/7H9) and incubate at 35° C. until abundant growth. Dispense 500 μl 1×TE into each tube. (If DNA is in liquid medium, no TE needed.) Transfer loopful (sediment) of cells into microcentrifuge tube containing 500 μp of 1*TE. If taking DNA from liquid medium, let cells collect in bottom of flask. Pipette cells (about 1 ml) into tube. Heat 20 min at 800 C to kill cells, centrifuge, resuspend in 50011 of 1*TE. Add 50 μl of 10 mg/ml lysozyme, vortex, incubate overnight at 37° C. [0076]
  • Day 2 [0077]
  • Add 70 μl of 10% SDS and 10 μl proteinase K, vortex and incubate 20 min. at 65° C. Add 100 μl of 5M NaCl. Add 100 μl of CTAB/NaCl solution, prewarmed at 65° C. Vortex until liquid content white (“milky”). Incubate 10 min at 65° C. Outside of hood, prepare new microcentrifuge tubes labeled with culture # on top, and culture #, tube #, date on side. Add 550 μl isopropanol to each and cap. Back in the hood, add 750 μl of chloroform/isoamyl alcohol, vortex for 10 sec. Centrifuge at room temp for 5 min. at 12,000 g. Transfer aqueous supernatant in 180 μl amounts to new tube using pipetter, being careful to leave behind solids and non-aqueous liquid. Place 30 min at −20 C. Spin 15 min at room temp in a microcentrifuge at 12,000 g. Discard supernatant; leave about 20 μl above pellet. Add 1 ml cold 70% ethanol and turn tube a few times upside down. Spin 5 min at room temp in a microcentrifuge. Discard supernatant; leave about 20 μl above the pellet. Spin 1 min in a microcentrifuge and discard cautiously the last 20 μl supernatant just above the pellet using a pipetter (P-20). Be sure that all traces of ethanol are removed. Allow pellet to dry at room temp for 10 min or speed vac 2-3 min. (Place open tubes in speed vac, close lid, start rotor, turn on vacuum. After 3 min. push red button, turn off vacuum, turn off rotor. Check if pellets are dry by flicking tube to see if pellet comes away from side of tube.) Redissolve the pellet in 20-50 μl of ddH2O. Small pellets get 20, regular sized get 30 and very large get 50. DNA can be stored at 4° C. for further use. [0078]
  • DNA array: was made by spotting DNA fragments onto glass microscope slides which were pretreated with poly-L-lysine. Spotting onto the array was accomplished by a robotic arrayer. The DNA was cross-linked to the glass by ultraviolet irradiation, and the free poly-L-lysine groups were blocked by treatment with 0.05% succinic anhydride, 50% 1-methyl-2-pyrrolidinone and 50% borate buffer. [0079]
  • The majority of spots on the array were PCR-derived products, produced by selecting over 9000 primer pairs designed to amplify the predicted open reading frames of the sequences strain H37Rv (ftp.sanger.ac.uk/pub/TB.seq). Some internal standards and negative control spots including plasmid vectors and non-[0080] M. tb. DNA were also on the array.
  • Therefore, with the preparation for an array that contained the whole genome of [0081] Mycobacterium tuberculosis, we compared BCG-Connaught to Mycobacterium tuberculosis, using the array for competitive hybridization. The protocol follows:
  • DNA labeling protocol. Add 4 μg DNA in 20p H[0082] 2O, 2 ml dN10N6 and 36 μl H2O. 2 ml DNA spike for each DNA sample, for total of 60 μl. Boil 3 minutes to denature DNA, then snap cool on ice water bath. Add 1 μl dNTP (5 mM ACG), 10 μl 10 buffer, 4 μl Klenow, 22 μl H2O to each tube. Add 3 μl of Cy3 or Cy5 dUTP, for total of 100 μp. Incubate 3 hours at 37 C. Add 11 μl 3M NaAc, 250 μl 100% EtOH to precipitate, store O/N at −20 C. Centrifuge genomic samples 30 minutes at 13K to pellet precipitate. Discard supernatant, add 70% EtOH, spin 15 minutes, discard sup and speed-vac to dry. This provides DNA for two experiments.
  • DNA hybridization to microarray protocol. Resuspend the labeled DNA in 11 μl dH[0083] 2O (for 2 arrays). Run out 1 μl DNA on a 1.5% agarose gel to document sample to be hybridized. Of the remaining 10 μl of solution, half will be used for this hyb, and half will be left for later date. Take 5 μl of solution Cy3 and add to same amount of Cy5 solution, for total volume 10 μl mixed labeled DNA. Add 1 μl tRNA, 2.75 μl 20×SSC, 0.4 μl SDS, for total volume 14.1%. Place on slide at array site, cover with 22 mm coverslip, put slide glass over and squeeze onto rubber devices, then hybridize 4 hours at 65 C. After 4 hours, remove array slides from devices, leave coverslip on, and dip in slide tray into wash buffer consisting of 1×SSC with 0.05% SDS for about 2 minutes. Cover slip should fall off into bath. After 2 minutes in wash buffer, dip once into a bath with 0.06×SSC, then rinse again in 0.06×SSC in separate bath. Dry slides in centrifuge about 600 rpm. They are now ready for scanning.
  • Fluorescence scanning and data acquisition. Fluorescence scanning was set for 20 microns/pixel and two readings were taken per pixel. Data for channel 1 was set to collect fluorescence from Cy3 with excitation at 520 nm and emission at 550-600 nm. Channel 2 collected signals excited at 647 nm and emitted at 660-705 nm, appropriate for Cy5. No neutral density filters were applied to the signal from either channel, and the photomultiplier tube gain was set to 5. Fine adjustments were then made to the photomultiplier gain so that signals collected from the two spots containing genomic DNA were equivalent. [0084]
  • To analyze the signal from each spot on the array, a 14×14 grid of boxes was applied to the data collected from the array such that signals from within each box were integrated and a value was assigned to the corresponding spot. A background value was obtained for each spot by integrating the signals measured 2 pixels outside the perimeter of the corresponding box. The signal and background values for each spot were imported into a spreadsheet program for further analysis. The background values were subtracted from the signals and a factor of 1.025 was applied to each value in channel 2 to normalize the data with respect to the signals from the genomic DNA spots. [0085]
  • Because the two samples are labeled with different fluorescent dyes, it is possible to determine that a spot of DNA on the array has hybridized to [0086] Mycobacterium tuberculosis (green dye) and not to BCG (red dye), thus demonstrating a likely deletion from the BCG genome.
  • However, because the array now contains spots representing 4000 spots, one may expect up to 100 spots with hybridization two standard deviations above or below the mean. Consequently, we have devised a screening protocol, where we look for mismatched hybridization in two consecutive genes on the genome. Therefore, we are essentially looking only for deletions of multiple genes at this point. [0087]
  • To confirm that a gene or group of genes is deleted, we perform Southern hybridization, employing a separate probe from the DNA on the array. Digestions of different mycobacterium DNAs are run on an agarose gel, and transferred to membranes. The membranes can be repeatedly used for probing for different DNA sequences. For the purposes of this project, we include DNA from the reference strain of [0088] Mycobacterium tuberculosis (H37Rv), from other laboratory strains, such as H37Ra, the 0 strain, from clinical isolates, from the reference strain of Mycobacterium bovis, and from different strains of Mycobacterium bovis BCG.
  • Once a deletion is confirmed by Southern hybridization, we then set out to characterize the exact genomic location. This is done by using polymerase chain reaction, with primers designed to be close to the edges of the deletion, see Talbot (1997) [0089] J Clin Micro. 35: 566-9
  • Primers have been chosen to amplify across the deleted region. Only in the absence of this region does one obtain an amplicon. PCR products were examined by electrophoresis (1.5% agarose) and ethidium bromide staining. [0090]
  • Once a short amplicon is obtained, this amplicon is then sequenced. A search of the genome database is performed to determine whether the sequence is exactly identical to one part of the [0091] Mycobacterium tuberculosis genome, and that the next part of the amplicon is exactly identical to another part of the Mycobacterium tuberculosis genome. This permits precise identification of the site of deletion.
  • Below follows an example of the kind of report obtained: [0092]
  • rd6 bridging PCR, blast search of sequence [0093]
    emb|Z79701|MTCY277 Mycobacterium tuberculosis cosmid Y277
    Length = 38,908
    Plus Strand HSPs:
    Score = 643 (177.7 bits), Expect = 1.6e−54, Sum P (2) = 1.6e−54
    Identities = 129 131 (98%), Positives = 129/131 (98%), Strand = Plus/Plus
    Query: 12 ANTAGTAATGTGCGAGCTGAGCGATGTCGCCGCTCCCAAAAATTACCAATGGTTNGGTCA 71 (SEQ ID NO:130)
    | |||||||||||||||||||||||||||||||||||||||||||||||||||| |||||
    Sbjct: 24784 AGTAGTAATGTGCGAGCTGAGCGATGTCGCCGCTCCCAAAAATTACCAATGGTTTGGTCA SEQ ID NO:131)
    Query: 72 TGACGCCTTCCTAACCAGAATTGTGAATTCATACAAGCCGTAGTCGTGCAGAAGCGCAAC
    ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
    Sbjct: 24844 TGACGCCTTCCTAACCAGAATTGTGAATTCATACAAGCCGTAGTCGTGCAGAAGCGCAAC
    Query: 132 ACTCTTGGAGT  142
    |||||||||||
    Sbjct: 24904 ACTCTTGGAGT  24914
    Score = 224 (61.9 bits), Expect = 1.6e−54, Sum P (2) = 1.6e−54
    Identities = 46 49 (93%), Positives = 46/49 (93%), Strand = Plus/Plus
    Query: 141 GTGGCCTACAACGGNGCTCTCCGNGGCGCGGGCGTACCGGATATCTTAG 189 (SEQ ID NO:132)
    | |||||||||||| |||||||| |||||||||||||||||||||||||
    Sbjct: 37645 GCGGCCTACAACGGCGCTCTCCGCGGCGCGGGCGTACCGGATATCTTAG 37693 (SEQ ID NO:133)
  • This process is repeated with each suggested deletion, beginning with the three previously described deletions to serve as controls. Sixteen deletions have been identified by these methods, and are listed in Table 1. [0094]
  • It is to be understood that this invention is not limited to the particular methodology, protocols, formulations and reagents described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. [0095]
  • It must be noted that as used herein and in the appended claims, the singular forms “a”, “and”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a complex” includes a plurality of such complexes and reference to “the formulation” includes reference to one or more formulations and equivalents thereof known to those skilled in the art, and so forth. [0096]
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the preferred methods, devices and materials are now described. [0097]
  • All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing, for example, the cell lines, constructs, and methodologies that are described in the publications which might be used in connection with the presently described invention. The publications discussed above and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention. [0098]
  • 1 137 1 1773 DNA Mycobacteria tuberculosis 1 atgactgctg aaccggaagt acggacgctg cgcgaggttg tgctggacca gctcggcact 60 gctgaatcgc gtgcgtacaa gatgtggctg ccgccgttga ccaatccggt cccgctcaac 120 gagctcatcg cccgtgatcg gcgacaaccc ctgcgatttg ccctggggat catggatgaa 180 ccgcgccgcc atctacagga tgtgtggggc gtagacgttt ccggggccgg cggcaacatc 240 ggtattgggg gcgcacctca aaccgggaag tcgacgctac tgcagacgat ggtgatgtcg 300 gccgccgcca cacactcacc gcgcaacgtt cagttctatt gcatcgacct aggtggcggc 360 gggctgatct atctcgaaaa ccttccacac gtcggtgggg tagccaatcg gtccgagccc 420 gacaaggtca accgggtggt cgcagagatg caagccgtca tgcggcaacg ggaaaccacc 480 ttcaaggaac accgagtggg ctcgatcggg atgtaccggc agctgcgtga cgatccaagt 540 caacccgttg cgtccgatcc atacggcgac gtctttctga tcatcgacgg atggcccggt 600 tttgtcggcg agttccccga ccttgagggg caggttcaag atctggccgc ccaggggctg 660 gcgttcggcg tccacgtcat catctccacg ccacgctgga cagagctgaa gtcgcgtgtt 720 cgcgactacc tcggcaccaa gatcgagttc cggcttggtg acgtcaatga aacccagatc 780 gaccggatta cccgcgagat cccggcgaat cgtccgggtc gggcagtgtc gatggaaaag 840 caccatctga tgatcggcgt gcccaggttc gacggcgtgc acagcgccga taacctggtg 900 gaggcgatca ccgcgggggt gacgcagatc gcttcccagc acaccgaaca ggcacctccg 960 gtgcgggtcc tgccggagcg tatccacctg cacgaactcg acccgaaccc gccgggacca 1020 gagtccgact accgcactcg ctgggagatt ccgatcggct tgcgcgagac ggacctgacg 1080 ccggctcact gccacatgca cacgaacccg cacctactga tcttcggtgc ggccaaatcg 1140 ggcaagacga ccattgccca cgcgatcgcg cgcgccattt gtgcccgaaa cagtccccag 1200 caggtgcggt tcatgctcgc ggactaccgc tcgggcctgc tggacgcggt gccggacacc 1260 catctgctgg gcgccggcgc gatcaaccgc aacagcgcgt cgctagacga ggccgttcaa 1320 gcactggcgg tcaacctgaa gaagcggttg ccgccgaccg acctgacgac ggcgcagcta 1380 cgctcgcgtt cgtggtggag cggatttgac gtcgtgcttc tggtcgacga ttggcacatg 1440 atcgtgggtg ccgccggggg gatgccgccg atggcaccgc tggccccgtt attgccggcg 1500 gcggcagata tcgggttgca catcattgtc acctgtcaga tgagccaggc ttacaaggca 1560 accatggaca agttcgtcgg cgccgcattc gggtcgggcg ctccgacaat gttcctttcg 1620 ggcgagaagc aggaattccc atccagtgag ttcaaggtca agcggcgccc ccctggccag 1680 gcatttctcg tctcgccaga cggcaaagag gtcatccagg ccccctacat cgagcctcca 1740 gaagaagtgt tcgcagcacc cccaagcgcc ggt 1773 2 297 DNA Mycobacteria tuberculosis 2 atggaaaaaa tgtcacatga tccgatcgct gccgacattg gcacgcaagt gagcgacaac 60 gctctgcacg gcgtgacggc cggctcgacg gcgctgacgt cggtgaccgg gctggttccc 120 gcgggggccg atgaggtctc cgcccaagcg gcgacggcgt tcacatcgga gggcatccaa 180 ttgctggctt ccaatgcatc ggcccaagac cagctccacc gtgcgggcga agcggtccag 240 gacgtcgccc gcacctattc gcaaatcgac gacggcgccg ccggcgtctt cgccgaa 297 3 1104 DNA Mycobacteria tuberculosis 3 atgctgtggc acgcaatgcc accggagcta aataccgcac ggctgatggc cggcgcgggt 60 ccggctccaa tgcttgcggc ggccgcggga tggcagacgc tttcggcggc tctggacgct 120 caggccgtcg agttgaccgc gcgcctgaac tctctgggag aagcctggac tggaggtggc 180 agcgacaagg cgcttgcggc tgcaacgccg atggtggtct ggctacaaac cgcgtcaaca 240 caggccaaga cccgtgcgat gcaggcgacg gcgcaagccg cggcatacac ccaggccatg 300 gccacgacgc cgtcgctgcc ggagatcgcc gccaaccaca tcacccaggc cgtccttacg 360 gccaccaact tcttcggtat caacacgatc ccgatcgcgt tgaccgagat ggattatttc 420 atccgtatgt ggaaccaggc agccctggca atggaggtct accaggccga gaccgcggtt 480 aacacgcttt tcgagaagct cgagccgatg gcgtcgatcc ttgatcccgg cgcgagccag 540 agcacgacga acccgatctt cggaatgccc tcccctggca gctcaacacc ggttggccag 600 ttgccgccgg cggctaccca gaccctcggc caactgggtg agatgagcgg cccgatgcag 660 cagctgaccc agccgctgca gcaggtgacg tcgttgttca gccaggtggg cggcaccggc 720 ggcggcaacc cagccgacga ggaagccgcg cagatgggcc tgctcggcac cagtccgctg 780 tcgaaccatc cgctggctgg tggatcaggc cccagcgcgg gcgcgggcct gctgcgcgcg 840 gagtcgctac ctggcgcagg tgggtcgttg acccgcacgc cgctgatgtc tcagctgatc 900 gaaaagccgg ttgccccctc ggtgatgccg gcggctgctg ccggatcgtc ggcgacgggt 960 ggcgccgctc cggtgggtgc gggagcgatg ggccagggtg cgcaatccgg cggctccacc 1020 aggccgggtc tggtcgcgcc ggcaccgctc gcgcaggagc gtgaagaaga cgacgaggac 1080 gactgggacg aagaggacga ctgg 1104 4 300 DNA Mycobacteria tuberculosis 4 atggcagaga tgaagaccga tgccgctacc ctcgcgcagg aggcaggtaa tttcgagcgg 60 atctccggcg acctgaaaac ccagatcgac caggtggagt cgacggcagg ttcgttgcag 120 ggccagtggc gcggcgcggc ggggacggcc gcccaggccg cggtggtgcg cttccaagaa 180 gcagccaata agcagaagca ggaactcgac gagatctcga cgaatattcg tcaggccggc 240 gtccaatact cgagggccga cgaggagcag cagcaggcgc tgtcctcgca aatgggcttc 300 5 285 DNA M. tuberculosis 5 atgacagagc agcagtggaa tttcgcgggt atcgaggccg cggcaagcgc aatccaggga 60 aatgtcacgt ccattcattc cctccttgac gaggggaagc agtccctgac caagctcgca 120 gcggcctggg gcggtagcgg ttcggaggcg taccagggtg tccagcaaaa atgggacgcc 180 acggctaccg agctgaacaa cgcgctgcag aacctggcgc ggacgatcag cgaagccggt 240 caggcaatgg cttcgaccga aggcaacgtc actgggatgt tcgca 285 6 1998 DNA Mycobacteria tuberculosis 6 atggcggccg actacgacaa gctcttccgg ccgcacgaag gtatggaagc tccggacgat 60 atggcagcgc agccgttctt cgaccccagt gcttcgtttc cgccggcgcc cgcatcggca 120 aacctaccga agcccaacgg ccagactccg cccccgacgt ccgacgacct gtcggagcgg 180 ttcgtgtcgg ccccgccgcc gccaccccca cccccacctc cgcctccgcc aactccgatg 240 ccgatcgccg caggagagcc gccctcgccg gaaccggccg catctaaacc acccacaccc 300 cccatgccca tcgccggacc cgaaccggcc ccacccaaac cacccacacc ccccatgccc 360 atcgccggac ccgaaccggc cccacccaaa ccacccacac ctccgatgcc catcgccgga 420 cctgcaccca ccccaaccga atcccagttg gcgcccccca gaccaccgac accacaaacg 480 ccaaccggag cgccgcagca accggaatca ccggcgcccc acgtaccctc gcacgggcca 540 catcaacccc ggcgcaccgc accagcaccg ccctgggcaa agatgccaat cggcgaaccc 600 ccgcccgctc cgtccagacc gtctgcgtcc ccggccgaac caccgacccg gcctgccccc 660 caacactccc gacgtgcgcg ccggggtcac cgctatcgca cagacaccga acgaaacgtc 720 gggaaggtag caactggtcc atccatccag gcgcggctgc gggcagagga agcatccggc 780 gcgcagctcg cccccggaac ggagccctcg ccagcgccgt tgggccaacc gagatcgtat 840 ctggctccgc ccacccgccc cgcgccgaca gaacctcccc ccagcccctc gccgcagcgc 900 aactccggtc ggcgtgccga gcgacgcgtc caccccgatt tagccgccca acatgccgcg 960 gcgcaacctg attcaattac ggccgcaacc actggcggtc gtcgccgcaa gcgtgcagcg 1020 ccggatctcg acgcgacaca gaaatcctta aggccggcgg ccaaggggcc gaaggtgaag 1080 aaggtgaagc cccagaaacc gaaggccacg aagccgccca aagtggtgtc gcagcgcggc 1140 tggcgacatt gggtgcatgc gttgacgcga atcaacctgg gcctgtcacc cgacgagaag 1200 tacgagctgg acctgcacgc tcgagtccgc cgcaatcccc gcgggtcgta tcagatcgcc 1260 gtcgtcggtc tcaaaggtgg ggctggcaaa accacgctga cagcagcgtt ggggtcgacg 1320 ttggctcagg tgcgggccga ccggatcctg gctctagacg cggatccagg cgccggaaac 1380 ctcgccgatc gggtagggcg acaatcgggc gcgaccatcg ctgatgtgct tgcagaaaaa 1440 gagctgtcgc actacaacga catccgcgca cacactagcg tcaatgcggt caatctggaa 1500 gtgctgccgg caccggaata cagctcggcg cagcgcgcgc tcagcgacgc cgactggcat 1560 ttcatcgccg atcctgcgtc gaggttttac aacctcgtct tggctgattg tggggccggc 1620 ttcttcgacc cgctgacccg cggcgtgctg tccacggtgt ccggtgtcgt ggtcgtggca 1680 agtgtctcaa tcgacggcgc acaacaggcg tcggtcgcgt tggactggtt gcgcaacaac 1740 ggttaccaag atttggcgag ccgcgcatgc gtggtcatca atcacatcat gccgggagaa 1800 cccaatgtcg cagttaaaga cctggtgcgg catttcgaac agcaagttca acccggccgg 1860 gtcgtggtca tgccgtggga caggcacatt gcggccggaa ccgagatttc actcgacttg 1920 ctcgacccta tctacaagcg caaggtcctc gaattggccg cagcgctatc cgacgatttc 1980 gagagggctg gacgtcgt 1998 7 1533 DNA Mycobacteria tuberculosis 7 ttgagcgcac ctgctgttgc tgctggtcct accgccgcgg gggcaaccgc tgcgcggcct 60 gccaccaccc gggtgacgat cctgaccggc agacggatga ccgatttggt actgccagcg 120 gcggtgccga tggaaactta tattgacgac accgtcgcgg tgctttccga ggtgttggaa 180 gacacgccgg ctgatgtact cggcggcttc gactttaccg cgcaaggcgt gtgggcgttc 240 gctcgtcccg gatcgccgcc gctgaagctc gaccagtcac tcgatgacgc cggggtggtc 300 gacgggtcac tgctgactct ggtgtcagtc agtcgcaccg agcgctaccg accgttggtc 360 gaggatgtca tcgacgcgat cgccgtgctt gacgagtcac ctgagttcga ccgcacggca 420 ttgaatcgct ttgtgggggc ggcgatcccg cttttgaccg cgcccgtcat cgggatggcg 480 atgcgggcgt ggtgggaaac tgggcgtagc ttgtggtggc cgttggcgat tggcatcctg 540 gggatcgctg tgctggtagg cagcttcgtc gcgaacaggt tctaccagag cggccacctg 600 gccgagtgcc tactggtcac gacgtatctg ctgatcgcaa ccgccgcagc gctggccgtg 660 ccgttgccgc gcggggtcaa ctcgttgggg gcgccacaag ttgccggcgc cgctacggcc 720 gtgctgtttt tgaccttgat gacgcggggc ggccctcgga agcgtcatga gttggcgtcg 780 tttgccgtga tcaccgctat cgcggtcatc gcggccgccg ctgccttcgg ctatggatac 840 caggactggg tccccgcggg ggggatcgca ttcgggctgt tcattgtgac gaatgcggcc 900 aagctgaccg tcgcggtcgc gcggatcgcg ctgccgccga ttccggtacc cggcgaaacc 960 gtggacaacg aggagttgct cgatcccgtc gcgaccccgg aggctaccag cgaagaaacc 1020 ccgacctggc aggccatcat cgcgtcggtg cccgcgtccg cggtccggct caccgagcgc 1080 agcaaactgg ccaagcaact tctgatcgga tacgtcacgt cgggcaccct gattctggct 1140 gccggtgcca tcgcggtcgt ggtgcgcggg cacttctttg tacacagcct ggtggtcgcg 1200 ggtttgatca cgaccgtctg cggatttcgc tcgcggcttt acgccgagcg ctggtgtgcg 1260 tgggcgttgc tggcggcgac ggtcgcgatt ccgacgggtc tgacggccaa actcatcatc 1320 tggtacccgc actatgcctg gctgttgttg agcgtctacc tcacggtagc cctggttgcg 1380 ctcgtggtgg tcgggtcgat ggctcacgtc cggcgcgttt caccggtcgt aaaacgaact 1440 ctggaattga tcgacggcgc catgatcgct gccatcattc ccatgctgct gtggatcacc 1500 ggggtgtacg acacggtccg caatatccgg ttc 1533 8 840 DNA Mycobacteria tuberculosis 8 atggctgaac cgttggccgt cgatcccacc ggcttgagcg cagcggccgc gaaattggcc 60 ggcctcgttt ttccgcagcc tccggcgccg atcgcggtca gcggaacgga ttcggtggta 120 gcagcaatca acgagaccat gccaagcatc gaatcgctgg tcagtgacgg gctgcccggc 180 gtgaaagccg ccctgactcg aacagcatcc aacatgaacg cggcggcgga cgtctatgcg 240 aagaccgatc agtcactggg aaccagtttg agccagtatg cattcggctc gtcgggcgaa 300 ggcctggctg gcgtcgcctc ggtcggtggt cagccaagtc aggctaccca gctgctgagc 360 acacccgtgt cacaggtcac gacccagctc ggcgagacgg ccgctgagct ggcaccccgt 420 gttgttgcga cggtgccgca actcgttcag ctggctccgc acgccgttca gatgtcgcaa 480 aacgcatccc ccatcgctca gacgatcagt caaaccgccc aacaggccgc ccagagcgcg 540 cagggcggca gcggcccaat gcccgcacag cttgccagcg ctgaaaaacc ggccaccgag 600 caagcggagc cggtccacga agtgacaaac gacgatcagg gcgaccaggg cgacgtgcag 660 ccggccgagg tcgttgccgc ggcacgtgac gaaggcgccg gcgcatcacc gggccagcag 720 cccggcgggg gcgttcccgc gcaagccatg gataccggag ccggtgcccg cccagcggcg 780 agtccgctgg cggcccccgt cgatccgtcg actccggcac cctcaacaac cacaacgttg 840 9 2187 DNA Mycobacteria tuberculosis 9 atgagtatta ccaggccgac gggcagctat gccagacaga tgctggatcc gggcggctgg 60 gtggaagccg atgaagacac tttctatgac cgggcccagg aatatagcca ggttttgcaa 120 agggtcaccg atgtattgga cacctgccgc cagcagaaag gccacgtctt cgaaggcggc 180 ctatggtccg gcggcgccgc caatgctgcc aacggcgccc tgggtgcaaa catcaatcaa 240 ttgatgacgc tgcaggatta tctcgccacg gtgattacct ggcacaggca tattgccggg 300 ttgattgagc aagctaaatc cgatatcggc aataatgtgg atggcgctca acgggagatc 360 gatatcctgg agaatgaccc tagcctggat gctgatgagc gccataccgc catcaattca 420 ttggtcacgg cgacgcatgg ggccaatgtc agtctggtcg ccgagaccgc tgagcgggtg 480 ctggaatcca agaattggaa acctccgaag aacgcactcg aggatttgct tcagcagaag 540 tcgccgccac ccccagacgt gcctaccctg gtcgtgccat ccccgggcac accgggcaca 600 ccgggaaccc cgatcacccc gggaaccccg atcaccccgg gaaccccaat cacacccatc 660 ccgggagcgc cggtaactcc gatcacacca acgcccggca ctcccgtcac gccggtgacc 720 ccgggcaagc cggtcacccc ggtgaccccg gtcaaaccgg gcacaccagg cgagccaacc 780 ccgatcacgc cggtcacccc cccggtcgcc ccggccacac cggcaacccc ggccacgccc 840 gttaccccag ctcccgctcc acacccgcag ccggctccgg caccggcgcc atcgcctggg 900 ccccagccgg ttacaccggc cactcccggt ccgtctggtc cagcaacacc gggcacccca 960 gggggcgagc cggcgccgca cgtcaaaccc gcggcgttgg cggagcaacc tggtgtgccg 1020 ggccagcatg cgggcggggg gacgcagtcg gggcctgccc atgcggacga atccgccgcg 1080 tcggtgacgc cggctgcggc gtccggtgtc ccgggcgcac gggcggcggc cgccgcgccg 1140 agcggtaccg ccgtgggagc gggcgcgcgt tcgagcgtgg gtacggccgc ggcctcgggc 1200 gcggggtcgc atgctgccac tgggcgggcg ccggtggcta cctcggacaa ggcggcggca 1260 ccgagcacgc gggcggcctc ggcgcggacg gcacctcctg cccgcccgcc gtcgaccgat 1320 cacatcgaca aacccgatcg cagcgagtct gcagatgacg gtacgccggt gtcgatgatc 1380 ccggtgtcgg cggctcgggc ggcacgcgac gccgccactg cagctgccag cgcccgccag 1440 cgtggccgcg gtgatgcgct gcggttggcg cgacgcatcg cggcggcgct caacgcgtcc 1500 gacaacaacg cgggcgacta cgggttcttc tggatcaccg cggtgaccac cgacggttcc 1560 atcgtcgtgg ccaacagcta tgggctggcc tacatacccg acgggatgga attgccgaat 1620 aaggtgtact tggccagcgc ggatcacgca atcccggttg acgaaattgc acgctgtgcc 1680 acctacccgg ttttggccgt gcaagcctgg gcggctttcc acgacatgac gctgcgggcg 1740 gtgatcggta ccgcggagca gttggccagt tcggatcccg gtgtggccaa gattgtgctg 1800 gagccagatg acattccgga gagcggcaaa atgacgggcc ggtcgcggct ggaggtcgtc 1860 gacccctcgg cggcggctca gctggccgac actaccgatc agcgtttgct cgacttgttg 1920 ccgccggcgc cggtggatgt caatccaccg ggcgatgagc ggcacatgct gtggttcgag 1980 ctgatgaagc ccatgaccag caccgctacc ggccgcgagg ccgctcatct gcgggcgttc 2040 cgggcctacg ctgcccactc acaggagatt gccctgcacc aagcgcacac tgcgactgac 2100 gcggccgtcc agcgtgtggc cgtcgcggac tggctgtact ggcaatacgt caccgggttg 2160 ctcgaccggg ccctggccgc cgcatgc 2187 10 426 DNA Mycobacteria tuberculosis 10 atggccggac tgaacattta cgtgaggcgc tggcggacag cgcttcacgc aaccgtgtcg 60 gcattgatag ttgccatcct cggactcgcc atcaccccgg tcgctagtgc ggcgacggcc 120 agggcgacgt tgtcggtgac atcgacgtgg cagaccggtt tcatcgcccg cttcaccatc 180 acaaactcga gcacggcgcc gctaaccgat tggaagcttg aattcgactt gccggcagga 240 gaatccgtct tgcacacatg gaatagcacc gttgcacgat ctggcacgca ctacgttctc 300 agcccagcga attggaatcg catcattgcc cccggtggtt cagccacggg cggcctaaga 360 ggcgggctga ccggttctta ctcgccgccg tcgagttgtc tgctcaacgg gcaatatcct 420 tgcacc 426 11 597 DNA Mycobacteria tuberculosis 11 gtgaactcac cactggtcgt cggcttcctg gcctgcttca cgctgatcgc cgcgattggc 60 gcgcagaacg cattcgtgct gcggcaggga atccagcgtg agcacgtgct gccggtggtg 120 gcgctgtgca cggtgtccga catcgtgctg atcgccgccg gtatcgcggg gttcggcgca 180 ttgatcggcg cacatccgcg tgcgctcaat gtcgtcaagt ttggcggcgc cgccttccta 240 atcggctacg ggctacttgc ggcccggcgg gcgtggcgac ctgttgcgct gatcccatct 300 ggcgccacgc cggttcgctt agccgaggtc ctggtgacct gtgcggcatt cacgttcctc 360 aacccacacg tctacctcga caccgtcgtg ttgctaggcg cgctggccaa cgagcacagc 420 gaccagcgct ggctgttcgg cctcggcgcg gtcacagcca gtgcggtatg gttcgccacc 480 ctcgggttcg gagccggccg gttgcgcggg ctgttcacca accccggctc gtggagaatc 540 ctcgacggcc tgatcgcggt catgatggtt gcgctgggaa tctcgctgac cgtgacc 597 12 909 DNA Mycobacteria tuberculosis 12 atggtggatc cgcagcttga cggtccacag ctggccgcat tggctgccgt ggtcgaactg 60 ggcagcttcg atgcggccgc ggagcgccta catgtcaccc cgtcggctgt cagtcagcgc 120 atcaagtcgt tggagcagca ggtcggccag gtgctggtgg tcagggaaaa gccatgtcgg 180 gcgacgaccg caggtatccc gctgttgcgg ttggccgcgc aaacagcgtt gctcgagtcc 240 gaggcgctcg ctgaaatggg tggcaacgcg tcgctgaaac gcacgcggat caccattgcg 300 gtaaacgccg attccatggc gacatggttt tcggccgtgt tcgacggtct cggcgacgtc 360 ctgctcgacg ttcggatcga ggaccaggac cattccgcgc ggctgctacg ggagggtgtg 420 gcgatgggcg cggtgaccac cgagcggaac ccggtgccgg gctgccgggt gcacccgctg 480 ggtgaaatgc gctacctacc agtggccagc aggccattcg tccagcgcca tctatccgac 540 gggttcactg ccgccgcggc ggctaaagct ccgtcactgg cgtggaatcg tgacgatggg 600 ctgcaggaca tgttggtgcg taaggccttt cgtcgcgcca tcaccagacc gacgcacttt 660 gtcccgacca cagagggctt caccgccgca gcgcgcgccg ggctgggatg gggcatgttc 720 cccgagaagc tggcagcatc tccgcttgcc gatggatcgt tcgtacgggt ctgcgacata 780 cacctcgacg tccctctcta ttggcaatgc tggaaactgg acagtccgat catcgcgcga 840 attaccgaca cggtgagggc ggcggcaagc ggtctgtacc ggggccagca acgccgccgc 900 cgaccgggt 909 13 651 DNA Mycobacteria tuberculosis 13 atgactccac gcagccttgt tcgcatcgtt ggtgtcgtgg ttgcgacgac cttggcgctg 60 gtgagcgcac ccgccggcgg tcgtgccgcg catgcggatc cgtgttcgga catcgcggtc 120 gttttcgctc gcggcacgca tcaggcttct ggtcttggcg acgtcggtga ggcgttcgtc 180 gactcgctta cctcgcaagt tggcgggcgg tcgattgggg tctacgcggt gaactaccca 240 gcaagcgacg actaccgcgc gagcgcgtca aacggttccg atgatgcgag cgcccacatc 300 cagcgcaccg tcgccagctg cccgaacacc aggattgtgc ttggtggcta ttcgcagggt 360 gcgacggtca tcgatttgtc cacctcggcg atgccgcccg cggtggcaga tcatgtcgcc 420 gctgtcgccc ttttcggcga gccatccagt ggtttctcca gcatgttgtg gggcggcggg 480 tcgttgccga caatcggtcc gctgtatagc tctaagacca taaacttgtg tgctcccgac 540 gatccaatat gcaccggagg cggcaatatt atggcgcatg tttcgtatgt tcagtcgggg 600 atgacaagcc aggcggcgac attcgcggcg aacaggctcg atcacgccgg a 651 14 1674 DNA Mycobacteria tuberculosis 14 gtgtcatttc tggtcgtggt tcccgagttc ttgacgtccg cggcagcgga tgtggagaac 60 ataggttcca cactgcgcgc ggcgaatgcc gcggctgccg cctcgaccac cgcgcttgcg 120 gccgctggcg ctgatgaggt atcggcggcg gtggcagcgc tgtttgccag gttcggtcag 180 gaatatcaag cggtcagcgc gcaggcgagc gctttccatc aacagttcgt gcagacgctg 240 aactcggcgt caggatcgta tgcggccgcg gaggccacca tcgcgtcaca gttgcagacc 300 gcgcagcacg atctgctggg cgcggtcaat gcaccaaccg aaacgttgtt ggggcgtccg 360 ctaatcggcg acggagcacc cgggacggca acgagtccga atggcggggc gggtgggctg 420 ctgtacggca acggcggcaa cggttattcc gcgacggcgt cgggggtcgg cggcggggcc 480 ggcggttccg cggggttgat cggcaatggc ggcgccgggg gagccggcgg acccaacgcc 540 cccgggggag ccggcggcaa cggtggctgg ctgctcggca acggcgggat cggcgggccc 600 gggggcgcgt cgagcatccc cggcatgagt ggtggagccg gcggaaccgg cggtgccgca 660 ggacttttgg gctggggagc gaacggcgga gccggcggcc tcggtgatgg agtcggtgtc 720 gatcgtggca cgggcggcgc cggaggccgc ggcggcctgt tgtatggcgg atacggcgtc 780 agtgggccag gcggcgacgg cagaaccgtc ccgctggaga taattcatgt cacagagccg 840 acggtacatg ccaacgtcaa cggcggaccg acgtcaacca ttctggtcga caccggatcc 900 gctggtcttg ttgtctcgcc tgaggatgtc gggggaatcc tgggagtgct tcacatgggc 960 ctcccaaccg gattgagcat cagcggttac agcggggggc tgtactacat cttcgccacg 1020 tataccacga cggtggactt cgggaatggc atcgtcaccg cgccgaccgc cgttaatgtc 1080 gtcctcttgt ccatcccaac gtcccccttc gccatttcga cctacttcag cgccttgctg 1140 gccgatccga caacaactcc gttcgaagcc tatttcggtg ccgtcggcgt ggacggcgtt 1200 ctgggagttg ggcccaatgc ggtgggacca ggccccagca ttccgacgat ggcgttaccg 1260 ggtgacctca accagggagt gctcatcgac gcacccgcag gtgagctcgt gttcggtccc 1320 aacccgctac ctgcgcccaa cgtcgaggtc gtcggatcgc cgatcaccac cctgtacgta 1380 aagatcgatg gtgggactcc catacccgtc ccctcgatca tcgattccgg tggggtaacg 1440 ggaaccatcc cgtcatatgt catcggatcc ggaaccctgc cggcgaacac aaacattgag 1500 gtctacacca gccccggcgg tgatcggctc tacgcgttca acacaaacga ttaccgcccg 1560 accgtcattt catccggcct gatgaatacc gggttcttgc ccttcagatt ccagccggtg 1620 tacatcgact acagccccag cggtataggg acaacagtct ttgatcatcc ggcg 1674 15 1674 DNA M. tuberculosis 15 gtgtcatttc tggtcgtggt tcccgagttc ttgacgtccg cggcagcgga tgtggagaac 60 ataggttcca cactgcgcgc ggcgaatgcc gcggctgccg cctcgaccac cgcgcttgcg 120 gccgctggcg ctgatgaggt atcggcggcg gtggcagcgc tgtttgccag gttcggtcag 180 gaatatcaag cggtcagcgc gcaggcgagc gctttccatc aacagttcgt gcagacgctg 240 aactcggcgt caggatcgta tgcggccgcg gaggccacca tcgcgtcaca gttgcagacc 300 gcgcagcacg atctgctggg cgcggtcaat gcaccaaccg aaacgttgtt ggggcgtccg 360 ctaatcggcg acggagcacc cgggacggca acgagtccga atggcggggc gggtgggctg 420 ctgtacggca acggcggcaa cggttattcc gcgacggcgt cgggggtcgg cggcggggcc 480 ggcggttccg cggggttgat cggcaatggc ggcgccgggg gagccggcgg acccaacgcc 540 cccgggggag ccggcggcaa cggtggctgg ctgctcggca acggcgggat cggcgggccc 600 gggggcgcgt cgagcatccc cggcatgagt ggtggagccg gcggaaccgg cggtgccgca 660 ggacttttgg gctggggagc gaacggcgga gccggcggcc tcggtgatgg agtcggtgtc 720 gatcgtggca cgggcggcgc cggaggccgc ggcggcctgt tgtatggcgg atacggcgtc 780 agtgggccag gcggcgacgg cagaaccgtc ccgctggaga taattcatgt cacagagccg 840 acggtacatg ccaacgtcaa cggcggaccg acgtcaacca ttctggtcga caccggatcc 900 gctggtcttg ttgtctcgcc tgaggatgtc gggggaatcc tgggagtgct tcacatgggc 960 ctcccaaccg gattgagcat cagcggttac agcggggggc tgtactacat cttcgccacg 1020 tataccacga cggtggactt cgggaatggc atcgtcaccg cgccgaccgc cgttaatgtc 1080 gtcctcttgt ccatcccaac gtcccccttc gccatttcga cctacttcag cgccttgctg 1140 gccgatccga caacaactcc gttcgaagcc tatttcggtg ccgtcggcgt ggacggcgtt 1200 ctgggagttg ggcccaatgc ggtgggacca ggccccagca ttccgacgat ggcgttaccg 1260 ggtgacctca accagggagt gctcatcgac gcacccgcag gtgagctcgt gttcggtccc 1320 aacccgctac ctgcgcccaa cgtcgaggtc gtcggatcgc cgatcaccac cctgtacgta 1380 aagatcgatg gtgggactcc catacccgtc ccctcgatca tcgattccgg tggggtaacg 1440 ggaaccatcc cgtcatatgt catcggatcc ggaaccctgc cggcgaacac aaacattgag 1500 gtctacacca gccccggcgg tgatcggctc tacgcgttca acacaaacga ttaccgcccg 1560 accgtcattt catccggcct gatgaatacc gggttcttgc ccttcagatt ccagccggtg 1620 tacatcgact acagccccag cggtataggg acaacagtct ttgatcatcc ggcg 1674 16 417 DNA Mycobacteria tuberculosis 16 atgatcgtgg acacaagcgc cgtggtggcc ctggttcaag gcgagcggcc gcacgccacc 60 ctggtcgcgg ccgccctggc cggcgcccat agccccgtca tgtctgcacc caccgtcgcc 120 gaatgcctga ttgtcttgac cgcccgtcac ggccccgttg cgcgcacgat cttcgaacga 180 cttcgcagcg aaatcggctt gagcgtgtca tctttcaccg ccgagcatgc cgctgccacg 240 caacgagcct ttctgcgata cggcaagggg cgccaccgcg cggctctcaa cttcggagac 300 tgtatgacgt acgcgaccgc ccagctgggc caccaaccac tgctggccgt cggcaacgac 360 ttcccgcaaa ccgaccttga gttccgcggc gtcgtcggct actggccagg cgtcgcg 417 17 684 DNA M. tuberculosis 17 gtgcgcatca agatcttcat gctggtcacg gctgtcgttt tgctctgttg ttcgggtgtg 60 gccacggccg cgcccaagac ctactgcgag gagttgaaag gcaccgatac cggccaggcg 120 tgccagattc aaatgtccga cccggcctac aacatcaaca tcagcctgcc cagttactac 180 cccgaccaga agtcgctgga aaattacatc gcccagacgc gcgacaagtt cctcagcgcg 240 gccacatcgt ccactccacg cgaagccccc tacgaattga atatcacctc ggccacatac 300 cagtccgcga taccgccgcg tggtacgcag gccgtggtgc tcaaggtcta ccagaacgcc 360 ggcggcacgc acccaacgac cacgtacaag gccttcgatt gggaccaggc ctatcgcaag 420 ccaatcacct atgacacgct gtggcaggct gacaccgatc cgctgccagt cgtcttcccc 480 attgtgcaag gtgaactgag caagcagacc ggacaacagg tatcgatagc gccgaatgcc 540 ggcttggacc cggtgaatta tcagaacttc gcagtcacga acgacggggt gattttcttc 600 ttcaacccgg gggagttgct gcccgaagca gccggcccaa cccaggtatt ggtcccacgt 660 tccgcgatcg actcgatgct ggcc 684 18 684 DNA M. tuberculosis 18 gtgcgcatca agatcttcat gctggtcacg gctgtcgttt tgctctgttg ttcgggtgtg 60 gccacggccg cgcccaagac ctactgcgag gagttgaaag gcaccgatac cggccaggcg 120 tgccagattc aaatgtccga cccggcctac aacatcaaca tcagcctgcc cagttactac 180 cccgaccaga agtcgctgga aaattacatc gcccagacgc gcgacaagtt cctcagcgcg 240 gccacatcgt ccactccacg cgaagccccc tacgaattga atatcacctc ggccacatac 300 cagtccgcga taccgccgcg tggtacgcag gccgtggtgc tcaaggtcta ccagaacgcc 360 ggcggcacgc acccaacgac cacgtacaag gccttcgatt gggaccaggc ctatcgcaag 420 ccaatcacct atgacacgct gtggcaggct gacaccgatc cgctgccagt cgtcttcccc 480 attgtgcaag gtgaactgag caagcagacc ggacaacagg tatcgatagc gccgaatgcc 540 ggcttggacc cggtgaatta tcagaacttc gcagtcacga acgacggggt gattttcttc 600 ttcaacccgg gggagttgct gcccgaagca gccggcccaa cccaggtatt ggtcccacgt 660 tccgcgatcg actcgatgct ggcc 684 19 1443 DNA Mycobacteria tuberculosis 19 gtggtcggcc cgcggacgag aggatatgcg atccacaagc tgggtttctg cagcgtcgtc 60 atgctcggga tcaactcgat aatcggcgcc ggtatcttcc taactccagg tgaggtgatc 120 gggctcgcag gacccttcgc gccgatggcc tatgttttag ctggcatttt cgcgggtgtc 180 gtggcgatcg tcttcgcgac ggcggcaagg tacgtcagaa caaacggtgc ctcctacgcc 240 tacacaacgg ccgcatttgg gcgccggatc ggcatctatg tcggtgtcac ccacgccatt 300 accgcgtcca tcgcttgggg ggtgttggct tcttttttcg tctcgacgct gttgcgagtg 360 gccttccccg acaaggcctg ggccgacgcc gagcaactgt tcagtgtgaa gacgctgacg 420 tttctcggct ttatcggcgt gctgttggcc atcaacctct tcggcaaccg ggcgatcaag 480 tgggccaacg gaacgtcaac ggtaggcaag gcattcgcgc tctcggcatt cattgtcggc 540 gggctgtgga tcatcaccac ccagcacgtg aacaactacg caacggcgtg gtcggcatac 600 agcgcgaccc cgtactcgtt gcttggcgtc gccgaaattg gcaagggcac gttctcgagt 660 atggcgctgg ccacgattgt cgcgttgtac gcattcaccg gtttcgaatc gatcgcgaac 720 gccgccgaag aaatggacgc gccggaccgg aacctgccga gagctatacc gatcgcgatc 780 ttctcggttg gcgcgatcta cttgctcacc ctaacggtag cgatgctgct cggatcgaac 840 aagatcgccg cgtcggacga caccgtgaaa ctggccgcgg ccatcggaaa cgctaccttc 900 cgaacgatca tcgtcgtcgg agccctgata tcgatgttcg gcatcaatgt cgcggcctcg 960 ttcggtgcac cgcggctttg gaccgcgtta gcggacagcg gggttctgcc gacacgcttg 1020 tcacgcaaga accaatacga cgtgccgatg gtctccttcg caattacggc gtcgttggcg 1080 ctcgcattcc cgttggcgct gcggttcgac aacctgcacc tgaccggcct ggcggtgatc 1140 gcccgattcg tccagttcat catcgtgccg atcgctctca tcgcattggc gaggtctcag 1200 gcagtagaac atgctgctgt gcggcgaaat gcgttcaccg acaaggtgtt accgcttgtt 1260 gcgatcgtgg tctcggttgg gctggcagtg tcctacgact accgctgcat ctttctagtg 1320 cggggtggtc cgaactactt ctcgattgct ttgatcgtga tcacgttcgt cgtggtaccg 1380 gcgatggctt atctgcacta ctaccgaatc attcgccggg ttggcgatcg gccgagcact 1440 cgc 1443 20 846 DNA Mycobacteria tuberculosis 20 atgggtgagg cgaacatccg cgagcaggcg atcgccacga tgccacgggg tggccccgac 60 gcgtcttggc tggatcgtcg attccagacc gacgcactgg agtacctcga ccgcgacgat 120 gtgcccgatg aggtcaaaca gaagatcatc ggggtgctcg accgggtggg caccctgacc 180 aacctgcacg agaagtacgc ccggatagcc ctgaaacttg tttctgacat tcccaacccg 240 cgaatcctgg aacttggtgc gggccatggc aagctctcag cgaaaatcct cgagctacac 300 ccgacagcga cggtgacgat cagcgatcta gatcccacct cggtggccaa catcgccgcg 360 ggagagctgg gaacacatcc gcgagcacgc acccaagtga tcgacgccac cgcaatcgac 420 ggccacgacc acagctatga cctggcggtc ttcgcgctgg catttcacca cctgccgcct 480 acggtcgcct gcaaagcgat cgccgaggcc acccgggtgg ggaagcgctt tctgatcatc 540 gacctcaaac ggcagaaacc gctgtcgttc acgctctctt cggtgctgct actgccgctc 600 cacctactgc tgctgccatg gtcgtcgatg cgctcgagca tgcacgacgg ctttatcagc 660 gcactacgtg cctacagtcc ctcggcgttg cagacgcttg cccgcgccgc cgatccggga 720 atgcaggttg aaatcttgcc cgcaccgacc aggctattcc cgccatcgct cgccgttgtg 780 ttctcccgtt cgagctcagc gccaacggaa tctagcgagt gctcggccga tcgccaaccc 840 ggcgaa 846 21 1407 DNA Mycobacteria tuberculosis 21 gtgagataca ctacacctgt gcgtgctgct gtctacctcc gaatctcaga agaccgctcc 60 ggcgaacagc tcggcgtggc ccgccaacgc gaggactgcc taaagctgtg cgggcagcga 120 aaatgggtgc ccgtcgagta cctcgacaac gacgtcagcg catcaaccgg caagcgccgc 180 cccgcctacg agcagatgtt ggccgacatc accgccggca agatcgccgc cgtggtggcc 240 tgggacctgg accggctcca tcgccgtccc atcgagctgg aagccttcat gtcattagcc 300 gacgagaagc ggctggccct ggccaccgtc gccggcgacg ttgacctggc gacaccccag 360 ggccggctag tcgcccgcct gaaggggtcg gtggccgctc acgaaaccga gcacaagaag 420 gcacgacagc gccgcgccgc ccgccagaaa gctgaacgcg gccaccccaa ctggtcgaaa 480 gccttcggct acctgcccgg ccccaacggt cccgaacccg acccccggac agcgccgctg 540 gtcaaacagg cctacgccga catcctcgcc ggggcgtccc tgggcgacgt gtgccgccag 600 tggaacgacg ccggggcgtt caccatcacc ggccgcccgt ggacgactac aacgctgtcg 660 aaattcttgc gcaaaccccg caacgccgga ctacgcgcat ataagggtgc ccgctacggc 720 ccggtggacc gcgacgcgat tgtcggcaag gcccagtggt cgccgctggt ggacgaggcg 780 acgttctggg ccgcccaggc cgtgctggac gcccccggcc gcgcccccgg ccgcaaaagc 840 gtgcgccgcc acctgctgac cgggctggca ggctgcggca aatgcggcaa ccacctggcc 900 ggcagctacc gcaccgacgg ccaggtcgtc tacgtgtgca aggcgtgcca cggggtggcc 960 atcctggccg acaacatcga accgatcctg tatcacatcg tggccgagcg gctggccatg 1020 cccgacgccg ttgacttgtt gcgccgggag attcacgacg ccgccgaagc cgaaaccatc 1080 cgcctggaac tggaaaccct ctacggggag ctggacaggc tcgccgtcga acgcgccgaa 1140 gggctactga ccgcgcgcca ggtgaagatc agcaccgaca tcgtcaacgc caagataacg 1200 aaacttcagg cccgccaaca ggatcaggaa cggctccgag tgttcgacgg gataccgttg 1260 ggaacaccgc aagtcgccgg gatgatagcc gagctgtcgc cggaccggtt ccgcgccgtc 1320 ctcgacgtcc tcgctgaagt cgttgtccag ccggtcggca agagcggcag gatattcaat 1380 cccgaacggg tgcaggtgaa ttggcga 1407 22 513 DNA M. tuberculosis 22 atgagccggc accacaacat cgtgatcgtc tgtgaccacg gccgcaaagg cgatggccgc 60 atcgaacacg agcgctgcga tcttgtcgcg ccgatcattt gggtcgacga gacccagggc 120 tggttaccgc aggcgccagc ggtggcaaca ttactcgacg acgacaacca gccgcgagcc 180 gttattggct tgccgcccaa cgagtctcgc ctacgacctg aaatgcgccg cgacgggtgg 240 gtgcggctgc actgggaatt cgcctgcctg aggtacggcg ccgccggcgt gcgcacgtgc 300 gagcagcggc ccgtgcgggt tcgcaacggc gacctgcaaa cactgtgcga gaacgttccg 360 cggctactga ccggactggc cggcaacccc gactacgcac cgggttttgc ggtgcagtcg 420 gacgcggtgg tcgtcgccat gtggctgtgg cgcacgctct gcgaaagcga cacgccgaac 480 aaactacgcg ccaccccaac gcgtggtagc tgc 513 23 219 DNA M. tuberculosis 23 gtgtcgacca tctaccatca tcgcggccgc gtagccgcac tgtctcgttc ccgcgcatcc 60 gacgatcccg agttcatcgc cgcgaaaacc gatctcgttg ccgcgaacat cgcggactac 120 ctcatccgca ccctcgccgc agcgccgccc ctgactgacg agcagcgcac ccggctggcc 180 gagctgctgc gccccgtgcg gcggtcaggc ggtgcccga 219 24 396 DNA Mycobacteria tuberculosis 24 atgaccgccg gcgccggcgg gtcgccgccg acgcgacgat gcccggccac ggaggaccgg 60 gcacccgcga cagtcgccac accgtctagc gccgatccta ccgcgtcacg cgccgtgtcg 120 tggtggtcgg tgcacgagca tgtcgcgccg gtcctggatg ctgccgggtc gtggccgatg 180 gccggcacac cggcctggcg tcagctcgac gacgccgatc ctcgcaaatg ggccgcgatc 240 tgcgacgcag cccggcactg ggctctgagg gtagagacgt gccaggaggc gatggcgcag 300 gcgtcacgtg acgtatctgc ggccgccgac tggcccggca tcgcccgcga gatcgtccga 360 cggcgcggcg tgtacatccc gcgggcgggg gtggcg 396 25 1413 DNA Mycobacteria tuberculosis 25 atggccgaca tcccctacgg caccgactat cccgacgccc cctggatcga ccgggacggg 60 cacgtgctca tcgacgacgg tggcaaaccg acgcaagttc atcgcggcca agcccgaatc 120 gcctaccggc tagccgaacg ttaccaggac aagctgctgc acgtggccgg gatcggctgg 180 cactcctggg acggcagacg ctgggcagcc gacgaccgcg gcgaagccaa acgtgcagtg 240 ctggcagagc tgcgccaagc gctctcagac agcctcaacg acaaggaatt acgcgccgac 300 gtccgaaaat gcgaatcggc gtccggcgtg gccggcgtgc tcgacctggc cgccgcactg 360 gtaccattcg ccgcgacggt agccgacctc gacagcgacc cgcacttgct caacgtcgcg 420 aatgggacgc tggacctgca cacgctcaaa ttgcggcccc acgcgcccgc tgaccgcatc 480 acaaagatat gccgcggtgc ctaccagtcc gacaccgaat cgcctctctg gcaagcgttc 540 ttgacccgcg ttctgcccga tgaaggtgtg cgcgggttcg tgcaacgcct ggccggcgtc 600 ggcctactag gcaccgtccg cgaacatgtc ctggcgattc ttatcggtgt aggtgccaac 660 ggaaaatctg tgttcgacaa ggcgattcgc tatgcccttg gcgattatgc ctgcaccgct 720 gagcctgacc ttttcatgca ccgggaaaac gctcacccaa caggcgaaat ggacctccgc 780 ggcgtgcgat gggtagcggt atccgagagc gaaaaagatc gccggctggc cgaatcaacg 840 ataaaacggc tgactggcgg cgacaccatc cgcgcccgaa agatgcggca agacttcgtg 900 gaattcacgc cgtcacatac cccactgctc atcaccaacc acctaccgag agtgcccggc 960 gatgatacgg ccatctggcg gcgaattcga gtggtgccgt ttgaagtagt gattcctgcc 1020 gacgagcagg accgggaact ggacgcacgg ttgcagttgg aggccgacag catcctgtcc 1080 tgggcggtgg ccggatggag cgactatcag cgaatcggac tatcccagcc ggacgcggtg 1140 ctcgcggcaa cgtcgaatta ccgcgaggac tccgacacga taaagaggtt catcgacgac 1200 gaatgcgtca ccagctcgcc ggtgctgaaa gccactacta cgcatctgtt cgaggcgtgg 1260 caaaggtggc gggtgcaaga aggcgtaccc gaaatctcgc gcaaagcgtt cggccagtcg 1320 ctcgacaccc acggataccc ggtcactgac aaggcccgtg atggtcgttg gcgggccgga 1380 atagcggtga gaggggccga tgatttcgat gat 1413 26 393 DNA Mycobacteria tuberculosis 26 atgaccgctg tcgcgatcac cccggcatcc ggcggtcggc acagcgtccg attcgcctac 60 gactctgcga tcgtgtcgtt gatcaagtcc acgatccccg cctatgcccg ctcctggtcc 120 gcgcacaccc gctgctggtt catcgacgct gactggaccc cactgctggc cgccgagctg 180 cgctaccacg gccacaccgt caccggaccc gccgacccgg cgcaacagca gtgcaccgac 240 tgggccaaag cgttgttccg ggcggtcgga ccccagcgga cacccgccgt gtacagggct 300 ttatccaaag tgctgcaccc cgacgcccca accggatgcc cgatactgca acagcagctc 360 aatgccgcca gaaccgcact taccaaccct gct 393 27 270 DNA Mycobacteria tuberculosis 27 atggctgaaa cccccgacca cgccgaactg cggcgacgaa tcgccgacat ggctttcaac 60 gccgatgtcg gtatggcgac ctgcaaacgc tgtggtgacg ccgtgccgta catcatcctg 120 ccgaacctgc agaccggcga acccgtcatg ggtgtcgccg acaacaaatg gaagcgcgcg 180 aactgtcccg tcgacgtcgg taagccgtgc ccgttcctaa tcgccgaggg tgtcgccgac 240 agcaccgacg acaccataga ggtcgaccag 270 28 312 DNA Mycobacteria tuberculosis 28 gtgaccccga tcaaccggcc cctgaccaac gacgaacgac aactgatgca cgagctggca 60 gtccaggttg tctgctcgca gacgggttgc tcacccgatg cggcggtcga agcactcgaa 120 tccttcgcga aagacggaac acttatcctc cgcggcgaca ccgagaacgc ctacctcgaa 180 gccggaggca atgttcttgt ccatgccgat cgtgactggc ttgccttcca cgcgtcgtat 240 cccggcaacg acccgctgcg agacgcccga cctatcgagc aggacgacga ccagggggcg 300 gggtcgccat cg 312 29 468 DNA Mycobacteria tuberculosis 29 atgccaagac caccgaaacc ggcccggctc aaactggttg agggccgctc ccccggccgc 60 gattccggcg gccggaaagt ccccgagtcg ccgaagttta tccgtcaggc accggatgcc 120 ccggactggc tcgacgccga ggcgctggcc gaatggcggc gcgtcgcacc gactttggag 180 cggcttgacc tgctcaaacc tgaggatcgg gcgctcctgt ccgcgtactg cgagacctgg 240 tccgtctacg tcgcggcggt tcagcgggtc cgcgccgaag gcctcacaat tacctcaccg 300 aaatccggtg tcgtgcaccg gaacccggcg gtgacggttg cggagacggc gcgcatgcat 360 ctgctgcgct tggcctccga gtttggcctg accccggccg ccgagcagcg actggcggtg 420 gcgccgggcg acgacggcga cgggctcaac ccgtttgccc cggaccgg 468 30 510 DNA Mycobacteria tuberculosis 30 atggccgagc tgcggtctgg cgaaggccga accgtgcacg gcaccatcgt gccctacaac 60 gaggcgacca ccgtccgcga cttcgacggc gagttccagg aaatgttcgc tcctggcgct 120 tttcggcgct ccatcgccga gcgcggccac aaattgaagc tgctggtctc tcacgacgct 180 cgaacccgct acccggtggg ccgggccgtt gagttgcggg aggagcctca cggcttgttc 240 ggggcgttcg agattgcgga caccccggac ggcgacgagg ctttggcgaa cgtaaaagct 300 ggtgtcgtcg actcgttttc ggtgggtttc cgaccgatcc gggaccgtcg cgaaggggat 360 gtgctggtgc gcgtcgaagc ggcgctgtta gaggtttccc taaccggcgt tccggcctat 420 tcgggggcac aaatcgccgg ggtgcgcgcg gaatcgctta cagtcgtttc ccgttcgaca 480 gccgaagcct ggctgtccct actcgattgg 510 31 1419 DNA Mycobacteria tuberculosis 31 atgaccgaat tcgacgacat caaaaacctc tctttacctg aaacccgtga cgcggcgaag 60 cagctcctcg acagtgtcgc cggcgacctg accggtgagg cggcgcagcg ttttcaggcg 120 ctgacgcgcc acgccgagga actgcgggcg gagcagcgcc gccgcggccg cgaagccgag 180 gaggcgctgc gccgctaccg ggccggtgag ctgagggtgg tgcccggcgc tcccaccggc 240 ggcgacgacg gcgacgcgcc gccgggcaac tcgttgcggg acaccgcgtt tcgcacactg 300 gattcttgtg tgcgagacgg cctgatgtcg tcgcgggcgg cggagaccgc ggaaaccttg 360 tgccgcaccg ggccgccgca gtccacctcg tgggcgcagc gctggctggc ggccaccggc 420 agccgcgact atttgggcgc gttcgtcaag cgggtttcca atcctgttgc ggggcacacg 480 gtttggaccg accgggaagc ggccgcgtgg cgtgaggctg ccgcggtggc cgccgagcag 540 cgagcgatgg gcctggtgga cacccaaggc gggtttctga tcccggcggc gctggacccg 600 gcgatcctgc tgtcgggtga tgggtcgacg aacccgattc ggcaggtggc gagggtggtg 660 caaacgacct ccgagatttg gcggggcgtg acttccgaag gcgccgaagc tcgttggtac 720 tccgaagccc aggaggtgtc cgacgattcg ccagcgttgg cccagccggc ggtgccgaac 780 taccgtggaa gctgctggat tccgttctcc atcgagctgg agggtgacgc ggcgagcttc 840 gttggcgaga tcggcaagat tctcgcggac agcgttgagc aactgcaggc cgcggcgttc 900 gtcaacggct ccggcaacgg cgagcccacc gggttcgtca gcgcgctaac cggcacctcc 960 gatcaggtgg tcgtcggcgc ggggtcagaa gcgattgtgg cggcggatgt ttacgcgttg 1020 cagtcggcgc tgccgccaag gttccaggcc agcgccgcgt tcgcggcgaa cttgtccacc 1080 atcaacacgt tgcggcaggc ggaaacttcg aatggcgcgc tgaaattccc atcgctgcac 1140 gacagtccgc cgatgctagc cgggaagtct gtcctggaag tctcccacat ggacaccgtt 1200 gattcggcgg tgacagcgac gaatcatcca ctggtgcttg gcgactggaa gcaattcctc 1260 atcggcgaca gagttgggtc catggtggag ttggtgcctc acctgttcgg gccgaatcgc 1320 cggccgaccg ggcagcgcgg attcttcgcc tggttcaggg tcggatcaga tgtgctggtg 1380 cgcaacgcgt ttcgagttct gaaggtggag actaccgcg 1419 32 351 DNA Mycobacteria tuberculosis 32 atggcgccgc tggccgccgg atcgccgagc tggaacggcc gaaagccaag cagcggcaac 60 aggaaggcgg cgaccatggc cgccaggctc gatattctgg cttggggccc atgggcccca 120 agccagaatc ggagcgtcgt tcgacgaaaa cagacactgc tatcggcgca gccctcggca 180 tctccgccgg cacctaccgg cggctcaaac gaatcgacaa cgcaacccgc agcgagttgg 240 cgcgtgggcg gcccggcacc cctaagcaga ggccgcccac gcctggccct atcctaccta 300 cgcggtagtc tccaccttca gaactcgaaa cgcgttgcgc accagcacat c 351 33 309 DNA Mycobacteria tuburculosis 33 atgggctaca aaccagaatc agagcgtcat tcgacgaaaa cagacactgc tatcggcgca 60 gccctcggca tctccgccgg cacctaccgg cggctcaaac gaatcgacaa cgcaacccac 120 agcgacgaca aagaaatccg ccggttcgcg gagaaacaaa tggcgccgct ggtcgccgga 180 tcgccgagct ggaacgcccg aaagccaagg agcgccaacg cgagggtggt cgcctcggtg 240 catcgatcac caatgccggc tttggtccca tggaaccaaa gccgtctcag cgccacactg 300 acaaggagg 309 34 408 DNA Mycobacteria tuburculosis 34 atgaccacca caccagcacg tttcaaccac ttggtgacgg taaccgacct ggaaacgggt 60 gaccgcgccg tctgcgaccg cgaccaggtg gccgagacga tccgggcgtg gttcccggac 120 gcgcccttgg aggtgaggga agcgctcgtt cggctgcagg ccgcgttgaa tcggcacgag 180 cacaccggcg agctcgaagc gttcctgcgg atcagcgtcg agcacgccga cgccgccggc 240 ggcgacgagt gcggcccggc gatcctggcc ggccgctccg ggccggaaca agccgccatc 300 aaccggcaac tcggactcgc cggcgacgac gagcccgacg gcgacgacac cccgccgtgg 360 agccggatga tcgggcttgg cggcggaagc ccagcggaag acgagcgc 408 35 1407 DNA Mycobacteria tuburculosis 35 gtgaaacggc tcagcggctg ggacgcggta ctgctttaca gcgagacccc gaatgtgcac 60 atgcacacac tcaaggtcgc cgtgatcgaa ttggattcgg acagacagga attcggtgtc 120 gacgcgtttc gcgaggtgat cgctggccgg ctgcataagc ttgagccatt gggctatcag 180 ctggttgatg tcccgttgaa gttccatcac ccgatgtggc gggagcactg ccaggtcgat 240 ctcaactacc acatccggcc gtggcggttg cgcgccccgg ggggtcggcg cgaactcgac 300 gaggcggtcg gagaaatcgc cagcaccccg ctgaaccgcg accacccgct gtgggagatg 360 tacttcgttg aggggcttgc caaccaccgg atcgcggtgg ttgccaaaat tcaccatgcg 420 ttggctgacg gtgttgcctc ggcaaacatg atggcacggg ggatggatct gctgccggga 480 ccggaggtcg gccgctatgt gcctgacccc gctcctacca agcggcagtt gctgtccgcg 540 gcgttcatcg accacttgcg ccacctcggc cggattcctg caaccatccg gtacaccacg 600 cagggtctag gccgggtgcg acgtagctcg cgcaagctct cacccgcact gaccatgcca 660 tttaccccgc caccgacgtt catgaatcac cggctcaccc cggagcgcag gttcgccacc 720 gccaccctgg cgctgattga cgtgaaggcg acggccaagt tgctgggggc gacgatcaac 780 gacatggtgc tggccatgtc gaccggcgct ctgcgtaccc tgctattgcg ctatgacggc 840 aaggccgaac cgctgctggc gtcggtcccg gtgagttacg acttctcacc ggagcggatc 900 tccggtaacc gcttcaccgg aatgctggtg gcgctgcctg ccgactccga cgacccgttg 960 cagcgggtgc gcgtctgtca cgaaaacgcg gtctccgcca aggagagcca ccagcttttg 1020 ggaccggagt tgatcagccg ctgggcggct tactggccac ctgccggtgc ggaagccttg 1080 ttccggtggt tgtctgagcg cgacgggcag aacaaggtac tcaacttgaa tatctcgaat 1140 gttcccggtc cgcgcgaacg cggccgcgtg ggggccgcgc tggtcaccga gatctattcg 1200 gtgggcccgt tgaccgccgg tagcggattg aatatcacgg tgtggagtta tgtcgatcag 1260 ctcaatatct cggtgttaac cgatggttcc accgtgcagg acccgcatga agtaaccgcg 1320 ggaatgatcg cggacttcat cgaaatacgc cgcgccgctg gtctttccgt ggagttgaca 1380 gtcgtcgagt ccgcgatggc gcaggca 1407 36 786 DNA Mycobacteria tuburculosis 36 atgagcagcg aaagcgacgc agccaacacc gaacctgagg ttctggtaga acagcgggat 60 cggattttga tcatcacgat caaccgcccg aaagccaaga acgcggtcaa cgccgcagtc 120 agccggggct tggccgatgc gatggatcag cttgacggcg atgccggcct gtcggtggca 180 atcctgaccg gtgggggcgg ttcgttctgc gcgggcatgg acctcaaggc gttcgcccgg 240 ggcgagaatg tcgtcgtcga aggtcgcggc cttggcttta ccgaacgtcc gccgaccaag 300 ccgctcattg ctgcggtgga aggctacgcg ttggcgggtg gcaccgagct ggcgcttgct 360 gccgacctga tcgtggcggc cagggattcg gcgttcggga ttcctgaagt caagcggggt 420 ctggttgccg gcggcggggg attgctgcgg ttgccggagc gcatcccgta tgcgatagcc 480 atggagttgg cgctgaccgg tgacaaccta ccggccgaac gcgcgcacga gctggggctc 540 gtcaacgttt tggccgagcc ggggaccgcc ctcgatgctg cgatcgcgtt ggcggagaag 600 atcaccgcca atgggccgct ggcggtggtg gccaccaagc ggattatcac cgagtcgcgt 660 gggtggagtc ccgacactat gttcgctgag cagatgaaga tcctggtgcc ggtgttcacc 720 tccaacgacg cgaaggaagg tgcgatcgcg ttcgccgaga ggcgccggcc ccgttggacg 780 ggcacc 786 37 1461 DNA M. tuberculosis 37 atgtctgaca gtgccacgga atacgacaag cttttcatcg gcggcaagtg gaccaaaccg 60 tcgacctccg atgttatcga ggtacgctgc ccagccactg gggaatatgt cggcaaggtg 120 ccgatggcgg ccgccgccga cgtcgacgcc gcggtcgccg cagcacgtgc ggcgttcgac 180 aacggcccct ggccctcgac cccgccgcac gagcgtgcgg cggtgatcgc tgcggcggtc 240 aagatgctgg ctgagcgcaa ggacctgttc accaagctgc tcgcagccga aaccggccag 300 ccgccgacca tcatcgagac gatgcactgg atgggttcga tgggggcgat gaactacttt 360 gccggtgcag cggacaaggt cacctggacc gaaacccgca ccggctccta tggacagagc 420 attgtcagcc gtgagccggt cggtgtggtg ggcgcgatcg tggcctggaa cgtcccgctg 480 tttctggccg tcaacaagat tgcgccggcg ctgctggccg gctgcaccat cgtgctcaag 540 cccgccgccg aaacaccgct gaccgcaaac gctttggcgg aggtgttcgc cgaggtgggc 600 ctgcccgagg gggtgttgtc ggtagtgccg ggagggattg agaccggtca ggcgctgacg 660 tctaacccgg acatcgacat gtttaccttc accggcagct cggccgtcgg ccgagaggtc 720 ggcaggcgtg ccgctgagat gctcaagccg tgcaccttag aactcggcgg caagtcggcg 780 gccatcattc tcgaggacgt cgacctggcc gcagctattc cgatgatggt gttctccggc 840 gtcatgaacg ccggacaggg ctgcgtcaac cagacccgca ttctggctcc gcgctcccgg 900 tacgacgaaa tcgtggctgc ggtaactaat ttcgtaacgg ctctcccggt gggcccgccg 960 tcggacccgg cagctcagat cgggccgctg atctcggaga agcagcggac tcgcgttgaa 1020 ggctacatcg ccaagggcat cgaggagggc gctcggttgg tgtgcggcgg cggccgtccc 1080 gagggcttgg acaacggctt ctttatccaa cccaccgtat tcgccgatgt cgacaacaag 1140 atgaccatcg cacaggagga gatcttcggg ccggtgctgg ccatcattcc ttatgacacc 1200 gaggaggacg cgatcgcgat cgccaacgat tcagtgtatg ggctggcggg cagcgtgtgg 1260 accaccgacg tgcccaaagg catcaagatc tcgcagcaga tccgcaccgg gacatacgga 1320 atcaactggt acgccttcga tcccggctca cccttcggcg gctacaagaa ctccggaatc 1380 ggccgcgaga acgggcccga gggtgtcgaa cacttcaccc agcaaaagag tgtcctgctg 1440 ccgatgggct acaccgtcgc g 1461 38 831 DNA M. tuberculosis 38 atggcacgct gcgatgtcct ggtctccgcc gactgggctg agagcaatct gcacgcgccg 60 aaggtcgttt tcgtcgaagt ggacgaggac accagtgcat atgaccgtga ccatattgcc 120 ggcgcgatca agttggactg gcgcaccgac ctgcaggatc cggtcaaacg tgacttcgtc 180 gacgcccagc aattctccaa gctgctgtcc gagcgtggca tcgccaacga ggacacggtg 240 atcctgtacg gcggcaacaa caattggttc gccgcctacg cgtactggta tttcaagctc 300 tacggccatg agaaggtcaa gttgctcgac ggcggccgca agaagtggga gctcgacgga 360 cgcccgctgt ccagcgaccc ggtcagccgg ccggtgacct cctacaccgc ctccccgccg 420 gataacacga ttcgggcatt ccgcgacgag gtcctggcgg ccatcaacgt caagaacctc 480 atcgacgtgc gctctcccga cgagttctcc ggcaagatcc tggcccccgc gcacctgccg 540 caggaacaaa gccagcggcc cggacacatt cctggtgcca tcaacgtgcc gtggagcagg 600 gccgccaacg aggacggcac cttcaagtcc gatgaggagt tggccaagct ttacgccgac 660 gccggcctag acaacagcaa ggaaacgatt gcctactgcc gaatcgggga acggtcctcg 720 cacacctggt tcgtgttgcg ggaattactc ggacaccaaa acgtcaagaa ctacgacggc 780 agttggacag aatacggctc cctggtgggc gccccgatcg agttgggaag c 831 39 300 DNA M. tuberculosis 39 atgtgctctg gacccaagca aggactgaca ttgccggcca gcgtcgacct ggaaaaagaa 60 acggtgatca ccggccgcgt agtggacggt gacggccagg ccgtgggcgg cgcgttcgtg 120 cggctgctgg actcctccga cgagttcacc gcggaggtcg tcgcgtcggc caccggcgat 180 ttccggttct tcgccgcgcc cggatcctgg acgctgcgcg cgctgtcggc ggccggcaac 240 ggcgacgcgg tggtgcagcc ctcgggcgcg ggcatccacg aggtagacgt caagatcacc 300 40 441 DNA M. tuberculosis 40 atggccaatg tggtagctga aggtgcctac ccttactgtc ggctcactga tcagccgctg 60 agtgtggacg aagtgctagc cgccgtctcg ggccccgaac aaggcggcat tgtcatattt 120 gtgggaaacg tgcgtgacca caatgccggg catgatgtca cgcggttgtt ctacgaggcg 180 tatccgccga tggtgattcg gacattgatg tcgatcatcg gacggtgtga agacaaggcc 240 gagggtgtcc gcgttgctgt cgcgcaccgg accggtgaat tgcaaatcgg tgatgccgcg 300 gtcgttattg gcgcgtcagc tccccaccgt gcggaggcat ttgacgccgc gcgtatgtgt 360 atcgagttgc ttaagcagga agtgccgatt tggaagaagg aattcagctc gaccggtgct 420 gaatgggtcg gcgatagacc a 441 41 600 DNA M. tuberculosis 41 atgagtccgt ctccatcggc cctgctcgcc gaccacccgg accgcattcg ttggaacgcg 60 aaatacgagt gcgctgaccc cacggaggcg gtatttgcgc ccatatcctg gctcggcgac 120 gtgctgcagt tcggggtgcc agaagggccg gttctggaac tggcgtgcgg tcggtccggc 180 accgcgctgg ggctagccgc ggcgggccgc tgcgtgactg cgatcgacgt ttccgatacc 240 gcgttggttc agctcgagct cgaagcgacc cgacgggaat tggccgatcg cctcacactg 300 gtgcacgccg atctctgctc ctggcagtcg ggggatggac gctttgctct ggtactttgc 360 cgactattct ggcatccgcc cacttttcgc caggcttgcg aggctgtggc gccgggcggt 420 gtagtggcgt gggaggcatg gcggcggccc atcgatgtcg ctcgggatac ccgtcgagcc 480 gaatggtgct tgaagccagg ccagcccgag tctgaacttc ccgccggctt cacggtgatt 540 cgggtggtcg acaccgatgg ttcagagccg tcgcggcgca tcatcgccca acggtcactg 600 42 1200 DNA Mycobacteria tuburculosis 42 atgacaagca cctcgattcc gacgttcccg ttcgaccggc cggtcccgac ggagccgtcc 60 ccaatgctgt cggaactgag aaacagctgt ccggtagccc cgatagagtt gccctcgggg 120 cacacagcat ggctcgtcac tcgctttgac gatgtaaagg gagtgctgtc cgacaagcgt 180 ttcagctgca gggcggcagc gcacccgtcg tcgcccccgt tcgtgccgtt cgtgcagctt 240 tgccccagct tgttgagcat cgatgggccc caacacaccg cggcccgccg tctgctcgcg 300 cagggcctaa atcccggctt catcgcacgc atgcggcccg ttgtccaaca gatcgtcgac 360 aatgcgctcg acgatctggc agccgcggaa ccaccggtgg acttccagga aatagtaagt 420 gtccctatcg gagaacagct catggccaag ctactcgggg tcgagcccaa aaccgtgcac 480 gagctcgcgg cgcacgtgga tgcggcgatg tccgtgtgtg agatcggcga cgaggaggtg 540 agccggcggt ggtcagcact gtgcacgatg gtcatcgaca tactgcaccg caagctcgcc 600 gaaccgggtg atgacctact tagcacgatc gcccaggcga accggcaaca gtccaccatg 660 accgacgagc aggttgtcgg catgctcctc accgtcgtga tcggaggagt cgacacaccg 720 atcgccgtga tcacaaacgg gctggcgagc ctgctgcacc accgcgatca atatgaacgg 780 ctcgttgaag acccaggccg tgtcgctcgt gcggttgaag aaatagtccg gtttaatccg 840 gcaactgaaa ttgagcactt gcgagttgtc accgaggatg tcgtcattgc cggaaccgcg 900 ctatcggcgg ggagcccagc atttacctct atcacttcgg ctaaccgcga ctccgaccaa 960 ttcctggacc ccgatgagtt tgatgtcgaa cgtaatccga acgaacacat agcatttgga 1020 tatggtccac atgcttgccc ggcctcagcg tattcacgca tgtgcttgac gacgttcttc 1080 acctcgctta cccagcgatt tccgcaactt caactcgcaa gaccgtttga ggatttggaa 1140 cgacggggta agggcctaca ttcggtgggg atcaaggaac tccttgttac ctggccgacg 1200 43 498 DNA Mycobacteria tuburculosis 43 gtgcgcattg tcaatgcggc ggacccattt tcgatcaacg atctaggctg tggctatggg 60 gctctactgg actacctaga tgcgcgtggc ttcaaaactg attacaccgg catcgacgtc 120 tcccccgaaa tggtgcgcgc ggccgcacta cgtttcgaag gtcgggcgaa cgcagacttc 180 atctgcgcgg cgcgcataga tcgggaggcg gactatagcg tcgcgagtgg aatattcaat 240 gttcgtctga aatcgttgga cacggaatgg tgcgctcaca tcgaagcgac gctcgacatg 300 ctgaatgccg cgagtcgccg tggcttctct tttaattgcc tgacatctta ttccgatgca 360 tcaaagatgc gcgacgacct gtactatgct gacccatgcg ccctatttga tctctgcaag 420 cgcaggtact ccaagagtgt tgcgcttctg cacgactacg gcttgtatga attcacaatt 480 ctggttagga aggcgtca 498 44 693 DNA Mycobacteria tuburculosis 44 ttgaagaaag tcgcgattgt tcaatcaaat tacatacctt ggcgaggata ttttgacctg 60 attgcattcg tcgatgaatt catcatctat gatgacatgc aatataccaa gcgtgattgg 120 cgaaacagaa atcggatcaa aacgagccag gggttacagt ggataactgt tcccgtccag 180 gtgaagggac gtttccatca aaagatacgt gagacgctga tcgacggcac cgattgggcg 240 aaagcgcact ggcgggcact agaattcaac tacagcgcgg ccgctcattt tgcggagatc 300 gctgactggc tcgcgccgat ttacctcgaa gaacagcaca cgaatctttc cttactcaac 360 aggcgtctat tgaatgcgat ttgcagttat ctcggtatca gcacgcgact ggcaaattcg 420 tgggactacg aattagccga cggcaagacc gagagactgg ccaacctctg ccaacaggcc 480 gcagcgaccg aatatgtctc tggcccctca gcccgttcgt atgtcgatga gcgcgtgttc 540 gacgaactta gcatccgggt aacttggttc gattatgacg gctaccgcga ttataagcaa 600 ttgtggggag ggttcgagcc cgccgtgtcg attctggatc tgctctttaa cgtcggagcc 660 gaggctccgg actatttgag gtactgtcgc cag 693 45 395 DNA Mycobacteria tuburculosis misc_feature (1)...(395) n = A,T,C or G 45 vvmsartgva rhgtsgrgcg dvgargndvs vatrkrsrgd rvgnhgarar rmkrvrgavt 60 asrrwagssr tmgtasvsaa tayaswyavd vstvvgdcwd wgmngrhcsd yamvaaagna 120 dysadytava awaaryagsh wgargcyvat mavsawaarg argrvvvtga aaawgvdrgn 180 stgvvaayva srrwgattva vvkvvgvvaa rwrwaggtgv vvsnaawrgg tashgknssg 240 grdrnvsgka dsknysgkgt grtgavvvvv avagrrvmvg vatatsadva yyvvaavard 300 nggagdaahg drrravgvcv savasvnvav gyvyggakgv vgttvttvtw awvtcvvvsy 360 arkarhdshn gtrsddtaas ttscnvssrg gcnyt 395 46 879 DNA Mycobacteria tuburculosis 46 gtgtttgcgt tgagtaataa tctgaaccgt gtgaacgcat gcatggatgg attccttgcc 60 cgtatccgct cacatgttga tgcgcacgcg ccagaattgc gttcactgtt cgatacgatg 120 gcggccgagg cccgatttgc acgcgactgg ctgtccgagg acctcgcgcg gttgcctgtc 180 ggtgcagcat tgctggaagt gggcgggggg gtacttctgc tcagctgtca actggcggcg 240 gagggatttg acatcaccgc catcgagccg acgggtgaag gttttggcaa gttcagacag 300 cttggcgaca tcgtgctgga attggctgca gcacgaccca ccatcgcgcc atgcaaggcg 360 gaagacttta tttccgagaa gcggttcgac ttcgccttct cgctgaatgt gatggagcac 420 atcgaccttc cggatgaggc agtcaggcgg gtatcggaag tgctgaaacc gggggccagt 480 taccacttcc tgtgcccgaa ttacgtattc ccgtacgaac cgcatttcaa tatcccaaca 540 ttcttcacca aagagctgac atgccgggtg atgcgacatc gcatcgaggg caatacgggc 600 atggatgacc cgaagggagt ctggcgttcg ctcaactgga ttacggttcc caaggtgaaa 660 cgctttgcgg cgaaggatgc gacgctgacc ttgcgcttcc accgtgcaat gttggtatgg 720 atgctggaac gcgcgctgac ggataaggaa ttcgctggtc gccgggcaca atggatggtc 780 gctgctattc gctcggcggt gaaattgcgt gtgcatcatc tggcaggcta tgttcccgct 840 acgctgcagc ccatcatgga tgtgcggcta acgaagagg 879 47 1296 DNA Mycobacteria tuburculosis 47 atgtacgaga gacggcatga gcgcggaatg tgcgaccgtg ccgtcgagat gaccgacgtc 60 ggcgctacgg cagcccccac cggacctatc gcgcggggca gcgtcgctcg ggtcggcgcg 120 gcgaccgcgt tggccgttgc ctgcgtctac acggtcatct atctggcggc ccgcgaccta 180 cccccggctt gtttttcgat attcgcggtg ttttgggggg cgctcggcat tgccaccggc 240 gccacccacg gcctcctgca agaaacgacc cgcgaggtcc gctgggtgcg ctccacccaa 300 atagttgcgg gccatcgtac ccatccgctg cgggtggccg ggatgattgg caccgtcgcg 360 gccgtcgtaa ttgcgggtag ctcaccgctg tggagccgac agctattcgt cgaggggcgc 420 tggctgtccg tggggctact cagcgttggg gtggccgggt tctgcgcgca ggcgaccctg 480 ctgggcgcgc tggccggcgt cgaccggtgg acacagtacg ggtcactgat ggtgaccgac 540 gcggtcatcc ggttggcggt cgccgcggca gcggttgtga tcggatgggg tctggccggg 600 tacttgtggg ccgccaccgc gggagcggtg gcgtggctgc tcatgctgat ggcctcgccc 660 accgcgcgca gcgcggccag cctgctgacg cccgggggaa tcgccacgtt cgtgcgcggt 720 gccgctcatt cgataaccgc cgcgggtgcc agcgcgattc tggtaatggg tttcccagtg 780 ttgctcaaag tgacctccga ccagttaggg gcaaagggcg gagcggtcat cctggctgtg 840 accttgacgc gtgcgccgct tctggtccca ctgagcgcga tgcaaggcaa cctgatcgcg 900 catttcgtcg accggcgcac ccaacggctt cgggcgctga tcgcaccggc gctggtcgtc 960 ggcggcatcg gtgcggtcgg gatgttggcc gcagggctta ccggtccctg gttgctgcgt 1020 gttggattcg gccccgacta ccaaactggc ggggcgttgc tggcctggtt gacggcagcg 1080 gcggtagcta tcgccatgct gacgctgacc ggcgccgccg cggtcgcggc cgcactgcac 1140 cgggcgtatt tgctgggctg ggtcagcgcg acggtggcgt cgacgctgtt gctgctgctg 1200 ccgatgccgc tggagacgcg caccgtgatc gcgctgttgt tcggtccaac ggtgggaatc 1260 gccatccatg tggccgcgtt ggcgcggcga cccgac 1296 48 1020 DNA M. tuberculosis 48 gtgaagcgag cgctcatcac cggaatcacc ggccaggacg gctcgtatct cgccgaactg 60 ctgctggcca aggggtatga ggttcacggg ctcatccggc gcgcttcgac gttcaacacc 120 tcgcggatcg atcacctcta cgtcgacccg caccaaccgg gcgcgcggct gtttctgcac 180 tatggtgacc tgatcgacgg aacccggttg gtgaccctgc tgagcaccat cgaacccgac 240 gaggtgtaca acctggcggc gcagtcacac gtgcgggtga gcttcgacga acccgtgcac 300 accggtgaca ccaccggcat gggatccatg cgactgctgg aagccgttcg gctctctcgg 360 gtgcactgcc gcttctatca ggcgtcctcg tcggagatgt tcggcgcctc gccgccaccg 420 cagaacgagc tgacgccgtt ctacccgcgg tcaccgtatg gcgccgccaa ggtctattcg 480 tactgggcga cccgcaatta tcgcgaagcg tacggattgt tcgccgttaa cggcatcttg 540 ttcaatcacg aatcaccgcg gcgcggtgag acgttcgtga cccgaaagat caccagggcc 600 gtggcacgca tcaaggccgg tatccagtcc gaggtctata tgggcaatct ggatgcggtc 660 cgcgactggg ggtacgcgcc cgaatacgtc gaaggcatgt ggcggatgct gcagaccgac 720 gagcccgacg acttcgtttt ggcgaccggg cgcggtttca ccgtgcgtga gttcgcgcgg 780 gccgcgttcg agcatgccgg tttggactgg cagcagtacg tgaaattcga ccaacgctat 840 ctgcggccca ccgaggtgga ttcgctgatc ggcgacgcga ccaaggctgc cgaattgctg 900 ggctggaggg cttcggtgca cactgacgag ttggctcgga tcatggtcga cgcggacatg 960 gcggcgctgg agtgcgaagg caagccgtgg atcgacaagc cgatgatcgc cggccggaca 1020 49 966 DNA M. tuberculosis 49 atgaacgcgc acacctcggt cggcccgctt gaccgcgcgg cccgggtcta catcgccggg 60 catcgcggcc tggtcgggtc cgcgctgcta cgcacgtttg cgggcgcggg gttcaccaac 120 ctgctggtgc ggtcacgcgc cgagcttgat ctgacggatc gggccgcgac gttcgacttc 180 gttctcgagt cgaggccgca ggtcgtcatc gacgcggcgg cccgggtcgg cggcatcctg 240 gccaacgaca cctacccggc cgatttcctg tcggaaaacc tccagatcca ggtcaacctg 300 ctggatgccg ccgtggcggc gcgggtgccg cggctgctgt tcctgggctc gtcgtgcatc 360 tacccgaaac tcgccccgca gccgatcccg gagagcgcgc tgctcaccgg tccgttggag 420 ccgaccaacg acgcgtacgc gatcgccaaa atcgccggca tccttgcggt ccaggcggtg 480 cgccgccaac atggcctgcc gtggatctcg gcgatgccca ccaacctgta cgggccaggc 540 gacaactttt cgccgtccgg ctcgcatctg ctgccggcac tcatccgccg ctatgacgag 600 gccaaagcca gtggcgcgcc caacgtgacc aactggggca ccggcacgcc ccgacgggag 660 ttgctgcacg tcgacgacct ggcgagcgca tgcctgtatc tgctggaaca tttcgacggg 720 ccgacccatg tcaacgtggg aaccggcatc gaccacacca tcggcgagat cgccgagatg 780 gtcgcctcgg cggtaggcta tagcggcgaa acccgctggg atccaagcaa accggacgga 840 acaccacgca aactgctgga tgtttcggtg ctacgggagg cgggatggcg gccttcgatc 900 gcgctgcgcg acggcatcga ggcgacggtg gcgtggtatc gcgagcacgc gggaacggtt 960 cggcaa 966 50 729 DNA Mycobacteria tuberculosis 50 atgaggctgg cccgtcgcgc tcggaacatc ttgcgtcgca acggcatcga ggtgtcgcgc 60 tactttgccg aactggactg ggaacgcaat ttcttgcgcc aactgcaatc gcatcgggtc 120 agtgccgtgc tcgatgtcgg ggccaattcg gggcagtacg ccaggggtct gcgcggcgcg 180 ggcttcgcgg gccgcatcgt ctcgttcgag ccgctgcccg ggccctttgc cgtcttgcag 240 cgcagcgcct ccacggaccc gttgtgggaa tgccggcgct gtgcgctggg cgatgtcgat 300 ggaaccatct cgatcaacgt cgccggcaac gagggcgcca gcagttccgt cttgccgatg 360 ttgaaacgac atcaggacgc ctttccacca gccaactacg tgggcgccca acgggtgccg 420 atacatcgac tcgattccgt ggctgcagac gttctgcggc ccaacgatat tgcgttcttg 480 aagatcgacg ttcaaggatt cgagaagcag gtgatcgcgg gtggcgattc aacggtgcac 540 gaccgatgcg tcggcatgca gctcgagctg tctttccagc cgttgtacga gggtggcatg 600 ctcatccgcg aggcgctcga tctcgtggat tcgttgggct ttacgctctc gggattgcaa 660 cccggtttca ccgacccccg caacggtcga atgctgcagg ccgatggcat cttcttccgg 720 ggcagcgat 729 51 786 DNA Mycobacteria tuburculosis 51 gtgacgtctg ctccgaccgt ctcggtgata acgatctcgt tcaacgacct cgacgggttg 60 cagcgcacgg tgaaaagtgt gcgggcgcaa cgctaccggg gacgcatcga gcacatcgta 120 atcgacggtg gcagcggcga cgacgtggtg gcatacctgt ccgggtgtga accaggcttc 180 gcgtattggc agtccgagcc cgacggcggg cggtacgacg cgatgaacca gggcatcgcg 240 cacgcatcgg gtgatctgtt gtggttcttg cactccgccg atcgtttttc cgggcccgac 300 gtggtagccc aggccgtgga ggcgctatcc ggcaagggac cggtgtccga attgtggggc 360 ttcgggatgg atcgtctcgt cgggctcgat cgggtgcgcg gcccgatacc tttcagcctg 420 cgcaaattcc tggccggcaa gcaggttgtt ccgcatcaag catcgttctt cggatcatcg 480 ctggtggcca agatcggtgg ctacgacctt gatttcggga tcgccgccga ccaggaattc 540 atattgcggg ccgcgctggt atgcgagccg gtcacgattc ggtgtgtgct gtgcgagttc 600 gacaccacgg gcgtcggctc gcaccgggaa ccaagcgcgg tcttcggtga tctgcgccgc 660 atgggcgacc ttcatcgccg ctacccgttc gggggaaggc gaatatcaca tgcctaccta 720 cgcggccggg agttctacgc ctacaacagt cgattctggg aaaacgtctt cacgcgaatg 780 tcgaaa 786 52 894 DNA Mycobacteria tuburculosis 52 atgtcgacaa acccaggacc agccgaaggg gctaaccaag tgatggcaca ggaacattcg 60 gccggcgcgg tacaattcac cgcccacaac gttcgcctcg acgacggaac cttgacgata 120 ccggagtcct cgcgcacgtt agacgaatcg tcctggttca tctcggcgcg cgggattctg 180 gaaaccgtct ttcccgggga caagagccac ctacgcctgg ccgatgtcgg ctgcttggaa 240 ggcgggtacg cggtcgggtt cgcgcgcatg ggatttcagg tcctcgggat cgaggttcgc 300 gagctgaaca tggcggcctg caactacatc aaatcgaaga ccaacctgcc gaatctccgg 360 ttcgtccacg acaacgccct caacatcgcc aaccacgggc tcttcgatac cgtcttctgc 420 tgcggcctct tctaccacct ggagaatccg aagcaatacc tggaaaccct ctcgtcggta 480 acgaacaagc tgctgattct ccagacgcac ttctcgatca tcaaccggag cgataaatgg 540 ctccggttgc ccacgacggc acgacaattg accgatcggt tgctgcggcg gccggcgccg 600 gtgaagttca tgctctcggc gcccaccgaa catgagggac ttcccggtag gtggtttacc 660 gagttttccg acgaccgctc gtttggccag cgcgacaccg caaaatgggc gtcctgggac 720 aatcgccggt cattctggat tcaacgcgag cacctacttc aggccatcaa agacgtcggc 780 gtcgacctgg tgatggagga gtacgacaac ttggaaccaa gcatcgccga gtcgttgctc 840 ggaggttcct atgcggcgaa tcttcgaggc accttcatcg gtatcaagac ccgg 894 53 1119 DNA Mycobacteria tuburculosis 53 gtgccgtacg tccgccgacc accaggccac gacggccgac ggccggcggg cacaggcgat 60 tcacgttcgc catcgcaata cccttgcggc cgcgcaggaa aagggccgac ggtgagtccc 120 cagctttgcc ccaaggtgag catcgtctcg accactcaca accaggcggg ctacgcccgt 180 caggccttcg acagctttct cgaccagcaa accgacttcc cggtggagat catcgtcgcc 240 gacgacgcgt cgaccgatgc caccccggcg atcatccgtg agtacgccga gcggtacccg 300 cacgtgttcc ggccgatctt caggaccgaa aacctcggcc tcaatgggaa cctgaccggc 360 gccctgtcgg ccgctcgcgg cgagtacgtc gcgttgtgcg aggcggacga ctactggatc 420 gatccgctga agctaagcaa acaggtcgca ttcctcgacc ggcaccccaa gacgacggtg 480 tgcttccatc ccgtccgagt gatatgggag gacggccatg ccaaggactc gaagttcccc 540 ccggttcggg tgcggggcaa cttgagcctg gatgcgttga tcttgatgaa cttcatccag 600 accaactcgg ccgtgtaccg tcgcctcgag cgctacgacg acattcctgc cgacgtcatg 660 cccctggact ggtatctgca cgtccggcac gcggtgcatg gcgacatcgc catgttgccc 720 gacaccatgg ccgtgtatcg ccgccacgcc caaggcatgt ggcacaacca ggtggtggac 780 ccgccaaagt tctggttgac gcagggtccg gggcatgcgg cgacgtttga cgcgatgctc 840 gacctgttcc cgggagaccc cgcgcgcgag gagctcatcg ccgtcatggc cgactggatc 900 cttcgccaga tcgccaacgt tccaggcccg gaggggcgcg ccgcgctgca ggaaaccatc 960 gcgcgccatc cccggatcgc catgctggcg ctgcagcacc gcggggcgac acccgcgcgg 1020 cggctcaaga cccagtggcg caagctcgcc gccgcgacgc cgagccgcag ggggctcgtg 1080 gatgtgtggc cctcccggct ccgacgcggc tgtcgagcc 1119 54 282 DNA Mycobacteria tuburculosis 54 atgaccatca actatcagtt cggtgatgtc gacgctcatg gcgccatgat ccgcgctcag 60 gccgggttgc tggaggcgga gcatcaggcc atcgttcgtg atgtgttggc cgcgggtgac 120 ttttggggcg gcgccggttc ggtggcttgc caggagttca tcacccagct gggccgtaac 180 ttccaggtga tctacgagca ggccaacgcc cacgggcaga aggtgcaggc tgccggcaac 240 aacatggcac aaaccgacag cgccgtcggc tccagctggg cc 282 55 294 DNA Mycobacteria tuburculosis 55 atggcaacac gttttatgac ggatccgcac gcgatgcggg acatggcggg ccgttttgag 60 gtgcacgccc agacggtgga ggacgaggct cgccggatgt gggcgtccgc gcaaaacatc 120 tcgggcgcgg gctggagtgg catggccgag gcgacctcgc tagacaccat ggcccagatg 180 aatcaggcgt ttcgcaacat cgtgaacatg ctgcacgggg tgcgtgacgg gctggttcgc 240 gacgccaaca actacgagca gcaagagcag gcctcccagc agatcctcag cagc 294 56 324 DNA Mycobacteria tuburculosis 56 gtgcttttgc ctcttggtcc gcctttgccg cccgacgcgg tggtggcgaa acgggctgag 60 tcgggaatgc tcggcgggtt gtcggttccg ctcagctggg gagtggctgt gccacccgat 120 gattatgacc actgggcgcc tgcgccggag gacggcgccg atgtcgatgt ccaggcggcc 180 gaaggggcgg acgcagaggc cgcggccatg gacgagtggg atgagtggca ggcgtggaac 240 gagtgggtgg cggagaacgc tgaaccccgc tttgaggtgc cacggagtag cagcagcgtg 300 attccgcatt ctccggcggc cggc 324 57 1524 DNA M. tuberculosis 57 atgtcacgcc gagcattcct ggctaaggcg gctggagccg gggcagcggc ggttttgacg 60 gactgggccg caccggtgat cgaaaaggcc tatggtgccg gtccctgctc gggtcatttg 120 accgatatcg agcacatcgt gctgtgccta caggagaaca ggtcgttcga tcactatttc 180 ggcacgcttt ctgccgtcga cgggttcgac actccgacgc cgctgtttca acaaaagggc 240 tggaacccgg agacgcaggc gctggacccc accggcatta cgctgcccta ccgcatcaat 300 accaccgggg gtcccaacgg ggttggcgag tgcgtcaacg acccagacca ccagtggatt 360 gccgcgcact tgtcatggaa cggcggcgcc aatgacggct ggctgccggc gcaggcgcgg 420 acccggtcgg tggccaacac gcccgtggtg atgggctatt acgcacgtcc tgacataccg 480 atccactact tgttggccga taccttcacg atctgcgacc agtacttctc gtcgcttctt 540 ggcgggacga tgcctaaccg gctctattgg atcagcgcca ccgtcaatcc cgacggggat 600 caaggtgggc cgcagatcgt cgaacccgcc atccagccga agttgacctt cacctggcgc 660 atcatgccgc agaacctcag tgacgccggc atcagttgga aggtgtacaa cagcaagctg 720 ctcggcgggc tcaacgacac ttccttgagc cgtaacgggt atgtgggcag tttcaaacag 780 gccgcagatc cgaggtcgga cctggcccgt tatggcatcg ccccggccta cccgtgggat 840 ttcatccgcg acgtcatcaa caacacgctg ccccaggtgt cctgggtcgt tccgttgacc 900 gtcgagtccg aacatccgtc attcccggtg gcagtcggtg cggtgacgat cgtgaacttg 960 ataagggtgt tgctgcgcaa tccggcggtg tgggagaaaa ccgcgttgat catcgcctat 1020 gacgaacatg gcggcttctt cgaccacgtc acaccgctca ccgcgccgga gggcacaccc 1080 ggcgaatgga ttcccaacag tgttgacatc gacaaggtcg acggctccgg cggaatacgt 1140 ggacccatcg gcttgggctt tcgcgtgccc tgcttcgtca tttcgcctta cagtcgcggc 1200 gggctgatgg tccatgatcg gttcgaccac acatcgcagc tgcaattgat cggcaagcgt 1260 ttcggggtgc cggttcccaa cttgacaccc tggcgtgcca gtgtcaccgg cgatatgacg 1320 tcggcattca atttcgcggc cccgccggac ccgtcgccac ccaatctgga ccacccggtc 1380 cgtcaattgc cgaaggtcgc caagtgcgtg cccaatgtgg tgctgggttt cttgaacgaa 1440 ggcctgccgt atcgggtgcc ctacccccaa acaacgccag tccaggaatc cggtcccgcg 1500 cggccgattc ccagcggcat ctgc 1524 58 1536 DNA M. tuberculosis 58 atgtcacgtc gagagttttt gacaaagctc actggcgcag gcgcagcggc attcctgatg 60 gactgggctg caccggtgat tgaaaaggcc tacggcgccg ggccttgtcc cggacatttg 120 accgacatcg agcatatcgt gttgctgatg caggagaacc ggtcattcga ccactatttc 180 ggaacgcttt ccagcaccaa tgggttcaac gccgcgtcgc cggcattcca acaaatgggt 240 tggaacccca tgacgcaggc gttggacccc gccggggtca ccattccgtt ccgcttggac 300 accacccgag gccccttcct ggacggcgag tgcgtcaacg accccgagca ccagtgggtg 360 gggatgcacc tggcctggaa cggtggtgcc aacgacaact ggctgccggc gcaggcgacc 420 acccgcgcag gaccatatgt ccctttgacc atgggttact acacgcgcca agacatcccg 480 atccactatc tgctggccga cacgttcacc atctgcgacg gctaccattg ctcgctgctg 540 acgggcaccc tgcccaaccg gctctactgg ttgagcgcca acatcgaccc cgccggcacc 600 gacgggggac cccaattggt agagccgggc ttcctgccgc tgcagcaatt cagttggcgc 660 atcatgccgg aaaacctcga agatgccggg gtcagctgga aggtgtacca gaacaagggc 720 ctcgggcgat tcatcaacac gcccatcagc aataacgggc tggtgcaggc cttccgccag 780 gcagctgatc cgaggtcgaa cttggcccgc tacggtatcg ccccgaccta ccctggggac 840 ttcgctgccg acgtcagggc caaccggcta cccaaggtct cctggttagt tcccaacatc 900 ctgcagtccg aacaccccgc cctgccggta gcgcttggcg cggtgtccat ggtgaccgcg 960 ctgcggatct tgctgtccaa tcccgcggtg tgggaaaaga ccgcacttat cgtcagctat 1020 gacgagaacg gcggcttctt cgaccacgtc acgcccccca cggcaccgcc cgggacaccc 1080 ggcgaattcg tcacggtgcc caacatcgac gcagtacccg ggtccggtgg cattcgtggt 1140 ccgctcggtc tgggttttcg cgttccctgc attgtcattt cgccgtacag ccgcggcccg 1200 ctgatggtct ccgacacgtt cgaccacacc tcgcaattga agttgattcg cgcccggttc 1260 ggcgtgccgg ttcccaacat gaccgcctgg cgcgacggcg tggttggcga catgacctca 1320 gcgttcaact ttgcgactcc accgaattcg accagaccca acttgagcca cccgttgctg 1380 ggagcgctgc cgaagctgcc gcagtgcatc cctaacgtgg tgttgggaac caccgacggc 1440 gcgttgccga gcattcccta tcgggtgccc tatccgcagg tgatgccaac tcaggaaacc 1500 acacccgtcc gcgggactcc cagcgggctg tgcagc 1536 59 1536 DNA M. tuberculosis 59 atgtcacgtc gagagttttt gacaaagctc actggcgcag gcgcagcggc attcctgatg 60 gactgggctg caccggtgat tgaaaaggcc tacggcgccg ggccttgtcc cggacatttg 120 accgacatcg agcatatcgt gttgctgatg caggagaacc ggtcattcga ccactatttc 180 ggaacgcttt ccagcaccaa tgggttcaac gccgcgtcgc cggcattcca acaaatgggt 240 tggaacccca tgacgcaggc gttggacccc gccggggtca ccattccgtt ccgcttggac 300 accacccgag gccccttcct ggacggcgag tgcgtcaacg accccgagca ccagtgggtg 360 gggatgcacc tggcctggaa cggtggtgcc aacgacaact ggctgccggc gcaggcgacc 420 acccgcgcag gaccatatgt ccctttgacc atgggttact acacgcgcca agacatcccg 480 atccactatc tgctggccga cacgttcacc atctgcgacg gctaccattg ctcgctgctg 540 acgggcaccc tgcccaaccg gctctactgg ttgagcgcca acatcgaccc cgccggcacc 600 gacgggggac cccaattggt agagccgggc ttcctgccgc tgcagcaatt cagttggcgc 660 atcatgccgg aaaacctcga agatgccggg gtcagctgga aggtgtacca gaacaagggc 720 ctcgggcgat tcatcaacac gcccatcagc aataacgggc tggtgcaggc cttccgccag 780 gcagctgatc cgaggtcgaa cttggcccgc tacggtatcg ccccgaccta ccctggggac 840 ttcgctgccg acgtcagggc caaccggcta cccaaggtct cctggttagt tcccaacatc 900 ctgcagtccg aacaccccgc cctgccggta gcgcttggcg cggtgtccat ggtgaccgcg 960 ctgcggatct tgctgtccaa tcccgcggtg tgggaaaaga ccgcacttat cgtcagctat 1020 gacgagaacg gcggcttctt cgaccacgtc acgcccccca cggcaccgcc cgggacaccc 1080 ggcgaattcg tcacggtgcc caacatcgac gcagtacccg ggtccggtgg cattcgtggt 1140 ccgctcggtc tgggttttcg cgttccctgc attgtcattt cgccgtacag ccgcggcccg 1200 ctgatggtct ccgacacgtt cgaccacacc tcgcaattga agttgattcg cgcccggttc 1260 ggcgtgccgg ttcccaacat gaccgcctgg cgcgacggcg tggttggcga catgacctca 1320 gcgttcaact ttgcgactcc accgaattcg accagaccca acttgagcca cccgttgctg 1380 ggagcgctgc cgaagctgcc gcagtgcatc cctaacgtgg tgttgggaac caccgacggc 1440 gcgttgccga gcattcccta tcgggtgccc tatccgcagg tgatgccaac tcaggaaacc 1500 acacccgtcc gcgggactcc cagcgggctg tgcagc 1536 60 1173 DNA Mycobacteria tuburculosis 60 atgattttgg atttttcgtg gttgccgccg gagatcaact cggcgcggat ctatgccggt 60 gcggggtcgg ggccgttgtt tatggcggcg gcggcgtggg aggggttggc tgcggatttg 120 cgggcctcgg cgtcctcgtt tgatgcggtg atcgccgggt tggcggctgg gccgtggtcg 180 ggtccggcgt cggtggcgat ggcgggggcg gcggcgccgt atgtggggtg gttgagtgcg 240 gcggccgggc aggcggagtt gtcggctggt caggctaccg cggcggcgac ggcgtttgag 300 gcggcgttgg cggccacggt gcatccggcg gcggtgacgg cgaatcgggt gttgttgggg 360 gcgttggtgg cgacgaacat tttgggtcag aacacgccgg cgattgcggc cactgagttc 420 gattatgtgg agatgtgggc tcaggacgtg ggtgcgatgg tggggtatca cgcgggggcg 480 gcggcggtgg ctgagacgtt gacgccgttt agtgtgccgc cgctggattt ggcggggttg 540 gcttcccagg ccggtgcgca gttgaccggg atggcgacgt cggtttcggc tgcgttgtct 600 ccgatcgcgg agggtgcggt ggagggggtg ccggctgtgg tggctgcggc gcagtcggtg 660 gcggcggggt tgccggtgga tgcggcgctg caggtggggc aggccgcggc gtatccggcc 720 agtatgttga ttgggccgat gatgcagttg gcgcagatgg ggactacggc caacacggct 780 gggttggccg gtgcggaggc tgcggggttg gctgcggcgg atgtgccgac gtttgccggt 840 gatatcgctt cggggacggg cctaggtggt gccggtggtc tgggtgcggg gatgtcggcg 900 gagttgggta aggcgcggtt ggtgggggcg atgtcggtgc ctccgacctg ggaggggtcg 960 gttcctgcgc ggatggccag ttcggcgatg gcgggtttgg gggctatgcc tgctgaggtg 1020 ccggcggcag gcgggcccat ggggatgatg ccgatgccga tgggtatggg gggtgctggg 1080 gcgggtatgc cggccgggat gatgggccgc ggtggcgcaa atccgcatgt ggtgcaggct 1140 cggcccagtg tggtgccgcg ggtcgggatc gga 1173 61 1062 DNA Mycobacteria tuburculosis 61 atgccggggc ggttcagaaa cttcggtagc caaaacctgg gtagcggcaa catcggcagc 60 accaacgtgg gcagcggcaa catcggcagc accaacgtgg gcagcggcaa catcggcgac 120 acgaacttcg gtaacggaaa caacggcaac ttcaactttg gtagcggcaa taccggcagt 180 aacaacatcg gcttcggaaa caccggcagc gggaatttcg gtttcggaaa cacgggcaac 240 aacaacatcg gtatcgggct caccggcgat ggtcagatcg gcatcggcgg actgaactcg 300 ggcagcggaa acatcggttt cgggaactcc ggcaccggaa acgtcggttt gttcaactcc 360 ggcaccggca acgtaggctt cgggaactcc ggtactgcga acactggatt cgggaacgcg 420 ggcaacgtca acaccggatt ttggaacggc ggcagcacaa acactggcct cgctaacgcc 480 ggcgccggca acacaggctt tttcgacgct ggcaactaca acttcggcag tcttaacgcc 540 ggaaacataa actcgagttt tgggaattcg ggtgacggca acagtggttt cctcaatgct 600 ggcgacgtca actccggtgt gggcaatgcg ggtgatgtca acactggctt agggaactcg 660 ggcaacatca atactggtgg gtttaatccg ggcacgctca acacgggctt cttcagcgcg 720 atgacccaag ctggtccgaa ttcgggcttc ttcaacgccg gtaccggtaa ctctggtttc 780 gggcacaacg acccggctgg cagtggcaac tcgggcattc agaactcggg cttcggcaac 840 tcgggctatg tcaataccag caccacaagc atgttcggcg gtaactcagg ggtgctcaac 900 acgggctacg gcaactcagg tttctataac gcggccgtca acaacaccgg gatttttgtg 960 accggcgtga tgagttcggg atttttcaat tttgggacgg gcaactcggg cctgctggtc 1020 agcggcaatg ggctttcggg tttcttcaag aacttgttcg ga 1062 62 654 DNA Mycobacteria tuburculosis 62 atgagccgac tcctagcttt gctgtgcgct gcggtatgca cgggctgcgt tgctgtggtt 60 ctcgcgccag tgagcctggc cgtcgtcaac ccgtggttcg cgaactcggt cggcaatgcc 120 actcaggtgg tttcggtggt gggaaccggc ggttcgacgg ccaagatgga tgtctaccaa 180 cgcaccgccg ccggctggca gccgctcaag accggtatca ccacccatat cggttcggcg 240 ggcatggcgc cggaagccaa gagcggatat ccggccactc cgatgggggt ttacagcctg 300 gactccgctt ttggcaccgc gccgaatccc ggtggcgggt tgccgtatac ccaagtcgga 360 cccaatcact ggtggagtgg cgacgacaat agccccacct ttaactccat gcaggtctgt 420 cagaagtccc agtgcccgtt cagcacggcc gacagcgaga acctgcaaat cccgcagtac 480 aagcattcgg tcgtgatggg cgtcaacaag gccaaggtcc caggcaaagg ctccgcgttc 540 ttctttcaca ccaccgacgg cgggcccacc gcgggttgtg tggcgatcga cgatgccacg 600 ctggtgcaga tcatccgttg gctgcggcct ggtgcggtga tcgcgatcgc caag 654 63 489 DNA Mycobacteria tuburculosis 63 gtgtgctgca atggcgtggt gactccgggt gatccagccg acattgcagc gatcaaacag 60 ctcaaatacc ggtatctgcg ggcattggac accaagcatt gggacgactt caccgacacc 120 ctggccgagg atgtcaccgg cgattacggg tcatcggtcg gtacggagct gcacttcacc 180 aaccgcgccg acctggtcga ctacctgcgc caggcactcg gcccgggtgt catcaccgaa 240 caccgggtca cccatccgga aatcaccgtg accggcgata ccgcaaccgg catctggtac 300 ctgcaagacc gggtcatcgt cgccgagttc aatttcatgc tcatcggcgc cgcgttctac 360 cacgaccagt accgacgaac caccgacggc tggcggatca gcgccaccgg ctacgaccga 420 acctacgagg cgaccatgtc gttggcgggc cttaacttca acatcaggcc gggccgcgcg 480 ctggccgat 489 64 1227 DNA Mycobacteria tuburculosis 64 atgagccaat cccggtacgc ggggttgtcc cgcagcgagc tggcagttct gttacccgag 60 ctgttgttga tcggccagct gatcgaccga tcgggcatgg cctggtgtat acaggcattc 120 ggccgccagg agatgctgca gatcgccatc gaggagtggg cgggcgccag cccgatctac 180 accaagcgca tgcaaaaggc gctgaacttc gagggcgacg acgtgcccac catcttcaag 240 gggctacagc tcgacatcgg cgcgccgccg caattcatgg acttccgttt caccctgcac 300 gaccgctggc acggcgagtt tcacctcgac cactgcggtg cgctgctcga cgtggagccg 360 atgggcgacg actacgtcgt cggcatgtgc cacaccatcg aagatccgac gttcgacgcc 420 accgcgatcg cgaccaaccc gcgcgcgcag gtgcgcccca tccaccggcc gccccgcaag 480 ccggccgacc ggcatccgca ctgtgcgtgg accgtcatca tcgacgagtc ctatcccgag 540 gctgagggta ttccggcgct ggacgcggtc cgtgaaacca aagctgccac ctgggaatta 600 gacaacgtcg atgcgtctga cgacgggctg gtggactatt cgggtccgct ggtgtccgac 660 ctggacttcg gggcgttctc gcattccgca ctggtgcgga tggccgatga ggtctgcctg 720 caaatgcacc tgctgaatct gtcgttcgcc attgccgtgc ggaaacgggc caaagccgat 780 gctcaactgg ccatttcggt gaacacccgc cagttgatcg gagtggccgg gctgggcgca 840 gaacgcattc accgtgcgat ggctttaccc ggcggaatcg aaggcgcgtt aggtgtgctg 900 gagctacacc cgctgctcaa cccggccggt tacgtgctgg ccgaaacgtc gccggaccgt 960 ctggtggtgc acaactcgcc agcccacgcc gacggcgcct ggatttcgtt gtgcacaccg 1020 gcatccgtgc agccgttgca ggccatcgcc accgctgtag acccgcatct gaaggttcgg 1080 atcagcggga cggacaccga ctggaccgcg gaactcatcg aggccgatgc cccagcgagc 1140 gaactgccgg aggtgttggt agccaaggtc agtcgcggat cggtcttcca gttcgagccg 1200 aggcgctcac tgccgttgac cgtgaaa 1227 65 1860 DNA Mycobacteria tuburculosis 65 atgtacgacc cgctggggtt gtcgatcggg accacaaacc tggtcgcggc gggtaacgga 60 ggtccgccgg ttactcgtcg cgccgtgctg accctgtacc cgcattgcgc accgaaaatc 120 ggtgtgccta gccagaaccc gaacttgatc gagccgggcg ccctaatgag cggctttgtt 180 gagcgcattg gagatgcggt ggcgctggtg tctcccgacg gatccgtgca cgatccagac 240 ctcttgctgg tcgaggcgct ggatgcgatg gtgctgaccg ccggtgcgga cgcgagttcc 300 tcggagatcg ccattgccgt tcccgcgcat tggaagcccg gagctgtaca cgcactgcgt 360 aacggtttgc ggacgcacgt cggcttcgtc cgcagcggca tggcgccgcg cctggtttcc 420 gatgcgatcg cggcgttgac cgcggtgaac tcggaattgg gcctgcccca cggcagtgtg 480 gtggggttgc ttgatttcgg tggctccgcg acttacgtca ccttggtgga gaccaagtcg 540 gattccagga cgtcggattt ccagcccgtt agtgccacgg cacggtacca ggacttttcc 600 ggtagtcaga tcgaccaggc tttgctgctt cgggtcatcg accaattcgg gtacggcgat 660 gacgtcgatc cggccagtac cgccgcggtc gggcaactcg gccaactcag ggagcagtgc 720 cgtgcggcaa aggaacgact gtccaccgac gttgccacgg aattgttcgc tgagcttgcc 780 gggtgcagct cgagcatcga gatgactcgg gaacagctcg aagacctgat ccaggatcca 840 ttgaccggct tcatctacgc gttcgacgac atgctggcgc gccacaacgc gagctgggcg 900 gatctcgcgg cggtggtcac cgtcggcggt ggtgccaata ttccccttgt gactcaacgt 960 ctttcgttcc acactcgtcg acctgtgctg accgcgtcgc aacccgggtg cgcggcggcg 1020 atgggtgcgt tgctgctcgc caaccgtggg ggagagcgcg attcgcgaac gcggacgtcc 1080 atcggcctcg ccacggccgc agccgccggc accagtgtca tcgagctgcc ggccggcgac 1140 gtcatggtca tcgaccatga ggccttgacc gatcgcgagt tggcctggtc gcagaccgac 1200 ttcccaagcg aagctccggc gcgtttcgag ggcgactcgt ataacgaagg cggcccctgc 1260 tggtcgatgc gtctgaacgc ggtcgagccc cccaaaggac cagcgtggcg gcgaatccgg 1320 gtgtcgcagt tgctcatcgg ggtgtcggcg gtagtggcca tgaccgcgat cgggggcgtg 1380 gcattgacgt tgacagccat cgagagacgc ccaagcccgc taccaacccc aattgtgccc 1440 ggcctggccc cgatgccgcc cggatccgtc gtgcctagct cgcgcgcacc gaccccgccg 1500 ccaccgccgt cgaccgttgc gccgcttccc agtgcggcac cggccccgac gacggtcgcg 1560 ccggcaccgc cgccgcccac acaggtggtg acgaccacga cagcgccacc cgtcaccacg 1620 acgccgaggc cgtcgccgac caccacaacg accaccgcgc caccgtcgac aacgacgaca 1680 accgagccgc cggtgacgac cacttcgacg attccaacga ttccgacgac tacgacgacg 1740 gtgaagatga ccacggagtg gttgcacgtc ccgtttttgc ccgttccgat cccggtcccg 1800 attccgcaaa atccgggtgc cggcgaaccg cagaacccgt tcggaagcct tggctctggg 1860 66 720 DNA M. tuberculosis 66 atgatccgat tggtccgtca ttcgatcgcc ctggtggccg ccggccttgc cgccgcattg 60 tcggggtgcg attcccacaa ctcgggatcg ctcggtgccg atccgcggca ggtgaccgtg 120 ttcggatccg ggcaagtgca gggtgtgccg gacacgttga tcgctgacgt cggcattcag 180 gtcaccgcgg ccgacgtcac cagcgcgatg aaccagacca atgatcgcca gcaagcggtg 240 atcgatgcac tggtgggtgc cggcctggac cgcaaggaca tccgcaccac cagggtcacc 300 gtggcaccgc agtacagcaa tccggagccg gccggaaccg ccaccatcac cgggtatcgg 360 gcagacaacg acatcgaggt gaagatccac ccgaccgacg ccgcgtcgcg gctgctggcc 420 ctcgtcgtca gcaccggcgg tgacgccacc cggatcagct cggtcagcta ctcgattggc 480 gacgactcgc agctggtgaa ggatgcccgg gcgcgcgcct tccaagacgc caagaaccgt 540 gcggaccagt acgcacaact gtcggggctg cggctaggca aggtgatctc gatctccgag 600 gcatctggcg ccgcgcccac gcacgaggcg ccggcgccgc cgcgcggcct atccgcggtg 660 ccgctggaac ccggccagca gacggtgggc ttctcggtca cggtggtctg ggaactgacc 720 67 297 DNA Mycobacteria tuburculosis 67 atgtcgatca tgcacgccga gccagagatg ctggctgcga ccgcggggga actgcagtcg 60 atcaacgccg ttgcgcgggc cggaaatgca gcggtggcgg gcccgacgac gggtgtggtt 120 ccggccgccg ctgatttggt gtccctgcta accgcctccc agtttgccgc gcatgcacag 180 ctgtaccagg cgattagtgc cgaggcgatg gcggtccagg agcagttggc gaccacgctg 240 ggcatcagcg ccggttcata tgcggccacc gaggctgcca acgccgccac gatcgct 297 68 1239 DNA Mycobacteria tuburculosis 68 atgctggact ttgctcagtt accgccggag gtcaactccg cgctgatgta cgccggaccc 60 ggttcgggac cgatgctggc tgccgcggcg gcctgggagg cgctggccgc cgagttgcaa 120 accacggcgt ccacctacga cgctctgatc actggcctgg ccgacgggcc atggcagggg 180 tcctccgcgg cgtccatggt ggctgccgcc acgccccagg tggcgtggtt gaggagcacc 240 gccgggcagg ccgagcaagc cggcagccaa gcggtggcag cggcgagtgc ttatgaggcg 300 gcgtttttcg cgaccgtgcc gcccccggag atcgcggcca acagggcgtt gttgatggcg 360 ttgctggcga cgaacttcct tggccagaac acggcggcga tcgcggccac cgaggcgcaa 420 tacgccgaga tgtgggccca ggatgcggcc gcgatgtacg gctatgctgg cgcgtcggcg 480 gcggcgacgc agttgtcgcc attcaatccg gcggcgcaga ccatcaaccc ggccgggctg 540 gccagccagg ccgcatctgt cggacaagct gtcagcgggg ccgcaaatgc gcaagcactc 600 accgacattc ctaaagcgtt gtttgggctt agcggaatct tcaccaatga accgccttgg 660 ctcaccgacc ttggcaaggc gctcggtttg accgggcaca cctggtcctc ggacggtagc 720 gggctcatcg tgggcggagt gcttggcgac tttgtgcagg gtgtgaccgg gtcggccgaa 780 cttgatgcca gcgtggccat ggacacgttc ggcaaatggg tctcgcccgc tcggctcatg 840 gtcacccaat tcaaggacta ctttggcctg gcgcacgacc tgccgaagtg ggcgagtgaa 900 ggcgccaaag ccgccggtga ggccgccaag gcgttgccgg ccgccgttcc ggccattccg 960 agtgctggcc tgagcggcgt tgcgggcgcc gtcggtcagg cggcgtcggt cgggggattg 1020 aaggttccgg ccgtttggac cgccacgacc ccggcggcga gccccgcggt gctggcggcg 1080 tccaacggcc tcggagccgc ggccgccgct gaaggttcga cacacgcgtt tggcgggatg 1140 ccgctcatgg gtagcggtgc cggacgtgcg tttaacaact tcgctgcccc tcgatacgga 1200 ttcaagccga ccgtgatcgc ccaaccgccg gctggcgga 1239 69 294 DNA Mycobacteria tuburculosis 69 atgacctcgc gttttatgac ggatccgcac gcgatgcggg acatggcggg ccgttttgag 60 gtgcacgccc agacggtgga ggacgaggct cgccggatgt gggcgtccgc gcaaaacatt 120 tccggcgcgg gctggagtgg catggccgag gcgacctcgc tagacaccat gacccagatg 180 aatcaggcgt ttcgcaacat cgtgaacatg ctgcacgggg tgcgtgacgg gctggttcgc 240 gacgccaaca actacgaaca gcaagagcag gcctcccagc agatcctcag cagc 294 70 282 DNA Mycobacteria tuburculosis 70 atgaccatca actatcaatt cggggacgtc gacgctcacg gcgccatgat ccgcgctcag 60 gccgggtcgc tggaggccga gcatcaggcc atcatttctg atgtgttgac cgcgagtgac 120 ttttggggcg gcgccggttc ggcggcctgc caggggttca ttacccagct gggccgtaac 180 ttccaggtga tctacgagca ggccaacgcc cacgggcaga aggtgcaggc tgccggcaac 240 aacatggcac aaaccgacag cgccgtcggc tccagctggg cc 282 71 1185 DNA Mycobacteria tuburculosis 71 atgaaggcac cgttgcgttt tggcgttttc atcacgccat tccatccgac cggtcaatcc 60 ccgaccgtgg cgttgcaata cgacatggag cgcgtcgttg cgctggaccg gctcggctac 120 gacgaggcgt ggtttggcga acaccactcc ggtggctacg agctgatcgc ttgcccggag 180 gtgtttatcg cggccgcagc ggaacggacc acccacatcc ggctaggtac cggagtggtt 240 tcgctgccct accatcatcc gctaatggtg gccgaccgtt gggtgctgct ggatcacctg 300 acccgtgggc gggtcatgtt cggcaccggc cccggcgcgc tgccgtcgga cgcctacatg 360 atgggcatcg atccggtcga gcagcgacga atgatgcagg agtccctcga ggcgattctc 420 gcgctgttcc gtgccgcacc tgacgagcga atcgaccgcc actccgactg gttcaccctg 480 cgtgaagcgc aattgcacat ccgcccctac acctggccgt accccgaaat cgctaccgca 540 gccatgattt cgccatcggg tccgcgactg gccggtgcgc tgggcacgtc gctgttatca 600 ctgtcgatgt cagtgcccgg cggctacgct gcgctggaaa cagcgtgggg cgtggtgcgg 660 gagcaggccg ccaaagctgg gcggggcgag ccggatcgcg ccgattggcg ggtgttgagc 720 atcatgcact tgtcggacag ccgcgaccag gcgatcgacg actgcactta cgggttaccc 780 gacttctcga ggtacttcgg cgcggcaggg tttgtcccgt tggcgaacac cgtggaaggc 840 acccagtcgt ctcgggaatt cgtcgagcaa tacgcggcca agggaaattg ctgcatcggc 900 acgcccgatg acgcgatcgc ccacattgaa gacttgctgc accggtcggg tggcttcgga 960 acgttgctac tgctcggcca cgactgggcc ccgccaccgg caacctttca ctcctatgag 1020 ctgttcgccc gtgctgtgat tccttatttc aagggacaac tcgcggcgcc gcgggcgtcg 1080 cacgaatggg ctagaggcaa gcgcgaccaa ttgattggcc gcgccggcga agcggtcgtc 1140 aaagccatca ccgagcacgt cgccgaacaa ggggaagcgg gcagc 1185 72 966 DNA M. tuberculosis 72 atgggcgcac ctaccgaacg gttagttgat accaacggcg tgcgactgcg agtggtcgag 60 gccggtgagc ccggcgcacc cgtggtgata ctggcccacg gctttcccga actggcctat 120 tcatggagac accagattcc tgcgcttgcc gacgccggct accacgtgtt ggctcccgat 180 cagcgcggtt acggcggatc gtctcgccca gaggcgatcg aggcctacga cattcaccgg 240 ttgaccgctg acctagtggg cctactagat gatgtcggtg ccgagcgggc ggtctgggtt 300 ggtcatgact ggggtgccgt ggtggtgtgg aacgcgccac tgctgcacgc tgaccgagtc 360 gccgccgttg ccgcgttgag cgtccccgcg ctgccccggg cacaggtgcc gccgacgcaa 420 gcgttccgca gcaggtttgg ggagaacttc ttctacatcc tttatttcca ggagcccggc 480 atcgccgacg ccgaactcaa tggcgacccg gcccgcacga tgcgccgaat gatcggcggt 540 ctgcgccctc cgggcgatca gagcgcggca atgcgtatgc tggcgcccgg ccccgacggc 600 tttatcgatc ggcttccgga gccggccggg ttgccggcct ggattagtca ggaggaactc 660 gaccactaca tcggcgagtt cacccgcacc ggtttcaccg gcggcctgaa ctggtaccgc 720 aacttcgacc gcaactggga gaccacggcc gacctcgccg gcaagacgat ctccgtgccc 780 tcgttgttca ttgcgggcac agccgatccc gtcttgacgt tcacccgcac cgaccgcgct 840 gcggaggtga tctccggccc gtatcgcgag gtgctgatcg acggggccgg tcactggctg 900 cagcaggaac gtcccggtga ggtgaccgcg gccctgctgg agttcctgac ggggttggag 960 ttgcga 966 73 1365 DNA Mycobacteria tuburculosis 73 gtgaataccg atgtgctggc tggcctgatg gccgagctgc ccgaggggat ggtggtcacc 60 gaccccgccg tcaccgacgg ctaccggcaa gaccgggcct ttgacccttc ggccggcaaa 120 ccgctggcaa tcatccggcc acggcgcacc gaagaggtgc agacggtgct gcgttgggcc 180 agtgcgaacc aggtgcccgt ggtgacccga ggagccggta gcggcctttc gggcggggcg 240 accgccctgg atggcgggat cgtgctgtcc accgaaaaga tgcgcgacat caccgtcgac 300 ccggtcaccc gcaccgcagt gtgccagccc ggcctgtaca acgccgaggt gaaggaggcc 360 gccgccgaac acggcctgtg gtatcccccg gatccgtcgt cgttcgagat ctgcagcatc 420 ggcggcaaca tcgccaccaa cgccggcggg ctgtgctgcg tgaagtacgg cgtcacaggc 480 gactacgtac tgggcatgca ggttgtgctg gccaacggca ccgcggtccg gctgggcggc 540 ccacggctca aggacgtcgc cgggctttcc ctgaccaaac tgttcgtcgg cagcgaaggc 600 acgctgggcg tcatcacgga ggtgacgttg cgactgctgc ccgcacagaa tgcatcgagc 660 atcgtggtgg ccagcttcgg ctcggtgcag gcggcggtcg atgcggtgct cggggttacc 720 ggccgacttc gccccgcgat gctggagttc atggattcgg tggcgatcaa cgccgtcgag 780 gacaccttgc ggatggacct ggaccgcgat gcggcggcca tgctggtggc tggttctgat 840 gaacgtggcc gcgcggccac cgaagacgcc gccgtgatgg ccgccgtgtt cgccgaaaac 900 ggtgcgatag acgtgttttc gaccgacgac ccggatgagg gcgaggcgtt cattgcggcc 960 cggcggttcg ccattccggc ggtcgagagc aagggggcgt tgctgctcga ggacgtcggg 1020 gtaccgctgc ccgcactggg cgaactggtc accgggattg cgcgcatcgc cgaggagcgg 1080 aatctgatga tctcggtgat cgcccacgcc ggggacggca atacccaccc gttgctggtg 1140 tacgaccccg cagatgccgc gatgctagag cgcgcccacc tcgcgtacgg cgaaatcatg 1200 gacctggccg tcggcctggg cggcacgatc accggcgaac acggcgtggg ccggttgaaa 1260 cggccgtggt tggccggcta tctcgggccc gacgtcctgg ccctcaacca gcgcatcaag 1320 caagcgctgg acccccaggg catcctcaat cccggctcgg cgatc 1365 74 1215 DNA Mycobacteria tuburculosis 74 atgacatcag taatgtctca cgaattccag ctcgccaccg ccgaaacctg gccgaatccg 60 tggccgatgt accgcgcgtt gcgcgaccac gacccggtgc accacgtcgt cccgccgcag 120 cgtcccgagt acgactacta cgtgctgtcc cggcacgccg acgtctggtc ggcagcgcgg 180 gaccatcaga cgttctcgtc ggcgcaaggc ttgaccgtta actacggcga gctggaaatg 240 attggactgc acgacacccc gcccatggtg atgcaggatc cgccggtcca caccgagttt 300 cgcaagctgg tgtcgcgcgg cttcacgcca cgacaggtcg aaaccgtcga gcccacggtg 360 cgcaagttcg tcgttgagcg gctcgaaaag ctgcgcgcca acggtggcgg cgacattgtc 420 accgaactat tcaaaccgct cccgtcgatg gtggtggcgc actatctcgg tgttcccgaa 480 gaggattgga cgcaattcga cgggtggacc caggccatcg tggcggcgaa cgcggttgac 540 ggcgccacca ccggcgcact ggacgcggtc ggctcgatga tggcctactt caccgggctg 600 atcgagcgac gccgcaccga gcccgccgac gacgccatct cccacctggt agccgccggg 660 gtcggcgccg acggcgacac cgccggcaca ctgtccatac tggcgttcac gttcaccatg 720 gtcaccggcg gcaacgacac cgtcaccggc atgctaggcg gttcgatgcc gttgctgcac 780 cggcggcccg accagcgccg gctgctgctg gatgacccag agggcatccc cgacgcggtc 840 gaggagctgc tgcggctcac ctcgccggtg caggggctgg cgcgcacaac cacgcgcgac 900 gtcacgatcg gtgacaccac catcccggcc ggtcgccggg tgctgctgct gtacggctcg 960 gccaaccgtg acgaacgcca atacggcccg gacgcagccg aactcgatgt cactcggtgc 1020 ccgcgcaaca tcttgacctt cagccacggc gcccaccact gcctgggtgc ggccgcggcc 1080 cggatgcaat gccgggtggc gctgaccgaa ctgctggccc ggtgcccgga cttcgaggtg 1140 gccgagtcac gcatcgtgtg gtccggcggc agttatgtcc ggcgtccgct gtcggtgccg 1200 ttccgagtga catcc 1215 75 606 DNA Mycobacteria tuburculosis 75 atggcgggta ccgactggct gtccgcgcgt cggaccgagt tagccgcaga tcggatactc 60 gacgccgccg agcgactctt tacgcagcgt gacccggcgt cgatcggcat gaacgagatc 120 gccaaggccg caggctgttc gcgcgcaaca ctgtatcggt acttcgacag ccgcgaggcg 180 ctgcgaaccg cgtacgtgca ccgcgagacc cgccggctcg gccgcgagat catggtgaag 240 atcgccgatg tcgtcgaacc tgccgaacgg ctgctggtga gcatcaccac gacgttgcgg 300 atggtccgcg acaaccccgc gttggccgcg tggtttacca ccacccgccc accgatcggc 360 ggcgagatgg ccggacggtc cgaggtgatc gcggccctgg ccgcggcatt cctcaactca 420 ctaggtcccg acgatccgac caccgtcgaa cgccgcgccc gctgggtggt ccggatgctc 480 acatcgctgc tgatgttccc cggccgtgac gaagccgacg aacgagcgat gatcgcggag 540 ttcgtcgtcc cgatcgtgac acctgcttct gccgccgcta ggaaggccgg tcaccctgga 600 cccgag 606 76 534 DNA Mycobacteria tuburculosis 76 atgcatccaa tgataccagc ggagtatatc tccaacataa tatatgaagg tccgggtgct 60 gactcattgt ctgccgccgc cgagcaattg cgactaatgt ataactcagc taacatgacg 120 gctaagtcgc tcaccgacag gctcggcgag ctgcaggaga actggaaagg tagttcgtcg 180 gacttgatgg ccgacgcggc tgggcggtat ctcgactggc tgactaaaca ctctcgtcaa 240 attctggaaa ccgcctacgt gatcgacttc ctcgcatacg tctatgagga gacacgtcac 300 aaggtggtac ccccggcgac tatcgccaac aaccgcgagg aggtgcacag gctgatcgcg 360 agcaacgtgg ccggggtaaa cactccagca atcgcaggac tcgatgcaca atatcagcag 420 taccgggccc aaaatatcgc tgtcatgaac gactatcaaa gtaccgcccg gtttatccta 480 gcgtatctgc cccgatggca ggagccgccg cagatctacg ggggcggggg cggg 534 77 1230 DNA Mycobacteria tuburculosis 77 gtggccacga tagcccaacg gctgcgtgac gaccacgggg tggcggcgtc ggagtcgtcg 60 gtgaggcgtt ggatcgcaac gcatttcgcc gaggaggtgg cccgcgagag agtcacggtg 120 ccgcgcggac cggtcgatgc gggtagtgag gcgcagatcg attacgggcg gctgggcatg 180 tggttcgacc cggccaccgc gcgccgggtc gcggtgtggg cgttcgtgat ggtgctggcg 240 ttctcccgac acctgttcgt gcgtccggtc atccggatgg accaaaccgc ttggtgtgct 300 tgccatgtcg ccgcattcga attcttcgac ggggtgccgg cgcggctagt gtgtgacaac 360 ctcaggaccg gggtggacaa gcccgacctg tacgacccgc agatcaaccg ctcctacgcc 420 gagctggcca gccactacgc cacgctggtc gacccggccc gcgccagaaa acccaaagat 480 aaaccccgcg tggagcggcc gatgacctat gtgcgggact cgttttggaa aggccgcgag 540 ttcgattcgc tggcccagat gcagcaggcg gcggtcacct ggagcaccga agtggccggg 600 cttcggtact tacgtgcctt ggagggcgcc caacccctgc ggatgttcga agctgtggag 660 caacaagcgt tgatcgcatt gccgcccagg gcatttgaac tcaccagctg gtcgatcggc 720 accgtcgggg tggacacgca cctcaaagtt ggcaaggcac tctattccgt gccgtggcgg 780 ctgatcgggc aacgcctgca cgcgcgcacc gccggtgatg tggtgcagat cttcgccggc 840 aacgatgtgg tggccaccca tgtgcgccga cccagcgggc gctccaccga cttctcccac 900 tacccaccgg agaagatcgc cttccacatg cgcaccccga cctggtgtcg acacaccgcc 960 gaactggtcg gcccagccag ccagcaagtg atcgccgaat tcatgcgcga caacgccatc 1020 caccacctac ggtcggccca aggcgtgctc gggctacgcg acaaacacgg ctgcgaccgg 1080 ctggaggccg cctgcgcccg cgccatcgag gtcggcgacc cgagctatcg caccatcaag 1140 ggcatccttg ttgccggcac cgaacacgcc gccaacgagc cgaccaccag tagtccggca 1200 agcaccgctg ggggcgttcc tgcgcggccc 1230 78 753 DNA Mycobacteria tuberulosis 78 atgtctatct gtgatccggc gctgcgtaat gcgctacgta ccctgaaact gtccggcatg 60 ctcgacaccc tcgacgcccg cctggcccaa acccgcaacg gcgacctggg gcatctggaa 120 ttcctgcaag cgttgcgtga agacgagatc gcccgccgcg agtccgccgc cctgacacga 180 cgattacgcc gcgccaagtt cgaagcccaa gccaccttcg aagacttcga cttcactgcc 240 aacccgaaac tgcccggtgc gatgttgcgc gatctggccg cgctgcgctg gctggatgcc 300 ggcgaatcgg tcatcctcca cggcccggtc ggcgtcggaa aaacccatgt agcacaagca 360 cttgtccacg ccgtggcccg ccgcggcggc gacgtgcgct tcgccaaaac ctcccgcatg 420 ctctccgacc tcgccggcgg gcacgccgac cgatcctggg gccaacgcat ccgcgaatac 480 accaagccgc tcgtgctcat tctggacgac ttcgcgatgc gtgagcacac cgccatgcac 540 gctgatgacc tctacgagct catcagcgac cgcgccatca ctggcaaacc gctgatcttg 600 accagcaacc gcgcaccgaa taactggtac ggcctgttcc ccaaccccgt cgtcgccgaa 660 tcactcctgg atcggctcat caacaccagc caccaaatcc tcatggacgg acccagctac 720 cgaccccgca agagacccgg ccgcaccacc agc 753 79 696 DNA Mycobacteria tuberulosis 79 atgcatctaa tgatacccgc ggagtatatc tccaacgtaa tatatgaagg tccgcgtgct 60 gactcattgt atgccgccga ccagcgattg cgacaattag ctgactcagt tagaacgact 120 gccgagtcgc tcaacaccac gctcgacgag ctgcacgaga actggaaagg tagttcatcg 180 gaatggatgg ccgacgcggc tttgcggtat ctcgactggc tgtctaaaca ctcccgtcag 240 attttgcgaa ccgcccgcgt gatcgaatcc ctcgtaatgg cctatgagga gacacttctg 300 agggtggtac ccccggcgac tatcgccaac aaccgcgagg aggtgcgcag gctgatcgcg 360 agcaacgtgg ccgggggtaa acactccagc aatcgcagac ctcgaggcac aatacgagca 420 gtaccgggcc gaaaatatcc aagcaatgga ccgctatcta agttggaccc gatttgcgct 480 atcgaagctg ccccgatggc gggagccgcc gcagatccac aggagcgggt aggtccaaga 540 ggccggcgcg gtcttgcagg ccagcaacaa tgccgcggtc gaccaggccc atcgcttcgc 600 tgctcgcacg acacaccgcg gtttcagatg aatcaggcgt ttcacaccat ggtgaacatg 660 ttgctgacgt gttttgcatg tcaggagaaa ccgaga 696 80 528 DNA Mycobacteria tuberulosis 80 atgcatccaa tgataccagc ggagtatatc tccaacataa tatatgaagg cccgggcgct 60 gactcattgt ttttcgcctc cgggcaattg cgagaattgg cttactcagt tgaaacgacg 120 gctgagtcgc tcgaggacga gctcgacgag ctggatgaga actggaaagg tagttcgtcg 180 gacttgttgg ccgacgcggt tgagcggtat ctccaatggc tgtctaaaca ctccagtcag 240 cttaagcatg ccgcctgggt gatcaacggc ctcgcgaacg cctataacga cacacgtcgg 300 aaggtggtac ccccggagga gatcgccgcc aaccgcgagg agaggcgcag gctgatcgcg 360 agcaacgtgg ccggggtaaa cactccagca atcgcagacc tcgatgcaca atacgaccag 420 taccgggccc gcaatgtcgc tgtaatgaac gcctatgtaa gttggacccg atctgcgcta 480 tcggatctgc cccggtggcg ggaaccgccg cagatctaca ggggcggg 528 81 1170 DNA M. tuberculosis 81 atgatcatcg ttgtcgggat cggcgccgac ggcatgaccg gtctctccga gcattctcgc 60 tccgaattgc gcagggccac agtaatttac ggctcgaaac ggcaacttgc cctgctcgac 120 gataccgtca ccgccgagcg ctgggagtgg ccgacgccga tgctgcccgc ggtgcaaggc 180 ctgtcaccgg atggggctga cctacacgtg gttgccagcg gcgacccgtt gttgcatggt 240 atcggctcca ccctgatccg gctgttcggc cacgacaacg tgaccgtgtt gccgcacgtg 300 tccgcggtga cgttggcgtg cgcccggatg ggctggaacg tgtatgacac cgaggtgatc 360 agcctggtca ccgcgcaacc acacaccgcg gtgcgccgcg gcggccgggc catcgtgctg 420 tccggcgatc ggtccacccc gcaggcgctg gcggtgctgc tgaccgagca cggtcgcggt 480 gactccaagt tcagcgtgct cgaacagctt ggcggcccgg ccgaacgccg ccgcgacggt 540 acggcccggg catgggcctg cgacccaccc ctcgatgtcg atgagctcaa cgtgatcgcc 600 gtgcgctacc tgctcgacga gcgcacgtcg tgggcacccg acgaggcatt cgcgcacgac 660 gggcagatca ccaaacaccc gatccgcgtg ctgaccctgg ctgcgctggc gccaaggccc 720 gggcagcggt tatgggacgt cggcgcgggc tcaggcgcca tcgcggtcca gtggtgtcgg 780 agctggccgg gctgcaccgc ggtggcgttc gagcgcgacg aacggcgccg ccgcaacatt 840 gggttcaatg ccgcggcctt cggggtgagc gtcgacgtgc gcggcgacgc gcccgatgcg 900 ttcgacgacg ccgcacggcc gtcggtgatt tttcttggcg gtggtgtaac ccagccaggc 960 ctgcttgagg cctgcctgga cagcctgccc gcaggcggga acttggtcgc caacgctgtc 1020 accgtcgaat cggaagccgc tctggcgcat gcatattcgc gcctcggtgg cgagctacga 1080 cgattccagc actatctcgg cgaaccgctg ggcggcttca ccggttggcg cccacagctg 1140 ccggtcaccc agtggtcggt gaccaagcga 1170 82 747 DNA Mycobacteria tuberulosis 82 gtggacgaca cgggcgctgc tccggtagta attttcggcg gccgcagcca gatcggcggc 60 gaactcgcgc gacgcctggc tgccggggcg acgatggtgc tggccgcgcg gaacgccgat 120 caactcgccg accaggccgc cgcactccgc gcagctggcg ctatagcggt gcacacccgg 180 gagttcgacg ccgacgacct ggccgcacac ggcccgttgg tcgcttcgct cgttgccgag 240 cacggcccca tcggcaccgc ggtgctggcc ttcgggatac tcggcgacca ggcccgcgcc 300 gagacagacg cggcgcacgc ggtggccatc gtgcacaccg actacgtcgc ccaggtcagc 360 ctgctgactc atctggcagc ggcgatgcgc accgccggac ggggatcgct ggtggtgttc 420 tcctcggtcg ccgggattcg ggtgcgccgc gccaactatg tctacggatc ggccaaagcc 480 ggcctggacg gcttcgccag cggcctggcc gatgcgttgc acggcaccgg ggtgcggtta 540 ctgatcgcgc ggccgggatt cgtcatcggg cgcatgaccg agggcatgac gcccgcaccc 600 ctgtcggtca ccccggagcg ggtggccgcc gcgaccgcgc gtgcgctggt caacggtaag 660 cgcgtggtgt ggattccgtg ggcgctgcgg ccaatgtttg ttgcgctgcg gttgcttccc 720 cggttcgtct ggcgcaggat gccgcga 747 83 411 DNA Mycobacteria tuberulosis 83 gtggcgatgg tcaacaccac tacgcggctt agtgacgacg cgctggcgtt tctttccgaa 60 cgccatctgg ccatgctgac cacgctgcgg gcggacaact cgccgcacgt ggtggcggta 120 ggtttcacct tcgaccccaa gactcacatc gcgcgggtca tcaccaccgg cggctcccaa 180 aaggccgtca atgccgaccg cagtgggctt gccgtgctca gccaggtcga cggcgcgcgc 240 tggctctcac tggagggtag ggcggcggtg aacagcgaca tcgacgccgt gcgcgacgcc 300 gagctgcgct acgcgcagcg ctatcgcacc ccgcgtccca atccacgccg agtggtcatc 360 gaggtccaga ttgagcgcgt gctgggatcc gcggatctgc tcgaccgggc c 411 84 1461 DNA Mycobacteria tuberulosis 84 atgccccgcg cccgatggct gcagagcgcg gccctcatgg gcgccttggc cgtggtgttg 60 ataaccgcgg caccggtggc cgccgatgcc taccaggtgc ccgctccgcc ctcgcccacc 120 gcatcctgtg acgtaataag cccggttgcg atcccctgcg tggcgctcgg caagttcgcc 180 gacgcggtcg ctgcggagtg tcgccgcgtc ggtgtgcccg atgcgcggtg cgtgcttccg 240 ctcgcgcacc gggtgaccca ggccgcgcgt gatgcctacc tacagtcttg ggtgcatcgc 300 accgcgcggt tccaggatgc gttgcaagac ccggtgccgc tgcgggaaac tcagtggctc 360 ggcacgcaca actcgttcaa cagcctcagc gattcgttca cggtctcgca cgcagactca 420 aaccagcagc tgtcgttggc ccaacagctc gacatcgacg tccgcgcgct cgagctagac 480 ctgcactact tgccccgcct cgagggccac ggcgcccccg gcgtcaccgt gtgtcacggg 540 ctgggaccga agaacgcgaa cctaggctgc accgtcgaac ctctgctggc cacagtgctg 600 ccgcagatcg ccaactggtt gaacgcaccc gggcataccg aggaggtcat cctgctctac 660 ctggaggacc agctgaagaa cgcgtcggcg tatgagtcgg tggtggctac cctcgaccaa 720 gtgttgcggc gtgcggacgg aacaagcctt atctaccgtc ccaacccggc ccggcgtgcc 780 accaacggct gtgtcccgct tccactcgac gtgtcgcggg aggaaatccg cgcatccggc 840 gcacgagccg tgctcgtcgg gtcttgtgcg ccaggttggt cggccgccgt cttcgactgg 900 agcggcgttg agctggaaag cggctcgaac tccggctacc ggccataccc ggcctgcgat 960 gccacctatg gccgcggtgt ctacgcttgg cgactggtcc gctattacga ggactccacg 1020 ctggccacgg cgttggccaa cccgacccgt ccaccggcca atccgcaggc gcttaccccg 1080 ccgaaggtgc cggcgatgac cgattgcggg gtcaatctgt tcggcttcga tcagctgctc 1140 cccgaagacg gccgcattca ggcgtcgttg tggagctggg caccggacga accgcgtgcc 1200 ggtgccggag catgcgccct gcagggcgcg gatggccgct gggtcgccgc atcgtgcggt 1260 gacccacacc ctgcggcctg tcgggacgcg gcaggcaggt ggaccgtgac gccggcaccc 1320 gtggtcttcg ccggggctgc cctagcctgc acagccatcg gcgcggactt taccctgccc 1380 cgaacgggca atcagaacgc ccgtctgcac gccgtggccg ggcccgccgg tggcgcctgg 1440 gtgcattacc tactgccgcc a 1461 85 429 DNA Mycobacteria tuberulosis 85 atgaccacca cgccccgaca acccctgttc tgcgcccacg ccgacaccaa cggcgacccg 60 ggccgctgcg cctgcggcca gcagctcgcc gacgtcggcc cggccacccc gccaccgccc 120 tggtgcgaac cgggcaccga acccatctgg gagcagctca ccgaacgata cggcggcgtc 180 acaatctgcc agtggacacg atattttccg gccggcgacc cggtggctgc cgacgtgtgg 240 atcgccgccg acgatcgtgt cgttgacggc cgggtgctgc gcacccaacc ggcgattcac 300 tacacggaac cgcccgtgtt ggggatcggc ccggcggcgg cccgccggct ggccgctgag 360 ctgctcaacg ccgccgacac cctcgacgac ggccgccggc agctagacga cctcggcgaa 420 caccggcgg 429 86 996 DNA Mycobacteria tuberulosis 86 gtgaacaccg cgacccgggt ccggctggcc cgcaaacgcg ccgaccggct caatctgaaa 60 ctaatcaaga acggccacca cttcaggttg cgtgacgccg acgagatcac gctggcggtc 120 gggcacctag gggtggtgga agccttcctg gcggcggcca agtcgcaaaa caagccgccc 180 ggtccgccgc cgagcctcca cgccccgcca tcctggcggc gcgacatcga cgactacctg 240 ctcaacctga acgccgccgg tcaacgccca gcgacgatcc ggctacgcaa gacggtgctg 300 tgcgcagccg cccacggcct cggccgccca cccgccgacg tcaccgccga acacctcctg 360 gactggctag gcaaacagca gcacctctcc ccagagggcc gcaaaaccta tcgcagcacg 420 ttgcggggct tcttcgtgtg ggcctacgaa atggaccggg tgcgcgacta tgtcgcagac 480 tccctgccta aggtgcgctg cccgaaacag ccgccccgcc cggccggcga cgacgtctgg 540 caagcggcgc tggccaaggc cgaccgtcga atcgagctga tgatccgcct agccggtgag 600 gccgggctgc gacgcgccga agccgcccag gcgcacaccg gcgacttgat ggacggcggg 660 cttctcctcg ttcacggcaa aggtggtaaa cgccgtattg tgccgatcag cgactacttg 720 gccgcgctca tccgcgacac cccgcacggc tacctgttcc ccaacggcac cggcggccac 780 ctcaccgccg aacacgtggg aaaactcgtc tcccgggcat tacccggtga cgcgaccatg 840 cacaccctgc ggcaccgata cgccacccgc gcctaccgcg gctcccacaa cttgcgagct 900 gtacaacaac ttctcggtca cgcctcgatc gtgacaacag aacgctacac agcgctgtgc 960 gacgacgagg tgcgcgccgc agcagcagcc gcatgg 996 87 366 DNA Mycobacteria tuberulosis 87 gtgcacgtgt gccacacgat cgccgacgtg gtcgaccggg ccaaagccga acgctccgaa 60 aacacgcttc gcaaggattt caccccctcg gagctgctcg ccgctggtcg ccggatcgcc 120 gagctggaac ggccgaaagc caaacagcgg caacgcgaag gcggcgacca tggccgccag 180 gctcgatatt ctggcttagg ctccatggag cctaagccag aatcagagcg cgatgcccac 240 aaagccgaca ctgccatcag cgaagccctc ggcatctccc gcggccacta ccagcggctc 300 aaacgaatcg acaacgcaac ccgcagcgaa gctggctacc gggatggttt aaacggttgg 360 agcggc 366 88 324 DNA Mycobacteria tuberulosis 88 atgtcaggtg gttcatcgag gaggtacccg ccggagctgc gtgagcgggc ggtgcggatg 60 gtcgcagaga tccgcggtca gcacgattcg gagtgggcag cgatcagtga ggtcgcccgt 120 ctacttggtg ttggctgcgc ggagacggtg cgtaagtggg tgcgccaggc gcaggtcgat 180 gccggcgcac ggcccgggac cacgaccgaa gaatccgctg agctgaagcg cttgcggcgg 240 gacaacgccg aattgcgaag ggcgaacgcg attttaaaga ccgcgtcggc tttcttcgcg 300 gccgagctcg accggccagc acgc 324 89 984 DNA Mycobacteria tuberulosis 89 aaagaccgcg tcggctttct tcgcggccga gctcgaccgg ccagcacgct aattacccgg 60 ttcatcgccg atcatcaggg ccaccgcgag ggccccgatg gtttgcggtg gggtgtcgag 120 tcgatctgca cacagctgac cgagctgggt gtgccgatcg ccccatcgac ctactacgac 180 cacatcaacc gggagcccag ccgccgcgag ctgcgcgatg gcgaactcaa ggagcacatc 240 agccgcgtcc acgccgccaa ctacggtgtt tacggtgccc gcaaagtgtg gctaaccctg 300 aaccgtgagg gcatcgaggt ggccagatgc accgtcgaac ggctgatgac caaactcggc 360 ctgtccggga ccacccgcgg caaagcccgc aggaccacga tcgctgatcc ggccacagcc 420 cgtcccgccg atctcgtcca gcgccgcttc ggaccaccag cacctaaccg gctgtgggta 480 gcagacctca cctatgtgtc gacctgggca gggttcgcct acgtggcctt tgtcaccgac 540 gcctacgctc gcaggatcct gggctggcgg gtcgcttcca cgatggccac ctccatggtc 600 ctcgacgcga tcgagcaagc catctggacc cgccaacaag aaggcgtact cgacctgaaa 660 gacgttatcc accatacgga taggggatct cagtacacat cgatccggtt cagcgagcgg 720 ctcgccgagg caggcatcca accgtcggtc ggagcggtcg gaagctccta tgacaatgca 780 ctagccgaga cgatcaacgg cctatacaag accgagctga tcaaacccgg caagccctgg 840 cggtccatcg aggatgtcga gttggccacc gcgcgctggg tcgactggtt caaccatcgc 900 cgcctctacc agtactgcgg cgacgtcccg ccggtcgaac tcgaggctgc ctactacgct 960 caacgccaga gaccagccgc cggc 984 90 1437 DNA Mycobacteria tuberulosis 90 atgactaatg aacaacattt cgctgacgat ggcgacatca aacagctcag cctcgacgaa 60 acccgttccg cggcaaaaca gctcctcgac tccgtcgagg gcgacctgac cggtgatgtg 120 gcgcaacgtt ttcaggcgct gacacgccac gccgaggaac tgcgggcgga gcagcgccgc 180 cgcggccgcg aagccgagga ggcgctgcgc cgctgccggg ccggtgagct gagggtggtg 240 cccggtgctc ccaccggcgg cgacgacggc gacgcgccgc cgggcaactc gttgcgcgac 300 atcgcgtttc gcacactgga cgtttgtgtg cgcgatggcc tgatgtcgtc gcgggcggcg 360 gaagccgcgg aaaccttgtg ccgcaccggg ccgccgcagt cgacgtcgtg ggcgcagcgc 420 tggctggcgg ccaccggcaa ccgcgactac ctgggggcgt tcgtcaagag ggtttcgaac 480 cctgttgcgg ggcacacgac ctggaccgac cgggaagcgg ccgcgtggcg tgaggcggcc 540 gcggtggccg ccgagcagcg agcaatgggc ttggtggaca ccgccggcgg gtttttgatc 600 ccggcggcgc tggatccggc gattctgctg tcgggtgatg gttcaacgaa tccgatccgg 660 caggtggcga gggtggtgca aacgacctcc gaggtttggc ggggcgtgac ctccgaaggc 720 gccgaggctc attggtactc cgaagcccag gaggtgtccg acgattcgcc aacgctggcc 780 cagccggcgg tgccgagcta ccgtggctcc tgctggattc cgttcagtct cgagattgag 840 ggtgacgccg ccggattcgt cgcagaggtg ggccgcgtcc tagcggattc ggttgagcag 900 ctgcaggcgg cggcgttcgt cagcggctcc ggcaacggcg agcccaccgg attcgtctcc 960 gcactgaccg gcaccgcgga ctacaccgtc accggcgcgg ggacggaagc cgttgtagcc 1020 gccgacgttt acgcgctgca gtcggcgttg ccgccgcgct ttcaatccaa cagcgcgttc 1080 gcggcgaact tgtccaccat caacgtgctg cgccaggcgg aaaccgcgaa tggggcgctg 1140 aaattcccat cgctgcacgc cagcccgccg atgctggccg ggaaacacat ctgggaggtg 1200 tcgaacatgg acaccgtgga cgcggcggtg accgccacca attacccgct ggtgcttggc 1260 gactggaagc agttcatcat caccgaccgg gtcgggtcga cggtggagct ggtgccgcac 1320 gtgttcggcg gcaaccgccg accgaccgga cagcgcggat tcttctgctg gttccgagtc 1380 ggttctgatg tgctggtgga caatgcgttc cgcgtgctga aggtgcagac caccgcg 1437 91 531 DNA Mycobacteria tuberulosis 91 ttgagtagca tccttttccg cacggccgag ctgcggcctg gtgagggccg caccgtgtac 60 ggcgtcatcg tgccttatgg cgaggtgacc accgtccgcg acctcgacgg cgagttccgg 120 gaaatgttcg ctcctggcgc ttttcggcgc tccatcgctg agcgcggcca caaggtgaag 180 ctgctggtct cccacgacgc tcgaacccgc tacccggttg gccgggccgt cgagctgcgt 240 gaggagcctc acggcttgtt cggggcgttc gagcttgcga acaccccgga cggcgacgag 300 gccctggcga atgtgaaagc tggtgtggtg gacgcgtttt cggtgggttt ccggccgatc 360 cgggaccgcc gggaagggga tgtgatcgtg cgggtcgagg cggcgctgtt ggaggtctcc 420 ttgaccggcg ttccggccta tctgggcgcg cagatcgccg gtgtgcgcgc ggaatcgctt 480 gcagtcgttt cccgttcgct agccgaagcc aggttagccc tgatggattg g 531 92 624 DNA Mycobacteria tuberculosis 92 ttgccatcgc cagcaaccgc ccgaccggac accgccacgg tgggagagcg tgtgcgcgct 60 caagttttat ggggcgtttt ttggcatcat ggcattcgcg acccgaaacc cggaaagagg 120 agggtggtgt tgaaaatggg taggcgtggt cccgcgccgg cgccggcgca gttgaaactc 180 ctcggcggcc gctcgccggg ccgtgattct ggcggccggc gggttacacc accggcggcg 240 ttcgagcgtg ttgcgccgga atgcccggat tggttgccgc caggcgctaa agacatgtgg 300 gggcgcgtcg ttcccgagct tgcggcatta aacctgctga aggagtccga ccttggggtg 360 ctgacctcct tctgcgtcgc ctgggatcag ctcatgcagg ctgtaacagc ctaccgtgaa 420 cagggtttca tcgcgacgaa cgcccgcagc cgacgggtga cggtgcatcc tgccgtggcc 480 gcggcccggg ccgcgacgag ggacgttttg gtgctcgcgc gcgaattggg gtgcacgcca 540 agcgctgagg cgaatttggc tgctgtgctg gcggcggcgg gggaccccga cgacgacgag 600 ttcaacccgt tcgccccaga ccgg 624 93 321 DNA Mycobacteria tuberculosis 93 ttgacccaca agcgcactaa acgccagcca gccatcgccg cagggctcaa cgccccgcgt 60 cggaatcgcg ttgggcggca acatggttgg ccggccgacg ttccgtccgc cgagcagcgc 120 cgcgcccaac ggcagcgcga cctcgaggct atccgccgag cgtacgccga gatggtggcg 180 acatcacacg aaatcgacga cgacacagcc gaactggcgc tgttgtcgat gcatctcgac 240 gatgagcagc gccggcttga ggcggggatg aagctcggct ggcatccgta tcacttcccc 300 gacgaacccg acagcaaaca g 321 94 243 DNA Mycobacteria tuberculosis 94 atgagcggcc acgcgttggc tgctcggacg ttgctggccg ccgcggacga gcttgtcggc 60 ggcccgccag tcgaggcttc ggccgccgcg ctggccggcg acgccgcggg cgcatggcgg 120 accgcggccg tcgagcttgc gcgagcgttg gtccgcgctg tggcggagtc gcacggcgtc 180 gcggccgttt tgttcgccgc gacggccgcc gcggcggcgg ccgtcgaccg gggtgatccg 240 ccg 243 95 1425 DNA Mycobacteria tuberculosis 95 atggctgaca tcccctacgg ccgtgactat cccgacccga tctggtgtga cgaggacggc 60 cagccgatgc cgccggtcgg cgccgaattg ctcgacgaca ttagggcatt cttgcggcgg 120 ttcgtagtct atccaagcga ccatgaactg atcgcgcaca ccctctggat tgcgcattgc 180 tggtttatgg aggcgtggga ctcaacgccc cgaatcgctt ttttgtcacc ggaacccggc 240 tctggcaaga gccgcgcact cgaagtcacg gaaccgctag tgccccggcc ggtgcatgcc 300 atcaactgca caccggccta cctgttccgt cgggtggccg atccggtcgg gcggccgacc 360 gtcctgtacg acgagtgtga caccctgttt ggcccgaaag ctaaagaaca cgaggaaatt 420 cgcggcgtga tcaacgccgg ccaccgcaag ggagccgtcg cgggccgctg cgtcatccgc 480 ggcaagatcg ttgagaccga ggaactgcca gcgtactgtg cggtcgcctt ggccggcctc 540 gacgacctgc ccgacaccat catgtctcgg tcgatcgtgg tgaggatgcg caggagggca 600 ccaaccgaac ccgtggagcc gtggcgcccc cgcgtcaacg gccccgaggc cgagaagctg 660 cacgaccggt tggcgaactg ggcggccgcc attaacccgc tggaaagcgg ttggccggcg 720 atgccggacg gggtgaccga ccggcgcgcc gacgtctggg agtccctggt tgcggttgct 780 gacaccgcgg gcgggcactg gcccaaaacc gcccgtgcaa ccgcagaaac ggatgcaacc 840 gcaaatcgag gagccaagcc cagcataggc gtgctgctgc tgcgggatat ccgtcgagtc 900 ttcagcgacc gggaccggat gcgcaccagc gacatcctga ccggactgaa ccggatggag 960 gagggaccgt ggggctccat ccgccgcggc gacccgctcg acgcgcgcgg cctcgcgacc 1020 cggctcggca gatacggcat cgggccgaag ttccagcaca gtggtggcga accaccctac 1080 aaagggtatt cgcggaccca gttcgaggat gcgtggtccc ggtatctctc tgccgacgac 1140 gaaacccccg aggaacgaga tttatcggtt tccgcggttt ccgcggtttc accgccggtt 1200 ggcgatcccg gtgatgcaac cggcgcaacc gatgcaaccg atctcccgga ggcgggcgac 1260 ttgccgtacg agccgccggc gcccaacggg caccccaacg gcgacgcgcc gctgtgctcc 1320 gggccgggat gccccaacaa gctcctcagt actgaggcca aggccgccgg caaatgccgg 1380 ccctgccgag gtcgagcggc ggctagcgct cgggacggcg cccga 1425 96 390 DNA Mycobacteria tuberculosis 96 atgaccgccg tcggcgggtc gccgccgacg cgacgatgcc cggccacaga ggaccgggca 60 cccgcgacag tcgccacacc gtctagcacc gatcctaccg cgtcccgcgc cgtgtcgtgg 120 tggtcggtgc acgagtatgt cgcaccgacc ctggccgccg ccgtggaatg gccgatggcc 180 ggcaccccgg cgtggtgcga cctcgacgac accgacccgg tcaaatgggc cgcgatctgc 240 gacgctgctc ggcattgggc actccgggtg gagacgtgcc aggccgcgtc ggccgaggca 300 tcacgtgacg tatccgccgc cgccgactgg ccggcggtct ctcgggagat ccagcgtcgg 360 cgtgacgcct acattcggcg ggtggtggtc 390 97 258 DNA Mycobacteria tuberculosis 97 atgtgcgcgt tcccgtcgcc gagtctcggg tggacggtct ctcacgagac cgaaaggccc 60 ggcatggcag acgctccccc gttgtcacgg cggtacatca cgatcagtga ggccgccgaa 120 tatctagcgg tcaccgaccg cacggtccgc cagatgatcg ccgacggccg cctacgcgga 180 taccgctccg gcacccgcct cgtccgtctg cgccgcgatg aggtcgacgg cgccatgcac 240 ccgttcggtg gtgccgca 258 98 360 DNA Mycobacteria tuberculosis 98 atggccgatg cggttaagta cgtagttatg tgcaactgcg acgacgaacc gggagcgctc 60 atcatcgcct ggatcgacga cgaacgaccc gccggcgggc acatacagat gcggtcgaac 120 acccgcttca ccgaaacaca gtggggccgc catatcgagt ggaaactcga atgccgggca 180 tgccgaaagt atgcgccgat atccgagatg accgccgcgg cgatcctcga cggtttcggg 240 gcgaagcttc acgagctgag aacgtcgacc atccccgacg ctgacgatcc atcaatagca 300 gaggcgcgac acgtaattcc gttcagcgca ttatgcttgc gcttgagcca gctaggcggg 360 99 1125 DNA Mycobacteria tuberculosis 99 gtgacgcaaa ccggcaagcg tcagagacgc aaattcggtc gcatccgaca gttcaactcc 60 ggccgctggc aagccagcta caccggcccc gacggccgcg tgtacatcgc ccccaaaacc 120 ttcaacgcca agatcgacgc cgaagcatgg ctcaccgacc gccgccgcga aatcgaccga 180 caactatggt ccccggcatc gggtcaggaa gaccgccccg gagccccatt cggtgagtac 240 gccgaaggat ggctgaagca gcgtggaatc aaggaccgca cccgcgccca ctatcgcaaa 300 ctgctggaca accacatcct ggccaccttc gctgacaccg acctacgcga catcaccccg 360 gccgccgtgc gccgctggta cgccaccacc gccgtgggca caccgaccat gcgggcacac 420 tcctacagct tgctgcgcgc aatcatgcag accgccttgg ccgacgacct gatcgactcc 480 aacccctgcc gcatctcagg cgcgtccacc gcccgccgcg tccacaagat caggcccgcc 540 accctcgacg agctggaaac catcaccaaa gccatgcccg acccctacca ggcgttcgtg 600 ctgatggcgg catggctggc catgcgctac ggcgagctga ccgaattacg ccgcaaagac 660 atcgacctgc acggcgaggt tgcgcgggtg cggcgggctg tcgttcgggt gggcgaaggc 720 ttcaaggtga cgacaccgaa aagcgatgcg ggagtgcgcg acataagtat cccgccacat 780 ctgatacccg ccatcgaaga ccaccttcac aaacacgtca accccggccg ggagtccctg 840 ctgttcccat cggtcaacga ccccaaccgt cacctagcac cctcggcgct gtaccgcatg 900 ttctacaagg cccgaaaagc cgccggccga ccagacttac gggtgcacga ccttcgacac 960 tccggcgccg tgttggctgc atccaccggc gccacactgg ccgaactgat gcagcggcta 1020 ggacacagca cagccggcgc cgcactccgc taccagcacg ccgccaaggg ccgggaccgc 1080 gaaatcgccg cactgttaag caaactggcc gagaaccagg agatg 1125 100 225 DNA Mycobacteria tuberculosis 100 gtgatagcgg gcgtcgacca ggcgcttgca gcaacaggcc aggctagcca gcgggcggca 60 ggcgcatctg gtggggtcac cgtcggtgtc ggcgtgggca cggaacagag gaacctttcg 120 gtggttgcac cgagtcagtt cacatttagt tcacgcagcc cagattttgt ggatgaaacc 180 gcaggtcaat cgtggtgcgc gatactggga ttgaaccagt ttcac 225 101 186 DNA Mycobacteria tuberculosis 101 atgatcgagc agggccgcga ctgccgggac gtggtcaccc agctcgccgc ggtatcgcgc 60 gcactcgacc gcgccggatt caagatcgtt gcggcagggt tgaaggaatg cgtgtccggg 120 gccacggcca gcggcgcggc accgctgagt gcagctgagc tagaaaagct gttcctggcg 180 ctcgct 186 102 357 DNA Mycobacteria tuberculosis 102 atgtcggacc agccacgtca tcaccaggtc ctcgacgacc tgctgcccca acaccgcgct 60 ctacgtcacc agattcccca ggtgtaccag cgatttgtag ccctgggcga cgccgcgctt 120 accgacggcg ctctcagccg caaggtcaag gagcttgtgg cgctggcgat cgcggttgtg 180 caggggtgcg atggctgcgt cgcatcacac gcccaagccg cggtacgggc cggcgctaca 240 gcgcaagaag ccgctgaggc catcggggtc accatcttga tgcacggtgg accggccacc 300 atccacggtg ctcgtgccta cgcggcattt tgcgaattcg ctgacacaac gccgtcc 357 103 1854 DNA Mycobacteria tuberculosis 103 atgtcctatc tcgtcgtggt gccggagttg gtcgcagcgg cggcaacaga tttggcgaac 60 atcggttcgt cgattagtgc agccaacgcg gccgcggcgg caccgaccac ggcactggtc 120 gcagccggcg gcgacgaggt atcggcggcc atagccgcgt tgttcggagc gcatgctcgg 180 gcatatcaag cgttgagtgc ccaggcggcg atgtttcatg aacagtttgt ccgggccctc 240 gccgccggcg gtaactccta cgccgtcgct gaggcggcaa ccgcgcaatc ggttcagcaa 300 gatctgctca acctgatcaa tgcgcccacc caggcgctgt tggggcgtcc gctgatcggc 360 aacggcgcca acgggctgcc gggtacgggc cagaacggcg gcgacggcgg gattctgtac 420 ggcaacggcg gcaacggtgg gtccggcggg gtcaaccagg ccggtggcaa tggcgggaat 480 gctgggctgt ggggcaatgg cggatccggc ggagccggcg ggaacgccac cactgccggc 540 cgcaacggct tcaacggggg cgccggggga agcggcggtt tgctgtgggg caatggcggt 600 gccggcgggg ccggtgggaa cggcggtccg gctccgctcg tgggcggggt gggcaccacc 660 ggtggcgccg gcgggaacgg cggcggcgcc gggttgttct acggtttcgg cggcgccggt 720 gggaacggcg ggatgggcgg ggtggcaccg agcaccggcc cctcgatggg catcctcccg 780 gccggcggtg tcggcgggcc tggtggctcc ggcggggcga gcgcgcttgc cttcggctcc 840 ggcggcgtcg gcggtgccgg tggcttgggc gggccgaccg atggcaccgt ccagggggtg 900 ggcggcttcg gcggtcaggg cggcaacggc gggcagagcg gcttgttgtt tggcaacgcg 960 ggagccggcg gggcaggcgc tgccggcgga gccggcaccg gcgacaccga gagcttcggc 1020 ggccacggcg gggccggcgg tgatggcggc gctgttggct tgatcggtaa cggcggggcc 1080 ggcggcaccg gatctcccgg cgctgtggtg ggtggtaacg gcggcgtcgg tggtctgggt 1140 ggcgccggca gtcccggggg tctgttgtac ggcaccgggg gggccggcgg caatggcgga 1200 ccgggtggtg acggtggtac tggcgcgacg gtgggctttg ccggctccgg cggtttcggc 1260 ggtgcggggg gcatcgccca gctgtttggc acgggtggca tgggtggtag cggcggtggt 1320 ataggcgctg gcaccacgac cgtggtgccg cccgacgtcg ccccggtggg tggcacaggc 1380 ggcaatggcg gtcgcgccgg gctgctgttg ggtgtgggtg gcatgggcgg taatggcggt 1440 gccaccagcg tcggcgggac gctctacgcc gccggtggaa acggcggcga cggcgggttg 1500 gtgtggggca acggtggcac cggcgggagc ggtggcgccg gcggggcggg cagcgtcggc 1560 aacggcggtg cgggtggcaa cgcggcactg ctgttcggca acggcggggc gggcggggcc 1620 ggcggcgccg gcggcatcgg tgccggcgga gccggcggct tcggcgcggt tctgtttggc 1680 aacggcgggg ctggcgggag cggtgccccc ggtggcatcg gcgccggtgg caatggcgga 1740 aacgcgctgc tggtcggcaa cggcggcaac ggtggggcag gtaccggtgg ggctgctggc 1800 ggtgccggtg gctcgggcgg gttgctattc ggccaaaatg ggatgcccgg gccg 1854 104 1242 DNA Mycobacteria tuberculosis 104 gtgcatgagg tggctgctcg tgagcaacgt tcggacgggc cgatgaggct ggatgcgcag 60 ggccgactgc agcgttacga ggaggcgttc gctgactacg atgcaccgtt tgcgttcgta 120 gatctcgacg cgatgtgggg caatgccgat caactgcttg cgcgcgccgg cgacaagccg 180 atccgggtgg cgtcgaagtc gctgcgttgc cgaccactgc aacgcgaaat ccttgatgcc 240 agtgagcgat tcgacgggct attgacgttc acgcttaccg agacgctgtg gcttgccggc 300 caaggtttct cgaacctgtt gttggcctac ccgccgaccg accgggcggc attgcgtgcg 360 cttggcgagc tgacggccaa ggacccggac ggggcgccga tcgtgatggt ggacagcgtg 420 gagcaccttg acctgatcga gcgcacgacc gacaagccgg tacggctgtg tctggatttc 480 gatgccggct attggcgcgc cggcgggcgg ataaaaattg gttccaagcg ctcgccgctg 540 cacaccccgg agcaggctcg cgcactcgcg gtggagatcg cgcggcggcc ggcgctaacg 600 ttggcggcgt tgatgtgcta cgaggcccac attgcgggcc tcggtgacaa cgtcgccggc 660 aagcgggtcc acaacgcgat catccgtcgg atgcagcgca tgtcgttcga agagctgcgc 720 gagcgtcgtg cccgggccgt cgagctggtg cgcgaggtcg ccgacatcaa gatcgtcaac 780 gccggtggca ccggcgactt gcagctggtt gcgcaggagc cgttgattac cgaagcgacc 840 gccggctcgg gtttttacgc gccgacactg ttcgactcgt attcgacgtt cacgctgcag 900 cccgcggcga tgttcgcgct gccggtatgc cgtcgtcccg gtgcaaagac cgtgaccgcg 960 ctcgggggtg gctatttagc cagcggggtc ggggcgaagg accgcatgcc gactccctac 1020 ctgccggtcg ggctgaagct caatgcgctg gagggaacgg gcgaagttca gacaccgcta 1080 tccggtgatg cagcccgacg gctgaagctt ggcgacaagg tctacttccg ccacaccaag 1140 gccggtgagc tgtgtgagcg gttcgaccat ctgcatctgg tccgtggcgc tgaagtagtc 1200 gacaccgtcc ccacctaccg gggtgaaggg cgcaccttcc tc 1242 105 1284 DNA Mycobacteria tuberculosis 105 atggacgagg cccacccggc tcacccggca gatgcggggc ggcccggtgg cccaattcaa 60 ggcgcgcgaa gaggagctgc catgacaccg atcaccgccc tgccgaccga gttggcggcc 120 atgcgcgagg tagtcgagac gctcgcaccc attgagcgtg ccgcgggcga gccgggtgag 180 cacaaggcgg ccgagtggat cgtcgagcgc ctgcgcacgg cgggcgcgca ggacgcgcgc 240 atcgaggagg agcagtacct cgacggctac ccgaggctgc acctcaagct gtcggtgatc 300 ggggtggcgg ccggcgtcgc gggcctgctc agcagacgtt tgcgcatccc cgccgcgctg 360 gccggggtgg gtgcggggct ggcaatcgcc gacgattgcg ccaacgggcc gcgcattgtg 420 cgcaaacgaa cggagacgcc ccggacgaca tggaacgcgg tagccgaggc cggtgatcct 480 gctggtcagc taacagttgt tgtgtgcgct caccacgacg ccgcgcacag cggcaagttt 540 ttcgaggctc atattgagga ggtaatggtc gagctgtttc ccgggattgt ggagcgcatc 600 gacacgcagc tgccgaactg gtgggggccg atcctcgcgc ccgcactcgc cggtgtcggc 660 gccctgcgcg gcagccggcc gatgatgatc gccggaacgg tgggtagcgc cctggccgcc 720 gctttgttcg ccgacatcgc gcgcagtccg gtcgtccccg gtgccaacga caatctctcc 780 gcggttgcgc tgctggtcgc gctggccgag cggctgcgcg agcggccggt gaagggcgtg 840 cgagtgttgc tcgtgtccct gggggccgag gaaacgttgc agggcgggat ctacgggttc 900 ctggcgcgac acaaacccga gctggaccgc gaccgcacat acttcctgaa cttcgacacc 960 atcggctcac ccgagctcat catgctcgag ggcgagggcc cgacggtcat ggaggactac 1020 ttctatcggc cattccggga tctggtcatc cgggcggccg agcgcgccga cgcgccgctg 1080 cggcgcggca tccggtcgcg caacagtacc gacgcggtgt tgatgagccg cgccggctac 1140 ccgaccgcgt gctttgtgtc gatcaaccgg cacaagtcgg tggccaatta ccacctgatg 1200 tccgatacac ctgagaatct ctgctatgag acggtgtccc acgccgtcac cgtcgccgaa 1260 tccgtgatca gggagctggc ccga 1284 106 1284 DNA Mycobacteria tuberculosis 106 atgagcccga tatggagtaa ttggcctggt gagcaagtct gcgcgccgtc ggcgatcgta 60 cggccgacct cggaggctga gctggccgac gtgatcgcgc aggcggcgaa aagaggcgag 120 cgggtacgcg cggttggcag cgggcattcg tttaccgaca tcgcctgcac ggacggggtc 180 atgatcgaca tgaccggcct gcagcgggtc ctcgacgtgg accagccgac tggcctggtg 240 acggtcgagg ggggcgcaaa gctacgtgcg ctgggacccc aattggcgca acgacggctc 300 ggcctggaga accagggtga cgtggatccc caatccatca ccggcgcgac cgcgaccgcg 360 acgcacggaa ccggggtgcg tttccagaat ctgtcggcgc ggatcgtttc gctgcggctg 420 gtcaccgcgg gcggggaagt gctcagtctg tccgaaggtg acgattacct ggcggcacgg 480 gtttccctcg gcgcgctagg agtgatctca caggtcaccc tgcagacggt tccgctattc 540 acgttgcatc gccatgatca gcgacgctcg ctggcgcaga cgctggagcg cctcgacgag 600 ttcgtggacg gtaatgacca tttcgagttt ttcgtattcc cttacgcaga taaggcgttg 660 acgcgcacca tgcatcgcag tgacgagcag cccaaaccca cgcccgggtg gcagcgcatg 720 gtcggcgaga acttcgagaa cgggggattg agcctgatct gccagaccgg ccgtcgtttt 780 cctagtgtgg cgccgcgact gaaccgcctg atgacgaaca tgatgtcgtc ctccaccgtg 840 caagaccgcg cctacaaggt ctttgcgacc caacgcaagg tcaggttcac cgagatggag 900 tacgcgatcc cgcgtgaaaa cgggcgcgag gcgctccagc gtgtcatcga ccttgtgcgc 960 cgtcgcagct tgccgatcat gtttccgatt gaggtgcgat tctccgcccc cgacgattcc 1020 ttcctgtcga ccgcatatgg gcgcgacact tgctacatcg cggttcatca atacgccggt 1080 atggagttcg aaagctactt ccgcgccgtc gaggagatca tggacgacta cgccggtcgg 1140 ccacactggg gtaaacgtca ctatcagacc gccgccacgc ttcgtgagcg ctatccgcag 1200 tgggatcggt tcgccgcggt tcgcgatcgc ctcgatccgg accgggtgtt tctcaacgac 1260 tacacccggc gcgttctcgg tccc 1284 107 309 DNA Mycobacteria tuberculosis 107 ttgggttcaa caggaggtag ccaacccatg acggcgaatc gagggcccgc tgcaatctcg 60 agcggctcga actctggccg cgttctcgac accgcccggg gtatcctcat cgctcttcgg 120 cggtgccccg cagagaccgc gttcgacgag ttgcacaacg ccgctcaacg gcacagattg 180 ccggtcttcg aaatagcttg ggcactagtg catttggcgg tcgagggaag cacgccatgc 240 cggagcttcg tcgatgccca gtcggcggct cggcgggagt ggggtcagct ttttgcgcat 300 gcggcggcg 309 108 744 DNA Mycobacteria tuberculosis 108 gtgccgccta cggaaggaaa gtcgacaacg aatcgcgacg aaggcatcca ggtgctccgt 60 cgcgccgtcg ccgcgctgga cgaaatagct gccgaaccgg gacacctgcg cctagtcgat 120 ctctgcgagc ggctggggct ggccaaatcg acgactcgac gcttgctggt cggcctggtc 180 gaggtggggc tggttagtgt cgattcgcac ggccgcttcg cactgggcga gcgtttgctg 240 ggattcggaa gtgtcaccgg agcccacata gccgcggcgt tccggccgac cgtcgagcga 300 gttgcccgcg cgaccgacgg cgaaacggtc gacctgtcgg tactgcgcgg ccagcgaatg 360 tggtttgtcg accagatcga atcgtcttac cggctgcgtg cggtctcagc cgtcgggctc 420 cgcttcccgt tgaacggaac cgcgaatgga aaagcggcgc tggctgctct cgacgacgcc 480 gacgccgagg ccgcgctctg ccgtctggat cccatggtgg ccgaaggtct acggcgcgag 540 atcgtcgaga tccggcgcac cggtatcgct ttcgaccgca acgagcacac cccagggata 600 tccgcggctg cgatcgcacg acgcgccctg ggcgacaacg tgatcgcgat ctcggtgccg 660 gcgcccaccg cacgatttct ggaaaaagag cagcgcataa tcgccgcgtt gcgcgccgcc 720 gcggactcgc cggactggac tcgc 744 109 1218 DNA Mycobacteria tuberculosis 109 atggcatccg tcgcccaacc cgttaggcgc cgcccaaagg accggaagaa gcagattttg 60 gatcaggccg ttggactgtt catcgaacgt ggcttccatt cggtcaaatt ggaggacatt 120 gccgaggcgg ccggggtgac cgcgcgcgcg ttgtatcgcc actacgacaa caagcaggcg 180 ttgctcgccg aagcgatccg aaccggccag gatcagtacc agagcgcgcg tcgtctcacc 240 gagggcgaga cggagccgac gccgcggccg ttgaacgccg atctggaaga cctgatcgcc 300 gcggcggtcg cctctcgggc gttgacggtg ctgtggcagc gcgaggcccg ctacctcaac 360 gaggacgacc gcacggcggt ccggcgccgc atcaacgcga tcgtcgccgg catgcgtgac 420 agcgtgctgc tggaggtgcc cgatctgagt ccacagcatt cggagttgcg ggcgtgggcg 480 gtgtccagca ctttgaccag cctgggccgg cacagcctaa gcctgccggg cgaggaactg 540 aaaaagcttc tctaccaggc gtgtatggcc gcggcaagga cgcctcccgt ctgcgaattg 600 ccgccactgc cggccggtga tgccgcacgc gacgaggccg acgtgctgtt ctcccgctac 660 gagaccctgc tggccgcggg cgcgcggctg ttccgtgcgc agggctatcc ggccgtcaac 720 accagcgaaa tcggcaaggg agccggcatc gcgggcccgg ggctgtaccg ttcgttttct 780 tccaaacagg ccatcctgga cgcgctcatc cgccgcctcg acgagtggcg ctgcctggag 840 tgcatccgag cgctacgagc gaatcagcaa gcggcacaac ggttgcgcgg ccttgtccaa 900 gggcacgttc ggatcagctt ggacgctccg gatctggtgg cagtgtcggt caccgaactg 960 tcgcacgcct ctgtcgaagt acgcgacggc tacctgcgaa atcagggcga ccgcgaggcc 1020 gtgtggatcg acctcatcgg caagctggta cccgcgacca gtgtcgccca ggggcgactg 1080 ctggtcgcgg cggcgattag cttcatcgaa gacgtcgctc gcacctggca tctcacgcgc 1140 tacgccggag tcgccgacga gatcagtggc ctggcgctgg cgatcctgac cagcggggca 1200 ggtaacctct tgcgcgca 1218 110 795 DNA Mycobacteria tuberculosis 110 atggtaatcg tggccgacaa ggcggccggt cgggtcgctg atccggtctt gcggccggtg 60 ggcgcgctgg gcgatttctt cgcgatgacg ctcgacacgt ccgtgtgcat gttcaagccg 120 cctttcgcgt ggcgtgaata cctacttcag tgctggttcg tggcgcgggt gtcgacgctg 180 cctggggtgt tgatgacgat cccatgggcg gtgatctcgg ggtttctctt caacgtcttg 240 ctgaccgaca tcggtgccgc ggacttttcc ggcaccggct gtgcgatctt caccgtgaac 300 caaagcgccc cgatcgtcac ggtcttggtg gtcgcgggcg cgggcgccac cgccatgtgc 360 gccgatctgg gtgcgcgcac catccgtgag gaactcgacg cactgcgggt gatgggcatc 420 aacccgatcc aagcgctagc ggctccgcgc gtgctggcgg ccaccacggt gtcgttggcg 480 ctgaattcgg tggtgaccgc gacggggctg atcggcgcgt tcttttgctc ggtgtttctc 540 atgcacgtct cggcgggggc atgggtgacc gggcttacca cgctgaccca caccgtggac 600 gtcgtcattt cgatgatcaa ggcgacgttg ttcgggctga tggccggact gatcgcctgc 660 tataagggca tgtcggtcgg tggcggcccg gccggagtcg gccgggcggt gaacgaaacc 720 gtggtgtttg ccttcatcgt cttgttcgtg atcaacatcg tcgtcaccgc ggtcggcatc 780 ccattcatgg tgtcc 795 111 813 DNA Mycobacteria tuberculosis 111 atgacggcag cgaaagccct tgtaagcgaa tggaatcgga tgggatcgca gatgcggttc 60 ttcgtcggca cgctggccgg gattcccgac gccctcatgc actaccgcgg cgagctgctg 120 cgggtgatcg cgcaaatggg gttggggacc ggggttcttg cggtgatcgg tggaacggtc 180 gcgatcgtcg ggttcttggc gatgaccacc ggcgcgatcg tggccgtgca gggctacaac 240 cagttcgctt cggtgggtgt ggaggcgctg accggcttcg cgtcggcctt cttcaacacc 300 cgcgagattc agcccggaac cgtgatggtc gcgctagcgg ccaccgtcgg tgccggtacc 360 accgctgcgc tgggggcgat gcggataaac gaggagatcg acgcgctcga ggtgatcggc 420 atccgcagca tcagctacct ggcgagcacc cgggtgctgg ccggagtggt cgtggccgtc 480 cctctgttct gtgtgggact gatgacggcc tacctggccg cgcgcgtcgg caccaccgcc 540 atctatggcc aggggtcggg cgtgtacgac cactacttca acacgttcct gcgcccgacc 600 gacgtgctct ggtcgtcggt tgaagtcgtc gtggtcgctc tgatgatcat gctggtgtgc 660 acctattacg gctacgccgc acatggcggg ccggccgggg ttggcgaggc ggtcggccgg 720 gccgtgcgtg cctcgatggt cgtcgcgtcg atcgcaatcc ttgtcatgac gctggccatc 780 tacggccagt cgcccaactt tcacctggcg acc 813 112 1275 DNA M. tuberculosis 112 atgagacgcg ggccgggtcg acaccgtttg cacgacgcgt ggtggacgct gatcctgttc 60 gcggtgatcg gggtggctgt cctggtgacg gcggtgtcct tcacgggcag cttgcggtcg 120 actgtgccgg tgacgctggc ggccgaccgc tccgggctgg tgatggactc cggcgccaag 180 gtcatgatgc gcggtgtgca ggtcggccgg gtcgcccaga tcggtcggat cgagtgggcc 240 cagaacgggg cgagcctcag actggagatc gaccccgacc agatccggta catcccggcc 300 aatgtcgagg cacagatcag cgccaccacc gcattcggtg ccaagttcgt cgacctggtg 360 atgccgcaaa acccaagtcg tgcacggctg tccgctgggg cggtactgca ttcgaagaac 420 gtcagcacgg aaatcaacac cgtcttcgaa aacgtcgtcg acctgctcaa catgatcgac 480 ccgctgaaac tgaacgccgt gctgaccgcg gtcgccgacg ccgttcgcgg gcaaggtgaa 540 cggataggcc aggccaccac cgacctcaac gaggtgctgg aggcactcaa cgcacgcggc 600 gacaccatcg gcggcaactg gcgatcgctc aagaacttca ccgacaccta tgacgcggcc 660 gcccaagaca tcctgacgat cctgaacgcc gccagcacca ccagtgcgac cgtcgtgaat 720 cattcgacgc agctggatgc cttgctactc aacgccatcg gactatccaa cgctggcacc 780 aacctgcttg gcagcagccg agacaatctc gtcggcgcgg ccgacatcct ggcgccgacc 840 acgagcctgc tgttcaagta caaccccgaa tacacctgct tcctgcaggg cgccaagtgg 900 tatctcgaca acggcggcta tgcggcctgg ggcggggccg acgggcgcac gctacaactc 960 gatgtggcgc tactgttcgg caacgacccc tatgtctatc cggacaacct gccggttgtc 1020 gcggccaagg ggggtcccgg cggaaggccg ggatgcgggc cattgccgga tgccacccac 1080 aacttcccgg tgcgccagct ggtcaccaac accggatggg gaaccgggct ggacatccgg 1140 cccaaccccg gcatcgggca tccctgctgg gccaactact tcccggtgac ccgcgcggtg 1200 cccgagccgc cgtcgatccg tcagtgcatc cccgggccgg cgatcgggcc caaccccgcg 1260 gcgggggagc agcca 1275 113 1026 DNA Mycobacteria tuberculosis 113 atgagggaga acctgggggg cgtcgtggtg cgcctcggcg tcttcctggc ggtatgcctg 60 ctgacggcgt tcctgctgat tgccgtcttc ggggaggtgc gcttcggcga cggcaagacc 120 tactacgccg agttcgccaa cgtgtccaat ctgcgaacgg gcaagctggt gcgcatcgcc 180 ggcgtcgagg tcggcaaggt caccaggatc tccatcaacc ccgacgcgac ggtgcgggtg 240 cagttcaccg ccgacaactc ggtcaccctc acgcggggca cccgggcggt gatccgctac 300 gacaacctgt tcggtgaccg ctatttggcg ctggaggaag gggccggcgg actcgccgtt 360 cttcgtcccg gtcacacgat tccgttggcg cgcacccaac cggcgttgga tctggatgcc 420 ctgatcggtg gattcaagcc gctgtttcgt gcgctgaacc ccgagcaggt caacgcgctg 480 agcgaacagt tgctgcacgc gtttgccgga caggggccca cgatcgggtc attgctggcc 540 cagtccgcgg ccgtgaccaa caccctggcc gaccgtgatc ggctgatcgg gcaggtgatc 600 accaacctca acgtggtgct gggctcgctg ggcgctcaca ccgatcggtt ggaccaggcg 660 gtgacgtcgc tatcagcgtt gattcaccgg ctcgcgcaac gcaagaccga catctccaac 720 gccgtggcct acaccaacgc cgccgccggc tcggtcgccg atctgctgtc gcaggctcgc 780 gcgccgttgg cgaaggtggt tcgcgagacc gatcgggtgg ccggcatcgc ggccgccgac 840 cacgactacc tcgacaatct gctcaacacg ctgccggaca aataccaggc gctggtccgc 900 cagggtatgt acggcgactt cttcgccttc tacctgtgcg acgtcgtgct caaggtcaac 960 ggcaagggcg gccagccggt gtacatcaag ctggccggtc aggacagcgg gcggtgcgcg 1020 ccgaaa 1026 114 1230 DNA Mycobacteria tuberculosis 114 atgaaatcct tcgccgaacg caaccgtctg gccatcggca cagtcggcat cgtcgtcgtc 60 gccgccgttg cgctggccgc gctgcaatac cagcggctgc cgtttttcaa ccagggcacc 120 agggtctccg cctatttcgc cgacgccggc gggctgcgca ccggcaacac cgtcgaggtc 180 tccggctatc cggtgggaaa agtgtccagc atctcgctcg acggaccggg cgtgctggtg 240 gagttcaagg tcgacaccga cgtccgactc ggaaaccgca ccgaagtggc aatcaaaacc 300 aagggcttgt tgggcagcaa gttcctcgac gtcacccccc gcggggacgg ccgactcgat 360 tctccgatcc cgatcgagcg gaccacgtcg ccctaccaac tgcccgacgc ccttggcgat 420 ttggccgcca cgatcagcgg gttgcacacc gagcggctgt ccgaatcgct ggccaccctg 480 gcgcagacct ttgccgatac gccggcgcac ttccgcaacg ccatacacgg ggtggcccgg 540 ctcgcccaaa ccctcgatga gcgcgacaac caactgcgca gcctgctggc caacgcggcc 600 aaagccaccg gggtgctggc caaccgcacc gaccagatcg tcggcctggt gcgcgacacg 660 aatgtggtct tggcgcagct gcgcacccaa agcgccgccc tggaccggat ctgggcgaac 720 atctcggcgg tggccgaaca actgcggggc ttcatcgctg agaaccgcca gcagctgcgc 780 ccggcgctgg acaagctcaa cggggtgctg gctatcgtcg aaaaccgcaa agagcgtgtg 840 cggcaggcca tcccgctgat caacacctat gtcatgtcgc tgggtgagtc gctgtcgtcg 900 ggcccgttct tcaaggcata cgtggtgaac ctgctgccgg gtcagttcgt gcaaccgttc 960 atcagcgccg cgttctccga cctggggctc gacccggcca cgttgctgcc gtcgcagctg 1020 accgacccac cgaccggtca acccggaacc ccgccgttgc cgatgcccta cccgcgcacg 1080 ggccagggcg gtgagccgcg gctgacgctg cccgacgcga tcaccggcaa tcccggcgat 1140 ccgcgctatc cgtaccggcc ggagccgccc gcgccgccgc ccggcgggcc gccgcccggc 1200 ccgcccgcgc agcagccggg agaccaaccg 1230 115 1269 DNA Mycobacteria tuberculosis 115 gtgacaacga aactcagacg tgcccgctcg gtgttggcga ccgccctggt gctggtcgcg 60 ggcgtgatcc tggccatgcg caccgccgac gccgccgccc gcacgaccgt ggtcgcctac 120 ttcgacaaca gcaacggtgt gttcgccggt gacgacgtgc tcattcgggg cgtgccggtg 180 ggcaagatcg tcaagatcga accgcaaccg ctgcgcgcca agatttcgtt ctggttcgac 240 cgcaaatacc gagtccccgc cgatgccgcc gcggcgatcc tgtcgccgca actggtgacc 300 ggccgggcca tccagctgac accgccgtat gccggcgggc cgaccatggc cgacggcaca 360 gtaatcccgc aagagcgcac cgtggtgccg gtggagtggg acgacttgcg ggcgcaactt 420 cagcggctga ccgcattgct gcagcccacc cggccgggcg gcgtcagcac gctgggtgcg 480 ctcatcaata ctgccgccga caacctgcgc gggcaaggcg ccaccatccg cgacaccatc 540 atcaaactgt cacaagcgat ttcggctctc ggtgaccaca gcaaagacat cttctccacc 600 gtgacgaacc tgtcgacgct ggtcacggcg ctgcatgaca gcgctgacct gctcgaacgg 660 ctcaaccaca acctggccgc ggtgacctcg ctgctggccg atggcccgga caagatcggt 720 caggcagccg aggacctcaa cgcggtcgta gccgacgtcg gcagcttcgc cgccgagcac 780 cgcgaggcga tcggcaccgc atcagacaag ctcgcgtcaa tcaccaccgc gctggtcgac 840 agcctcgacg acatcaagca gacgctgcat atcagcccga cggtgttgca gaacttcaac 900 aacatcttcg aaccggccaa cggcgcgctg accggcgcgc tggcgggcaa caacatggcc 960 aacccaatcg ccttcctgtg cggcgcgatc caggctgcct cccggctggg cggcgagcaa 1020 gcggccaaat tgtgcgtgca atacctggcg ccgatcgtga agaaccgcca gtacaactac 1080 ccgccgctgg gggcgaacct gttcgtcggg gcgcaggcca ggcctaacga ggtcacctac 1140 agcgaggact ggctgcggcc cgattacgtt gcaccagttg cggacacgcc gccagatccg 1200 gccgcggccg tgaccgtcga tcccgcgacc ggcctgcgcg gcatgatgat gccgccgggg 1260 ggtggctcg 1269 116 1131 DNA M. tuberculosis 116 gtgaggatcg gcctgaccct ggtgatgatc gcggccgtgg tagcgagctg cggctggcgc 60 gggctgaatt cgctgccgct gcccggcacg cagggcaacg gcccggggtc cttcgcggtc 120 caggcgcagc tgccggatgt caacaacatc cagccgaact cgcgggtgcg ggttgccgac 180 gtgacggtcg gccacgtcac gaaaatcgag cgccaaggct ggcacgcgtt ggtgaccatg 240 cggctggatg gcgacgtcga tttgcccgcc aacgcaacgg ccaagatcgg caccaccagc 300 ctgctgggtt cctaccacat cgagctggcg ccaccgaaag gcgaagcgcg gcaaggcaag 360 ctgcgcgacg gttcactcat tgcgctgtca cacggtagcg cctacccaag caccgagcag 420 acgctggcag cgctgtcgct ggtgctcaac ggcggcggac tgggccaggt tcaagacatc 480 accgaggcgt tgagcaccgc gtttgccggc cgtgagcacg atctgcgcgg gctgattggg 540 cagctggaca ccttcaccgc atacctcaac aaccagtccg gtgacatcat cgcggccacc 600 gacagcctca accgcctcgt cggcaagttc gccgaccagc aacccgtctt cgatcgggcc 660 ctggccacca tccccgacgc gctcgcggtg ctggccgatg agcgggacac gctcgtcgag 720 gctgccgagc agctgagcaa gttcagcgcc ctgaccgtcg actcggtcaa caagaccacc 780 gcgaacctgg tcaccgaact gcggcaactc ggaccggtgt tggagtcgct ggccaattcc 840 ggtccggcgc tgacccgatc gctgtccctg ctggccacgt tcccgttccc gaacgagacg 900 ttccaaaatt tccagcgcgg cgaatacgcc aacctgaccg cgatcgtcga cctcacgctc 960 agccgcatcg accagggcct gttgaccggc acccgctggg agtgtcatct gacccagctc 1020 gagctgcagt ggggtcgcac cattgggcag ttccccagcc cgtgtaccgc gggctatcgg 1080 ggtaccccgg gcaatccgct gacgatcgcc taccgctggg atcaggggcc c 1131 117 1311 DNA Mycobacteria tuberculosis 117 atgctgcatc taccgcgccg agtgatcgtt cagctggccg tctttaccgt gatcgcggtg 60 ggcgtgctgg ccatcacgtt cctgcatttc gtgaggctgc cggcgatgct tttcggcgtc 120 ggccgctaca cggtgacgat ggagctggtc gaagccggtg ggctgtatcg caccggcaat 180 gtcacctacc gcggctttga ggtgggccgg gtggcagcgg tgcggctcac cgacaccggg 240 gtgcaagcgg tgctggccct gaaatcgggc atcgatatcc cgtcggacct caaggccgag 300 gtgcacagcc acaccgcgat cggcgaaacc tacgtcgagt tgttgccgcg caacgccgcc 360 tcgccgccac tgaagaacgg cgatgtcatt gcgctggccg acacctcggt gccgcccgac 420 atcaacgacc tgctcagcgc ggccaacacc gcattggagg caatacctca cgagaacctg 480 cagaccgtca tcgacgagtc gtacaccgcg gtggccgggt tagggctcga actttcccgg 540 ctgatcaagg gctcggcgga actggcgatc gatgctcgcg cgaatctcga tccgctggtg 600 gcgctgatcg accgggcagg accggtgctg gattcgcaga cccacacctc ggatgcgatc 660 gcggcctggg cggcacagct ggccgcagtc accggccaat tgcagacaca cgactcggcg 720 gtcggcgatc tcatcgaccg gggcggtccg gcgttggggg agacgcgcca actgctcgag 780 cggctacaac ccaccgtgcc catcctgctg gccaacctgg tcagcgtcgg ccaggtcgca 840 ctcacctatc acaacgacat cgaacagctg ctggtggtgt tccccatggc catcgccgcc 900 gaacaggccg gcatcctggc caacctcaac accaagcagg cctaccgggg ccagtatctg 960 agcttcaacc tcaacctgaa cctgccgccg ccgtgcacca ccggctttct gccggcccag 1020 cagcggcgca ttcccacgtt cgaggactac ccggatcgcc cggccggtga tctgtactgc 1080 cgggtgcccc aggattcgcc gtttaacgtg cgcggcgccc gcaacatccc ctgtgaaacc 1140 gtgccgggca agcgcgcacc caccgtgaag ttatgcgaga gcgacgcgcc atacctgccg 1200 ctgaacgacg gctacaactg gaagggcgac cccaacgcca cggtgccggg tttggggtcc 1260 ggccaggaca tcccgcagac atggcaaacg atgctgctgc cgccgggcag c 1311 118 573 DNA Mycobacteria tuberculosis 118 atgtcggtag cagtggattc cgacgccgag gatgacgccg tatcggagat cgctgaggca 60 gccggcgtgt cgccggcccc agccaaacca tccatgtcgg cgccgcggcg catgctgctg 120 ttcggcctgg tcgtcgtcgt cgctttggcg gtgctgttgt gttgctgggg atttcgcgtc 180 cagcgggcac gccatgcgca ggaccagcgt ggtcacttcc tgcaagcggc ccggcagtgc 240 gcgctgaacc taacgaccat cgactggcgc aacgccgagg cggatgtgcg ccgcattctg 300 gacggcgcca caggcgagtt ttacaacgac ttcgcccagc ggtcccagcc cttcgtcgaa 360 gtactgaggc acgcaaaggc cagcacggtc ggcacgatca ccgaggccgg gctgcagacg 420 cagaccgccg acacggccca ggcgctggtg gcggtgtccg tgcaaacgtc gaatgccggc 480 gaagccgacc cggttccacg agcgtggcga atgcgcatca ccgtgcagcg ggtcggcgac 540 cgggtcaagg tgtccgacgt cgggttcgtg ccg 573 119 480 DNA Mycobacteria tuberculosis 119 gtgagctggt cgcgggtgat cgcctacggg ctgctgcccg ggctggcgtt ggcgctgacg 60 tgtggcgcgg gcttgctgaa atggcaggac ggcgccgtcc gcgacgccgc ggttgcccgt 120 gcggaatccg tgcgggccgc gaccgacggc accaccgcgc tgctgtctta ccggcccgac 180 accgtgcagc atgacctcga gagcgcgcga agcaggctca cgggcacgtt cctcgacgcc 240 tacacacagc tgacccacga cgtggtgatc cccggcgcac agcagaagca gatctcggcc 300 gtggccaccg tcgcggccgc ggcgtcggtg tcgacttccg ccgaccgcgc cgtcgtcctg 360 ctgttcgtaa accagaccat caccgtcggc aaggacgcgc cgaccaccgc cgcttccagc 420 gttcgggtga ccctcgacaa catcaacggg cgttggctga tctcgcaatt cgaaccgatc 480 120 375 DNA Mycobacteria tuberculosis 120 gtgcagcgcc aatcattgat gccccagcag acccttgccg ccggcgtttt cgtgggtgcg 60 ctgctatgcg gtgtcgtgac ggcggcggtg ccaccacacg cacgcgccga cgtggtcgcc 120 tatctggtca acgtgacggt acgcccgggc tacaacttcg ccaacgccga cgccgcgttg 180 agttacggac atggcctctg cgagaaggtg tctcggggcc gcccttacgc acagatcatc 240 gccgacgtca aggctgattt cgacacccgc gaccaatacc aggcctcgta tctgctcagc 300 caggctgtca acgaactctg ccccgcgctg atctggcagt tgcgaaactc cgcagtcgac 360 aatcggcgct cgggc 375 121 663 DNA Mycobacteria tuberculosis 121 atgtcgcgtc gagcatcggc cacgtgtgcc ttgtccgcga ccaccgccgt cgccataatg 60 gctgctcccg ccgcacgggc cgacgacaag cggctcaacg acggcgtggt cgccaacgtc 120 tacaccgttc aacgtcaggc cggctgcacc aacgacgtca cgatcaaccc gcaactacaa 180 ttggccgccc aatggcacac cctcgatctg ctgaacaacc ggcacctcaa cgacgacacc 240 ggttctgacg gatccacacc gcaagaccgc gcgcatgccg ccggcttccg cgggaaagtc 300 gctgaaaccg tggcgatcaa tcccgccgta gcgatcagcg gcatcgagtt gataaaccag 360 tggtactaca accccgcgtt tttcgcgatc atgtccgact gcgccaacac ccagatcggg 420 gtgtggtcag aaaacagccc ggatcgcacc gtcgtggtgg ccgtttacgg acagcccgat 480 cgaccttccg cgatgccgcc caggggagcg gtaaccggac cgccgtcccc ggtggccgcg 540 caagagaacg ttcctatcga ccccagcccc gactacgacg ccagcgacga gatcgaatac 600 ggcatcaact ggctgccatg gatcctgcgc ggcgtgtacc cgccgcccgc aatgccgccg 660 cag 663 122 405 DNA Mycobacteria tuberculosis 122 gtgcggtgga ttgtcgacgg tatgaacgtg atcggaagtc gtccggatgg ttggtggcgc 60 gaccgccatc gcgcgatggt gatgctggtg gaaaggctcg aggggtgggc catcaccaag 120 gctcggggcg acgacgtgac ggtggtgttc gagcggccgc cgtcgaccgc catcccgtca 180 tcggtggtcg aagtggcgca tgcgcccaag gcggccgcca actcggccga cgacgagatc 240 gtccggctgg tccgatccgg cgcccagcca caagagattc gtgtggtgac atcggacaaa 300 gcgttgaccg accgggtccg agacttgggt gcggcagtct acccggcaga acggttccgt 360 gaccttatcg acccgcgcgg gtcgaacgcg gcccgccgca cgcag 405 123 1044 DNA Mycobacteria tuberculosis 123 atgtctcaga cacccgctac aacccgcaaa acgtttcccg agatcagctc aagagcgtgg 60 gagcaccccg ccgaccggac cgccctttcc gcgctgcgcc ggctcaaagg cttcgaccag 120 atcttgaagc tgatgtcggg gatgttgcgg gaacggcagc accggctgct gtacctggcc 180 agcgcggcac gggtcgggcc gcggcagttc gccgacctcg acgcgctgct ggacgaatgc 240 gtggatgtgc tggacgcgtc ggcgaaaccc gaactctacg tgatgcagtc accaatcgcg 300 gatgccttca ccatcggcat gggcaagcca ttcaccgtga tcacctcggg gctgtacgac 360 ctggtgacac acgacgagat gcggttcgtg atgggccacg agctcggcca cgcactgtcc 420 ggccacgcgg tgtaccgcac gatgatgatg catctgctgc ggttggcccg gtcattcggc 480 gtcttgccgg ttggcggctg ggcgctgcgc gcaatcgtgg ctgcgctgct ggaatggcag 540 cgcaaatcgg agctgtccgg cgatcgcgct gggttgctgt gcgcgcagga tttggacacc 600 gcgctcaggg tggagatgaa gctcgctggc ggctgccggc tggacaagct ggactcggag 660 gccttcttgg ctcaggcccg ggaatacgag acatccggcg atatgcgcga cggggtgctc 720 aagctgctca acctggagct gcagacccat ccgttctctg tgctgcgggc tgccgccttg 780 actcactggg tggacaccgg cggctatgcc aaggtgatag ccggcgagta cccgcgtcgg 840 gccgacgacg gcaacgccaa atttgcagac gaccttggcg cggccgcccg gtactaccgg 900 gacggcttcg accagtccaa cgacccgctg atcaaaggta tccgcgacgg attcggtggc 960 atcgtcgagg gcgtgggacg ggcagcctcg aacgcggccg attcattggg ccgcaagatc 1020 accgagtggc ggcagccctc gaag 1044 124 564 DNA Mycobacteria tuberculosis 124 atgactacgc gtccggcaac cgaccgccgc aagatgccca ctgggcggga agaggtagcg 60 gccgcaatcc tgcaggccgc caccgacctg ttcgccgagc gtgggccagc cgcgacgtcg 120 attcgcgaca tcgccgctcg atccaaggtc aaccacgggc tggtgtttcg tcacttcggc 180 accaaggacc aactggttgg ggccgtgctc gatcacctgg gcacgaagct gaccagactg 240 ttgcactccg aggcgcccgc tgacatcatc gaacgggctc tcgaccgaca tgggcgggtc 300 ttagcccggg cactgctgga cggatatccc gtgggccagc tgcaacagcg atttcccaat 360 gttgcggagc tgctcgacgc ggtacggcct cgctacgaca gcgacttggg cgcgcggctg 420 gcggtcgcgc acgcccttgc gctgcaattc ggttggcggc tctttgcgcc catgctgcgc 480 tcggcgacgg gtatcgacga gctgaccggt gacgaactac ggctgtccgt gaacgatgcg 540 gtagcccgga tcctggaacc gcac 564 125 702 DNA Mycobacteria tuberculosis 125 gtgacgatat tgatcctgac cgacaacgtc cacgcccatg ctctggcggt cgatctgcag 60 gccaggcatg gcgatatgga cgtctatcag tcccccatcg gccagctgcc gggtgtcccg 120 cgatgtgatg tcgcagagcg cgtcgcggaa atcgtggagc ggtatgacct cgtcctttcc 180 ttccactgta aacagaggtt tcccgccgct ttgatcgatg gggtcaggtg tgtgaatgtt 240 catccgggtt tcaaccccta caaccgcggc tggtttcccc aggtcttctc gatcatcgac 300 gggcaaaaag tcggcgtgac gatccacgag atcgacgatc agttggacca tggtccgatc 360 atcgcccagc gggaatgcgc gatcgagtcg tgggattcct cgggaagtgt ctacgcccgg 420 ctgatggaca tcgagcgtga gttggtgctg gaacatttcg acgccatccg ggacggcagc 480 tacacggcta aatcgccggc caccgagggc aacctcaacc tgaaaaagga tttcgaacaa 540 ctccggcggc tagacctgaa cgagcgcgga acgtttgggc atttcctgaa tcgcctgcgc 600 gcgttgaccc atgatgattt ccgcaacgct tggttcgtcg atgcgtcagg ccgcaaggtg 660 tttgtccgcg tcgtgctcga accggagaag cccgcggaag cc 702 126 1599 DNA Mycobacteria tuberculosis 126 atgttagcct tcccttattt gatgactatg atcactccac ctaccttcga cgttgcgttc 60 atcggcagcg gggccgcgtg ctctatgact ctgctggaaa tggccgatgc cctgctgagc 120 agcccctcgg catcgcccaa gttgcgcatc gcggtggtgg agcgagacga gcagttctgg 180 tgcggaatcc cctatggcca acgctccagc atcggatcgc tggccattca gaagctcgac 240 gatttcgccg acgagccgga aaaggccgcc taccggatct ggctggagca gaacaagcag 300 cgctggctgg cgttcttcca ggcagagggc ggtgcggccg cggcccgctg gatctgcgac 360 aaccgcgacg cattggacgg caaccagtgg ggggagctct acctgccgcg gtttctcttc 420 ggtgtatttc tgtcggagca gatgattgcc gccatcgccg cgctcggcga gcgtgacctg 480 gccgaaatcg tcaccatccg cgctgaggcc atgagcgccc actccgcaga cggccactac 540 cgaatcggcc tccgcccgtc tggaaacggt ccaacggcaa ttgctgcagg caaagtggtt 600 gtggccattg gcagcccccc gaccaaagcc atccttgcga gcgattccga acccgcattc 660 acctatatca acgatttcta ctcccccggc ggggagagca acgttgcgcg actgcgcgat 720 tcgctcgacc gcgtcgagtc gtgggagaag cgcaacgtac tggtcgtggg ttccaacgcc 780 acctcgctgg aagcgctcta cctaatgcgt cacgacgcgc gcatccgcgc acgcgtccgg 840 tccatcaccg tcatctcgcg ctccggcgtg ctgccctaca tgatctgcaa tcagccgccg 900 gagtttgact tcccgcggct gcgcacgctg ctctgtacgg aagcgatcgc cgcggcggat 960 ctcatgtccg cgatccgcga cgatctcgcg acggccgaag aacgctcgtt gaacctggcc 1020 gatttgtacg acgccgttgc cgccctgttt gggcaggcgc tgcacaagat ggatctcgtg 1080 cagcaggaag agttcttctg cgtgcacggc atgaacttca ccaagttggt gcggcgtgcg 1140 ggacgcgatt gccgccaggc atccgaggag ctagccgcgg acggcacgct gagcctgctc 1200 gccggcgaag tactgcgcgt ggatgcctgc gcgtccggcc agccgttcgc caccatgacc 1260 taccgagccg cgggagccga gcatacccac cccgtcccct tcgctgcggt ggtgaattgt 1320 ggcggtttcg aggagctgga cacgtgttcc tcgccgttcc tggtcagcgc gatgcagaac 1380 gggctgtgcc gcccgaaccg caccaaccgt ggccttctgg ttaacgacga cttcgaggcc 1440 agcccaggtt tttgcgtcat cgggccccta gtcggcggca atttcactcc caagatccgt 1500 ttttggcacg tcgagagcgc accgcgcgtc cggtcgctgg cgaaatcgct ggcggccagc 1560 ctgcttgctt cgctccagcc cgtcgcactg gccccatgc 1599 127 1236 DNA Mycobacteria tuberculosis 127 atgaagatcc gaacgttatc cggctcggtg ctggagccgc cgtccgcagt acgcgcgacc 60 ccaggcacgt ccatgttaaa actcgagccg ggtggctcga cgatccccaa gatccccttc 120 atccgcccga gctttcccgg gccagccgag ctcgccgagg acttcgtaca gatcgcccag 180 gctaactggt acacgaactt cggtccgaac gagcggcggt ttgcccgcgc cctgcgcgac 240 tatctgggac ctcatctgca cgttgctacc ctcgccaacg gcaccctggc actcctcgcg 300 gcgctccacg tcagtttcgg cgccggtacg cgggaccgct acctgctgat gccgtcgttc 360 acgttcgtcg gcgtggctca ggctgcgcta tggactgggt accgtccctg gttcatcgac 420 atcgacgcca acacatggca gccatgcgtc cactccgccc gcgccgtcat cgaacgcttc 480 cgcgaccgga tcgccggcat cctgctggcc aatgtgttcg gcgtcggcaa tccccagatc 540 agcgtctggg aggagctcgc cgccgaatgg gagctaccga ttgtgctcga ctcggcggcc 600 ggcttcggct ccacgtacgc cgacggcgag cgcctcggtg gacgcggtgc atgcgagatc 660 ttctccttcc atgcgaccaa gccgttcgcg gttggtgagg gcggcgctct ggtttctcgc 720 gatccacggc tcgtcgagca cgcatacaag ttccagaact tcggcttggt gcaaacacgc 780 gagtccatcc agctcggaat gaacggcaag ctgtcggaga tcagcgccgc tattggccta 840 cgccaactag tcgggcttga tcgccgcctg gcaagtcgcc gcaaggtcct cgagtgctat 900 cgcaccggta tggccgacgc gggtgtgcgt ttccaggaca acgccaatgt tgcgtcgctc 960 tgtttcgcga gcgcttgctg cacgtccgcc gaccacaagg ccgcggttct gggtagcctg 1020 cgtaggcacg cgatcgaggc gcgcgactac tacaacccac cgcagcaccg acatccgtac 1080 tttgtgacga atgccgagtt agtcgagtcg accgatctag ccgtcacggc ggacatttgc 1140 tcgcgaatcg tgtcgctgcc agtccacgac cacatggccc cggatgacgt tgcccgggtc 1200 gtcgccgccg tgcaggaagc ggaggtgcgc ggtgaa 1236 128 2358 DNA Mycobacteria tuberculosis 128 atgatcaccg aggacgcctt ccccgtcgaa ccgtggcagg tccgcgagac caagctcaac 60 ctgaacctgc tggcccagtc cgaatcccta ttcgccttgt ccaacgggca cattggatta 120 cgcggcaacc tcgacgaggg cgaacccttc ggactgccgg gcacctacct gaactctttc 180 tacgaaatcc ggccgctgcc gtacgccgag gccggttatg gatatccgga ggccggccag 240 accgttgtcg acgtcaccaa cggcaagatc tttcgcctgt tggtcggcga cgagccgttc 300 gacgtccggt atggcgaatt gatctcccac gaacggatcc tcgacctgcg cgccgggacg 360 ctgacccgcc gcgcgcactg gcgctcaccg gcgggcaagc aagtcaaagt gacgtccacc 420 cggctggtgt cgctggccca ccgcagcgtc gcggcgatcg agtacgtcgt cgaggcaatc 480 gaggaattcg ttcgcgtgac cgtgcagtcc gaactcgtca ccaacgagga cgtaccggag 540 acctcggccg acccgcgggt gtcggccatc ctggacaggc cgctacaggc cgtcgagcac 600 gaacgcaccg agcggggtgc acttctcatg caccgcaccc gagccagcgc gctgatgatg 660 gccgcaggga tggaacacga ggtcgaggtt cccgggcggg tcgagatcac caccgacgcc 720 cgcccggacc tggcccgaac caccgtgatc tgcgggctgc gcccgggaca gaagctgcgc 780 atcgtcaaat acctggccta tggctggtcc agcctgcgct cccgcccggc gctgcgcgac 840 caggccgccg gcgcgctgca cggtgcccgc tacagcggct ggcaggggct gctggacgcg 900 caacgcgcct acctcgacga cttctgggac agcgcggacg tggaggtcga gggcgacccg 960 gaatgtcagc aagcggtgcg tttcgggtta tttcacctgt tgcaggccag cgcgcgcgcc 1020 gaacgccgcg cgatccccag caaggggctc accggaaccg ggtatgacgg ccacgccttt 1080 tgggacaccg aaggtttcgt gctaccggtg ctcacctaca ccgcaccgca tgcggtcgcc 1140 gacgcgctgc ggtggcgggc gtcgacgttg gacctggcca aggagcgggc ggccgagctc 1200 ggcctggaag gtgccgcctt tccctggcgg accatccgcg gacaggagtc ctcggcctac 1260 tggccggccg gcacggcggc ctggcacatc aacgccgaca tcgcgatggc gttcgagcgg 1320 taccgcatcg tcaccggcga cggttcgctg gaggaggaat gcggccttgc ggtgctgatc 1380 gagaccgccc ggctgtggct ctcgctcggg caccacgacc gccacggcgt ctggcacctc 1440 gacggggtca ccggtcccga cgagtacacg gcggtcgtcc gcgacaacgt gttcacgaat 1500 ctgatggcgg cgcacaatct gcacaccgcc gccgatgctt gcttgcgcca ccccgaggcg 1560 gcggaggcca tgggtgtcac caccgaggag atggccgcct ggcgcgacgc ggccgacgcc 1620 gccaacattc cctacgacga ggaactcggt gtccaccagc agtgtgaagg gttcaccacc 1680 cttgcggagt gggatttcga agccaacacc acttatccgt tgctactgca cgaggcctac 1740 gtgcgcttgt atcccgcaca ggtgatcaag caggccgacc tggtgctggc gatgcagtgg 1800 cagagtcacg cgttcacgcc cgagcagaag gcgcgcaacg tcgactacta cgaacggcgc 1860 atggtgcgcg actcgtcgtt gtcggcctgc actcaggcgg tgatgtgcgc cgaggtcggc 1920 catctcgagt tggcccacga ctatgcctac gaagccgccc tgatcgacct gcgcgacctg 1980 caccgcaaca cccgtgacgg cctacacatg gcttcgctgg ccggagcctg gacggcgctg 2040 gtcgtaggct tcggcggcct acgcgacgac gagggcatcc tgtccatcga tccgcagctg 2100 cccgacggca tctcgcggct gcggttccgg ctgcgatggc gcggcttccg gctgatcgtc 2160 gacgccaacc acaccgacgt caccttcatc cttggcgacg gtcccggcac ccagctgacc 2220 atgcgccacg ccggccaaga tctgacgctg cacacggaca caccgtccac catcgccgtg 2280 cgcacccgta agccgctgct gccgccacca ccgcagccgc caggccgcga gccagtgcac 2340 cgccgggctt tagcccgg 2358 129 786 DNA Mycobacteria tuberculosis 129 atggcgaact ggtatcgccc gaactatccg gaagtgaggt cccgcgtgct gggtctgccc 60 gagaaggtgc gtgcttgcct gttcgacctc gacggtgtgc tcaccgatac cgcgagcctg 120 cataccaagg cgtggaaggc catgtttgac gcctacctag ccgagcgagc cgagcgcacc 180 ggcgaaaaat tcgttccctt cgaccctgcc gcggactatc acacgtatgt ggacggcaag 240 aaacgcgaag acggcgttcg atcgtttctg agcagccgcg ccatcgaaat acccgacggt 300 tccccggatg acccgggcgc cgccgagacg gtgtatggcc tgggcaaccg caagaacgac 360 atgttgcaca agctgctgcg cgacgatggg gcccaggtgt tcgacgggtc gcggcgctac 420 ctggaggcgg tcacggccgc gggtctcggt gtggccgtgg tgtcttcgag cgccaacacc 480 cgcgacgtgc tcgcgaccac cggtctggac cggttcgtcc agcagcgggt ggacggcgtg 540 acgttgcgcg aagagcacat cgccggcaag ccggcccccg actccttcct gcgcgcggca 600 gaactgttgg gggttacccc cgacgcggcg gcggtgttcg aggacgccct gtccggggtg 660 gcggccggcc gcgccggcaa cttcgccgta gtggtgggca tcaaccgaac gggccgggcg 720 gctcaggccg cccagttgcg ccgccatggc gccgacgtgg tggtaaccga tctcgccgag 780 ctgctg 786 130 60 DNA M. tuberculosis misc_feature (1)...(60) n = A,T,C or G 130 antagtaatg tgcgagctga gcgatgtcgc cgctcccaaa aattaccaat ggttnggtca 60 131 60 DNA M. tuberculosis 131 agtagtaatg tgcgagctga gcgatgtcgc cgctcccaaa aattaccaat ggtttggtca 60 132 60 DNA M. tuberbulosis 132 tgacgccttc ctaaccagaa ttgtgaattc atacaagccg tagtcgtgca gaagcgcaac 60 133 60 DNA M. tuberculosis 133 tgacgccttc ctaaccagaa ttgtgaattc atacaagccg tagtcgtgca gaagcgcaac 60 134 11 DNA M. tuberculosis 134 actcttggag t 11 135 11 DNA M. tuberculosis 135 actcttggag t 11 136 49 DNA M. tuberculosis misc_feature (1)...(49) n = A,T,C or G 136 gtggcctaca acggngctct ccgnggcgcg ggcgtaccgg atatcttag 49 137 49 DNA M. tuberculosis 137 gcggcctaca acggcgctct ccgcggcgcg ggcgtaccgg atatcttag 49

Claims (23)

What is claimed is:
1. A nucleic acid comprising a junction of a deletion marker in Table 1.
2. The nucleic acid of claim 1, wherein said nucleic acid hybridizes to a M. tuberculosis complex genome when the deletion is present, but not in an undeleted genome.
3. The nucleic acid of claim 1, wherein said nucleic acid is from 15 to 25 nucleotides in length.
4. The nucleic acid of claim 1, wherein said M. tuberculosis complex genome is BCG.
5. The nucleic acid of claim 1, wherein said M. tuberculosis complex genome is a variant of M. tuberculosis.
6. The nucleic acid of claim 1, wherein said M. tuberculosis complex genome is M. bovis.
7. A pair of hybridization primers comprising the nucleic acid of claim 1, and a second nucleic acid that hybridizes to a second site in an M. tuberculosis complex genome.
8. A genetically altered mycobacterium, comprising an exogenous nucleic acid sequence comprising one or more deletion markers as set forth in Table 1.
9. The genetically altered mycobacterium of claim 8, wherein said mycobacterium is BCG, and wherein said deletion marker is deleted in BCG according to Table 1.
10. The mycobacterium of claim 8, further comprising a physiologically acceptable carrier for injection.
11. A genetically altered mycobacterium, comprising a deletion resulting from homologous recombination in a deletion marker as set forth in Table 1.
12. The genetically altered mycobacterium according to claim 11, wherein said mycobacterium is M. bovis.
13. The mycobacterium of claim 12, further comprising a physiologically acceptable carrier for injection.
14. The genetically altered mycobacterium according to claim 11, wherein said mycobacterium is M. tuberculosis.
15. The mycobacterium of claim 14, further comprising a physiologically acceptable carrier for injection.
16. A method of distinguishing whether a patient has been exposed to BCG or to M. tuberculosis, the method comprising:
contacting said patient or a sample derived therefrom with a polypeptide encoded by a deletion marker of Table 1, wherein said deletion marker is present in M. tuberculosis and absent in BCG; and
determining the presence of an immune reaction to said polypeptide, wherein a positive response is indicative of exposure to M. tuberculosis.
17. The method of claim 16, wherein said contacting step comprises sub-cutaneous injection of said polypeptide.
18. The method of claim 16, wherein said contacting step is performed in vitro and said sample comprises a blood sample or derivative thereof.
19. A method of distinguishing a bacterial strain of the M. tuberculosis complex, the method comprising:
determining the presence of a deletion marker in Table 1, wherein said deletion is absent in at least one of said candidate strains;
wherein the presence of said deletion marker is indicative that said strain is not said candidate strain.
20. The method according to claim 19, wherein said determining step comprises nucleic acid hybridization to said deletion marker.
21. The method according to claim 19, wherein said determining step comprises antibody binding to a polypeptide encoded by said deletion marker.
22. The method according to claim 19, wherein said determining step comprises PCR amplification across said deletion.
23. The method according to claim 19, wherein said determining step comprises hybridization to a junction sequence associated with said deletion marker.
US10/647,089 1998-08-25 2003-08-21 Molecular differences between species of the M. tuberculosis complex Abandoned US20040063923A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/647,089 US20040063923A1 (en) 1998-08-25 2003-08-21 Molecular differences between species of the M. tuberculosis complex
US11/143,401 US7364740B2 (en) 1998-08-25 2005-06-01 Molecular differences between species of the M. tuberculosis complex
US12/049,063 US7700118B2 (en) 1998-08-25 2008-03-14 Molecular differences between species of the M. tuberculosis complex
US12/753,330 US20110206715A1 (en) 1998-08-25 2010-04-02 Molecular differences between species of the m. tuberculosis complex

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US9793698P 1998-08-25 1998-08-25
US09/318,191 US6291190B1 (en) 1998-08-25 1999-05-25 Molecular differences between species of the M. tuberculosis complex
US09/894,844 US6686166B2 (en) 1998-08-25 2001-06-27 Molecular differences between species of the M. tuberculosis complex
US10/647,089 US20040063923A1 (en) 1998-08-25 2003-08-21 Molecular differences between species of the M. tuberculosis complex

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/894,844 Continuation US6686166B2 (en) 1998-08-25 2001-06-27 Molecular differences between species of the M. tuberculosis complex

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/143,401 Continuation US7364740B2 (en) 1998-08-25 2005-06-01 Molecular differences between species of the M. tuberculosis complex

Publications (1)

Publication Number Publication Date
US20040063923A1 true US20040063923A1 (en) 2004-04-01

Family

ID=26793800

Family Applications (6)

Application Number Title Priority Date Filing Date
US09/318,191 Expired - Fee Related US6291190B1 (en) 1998-08-25 1999-05-25 Molecular differences between species of the M. tuberculosis complex
US09/894,844 Expired - Lifetime US6686166B2 (en) 1998-08-25 2001-06-27 Molecular differences between species of the M. tuberculosis complex
US10/647,089 Abandoned US20040063923A1 (en) 1998-08-25 2003-08-21 Molecular differences between species of the M. tuberculosis complex
US11/143,401 Expired - Lifetime US7364740B2 (en) 1998-08-25 2005-06-01 Molecular differences between species of the M. tuberculosis complex
US12/049,063 Expired - Fee Related US7700118B2 (en) 1998-08-25 2008-03-14 Molecular differences between species of the M. tuberculosis complex
US12/753,330 Abandoned US20110206715A1 (en) 1998-08-25 2010-04-02 Molecular differences between species of the m. tuberculosis complex

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/318,191 Expired - Fee Related US6291190B1 (en) 1998-08-25 1999-05-25 Molecular differences between species of the M. tuberculosis complex
US09/894,844 Expired - Lifetime US6686166B2 (en) 1998-08-25 2001-06-27 Molecular differences between species of the M. tuberculosis complex

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/143,401 Expired - Lifetime US7364740B2 (en) 1998-08-25 2005-06-01 Molecular differences between species of the M. tuberculosis complex
US12/049,063 Expired - Fee Related US7700118B2 (en) 1998-08-25 2008-03-14 Molecular differences between species of the M. tuberculosis complex
US12/753,330 Abandoned US20110206715A1 (en) 1998-08-25 2010-04-02 Molecular differences between species of the m. tuberculosis complex

Country Status (9)

Country Link
US (6) US6291190B1 (en)
EP (3) EP2006395B1 (en)
AT (3) ATE473299T1 (en)
AU (1) AU5394699A (en)
DE (3) DE69942569D1 (en)
DK (3) DK2031075T3 (en)
ES (1) ES2343927T3 (en)
PT (2) PT1108060E (en)
WO (1) WO2000011214A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148870A1 (en) * 2006-05-18 2009-06-11 Ericson Daniel G Rapid Detection of Mycobacterium Tuberculosis and Antimicrobial Drug Resistance
WO2010097625A1 (en) 2009-02-25 2010-09-02 Fusion Antibodies Limited Diagnostic method and kit

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291190B1 (en) * 1998-08-25 2001-09-18 The Board Of Trustees Of The Leland Stanford Junior University Molecular differences between species of the M. tuberculosis complex
US20040018574A1 (en) * 1998-08-25 2004-01-29 Marcel Behr Molecular differences between species of the M. tuberculosis complex
FR2791067B1 (en) * 1999-03-16 2003-01-31 Pasteur Institut SEQUENCE DELETEES IN M.BOVIS BCG / M.OU M.TUBERCULOSIS, METHOD FOR DETECTION OF MYCOBACTERIA USING THESE SEQUENCES AND VACCINES
WO2000066157A1 (en) 1999-05-04 2000-11-09 The Public Health Research Institute Of The City Of New York, Inc. Proteins expressed by mycobacterium tuberculosis and not by bcg and their use as diagnostic reagents and vaccines
EP1377827A2 (en) * 2001-04-10 2004-01-07 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen in Reutlingen Stiftung Bürgerlichen Rechts Method for determining analyte molecules in a sample
US7758874B2 (en) * 2002-02-19 2010-07-20 Albert Einstein College Of Medicine Of Yeshiva University Attenuated Mycobacterium tuberculosis vaccines
WO2003070164A2 (en) * 2002-02-19 2003-08-28 Albert Einstein College Of Medicine Of Yeshiva University Attenuated mycobacterium tuberculosis vaccines
ES2286212T3 (en) * 2002-02-25 2007-12-01 Pasteur Institut SPECIFICALLY DELETED SEQUENCES OF THE MYCOBACTERIUM TUBERCULOSIS GENOME, AND ITS USE IN THE DIAGNOSIS AND AS VACCINES.
WO2003089462A2 (en) * 2002-04-16 2003-10-30 Jun Liu Tuberculosis vaccines including recombinant bcg strains expressing alanine dehydrogenase, serine dehydratase and/or glutamine synthetase
AU2003224313A1 (en) * 2002-04-27 2003-11-17 The Secretary Of State For Environment, Food And Rural Affairs Mycobacterial antigens and uses thereof
WO2004097048A1 (en) * 2003-04-28 2004-11-11 Canon Kabushiki Kaisha Process for assay of nucleic acid by competitive hybridization using a dna microarray
ITRM20030411A1 (en) * 2003-08-29 2005-02-28 Consiglio Nazionale Ricerche USE OF SPECIFIC GENE SEQUENCES OF MYCOBACTERIUM TUBERCOLOSIS IN ADDITIONAL PROTEINS FOR DIAGNOSIS AND PREVENTION OF TUBERCULAR INFECTION.
US7608277B2 (en) * 2004-12-01 2009-10-27 Gene Therapy Systems, Inc. Tuberculosis nucleic acids, polypeptides and immunogenic compositions
CA2606962A1 (en) * 2005-04-29 2006-11-09 Fusion Antibodies Limited Assays for diagnosis of tuberculosis and uses thereof
JP5017269B2 (en) 2005-07-26 2012-09-05 ユニヴァーシティ オブ メディシン アンド デンティストリ オブ ニュージャーシィ Antibody profile specific to tuberculosis
US20080206776A1 (en) * 2005-09-05 2008-08-28 Bio-Rad Pasteur Use of Both Rd9 and Is6110 as Nucleic Acid Targets for the Diagnosis of Tuberculosis, and Provision of Multiplex-Compliant Is6110 and Rd9 Targets
BRPI0604958B1 (en) * 2006-11-23 2022-05-17 Fundação Oswaldo Cruz Kit for distinguishing mycobacterium tuberculosis, m. bovis, m. bovis bcg in a sample, and method to distinguish mycobacterium tuberculosis, m. bovis, m. bovis bcg
CN101661044B (en) * 2008-08-27 2013-10-16 复旦大学附属华山医院 Diagnostic reagent of tuberculosis and kit
CN102149822A (en) * 2008-09-12 2011-08-10 株式会社Lg生命科学 Composition for detection of m. tuberculosis complex or mycobacteria genus and simultaneous detection method for m. tuberculosis complex and mycobacteria genus with multiplex real time PCR using the same
US8961989B2 (en) 2009-11-20 2015-02-24 Oregon Health & Science University Methods for producing an immune response to tuberculosis
KR101158647B1 (en) * 2010-05-27 2012-06-26 울산대학교 산학협력단 Methods for identification and detection of mycobacterium tuberculosis complex and nontuberculous mycobacteria using duplex real time polymerase chain reaction and melting curve analysis
US9663758B2 (en) 2013-03-12 2017-05-30 Wisconsin Alumni Research Foundation Global gene regulators (GGR) as vaccine candidates against paratuberculosis
BR112019005732A2 (en) * 2016-09-22 2019-08-06 Pace Diagnostics Inc mycobacterium tuberculosis proteins in assays and diagnostic devices for tuberculosis detection and diagnosis
KR102247643B1 (en) * 2019-11-01 2021-05-03 바이오파크진단 주식회사 A method for diagonising mycobacterium tuberculosis and non-tuberculosis mycobacterium in 2-step way and the kit thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686597A (en) * 1995-06-06 1997-11-11 Incyte Pharmaceuticals, Inc. Thrombin receptor homolog
US5776465A (en) * 1987-03-02 1998-07-07 Beth Israel Hospital Association Recombinant mycobacterial vaccines
US5955356A (en) * 1991-02-14 1999-09-21 N.V. Innogenetics S.A. Nucleic acids, vectors, and host cells including mycobacterium derived sequences
US6120776A (en) * 1993-07-02 2000-09-19 Statens Seruminstitut Diagnostic skin test for tuberculosis
US6291190B1 (en) * 1998-08-25 2001-09-18 The Board Of Trustees Of The Leland Stanford Junior University Molecular differences between species of the M. tuberculosis complex
US20040013685A1 (en) * 1997-11-10 2004-01-22 Peter Andersen Nucleic acid fragments and polypeptide fragments derived from M. tuberculosis

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE132195T1 (en) * 1987-03-02 1996-01-15 Whitehead Biomedical Inst RECOMBINANT MYCOBACTERIAL VACCINES
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
PH27357A (en) * 1989-09-22 1993-06-21 Fujisawa Pharmaceutical Co Pyrazole derivatives and pharmaceutical compositions comprising the same
US5807522A (en) 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5700683A (en) 1995-02-17 1997-12-23 Pathogenesis Corporation Virulence-attenuating genetic deletions deleted from mycobacterium BCG
WO1996027129A1 (en) 1995-02-28 1996-09-06 Ehrenkranz Joel R L Rapid, self-performing tsh immunoassay
EP0952849A4 (en) * 1996-12-31 2004-09-08 Univ New York Early detection of mycobacterial disease
CA2378763A1 (en) * 1999-07-13 2001-01-18 Statens Serum Institut Tuberculosis vaccine and diagnostics based on the mycobacterium tuberculosis esat-6 gene family

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776465A (en) * 1987-03-02 1998-07-07 Beth Israel Hospital Association Recombinant mycobacterial vaccines
US5955356A (en) * 1991-02-14 1999-09-21 N.V. Innogenetics S.A. Nucleic acids, vectors, and host cells including mycobacterium derived sequences
US6120776A (en) * 1993-07-02 2000-09-19 Statens Seruminstitut Diagnostic skin test for tuberculosis
US5686597A (en) * 1995-06-06 1997-11-11 Incyte Pharmaceuticals, Inc. Thrombin receptor homolog
US20040013685A1 (en) * 1997-11-10 2004-01-22 Peter Andersen Nucleic acid fragments and polypeptide fragments derived from M. tuberculosis
US6291190B1 (en) * 1998-08-25 2001-09-18 The Board Of Trustees Of The Leland Stanford Junior University Molecular differences between species of the M. tuberculosis complex

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148870A1 (en) * 2006-05-18 2009-06-11 Ericson Daniel G Rapid Detection of Mycobacterium Tuberculosis and Antimicrobial Drug Resistance
WO2010097625A1 (en) 2009-02-25 2010-09-02 Fusion Antibodies Limited Diagnostic method and kit

Also Published As

Publication number Publication date
US6291190B1 (en) 2001-09-18
US6686166B2 (en) 2004-02-03
DK2006395T3 (en) 2011-07-18
DK2031075T3 (en) 2010-10-18
PT2006395E (en) 2011-07-13
WO2000011214B1 (en) 2000-04-13
EP1108060A1 (en) 2001-06-20
DE69942310D1 (en) 2010-06-10
US7364740B2 (en) 2008-04-29
US7700118B2 (en) 2010-04-20
ATE507308T1 (en) 2011-05-15
DE69943401D1 (en) 2011-06-09
PT1108060E (en) 2010-08-04
US20080254052A1 (en) 2008-10-16
EP2031075B1 (en) 2010-07-07
EP1108060B1 (en) 2010-04-28
US20110206715A1 (en) 2011-08-25
EP2006395B1 (en) 2011-04-27
ES2343927T3 (en) 2010-08-12
DK1108060T3 (en) 2010-08-16
AU5394699A (en) 2000-03-14
ATE466100T1 (en) 2010-05-15
DE69942569D1 (en) 2010-08-19
EP2006395A1 (en) 2008-12-24
EP2031075A1 (en) 2009-03-04
ATE473299T1 (en) 2010-07-15
US20060002953A1 (en) 2006-01-05
US20020176873A1 (en) 2002-11-28
WO2000011214A1 (en) 2000-03-02

Similar Documents

Publication Publication Date Title
US6291190B1 (en) Molecular differences between species of the M. tuberculosis complex
Rådström et al. Detection of bacterial DNA in cerebrospinal fluid by an assay for simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and streptococci using a seminested PCR strategy
US5370998A (en) Repetitive DNA sequence specific for mycobacterium tuberculosis to be used for the diagnosis of tuberculosis
Michel et al. An ospA-polymerase chain reaction/restriction fragment length polymorphism-based method for sensitive detection and reliable differentiation of all European Borrelia burgdorferi sensu lato species and OspA types
CA1340172C (en) Diagnostics and vaccines for mycobacteria in public health, medical, andveterinary practise
Casañas et al. Specificity of a polymerase chain reaction assay of a target sequence on the 31-kilodalton Brucella antigen DNA used to diagnose human brucellosis
Dharakul et al. Detection of Burkholderia pseudomallei DNA in patients with septicemic melioidosis
US20040018574A1 (en) Molecular differences between species of the M. tuberculosis complex
Savio et al. Detection and identification of Leptospira interrogans serovars by PCR coupled with restriction endonuclease analysis of amplified DNA
US5225324A (en) Diagnostics for mycobacteria in public health, medical, and veterinary practice
NL9002696A (en) METHOD AND KIT FOR PROVE MICRO-ORGANISMS.
US9932391B2 (en) Proteins with repetitive bacterial-IG-like (Big) domains present in Leptospira species
Smith et al. Multiplex sequencing of 1.5 Mb of the Mycobacterium leprae genome
Soares et al. Serological and molecular characterization of Leptospira kirschneri serogroup Grippotyphosa isolated from bovine in Brazil
Sasaki et al. Amplification of the 16S-23S r DNA spacer region for rapid detection of Clostridium chauvoei and Clostridium septicum
US5183737A (en) Repetitive DNA sequence specific for mycobacterium tuberculosis to be used for the diagnosis of tuberculosis
Villar et al. Eikenella corrodens phase variation involves a posttranslational event in pilus formation
US5556755A (en) Method for detecting Branhamella catarrhalis
Saraullo et al. Use of the Leptospira sp. ligB C-terminus coding region as a diagnostic tool of animal leptospirosis
Ibrahim et al. Detection of Mycobacterium avium subspecies paratuberculosis using nested polymerase chain reaction (nPCR).
Saraullo et al. Use of the Coding Region of Leptospira Sp. LigB C-terminus as a Marker for Diagnostics of Animal Leptospirosis
Fliss et al. Multiplex riboprobes for the detection of virulent Yersinia enterocolitica and simple methods for their preparation
Suwancharoen et al. The isolated Leptospira Spp. Identification by molecular biological techniques
EP0219407A1 (en) DNA fragment carrying at least a part of a gene, conferring resistance to lincosamides, method for its preparation and biochemical applications
NL9002493A (en) Detection of microorganisms, esp. Salmonella, Klebsiella and Listeria - using monoclonal antibodies on magnetic particles and PCR

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BEHR, MARCEL;SMALL, PETER;SCHOOLNIK, GARY;AND OTHERS;REEL/FRAME:014427/0967;SIGNING DATES FROM 19990616 TO 19990809

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION