US20040041310A1 - Continuous hot rod - Google Patents

Continuous hot rod Download PDF

Info

Publication number
US20040041310A1
US20040041310A1 US10/429,363 US42936303A US2004041310A1 US 20040041310 A1 US20040041310 A1 US 20040041310A1 US 42936303 A US42936303 A US 42936303A US 2004041310 A1 US2004041310 A1 US 2004041310A1
Authority
US
United States
Prior art keywords
lance
hot rod
set forth
continuous hot
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/429,363
Inventor
Vladimir Hlavacek
Pavol Pranda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/429,363 priority Critical patent/US20040041310A1/en
Publication of US20040041310A1 publication Critical patent/US20040041310A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs, or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/02Cutting or destroying pipes, packers, plugs, or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground by explosives or by thermal or chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • B23K7/08Cutting, scarfing, or desurfacing by applying flames by applying additional compounds or means favouring the cutting, scarfing, or desurfacing procedure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/14Drilling by use of heat, e.g. flame drilling
    • E21B7/146Thermal lances

Definitions

  • This invention relates generally to the field of chemical drills, and, more particularly, to an improved continuous hot rod or chemical drill, that is capable of drilling holes in, or otherwise removing material from, a wide variety of target materials, such as ferrous and non-ferrous alloys, concrete, various ceramic materials, and the like.
  • Typical lancing applications include: (a) removal of blast furnace bosh plates, (b) removal of large iron masses (i.e., “salamanders”) that are deposited at the base of blast furnace, (c) cleaning of furnace linings, (d) furnace tapping to remove slag, (e) cleaning of soaking pits, (f) removal of ladle skulls, and (g) piercing holes in reinforced concrete walls and floors.
  • small iron masses i.e., “salamanders”
  • Underwater cutting and/or welding techniques are used in the repair of offshore platforms. These techniques have also been useful during the installation of new offshore structures and undersea pipelines, the installation of hot taps, the repair of dock and harbor facilities, the modification of and addition to underwater structures, the repair of nuclear facilities, and still other applications. Permanent and temporary repairs to holes in ship- and barge-hulls have been performed. Hulls and pontoons of semi-submersible drill ships have also been repaired. Still other applications have included cutting of ship stems from castings, cutting reinforced concrete under water, underwater ship husbandry operations, salvage and rescue missions, and the like.
  • lance technology The common process used in industry for such cutting is the so-called “lance technology”. This process represents one of the oldest commercial uses of oxygen for piercing and cutting holes in hard materials. These materials include practically all ferrous metals and many other materials, such as concrete, slag, rock, and the like. Initially, such lances were simply an elongated length of hollow iron pipe connected at one end to a source of oxygen through an intermediate flow regulator.
  • the reaction is very vigorous, and usually produces a lot of “splatter” of semi-solid highly-viscous lava-like material outwardly from the discharge end of the lance. If this material accumulates at the bottom of the hole or cut, it creates an obstacle to continued drilling or cutting.
  • An oxygen lance must operate efficiently on land and under water to cut steel, concrete, rock, alloys, and the like. Discontinuous or intermittent operation impedes the operation of the lance. Some cutting and piercing jobs require extended operation in terms of hours. Conventional lances require a systematic sequence of operation as follows: ignition; cutting of target; oxygen flow discontinuation; new lance introduction in the holder; oxygen flow initiation; ignition; cutting of the target; partially burned lance removal from the holder; new lance introduction; etc. Such discontinuous operation is tedious and inefficient.
  • a new and improved consumable thermal lance, or continuous hot rod, for cutting, piercing and burning hard materials is provided.
  • the improved lance may be operated continuously for minutes to hours.
  • the torch comprises open-ended metallic strands which are inserted into a sleeve made of material which focuses the flame and/or reacts with the target.
  • the improved sleeve guarantees that no oxygen will leak. Oxygen is fed through the middle of metallic strands and a flame is produced at the open end of this assembly.
  • the other end of this improved continuous lance includes an oxygen control valve and oxygen tank.
  • the continuous lance owing to its flexibility, is placed on a reel. Typically, 20 meters can be located on each reel. The operator holds a guiding sleeve through which the continuous flexible lance is pushed towards the target to be cut.
  • the hole or cut is self-cleaning. This results in the reduction or elimination of heat and mass transfer cutting resistances that were commonly present in the prior art, and, consequently, increases the possible cutting rate by a factor to about two to a factor of about four.
  • the improved drill is particularly effective where deep holes or plunging cuts are necessary.
  • the improved drill makes it possible to cut targets, such as concrete, reinforced concrete, ceramic plates, highly alloyed steel, aluminum blocks, laminated structure, granite and the like, that in the past presented major problems.
  • the present invention provides an improved continuous hot rod ( 10 , 30 ) for removing portions (e.g., by drilling) of a target material ( 20 , 40 ).
  • target materials include, but are not limited to: ferrous alloys, alloys having an element selected from the group consisting of aluminum, copper, magnesium, titanium, a transition metal (i.e., titanium, niobium, zirconium, hafnium, vanadium and tantalum), tungsten, nickel, cobalt and chromium, concrete, reinforced concrete, aluminum oxide, silicon oxide, calcium oxide, brick, and ceramic materials selected from the group consisting of alumina, silica, zirconia, magnesia, silicon carbide and silicon nitride.
  • ferrous alloys alloys having an element selected from the group consisting of aluminum, copper, magnesium, titanium, a transition metal (i.e., titanium, niobium, zirconium, hafnium, vanadium and tantalum), tungsten, nickel, cobalt and chromium, concrete, reinforced concrete, aluminum oxide, silicon oxide, calcium oxide, brick, and ceramic materials selected from the group consisting of alumina, silica, zir
  • the improved drill broadly includes: an elongated lance formed of a fuel-supplying material ( 15 , 35 ); a source ( 11 , 31 ) of oxidizer; a reel for providing a continuous source of fuel material ( 13 , 33 ); a conduit ( 16 , 36 ) for establishing a controllable flow of oxidizer from said source through said lance; and a sleeve ( 14 , 34 ) formed of a material containing chlorine and/or fluorine mounted on said lance, such that, when said drill is ignited and used to remove portions of a target material, the chlorine and/or fluorine in said sleeve material will react chemically with the target material to produce volatile gaseous reaction products, which may be readily directed out of the hole or cut and thereby removing substantial resistance to heat and mass transfer within the hole or cut.
  • the sleeve is mounted on the outer surface of said lance or tube.
  • a plurality of wires or rods may be arranged in the lance.
  • the sleeve material may contain polyvinyl chlorine, polytetrafluoroethylene, chlorinated polyvinyl chlorine and/or some other material(s) that will contribute chlorine and/or fluorine to the ongoing reaction.
  • the lance may contain iron.
  • the sleeve is a single cylindrical layer of material such as chlorine and/or fluorine and/or plastic material.
  • the sleeve is formed of two generally concentric cylindrical layers. An inner cylindrical layer is carbon-based and used as a focusing element, which is surrounded by an outer cylindrical layer of a plastic material, chlorine and/or fluorine.
  • the general object of the invention is to provide an improved continuous hot rod which provides a continuous source of fuel for oxidation.
  • Another object is to provide a continuous hot rod which increases the rate-of-removal of the target material by a factor of from about two to about four times that of known chemical drills.
  • Another object is to provide an improved continuous hot rod that is capable of use with a variety of target materials.
  • FIG. 1 is a sketch, partly in section and partly in elevation, of the improved continuous hot rod, this view showing the plastic sleeve as surrounding the steel pipe lance.
  • FIG. 2 is a sketch, partly in section and partly in elevation, of the improved continuous hot rod, this view showing the plastic sleeve with two generally concentric cylindrical layers.
  • FIG. 3 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nFe+(10 ⁇ n)C 2 Cl 4 +20O 2 ], for the reactions of Example 1.
  • FIG. 4 is a plot of equilibrium concentrations (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nFe+(10 ⁇ n)C 2 F 4 +20O 2 ], for the reactions of Example 1.
  • FIG. 5 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nTi+(10 ⁇ n)C 2 Cl 4 +20O 2 ] for the reactions of Example 2.
  • FIG. 6 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nTi+(10 ⁇ n)C 2 F 4 +20O 2 ], for the reactions of Example 2.
  • FIG. 7 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and sleeve combinations of [nAl+(10 ⁇ n)C 2 Cl 4 +20O 2 ], for the reactions of Example 3.
  • FIG. 8 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nAl+(10 ⁇ n)C 2 F 4 +20O 2 ], for the reactions of Example 3.
  • FIG. 9 is a plot of equilibrium concentration (ordinate) vs. temperature (abscissa) for [concrete(3.46CaO+11.1 SiO 2 )+50O 2 +14.56Fe], for the reactions of Example 5.
  • FIG. 10 is a plot of equilibrium concentration (ordinate) vs. temperature (abscissa) for [concrete(3.46CaO+11.1SiO 2 )+20.11C 2 F 4 +50O 2 +14.56Fe], for the reactions shown in Example 5.
  • FIG. 11 is a plot of equilibrium concentration (ordinate) vs. temperature (abscissa) for [concrete(3.46CaO+11.1SiO 2 )+20.11C 2 Cl 4 +50O 2 +14.56Fe], for the reactions of Example 5.
  • the terms “horizontal”, “vertical”, “left”, “right”, “up” and “down”, as well as adjectival and adverbial derivatives thereof simply refer to the orientation of the illustrated structure as the particular drawing figure faces the reader.
  • the terms “inwardly” and “outwardly” generally refer to the orientation of a surface relative to its axis of elongation, or axis of rotation, as appropriate.
  • Thermal piercing of concrete or reinforced concrete or highly alloyed steel plates is normally a difficult task.
  • the molten lava of the target material at the tip of the lance provides substantial heat and mass transfer resistance to ongoing drilling or cutting operations.
  • a typical product of thermal penetration of a concrete block by a thermal lance is lava composed of oxides of silicon, calcium, aluminum and iron. The melting point of this mixture, depending on the composition, is between about 1600-1800° C.
  • the present invention is based on the principle of producing gaseous chemical reaction products, products or components that readily sublimate at low temperatures, or products or components with low boiling points, rather than highly-viscous lava, and directing these gaseous materials out of the hole or cut so as to remove their mass therefrom and to allow continuous cutting or drilling without diminution of penetration efficiency due to accumulations of lava-like materials in the hole or cut.
  • a source of carbon could be a carbon jacket surrounding the metallic jacket of the regular lance, a fine powder of carbon that is blown in the cutting spot, or a certain group of organic compounds that decompose at cutting-torch temperatures to elemental carbon.
  • Lower hydrocarbons can be easily pyrolyzed at high temperatures.
  • Lower chlorinated hydrocarbons such as ethylene trichloride, elemental chlorine, PVC, perchlorinated PVC, or the like, can be used as a source of chlorine.
  • Lower fluorinated hydrocarbons such as polytetrafluoroethylene (i.e., Teflon®) or other polymers rich on fluorine, can be used as a source of fluorine. It is possible to inject these lower chlorinated or fluorinated hydrocarbons into the torch flame in a gaseous form.
  • Polymers containing chlorine and/or fluorine can be part of the cutting lance body. For example, the body of the cutting lance can be inserted in a Teflon® tube.
  • an improved continuous hot rod or lance is shown as broadly including a horizontally-elongated iron or steel lance or tube formed of a fuel material 15 .
  • This lance may be about 3 feet long, having an outside diameter of about 1 ⁇ 4′′.
  • the rightward or proximal end of the lance is connected to a source 11 of oxygen or oxygen-rich gas through an intermediate flow regulator 12 and a reel 13 which typically holds up to 20 meters of fuel material.
  • oxidizer may flow form source 11 to the lance via the flow regulator, the reel and a conduit, portions of which are indicated at 16 .
  • the lance is formed of a fuel material, such as iron or a ferrous alloy, indicated at 15 .
  • a sleeve, generally indicated at 14 surrounds the lance.
  • This sleeve is formed of a material that contains chlorine (e.g., polyvinyl chloride, chlorinated polyvinyl chloride, etc.) and/or fluorine (e.g., polytetrafluoroethylene).
  • the target often concrete, is indicated at 20.
  • This continuous lance will be known as a Snake-KizzTM (U.S. Ser. No. 78,122,229).
  • an alternate embodiment of an improved continuous hot rod generally indicated at 30 .
  • the lance is about 3 feet long, having an outside diameter of about 1 ⁇ 4′′.
  • the rightward or proximal end of the lance is connected to a source of oxygen or oxygen-rich gas 31 through an intermediate flow regulator 32 and a reel 33 which typically holds up to 20 meters of fuel material.
  • oxygen may flow from the source 31 to the lance via the flow regulator 32 , the reel 33 and a conduit, portions of which are indicated at 36 .
  • the lance is formed of a fuel material, such as iron or a ferrous alloy, indicated at 35 .
  • a sleeve 34 surrounds the strands.
  • the sleeve of this embodiment has two generally concentric cylindrical layers, an inner layer indicated at 34 A and an outer layer indicated at 34 B.
  • the inner layer is formed of a carbon-based material, typically having very thin walls, as well as a layer of Grafoil®, which contribute to focus a flame.
  • the outer layer is formed of plastic material and/or of a material that contains chlorine (e.g., polyvinyl chloride, chlorinated polyvinyl chloride, etc.) and/or fluorine (e.g., polytetrafluoroethylene).
  • the target typically metallic or concrete, is indicated at 40 . This continuous lance will be known as a Snake-FirecutTM (U.S. Ser. No. 78122241).
  • One source of carbon could be a carbon jacket surrounding a regular commercial lance.
  • the invention utilized a carbon sleeve with very thin walls, as well as layer of a Grafoil® surrounding the lance.
  • the carbon serves as a focusing element.
  • the flame dissipates a lot of energy.
  • the carbon external shield With the carbon external shield the energy dissipation is lower.
  • the explanation of this fact is straightforward.
  • the surrounding iron tube melts or is burned in synchronization with the flame propagation.
  • no melting occurs since the melting/sublimation point of carbon is around 4,000° C.
  • the carbon jacket can burn in oxygen. The burning process is apparently a little bit slower than the burning of iron material. Consequently, the unreacted carbon tube serves as an opening to the hot flame. Details of the experiment can be found in Examples 4-6.
  • the combustion system consists of a steel tube, a chlorinated/fluorinated polymer sleeve, and an excess of oxygen.
  • the adiabatic temperature evaluated from thermodynamic calculations, indicates that the combustion temperature in systems with chlorine or fluorine is always higher than in systems with oxygen alone. A typical difference amounts to 250-500° C.
  • FIG. 3 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nFe+(10 ⁇ n)C 2 Cl 4 +20O 2 ], for the reactions of Example 1.
  • n concentrations of lance-and-sleeve combinations of [nFe+(10 ⁇ n)C 2 Cl 4 +20O 2 ]
  • This figure shows that for concentrations of less than about 6 moles, the reaction products Fe+FeCl+FeCl 2 +FeCl 3 +FeO+Fe 2 Cl 14 are substantially gaseous, and that the reaction temperatures are between about 2250-2650° K.
  • the combustion system consists of a titanium tube, a chlorinated/fluorinated polymer sleeve, and an excess of oxygen.
  • the adiabatic temperature evaluated from thermodynamic calculations, indicates that the combustion temperature in systems with chlorine or fluorine is usually lower than in systems with oxygen alone. For example, for a system consisting of 5 moles of titanium and 25 moles of oxygen the combustion temperature is 3,100° K.; for a system with 5 moles of titanium, 20 moles of oxygen and 5 moles of —C 2 F 2 — the temperature is 2,500° K. and for system of 5 moles of titanium, 20 moles of oxygen and 5 moles of —C 2 Cl 2 — the temperature is 2,900° K.
  • FIG. 5 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nTi+(10 ⁇ n)C 2 Cl 14 +20O 2 ] for the reactions of Example 2.
  • FIG. 5 shows that reaction products Ti+TiCl+TiCl 2 +TiCl 3 +TiCl 4 +TiO+TiOCl+TiOCl 2 +TiO 2 are gaseous.
  • FIG. 6 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs.
  • FIG. 6 shows that reaction products Ti+TiO+TiOF+TiO 2 are gaseous.
  • the combustion system consists of an aluminum tube, a chlorinated/fluorinated polymer sleeve, and excess of oxygen.
  • the adiabatic temperature evaluated from thermodynamic calculations, indicates that the combustion temperature in systems with chlorine or fluorine is close to that in systems with oxygen alone.
  • the combustion temperature in these systems can be well above 3,000° K.
  • FIG. 6 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and sleeve combinations of [nAl+(10 ⁇ n)C 2 Cl 4 +20O 2 ], for the reactions of Example 3.
  • This plot shows that Al+AlCl+AlCl 2 +AlCL 3 +AlO+AlOCl+AlOCl 2 +AlO 2 +Al 2 O+Al 2 O 2 +Al 2 O 3 are gaseous.
  • FIG. 8 is a concentration (left ordinate) and adiabatic temperature (right ordinate) vs.
  • a standard lance “iron-oxygen” is represented by an iron pipe with an array of iron wires inside. Oxygen gas is blown through this arrangement. This assembly has been inserted in a carbon tube. Carbon reacts with oxygen and liberates large amount of heat. Adiabatic temperature of carbon combustion in pure oxygen is above 4000° C. Carbon is also focusing the flame and less heat is dissipated to the environment.
  • FIG. 9 is a plot of equilibrium concentration (ordinate) vs. temperature (abscissa) for [concrete(3.46CaO+11.1 SiO 2 )+50O 2 +14.56Fe], for the reactions of Example 5. This plot shows that Ca+CaO+Fe+FeO+SiO+SiO 2 are gaseous.
  • FIG. 10 is a plot of equilibrium concentration (ordinate) vs. temperature (abscissa) for [concrete(3.46CaO+11.1 SiO 2 )+20.01C 2 F 4 +46.3O 2 +14.56Fe], for the reactions shown in Example 5.
  • FIG. 11 is a plot of equilibrium concentration (ordinate) vs. temperature (abscissa) for [concrete(3.46CaO+11.1SiO 2 )+20.01C 2 Cl 4 +47.3O 2 +14.56Fe], for the reactions of Example 5.
  • This plot shows that CaCl 2 +FeCl 2 +FeCl 3 +Fe 2 Cl 6 +SiO+SiO 2 are gaseous.
  • Graphoil layer on the surface of the lance is capable of sharp focusing of the exit hot flame and substantially contributes toward a better performance of the lance.
  • a combination of aluminum and iron wires along with Grafoil® wrap provides additional improvement of the cutting efficiency.
  • BROCO lance (3 ⁇ 8′′) covered by foil of chlorinated Teflon® resin—linear density 1.3205 and 1.2885 g/cm, Honeywell.

Abstract

A continuous hot rod (10, 30) for removing portions of a target material (20, 40), comprises: an elongated lance formed of a fuel material (15, 35); a reel for providing a continuous source of fuel material (13, 33); a source of oxidizer (11, 31); a conduit (16, 36) for establishing a controllable flow of oxidizer from the source through the lance; and a sleeve (14, 34) with a layer formed of a material containing chlorine and/or fluorine, and/or a second layer formed of carbon and/or Grafoil® which contribute to focus a flame; whereby, when the hot rod is ignited and used to remove portions of a target material, the chlorine and/or fluorine in the sleeve material will react chemically with the target material to form gaseous reaction products, and the reel will provide a continuous source of fuel material.

Description

  • This application is a continuation-in-part of application Ser. No. 09/872,641, filed Jun. 1, 2001, which is hereby incorporated in its entirety.[0001]
  • STATEMENT OF GOVERNMENT INTEREST
  • [0002] This invention was developed under Contract No. N00174-00-C-0021 issued by the Defense Logistics Agency, SBIR Topic N99-114. The United States Government may have rights in this invention.
  • TECHNICAL FIELD
  • This invention relates generally to the field of chemical drills, and, more particularly, to an improved continuous hot rod or chemical drill, that is capable of drilling holes in, or otherwise removing material from, a wide variety of target materials, such as ferrous and non-ferrous alloys, concrete, various ceramic materials, and the like. [0003]
  • BACKGROUND OF INVENTION
  • In civilian applications, high-speed chemical cutting is used in cutting, scarfing and lancing of oxidation-resistant materials. In steel mills, cutting is used to scarf large ingots, slabs and billets. Chemical lancing permits rapid and effective piercing of many materials that are difficult to pierce with standard hydrocarbon/oxygen flame technology. These materials include, for example, various irons and steels, firebrick, cinder block, aluminum billets, sand and metal incrustations in castings, and the like. Typical lancing applications include: (a) removal of blast furnace bosh plates, (b) removal of large iron masses (i.e., “salamanders”) that are deposited at the base of blast furnace, (c) cleaning of furnace linings, (d) furnace tapping to remove slag, (e) cleaning of soaking pits, (f) removal of ladle skulls, and (g) piercing holes in reinforced concrete walls and floors. [0004]
  • Underwater cutting and/or welding techniques are used in the repair of offshore platforms. These techniques have also been useful during the installation of new offshore structures and undersea pipelines, the installation of hot taps, the repair of dock and harbor facilities, the modification of and addition to underwater structures, the repair of nuclear facilities, and still other applications. Permanent and temporary repairs to holes in ship- and barge-hulls have been performed. Hulls and pontoons of semi-submersible drill ships have also been repaired. Still other applications have included cutting of ship stems from castings, cutting reinforced concrete under water, underwater ship husbandry operations, salvage and rescue missions, and the like. [0005]
  • The common process used in industry for such cutting is the so-called “lance technology”. This process represents one of the oldest commercial uses of oxygen for piercing and cutting holes in hard materials. These materials include practically all ferrous metals and many other materials, such as concrete, slag, rock, and the like. Initially, such lances were simply an elongated length of hollow iron pipe connected at one end to a source of oxygen through an intermediate flow regulator. [0006]
  • Conventional lance technology employs the use of a steel pipe containing steel wires or rods. Oxygen is blown through the pipe at high pressure. The pipe, and the rods therewithin, are ignited at one end, and oxygen-rich gas is blown through the pipe. This oxidizes the pipe and the rods, and produces a hot flame. The discharge end of the lance is held in the cut or hole so that the cutting flame is presented at the distal end of the lance. The flame heats and bums the end of the pipe so that, as the operation proceeds, the pipe is consumed and must be periodically replaced with a new length of pipe. Only a small portion of the oxygen consumed is required by oxidation of the lance itself, but the heat of the burning lance assists the cutting. Once started, the reaction is very vigorous, and usually produces a lot of “splatter” of semi-solid highly-viscous lava-like material outwardly from the discharge end of the lance. If this material accumulates at the bottom of the hole or cut, it creates an obstacle to continued drilling or cutting. [0007]
  • In addition, conventional lances are consumed during the combustion process and must be replaced repeatedly-typically after 30 to 60 seconds. Therefore, the use of such a conventional lance involves excessive down time. Once the lance is consumed, the operator must stop the oxygen flow and extinguish the flame; remove the lance from the hole in the hard material; remove the partially consumed lance from its holder; insert a new lance into the holder; open the valve to re-establish a flow of oxygen; ignite the lance; and reinsert the lance in the hole to continue the piercing operation. [0008]
  • In the case of deep holes, additional associated problems include partial freezing of molten lava and significant waste of lance material because only a certain portion of the lance actually burns. In the case of underwater operation, where oxygen lances are often used, ignition may also be a tedious and time-consuming job. [0009]
  • Over the last several years, there has been renewed interest in oxygen lance techniques, resulting in many improvements in the basic oxygen lance structure. Some of these improvements include the provision of one or more elongated rods within the lance, the mounting of the various component parts relative to each other, specialized configurations for the outer casting and inner rods, and cooperation between the inner rods when received within the outer casing. However, there are not believed to have been any changes in the basic chemistry of the lance process and technology. Iron-containing wires and tubes, and oxygen, remain the basic building blocks of known applications. [0010]
  • Other details of prior art lances, devices and methods are shown and described in U.S. Pat. Nos. 3,591,758 (Clucas), 4,541,616 (Dean), 5,398,913 (Geasland), 5,472,174 (Geasland), 4,787,142 (Henderson), 4,114,863 (Campana), 5,000,426 (Campana), 4,055,332 (Sweeney), 4,416,444 (Brower), 4,660,807 (Compana), 4,790,886 (Daspit), 4,069,407 (Brower) and 4,985,610 (Rucker), 4,928,757 (Schellstede), 4,889,187 (Terrell), 3,570,419 (Brandenberger), 5,320,174 (Terrell), 3,602,620 (Fassler), 5,575,331 (Terrell), 5,580,515 (Petrovich), 3,725,156 (Thompson), 3,751,625 (Hummel), 4,477,060 (Molinder), 4,182,947 (Brower) and 4,050,680 (Sweeney), the aggregate disclosures of which are hereby incorporated by reference. [0011]
  • DISCLOSURE OF THE INVENTION
  • An oxygen lance must operate efficiently on land and under water to cut steel, concrete, rock, alloys, and the like. Discontinuous or intermittent operation impedes the operation of the lance. Some cutting and piercing jobs require extended operation in terms of hours. Conventional lances require a systematic sequence of operation as follows: ignition; cutting of target; oxygen flow discontinuation; new lance introduction in the holder; oxygen flow initiation; ignition; cutting of the target; partially burned lance removal from the holder; new lance introduction; etc. Such discontinuous operation is tedious and inefficient. [0012]
  • In accordance with the present invention, a new and improved consumable thermal lance, or continuous hot rod, for cutting, piercing and burning hard materials is provided. The improved lance may be operated continuously for minutes to hours. The torch comprises open-ended metallic strands which are inserted into a sleeve made of material which focuses the flame and/or reacts with the target. The improved sleeve guarantees that no oxygen will leak. Oxygen is fed through the middle of metallic strands and a flame is produced at the open end of this assembly. The other end of this improved continuous lance includes an oxygen control valve and oxygen tank. The continuous lance, owing to its flexibility, is placed on a reel. Typically, 20 meters can be located on each reel. The operator holds a guiding sleeve through which the continuous flexible lance is pushed towards the target to be cut. [0013]
  • Other aspects of the invention provide an improved hot rod for converting the reaction products resulting from the cutting, drilling or piercing operation, to gaseous or very volatile products that can be easily directed away from the bottom of the hole or cut so as to not interfere with ongoing and continuous drilling or cutting operations, wherein a continuous source of fuel material is provided. In effect, the hole or cut is self-cleaning. This results in the reduction or elimination of heat and mass transfer cutting resistances that were commonly present in the prior art, and, consequently, increases the possible cutting rate by a factor to about two to a factor of about four. The improved drill is particularly effective where deep holes or plunging cuts are necessary. The improved drill makes it possible to cut targets, such as concrete, reinforced concrete, ceramic plates, highly alloyed steel, aluminum blocks, laminated structure, granite and the like, that in the past presented major problems. [0014]
  • With parenthetical reference to the preferred embodiments disclosed herein, merely for purposes of illustration and not by way of limitation, the present invention provides an improved continuous hot rod ([0015] 10, 30) for removing portions (e.g., by drilling) of a target material (20, 40). Examples of such target materials include, but are not limited to: ferrous alloys, alloys having an element selected from the group consisting of aluminum, copper, magnesium, titanium, a transition metal (i.e., titanium, niobium, zirconium, hafnium, vanadium and tantalum), tungsten, nickel, cobalt and chromium, concrete, reinforced concrete, aluminum oxide, silicon oxide, calcium oxide, brick, and ceramic materials selected from the group consisting of alumina, silica, zirconia, magnesia, silicon carbide and silicon nitride.
  • The improved drill broadly includes: an elongated lance formed of a fuel-supplying material ([0016] 15, 35); a source (11, 31) of oxidizer; a reel for providing a continuous source of fuel material (13, 33); a conduit (16, 36) for establishing a controllable flow of oxidizer from said source through said lance; and a sleeve (14, 34) formed of a material containing chlorine and/or fluorine mounted on said lance, such that, when said drill is ignited and used to remove portions of a target material, the chlorine and/or fluorine in said sleeve material will react chemically with the target material to produce volatile gaseous reaction products, which may be readily directed out of the hole or cut and thereby removing substantial resistance to heat and mass transfer within the hole or cut.
  • In a preferred embodiment, the sleeve is mounted on the outer surface of said lance or tube. A plurality of wires or rods may be arranged in the lance. The sleeve material may contain polyvinyl chlorine, polytetrafluoroethylene, chlorinated polyvinyl chlorine and/or some other material(s) that will contribute chlorine and/or fluorine to the ongoing reaction. The lance may contain iron. [0017]
  • In one aspect of the present invention, for use primarily upon concrete target materials, the sleeve is a single cylindrical layer of material such as chlorine and/or fluorine and/or plastic material. In another aspect, for use primarily upon metallic or concrete target materials, the sleeve is formed of two generally concentric cylindrical layers. An inner cylindrical layer is carbon-based and used as a focusing element, which is surrounded by an outer cylindrical layer of a plastic material, chlorine and/or fluorine. [0018]
  • Accordingly, the general object of the invention is to provide an improved continuous hot rod which provides a continuous source of fuel for oxidation. [0019]
  • Another object is to provide a continuous hot rod which increases the rate-of-removal of the target material by a factor of from about two to about four times that of known chemical drills. [0020]
  • Another object is to provide an improved continuous hot rod that is capable of use with a variety of target materials. [0021]
  • These and other objects and advantages will become apparent from the foregoing and ongoing written specification, the drawings, and the appended claims. [0022]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a sketch, partly in section and partly in elevation, of the improved continuous hot rod, this view showing the plastic sleeve as surrounding the steel pipe lance. [0023]
  • FIG. 2 is a sketch, partly in section and partly in elevation, of the improved continuous hot rod, this view showing the plastic sleeve with two generally concentric cylindrical layers. [0024]
  • FIG. 3 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nFe+(10−n)C[0025] 2Cl4+20O2], for the reactions of Example 1.
  • FIG. 4 is a plot of equilibrium concentrations (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nFe+(10−n)C[0026] 2F4+20O2], for the reactions of Example 1.
  • FIG. 5 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nTi+(10−n)C[0027] 2Cl4+20O2] for the reactions of Example 2.
  • FIG. 6 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nTi+(10−n)C[0028] 2F4+20O2], for the reactions of Example 2.
  • FIG. 7 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and sleeve combinations of [nAl+(10−n)C[0029] 2Cl4+20O2], for the reactions of Example 3.
  • FIG. 8 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nAl+(10−n)C[0030] 2F4+20O2], for the reactions of Example 3.
  • FIG. 9 is a plot of equilibrium concentration (ordinate) vs. temperature (abscissa) for [concrete(3.46CaO+11.1 SiO[0031] 2)+50O2+14.56Fe], for the reactions of Example 5.
  • FIG. 10 is a plot of equilibrium concentration (ordinate) vs. temperature (abscissa) for [concrete(3.46CaO+11.1SiO[0032] 2)+20.11C2F4+50O2+14.56Fe], for the reactions shown in Example 5.
  • FIG. 11 is a plot of equilibrium concentration (ordinate) vs. temperature (abscissa) for [concrete(3.46CaO+11.1SiO[0033] 2)+20.11C2Cl4+50O2+14.56Fe], for the reactions of Example 5.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • At the outset, it should be clearly understood that like reference numerals are intended to identify the same structural elements, portions or surfaces consistently throughout the several drawing figures, as such elements, portions or surfaces may be further described or explained by the entire written specification, of which this detailed description is an integral part. Unless otherwise indicated, the drawings are intended to be read (e.g., cross-hatching, arrangement of parts, proportion, degree, etc.) together with the specification, and are to be considered a portion of the entire written description of this invention. As used in the following description, the terms “horizontal”, “vertical”, “left”, “right”, “up” and “down”, as well as adjectival and adverbial derivatives thereof (e.g., “horizontally”, “rightwardly”, “upwardly”, etc.), simply refer to the orientation of the illustrated structure as the particular drawing figure faces the reader. Similarly, the terms “inwardly” and “outwardly” generally refer to the orientation of a surface relative to its axis of elongation, or axis of rotation, as appropriate. [0034]
  • Thermal piercing of concrete or reinforced concrete or highly alloyed steel plates is normally a difficult task. The molten lava of the target material at the tip of the lance provides substantial heat and mass transfer resistance to ongoing drilling or cutting operations. A typical product of thermal penetration of a concrete block by a thermal lance is lava composed of oxides of silicon, calcium, aluminum and iron. The melting point of this mixture, depending on the composition, is between about 1600-1800° C. The present invention is based on the principle of producing gaseous chemical reaction products, products or components that readily sublimate at low temperatures, or products or components with low boiling points, rather than highly-viscous lava, and directing these gaseous materials out of the hole or cut so as to remove their mass therefrom and to allow continuous cutting or drilling without diminution of penetration efficiency due to accumulations of lava-like materials in the hole or cut. [0035]
  • Several inorganic oxides react with chlorine or fluorine in the presence of carbon to form volatile chlorides or fluorides. These reactions, sometimes also called “carbochlorination” or “carbofluorination” reactions, occur with reasonable reaction rates at 800-1000° C. At temperatures above 1600° C., which are typical for a cutting torch, these reactions are very fast. [0036]
  • There are different sources of carbon, chlorine or fluorine that can be utilized to carry out the reaction. A source of carbon could be a carbon jacket surrounding the metallic jacket of the regular lance, a fine powder of carbon that is blown in the cutting spot, or a certain group of organic compounds that decompose at cutting-torch temperatures to elemental carbon. Lower hydrocarbons can be easily pyrolyzed at high temperatures. Lower chlorinated hydrocarbons, such as ethylene trichloride, elemental chlorine, PVC, perchlorinated PVC, or the like, can be used as a source of chlorine. Lower fluorinated hydrocarbons, such as polytetrafluoroethylene (i.e., Teflon®) or other polymers rich on fluorine, can be used as a source of fluorine. It is possible to inject these lower chlorinated or fluorinated hydrocarbons into the torch flame in a gaseous form. Polymers containing chlorine and/or fluorine can be part of the cutting lance body. For example, the body of the cutting lance can be inserted in a Teflon® tube. [0037]
  • After thermal ignition of the modified lance halogenated products are transported to the reaction spot and one or more of the following reactions may take place: For concrete:[0038]
  • SiO2+2C+2Cl2→SiCl4↑+2CO↑  (1)
  • SiO2+2C+4HCl→SiCl4↑+2CO↑+2H2↑  (2)
  • SiO2+2C+4HF→SiF4↑+2CO↑+2H2↑  (3)
  • nSiO2+[—CF2—CF2—]n→nSiF4↑+2nCO↑  (4)
  • CaO+C+Cl2→CaCl2↑+CO↑  (5)
  • CaO+C+2HCl→CaCl2↑+CO↑+H2↑  (6)
  • 2CaO+[—CF2—CF2—]n→2CaF2↑+2CO↑  (7)
  • For granite: [0039]
  • Any of chemical reactions ([0040] 1)-(7) and one or more of the following additional reactions:
  • Al2O3+3C+3Cl2→2AlCl3↑+3CO↑  (8)
  • Al2O3+3C+6HCl→2AlCl3↑+3CO↑+3H2↑  (9)
  • 3[—CF2—CF2—]n+2nAl2O3→4nAlF3↑+6nCO↑  (10)
  • For iron:[0041]
  • 2FeO+2C+3Cl2→FeCl3↑+2CO↑  (11)
  • Fe2O3+3C+3Cl2→2FeCl3↑+3CO↑  (12)
  • 4nFeO+[—CF2—CF2—]n→4nFeF3↑+4nCO↑+2nC↑  (13)
  • 2nFe2O3+[—CF2—CF 2—]n→4nFeF3↑+6nCO↑  (14)
  • For Ni- and Cr-Alloyed steel:[0042]
  • NiO+C+Cl2→NiCl2↑+CO↑  (15)
  • 2CrO3+6C+3Cl2→2CrCl3↑+CO↑  (16)
  • 2NiO+[—CF2—CF2—]n→2NiF2↑+2CO↑  (17)
  • 4nCrO3+3[—CF2—CF2—]n→4nCrF6↑+12CO↑  (18)
  • In the foregoing reactions, the symbol “↑” indicates that the indicated element or compound is substantially gaseous at the reaction temperature. Persons skilled in this art will appreciate that CaCl[0043] 2, CaF2, FeCl3, NiCl2, CrCl3, NiF2 and CrF6 may only be partially gaseous at the normal reaction temperatures.
  • Improving of Cutting Properties of a Regular Iron-oxygen Lance
  • Referring now to the drawings, and, more particularly, to FIG. 1 thereof, an improved continuous hot rod or lance, generally indicated at [0044] 10, is shown as broadly including a horizontally-elongated iron or steel lance or tube formed of a fuel material 15. This lance may be about 3 feet long, having an outside diameter of about ¼″. The rightward or proximal end of the lance is connected to a source 11 of oxygen or oxygen-rich gas through an intermediate flow regulator 12 and a reel 13 which typically holds up to 20 meters of fuel material. Thus, oxidizer may flow form source 11 to the lance via the flow regulator, the reel and a conduit, portions of which are indicated at 16. The lance is formed of a fuel material, such as iron or a ferrous alloy, indicated at 15. A sleeve, generally indicated at 14, surrounds the lance. This sleeve is formed of a material that contains chlorine (e.g., polyvinyl chloride, chlorinated polyvinyl chloride, etc.) and/or fluorine (e.g., polytetrafluoroethylene). The target, often concrete, is indicated at 20. This continuous lance will be known as a Snake-Kizz™ (U.S. Ser. No. 78,122,229).
  • In FIG. 2, an alternate embodiment of an improved continuous hot rod, generally indicated at [0045] 30, is shown. In one embodiment, the lance is about 3 feet long, having an outside diameter of about ¼″. The rightward or proximal end of the lance is connected to a source of oxygen or oxygen-rich gas 31 through an intermediate flow regulator 32 and a reel 33 which typically holds up to 20 meters of fuel material. Thus, oxygen may flow from the source 31 to the lance via the flow regulator 32, the reel 33 and a conduit, portions of which are indicated at 36. The lance is formed of a fuel material, such as iron or a ferrous alloy, indicated at 35. A sleeve 34 surrounds the strands. The sleeve of this embodiment has two generally concentric cylindrical layers, an inner layer indicated at 34A and an outer layer indicated at 34B. The inner layer is formed of a carbon-based material, typically having very thin walls, as well as a layer of Grafoil®, which contribute to focus a flame. The outer layer is formed of plastic material and/or of a material that contains chlorine (e.g., polyvinyl chloride, chlorinated polyvinyl chloride, etc.) and/or fluorine (e.g., polytetrafluoroethylene). The target, typically metallic or concrete, is indicated at 40. This continuous lance will be known as a Snake-Firecut™ (U.S. Ser. No. 78122241).
  • There are different sources of carbon for carbochlorination and carbofluorination reactions. One source of carbon could be a carbon jacket surrounding a regular commercial lance. The invention utilized a carbon sleeve with very thin walls, as well as layer of a Grafoil® surrounding the lance. The carbon serves as a focusing element. With a regular lance, the flame dissipates a lot of energy. With the carbon external shield the energy dissipation is lower. The explanation of this fact is straightforward. In a regular operation, the surrounding iron tube melts or is burned in synchronization with the flame propagation. However, with the carbon jacket, no melting occurs since the melting/sublimation point of carbon is around 4,000° C. The carbon jacket can burn in oxygen. The burning process is apparently a little bit slower than the burning of iron material. Consequently, the unreacted carbon tube serves as an opening to the hot flame. Details of the experiment can be found in Examples 4-6. [0046]
  • The performance of the invention was tested on steel plates of thicknesses of 0.26″ and 1.3″, respectively, and on a concrete plate 4.2″ thick. For the thin steel plate, there is no appreciable difference. This was not surprising since the heat-affected zone does not play an important role. However, with the thick plate, the difference is almost 100%. [0047]
  • The experiment with concrete slab revealed that there is no difference in rate of penetration of regular or focused lance. In a focused lance, the heat flux is much higher than in the regular lance. Nevertheless, the rate of penetration is almost the same. This is an experimental proof that the rate of cutting or drilling in concrete blocks is inversely related to the amount of lave-like material accumulating in the hole or cut. In other words, in a conventional lance, the rate of cutting slows as lava-like material accumulates in the hole or cut, and interferes with the continued cutting or drilling. Faster removal of such lava-like material will result in the improved performance of the torch. There appear to be several possibilities of increasing the rate of concrete blow-off: (a) higher linear velocity of the gas at the mouth of the torch, (b) lowering viscosity of the concrete melt by appropriate additions to the gas (e.g., fluorides, as the resulting eutectic mixture has a lower melting point and a lower viscosity at the cutting temperature can be expected), and (c) converting the liquid concrete to gaseous components (carbochlorination). [0048]
  • Supplying gaseous chlorine along with gaseous oxygen to the hot combustion zone will guarantee the presence of chlorine at the reaction site. The resulting volatile chlorides of iron, silicon, aluminum and calcium will evaporate from the hot spot, and therefore the heat and mass transfer will be much higher. In addition, rebar (e.g., ferrous reinforcing rod) in the concrete structure will not represent an obstacle, but rather increase the rate of penetration. [0049]
  • EXAMPLE 1 Combustion in an “Iron-chlorinated/fluorinated Polymer-oxygen” System
  • The combustion system consists of a steel tube, a chlorinated/fluorinated polymer sleeve, and an excess of oxygen. The adiabatic temperature, evaluated from thermodynamic calculations, indicates that the combustion temperature in systems with chlorine or fluorine is always higher than in systems with oxygen alone. A typical difference amounts to 250-500° C. [0050]
  • The dependence of adiabatic temperature on the composition of the mixture is given in FIG. 3. FIG. 3 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nFe+(10−n)C[0051] 2Cl4+20O2], for the reactions of Example 1. This figure shows that for concentrations of less than about 6 moles, the reaction products Fe+FeCl+FeCl2+FeCl3+FeO+Fe2Cl14 are substantially gaseous, and that the reaction temperatures are between about 2250-2650° K.
  • The composition of the combustion products is reported in FIG. 4. FIG. 4 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nFe+(10−n)C[0052] 2F4+20O2], for the reactions of Example 1. This plot shows that reaction products Fe+FeO are gaseous at concentrations in excess of n=4 moles.
  • EXAMPLE 2 Combustion in an “Titanium-Chlorinated/Fluorinated Polymer-Oxygen” system
  • The combustion system consists of a titanium tube, a chlorinated/fluorinated polymer sleeve, and an excess of oxygen. The adiabatic temperature, evaluated from thermodynamic calculations, indicates that the combustion temperature in systems with chlorine or fluorine is usually lower than in systems with oxygen alone. For example, for a system consisting of 5 moles of titanium and 25 moles of oxygen the combustion temperature is 3,100° K.; for a system with 5 moles of titanium, 20 moles of oxygen and 5 moles of —C[0053] 2F2— the temperature is 2,500° K. and for system of 5 moles of titanium, 20 moles of oxygen and 5 moles of —C2Cl2— the temperature is 2,900° K.
  • More details are presented in FIGS. 5 and 6. FIG. 5 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nTi+(10−n)C[0054] 2Cl14+20O2] for the reactions of Example 2. FIG. 5 shows that reaction products Ti+TiCl+TiCl2+TiCl3+TiCl4+TiO+TiOCl+TiOCl2+TiO2 are gaseous. FIG. 6 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nTi+(10−n)C2F4+20O2], for the reactions of Example 2. FIG. 6 shows that reaction products Ti+TiO+TiOF+TiO2 are gaseous.
  • EXAMPLE 3 Combustion in an “Aluminum-Chlorinated/Fluorinated Polymer-Oxygen” System
  • The combustion system consists of an aluminum tube, a chlorinated/fluorinated polymer sleeve, and excess of oxygen. The adiabatic temperature, evaluated from thermodynamic calculations, indicates that the combustion temperature in systems with chlorine or fluorine is close to that in systems with oxygen alone. The combustion temperature in these systems can be well above 3,000° K. [0055]
  • Additional details are shown in FIGS. 7 and 8. FIG. 6 is a plot of equilibrium concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and sleeve combinations of [nAl+(10−n)C[0056] 2Cl4+20O2], for the reactions of Example 3. This plot shows that Al+AlCl+AlCl2+AlCL3+AlO+AlOCl+AlOCl2+AlO2+Al2O+Al2O2+Al2O3 are gaseous. FIG. 8 is a concentration (left ordinate) and adiabatic temperature (right ordinate) vs. concentrations (n) (abscissa) of lance-and-sleeve combinations of [nAl+(10−n)C2F4+20O2], for the reactions of Example 3. This plot shows that Al+AlF+AlF2+AlF3+AlO+AlOF+AlOF2+AlO2+Al2O+Al2O2+Al2O3 are gaseous.
  • EXAMPLE 4 External Carbon Tube as a Focusing Element
  • A standard lance “iron-oxygen” is represented by an iron pipe with an array of iron wires inside. Oxygen gas is blown through this arrangement. This assembly has been inserted in a carbon tube. Carbon reacts with oxygen and liberates large amount of heat. Adiabatic temperature of carbon combustion in pure oxygen is above 4000° C. Carbon is also focusing the flame and less heat is dissipated to the environment. [0057]
  • An iron plate (thickness=1.3″, length=6.0″) was cut by a regular commercial lance in 76 seconds; the cutting rate was 0.20 cm/sec. The same plate was cut by a modified lance with external carbon shield in 43 seconds. The cutting rate increased to 0.38 cm/sec. As an external carbon shield a layer of Grafoil® material was used. [0058]
  • EXAMPLE 5 Carbofluorination Piercing of Concrete Slabs
  • This example illustrates that using fluorine containing materials improves the efficiency, cutting speed, consumption of oxygen and consumption of the cutting lance essentially. [0059]
  • Experimental data for the cutting experiment are reported in Table 1, and in FIGS. [0060] 9-11. FIG. 9 is a plot of equilibrium concentration (ordinate) vs. temperature (abscissa) for [concrete(3.46CaO+11.1 SiO2)+50O2+14.56Fe], for the reactions of Example 5. This plot shows that Ca+CaO+Fe+FeO+SiO+SiO2 are gaseous. FIG. 10 is a plot of equilibrium concentration (ordinate) vs. temperature (abscissa) for [concrete(3.46CaO+11.1 SiO2)+20.01C2F4+46.3O2+14.56Fe], for the reactions shown in Example 5. This plot shows that CaF+CaF2+Fe+FeO+SiF2+SiF3+SiF4+SiO are gaseous. FIG. 11 is a plot of equilibrium concentration (ordinate) vs. temperature (abscissa) for [concrete(3.46CaO+11.1SiO2)+20.01C2Cl4+47.3O2+14.56Fe], for the reactions of Example 5. This plot shows that CaCl2+FeCl2+FeCl3+Fe2Cl6+SiO+SiO2 are gaseous.
  • EXAMPLE 6 Carbofluorination Piercing of Concrete Slabs
  • This example provides additional experimental observations on superiority of using fluorinated materials against concrete materials. [0061]
  • Experimental data for the cutting experiment are reported in the Table 2. Concrete block (thickness=15.0 cm). Note: Hole piercing was completed when penetration was achieved. Number of lances burned is indicated in second column. [0062]
  • EXAMPLE 7 Carbofluorination Piercing of Concrete Slabs
  • This example compares modified lances against concrete walls of different thickness. [0063]
    Length Burned
    Type of Lance Time(s) (inches)
    1st Concrete Block (thickness = 6.0 cm)
    BROCO 51.81 24.0
    64.18 28.0
    BROCO with Fe tubing 32.81 14.0
    35.44 15.0
    FEP 45.46 19.5
    FEP with Fe tubing 25.13  8.5
    PTFE 30.63 14.0
    PTFE with Fe tubing 26.79 10.0
    TFE extruded No penetration
    PFA 15.10  9.0
    KYNAR 48.71 18.5
    2nd Concrete Block (thickness = 7.5 cm)
    KYNAR No penetration 25.0
    PFA 37.87 15.0
    PTFE 50.35 20.0
    PTFE with Fe tubing 31.02 12.5
    FEP 37.84 16.0
    1st Concrete Block (thickness = 6.0 cm)
    FEP with Fe tubing 30.01 11.0
    BROCO No penetration 27.5
    BROCO with Fe tubing 43.45 19.5
    3rd Concrete Block (thickness = 9.8 cm)
    BROCO No penetration 28.5
    No penetration 28.5
    BROCO with Fe tubing No penetration 27.0
    PTFE No penetration 26.0
    No penetration 29.5
    FEP with Fe tubing 46.85 18.0
    PEP 67.70 26.0
    60.99 25.0
    FEP with Fe tubing 38.36 15.0
    PFA 43.66 18.0
    42.57 16.5
  • When BROCO is modified with FEP tubing, the pierce rate was increased by more than 90% (i.e., from 0.073 to 0.139 cm/sec). When BROCO was modified with FEP tubing, the lance burning rate decreased by more than 10% (i.e., from 1.373 to 1.207 cm/sec). When BROCO was modified with FEP tubing, the oxygen consumption needed for piercing a 15 cm deep hole decreased by more than 45% (i.e., from 275.28 to 144.67 liters). [0064]
  • EXAMPLE 8 Carbofluorination Piercing of Granite Slabs
  • Piercing of 0.75 inch thick granite slab by the FEP lance took only 7 sec. of cutting time. Obviously, since granite components are basically silica and alumina both were converted to gaseous products in the course of penetration. Granite objects are ideal targets for a very fast piercing by a modified lance [0065]
  • EXAMPLE 9 Graphoil Wrap/Aluminum Wires
  • Improved cutting/piercing of cutting of iron slabs by using Grafoil® wrap as focusing element and using aluminum wires to increase the penetration efficiency [0066]
  • Graphoil layer on the surface of the lance is capable of sharp focusing of the exit hot flame and substantially contributes toward a better performance of the lance. In addition a combination of aluminum and iron wires along with Grafoil® wrap provides additional improvement of the cutting efficiency. [0067]
  • The following lances were used in this experiment: (1) BROCO lance (⅜″, linear density=3.933 g/cm); (2) BROCO lance (⅜″) covered by Grafoil® (thickness=0.015″, width=1.5″, linear density=0.156 g/cm); (3) aluminum lance (⅜″) made from Al tubing (OD=⅜″; wall thickness=0.035″, 6061, linear density=0.648 g/cm) and 7 BROCO Fe wires covered by Grafoil® (thickness−0.010″) fixed with epoxy glue. [0068]
  • Experimental data for the cutting experiment are reported in Table 3. [0069]
  • EXAMPLE 10 Carbochlorination Piercing of Concrete Slabs
  • Experimental conditions: oxygen outlet pressure=80 psi; flow=80 liters per minute, experiments with concrete block (thickness=15 cm). [0070]
  • The experiment used three types of lances: (1) BROCO lance (⅜″) covered by a fluorinated ethylene propylene (FEP) resin—ID=⅜″, wall thickness={fraction (1/16)}″, linear density=1.2249 g/cm) and 10″ long Fe tubing (OD=0.625″, linear density=3.37 g/cm); (2) BROCO lance (⅜″) covered by a chlorinated Teflon® resin—ID=⅜″, wall thickness={fraction (1/16)}″, linear density=1.2234 g/cm, Laird Plastics, Inc.) and 10″ long Fe tubing (OD=0.625″, linear density=3.37 g/cm); and (3) BROCO lance (⅜″) covered by foil of chlorinated Teflon® resin—linear density=1.3205 and 1.2885 g/cm, Honeywell. [0071]
  • Experimental data for the cutting experiment are reported in Table 4. [0072]
  • EXAMPLE 11 Comparison with Kerrie Cable
  • The following is a comparison of Snake-Firecut™ (in this case, iron strands covered by Graphoil in plastic sleeve) and commercially available Kerrie Cable at different oxygen pressures in cutting of {fraction (5/4)}″ rebar: [0073]
    Time to cut
    Average one rebar of Wire burned
    flow 5/4″ in per 1 cut of
    Pressure rate diameter 5/4″ rebar
    Type [PSI] [LPM] [s] [cm]
    Snake Firecut ™ 10 41.6 50.1 55.5
    Kerrie Cable 34.4 124.0 80.5
    Snake Firecut ™ 20 66.8 11.3 13.1
    Kerrie Cable 58.4 59.3 22.9
    Snake Firecut ™ 30 94.5 8.6 11.4
    Kerrie Cable 80.0 57.1 13.1
  • Therefore, while presently-preferred forms of the inventive continuous hot rod have been shown and described, and several modifications thereof discussed, persons skilled in this art will readily appreciate that various additional changes and modifications may be made without departing from the spirit of the invention, as defined and differentiated by the following claims. [0074]
    TABLE 1
    O2
    Time Needed
    Needed Length for the
    to Make of Run Lance Molar
    Type a 15 cm Lance (@ 80 Pierce Burning Material Burned ratio
    of Hole Burned 1/min) Rate Rate Fe C2F4 Lance: O2
    Lance (sec) (cm) (liters) (cm/sec) (cm/sec) g mol g mol Mol/mol
    BROCO 187.38 246.38 249.8 0.080 1.315 969 17.4 1.55
    183.60 241.30 244.8 0.082 1.314 949 17.0 1.56
    (avg) 185.49 243.84 247.3 0.081 1.315 959 17.2 1.56
    BROCO 120.51 129.54 160.7 0.124 1.075 509 9.1 78 0.8 1.38
    with FEP
    110.20 147.32 146.9 0.136 1.337 579 10.4 89 0.9 1.72
    109.79 121.92 145.1 0.138 1.121 480 8.6 74 0.7 1.44
    114.67 132.08 152.9 0.131 1.152 519 9.3 80 0.8 1.48
    (avg) 113.54 132.72 151.4 0.132 1.169 522 9.3 80 0.8 1.49
    BROCO 149.93 187.96 199.9 0.100 1.254 1316 23.6 2.64
    with Fe
    tubing
    BROCO 76.81 71.12 102.4 0.195 0.926 498 8.9 43 0.4 2.03
    with FEP
    and Fe
    tubing
    81.20 83.82 108.3 0.185 1.032 587 10.5 51 0.5 2.28
    73.10 81.28 97.5 0.205 1.112 569 10.2 49 0.5 2.46
    (avg) 77.04 78.74 102.7 0.195 1.022 551 9.9 47 0.4 2.25
  • [0075]
    TABLE 2
    O2
    Time Needed
    Needed Length for the
    to Make of Run Lance Molar
    Type a 15 cm Lance (@ 80 Pierce Burning Material Burned ratio
    of Hole Burned 1/min) Rate Rate Fe C2F4 Lance: O2
    Lance (sec) (cm) (liters) (cm/sec) (cm/sec) g mol g mol Mol/mol
    BROCO 214.65 292.10 286.20 0.070 1.361 1149 20.6 1.61
    183.60 279.40 244.80 0.082 1.522 1099 19.7 1.80
    221.13 273.05 294.84 0.068 1.235 1074 19.2 1.46
    (avg) 206.46 281.52 275.28 0.073 1.373 1107 19.8 1.62
    BROCO 111.11 129.54 148.10 0.135 1.166 509 9.1 78 0.8 1.50
    with FEP
    tubing
    118.13 149.86 157.50 0.127 1.269 589 10.6 90 0.9 1.64
    96.30 114.30 128.40 0.156 1.187 450 8.0 69 0.7 1.52
    (avg) 108.51 131.23 144.67 0.139 1.207 516 9.2 79 0.8 1.55
    BROCO 121.15 134.62 161.53 0.124 1.111 529 9.5 169 1.7 1.55
    with two
    FEP
    tubings
    119.06 144.78 158.75 0.126 1.216 569 10.2 182 1.8 1.69
    88.60 93.98 118.13 0.169 1.061 370 6.6 118 1.2 1.48
    (avg) 109.60 124.46 146.14 0.140 1.129 489 8.8 156 1.6 1.59
    BROCO 104.24 100.33 138.99 0.144 0.962 395 7.1 92 0.9 1.29
    with
    KYNAR
    tubing
    91.84 88.90 122.45 0.163 0.968 350 6.3 81 0.8 1.30
    96.28 105.41 128.37 0.156 1.095 415 7.4 96 1.0 1.47
    84.76 76.20 113.01 0.177 0.899 300 5.4 70 0.7 1.21
    85.12 100.33 113.49 0.176 1.179 395 7.1 92 0.9 1.58
    (avg) 92.45 94.23 123.26 0.163 1.021 371 6.6 86 0.9 1.36
    BROCO 172.72 158.75 230.29 0.087 0.919 624 11.2 182 1.8 1.26
    with
    PTFE
    tubing
  • [0076]
    TABLE 3
    O2
    Needed
    Length for the
    Length of Run Lance Molar
    Type of Lance (@ 235 Cutting Burning Material Burned ratio
    of Cut Burned 1/min) Rate Rate Fe C2F4 Lance: O2
    Lance (cm) (cm) (liters) (cm/sec) (cm/sec) g mol g mol Mol/mol
    Outlet Pressure = 50 psi; Oxygen Flow = 235 1/min; Steel Plate; Thickness = 2.5 cm
    BROCO 24.0 35.0 87.3 0.609 0.889 138 2.46 0.358
    BROCO + 24.0 25.5 135.2 0.695 0.739 100 1.80 0.298
    graphoil
    BROCO 23.0 32.5 136.9 0.658 0.930 128 2.29 0.375
    BROCO 24.5 35.5 152.4 0.630 0.912 140 2.50 0.368
    BROCO + 23.0 28.0 139.6 0.645 0.786 110 1.97 0.316
    graphoil
    Outlet Pressure = 50 psi; Oxygen Flow = 235 1/min; Steel Plate; Thickness = 7.0 cm
    BROCO 7.0 56 289.3 0.095 0.758 220 3.94 0.305
    BROCO + 9.5 40.5 222.9 0.169 0.721 159 2.85 0.287
    graphoil
    BROCO 8.5 65 309.1 0.108 0.824 256 4.58 0.332
    BROCO + 10.0 37.5 235.4 0.166 0.624 147 2.64 0.251
    graphoil
    Outlet Pressure = 80 psi; Oxygen Flow = 80 1/min; Steel Plate; Thickness = 1.1 cm
    BROCO 26.0 34.5 49.8 0.696 0.924 136 2.43 1.093
    BROCO + 26.0 13.5 40.7 0.851 1.097 53 0.95 0.523
    graphoil
    Al + 7 Fe 25.0 28.5 45.2 0.738 0.841 86 1.54 0.764
    wire +
    graphoil
    (A)
    BROCO 26.0 30.0 44.4 0.779 0.899 118 2.11 1.066
    BROCO + 25.5 26.5 37.4 0.909 0.945 104 1.87 1.117
    graphoil
    (A)
    Al + 7 Fe 25.5 37.0 44.7 0.760 1.103 1.003
    wire +
    graphoil
    BROCO 26.0 30.0 39.9 0.868 1.002 118 2.11 1.186
    Al + 7 Fe 26.0 22.5 35.76 0.969 0.839 68 1.22 0.684
    wire +
    graphoil
    (B)
    Al + 7 Fe 26.0 26.0 34.7 1.124 1.124 79 1.41 0.908
    wire +
    graphoil
    (B)
    +TC,1/32 Outlet Pressure = 80 psi; Oxygen Flow = 80 1/min; Steel Plate; Thickness = 5.7 cm
    Al + 7 Fe 7.5 34.0 51.6 0.194 0.878 103 1.84 0.799
    wire
    graphoil
    (B)
    BROCO 5.5 46.0 76.6 0.096 0.801 181 3.24 0.947
  • [0077]
    TABLE 4
    O2
    Time Needed
    Needed Length for the
    to Make of Run Lance Molar
    Type a 15 cm Lance (@ 80 Pierce Burning Material Burned ratio
    of Hole Burned 1/min) Rate Rate Fe C2F4 Lance: O2
    Lance (sec) (cm) (liters) (cm/sec) (cm/sec) g mol g mol Mol/mol
    BROCO 194.88 258.5 259.84 0.077 1.326 1017 18.2 1.57
    BROCO + 88.4 84.0 117.87 0.170 0.950 381 6.8 102 1.0 1.48
    PCTFE +
    FE (10″)
    BROCO + 105.31 104.0 140.41 0.142 0.988 459 8.3 127 1.3 1.53
    PCTFE
    (foil)
    BROCO + 99.93 95.0 133.24 0.150 0.951 424 7.5 116 1.2 1.46
    PCTFE +
    Fe (10″)

Claims (18)

What is claimed is:
1. A continuous hot rod for removing portions of a target material, comprising:
an elongated lance formed of a fuel material;
a reel for providing a continuous source of said fuel material;
a source of oxidizer;
a conduit for establishing a controllable flow of oxidizer from said source through said lance; and
a sleeve mounted on said lance wherein said sleeve comprises material containing chlorine and/or fluorine;
whereby, when said hot rod is ignited and used to remove portions of a target material, the chlorine and/or fluorine in said sleeve material will react chemically with the target material to form gaseous reaction products, and said reel will provide a continuous source of said fuel material.
2. A continuous hot rod as set forth in claim 1 wherein said sleeve is mounted on the outer surface of said lance.
3. A continuous hot rod as set forth in claim 1 and further comprising a plurality of wires in said lance.
4. A continuous hot rod as set forth in claim 1 and further comprising a plurality of rods in said lance.
5. A continuous hot rod as set forth in claim 1 wherein said sleeve material contains polyvinyl chlorine.
6. A continuous hot rod as set forth in claim 1 wherein said sleeve material contains polytetrafluoroethylene.
7. A continuous hot rod as set forth in claim 1 wherein said sleeve material contains chlorinated polyvinyl chlorine.
8. A continuous hot rod as set forth in claim 1 wherein said sleeve comprises an inner cylindrical layer, and an outer cylindrical layer generally concentric with said inner cylindrical layer.
9. A continuous hot rod as set forth in claim 8 wherein said inner cylindrical layer contains carbon, whereby said carbon contributes to focus a flame on said target material.
10. A continuous hot rod as set forth in claim 8 wherein said inner cylindrical layer contains Grafoil®, whereby said Grafoil® contributes to focus a flame on said target material.
11. A continuous hot rod as set forth in claim 8 wherein said outer cylindrical layer contains chlorine and/or fluorine.
12. A continuous hot rod as set forth in claim 8 wherein said outer cylindrical layer contains polyvinyl chlorine.
13. A continuous hot rod as set forth in claim 8 wherein said outer cylindrical layer contains polytetrafluoroethylene.
14. A continuous hot rod as set forth in claim 8 wherein said outer cylindrical layer contains chlorinated polyvinyl chlorine.
15. A continuous hot rod as set forth in claim 1 wherein said target material contains a ferrous alloy.
16. A continuous hot rod as set forth in claim 1 wherein said target material contains an alloy having an element selected from the group consisting of aluminum, copper, magnesium, titanium, a transition metal, tungsten, nickel, cobalt and chromium.
17. A continuous hot rod as set forth in claim 1 wherein said target material is selected from the group consisting of concrete, reinforced concrete, aluminum oxide, silicon oxide, calcium oxide, and brick.
18. A continuous hot rod as set forth in claim 1 wherein said target material includes a ceramic material selected from the group consisting of alumina, silica, zirconia, magnesia, silicon carbide and silicon nitride.
US10/429,363 2001-06-01 2003-05-05 Continuous hot rod Abandoned US20040041310A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/429,363 US20040041310A1 (en) 2001-06-01 2003-05-05 Continuous hot rod

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/872,641 US20040206451A1 (en) 2001-06-01 2001-06-01 High-speed chemical drill
US10/429,363 US20040041310A1 (en) 2001-06-01 2003-05-05 Continuous hot rod

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/872,641 Continuation-In-Part US20040206451A1 (en) 2001-06-01 2001-06-01 High-speed chemical drill

Publications (1)

Publication Number Publication Date
US20040041310A1 true US20040041310A1 (en) 2004-03-04

Family

ID=25360019

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/872,641 Abandoned US20040206451A1 (en) 2001-06-01 2001-06-01 High-speed chemical drill
US10/429,363 Abandoned US20040041310A1 (en) 2001-06-01 2003-05-05 Continuous hot rod

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/872,641 Abandoned US20040206451A1 (en) 2001-06-01 2001-06-01 High-speed chemical drill

Country Status (2)

Country Link
US (2) US20040206451A1 (en)
EP (1) EP1262268A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120034567A1 (en) * 2010-08-03 2012-02-09 Victor Equipment Company Automatic gas torch ignition in an oxygen rich environment
WO2018053471A1 (en) * 2016-09-19 2018-03-22 Special Projects Operations, Inc. Silent entry torching and oxygen delivery system and configuration
US10155275B2 (en) 2012-02-29 2018-12-18 Special Projects Operations, Inc. Silent entry torching and oxygen delivery system and configuration

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528054A (en) * 2014-07-07 2016-01-13 Statoil Petroleum As Casing removal with energetic materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2524896A (en) * 1948-06-14 1950-10-10 American Viscose Corp Automatic lead-burning machine
US3591758A (en) * 1968-10-30 1971-07-06 Reginald Clucas Flame-cutting torch
US6000436A (en) * 1995-11-02 1999-12-14 Central Sprinkler Company Fluid conduit systems and methods for making

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE810610C (en) * 1950-01-14 1951-08-13 Adolf Messer G M B H Method and device for drilling holes in stone or concrete
US4182947A (en) * 1975-12-10 1980-01-08 Brower Jerome S Underwater cutting rod
US4345646A (en) * 1978-02-13 1982-08-24 Gearhart Industries, Inc. Apparatus for chemical cutting
DE3141583C2 (en) * 1981-10-20 1983-11-03 Lars Anders 41319 Göteborg Molinder Underwater cutting tool
US5078552A (en) * 1991-03-19 1992-01-07 Albel Frank O Guide/drill stop for regulating drill depth
US5615747A (en) * 1994-09-07 1997-04-01 Vail, Iii; William B. Monolithic self sharpening rotary drill bit having tungsten carbide rods cast in steel alloys
US5575331A (en) * 1995-06-07 1996-11-19 Halliburton Company Chemical cutter
US6005221A (en) * 1998-08-03 1999-12-21 Cusick, Iii; Joseph B. Pressurized air cooled tungsten inert gas welding apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2524896A (en) * 1948-06-14 1950-10-10 American Viscose Corp Automatic lead-burning machine
US3591758A (en) * 1968-10-30 1971-07-06 Reginald Clucas Flame-cutting torch
US6000436A (en) * 1995-11-02 1999-12-14 Central Sprinkler Company Fluid conduit systems and methods for making

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120034567A1 (en) * 2010-08-03 2012-02-09 Victor Equipment Company Automatic gas torch ignition in an oxygen rich environment
US9989250B2 (en) * 2010-08-03 2018-06-05 Victor Equipment Company Automatic gas torch ignition in an oxygen rich environment
US10155275B2 (en) 2012-02-29 2018-12-18 Special Projects Operations, Inc. Silent entry torching and oxygen delivery system and configuration
WO2018053471A1 (en) * 2016-09-19 2018-03-22 Special Projects Operations, Inc. Silent entry torching and oxygen delivery system and configuration

Also Published As

Publication number Publication date
US20040206451A1 (en) 2004-10-21
EP1262268A1 (en) 2002-12-04

Similar Documents

Publication Publication Date Title
CN1285739C (en) Hardfacing alloy. methods and products
KR100395612B1 (en) Coherent jet injector lance
EP2786083B1 (en) Fluid cooled lances for top submerged injection
JP5775640B2 (en) Upper immersion type lance
JPH05500555A (en) Tip submerged injection with shrouded lance
US20040041310A1 (en) Continuous hot rod
EA030272B1 (en) Top submerged injection lance for enhanced submerged combustion
Morales et al. Tap-hole opening: advances and improvements
Liu et al. Underwater welding
US8703042B2 (en) Method and system of removing accretion buildup in a furnace
Candea et al. THERMAL CUTTING EQUIPMENT FOR CONSTRUCTION MATERIALS WITH THERMAL LANCING
GB2233078A (en) Ceramic welding repair process
US5350462A (en) Process for cutting large blocks of metal
JPH07300608A (en) Blowing mathod for oxidizing gas into molten metal
JPH03111503A (en) Method for opening iron tapping hole in blast furnace
Hlavacek et al. Ultra-Fast Portable Metallic/Concrete Plate Cutting
Woods Fundamentals of Welding Skills
Kielczynski et al. Technologies and equipment for underwater welding and cutting
Longden Today's Applications for Industrial Gases
Wang et al. The eutectic generation effect and chemical modification of thermal lance cutting of concrete
JP2632913B2 (en) Prevention of melting damage of triple tube tuyere
JP2876955B2 (en) Repair method for converter type refining vessel with gas injection tuyere
JP2005214548A (en) Refractory lining structure of converter and converter operating method
Sylvén et al. Advanced Oxygen Lances for Safer Furnace Tapping Operations
JPH0459905A (en) Method for opening iron tapping hole in blast furnace

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION