US20040030114A1 - Myostatin regulatory region, nucleotide sequence determination and methods for its use - Google Patents
Myostatin regulatory region, nucleotide sequence determination and methods for its use Download PDFInfo
- Publication number
- US20040030114A1 US20040030114A1 US10/610,473 US61047303A US2004030114A1 US 20040030114 A1 US20040030114 A1 US 20040030114A1 US 61047303 A US61047303 A US 61047303A US 2004030114 A1 US2004030114 A1 US 2004030114A1
- Authority
- US
- United States
- Prior art keywords
- myostatin
- expression
- gene
- polynucleotide
- promoter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108010056852 Myostatin Proteins 0.000 title claims abstract description 161
- 238000000034 method Methods 0.000 title claims abstract description 68
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 36
- 239000002773 nucleotide Substances 0.000 title claims abstract description 24
- 125000003729 nucleotide group Chemical group 0.000 title claims abstract description 23
- 102000004472 Myostatin Human genes 0.000 title claims abstract 21
- 230000014509 gene expression Effects 0.000 claims abstract description 100
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 66
- 241001465754 Metazoa Species 0.000 claims abstract description 50
- 239000012634 fragment Substances 0.000 claims abstract description 49
- 150000001875 compounds Chemical class 0.000 claims abstract description 40
- 230000000694 effects Effects 0.000 claims abstract description 31
- 108091026890 Coding region Proteins 0.000 claims abstract description 23
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 23
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 23
- 239000002157 polynucleotide Substances 0.000 claims abstract description 23
- 230000035897 transcription Effects 0.000 claims abstract description 23
- 238000013518 transcription Methods 0.000 claims abstract description 23
- 210000001519 tissue Anatomy 0.000 claims abstract description 21
- 238000012360 testing method Methods 0.000 claims abstract description 9
- 239000003112 inhibitor Substances 0.000 claims abstract description 8
- 230000032683 aging Effects 0.000 claims abstract description 7
- 230000037257 muscle growth Effects 0.000 claims abstract description 7
- 241000282472 Canis lupus familiaris Species 0.000 claims abstract description 6
- 241000282326 Felis catus Species 0.000 claims abstract description 6
- 235000020997 lean meat Nutrition 0.000 claims abstract description 3
- 230000001737 promoting effect Effects 0.000 claims abstract 5
- 210000004027 cell Anatomy 0.000 claims description 99
- 241001529936 Murinae Species 0.000 claims description 41
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims description 38
- 239000005089 Luciferase Substances 0.000 claims description 24
- 108060001084 Luciferase Proteins 0.000 claims description 22
- 230000009261 transgenic effect Effects 0.000 claims description 18
- 108700008625 Reporter Genes Proteins 0.000 claims description 17
- 108700019146 Transgenes Proteins 0.000 claims description 14
- 239000013598 vector Substances 0.000 claims description 13
- 241000251468 Actinopterygii Species 0.000 claims description 11
- 241000282414 Homo sapiens Species 0.000 claims description 11
- 239000013604 expression vector Substances 0.000 claims description 11
- 241000283690 Bos taurus Species 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 230000005758 transcription activity Effects 0.000 claims description 9
- 210000000663 muscle cell Anatomy 0.000 claims description 8
- 241000287828 Gallus gallus Species 0.000 claims description 7
- 235000013330 chicken meat Nutrition 0.000 claims description 7
- 241001494479 Pecora Species 0.000 claims description 6
- 241000700159 Rattus Species 0.000 claims description 6
- 241000699670 Mus sp. Species 0.000 claims description 5
- 235000013305 food Nutrition 0.000 claims description 5
- 238000002744 homologous recombination Methods 0.000 claims description 5
- 230000006801 homologous recombination Effects 0.000 claims description 5
- 208000018360 neuromuscular disease Diseases 0.000 claims description 5
- 238000012216 screening Methods 0.000 claims description 5
- 241000282412 Homo Species 0.000 claims description 4
- 206010028980 Neoplasm Diseases 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 4
- 241000283707 Capra Species 0.000 claims description 3
- 241000282887 Suidae Species 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 claims description 3
- 241000700198 Cavia Species 0.000 claims description 2
- 241000282693 Cercopithecidae Species 0.000 claims description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 claims description 2
- 241000282579 Pan Species 0.000 claims description 2
- 241000282520 Papio Species 0.000 claims description 2
- 238000003259 recombinant expression Methods 0.000 claims description 2
- 239000012190 activator Substances 0.000 claims 2
- 241000283086 Equidae Species 0.000 claims 1
- 230000004584 weight gain Effects 0.000 claims 1
- 235000019786 weight gain Nutrition 0.000 claims 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 17
- 210000003205 muscle Anatomy 0.000 abstract description 16
- 208000035475 disorder Diseases 0.000 abstract description 11
- 206010028289 Muscle atrophy Diseases 0.000 abstract description 7
- 201000000585 muscular atrophy Diseases 0.000 abstract description 7
- 201000010099 disease Diseases 0.000 abstract description 6
- 238000003307 slaughter Methods 0.000 abstract description 3
- 102100039939 Growth/differentiation factor 8 Human genes 0.000 description 97
- 108020004414 DNA Proteins 0.000 description 19
- 239000000047 product Substances 0.000 description 18
- 108091034117 Oligonucleotide Proteins 0.000 description 13
- 102000039446 nucleic acids Human genes 0.000 description 13
- 108020004707 nucleic acids Proteins 0.000 description 13
- 150000007523 nucleic acids Chemical class 0.000 description 13
- 241000894007 species Species 0.000 description 12
- 108091028043 Nucleic acid sequence Proteins 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- 150000001413 amino acids Chemical class 0.000 description 9
- 235000018102 proteins Nutrition 0.000 description 9
- 238000003556 assay Methods 0.000 description 8
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 8
- 230000012010 growth Effects 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 235000001014 amino acid Nutrition 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 244000144972 livestock Species 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 230000002103 transcriptional effect Effects 0.000 description 5
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 4
- 102000038461 Growth Hormone-Releasing Hormone Human genes 0.000 description 4
- 239000000095 Growth Hormone-Releasing Hormone Substances 0.000 description 4
- 101710142969 Somatoliberin Proteins 0.000 description 4
- 241000282898 Sus scrofa Species 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 244000144977 poultry Species 0.000 description 4
- 235000013594 poultry meat Nutrition 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 108091061960 Naked DNA Proteins 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- -1 but not limited to Proteins 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 210000004602 germ cell Anatomy 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007423 screening assay Methods 0.000 description 3
- 210000002027 skeletal muscle Anatomy 0.000 description 3
- 210000001082 somatic cell Anatomy 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 2
- YSAJFXWTVFGPAX-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetic acid Chemical compound OC(=O)COC1=CNC(=O)NC1=O YSAJFXWTVFGPAX-UHFFFAOYSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 108010005853 Anti-Mullerian Hormone Proteins 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108090000994 Catalytic RNA Proteins 0.000 description 2
- 102000053642 Catalytic RNA Human genes 0.000 description 2
- 229920001917 Ficoll Polymers 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- HYVABZIGRDEKCD-UHFFFAOYSA-N N(6)-dimethylallyladenine Chemical compound CC(C)=CCNC1=NC=NC2=C1N=CN2 HYVABZIGRDEKCD-UHFFFAOYSA-N 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 102000052812 Ornithine decarboxylases Human genes 0.000 description 2
- 108700005126 Ornithine decarboxylases Proteins 0.000 description 2
- 108010067902 Peptide Library Proteins 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- 108010052090 Renilla Luciferases Proteins 0.000 description 2
- 102000043168 TGF-beta family Human genes 0.000 description 2
- 108091085018 TGF-beta family Proteins 0.000 description 2
- 108700009124 Transcription Initiation Site Proteins 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 239000000868 anti-mullerian hormone Substances 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- VLCYCQAOQCDTCN-UHFFFAOYSA-N eflornithine Chemical compound NCCCC(N)(C(F)F)C(O)=O VLCYCQAOQCDTCN-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 238000010363 gene targeting Methods 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 238000013537 high throughput screening Methods 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 2
- 150000008300 phosphoramidites Chemical class 0.000 description 2
- 150000003212 purines Chemical class 0.000 description 2
- 150000003230 pyrimidines Chemical class 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 108091092562 ribozyme Proteins 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 210000002363 skeletal muscle cell Anatomy 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- HLYBTPMYFWWNJN-UHFFFAOYSA-N 2-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxyacetic acid Chemical compound OC(=O)C(O)C1=CNC(=O)NC1=O HLYBTPMYFWWNJN-UHFFFAOYSA-N 0.000 description 1
- SGAKLDIYNFXTCK-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=O)NC1=O SGAKLDIYNFXTCK-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- XMSMHKMPBNTBOD-UHFFFAOYSA-N 2-dimethylamino-6-hydroxypurine Chemical compound N1C(N(C)C)=NC(=O)C2=C1N=CN2 XMSMHKMPBNTBOD-UHFFFAOYSA-N 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 1
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical compound CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 1
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 1
- MQJSSLBGAQJNER-UHFFFAOYSA-N 5-(methylaminomethyl)-1h-pyrimidine-2,4-dione Chemical compound CNCC1=CNC(=O)NC1=O MQJSSLBGAQJNER-UHFFFAOYSA-N 0.000 description 1
- WPYRHVXCOQLYLY-UHFFFAOYSA-N 5-[(methoxyamino)methyl]-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CONCC1=CNC(=S)NC1=O WPYRHVXCOQLYLY-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- VKLFQTYNHLDMDP-PNHWDRBUSA-N 5-carboxymethylaminomethyl-2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C(CNCC(O)=O)=C1 VKLFQTYNHLDMDP-PNHWDRBUSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical compound ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- KSNXJLQDQOIRIP-UHFFFAOYSA-N 5-iodouracil Chemical compound IC1=CNC(=O)NC1=O KSNXJLQDQOIRIP-UHFFFAOYSA-N 0.000 description 1
- KELXHQACBIUYSE-UHFFFAOYSA-N 5-methoxy-1h-pyrimidine-2,4-dione Chemical compound COC1=CNC(=O)NC1=O KELXHQACBIUYSE-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 102100029457 Adenine phosphoribosyltransferase Human genes 0.000 description 1
- 108010024223 Adenine phosphoribosyltransferase Proteins 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 101000886576 Bos taurus Growth/differentiation factor 8 Proteins 0.000 description 1
- 101100297347 Caenorhabditis elegans pgl-3 gene Proteins 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 108700003483 Drosophila dpp Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 101000886557 Gallus gallus Growth/differentiation factor 8 Proteins 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 description 1
- 108010004250 Inhibins Proteins 0.000 description 1
- 102000002746 Inhibins Human genes 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 101100261636 Methanothermobacter marburgensis (strain ATCC BAA-927 / DSM 2133 / JCM 14651 / NBRC 100331 / OCM 82 / Marburg) trpB2 gene Proteins 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 208000011623 Obstructive Lung disease Diseases 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 229940122060 Ornithine decarboxylase inhibitor Drugs 0.000 description 1
- 241001504519 Papio ursinus Species 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 101100124346 Photorhabdus laumondii subsp. laumondii (strain DSM 15139 / CIP 105565 / TT01) hisCD gene Proteins 0.000 description 1
- 101001075127 Rattus norvegicus Growth/differentiation factor 8 Proteins 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 102000006646 aminoglycoside phosphotransferase Human genes 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 238000001815 biotherapy Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007435 diagnostic evaluation Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 108010052305 exodeoxyribonuclease III Proteins 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 230000000799 fusogenic effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 102000005396 glutamine synthetase Human genes 0.000 description 1
- 108020002326 glutamine synthetase Proteins 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000012188 high-throughput screening assay Methods 0.000 description 1
- 101150113423 hisD gene Proteins 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000000893 inhibin Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000006674 lysosomal degradation Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- IZAGSTRIDUNNOY-UHFFFAOYSA-N methyl 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetate Chemical compound COC(=O)COC1=CNC(=O)NC1=O IZAGSTRIDUNNOY-UHFFFAOYSA-N 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000000921 morphogenic effect Effects 0.000 description 1
- 230000015604 muscle hyperplasia Effects 0.000 description 1
- 230000012042 muscle hypertrophy Effects 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- 210000001087 myotubule Anatomy 0.000 description 1
- XJVXMWNLQRTRGH-UHFFFAOYSA-N n-(3-methylbut-3-enyl)-2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(NCCC(C)=C)=C2NC=NC2=N1 XJVXMWNLQRTRGH-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 238000007857 nested PCR Methods 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000002818 ornithine decarboxylase inhibitor Substances 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 230000004096 skeletal muscle tissue growth Effects 0.000 description 1
- JUJBNYBVVQSIOU-UHFFFAOYSA-M sodium;4-[2-(4-iodophenyl)-3-(4-nitrophenyl)tetrazol-2-ium-5-yl]benzene-1,3-disulfonate Chemical compound [Na+].C1=CC([N+](=O)[O-])=CC=C1N1[N+](C=2C=CC(I)=CC=2)=NC(C=2C(=CC(=CC=2)S([O-])(=O)=O)S([O-])(=O)=O)=N1 JUJBNYBVVQSIOU-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- ZEMGGZBWXRYJHK-UHFFFAOYSA-N thiouracil Chemical compound O=C1C=CNC(=S)N1 ZEMGGZBWXRYJHK-UHFFFAOYSA-N 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 230000008736 traumatic injury Effects 0.000 description 1
- 101150081616 trpB gene Proteins 0.000 description 1
- 101150111232 trpB-1 gene Proteins 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000009452 underexpressoin Effects 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- WCNMEQDMUYVWMJ-JPZHCBQBSA-N wybutoxosine Chemical compound C1=NC=2C(=O)N3C(CC([C@H](NC(=O)OC)C(=O)OC)OO)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WCNMEQDMUYVWMJ-JPZHCBQBSA-N 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
Definitions
- the present invention relates to a regulatory region that controls expression of a gene.
- it relates to the nucleotide sequence of a 5′ regulatory region and fragments thereof, which promote transcription of the myostatin gene, to be referred to herein as the myostatin gene promoter.
- the myostatin gene promoter relates to the 5′ regulatory region and fragments thereof, which promote transcription of the murine myostatin gene.
- the invention also relates to methods of using this region to regulate expression of a heterologous gene in cells or animals, to engineer host cells, to screen for compounds that activate or inhibit its transcription and expression, as well as methods of inhibiting its expression in cells for the promotion of muscle growth in livestock, poultry, fish and companion animals, as well as for the treatment of muscle wasting and neuromuscular diseases.
- Growth and differentiation factor-8 (GDF-8 or myostatin), which will be referred to herein as myostatin, is a member of the transforming growth factor- 62 (TGF- ⁇ ) superfamily of secreted growth and differentiation factors (McPherron, et al. Nature 387:83 (1997)).
- TGF- ⁇ transforming growth factor- 62
- the members of the TGF- ⁇ family are synthesized as large precursor proteins that are proteolytically cleaved at a cluster of basic residues approximately 110-140 amino acids from the C-terminus.
- the C-terminal regions which are active as disulfide-linked dimers, have some level of amino acid sequence and structural similarity.
- the TGF- ⁇ family is characterized by a consensus amino acid sequence and conserved cysteine residues involved in intrachain disulfide bonds that result in a cystine knot protein fold.
- Members of the family include Mullerian inhibitory substance (MIS) (Behringer, et al., 1990, Nature, 345:167), bone morphogenic proteins (BMPs) (Sampath, et. al., 1990, J. Biol. Chem. 265:13198), growth and differentiation factors (GDFs), inhibins, and Drosophila decapentaplegic protein (DPP-C) (Padgett, et. al., 1987, Nature 325:81).
- MIS Mullerian inhibitory substance
- BMPs bone morphogenic proteins
- GDFs growth and differentiation factors
- DPP-C Drosophila decapentaplegic protein
- Myostatin has been identified in all vertebrates examined, including mouse, rat, human, baboon, cattle, pig, sheep, chicken, turkey, cats, dogs and fish.
- a disruption of the myostatin gene in mice leads to large increases in skeletal muscle mass resulting from muscle hyperplasia and hypertrophy and is at least partially responsible for the hypermuscled phenotype of mice homozygous for the Cmpt (compact) mutation (McPherron et al. (1997); Szabo, G. et al. Mammalian Genome 9:671 (1998)).
- the sequence of the cDNA for myostatin has been determined for each of these species and the deduced amino acid sequence is extraordinarily conserved, particularly the amino acid sequence of the C-terminal 109 amino acids.
- the nucleotide sequences of the full-length amino acid coding regions of the human and murine myostatin genes were disclosed in WO94/21681 to Lee and McPherron (1994).
- the nucleotide sequences of the full-length amino acid coding regions of the rat and chicken myostatin genes were disclosed in WO 98/33887 to Lee and McPherron (1998). While the coding sequences of the human and murine myostatin genes have been determined, those regulatory sequences which control expression of these genes remain uncharacterized.
- the present invention relates to a transcription regulatory region of a myostatin gene.
- the invention relates to a 2.5 kb polynucleotide sequence immediately 5′ to the murine myostatin coding sequence, its nucleotide sequence and methods of using this regulatory region, and fragments thereof.
- the present invention relates to the use of the myostatin promoter of the present invention to direct expression of a target gene in a cell or tissue specific manner, e.g., muscle cells or tissue.
- the present invention relates to the use of the myostatin promoter of the present invention in high throughput screens to identify test compounds which inhibit myostatin promoter activity or myostatin expression.
- the present invention relates- to methods for increasing muscle mass and feed efficiency of livestock, poultry or fish, in particular to engineer animals with increased lean meat in order to decrease the time required to bring the animals to slaughter.
- inhibitors of the myostatin promoter may be used to inhibit myostatin expression as a method of treating disorders related to expression of the myostatin gene, such as muscle wasting associated with aging or disease in humans and companion animals.
- the invention is based on the determination of the complete nucleotide sequence of the 2.5 kb murine myostatin gene promoter. Although the nucleotide sequence of the myostatin gene was previously reported, the myostatin promoter region has not yet been reported. Using a combination of manipulations, the promoter region of the murine myostatin gene was identified, sequenced and reported herein. When the 2.5 kb region and certain fragments thereof were placed upstream of a luciferase reporter gene in an expression vector, and introduced into muscle cell lines, these sequences induced the expression of the reporter gene. In addition, the identified promoter sequence of the murine myostatin gene and the identified promoter sequence of the porcine myostatin gene show a high degree of homology.
- the 2.5 kb regulatory region, or transcriptionally active fragments thereof be inserted in an expression vector to regulate the expression of a downstream coding sequence in a cell in vitro and in vivo.
- the aforementioned vector is stably integrated into the genome of a host cell.
- the cell is treated with a test compound in a screening assay for determining the ability of the compound to activate or inhibit the transcriptional activities of the regulatory region.
- the selected compounds may be formulated as pharmaceutical compositions for the promotion of muscle growth or for treatment of disorders related to aberrant expression of myostatin.
- the aforementioned vector is introduced into an embryonic cell or other type of cell, for the construction of a transgenic animal to regulate the expression of a transgene in a tissue specific manner.
- polynucleotides complementary to the 2.5 Kb regulatory region or portions thereof be delivered to cells to inhibit the transcription activities of the endogenous 2.5 Kb region, thereby downregulating the expression of myostatin.
- Such polynucleotides are useful for the promotion of growth, or in the treatment of diseases associated with myostatin expression, such as muscle wasting and neuromuscular disease.
- the present invention also relates to methods of treating livestock, poultry or fish to promote muscle growth.
- the invention relates to methods for increasing muscle mass and feed efficiency in order to increase growth so that animals can be brought to slaughter sooner.
- the methods of treatment of the present invention are applicable to humans and non-humans.
- the invention further relates to methods for the treatment of disorders, such as muscle wasting, neuromuscular disease, cancer and aging, wherein such methods comprise administering compounds which modulate the expression of a myostatin gene so symptoms of the disorder are ameliorated.
- the present invention is directed to methods that utilize the myostatin promoter sequences for the diagnostic evaluation, genetic testing and prognosis of a disease or disorder associated with myostatin expression.
- the invention still further relates to methods of identifying compounds capable of modulating the activity of myostatin promoters and the expression of myostatin genes, wherein such methods comprise administering a compound to a cell that expresses a gene under the control of a myostatin promoter or a transcriptionally active fragment thereof, measuring the level of gene expression or gene product activity and comparing this level to the level of gene expression or gene product activity produced by the cell in the absence of the compound, such that if the level obtained in the presence of the compound differs from that obtained in its absence, a compound capable of modulating the expression of the myostatin gene or promoter activity has been identified.
- FIGS. 1 A-B DNA sequence of 2482 bp upstream of the murine myostatin gene coding region. This DNA sequence includes part of the murine myostatin promoter region that controls expression of the myostatin gene.
- FIG. 2 The efficiency of four murine myostatin promoter DNA fragments to direct expression of luciferase was measured using the Luciferase Assay System, (Promega).
- FIG. 3 Comparison of DNA sequence homology between regions of the murine and porcine (Accession number AF093798) myostatin promoters proximal to the transcription start sites of those genes.
- the present invention relates to a polynucleotide sequence encoding an element of a myostatin gene that promotes transcription.
- the present invention relates to a polynucleotide of 2482 nucleotides (or 2.5 kb fragment) that is located immediately 5′ to the transcription start site of the murine myostatin gene.
- various fragments of this regulatory region that promote transcription.
- the regulatory region is a 1.8 kb fragment containing a deletion of up to 0.7 Kb at the 5′ end of the promoter sequence.
- the regulatory region comprises DNA binding sites for various transcription factors, including but not limited to, GATA and ATF-CREB.
- the myostatin promoter region of the present invention is preferably derived from a mammalian organism, and most preferably human, mouse, rat, cow, pig, sheep or companion animals, particularly cats and dogs.
- the myostatin promoter region may also be derived from chicken, turkey, fish and other species described herein.
- the myostatin promoter region of the present invention and active fragments thereof can be used to direct the expression of a heterologous coding sequence.
- the present invention encompasses human, murine, bovine, avian, canine, feline and porcine species of the myostatin promoter region.
- active fragments of the myostatin promoter region encompass those fragments of the promoter which are of sufficient length to promote transcription of a coding sequence to which the fragment is operatively linked.
- the active fragments of the myostatin promoter of the present invention encompass those fragments that are of sufficient length to promote transcription of a luciferase promoter gene when operatively linked to the luciferase coding sequence and transfected into a muscle cell line.
- the coding sequence is placed immediately 3′ to and is operatively linked to the promoter region.
- the nucleotide sequence of this region is shown in FIGS. 1 A-B (SEQ ID NO: 1).
- the sequence shown represents only one strand of the functional promoter, which is double stranded.
- modifications of this nucleotide sequence that do not substantially affect its transcriptional activities. Such modifications include additions, deletions and substitutions.
- any nucleotide sequence that selectively hybridizes to the sequence of SEQ ID NO: 1 under stringent conditions, and is capable of activating the expression of a coding sequence is encompassed by the invention.
- the 2482 bp fragment (from nucleotide 1 to 2482) is sufficient to direct expression of a luciferase reporter gene, or porcine growth hormone releasing hormone, when transfected into a murine C2C12 cell line.
- Exemplary stringent hybridization conditions are as follows: pre-hybridization of filters containing DNA is carried out for 8 hours to overnight at 65° C.
- the present invention also relates to the determination of regions of high homology or identity between the myostatin promoter regions derived from different species.
- the nucleotide sequence of the murine myostatin promoter region (SEQ ID NO. 1) was compared to the porcine promoter sequence (SEQ ID NO. 2), see FIG. 3.
- the area of greatest homology is the 90% sequence homology between the murine and porcine myostatin promoter at position 2178 to 2482 of the murine promoter sequence (SEQ ID NO. 3).
- the present invention relates to the identification of the myostatin promoter region in other species based on complementarity to regions of the murine myostatin promoter at position 2178 to 2482 (SEQ ID NO. 3).
- the present invention further relates to isolated nucleotide sequences which hybridize under stringent conditions to SEQ ID NO. 3 and are of sufficient length to promote transcription of a coding sequence to which the nucleotide sequence is operatively linked in a muscle cell of the same species that the nucleotide sequence is derived from, with the proviso that said nucleotide sequence is not derived from the porcine genome.
- the myostatin promoter region, or transcriptionally active fragments thereof is preferably derived from a mammalian organism, and most preferably from mouse, rat, cow, human or companion animals, particularly cats and dogs.
- the myostatin promoter region of the present invention may also be derived from chicken, turkey, fish and other species described herein. If regions of high homology of the myostatin regulatory region were identified among species, it would be routine for one of skill in the art to obtain promoter regions from any species using oligonucleotide probes that correspond to a part of the sequence encoding the myostatin promoter region in question. Additional methods, known to those of skill in the art, may also be employed to obtain the myostatin promoter region or transcriptionally active fragment thereof.
- a mammalian myostatin promoter homologue may possibly be isolated from, for example, human nucleic acid, by performing PCR using two primer pools designed on the basis of the nucleotide sequence of the murine or porcine myostatin promoter disclosed herein.
- the template for the reaction is chromosomal DNA.
- the myostatin promoter regions and fragments thereof which promote transcription, and the fragments and probes described herein which serve to identify myostatin promoter regions and fragments thereof, may be produced by recombinant DNA technology using techniques well known in the art. Methods which are well known to those skilled in the art can be used to construct these sequences, either in isolated form or contained in expression vectors. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques and in vivo genetic recombination. See, for example, the techniques described Sambrook et al., 1989, supra, and Ausabel et al., 1998, supra; also see the techniques described in “Oligonucleotide Synthesis”, 1984, Gait M. J. ed., IRL Press, Oxford, which is incorporated herein by reference in its entirety.
- Alterations in the regulatory sequences can be generated using a variety of chemical and enzymatic methods which are well known to those skilled in the art. For example, regions of the sequences defined by restriction sites can be deleted. Oligonucleotide-directed mutagenesis can be employed to alter the sequence in a defined way and/or to introduce restriction sites in specific regions within the sequence. Additionally, deletion mutants can be generated using DNA nucleases such as Bal31 or ExoIII and S1 nuclease. Progressively larger deletions in the regulatory sequences are generated by incubating the DNA with nucleases for increased periods of time (See Ausubel, et al., 1998 Current Protocols in Molecular Biology, for a review of mutagenesis techniques).
- altered sequences are evaluated for their ability to direct expression of heterologous coding sequences in appropriate host cells.
- altered regulatory sequences which retain their ability to direct expression of a coding sequence.
- altered regulatory sequences can be incorporated into recombinant expression vectors for further use.
- heterologous genes can be expressed under the control of the regulatory sequences of the present invention such as genes encoding vaccines, antigens, toxic gene products, potentially toxic gene products, and anti-proliferation or cytostatic gene products.
- Reporter genes can also be expressed including enzymes, (e.g. CAT, beta-galactosidase, luciferase), fluorescent proteins such as green fluorescent protein, or antigenic markers.
- the murine myostatin gene promoter region shows selective tissue specificity. It primarily induces gene expression in skeletal muscle cells, adipose cells, and in cells of the lactating mammary gland, but not in, for example, lung tissue.
- the regulatory region and transcriptionally active fragments thereof of the present invention may be used to induce expression of a heterologous gene in skeletal muscle cells.
- the present invention relates to the use of the myostatin gene promoter region to achieve tissue specific expression of a target gene for the promotion of growth or treatment of disease.
- the myostatin gene promoter region may be used to achieve tissue specific expression in gene therapy protocols.
- the induction of a cytotoxic product by the murine myostatin gene promoter region may be used in the form of cancer gene therapy.
- antisense, antigene, or aptameric oligonucleotides may be delivered to cells using the presently described expression constructs.
- Ribozymes or single-stranded RNA can also be expressed in a cell to inhibit the expression of a particular gene of interest.
- the target genes for these antisense or ribozyme molecules should be those encoding gene products that are essential for cell maintenance.
- in vitro studies are first performed to quantitate the ability of the oligonucleotide to inhibit gene expression. These studies should utilize controls that distinguish between specific inhibition and nonspecific biological effects of oligonucleotides. It is also preferred that these studies compare levels of the target RNA or protein with that of an internal control RNA or protein.
- the myostatin gene promoter region disclosed herein may be inserted in a variety of expression vectors for introduction into host cells.
- the expression vector is stably integrated into the cell genome.
- a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed.
- eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used.
- mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, HEK 293, WI38, and the like.
- the expression vectors that contain the murine myostatin gene promoter region may contain a gene encoding a selectable marker.
- a number of selection systems may be used, including but not limited to, the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962 , Proc. Natl. Acad. Sci.
- adenine phosphoribosyltransferase (Lowy, et al., 1980 , Cell 22:817) genes, which can be employed in tk ⁇ , hgprt ⁇ or aprt ⁇ cells, respectively.
- anti-metabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler, et al., 1980 , Proc. Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981 , Proc. Natl. Acad. Sci.
- gpt which confers resistance to mycophenolic acid (Mulligan & Berg, 1981 , Proc. Natl. Acad. Sci. USA 78:2072)
- neo which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981 , J. Mol. Biol. 150:1)
- hygro which confers resistance to hygromycin (Santerre, et al., 1984 , Gene 30:147) genes.
- Additional selectable genes include trpB, which allows cells to utilize indole in place of tryptophan; hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, 1988, Proc. Natl. Acad. Sci. USA 85:8047); ODC (ornithine decarboxylase) which confers resistance to the ornithine decarboxylase inhibitor, 2-(difluoromethyl)-DL-ornithine, DFMO (McConlogue L., 1987, Current Communications in Molecular Biology, Cold Spring Harbor Laboratory ed.) and glutamine synthetase (Bebbington et al., 1992, Biotech 10:169).
- the present invention also encompasses screening assays designed to identify compounds that modulate myostatin promoter activity or myostatin expression.
- the present invention encompasses in vitro cell-based assays.
- Compounds to be tested may include, but are not limited to, oligonucleotides, peptides, proteins, small organic or inorganic compounds, natural products, antibodies, etc. Combinatorial chemistry libraries can also be screened.
- the genetically-engineered cell lines of the present invention may be used to screen for small organic molecules, peptides, natural or synthetic compounds or other cell bound or soluble molecules that cause stimulation or inhibition of murine myostatin promoter transcriptional activities. Such compounds may be used to control skeletal muscle mass, thereby increasing performance and growth of livestock, poultry and fish.
- the present invention also encompasses methods to treat disorders related to reduced skeletal muscle mass, thereby treating muscle wasting associated with diseases such as amyotrophic lateral sclerosis, or by aging.
- Random peptide libraries consisting of all possible combinations of amino acids attached to a solid phase support may be used to identify peptides that are able to activate or inhibit myostatin promoter activities (Lam, K. S. et al., 1991 , Nature 354: 82-84).
- the screening of peptide libraries may have therapeutic value in the discovery of pharmaceutical agents that stimulate or inhibit the expression of myostatin by interaction with the promoter region.
- the assays of the present invention relate to identifying compounds capable of modulating the activity of a myostatin promoter and the expression of a myostatin gene, wherein such methods comprise administering a compound to a cell line that expresses a gene under the control of a myostatin promoter or a fragment thereof, which promotes transcription, measuring the level of gene expression or gene product activity and comparing this level to the level of gene expression or gene product activity produced by the cell line in the absence of the compound, such that if the level obtained in the presence of the compound differs from that obtained in its absence, a compound capable of modulating the expression of the mammalian myostatin gene or promoter activity is identified. Alterations in gene expression levels may be measured by any number of methods known to those of skill in the art e.g., by assaying all lysates for mRNA transcripts by Northern analysis, or by assaying for gene products expressed by the reporter gene.
- the 2.5 kb promoter luciferase reporter vector is used to establish a stable cell line in murine C2C12 muscle cells.
- the C2C12 cell line is plated in 96-well plates using medium appropriate for the cell line.
- Potential inhibitors of myostatin gene expression are added to the cells.
- the effect of the inhibitors of myostatin gene activation can be determined by measuring the response of the luciferase reporter gene driven by the myostatin promoter.
- This assay is easily set up in a high-throughput screening mode for evaluation of compound libraries in a 96-well format that reduce (or increase) luciferase activity.
- C2C12 cells (ATCC #CRL-1772) stably transfected with the 2.5 kb promoter-luciferase reporter gene construct are plated in 96-well tissue culture plates and grown in DMEM, 10% fetal bovine serum at 37° C., 5% CO 2 for 18 hours. Test compounds are then added, cells grown for an additional 48 hours, and the cells are lysed by freezing and thawing in Cell Culture Lysis Reagent (Promega). Luciferase activity is determined by adding Luciferase Assay Substrate and Buffer (Promega) to the suspension of lysed cells, and relative light units are determined using a Wallac 1450 Microbeta counter.
- a compound may then be tested in an animal-based assay to determine if the compound exhibits the ability to promote muscle mass and/or muscle growth or to ameliorate symptoms, such as muscle wasting, neuromuscular disorders, or aging.
- the mammalian myostatin regulatory region can be used to direct expression of a coding sequence in animals by transgenic technology.
- Animals of any species including, but not limited to, mice, rats, rabbits, guinea pigs, pigs, micro-pigs, goats, sheep, cattle, chickens, fish and non-human primates, e.g., baboons, monkeys and chimpanzees may be used to generate transgenic animals.
- transgenic refers to animals expressing coding sequences from a different species (e.g., mice expressing human gene sequences), as well as animals that have been genetically engineered to no longer express endogenous gene sequences (i.e., “knock-out” animals).
- the altered coding sequences are present in a stably integrated form in their somatic cells, and may also be stably integrated into their germ cell lines so that the altered coding sequences are passed on to their progeny.
- the present invention encompasses transgenic animals whose progeny contain such stably integrated altered coding sequences as well as transgenic animals wherein the altered coding sequences are stably integrated only in their somatic cells, and therefore not passed on to their progeny.
- progeny also refers to subsequent generations of single cells.
- the present invention encompasses non-human transgenic animals which are useful as a source of food products with high muscle and protein content, and reduced fat and cholesterol content.
- the animals have been altered chromosomally in their germ cells and somatic cells so that the myostatin gene is expressed at lower amounts or is completely disrupted, resulting in animals with decreased levels of myostatin and higher than normal levels of muscle tissue, preferably without increased fat and/or cholesterol levels.
- Any technique known in the art may be used to introduce a transgene under the control of myostatin regulatory region into animals to produce the founder lines of transgenic animals.
- Such techniques include, but are not limited to, pronuclear microinjection (Hoppe & Wagner, 1989, U.S. Pat. No. 4,873,191); retrovirus gene transfer into germ lines (Van der Putten et al., 1985, Proc. Natl. Acad. Sci., USA 82:6148-6152); gene targeting in embryonic stem cells (Thompson et al., 1989, Cell 65:313-321); electroporation of embryos (Lo, 1983, Mol. Cell. Biol.
- transgenic animal clones containing a transgene for example, nuclear transfer into enucleated oocytes of nuclei from transgenic animals, or from cultured embryonic, fetal or adult cells (Campbell, et al., 1996, Nature 380:64-66; Wilmut, et al., Nature 385:810-813).
- the present invention provides for transgenic animals that carry a transgene such as a reporter gene under the control of the myostatin regulatory region or fragments thereof that can promote transcription in all their cells, as well as animals that carry the transgene in some, but not all of their cells, i.e., mosaic animals.
- the transgene may be integrated as a single transgene or in concatamers, e.g., head-to-head tandems or head-to-tail tandems.
- the transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (1992, Proc. Natl. Acad. Sci. USA 89:6232-6236).
- transgene When it is desired that the transgene be integrated into the chromosomal site of the endogenous corresponding gene, gene targeting is preferred.
- vectors containing some nucleotide sequences homologous to the endogenous gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous gene.
- the transcriptional activities of the myostatin regulatory region may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to assay whether integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques that include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and RT-PCR. Samples of transgene-expressing tissue, may also be evaluated immunocytochemically using antibodies specific for the transgene product. Such animals may be used as in vivo systems for the screening of agents that activate or inhibit myostatin activities.
- the myostatin promoter region and fragments thereof of the present invention that promote transcription may be used for a wide variety of purposes, e.g., to achieve tissue specific expression or to down regulate gene expression.
- the endogenous myostatin promoter region may be targeted to specifically down-regulate myostatin gene expression.
- oligonucleotides complementary to the regulatory region may be designed and delivered to the cells that overproduce myostatin. Such oligonucleotides anneal to the regulatory sequence, and prevent transcription activation.
- the regulatory sequence or portions thereof may be delivered to cells in saturating concentrations to compete for transcription factor binding.
- the nucleic acid is directly introduced into a target cell in vivo.
- introduction into means administered to, or allowed to enter into, a target cell. This can be accomplished by any methods known in the art, e.g., by constructing the nucleic acid as part of an appropriate nucleic acid expression vector and introducing it so that it becomes intracellular, e.g., by infection using a defective or attenuated retroviral or other viral vector (see U.S. Pat. No.
- a “target cell” can be a type of cell or tissue in an organism, or a single cell type, e.g., grown in tissue culture.
- a nucleic acid-ligand complex can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation.
- the nucleic acid can be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publications WO 92/06180 dated Apr. 16, 1992; WO 92/22635 dated Dec. 23, 1992; WO92/20316 dated Nov.
- nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination (Koller and Smithies, 1989, Proc. Natl. Acad. Sci. USA 86:8932-8935; Zijlstra et al., 1989, Nature 342:435-438).
- the oligonucleotide may comprise at least one modified base moiety which is selected from the group including, but not limited to: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosyl
- Endogenous target gene expression can also be reduced by inactivating or “knocking out” the myostatin regulatory region using targeted homologous recombination (e.g., see Smithies, et al., 1985, Nature 317:230-234; Thomas and Capecchi, 1987, Cell 51:503-512; Thompson, et al., 1989, Cell 5:313-321; each of which is incorporated by reference herein in its entirety).
- DNA that contains in part, a fragment homologous to the promoter region of the myostatin gene can be used, with or without a selectable marker, to transfect cells. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the myostatin promoter.
- endogenous target gene expression can be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of the target gene (i.e., the target gene promoter and/or enhancers) to form triple helical structures that prevent transcription of the target gene in target cells in the body.
- deoxyribonucleotide sequences complementary to the regulatory region of the target gene i.e., the target gene promoter and/or enhancers
- triple helical structures that prevent transcription of the target gene in target cells in the body.
- Nucleic acid molecules to be used in triple helix formation for the inhibition of transcription should be single stranded and composed of deoxynucleotides.
- the base composition of these oligonucleotides must be designed to promote triple helix formation via Hoogsteen base pairing rules, which generally require sizeable stretches of either purines or pyrimidines to be present on one strand of a duplex.
- Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC triplets across the three associated strands of the resulting triple helix.
- the pyrimidine-rich molecules provide base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand.
- nucleic acid molecules may be chosen that are purine-rich, for example, contain a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in GGC triplets across the three strands in the triplex.
- the potential sequences that can be targeted for triple helix formation may be increased by creating a so-called “switchback” nucleic acid molecule.
- Switchback molecules are synthesized in an alternating 5′-3′,3′-5′ manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.
- Triple helix molecules may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides well known in the art such as, for example, using N-phosphonate or phosphoramidite chemistries (Froehler et al., 1986 , Nucleic Acid Res. 14:5399-5407; McBride et al., 1983 , Tetrahedron Lett. 24:246-248).
- peptide nucleic acid chimeras can be used to inhibit the expression of specific genes (Uhlmann, 1998, Biological Chem. 379:1045).
- the anti-sense RNA and DNA molecules and triple helix molecules of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis.
- RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding the RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors which contain suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters.
- antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.
- DNA molecules may be introduced as a means of increasing intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences of ribo- or deoxy-nucleotides to the 5′ and/or 3′ ends of the molecule or the use of phosphorothioate or 2′ O-methyl rather than phospho-diesterase linkages within the oligodeoxyribonucleotide backbone.
- the myostatin promoter region and fragments thereof that promote transcription of the present invention can also be used to achieve tissue specific expression of a target gene.
- the term “modulate” encompasses the suppression or augmentation of expression of a target gene and also encompasses the tissue specific suppression or expression of a target gene.
- small organic molecules or oligonucleotide-based compounds such as those described herein, including antisense oligonucleotides, may be used to modulate expression of the myostatin gene.
- Such muscle associated disorders may encompass cancer, muscular dystrophy, spinal cord injury, neurodegenerative disorders, traumatic injury, congestive obstructive pulmonary disease (COPD), AIDS, cachecia, or aging.
- the myostatin regulatory element of the present invention may be used to achieve muscle specific expression of a target gene to promote muscle growth and increase muscle mass for the treatment of a muscle associated disorder.
- the expression of a cytotoxic gene product under the regulation of the myostatin gene promoter may be used as a cancer therapy.
- One of skill in the art can determine if a particular therapeutic course of treatment is successful by several methods known to those of skill in the art, including muscle fiber analysis or biopsy.
- the present invention also encompasses utilizing the myostatin promoter region to modulate the expression of the myostatin gene as a method of producing animal food products having increased muscle and protein content, and reduced fat and cholesterol content.
- Organic molecules or oligonucleotide-based compounds as described herein that directly or indirectly regulate the expression of the myostatin region may be used to reduce expression of the myostatin gene product.
- Such organic molecules including but not limited to small organic molecules, or oligonucleotide-based compounds that directly or indirectly regulate expression of the myostatin promoter may be administered to a livestock animal, including but not limited to cattle, sheep, pig, turkey, chicken, and fish, or to companion animals, particularly cats and dogs, to result in the decreased expression of myostatin in the animal and consequent higher than normal levels of muscle tissue, preferably without increased fat and/or cholesterol levels.
- C2C12 are murine muscle cell lines (ATCC #CRL-1772). These cells were maintained in standard culture media at 37° C.
- the murine myostatin promoter was cloned by PCR using a commercial murine genomic library kit (GenomeWalker Kit, Clontech).
- Murine genomic DNA was digested with a restriction enzyme to produce large DNA fragments and PCR adaptors were ligated onto both ends of the DNA fragments.
- Nested PCR reactions were performed using a forward primer homologous with a sequence near the 5′ end of the published myostatin coding region as the initial primer and a reverse primer that recognized a Clontech PCR adaptor. This was followed by a second PCR reaction using a forward primer that included 23 bases of the myostatin untranslated leader sequence and a second Clontech adaptor. These reactions yielded a product that included 23 bases of the 5′ untranslated myostatin mRNA and 1792 bases of promoter sequence (1.8 Kb).
- FIGS. 1 A-B SEQ ID NO. 1
- the nucleotide labeled 2482 being the first base 5′ to the published sequence of the murine myostatin gene.
- the two primers specific to the published myostatin sequence used to generate the 1.8 kb clone of the promoter were: 5′ ACTGGGCCAGCAGCMTCAG 3′ (SEQ ID NO: 4) and 5′ GAGTAATGCCAAGTGAAATA 3′ (SEQ ID NO: 5) (nested primer).
- the two primers specific to the 1.8 kb promoter sequence used to clone the 930 bp fragment were: 5′ GCAGACACCCTGAGGTGATCTGGCCCTCT 3′ (SEQ ID NO: 6) and 5′ TTTTCTGCATAGMTTCTTTTCGATGTC 3′ (SEQ ID NO:7) (nested primer).
- the two primers specific to the ligated adaptor and supplied by Clontech were: 5′ GTMTACGACTCACTATAGGGC 3′ (SEQ ID NO: 8) and 5′ ACTATAGGGCACGCGTGGT 3′ (SEQ ID NO: 9).
- FIG. 2 The ability of the various fragments of the murine myostatin promoter region to control expression of the luciferase reporter gene in transient transfection assays is shown in FIG. 2.
- C2C12 cells were co-transfected with a second vector that employs a CMV promotor to express constitutively a Renilla luciferase gene (pRL-CMV, Promega). Values presented for the myostatin promoter constructs were all normalized against Renilla luciferase activity.
- the 0.4 kb promoter fragment showed little transcriptional activity, the 0.9 kb fragment had 35% of the activity of the 2.5 kb fragment, and the 1.8 kb fragment had 39% of the activity of the 2.5 kb fragment. These results demonstrate that the 2.5 kb fragment is the strongest promoter of those tested.
- the two sequences are 89% homologous over the region of 2179 to 2482 of the murine promoter, corresponding to bases 1232 to 1537 of the published porcine sequence (FIG. 3), and continue to share regions of homology through the rest of the promoter sequences.
- the deposited porcine myostatin promoter sequence is only 1673 bases and includes mRNA sequence of the myostatin gene. This is less than the 2482 bases of the murine promoter, which has been shown to be crucial for efficient in vitro gene expression. This suggests that the murine myostatin promoter would be a more effective promoter for use in experiments on in vitro expression than the porcine myostatin promoter.
- C2C12 cells obtained from ATCC, were co-transfected with the myostatin promoter-luciferase reporter plasmid and a second plasmid (pcDNA3, Invitrogen) expressing aminoglycoside phosphotransferase, which confers resistance to the antibiotic geneticin (G418).
- C2C12 cells were selected in 800 ⁇ g/mL of G418, individual colonies were picked and replated at low dilution, and individual colonies were again isolated by selection in GH18. Cell lines established from these colonies express luciferase, and those with the lowest number of introduced copies of the myostatin promoter luciferase reporter construct were selected for use in high throughput screens.
- the following assay may be conducted. Stably transfected cells are plated in 96-well plates using medium appropriate for the cell line. Potential inhibitors of myostatin gene expression are added to the cells. The effect of the inhibitors of myostatin gene activation can be determined by measuring the response of the luciferase reporter gene driven by the myostatin promoter. This assay can be set up in a high-throughput screening mode for evaluation of compound libraries that reduce (or increase) luciferase activity.
- C2C12 cells (ATCC #CRL-1772) stably transfected with the 2.5 kb promoter-luciferase reporter gene construct are plated at 3,000 cells per well in 96 well tissue culture plates and grown in DMEM, 10% fetal bovine serum at 37° C., 5% CO 2 for 18 hours. Test compounds are then added, cells grown for an additional 48 hours, and the cells are lysed by freezing and thawing in Cell Culture Lysis Reagent (Promega). Luciferase activity is determined by adding Luciferase Assay Substrate and Buffer (Promega) to the suspension of lysed cells, and relative light units determined using a Wallac 1450 Microbeta counter.
- the cytotoxicty of test compounds is determined using the tetrazolium salt WST-1 in a colorimetric assay for cell viability.
- GHRH porcine growth hormone releasing hormone
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Neurology (AREA)
- Biochemistry (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Neurosurgery (AREA)
- Diabetes (AREA)
- Biomedical Technology (AREA)
- Child & Adolescent Psychology (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
The present invention relates to a transcription regulatory region of a myostatin gene. In particular, the invention relates to a 2.5 kb polynucleotide immediately 5′ to the myostatin coding sequence, its nucleotide sequence and methods of using this regulatory region, and fragments thereof. The present invention relates to the use of the myostatin promoter of the present invention to direct expression of a target gene in a tissue specific manner, i.e. muscle tissue. The present invention relates to the use of the myostatin promoter of the present invention in high throughput screens to identify test compounds which inhibit myostatin promoter activity or myostatin expression. In accordance with the present invention, inhibitors of the myostatin promoter may be used to inhibit myostatin expression as a method of engineering animals with increased lean meat in order to decrease the time required to bring the animals to slaughter, and of promoting muscle growth for treating disorders related to expression of the myostatin gene, such as muscle wasting associated with aging or disease in humans and companion animals, particularly cats and dogs.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/146,540, filed Jul. 30, 1999, the entire contents of which is in incorporated by reference herein.
- The present invention relates to a regulatory region that controls expression of a gene. In particular, it relates to the nucleotide sequence of a 5′ regulatory region and fragments thereof, which promote transcription of the myostatin gene, to be referred to herein as the myostatin gene promoter. In particular, it relates to the 5′ regulatory region and fragments thereof, which promote transcription of the murine myostatin gene. The invention also relates to methods of using this region to regulate expression of a heterologous gene in cells or animals, to engineer host cells, to screen for compounds that activate or inhibit its transcription and expression, as well as methods of inhibiting its expression in cells for the promotion of muscle growth in livestock, poultry, fish and companion animals, as well as for the treatment of muscle wasting and neuromuscular diseases.
- Growth and differentiation factor-8 (GDF-8 or myostatin), which will be referred to herein as myostatin, is a member of the transforming growth factor-62 (TGF-β) superfamily of secreted growth and differentiation factors (McPherron, et al. Nature 387:83 (1997)). The members of the TGF-β family are synthesized as large precursor proteins that are proteolytically cleaved at a cluster of basic residues approximately 110-140 amino acids from the C-terminus. The C-terminal regions, which are active as disulfide-linked dimers, have some level of amino acid sequence and structural similarity. The TGF-β family is characterized by a consensus amino acid sequence and conserved cysteine residues involved in intrachain disulfide bonds that result in a cystine knot protein fold. Members of the family include Mullerian inhibitory substance (MIS) (Behringer, et al., 1990, Nature, 345:167), bone morphogenic proteins (BMPs) (Sampath, et. al., 1990, J. Biol. Chem. 265:13198), growth and differentiation factors (GDFs), inhibins, and Drosophila decapentaplegic protein (DPP-C) (Padgett, et. al., 1987, Nature 325:81).
- Myostatin has been identified in all vertebrates examined, including mouse, rat, human, baboon, cattle, pig, sheep, chicken, turkey, cats, dogs and fish. A disruption of the myostatin gene in mice leads to large increases in skeletal muscle mass resulting from muscle hyperplasia and hypertrophy and is at least partially responsible for the hypermuscled phenotype of mice homozygous for the Cmpt (compact) mutation (McPherron et al. (1997); Szabo, G. et al.Mammalian Genome 9:671 (1998)). In double-muscled breeds of cattle such as the Belgian Blue or Piedmontese, the bovine myostatin gene has been shown to be partially deleted or contains a missense mutation. (Grobet, L. et al. Nat. Genet. 17:71 (1997); Kambadur, R. et al, Genome Res. 7:910 (1997); McPherron and Lee, Proc. Natl. Acad. Sci USA 94:12457 (1997)). Thus, myostatin seems to function as a negative regulator of skeletal muscle growth, however the mechanisms that regulate its expression have not been described (McPherron et al. (1997)).
- The sequence of the cDNA for myostatin has been determined for each of these species and the deduced amino acid sequence is extraordinarily conserved, particularly the amino acid sequence of the C-terminal 109 amino acids. The nucleotide sequences of the full-length amino acid coding regions of the human and murine myostatin genes were disclosed in WO94/21681 to Lee and McPherron (1994). The nucleotide sequences of the full-length amino acid coding regions of the rat and chicken myostatin genes were disclosed in WO 98/33887 to Lee and McPherron (1998). While the coding sequences of the human and murine myostatin genes have been determined, those regulatory sequences which control expression of these genes remain uncharacterized.
- The present invention relates to a transcription regulatory region of a myostatin gene. In particular, the invention relates to a 2.5 kb polynucleotide sequence immediately 5′ to the murine myostatin coding sequence, its nucleotide sequence and methods of using this regulatory region, and fragments thereof. The present invention relates to the use of the myostatin promoter of the present invention to direct expression of a target gene in a cell or tissue specific manner, e.g., muscle cells or tissue. The present invention relates to the use of the myostatin promoter of the present invention in high throughput screens to identify test compounds which inhibit myostatin promoter activity or myostatin expression. The present invention relates- to methods for increasing muscle mass and feed efficiency of livestock, poultry or fish, in particular to engineer animals with increased lean meat in order to decrease the time required to bring the animals to slaughter. In accordance with the present invention, inhibitors of the myostatin promoter may be used to inhibit myostatin expression as a method of treating disorders related to expression of the myostatin gene, such as muscle wasting associated with aging or disease in humans and companion animals.
- The invention is based on the determination of the complete nucleotide sequence of the 2.5 kb murine myostatin gene promoter. Although the nucleotide sequence of the myostatin gene was previously reported, the myostatin promoter region has not yet been reported. Using a combination of manipulations, the promoter region of the murine myostatin gene was identified, sequenced and reported herein. When the 2.5 kb region and certain fragments thereof were placed upstream of a luciferase reporter gene in an expression vector, and introduced into muscle cell lines, these sequences induced the expression of the reporter gene. In addition, the identified promoter sequence of the murine myostatin gene and the identified promoter sequence of the porcine myostatin gene show a high degree of homology.
- It is an object of the invention that the 2.5 kb regulatory region, or transcriptionally active fragments thereof be inserted in an expression vector to regulate the expression of a downstream coding sequence in a cell in vitro and in vivo.
- In another embodiment of the invention, the aforementioned vector is stably integrated into the genome of a host cell. The cell is treated with a test compound in a screening assay for determining the ability of the compound to activate or inhibit the transcriptional activities of the regulatory region. The selected compounds may be formulated as pharmaceutical compositions for the promotion of muscle growth or for treatment of disorders related to aberrant expression of myostatin.
- In yet another embodiment of the invention, the aforementioned vector is introduced into an embryonic cell or other type of cell, for the construction of a transgenic animal to regulate the expression of a transgene in a tissue specific manner.
- It is also an object of the invention that polynucleotides complementary to the 2.5 Kb regulatory region or portions thereof be delivered to cells to inhibit the transcription activities of the endogenous 2.5 Kb region, thereby downregulating the expression of myostatin. Such polynucleotides are useful for the promotion of growth, or in the treatment of diseases associated with myostatin expression, such as muscle wasting and neuromuscular disease.
- The present invention also relates to methods of treating livestock, poultry or fish to promote muscle growth. In particular, the invention relates to methods for increasing muscle mass and feed efficiency in order to increase growth so that animals can be brought to slaughter sooner. The methods of treatment of the present invention are applicable to humans and non-humans.
- The invention further relates to methods for the treatment of disorders, such as muscle wasting, neuromuscular disease, cancer and aging, wherein such methods comprise administering compounds which modulate the expression of a myostatin gene so symptoms of the disorder are ameliorated.
- In addition, the present invention is directed to methods that utilize the myostatin promoter sequences for the diagnostic evaluation, genetic testing and prognosis of a disease or disorder associated with myostatin expression.
- The invention still further relates to methods of identifying compounds capable of modulating the activity of myostatin promoters and the expression of myostatin genes, wherein such methods comprise administering a compound to a cell that expresses a gene under the control of a myostatin promoter or a transcriptionally active fragment thereof, measuring the level of gene expression or gene product activity and comparing this level to the level of gene expression or gene product activity produced by the cell in the absence of the compound, such that if the level obtained in the presence of the compound differs from that obtained in its absence, a compound capable of modulating the expression of the myostatin gene or promoter activity has been identified.
- FIGS.1A-B: DNA sequence of 2482 bp upstream of the murine myostatin gene coding region. This DNA sequence includes part of the murine myostatin promoter region that controls expression of the myostatin gene.
- FIG. 2: The efficiency of four murine myostatin promoter DNA fragments to direct expression of luciferase was measured using the Luciferase Assay System, (Promega).
- FIG. 3: Comparison of DNA sequence homology between regions of the murine and porcine (Accession number AF093798) myostatin promoters proximal to the transcription start sites of those genes.
- The present invention relates to a polynucleotide sequence encoding an element of a myostatin gene that promotes transcription. In particular, the present invention relates to a polynucleotide of 2482 nucleotides (or 2.5 kb fragment) that is located immediately 5′ to the transcription start site of the murine myostatin gene. Also encompassed within the scope of the invention are various fragments of this regulatory region that promote transcription. In one embodiment of the invention, the regulatory region is a 1.8 kb fragment containing a deletion of up to 0.7 Kb at the 5′ end of the promoter sequence. In another embodiment of the invention, the regulatory region comprises DNA binding sites for various transcription factors, including but not limited to, GATA and ATF-CREB.
- The myostatin promoter region of the present invention is preferably derived from a mammalian organism, and most preferably human, mouse, rat, cow, pig, sheep or companion animals, particularly cats and dogs. The myostatin promoter region may also be derived from chicken, turkey, fish and other species described herein.
- The myostatin promoter region of the present invention and active fragments thereof can be used to direct the expression of a heterologous coding sequence. In particular, the present invention encompasses human, murine, bovine, avian, canine, feline and porcine species of the myostatin promoter region. In accordance with the present invention, active fragments of the myostatin promoter region encompass those fragments of the promoter which are of sufficient length to promote transcription of a coding sequence to which the fragment is operatively linked. In particular, the active fragments of the myostatin promoter of the present invention encompass those fragments that are of sufficient length to promote transcription of a luciferase promoter gene when operatively linked to the luciferase coding sequence and transfected into a muscle cell line. Typically, the coding sequence is placed immediately 3′ to and is operatively linked to the promoter region. The nucleotide sequence of this region is shown in FIGS.1A-B (SEQ ID NO: 1). The sequence shown represents only one strand of the functional promoter, which is double stranded. Also encompassed within the scope of the invention are modifications of this nucleotide sequence that do not substantially affect its transcriptional activities. Such modifications include additions, deletions and substitutions. In addition, any nucleotide sequence that selectively hybridizes to the sequence of SEQ ID NO: 1 under stringent conditions, and is capable of activating the expression of a coding sequence is encompassed by the invention. When placed upstream of the coding region for a heterologous gene, as discussed in more detail below, the 2482 bp fragment (from nucleotide 1 to 2482) is sufficient to direct expression of a luciferase reporter gene, or porcine growth hormone releasing hormone, when transfected into a murine C2C12 cell line. Exemplary stringent hybridization conditions are as follows: pre-hybridization of filters containing DNA is carried out for 8 hours to overnight at 65° C. in buffer composed of 6×SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, and 0.02% BSA. Filters are hybridized for 48 hours at 65° C. in pre-hybridization mixture containing radioactive or chemically labeled probes. Washing of filters is done at 37° C. for 1 hour in several changes of a solution containing 2×SSC, 0.01% PVP, 0.01% Ficoll, and 0.01% BSA before autoradiography. Other conditions of high stringency which may be used are well known in the art. For example, see, Sambrook, et al (Eds.), 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory of Press Inc, Plainview, N.Y.; Ausubel et al., (Eds.) 1998, Current Protocols in Molecular Biology, John Wiley and Sons, Inc, New York; each of which is incorporated herein by reference in its entirety.
- The present invention also relates to the determination of regions of high homology or identity between the myostatin promoter regions derived from different species. In particular, the nucleotide sequence of the murine myostatin promoter region (SEQ ID NO. 1) was compared to the porcine promoter sequence (SEQ ID NO. 2), see FIG. 3. The area of greatest homology is the 90% sequence homology between the murine and porcine myostatin promoter at position 2178 to 2482 of the murine promoter sequence (SEQ ID NO. 3). Thus, in one aspect, the present invention relates to the identification of the myostatin promoter region in other species based on complementarity to regions of the murine myostatin promoter at position 2178 to 2482 (SEQ ID NO. 3). This can be determined by hybridization assays as described herein. The present invention further relates to isolated nucleotide sequences which hybridize under stringent conditions to SEQ ID NO. 3 and are of sufficient length to promote transcription of a coding sequence to which the nucleotide sequence is operatively linked in a muscle cell of the same species that the nucleotide sequence is derived from, with the proviso that said nucleotide sequence is not derived from the porcine genome.
- The myostatin promoter region, or transcriptionally active fragments thereof, is preferably derived from a mammalian organism, and most preferably from mouse, rat, cow, human or companion animals, particularly cats and dogs. The myostatin promoter region of the present invention may also be derived from chicken, turkey, fish and other species described herein. If regions of high homology of the myostatin regulatory region were identified among species, it would be routine for one of skill in the art to obtain promoter regions from any species using oligonucleotide probes that correspond to a part of the sequence encoding the myostatin promoter region in question. Additional methods, known to those of skill in the art, may also be employed to obtain the myostatin promoter region or transcriptionally active fragment thereof. Further, a mammalian myostatin promoter homologue may possibly be isolated from, for example, human nucleic acid, by performing PCR using two primer pools designed on the basis of the nucleotide sequence of the murine or porcine myostatin promoter disclosed herein. The template for the reaction is chromosomal DNA. For guidance regarding such conditions, see, for example, Innis et al. (Eds.) 1995, PCR Strategies, Academic Press Inc., San Diego; and Erlich (ed) 1992, PCR Technology, Oxford University Press, New York, each of which is incorporated herein by reference in its entirety.
- The myostatin promoter regions and fragments thereof which promote transcription, and the fragments and probes described herein which serve to identify myostatin promoter regions and fragments thereof, may be produced by recombinant DNA technology using techniques well known in the art. Methods which are well known to those skilled in the art can be used to construct these sequences, either in isolated form or contained in expression vectors. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques and in vivo genetic recombination. See, for example, the techniques described Sambrook et al., 1989, supra, and Ausabel et al., 1998, supra; also see the techniques described in “Oligonucleotide Synthesis”, 1984, Gait M. J. ed., IRL Press, Oxford, which is incorporated herein by reference in its entirety.
- Alterations in the regulatory sequences can be generated using a variety of chemical and enzymatic methods which are well known to those skilled in the art. For example, regions of the sequences defined by restriction sites can be deleted. Oligonucleotide-directed mutagenesis can be employed to alter the sequence in a defined way and/or to introduce restriction sites in specific regions within the sequence. Additionally, deletion mutants can be generated using DNA nucleases such as Bal31 or ExoIII and S1 nuclease. Progressively larger deletions in the regulatory sequences are generated by incubating the DNA with nucleases for increased periods of time (See Ausubel, et al., 1998 Current Protocols in Molecular Biology, for a review of mutagenesis techniques).
- The altered sequences are evaluated for their ability to direct expression of heterologous coding sequences in appropriate host cells. Within the scope of the present invention are any altered regulatory sequences which retain their ability to direct expression of a coding sequence. In addition, such altered regulatory sequences can be incorporated into recombinant expression vectors for further use.
- A wide variety of heterologous genes can be expressed under the control of the regulatory sequences of the present invention such as genes encoding vaccines, antigens, toxic gene products, potentially toxic gene products, and anti-proliferation or cytostatic gene products. Reporter genes can also be expressed including enzymes, (e.g. CAT, beta-galactosidase, luciferase), fluorescent proteins such as green fluorescent protein, or antigenic markers.
- The murine myostatin gene promoter region shows selective tissue specificity. It primarily induces gene expression in skeletal muscle cells, adipose cells, and in cells of the lactating mammary gland, but not in, for example, lung tissue. Thus, the regulatory region and transcriptionally active fragments thereof of the present invention may be used to induce expression of a heterologous gene in skeletal muscle cells. The present invention relates to the use of the myostatin gene promoter region to achieve tissue specific expression of a target gene for the promotion of growth or treatment of disease. In particular, the myostatin gene promoter region may be used to achieve tissue specific expression in gene therapy protocols. In cases where such cells are tumor cells, the induction of a cytotoxic product by the murine myostatin gene promoter region may be used in the form of cancer gene therapy. Additionally, antisense, antigene, or aptameric oligonucleotides may be delivered to cells using the presently described expression constructs. Ribozymes or single-stranded RNA can also be expressed in a cell to inhibit the expression of a particular gene of interest. The target genes for these antisense or ribozyme molecules should be those encoding gene products that are essential for cell maintenance.
- Regardless of the choice of target sequence, it is preferred that in vitro studies are first performed to quantitate the ability of the oligonucleotide to inhibit gene expression. These studies should utilize controls that distinguish between specific inhibition and nonspecific biological effects of oligonucleotides. It is also preferred that these studies compare levels of the target RNA or protein with that of an internal control RNA or protein.
- The myostatin gene promoter region disclosed herein may be inserted in a variety of expression vectors for introduction into host cells. In a preferred embodiment, the expression vector is stably integrated into the cell genome.
- In mammalian host cells, a number of commercially available vectors can be engineered to insert the regulatory region of the invention (e.g., Clontech, Palo Alto, Calif.).
- In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, HEK 293, WI38, and the like.
- The expression vectors that contain the murine myostatin gene promoter region may contain a gene encoding a selectable marker. A number of selection systems may be used, including but not limited to, the herpes simplex virus thymidine kinase (Wigler, et al., 1977,Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), or adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes, which can be employed in tk−, hgprt− or aprt− cells, respectively. Also, anti-metabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Proc. Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); or hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147) genes. Additional selectable genes include trpB, which allows cells to utilize indole in place of tryptophan; hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, 1988, Proc. Natl. Acad. Sci. USA 85:8047); ODC (ornithine decarboxylase) which confers resistance to the ornithine decarboxylase inhibitor, 2-(difluoromethyl)-DL-ornithine, DFMO (McConlogue L., 1987, Current Communications in Molecular Biology, Cold Spring Harbor Laboratory ed.) and glutamine synthetase (Bebbington et al., 1992, Biotech 10:169).
- The present invention also encompasses screening assays designed to identify compounds that modulate myostatin promoter activity or myostatin expression. The present invention encompasses in vitro cell-based assays. Compounds to be tested may include, but are not limited to, oligonucleotides, peptides, proteins, small organic or inorganic compounds, natural products, antibodies, etc. Combinatorial chemistry libraries can also be screened.
- In a specific embodiment of the invention, the genetically-engineered cell lines of the present invention may be used to screen for small organic molecules, peptides, natural or synthetic compounds or other cell bound or soluble molecules that cause stimulation or inhibition of murine myostatin promoter transcriptional activities. Such compounds may be used to control skeletal muscle mass, thereby increasing performance and growth of livestock, poultry and fish. The present invention also encompasses methods to treat disorders related to reduced skeletal muscle mass, thereby treating muscle wasting associated with diseases such as amyotrophic lateral sclerosis, or by aging.
- Random peptide libraries consisting of all possible combinations of amino acids attached to a solid phase support may be used to identify peptides that are able to activate or inhibit myostatin promoter activities (Lam, K. S. et al., 1991, Nature 354: 82-84). The screening of peptide libraries may have therapeutic value in the discovery of pharmaceutical agents that stimulate or inhibit the expression of myostatin by interaction with the promoter region.
- The assays of the present invention relate to identifying compounds capable of modulating the activity of a myostatin promoter and the expression of a myostatin gene, wherein such methods comprise administering a compound to a cell line that expresses a gene under the control of a myostatin promoter or a fragment thereof, which promotes transcription, measuring the level of gene expression or gene product activity and comparing this level to the level of gene expression or gene product activity produced by the cell line in the absence of the compound, such that if the level obtained in the presence of the compound differs from that obtained in its absence, a compound capable of modulating the expression of the mammalian myostatin gene or promoter activity is identified. Alterations in gene expression levels may be measured by any number of methods known to those of skill in the art e.g., by assaying all lysates for mRNA transcripts by Northern analysis, or by assaying for gene products expressed by the reporter gene.
- An example of such an in vitro screening assay is described below. The 2.5 kb promoter luciferase reporter vector is used to establish a stable cell line in murine C2C12 muscle cells. The C2C12 cell line is plated in 96-well plates using medium appropriate for the cell line. Potential inhibitors of myostatin gene expression are added to the cells. The effect of the inhibitors of myostatin gene activation can be determined by measuring the response of the luciferase reporter gene driven by the myostatin promoter. This assay is easily set up in a high-throughput screening mode for evaluation of compound libraries in a 96-well format that reduce (or increase) luciferase activity. For example, C2C12 cells (ATCC #CRL-1772) stably transfected with the 2.5 kb promoter-luciferase reporter gene construct are plated in 96-well tissue culture plates and grown in DMEM, 10% fetal bovine serum at 37° C., 5% CO2 for 18 hours. Test compounds are then added, cells grown for an additional 48 hours, and the cells are lysed by freezing and thawing in Cell Culture Lysis Reagent (Promega). Luciferase activity is determined by adding Luciferase Assay Substrate and Buffer (Promega) to the suspension of lysed cells, and relative light units are determined using a Wallac 1450 Microbeta counter.
- Once a compound has been identified that inhibits myostatin promoter activity, it may then be tested in an animal-based assay to determine if the compound exhibits the ability to promote muscle mass and/or muscle growth or to ameliorate symptoms, such as muscle wasting, neuromuscular disorders, or aging.
- The mammalian myostatin regulatory region can be used to direct expression of a coding sequence in animals by transgenic technology. Animals of any species, including, but not limited to, mice, rats, rabbits, guinea pigs, pigs, micro-pigs, goats, sheep, cattle, chickens, fish and non-human primates, e.g., baboons, monkeys and chimpanzees may be used to generate transgenic animals. The term “transgenic”, as used herein, refers to animals expressing coding sequences from a different species (e.g., mice expressing human gene sequences), as well as animals that have been genetically engineered to no longer express endogenous gene sequences (i.e., “knock-out” animals). In transgenic animals that express coding sequences from a different species, as well as in the genetically engineered “knock out” transgenic animals, the altered coding sequences are present in a stably integrated form in their somatic cells, and may also be stably integrated into their germ cell lines so that the altered coding sequences are passed on to their progeny. The present invention encompasses transgenic animals whose progeny contain such stably integrated altered coding sequences as well as transgenic animals wherein the altered coding sequences are stably integrated only in their somatic cells, and therefore not passed on to their progeny. As used herein, “progeny” also refers to subsequent generations of single cells.
- The present invention encompasses non-human transgenic animals which are useful as a source of food products with high muscle and protein content, and reduced fat and cholesterol content. The animals have been altered chromosomally in their germ cells and somatic cells so that the myostatin gene is expressed at lower amounts or is completely disrupted, resulting in animals with decreased levels of myostatin and higher than normal levels of muscle tissue, preferably without increased fat and/or cholesterol levels.
- Any technique known in the art may be used to introduce a transgene under the control of myostatin regulatory region into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection (Hoppe & Wagner, 1989, U.S. Pat. No. 4,873,191); retrovirus gene transfer into germ lines (Van der Putten et al., 1985, Proc. Natl. Acad. Sci., USA 82:6148-6152); gene targeting in embryonic stem cells (Thompson et al., 1989, Cell 65:313-321); electroporation of embryos (Lo, 1983, Mol. Cell. Biol. 31:1803-1814); and sperm-mediated gene transfer (Lavitrano et al., 1989, Cell 57:717-723) (see, Gordon, 1989, Transgenic Animals, Intl. Rev. Cytol. 115:171-229).
- Any technique known in the art may be used to produce transgenic animal clones containing a transgene, for example, nuclear transfer into enucleated oocytes of nuclei from transgenic animals, or from cultured embryonic, fetal or adult cells (Campbell, et al., 1996, Nature 380:64-66; Wilmut, et al., Nature 385:810-813).
- The present invention provides for transgenic animals that carry a transgene such as a reporter gene under the control of the myostatin regulatory region or fragments thereof that can promote transcription in all their cells, as well as animals that carry the transgene in some, but not all of their cells, i.e., mosaic animals. The transgene may be integrated as a single transgene or in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (1992, Proc. Natl. Acad. Sci. USA 89:6232-6236). When it is desired that the transgene be integrated into the chromosomal site of the endogenous corresponding gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous gene.
- Once transgenic animals have been generated, the transcriptional activities of the myostatin regulatory region may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to assay whether integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques that include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and RT-PCR. Samples of transgene-expressing tissue, may also be evaluated immunocytochemically using antibodies specific for the transgene product. Such animals may be used as in vivo systems for the screening of agents that activate or inhibit myostatin activities.
- The myostatin promoter region and fragments thereof of the present invention that promote transcription may be used for a wide variety of purposes, e.g., to achieve tissue specific expression or to down regulate gene expression.
- The endogenous myostatin promoter region may be targeted to specifically down-regulate myostatin gene expression. For example, oligonucleotides complementary to the regulatory region may be designed and delivered to the cells that overproduce myostatin. Such oligonucleotides anneal to the regulatory sequence, and prevent transcription activation. Alternatively, the regulatory sequence or portions thereof may be delivered to cells in saturating concentrations to compete for transcription factor binding. For general reviews of the methods of gene therapy, see Goldspiel et al., 1993, Clinical Pharmacy 12:488-505; Wu and Wu, 1991, Biotherapy 3:87-95; Tolstoshev, 1993, Ann. Rev. Pharmacol. Toxicol. 32:573-596; Mulligan, 1993, Science 260:926-932; and Morgan and Anderson, 1993, Ann. Rev. Biochem. 62:191-217; May, 1993, TIBTECH 11(5):155-215. Methods commonly known in the art of recombinant DNA technology which can be used are described in Ausubel et al. (eds.), 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY; and Kriegler, 1990, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY.
- In a specific embodiment, the nucleic acid is directly introduced into a target cell in vivo. By “introduced into,” as used herein, means administered to, or allowed to enter into, a target cell. This can be accomplished by any methods known in the art, e.g., by constructing the nucleic acid as part of an appropriate nucleic acid expression vector and introducing it so that it becomes intracellular, e.g., by infection using a defective or attenuated retroviral or other viral vector (see U.S. Pat. No. 4,980,286), by direct injection of naked DNA, by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), by coating with lipids or cell-surface receptors or transfecting agents, by encapsulation in liposomes, microparticles, or microcapsules, by introducing it in linkage to a peptide which is known to enter the nucleus, or by introducing it in linkage to a ligand subject to receptor-mediated endocytosis (see e.g., Wu and Wu, 1987, J. Biol. Chem. 262:4429-4432), which can be used to target cell types specifically expressing the receptors. As used herein, a “target cell” can be a type of cell or tissue in an organism, or a single cell type, e.g., grown in tissue culture. In another embodiment, a nucleic acid-ligand complex can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation. In yet another embodiment, the nucleic acid can be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publications WO 92/06180 dated Apr. 16, 1992; WO 92/22635 dated Dec. 23, 1992; WO92/20316 dated Nov. 26, 1992; WO93/14188 dated Jul. 22, 1993; WO 93/20221 dated Oct. 14, 1993). Alternatively, the nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination (Koller and Smithies, 1989, Proc. Natl. Acad. Sci. USA 86:8932-8935; Zijlstra et al., 1989, Nature 342:435-438).
- The oligonucleotide may comprise at least one modified base moiety which is selected from the group including, but not limited to: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5N-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N-6-isopentenyladenine, uracil-5-oxyacetic acid, wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, and 2,6-diaminopurine.
- Endogenous target gene expression can also be reduced by inactivating or “knocking out” the myostatin regulatory region using targeted homologous recombination (e.g., see Smithies, et al., 1985, Nature 317:230-234; Thomas and Capecchi, 1987, Cell 51:503-512; Thompson, et al., 1989, Cell 5:313-321; each of which is incorporated by reference herein in its entirety). For example, DNA that contains in part, a fragment homologous to the promoter region of the myostatin gene can be used, with or without a selectable marker, to transfect cells. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the myostatin promoter.
- Alternatively, endogenous target gene expression can be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of the target gene (i.e., the target gene promoter and/or enhancers) to form triple helical structures that prevent transcription of the target gene in target cells in the body. (See generally, Helene, 1991, Anticancer Drug Des., 6(6):569-584; Helene, et al., 1992, Ann. N.Y. Acad. Sci., 660:27-36; and Maher, 1992, Bioassays 14(12):807-815).
- Nucleic acid molecules to be used in triple helix formation for the inhibition of transcription should be single stranded and composed of deoxynucleotides. The base composition of these oligonucleotides must be designed to promote triple helix formation via Hoogsteen base pairing rules, which generally require sizeable stretches of either purines or pyrimidines to be present on one strand of a duplex. Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC triplets across the three associated strands of the resulting triple helix. The pyrimidine-rich molecules provide base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand. In addition, nucleic acid molecules may be chosen that are purine-rich, for example, contain a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in GGC triplets across the three strands in the triplex.
- Alternatively, the potential sequences that can be targeted for triple helix formation may be increased by creating a so-called “switchback” nucleic acid molecule. Switchback molecules are synthesized in an alternating 5′-3′,3′-5′ manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.
- Triple helix molecules may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides well known in the art such as, for example, using N-phosphonate or phosphoramidite chemistries (Froehler et al., 1986, Nucleic Acid Res. 14:5399-5407; McBride et al., 1983, Tetrahedron Lett. 24:246-248).
- In addition, peptide nucleic acid chimeras can be used to inhibit the expression of specific genes (Uhlmann, 1998, Biological Chem. 379:1045).
- The anti-sense RNA and DNA molecules and triple helix molecules of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding the RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors which contain suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.
- Various modifications to the DNA molecules may be introduced as a means of increasing intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences of ribo- or deoxy-nucleotides to the 5′ and/or 3′ ends of the molecule or the use of phosphorothioate or 2′ O-methyl rather than phospho-diesterase linkages within the oligodeoxyribonucleotide backbone.
- The myostatin promoter region and fragments thereof that promote transcription of the present invention can also be used to achieve tissue specific expression of a target gene. Thus, it is possible to design appropriate therapeutic techniques directed to this regulatory sequence in order to modulate the expression of a target gene. In accordance with the present invention, the term “modulate” encompasses the suppression or augmentation of expression of a target gene and also encompasses the tissue specific suppression or expression of a target gene. When a cell proliferative disorder is associated with underexpression or overexpression of a myostatin gene product, small organic molecules or oligonucleotide-based compounds such as those described herein, including antisense oligonucleotides, may be used to modulate expression of the myostatin gene. Such muscle associated disorders may encompass cancer, muscular dystrophy, spinal cord injury, neurodegenerative disorders, traumatic injury, congestive obstructive pulmonary disease (COPD), AIDS, cachecia, or aging. In accordance with the present invention, the myostatin regulatory element of the present invention may be used to achieve muscle specific expression of a target gene to promote muscle growth and increase muscle mass for the treatment of a muscle associated disorder. For example, in cases where the muscle associated disorder is cancer, the expression of a cytotoxic gene product under the regulation of the myostatin gene promoter may be used as a cancer therapy. One of skill in the art can determine if a particular therapeutic course of treatment is successful by several methods known to those of skill in the art, including muscle fiber analysis or biopsy.
- The present invention also encompasses utilizing the myostatin promoter region to modulate the expression of the myostatin gene as a method of producing animal food products having increased muscle and protein content, and reduced fat and cholesterol content. Organic molecules or oligonucleotide-based compounds as described herein that directly or indirectly regulate the expression of the myostatin region may be used to reduce expression of the myostatin gene product. Such organic molecules, including but not limited to small organic molecules, or oligonucleotide-based compounds that directly or indirectly regulate expression of the myostatin promoter may be administered to a livestock animal, including but not limited to cattle, sheep, pig, turkey, chicken, and fish, or to companion animals, particularly cats and dogs, to result in the decreased expression of myostatin in the animal and consequent higher than normal levels of muscle tissue, preferably without increased fat and/or cholesterol levels.
- C2C12 are murine muscle cell lines (ATCC #CRL-1772). These cells were maintained in standard culture media at 37° C.
- The murine myostatin promoter was cloned by PCR using a commercial murine genomic library kit (GenomeWalker Kit, Clontech). Murine genomic DNA was digested with a restriction enzyme to produce large DNA fragments and PCR adaptors were ligated onto both ends of the DNA fragments. Nested PCR reactions were performed using a forward primer homologous with a sequence near the 5′ end of the published myostatin coding region as the initial primer and a reverse primer that recognized a Clontech PCR adaptor. This was followed by a second PCR reaction using a forward primer that included 23 bases of the myostatin untranslated leader sequence and a second Clontech adaptor. These reactions yielded a product that included 23 bases of the 5′ untranslated myostatin mRNA and 1792 bases of promoter sequence (1.8 Kb).
- Subsequently, a new primer was designed based on sequence near the 5′ end of the 1.8 Kb promoter sequence and a second PCR reaction was performed using the Genome Walker kit. This yielded a 930 bp PCR product which overlapped the 5′ end of the original 1.8 kb promoter. When the two PCR products were combined by cloning into a single fragment, a 2482 bp promoter fragment (2.5 Kb) was obtained.
- The 1.8 kb and 2.5 kb myostatin promoter fragments and additional subclones of 320 bp and 901 bp proximal to the myostatin protein coding region were placed into the multicloning site of the pGL3 basic vector (Promega) 5′ to the coding sequence for luciferase. In this vector, the luciferase gene lacks a promoter, and, consequently, is under the control of any promoter cloned upstream of it. These plasmid vectors were used to transiently transfect C2C12 cells, using Fugene (Boehringer Mannheim) as a carrier to introduce the plasmid into the cells. The cell cultures were grown at 37 C, 5% CO2, in DMEM, and luciferase activity was measured using a commercial kit (Promega Luciferase Assay System, E150).
- The 1.8 Kb, 930 bp, and 2482 bp clones of the promoter were sequenced. The nucleotide sequence of the 2482 bp fragment of the murine myostatin promoter is depicted in FIGS.1A-B (SEQ ID NO. 1), with the nucleotide labeled 2482 being the
first base 5′ to the published sequence of the murine myostatin gene. - The two primers specific to the published myostatin sequence used to generate the 1.8 kb clone of the promoter were: 5′
ACTGGGCCAGCAGCMTCAG 3′ (SEQ ID NO: 4) and 5′GAGTAATGCCAAGTGAAATA 3′ (SEQ ID NO: 5) (nested primer). - The two primers specific to the 1.8 kb promoter sequence used to clone the 930 bp fragment were: 5′
GCAGACACCCTGAGGTGATCTGGCCCTCT 3′ (SEQ ID NO: 6) and 5′TTTTCTGCATAGMTTCTTTTCGATGTC 3′ (SEQ ID NO:7) (nested primer). - In both cases, the two primers specific to the ligated adaptor and supplied by Clontech were: 5′
GTMTACGACTCACTATAGGGC 3′ (SEQ ID NO: 8) and 5′ACTATAGGGCACGCGTGGT 3′ (SEQ ID NO: 9). - The ability of the various fragments of the murine myostatin promoter region to control expression of the luciferase reporter gene in transient transfection assays is shown in FIG. 2. In each experiment, C2C12 cells were co-transfected with a second vector that employs a CMV promotor to express constitutively a Renilla luciferase gene (pRL-CMV, Promega). Values presented for the myostatin promoter constructs were all normalized against Renilla luciferase activity. The 0.4 kb promoter fragment showed little transcriptional activity, the 0.9 kb fragment had 35% of the activity of the 2.5 kb fragment, and the 1.8 kb fragment had 39% of the activity of the 2.5 kb fragment. These results demonstrate that the 2.5 kb fragment is the strongest promoter of those tested.
- Initial DNA homology searches of GenBank did not reveal any sequences with homology to the 2.5 kb myostatin promoter sequence, demonstrating to the best of applicants knowledge the first identification of the murine promoter sequence. The sequence of 1673 bases of the porcine myostatin promoter was reported in GenBank (Accession number AF093798, reported Oct. 4, 1998). The murine and porcine promoters show significant homology. When the porcine sequence is aligned with the murine promoter sequence a highly homologous region is identified 5′ to
base 1537 of the published porcine myostatin promoter sequence. In particular, the two sequences are 89% homologous over the region of 2179 to 2482 of the murine promoter, corresponding tobases 1232 to 1537 of the published porcine sequence (FIG. 3), and continue to share regions of homology through the rest of the promoter sequences. However, the deposited porcine myostatin promoter sequence is only 1673 bases and includes mRNA sequence of the myostatin gene. This is less than the 2482 bases of the murine promoter, which has been shown to be crucial for efficient in vitro gene expression. This suggests that the murine myostatin promoter would be a more effective promoter for use in experiments on in vitro expression than the porcine myostatin promoter. - High Throughput Screening Assays to Identify Regulators of Myostatin Promoter Activity
- C2C12 cells, obtained from ATCC, were co-transfected with the myostatin promoter-luciferase reporter plasmid and a second plasmid (pcDNA3, Invitrogen) expressing aminoglycoside phosphotransferase, which confers resistance to the antibiotic geneticin (G418). C2C12 cells were selected in 800 μg/mL of G418, individual colonies were picked and replated at low dilution, and individual colonies were again isolated by selection in GH18. Cell lines established from these colonies express luciferase, and those with the lowest number of introduced copies of the myostatin promoter luciferase reporter construct were selected for use in high throughput screens.
- In order to identify compounds that modulate myostatin promoter activity, the following assay may be conducted. Stably transfected cells are plated in 96-well plates using medium appropriate for the cell line. Potential inhibitors of myostatin gene expression are added to the cells. The effect of the inhibitors of myostatin gene activation can be determined by measuring the response of the luciferase reporter gene driven by the myostatin promoter. This assay can be set up in a high-throughput screening mode for evaluation of compound libraries that reduce (or increase) luciferase activity. For example, C2C12 cells (ATCC #CRL-1772) stably transfected with the 2.5 kb promoter-luciferase reporter gene construct are plated at 3,000 cells per well in 96 well tissue culture plates and grown in DMEM, 10% fetal bovine serum at 37° C., 5% CO2 for 18 hours. Test compounds are then added, cells grown for an additional 48 hours, and the cells are lysed by freezing and thawing in Cell Culture Lysis Reagent (Promega). Luciferase activity is determined by adding Luciferase Assay Substrate and Buffer (Promega) to the suspension of lysed cells, and relative light units determined using a Wallac 1450 Microbeta counter. The cytotoxicty of test compounds is determined using the tetrazolium salt WST-1 in a colorimetric assay for cell viability. Preferred compounds with inhibit expression of the myostatin promoter luciferase reporter gene construct, and will be nontoxic.
- Direct injection into muscle of DNA plasmids with muscle specific or constitutive promoters results in expression of the gene under control of that promoter. A vector utilizing the murine 2.5 kb myostatin promoter to drive expression of porcine growth hormone releasing hormone (GHRH) was constructed. When this vector was transiently transfected into C2C12 muscle cells, expression of GHRH could be detected in culture supernatants at levels similar to those found using a CMV promoter. In accordance with the present invention, the construct may be directly introduced into a host by direct injection of naked DNA.
- The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and any clones, or nucleotide sequences which are functionally equivalent are within the scope of the invention. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims. It is also to be understood that all base pair sizes given for nucleotides are approximate and are used for purposes of description.
- All publications cited herein are incorporated by reference in their entirety.
-
1 9 1 2482 DNA Mus musculus 1 aaccttttta agtcctaagt cacacggagt tctatgtcct caaaatgttg ctcagcctct 60 accctgtcta cccggatgat tttctctccc aaactgagag tctgtaaact attaagcatt 120 aagtacacac acaccctgac cccagcgggc tccattctcc attctcccct gtgcttaaaa 180 gaagctgccc tggagtttca gtgctattat cagaaagcag cagacagcac gggcagttaa 240 aagcacaaga aagtaaataa catggtaata aataggcaaa ataaaagaaa ataaacaaac 300 aaggaaataa ataaagggca tttgttcata aagtcagagc tgagtgaatg gctcaggctt 360 tgccctgccc tgcccaagct cagtgggaaa tctgggtagc tggcaaacgc ctctgtcgtc 420 gttattatta ttttgctggc aatctgaaac atgtaggtga gctcaattcc taggcctaat 480 gagatgtcct tgcaggttgc ggaatccctt gccttcatct gaagcacttg aggataattt 540 gaaagtaaaa ggcttgaaac aaagagcaag cccttctgct tcaagtatta attacctatg 600 aaagggacta catttagcta cttatattgc taaattatat gcctcaaacc cctttagttg 660 agaaactaaa gataagagaa gctaagtact gtgccgtctt tgtcatcgac ttagaagagg 720 caaaattgag atttgaactc aggtttattt gactcttcag tctcagctca caatggcagt 780 acagtctaaa aaaaaaaaaa atcacaggat caatttcctc tgaggtatat agcagcatgt 840 gtaatgataa ttatgacatc gaaaagaatt ctatgcagaa aaatgaattt tccagacaaa 900 tctgacttta taggcctgct ctaatattgt cttgtataaa gagggccaga tcacctcagg 960 gtgtctgctt tgtgtctggt tttccttcat ctttaatggt gggcaaatct agtacattat 1020 ggaagcccac tttttttttc ctcaagagat atagatgcct cttaaaaatt tgatgaaaat 1080 gcattaactt ttcaagctac tgagctgcat tttagttcac tgaggcagta aattgggtgt 1140 atactgtaca ggaatggtgg tgacctaaaa ataaatattt gatacaagcc accatagtct 1200 cttggggtgt gtgtaagggg agtaatgaat taaaattcta aagactcctc agcttcccaa 1260 acaggaggag gaactctgtg gcctggaagc gtcctctgtc cctgctgctg tgtttgttca 1320 gctctttaag agttcacccc attcgatctt gtggctccta aagccaaggg tgaaagtttg 1380 atccttgcag aggccactta aattcagaga acaaaaagca ccattctctg ccctagactc 1440 tagcccagat ccctgccagg tgtctgcctt ctggtcaaaa tgagacgctg gcaaaggggt 1500 gctagcctgt gacagtatgg gaacgcaaca aaggacaccc ctctacatgc gacttgctct 1560 ttgtgtgctc acgggacctg acatcattca cagagaacac agattgcact ttactgtcag 1620 ccctggaagt ctgagtcaaa ctgaaataat gctccagcgc tacttacaaa aatccattat 1680 ctactcggcc taagtacaga gcctggcctc ctcgctgaca ggattctgtt ggcaatcaaa 1740 aaaaaaaaaa aaaaaaagca acactcagtc tttagtctgt atctctgtaa tagaaaatag 1800 caatacttat aagctgaaat caagcacagg ttttatgtta gtcaaagcca ttaagctatc 1860 aaaagtaaac ccatgtacac agaaacgtcc caggactggt ttgtaatatg tcctgacaaa 1920 taagccatga aaacaagctc ctcaaattac tgatgcaact ttttagcagg gtcacaaact 1980 cagctttctt taaattaagt cagctcttcc tagtttttac ttctctaatt acccagcact 2040 taacgcatat tttttccctc aaatattagt tttagtaaca aaacagcact ccaagtctca 2100 aaggattaac attttctatt ttaaacacaa aatctaaatt aaaaattact aacttaaatg 2160 atagcaagag ttttacagag attaataagc tttaagtaca gtttatatta gtacacagac 2220 ttcaatttat caaatgtcac atatatcttt catgatttgg ggatttattt catttatgaa 2280 gtagtcaaat gaatcagctt gccctcgact gtaacaaaat gctgcttggt gacttgtgac 2340 agacagggtt ttaacctctg acagcgagat tcattgtgga gcaggagcca atcatagatc 2400 ctgacgacac ttgtctcctc taagttggaa tataaaaagc cacttggaat acagtataca 2460 ggactccctg gcgtggcagg tt 2482 2 1537 DNA Sus scrofa 2 ttgtggctcc taaagctaag gttgagagtt tgagctctac agaggccact taaatttaga 60 gaacaaaaag ctctattctc tgctcccaga ccttacccca aatccctgcc aggtgtctgc 120 cctctggtca aatgagaaac tggcaaaggg gtgcaaacct agcacagaat tgggaaacag 180 aaaaatgggc accctttatt atggtgctcc ttctctttta tgtgtttaca atacttgggc 240 ataatttaca gagaatagat actacatttt ttactttcac cactggaaat ctgagggcaa 300 actgcattat cagtcataaa attcattatc tttctattct aagttattct aagcttattc 360 taagctcaga tagcagcata aacaggtaaa tataaacata gatttgcagt ttttgcatga 420 ttttaaaatc aatacaatct ttctccttgt tcttatttct tccttttact tttgcttttg 480 agtaacgcca agcaaaattt taatgcctgc actgtctgag agacaacttg ccacaccagt 540 gaatctttta tactgtattc caagtggctt tttatattcc acttgatgag acaagtgtcg 600 tcaggatcta tagttggctc ttgctccaca atgaatctcg ctgtcagagg ttaaaaccct 660 gtctgtcaca agtcaccaaa cagtattttg ttacagtcaa gggtgagctg attcatttga 720 ctacttcata aaagaaataa atctacaaat aatgaaactg acattatcct cttggtaata 780 aacaatgaaa aaacacatct tctgagcaat attaatctgc aactttagga taggagaaaa 840 tcagttgaaa actgagcacg attttcacgt gaataaaaga tattatttaa aaataattcc 900 atgtgtaata taacagaata agtatgattt tcattatgta ctagaaattt agtcaggaaa 960 acaagtttct caaattatag ctgaatatat tttactagta tcacaatctt aaattttaat 1020 tcaggtcttc ctaatttaaa tctgtatttc tctgattaca caggactaaa aataatttaa 1080 aacagcaaat aaaattcttt tttcctcaaa tgtttgtcta aataatgtaa aatcatttta 1140 tttttttgag gaaaaagaca tttcaacttt ttaagtatga agtgtaaaag aattacttat 1200 ttaaattaca attttaaagt ttcactaata aagattaata atatttaagt gcagtttata 1260 ttattgttaa catagatttt aatttttcaa atgtcacata tatctttcat tatttgtaga 1320 tttatttctt ttatgaagta gtcaaatgaa tcagctcacc cttgactgta acaaaatact 1380 gtttggtgac ttgtgacaga cagggtttta acctctgaca gcgagattca ttgtggagca 1440 agagccaact atagatcctg acgacacttg tctcatcaag tggaatataa aaagccactt 1500 ggaatacagt ataaaagatt cactggtgtg gcaagtt 1537 3 200 DNA Mus musculus 3 agtcaaatga atcagcttgc cctcgactgt aacaaaatgc tgcttggtga cttgtgacag 60 acagggtttt aacctctgac agcgagattc attgtggagc aggagccaat catagatcct 120 gacgacactt gtctcctcta agttggaata taaaaagcca cttggaatac agtatacagg 180 actccctggc gtggcaggtt 200 4 20 DNA artificial sequence Artificial sequence (1)..(20) primer 4 actgggccag cagcaatcag 20 5 20 DNA artificial sequence Artificial sequence (1)..(20) primer 5 gagtaatgcc aagtgaaata 20 6 29 DNA artificial sequence Artificial sequence (1)..(29) primer 6 gcagacaccc tgaggtgatc tggccctct 29 7 28 DNA artificial sequence Artificial sequence (1)..(28) primer 7 ttttctgcat agaattcttt tcgatgtc 28 8 22 DNA artificial sequence Artificial sequence (1)..(22) primer 8 gtaatacgac tcactatagg gc 22 9 19 DNA Artificial Sequence Artificial sequence (1)..(19) primer 9 actatagggc acgcgtggt 19
Claims (28)
1. An isolated polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 from 1 to 2482 (2.5 kb fragment) or fragment thereof that promotes transcription.
2. An isolated polynucleotide which hybridizes under stringent conditions to SEQ ID NO. 1 and is capable of promoting transcription of a coding sequence when operatively linked to said coding sequence.
3. An isolated polynucleotide which hybridizes under stringent conditions to SEQ ID NO. 3 and is capable of promoting transcription of a coding sequence in a muscle cell when operatively linked to said coding sequence, with the proviso that said polynucleotide is not derived from a porcine genome.
4. A recombinant vector comprising the polynucleotide of claim 1 , 2 or 3.
5. A recombinant expression vector comprising the polynucleotide of claim 1 , 2 or 3 in which the nucleotide sequence of the polynucleotide is operably associated with a coding sequence.
6. A genetically engineered host cell comprising the vector of claim 4 or 5, or progeny thereof.
7. The host cell of claim 6 in which the coding sequence is a reporter gene.
8. The host cell of claim 7 in which the reporter gene is luciferase.
9. A method of screening for an inhibitor of expression of a myostatin promoter region comprising:
(a) treating the host cell of claim 7 with a test compound; and
(b) detecting a decrease of expression of a reporter gene under the control of the myostatin promoter region.
10. A method of screening for an activator of expression of a myostatin promoter region comprising:
(a) treating the host cell of claim 7 with a test compound; and
(b) detecting an increase of expression of a reporter gene under the control of the murine myostatin promoter region.
11. The method of claim 9 or 10 where the reporter gene is luciferase.
12. The method of claim 9 or 10 where the myostatin promoter is the murine myostatin promoter.
13. A method of regulating myostatin gene expression comprising administering to a target cell a therapeutically effective amount of the inhibitor of a myostatin promoter region according to the method of claim 9 or the activator of a myostatin promoter according to the method of claim 10 .
14. A method of inhibiting myostatin gene expression comprising introducing into a target cell a therapeutically effective amount of an agent that directly or indirectly inhibits the transcription activities of the polynucleotide of claim 1 .
15. A method of inhibiting myostatin gene expression comprising introducing into a target cell, via homologous recombination, a polynucleotide fragment homologous to the polynucleotide of claim 1 , wherein the fragment inhibits the transcription activities of the polynucleotide of claim 1 .
16. A method of treatment of a neuromuscular disease in an organism comprising introducing into a target cell a therapeutically effective amount of an agent that inhibits the transcription activities or expression of the polynucleotide of claim 1 .
17. A method of treatment of cancer in an organism comprising introducing into a target cell a therapeutically effective amount of an agent that inhibits the transcription activities or expression of the polynucleotide of claim 1 .
18. A method of treatment of aging in an organism comprising introducing into a target cell a therapeutically effective amount of an agent that inhibits the transcription activities or expression of the polynucleotide of claim 1 .
19. A method of promoting muscle growth in an organism comprising introducing into a target cell an effective amount of an agent that inhibits the transcription activities or expression of the polynucleotide of claim 1 .
20. A method of promoting weight gain in an organism comprising introducing into a target cell an effective amount of an agent that inhibits the transcription activities or expression of the polynucleotide of claim 1 .
21. The method of claim 15 , 16, 17, 18, 19, or 20 wherein the organism is selected from the group consisting of humans, dogs, cats, horses, cattle, sheep, pigs, chickens, fish, mice, rats, rabbits, guinea pigs, micro-pigs, goats, and non-human primates, including, baboons, monkeys and chimpanzees.
22. A method for increasing the amount of lean meat in a food animal comprising administering to said food animal an effective amount of an agent that inhibits the transcription activities or expression of the polynucleotide of claim 1 .
23. The method of claim 22 , wherein the food animal is selected from the group consisting of cattle, sheep, pigs, chickens, fish, and goats.
24. A method of constructing a transgenic animal comprising introducing the expression vector of claim 4 or 5 into an embryonic or other host cell.
25. The transgenic animal of claim 24 , wherein the expression of a transgene is regulated in a tissue specific manner.
26. A method of expressing a heterologous gene in an animal in a tissue specific manner comprising introducing into said animal the expression vector of claim 5 .
27. A method of identifying compounds that modulate the activity of myostatin promoters and the expression of myostatin genes, wherein such method comprises administering a compound to a cell that expresses a gene under the control of a myostatin promoter or a transcriptionally active fragment thereof, measuring the level of gene expression or gene product activity and comparing this level to the level of gene expression or gene product activity produced by the cell in the absence of the compound, wherein if the level obtained in the presence of the compound differs from that obtained in its absence, a compound capable of modulating the expression of the myostatin gene or promoter activity is identified.
28. The method of claim 27 wherein the cell is the host cell of claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/610,473 US20040030114A1 (en) | 1999-07-30 | 2003-06-30 | Myostatin regulatory region, nucleotide sequence determination and methods for its use |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14654099P | 1999-07-30 | 1999-07-30 | |
US09/626,959 US6617440B1 (en) | 1999-07-30 | 2000-07-27 | Myostatin regulatory region, nucleotide sequence determination and methods for its use |
US10/610,473 US20040030114A1 (en) | 1999-07-30 | 2003-06-30 | Myostatin regulatory region, nucleotide sequence determination and methods for its use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/626,959 Division US6617440B1 (en) | 1999-07-30 | 2000-07-27 | Myostatin regulatory region, nucleotide sequence determination and methods for its use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040030114A1 true US20040030114A1 (en) | 2004-02-12 |
Family
ID=22517846
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/626,959 Expired - Fee Related US6617440B1 (en) | 1999-07-30 | 2000-07-27 | Myostatin regulatory region, nucleotide sequence determination and methods for its use |
US10/610,473 Abandoned US20040030114A1 (en) | 1999-07-30 | 2003-06-30 | Myostatin regulatory region, nucleotide sequence determination and methods for its use |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/626,959 Expired - Fee Related US6617440B1 (en) | 1999-07-30 | 2000-07-27 | Myostatin regulatory region, nucleotide sequence determination and methods for its use |
Country Status (11)
Country | Link |
---|---|
US (2) | US6617440B1 (en) |
EP (1) | EP1072680A1 (en) |
JP (1) | JP2001078784A (en) |
CN (1) | CN1312372A (en) |
AR (1) | AR021449A1 (en) |
AU (1) | AU4889100A (en) |
BR (1) | BR0003229A (en) |
CA (1) | CA2313825A1 (en) |
HK (1) | HK1039157A1 (en) |
NZ (1) | NZ506043A (en) |
ZA (1) | ZA200003786B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060251632A1 (en) * | 2005-05-04 | 2006-11-09 | Universite Laval | Modulation of myostatin and use thereof in cell transplantation-based treatment of muscle disease |
US20140223592A1 (en) * | 2011-07-06 | 2014-08-07 | Pig Myostatin Gene Locus And Uses Thereof | Pig myostatin gene locus and uses thereof |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284882B1 (en) * | 1999-06-10 | 2001-09-04 | Abbott Laboratories | Myostatin gene promoter and inhibition of activation thereof |
CA2453189A1 (en) * | 2001-07-11 | 2003-01-23 | Ovita Limited | Bioassay for myostatin |
EP1580266A4 (en) * | 2002-11-13 | 2007-01-10 | Takeda Pharmaceutical | Screening method |
JP2007535912A (en) * | 2003-12-31 | 2007-12-13 | シェーリング−プラウ・リミテッド | Neutralizing epitope-based growth-enhancing vaccine |
US7432079B2 (en) * | 2004-12-30 | 2008-10-07 | Schering-Plough Animal Health Corporation | Plant virus coat fusion proteins with GDF8 epitopes and vaccines thereof |
EP1855694B1 (en) | 2005-02-09 | 2020-12-02 | Sarepta Therapeutics, Inc. | Antisense composition for treating muscle atrophy |
KR100872042B1 (en) | 2005-09-14 | 2008-12-05 | 주식회사 바이오리더스 | Cell Surface Expression Vector of Myostatin and Microorganisms Transformed Thereby |
US8426374B1 (en) | 2006-05-04 | 2013-04-23 | Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center | Method for modifying myostatin expression |
GB201102090D0 (en) | 2011-02-08 | 2011-03-23 | Univ Sheffield | Antigenic polypeptide |
GB201102091D0 (en) | 2011-02-08 | 2011-03-23 | Univ Sheffield | Antigenic polypeptide |
US20130085139A1 (en) | 2011-10-04 | 2013-04-04 | Royal Holloway And Bedford New College | Oligomers |
CN102653764B (en) * | 2012-04-26 | 2014-03-19 | 天津农学院 | Method for introducing frame-shift mutation in MSTN (myostatin) genes of cattle |
MA41795A (en) | 2015-03-18 | 2018-01-23 | Sarepta Therapeutics Inc | EXCLUSION OF AN EXON INDUCED BY ANTISENSE COMPOUNDS IN MYOSTATIN |
CN109115737B (en) * | 2018-07-27 | 2021-03-26 | 青岛大学 | Three-helix pH biosensor and application thereof |
CN114671943B (en) * | 2022-04-29 | 2023-05-05 | 四川大学 | Preparation and application of fish ingestion regulating protein |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284882B1 (en) * | 1999-06-10 | 2001-09-04 | Abbott Laboratories | Myostatin gene promoter and inhibition of activation thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2157577C (en) | 1993-03-19 | 2009-11-17 | Se-Jin Lee | Growth differentiation factor-8 |
AU6274298A (en) | 1997-02-05 | 1998-08-25 | Johns Hopkins University School Of Medicine, The | Growth differentiation factor-8 |
WO1999002667A1 (en) * | 1997-07-14 | 1999-01-21 | University Of Liege | Mutations in the myostation gene cause double-muscling in mammals |
US6369201B1 (en) | 1998-02-19 | 2002-04-09 | Metamorphix International, Inc. | Myostatin multimers |
JP2002519059A (en) | 1998-07-07 | 2002-07-02 | アグリサーチ リミテッド | Novel promoter sequence of myostatin gene |
ATE416257T1 (en) | 1998-07-15 | 2008-12-15 | Metamorphix Inc | PROMOTORS FOR GROWTH DIFFERENTIATION FACTORS AND THEIR USE |
-
2000
- 2000-07-27 US US09/626,959 patent/US6617440B1/en not_active Expired - Fee Related
- 2000-07-27 EP EP00306396A patent/EP1072680A1/en not_active Withdrawn
- 2000-07-27 AU AU48891/00A patent/AU4889100A/en not_active Abandoned
- 2000-07-27 ZA ZA200003786A patent/ZA200003786B/en unknown
- 2000-07-28 AR ARP000103919A patent/AR021449A1/en unknown
- 2000-07-28 CA CA002313825A patent/CA2313825A1/en not_active Abandoned
- 2000-07-28 CN CN00126399A patent/CN1312372A/en active Pending
- 2000-07-28 NZ NZ506043A patent/NZ506043A/en unknown
- 2000-07-28 JP JP2000229821A patent/JP2001078784A/en active Pending
- 2000-07-31 BR BR0003229-8A patent/BR0003229A/en not_active IP Right Cessation
-
2002
- 2002-01-16 HK HK02100325.4A patent/HK1039157A1/en unknown
-
2003
- 2003-06-30 US US10/610,473 patent/US20040030114A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284882B1 (en) * | 1999-06-10 | 2001-09-04 | Abbott Laboratories | Myostatin gene promoter and inhibition of activation thereof |
US6399312B2 (en) * | 1999-06-10 | 2002-06-04 | Abbott Laboratories | Myostatin gene promoter and inhibition of activation thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060251632A1 (en) * | 2005-05-04 | 2006-11-09 | Universite Laval | Modulation of myostatin and use thereof in cell transplantation-based treatment of muscle disease |
US7887793B2 (en) | 2005-05-04 | 2011-02-15 | Universite Laval | Treatment of Duchenne muscular dystrophy with myoblasts expressing dystrophin and treated to block myostatin signaling |
US20140223592A1 (en) * | 2011-07-06 | 2014-08-07 | Pig Myostatin Gene Locus And Uses Thereof | Pig myostatin gene locus and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
EP1072680A1 (en) | 2001-01-31 |
CN1312372A (en) | 2001-09-12 |
JP2001078784A (en) | 2001-03-27 |
NZ506043A (en) | 2001-11-30 |
ZA200003786B (en) | 2002-01-21 |
AR021449A1 (en) | 2002-07-17 |
BR0003229A (en) | 2001-06-05 |
CA2313825A1 (en) | 2001-01-30 |
US6617440B1 (en) | 2003-09-09 |
AU4889100A (en) | 2001-02-01 |
HK1039157A1 (en) | 2002-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6617440B1 (en) | Myostatin regulatory region, nucleotide sequence determination and methods for its use | |
US20040176296A1 (en) | Novel ITALY, LOR-2, STRIFE, TRASH, BDSF, LRSG, and STMST protein and nucleic acid molecules and uses therefor | |
US6031076A (en) | Conservin compositions | |
US20030186915A1 (en) | Regulatory polynucleotides and uses thereof | |
US20050208040A1 (en) | Polynucleotides and polypeptides encoded thereby | |
US6416974B1 (en) | Tango 71 nucleic acids | |
WO1997027284A2 (en) | Human rad50 and septin-2 genes and methods of use | |
EP1710299A2 (en) | Secreted proteins and nucleic acids encoding them | |
US20070166756A1 (en) | Polypeptides and polynucleotides encoding same | |
EP1117773A1 (en) | Secreted proteins and nucleic acids encoding them | |
US6406884B1 (en) | Secreted proteins and uses thereof | |
US20040115761A1 (en) | Polypeptides and nucleic acids encoding same | |
CN115175559A (en) | Non-human animals comprising a humanized PNPLA3 locus and methods of use thereof | |
MXPA00007511A (en) | Myostatin regulatory region, nucleotide sequence determination and methods for its use | |
JP2003527831A (en) | Endozepine-like polypeptides and polynucleotides encoding endozepine-like polypeptides | |
US7001766B2 (en) | Nucleic acid sequences encoding human angiopoietin-like polypeptides | |
US20040086931A1 (en) | Polypeptides and nucleic acids encoding same | |
US20030087815A1 (en) | Novel polypeptides and nucleic acids encoding same | |
US20030037351A1 (en) | Nucleic acid regulatory sequences and uses therefor | |
WO2001072119A2 (en) | Non-human animal model for growth deficiency and information processing or cognitive function defects and use thereof | |
JP2003531571A (en) | Novel human proteins, polynucleotides encoding them, and methods of using them | |
WO2000037634A2 (en) | Novel polypeptides and nucleic acids encoding same | |
US20030050232A1 (en) | Novel human proteins, polynucleotides encoding them and methods of using the same | |
US20020065405A1 (en) | Novel polypeptides and nucleic acids encoding same | |
WO2000039150A2 (en) | Secreted proteins and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |