US20040013833A1 - Compatibilized polyester/polyamide blends - Google Patents
Compatibilized polyester/polyamide blends Download PDFInfo
- Publication number
- US20040013833A1 US20040013833A1 US10/395,899 US39589903A US2004013833A1 US 20040013833 A1 US20040013833 A1 US 20040013833A1 US 39589903 A US39589903 A US 39589903A US 2004013833 A1 US2004013833 A1 US 2004013833A1
- Authority
- US
- United States
- Prior art keywords
- pet
- preform
- container
- blend
- polymer blend
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 80
- 229920002647 polyamide Polymers 0.000 title claims abstract description 70
- 239000004952 Polyamide Substances 0.000 title claims abstract description 67
- 229920006149 polyester-amide block copolymer Polymers 0.000 title description 3
- 239000010410 layer Substances 0.000 claims abstract description 71
- 229920002959 polymer blend Polymers 0.000 claims abstract description 59
- 229920000728 polyester Polymers 0.000 claims abstract description 52
- 229920001577 copolymer Polymers 0.000 claims abstract description 32
- 239000002356 single layer Substances 0.000 claims abstract description 14
- 229920000554 ionomer Polymers 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 31
- 229920005989 resin Polymers 0.000 claims description 25
- 239000011347 resin Substances 0.000 claims description 25
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 20
- 239000012141 concentrate Substances 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 17
- 239000003963 antioxidant agent Substances 0.000 claims description 15
- 230000003078 antioxidant effect Effects 0.000 claims description 12
- 238000006116 polymerization reaction Methods 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 239000000155 melt Substances 0.000 claims description 7
- 239000008188 pellet Substances 0.000 claims description 6
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 claims description 5
- 230000009477 glass transition Effects 0.000 claims description 5
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 5
- 229920000098 polyolefin Polymers 0.000 claims description 5
- 239000012298 atmosphere Substances 0.000 claims description 4
- 239000004841 bisphenol A epoxy resin Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 abstract description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 8
- 239000007789 gas Substances 0.000 abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 5
- 230000032798 delamination Effects 0.000 abstract description 5
- 239000001301 oxygen Substances 0.000 abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 abstract description 5
- 239000001569 carbon dioxide Substances 0.000 abstract description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 4
- 235000013361 beverage Nutrition 0.000 abstract description 3
- 239000002537 cosmetic Substances 0.000 abstract description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 148
- 239000005020 polyethylene terephthalate Substances 0.000 description 148
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 87
- 150000001875 compounds Chemical group 0.000 description 41
- -1 preferably MXD-6 Polymers 0.000 description 39
- 101000576320 Homo sapiens Max-binding protein MNT Proteins 0.000 description 36
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 36
- 229920001225 polyester resin Polymers 0.000 description 20
- 239000004645 polyester resin Substances 0.000 description 20
- 230000001588 bifunctional effect Effects 0.000 description 16
- 229920001634 Copolyester Polymers 0.000 description 14
- 229920001169 thermoplastic Polymers 0.000 description 14
- 239000004416 thermosoftening plastic Substances 0.000 description 14
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 12
- 238000000465 moulding Methods 0.000 description 12
- KKEYFWRCBNTPAC-UHFFFAOYSA-N terephthalic acid group Chemical group C(C1=CC=C(C(=O)O)C=C1)(=O)O KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 9
- 125000001931 aliphatic group Chemical group 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 238000013329 compounding Methods 0.000 description 7
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical group C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 7
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 6
- 125000002723 alicyclic group Chemical group 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 238000001746 injection moulding Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000004609 Impact Modifier Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 5
- 150000002009 diols Chemical class 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 229920006012 semi-aromatic polyamide Polymers 0.000 description 5
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 229920003231 aliphatic polyamide Polymers 0.000 description 4
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 150000004985 diamines Chemical class 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 4
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 4
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 4
- 239000004953 Aliphatic polyamide Substances 0.000 description 3
- 239000006057 Non-nutritive feed additive Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 125000006267 biphenyl group Chemical group 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 150000002148 esters Chemical group 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 150000002763 monocarboxylic acids Chemical class 0.000 description 3
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 3
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 3
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 3
- LEBQTCCCNMTXSF-UHFFFAOYSA-N (2,5-dimethylphenyl)methanol Chemical compound CC1=CC=C(C)C(CO)=C1 LEBQTCCCNMTXSF-UHFFFAOYSA-N 0.000 description 2
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical group OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 2
- PRPINYUDVPFIRX-UHFFFAOYSA-N 1-naphthaleneacetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CC=CC2=C1 PRPINYUDVPFIRX-UHFFFAOYSA-N 0.000 description 2
- LNETULKMXZVUST-UHFFFAOYSA-N 1-naphthoic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1 LNETULKMXZVUST-UHFFFAOYSA-N 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- PAZZVPKITDJCPV-UHFFFAOYSA-N 10-hydroxyoctadecanoic acid Chemical compound CCCCCCCCC(O)CCCCCCCCC(O)=O PAZZVPKITDJCPV-UHFFFAOYSA-N 0.000 description 2
- GLDQAMYCGOIJDV-UHFFFAOYSA-N 2,3-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC(O)=C1O GLDQAMYCGOIJDV-UHFFFAOYSA-N 0.000 description 2
- JATAKEDDMQNPOQ-UHFFFAOYSA-N 2,4,6-trimethoxybenzoic acid Chemical compound COC1=CC(OC)=C(C(O)=O)C(OC)=C1 JATAKEDDMQNPOQ-UHFFFAOYSA-N 0.000 description 2
- UIAFKZKHHVMJGS-UHFFFAOYSA-N 2,4-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1O UIAFKZKHHVMJGS-UHFFFAOYSA-N 0.000 description 2
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 2
- XZRHNAFEYMSXRG-UHFFFAOYSA-N 2,5-dimethylbenzoic acid Chemical compound CC1=CC=C(C)C(C(O)=O)=C1 XZRHNAFEYMSXRG-UHFFFAOYSA-N 0.000 description 2
- AKEUNCKRJATALU-UHFFFAOYSA-N 2,6-dihydroxybenzoic acid Chemical compound OC(=O)C1=C(O)C=CC=C1O AKEUNCKRJATALU-UHFFFAOYSA-N 0.000 description 2
- FSQDURCMBCGCIK-UHFFFAOYSA-N 2-(2,4-dihydroxyphenyl)acetic acid Chemical compound OC(=O)CC1=CC=C(O)C=C1O FSQDURCMBCGCIK-UHFFFAOYSA-N 0.000 description 2
- WTPYFJNYAMXZJG-UHFFFAOYSA-N 2-[4-(2-hydroxyethoxy)phenoxy]ethanol Chemical compound OCCOC1=CC=C(OCCO)C=C1 WTPYFJNYAMXZJG-UHFFFAOYSA-N 0.000 description 2
- UTNSTOOXQPHXJQ-UHFFFAOYSA-N 2-[4-[4-(2-hydroxyethoxy)phenyl]sulfonylphenoxy]ethanol Chemical compound C1=CC(OCCO)=CC=C1S(=O)(=O)C1=CC=C(OCCO)C=C1 UTNSTOOXQPHXJQ-UHFFFAOYSA-N 0.000 description 2
- BWLBGMIXKSTLSX-UHFFFAOYSA-N 2-hydroxyisobutyric acid Chemical compound CC(C)(O)C(O)=O BWLBGMIXKSTLSX-UHFFFAOYSA-N 0.000 description 2
- UOBYKYZJUGYBDK-UHFFFAOYSA-N 2-naphthoic acid Chemical compound C1=CC=CC2=CC(C(=O)O)=CC=C21 UOBYKYZJUGYBDK-UHFFFAOYSA-N 0.000 description 2
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- SJSOFNCYXJUNBT-UHFFFAOYSA-N 3,4,5-trimethoxybenzoic acid Chemical compound COC1=CC(C(O)=O)=CC(OC)=C1OC SJSOFNCYXJUNBT-UHFFFAOYSA-N 0.000 description 2
- YQUVCSBJEUQKSH-UHFFFAOYSA-N 3,4-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C(O)=C1 YQUVCSBJEUQKSH-UHFFFAOYSA-N 0.000 description 2
- OPVAJFQBSDUNQA-UHFFFAOYSA-N 3,4-dimethylbenzoic acid Chemical compound CC1=CC=C(C(O)=O)C=C1C OPVAJFQBSDUNQA-UHFFFAOYSA-N 0.000 description 2
- XHQZJYCNDZAGLW-UHFFFAOYSA-N 3-methoxybenzoic acid Chemical compound COC1=CC=CC(C(O)=O)=C1 XHQZJYCNDZAGLW-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- BCEQKAQCUWUNML-UHFFFAOYSA-N 4-hydroxybenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=C(O)C(C(O)=O)=C1 BCEQKAQCUWUNML-UHFFFAOYSA-N 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- UUAGPGQUHZVJBQ-UHFFFAOYSA-N Bisphenol A bis(2-hydroxyethyl)ether Chemical compound C=1C=C(OCCO)C=CC=1C(C)(C)C1=CC=C(OCCO)C=C1 UUAGPGQUHZVJBQ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical group OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 2
- UJMDYLWCYJJYMO-UHFFFAOYSA-N benzene-1,2,3-tricarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1C(O)=O UJMDYLWCYJJYMO-UHFFFAOYSA-N 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- IWYDHOAUDWTVEP-UHFFFAOYSA-N mandelic acid Chemical compound OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- LPNBBFKOUUSUDB-UHFFFAOYSA-N p-toluic acid Chemical compound CC1=CC=C(C(O)=O)C=C1 LPNBBFKOUUSUDB-UHFFFAOYSA-N 0.000 description 2
- REIUXOLGHVXAEO-UHFFFAOYSA-N pentadecan-1-ol Chemical compound CCCCCCCCCCCCCCCO REIUXOLGHVXAEO-UHFFFAOYSA-N 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 229960004274 stearic acid Drugs 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- 0 *C.CC.CC(=O)C[1*]OC(=O)CC(C)=O.CO[1*]OC(=O)C1=CC=CC=C1 Chemical compound *C.CC.CC(=O)C[1*]OC(=O)CC(C)=O.CO[1*]OC(=O)C1=CC=CC=C1 0.000 description 1
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 1
- NROWDOFTCDMQSU-UHFFFAOYSA-N 1-(hydroxymethyl)cyclohexane-1-carboxylic acid Chemical compound OCC1(C(O)=O)CCCCC1 NROWDOFTCDMQSU-UHFFFAOYSA-N 0.000 description 1
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- IITXQNWTFNSHRU-UHFFFAOYSA-N 1-hydroxycyclohexa-3,5-diene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC(O)(C(O)=O)C1 IITXQNWTFNSHRU-UHFFFAOYSA-N 0.000 description 1
- FVZYDDHESQRHSG-UHFFFAOYSA-N 17-[4-(2-hydroxyethyl)anilino]-3-methyl-4,16-dioxo-3-azatetracyclo[12.4.0.01,6.07,12]octadeca-6,8,10,12,14,17-hexaene-5-carbonitrile Chemical group O=C1C=C2C=C3C=CC=CC3=C3C(C#N)C(=O)N(C)CC23C=C1NC1=CC=C(CCO)C=C1 FVZYDDHESQRHSG-UHFFFAOYSA-N 0.000 description 1
- 229940082044 2,3-dihydroxybenzoic acid Drugs 0.000 description 1
- RIZUCYSQUWMQLX-UHFFFAOYSA-N 2,3-dimethylbenzoic acid Chemical compound CC1=CC=CC(C(O)=O)=C1C RIZUCYSQUWMQLX-UHFFFAOYSA-N 0.000 description 1
- FFFIRKXTFQCCKJ-UHFFFAOYSA-N 2,4,6-trimethylbenzoic acid Chemical compound CC1=CC(C)=C(C(O)=O)C(C)=C1 FFFIRKXTFQCCKJ-UHFFFAOYSA-N 0.000 description 1
- BKYWPNROPGQIFZ-UHFFFAOYSA-N 2,4-dimethylbenzoic acid Chemical compound CC1=CC=C(C(O)=O)C(C)=C1 BKYWPNROPGQIFZ-UHFFFAOYSA-N 0.000 description 1
- HCBHQDKBSKYGCK-UHFFFAOYSA-N 2,6-dimethylbenzoic acid Chemical compound CC1=CC=CC(C)=C1C(O)=O HCBHQDKBSKYGCK-UHFFFAOYSA-N 0.000 description 1
- SQXBNVYOJJFRJB-UHFFFAOYSA-N 2-[2,3,5,6-tetrabromo-4-[2-[2,3,5,6-tetrabromo-4-(2-hydroxyethoxy)phenyl]propan-2-yl]phenoxy]ethanol Chemical compound BrC=1C(Br)=C(OCCO)C(Br)=C(Br)C=1C(C)(C)C1=C(Br)C(Br)=C(OCCO)C(Br)=C1Br SQXBNVYOJJFRJB-UHFFFAOYSA-N 0.000 description 1
- BPNUQIRNZYOASC-UHFFFAOYSA-N 2-[2-[4-(2-hydroxyethoxy)phenoxy]ethoxy]ethanol Chemical compound OCCOCCOC1=CC=C(OCCO)C=C1 BPNUQIRNZYOASC-UHFFFAOYSA-N 0.000 description 1
- GTAPMRLFZBZXSB-UHFFFAOYSA-N 2-[2-[4-[1-[4-[2-(2-hydroxyethoxy)ethoxy]phenyl]cyclohexyl]phenoxy]ethoxy]ethanol Chemical compound C1=CC(OCCOCCO)=CC=C1C1(C=2C=CC(OCCOCCO)=CC=2)CCCCC1 GTAPMRLFZBZXSB-UHFFFAOYSA-N 0.000 description 1
- AAXYWALBXKPTBM-UHFFFAOYSA-N 2-[2-[4-[2-(2-hydroxyethoxy)ethoxy]phenoxy]ethoxy]ethanol Chemical compound OCCOCCOC1=CC=C(OCCOCCO)C=C1 AAXYWALBXKPTBM-UHFFFAOYSA-N 0.000 description 1
- FLQCMZIWPDTMGO-UHFFFAOYSA-N 2-[2-[4-[2-[4-(2-hydroxyethoxy)phenyl]propan-2-yl]phenoxy]ethoxy]ethanol Chemical compound C=1C=C(OCCOCCO)C=CC=1C(C)(C)C1=CC=C(OCCO)C=C1 FLQCMZIWPDTMGO-UHFFFAOYSA-N 0.000 description 1
- WKHQMLQPRWPUDP-UHFFFAOYSA-N 2-[2-[4-[2-[4-[2-(2-hydroxyethoxy)ethoxy]phenyl]propan-2-yl]phenoxy]ethoxy]ethanol Chemical compound C=1C=C(OCCOCCO)C=CC=1C(C)(C)C1=CC=C(OCCOCCO)C=C1 WKHQMLQPRWPUDP-UHFFFAOYSA-N 0.000 description 1
- BASDLXRGOLRREX-UHFFFAOYSA-N 2-[2-[4-[4-(2-hydroxyethoxy)phenyl]sulfonylphenoxy]ethoxy]ethanol Chemical compound C1=CC(OCCOCCO)=CC=C1S(=O)(=O)C1=CC=C(OCCO)C=C1 BASDLXRGOLRREX-UHFFFAOYSA-N 0.000 description 1
- DNTHXHASNDRODE-UHFFFAOYSA-N 2-[4-[1-[4-(2-hydroxyethoxy)phenyl]cyclohexyl]phenoxy]ethanol Chemical compound C1=CC(OCCO)=CC=C1C1(C=2C=CC(OCCO)=CC=2)CCCCC1 DNTHXHASNDRODE-UHFFFAOYSA-N 0.000 description 1
- FEWFXBUNENSNBQ-UHFFFAOYSA-N 2-hydroxyacrylic acid Chemical compound OC(=C)C(O)=O FEWFXBUNENSNBQ-UHFFFAOYSA-N 0.000 description 1
- UPHOPMSGKZNELG-UHFFFAOYSA-N 2-hydroxynaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=C(O)C=CC2=C1 UPHOPMSGKZNELG-UHFFFAOYSA-N 0.000 description 1
- ILYSAKHOYBPSPC-UHFFFAOYSA-N 2-phenylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C1=CC=CC=C1 ILYSAKHOYBPSPC-UHFFFAOYSA-N 0.000 description 1
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- IWPZKOJSYQZABD-UHFFFAOYSA-N 3,4,5-trimethoxybenzoic acid Natural products COC1=CC(OC)=CC(C(O)=O)=C1 IWPZKOJSYQZABD-UHFFFAOYSA-N 0.000 description 1
- UMVOQQDNEYOJOK-UHFFFAOYSA-N 3,5-dimethylbenzoic acid Chemical compound CC1=CC(C)=CC(C(O)=O)=C1 UMVOQQDNEYOJOK-UHFFFAOYSA-N 0.000 description 1
- CJBDUOMQLFKVQC-UHFFFAOYSA-N 3-(2-hydroxyphenyl)propanoic acid Chemical compound OC(=O)CCC1=CC=CC=C1O CJBDUOMQLFKVQC-UHFFFAOYSA-N 0.000 description 1
- HTWZLMBMUOYYFQ-UHFFFAOYSA-N 3-(hydroxymethyl)bicyclo[2.2.1]hept-2-ene-4-carboxylic acid Chemical compound C1CC2(C(O)=O)C(CO)=CC1C2 HTWZLMBMUOYYFQ-UHFFFAOYSA-N 0.000 description 1
- AYOLELPCNDVZKZ-UHFFFAOYSA-N 3-hydroxy-3-phenylpropionic acid Chemical compound OC(=O)CC(O)C1=CC=CC=C1 AYOLELPCNDVZKZ-UHFFFAOYSA-N 0.000 description 1
- WHSXTWFYRGOBGO-UHFFFAOYSA-N 3-methylsalicylic acid Chemical compound CC1=CC=CC(C(O)=O)=C1O WHSXTWFYRGOBGO-UHFFFAOYSA-N 0.000 description 1
- HSSYVKMJJLDTKZ-UHFFFAOYSA-N 3-phenylphthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C=CC=CC=2)=C1C(O)=O HSSYVKMJJLDTKZ-UHFFFAOYSA-N 0.000 description 1
- NEQFBGHQPUXOFH-UHFFFAOYSA-N 4-(4-carboxyphenyl)benzoic acid Chemical group C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1 NEQFBGHQPUXOFH-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 1
- ZEYHEAKUIGZSGI-UHFFFAOYSA-N 4-methoxybenzoic acid Chemical compound COC1=CC=C(C(O)=O)C=C1 ZEYHEAKUIGZSGI-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241001278264 Fernandoa adenophylla Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- YJLYANLCNIKXMG-UHFFFAOYSA-N N-Methyldioctylamine Chemical compound CCCCCCCCN(C)CCCCCCCC YJLYANLCNIKXMG-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920000577 Nylon 6/66 Polymers 0.000 description 1
- ILUJQPXNXACGAN-UHFFFAOYSA-N O-methylsalicylic acid Chemical compound COC1=CC=CC=C1C(O)=O ILUJQPXNXACGAN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229920003182 Surlyn® Polymers 0.000 description 1
- 239000005035 Surlyn® Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 1
- XDODWINGEHBYRT-UHFFFAOYSA-N [2-(hydroxymethyl)cyclohexyl]methanol Chemical group OCC1CCCCC1CO XDODWINGEHBYRT-UHFFFAOYSA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- LUSFFPXRDZKBMF-UHFFFAOYSA-N [3-(hydroxymethyl)cyclohexyl]methanol Chemical group OCC1CCCC(CO)C1 LUSFFPXRDZKBMF-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- TZYHIGCKINZLPD-UHFFFAOYSA-N azepan-2-one;hexane-1,6-diamine;hexanedioic acid Chemical compound NCCCCCCN.O=C1CCCCCN1.OC(=O)CCCCC(O)=O TZYHIGCKINZLPD-UHFFFAOYSA-N 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 229940114055 beta-resorcylic acid Drugs 0.000 description 1
- 229950011260 betanaphthol Drugs 0.000 description 1
- IHWUGQBRUYYZNM-UHFFFAOYSA-N bicyclo[2.2.1]hept-2-ene-3,4-dicarboxylic acid Chemical compound C1CC2(C(O)=O)C(C(=O)O)=CC1C2 IHWUGQBRUYYZNM-UHFFFAOYSA-N 0.000 description 1
- 229940106691 bisphenol a Drugs 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 235000014171 carbonated beverage Nutrition 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical group OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- SFVWPXMPRCIVOK-UHFFFAOYSA-N cyclododecanol Chemical compound OC1CCCCCCCCCCC1 SFVWPXMPRCIVOK-UHFFFAOYSA-N 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical group OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- FSDSKERRNURGGO-UHFFFAOYSA-N cyclohexane-1,3,5-triol Chemical compound OC1CC(O)CC(O)C1 FSDSKERRNURGGO-UHFFFAOYSA-N 0.000 description 1
- XBZSBBLNHFMTEB-UHFFFAOYSA-N cyclohexane-1,3-dicarboxylic acid Chemical group OC(=O)C1CCCC(C(O)=O)C1 XBZSBBLNHFMTEB-UHFFFAOYSA-N 0.000 description 1
- 125000001142 dicarboxylic acid group Chemical group 0.000 description 1
- ZJIPHXXDPROMEF-UHFFFAOYSA-N dihydroxyphosphanyl dihydrogen phosphite Chemical class OP(O)OP(O)O ZJIPHXXDPROMEF-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- VVTXSHLLIKXMPY-UHFFFAOYSA-L disodium;2-sulfobenzene-1,3-dicarboxylate Chemical compound [Na+].[Na+].OS(=O)(=O)C1=C(C([O-])=O)C=CC=C1C([O-])=O VVTXSHLLIKXMPY-UHFFFAOYSA-L 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical class NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- SAMYCKUDTNLASP-UHFFFAOYSA-N hexane-2,2-diol Chemical compound CCCCC(C)(O)O SAMYCKUDTNLASP-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229950006430 hydroxytoluic acid Drugs 0.000 description 1
- ZQLCWPXBHUALQC-UHFFFAOYSA-N hydroxytoluic acid Natural products CC1=CC=C(C(O)=O)C=C1O ZQLCWPXBHUALQC-UHFFFAOYSA-N 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- YAQXGBBDJYBXKL-UHFFFAOYSA-N iron(2+);1,10-phenanthroline;dicyanide Chemical compound [Fe+2].N#[C-].N#[C-].C1=CN=C2C3=NC=CC=C3C=CC2=C1.C1=CN=C2C3=NC=CC=C3C=CC2=C1 YAQXGBBDJYBXKL-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229960004232 linoleic acid Drugs 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- GPSDUZXPYCFOSQ-UHFFFAOYSA-N m-toluic acid Chemical compound CC1=CC=CC(C(O)=O)=C1 GPSDUZXPYCFOSQ-UHFFFAOYSA-N 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- OJURWUUOVGOHJZ-UHFFFAOYSA-N methyl 2-[(2-acetyloxyphenyl)methyl-[2-[(2-acetyloxyphenyl)methyl-(2-methoxy-2-oxoethyl)amino]ethyl]amino]acetate Chemical compound C=1C=CC=C(OC(C)=O)C=1CN(CC(=O)OC)CCN(CC(=O)OC)CC1=CC=CC=C1OC(C)=O OJURWUUOVGOHJZ-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- OLAPPGSPBNVTRF-UHFFFAOYSA-N naphthalene-1,4,5,8-tetracarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1C(O)=O OLAPPGSPBNVTRF-UHFFFAOYSA-N 0.000 description 1
- ABMFBCRYHDZLRD-UHFFFAOYSA-N naphthalene-1,4-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1 ABMFBCRYHDZLRD-UHFFFAOYSA-N 0.000 description 1
- WPUMVKJOWWJPRK-UHFFFAOYSA-N naphthalene-2,7-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 WPUMVKJOWWJPRK-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- ZWLPBLYKEWSWPD-UHFFFAOYSA-N o-toluic acid Chemical compound CC1=CC=CC=C1C(O)=O ZWLPBLYKEWSWPD-UHFFFAOYSA-N 0.000 description 1
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229960002969 oleic acid Drugs 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 235000015205 orange juice Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920006131 poly(hexamethylene isophthalamide-co-terephthalamide) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920006123 polyhexamethylene isophthalamide Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/22—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0207—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0207—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
- B65D1/0215—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/0861—Other specified values, e.g. values or ranges
- B29C2949/0862—Crystallinity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/0861—Other specified values, e.g. values or ranges
- B29C2949/0872—Weight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/20—Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
- B29C2949/22—Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/20—Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
- B29C2949/24—Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/20—Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
- B29C2949/26—Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at body portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/20—Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
- B29C2949/28—Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at bottom portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3008—Preforms or parisons made of several components at neck portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3012—Preforms or parisons made of several components at flange portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3016—Preforms or parisons made of several components at body portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/302—Preforms or parisons made of several components at bottom portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3024—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3024—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
- B29C2949/3026—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3032—Preforms or parisons made of several components having components being injected
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3032—Preforms or parisons made of several components having components being injected
- B29C2949/3034—Preforms or parisons made of several components having components being injected having two or more components being injected
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/02—Polyamides derived from omega-amino carboxylic acids or from lactams thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
Definitions
- the present invention relates to compatibilized polymer blends comprising polyester, polyamide and a compatibilizer.
- Such compatibilized polymer blends are fabricated into monolayer or multilayer preforms and/or containers.
- Thermoplastic polyester containers as produced through stretch blow molding have various excellent properties including good transparency, good mechanical characteristics and good flavor barrier properties, and are sanitary and safe for daily use. Therefore, they have many applications in various fields. However, since their gas barrier properties are not always satisfactory, drinks, foods and others in them could be stored only a relatively short period of time.
- thermoplastic polyester with a polyamide or Nylon barrier resin such as MXD6 with good gas barrier properties to give laminated structures
- various techniques e.g. coinjection molding, coextrusion molding, multi-stage, including multilayer, injection molding, etc. are employed.
- multilayer injection molding is characterized by many as a suitable apparatus and method and the preforms produced through it would have a three or five layer structure in which each polyamide layer is sandwiched between PET layers and therefore, even though the moldings have no adhesive resin (Ad) layer between the MXD6 layer and the PET layers they could be suitable multi-layered containers with seemingly good appearance at atmospheric pressures.
- Ad adhesive resin
- the PET layers and the MXD6 layer are easily delaminated, thereby causing a serious problem with appearance and performance of the containers.
- coinjected molded containers having adhesive layers between each polyamide and PET layer have been proposed.
- the PET multilayer container may be overdesigned by the incorporation of more overall weight in the preform/bottle to better resist delamination.
- the blending increases the production costs, and, depending on the type of the resins to be blended, there will occur still other problems in that the melt stability of the blends will be poor, acetaldehyde content will be high, and the barrier properties will be inadequate.
- a compatibilized polymer blend comprising polyamide, PET or a PET-containing copolymer, and at least one compatibilizer.
- Preferred compatibilizers include modified PET, including IPA modified PET, p-toluene sulfonic acid (pTSA) modified PET, pyrometillic dianhydride (PMDA) modified PET, and maleic anhydride modified PET; PET ionomers, including sulfonated PET, acrylic-modified polyolefin ionomer; and bisphenol-A epoxy resin, preferably of low molecular weight.
- a compatibilized polymer blend comprises polyamide, preferably MXD-6, PET or a PET-containing copolymer, and at least one compatibilizer selected from IPA-modified PET and PET ionomer.
- PET ionomers are preferred, other polyester ionomers such as polybutylene terephthalate (PBT) ionomers and polypropylene (PPT) ionomers may also be used.
- the compatibilized polymer blend can further comprise at least one antioxidant.
- the blend which forms a monolayer preform or container or one layer of a preform or container comprises 15 mole % or less polyamide.
- the compatibilized polymer blend is formed by a process comprising blending the polyamide, PET or PET-containing copolymer, and compatibilizer in the melt phase; extruding the blend into pellets; and heating said pellets, preferably in an inert atmosphere, to a temperature between the blend's glass transition temperature and melt temperature thereby causing solid state polymerization and/or reactive compatibilization to occur.
- the heating step may be omitted.
- a compatibilized polymer blend is used to form a monolayer or multilayer preform or container.
- one preferred preform or container is that which comprises a body and a neck finish, wherein at least said body comprises at least a first layer comprising a compatibilized polymer blend, said compatibilized polymer blend comprising polyamide, PET or a PET-containing copolymer, and at least one compatibilizer, preferably IPA-modified PET or PET ionomer.
- the polyamide constitutes less than or equal to about 15 mol % of the blend.
- a multilayer preform or container comprising a body portion and a neck finish; wherein at least said body portion comprises at least one layer comprising a compatibilized polymer blend, said compatibilized polymer blend comprising polyamide, PET or a PET-containing copolymer, and at least one compatibilizer, preferably IPA-modified PET or PET ionomer, and at least one layer comprising thermoplastic polyester, preferably PET or PET-containing copolymer.
- the multilayer preform or container may further comprise a third layer comprising a thermoplastic polyester, preferably PET or PET-containing copolymer.
- a preform or container comprising a body portion and a neck finish, wherein at least said body portion comprises at least first and second layers, wherein said first layer comprises PET or a PET-containing copolymer; and said second layer comprises a compatibilized polymer blend, said compatibilized polymer blend comprising polyamide, PET or a PET-containing copolymer, and at least one compatibilizer selected from IPA-modified PET and PET ionomers.
- Containers and preforms made from preferred compatibilized polymer blends exhibit lower haze as compared to those made from non-compatibilized blends.
- layers made from compatibilized polymer blends according to preferred embodiments may also exhibit greater adhesion to PET than those made from non-compatibilized blends.
- compatibilized polyester/polyamide blends and containers made therefrom with greatly improved impact delamination resistance, adhesion, color, and clarity preferably have one or more of the following properties: excellent gas barrier properties against oxygen, carbon dioxide and other gasses, stable resin melts as well as improved appearance.
- a preferred container is of the type used for beverages.
- embodiments of the container could take the form of jars, tubs, trays or bottles for holding edibles, cosmetics, and the like.
- Preferred containers may comprise a single layer or multiple layers.
- one embodiment of a container is formed from a preform comprising a body and a neck finish which is stretch blow molded into a container.
- these embodiments will be described herein primarily as containers or preforms.
- containers described herein may be described specifically in relation to a particular component, polyethylene terephthalate (PET), but preferred methods are applicable to many other thermoplastics of the polyester type described herein.
- PET polyethylene terephthalate
- suitable polyesters include, but are not limited to, polypropylene, polyethylene, polycarbonate, polyamides or acrylics.
- PET is used to describe virgin and/or recycled polyethylene terephthalate polymers, including virgin and/or recycled PET-containing copolymers.
- IPA modified PET is used to describe PET comprising isophthalic acid (IPA).
- a container is a single layer comprising a blend of polyamide, polyester, and a compatibilizer.
- Other embodiments comprise at least one layer of a blend of polyamide, polyester, and a compatibilizer and at least one layer comprising a thermoplastic polyester.
- a multi-layered container may be prepared by over-molding a polyester resin with a polyamide/polyesterterephthalate/compatibilizer resin mixture.
- a container may comprise a first layer of thermoplastic polyester and a second layer comprising a blend of a polyamide, such as MXD6, and PET having an isophthalic acid content of from about 2 to 15 mol % wherein the isophthalic acid acts as a compatibilizer.
- a blend comprising polyamide/PET/compatibilizer also referred to herein as a compatibilized polymer blend
- one preferred, process for producing these layers comprises an overmolding process as disclosed in U.S. Pat. No. 6,352,426 B1 the disclosure of which is incorporated in its entirety herein by reference. Further, these layers may also be produced by any suitable process, including coinjection, injection molding with or without overmolding, and coextrusion.
- thermoplastic polyesters include, but are not limited to, condensed polymers that comprise an aromatic dicarboxylic acid or its alkyl ester and a diol.
- Suitable resins include a polyester resin including or consisting essentially of an ethylene terephthalate component.
- it is desirable that the total proportion (mol %) of terephthalic acid units and ethylene glycol units constituting a preferred polyester is at least about 70 mol % relative to the total moles of all constituent units that constitute said polyester, more preferably at least about 90 mol %.
- Such an embodiment is suitable for most applications, and is especially suitable for hot fill applications.
- the copolyester will be amorphous.
- stretched containers that comprise such an amorphous copolyester are more susceptible to heat shrinkage, and may have poor heat resistance and lower strength.
- a polyester resin including, but not limited to those discussed above, may be optionally copolymerized with any other bifunctional compound units except terephthalic acid units and ethylene glycol units, within the range not significantly interfering with the properties needed or desired for the container or preform.
- the proportion (mol %) of the additional units is preferably at most about 30 mol % relative to the total moles of all constituent units that constitute the polyester, more preferably at most 20 mol %, even more preferably at most 10 mol %.
- Preferred bifunctional compound units that may be in the resin include dicarboxylic acid units, diol units and hydroxycarboxylic acid units.
- Other bifunctional compounds are also employable for the purpose, including, for example, aliphatic bifunctional compound units, alicyclic bifunctional compound units and aromatic bifunctional compound units.
- Examples of preferred aliphatic bifunctional compound units include, but are not limited to, divalent structure units to be derived from aliphatic dicarboxylic acids and their ester-forming derivatives, such as malonic acid, succinic acid, adipic acid, azelaic acid and sebacic acid; from aliphatic hydroxycarboxylic acids and their ester-forming derivatives, such as 10-hydroxyoctadecanoic acid, lactic acid, hydroxyacrylic acid, 2-hydroxy-2-methylpropionic acid and hydroxybutyric acid, and from aliphatic diols such as trimethylene glycol, tetramethylene glycol, hexamethylene glycol, neopentyl glycol, methylpentanediol and diethylene glycol.
- Neopentyl glycol units are preferred aliphatic bifunctional compound units, since copolyesters comprising the units do not lower the heat resistance of the multi-layered containers comprising them and are easy to produce.
- Examples of alicyclic bifunctional compound units include, but are not limited to, divalent structure units to be derived from alicyclic dicarboxylic acids and their ester-forming derivatives, such as cyclohexanedicarboxylic acid, norbornenedicarboxylic acid and tricyclodecanedicarboxylic acid; alicyclic hydroxycarboxylic acids and their ester-forming derivatives such as hydroxymethylcyclohexane-carboxylic acid, hydroxymethylnorbornenecarboxylic acid and hydroxymethyltricyclodecanecarboxylic acid; and alicyclic diols such as cyclohexanedimethanol, norbornenedimethanol and tricyclodecanedimethanol.
- Cyclohexanedimethanol units or cyclohexanedicarboxylic acid units are preferred alicyclic bifunctional compound units, since copolyesters comprising them are easy to produce. Further, these units improve the drop-impact strength of the containers and greatly improve the transparency thereof.
- the cyclohexanedimethanol unit as referred to herein is meant to indicate at least one divalent unit selected from 1,2-cyclohexanedimethanol units, 1,3-cyclohexanedimethanol units and 1,4-cyclohexanedimethanol units.
- the cyclohexanedicarboxylic acid unit also referred to herein is to indicate at least one divalent unit selected from 1,2-cyclohexanedicarboxylic acid units, 1,3-cyclohexanedicarboxylic acid units and 1,4-cyclohexanedicarboxylic acid units.
- 1,4-cyclohexanedimethanol units and 1,4-cyclohexanedicarboxylic acid units are more preferred.
- 1,4-cyclohexanedimethanol units and 1,4-cyclohexanedicarboxylic acid units are easily available and since copolyesters comprising them and even moldings from such copolyesters could have higher drop-impact strength.
- Preferred aromatic bifunctional compound units may be any of aromatic dicarboxylic acid units, aromatic hydroxycarboxylic acid units and aromatic diol units.
- Examples include, but are not limited to, divalent units to be derived from aromatic dicarboxylic acids except terephthalic acid and their ester-forming derivatives, such as isophthalic acid (IPA), phthalic acid, biphenyldicarboxylic acid, diphenyl ether-dicarboxylic acid, diphenyl sulfone-dicarboxylic acid, diphenyl ketone-dicarboxylic acid, sodium sulfoisophthalate, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid and 2,7-naphthalenedicarboxylic acid; aromatic hydroxycarboxylic acids and their ester-forming derivatives, such as hydroxybenzoic acid, hydroxytoluic acid, hydroxynaphthoic acid, 3-(hydroxyphenyl)
- At least one of isophthalic acid units, phthalic acid units, naphthalenedicarboxylic acid units and 4,4′-biphenyldicarboxylic acid units are preferred as the aromatic dicarboxylic acid units for bifunctional compound units, since copolyesters comprising them are easy to produce and since the monomer costs for them are low.
- isophthalic acid is advantageous in that the moldability of copolyesters comprising IPA is good. Further these IPA copolyesters exhibit a broad range of molding conditions resulting in good moldings and a low percentage of failed moldings.
- the acid is further advantageous in that it retards the crystallization rate of the copolyesters comprising it thereby preventing the whitening of the copolyester molding.
- Naphthalenedicarboxylic acid is also advantageous in that it increases the glass transition point of copolyesters comprising it and even increases the heat resistance of containers comprising the copolyesters.
- naphthalenedicarboxylic acid-copolymerized polyesters absorb UV rays, and are therefore preferably used in producing containers that are desired to be resistant to UV rays.
- the thermoplastic polyester to be used for producing the containers has a naphthalenedicarboxylic acid component in an amount of from 0.1 to 15 mol %, more preferably from 1.0 to 10 mol %, but also including about 0.5, 2, 3, 4, 5, 6, 7, 8, 9, 10.5 mol % relative to the sum total of all dicarboxylic acid components constituting it.
- 2,6-naphthalenedicarboxylic acid component is preferred as naphthalenedicarboxylic acid, since copolyesters comprising it are easy to produce and since the monomer cost for it is low.
- aromatic bifunctional compound units include, but are not limited to, diol units to be derived from 2,2-bis(4-(2-hydroxyethoxy)phenyl)propane, 2-(4-(2-(2-hydroxyethoxy)-ethoxy)phenyl)-2-(4-(2-hydroxyethoxy)phenyl)propane, 2,2-bis(4-(2-(2-hydroxyethoxy)ethoxy)phenyl)propane, bis(4-(2-hydroxyethoxy)phenyl)sulfone, (4-((2-hydroxyethoxy)ethoxy)phenyl)-(4-(2-hydroxyethoxy)phenyl)sulfone, 1,1-bis(4-(2-hydroxyethoxy)phenyl)cyclohexane, 1-(4-(2-(2-hydroxyethoxy)ethoxy)ethoxy)phenyl)-1-(4-(2-hydroxyethoxy)phenyl)-cyclohexane, 1,1-bis(4-(2-hydroxy
- diol units mentioned above preferred are 2,2-bis(4-(2-hydroxyethoxy)phenyl)propane units, bis(4-(2-hydroxyethoxy)phenyl)sulfone units and 1,4-bis(2-hydroxyethoxy)benzene units, since polyester resins comprising any of those diol units are easy to produce while having good melt stability. Further, moldings from such resins have good color tone and good impact resistance.
- Suitable polyester resins for the thermoplastic polyester layer of certain embodiments may have one or more bifunctional compound units including, but not limited to, those mentioned above. Resins containing such monomers in addition to terephthalic acid are referred to herein as PET-containing copolymers. Preferred polyester resins may contain a small amount of diethylene glycol units from diethylene glycol, which is a dimer of an ethylene glycol component and is formed as a minor by-product in the process of producing the polyester resin. Because of potential problems involving factors such as glass transition point, heat resistance, mechanical strength and color tone of moldings such as bottles, it is preferred that the proportion of the diethylene glycol units in the polyester resin be kept relatively low. Accordingly, in a preferred embodiment, the proportion of the diethylene glycol units in the polyester resin is smaller than 3 mol %, including 1 and 2 mol %, relative to the total moles of all constituent units of the polyester resin.
- Polyester resins used in accordance with a preferred embodiment may be optionally copolymerized with polyfunctional compound units, including, but not limited to, those preferably derived from at least one polyfunctional compound having at least three groups selected from carboxyl groups, hydroxyl groups and their ester-forming groups.
- the proportion of the polyfunctional compound units in the polyester resin are no more than 0.5 mol % relative to the total moles of all constituent units of the polyester.
- the polyfunctional compounds from which the polyfunctional compound units are derived may be any of polyfunctional compounds, including, but not limited to those having at least three carboxyl groups only, those having at least three hydroxyl groups only, and those having at least three carboxyl and hydroxyl groups in total.
- Suitable polyfunctional compound units include, but are not limited to, those derived from aromatic polycarboxylic acids such as trimesic acid, trimellitic acid, 1,2,3-benzenetricarboxylic acid, pyromellitic acid and 1,4,5,8-naphthalenetetracarboxylic acid; aliphatic polycarboxylic acids such as 1,3,5-cyclohexanetricarboxylic acid; aromatic polyalcohols such as 1,3,5-trihydroxybenzene; aliphatic or alicyclic polyalcohols such as trimethylolpropane, pentaerythritol, glycerin and 1,3,5-cyclohexanetriol; aromatic hydroxycarboxylic acids such as 4-hydroxyisophthalic acid, 3-hydroxyisophthalic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid, protocatechuic acid, gall
- a preferred polyester resin for the thermoplastic polyester layer of a preferred embodiment may comprise at least one polyfunctional compound unit such as, but not limited to, those mentioned above.
- a preferred polyester resin preferably comprises at least one polyfunctional compound unit to be derived from trimellitic acid, pyromellitic acid, trimesic acid, trimethylolpropane and pentaerythritol, in view of the ease of producing the polyesters and the costs for their production.
- embodiments comprising such polyfunctional compound units may further comprise monofunctional compound units to be derived from at least one of monofunctional compounds such as, but not limited to, monocarboxylic acids, monoalcohols and their ester-forming derivatives.
- the proportion of the monofunctional compound units is at most about 5 mol %, more preferably at most about 1%, but also including about 2, 3, and 4%, relative to the total moles of all constituent units of the resin. Where the resin contains two or more different monofunctional compound units, the proportion indicates the total of all those units.
- Monofunctional compounds can be used to retard gellation when used at preferred concentrations. This is because gelling of the resin that satisfies the requirement is retarded in many cases. If the proportion of the monofunctional compound units is larger than about 5 mol %, the polymerization rate in producing the polyester resin, through melt or solid-phase polymerization, may be low which further unfavorably lowers the producibility of said polyester resin.
- these units function as blocking compound units to block the terminal groups of the molecular chain or the terminal groups of the branched chains in the polyester resin, whereby the polyester resin is prevented from being too crosslinked and from being gelled.
- Preferred monofunctional compound units are not specifically defined, but preferably include, but are not limited to, those derived from at least one of monocarboxylic acids, monoalcohols and their ester-forming derivatives.
- Suitable monofunctional compound units include, but are not limited to, units derived from monofunctional compounds, for example, aromatic monocarboxylic acids such as benzoic acid, o-methoxybenzoic acid, m-methoxybenzoic acid, p-methoxybenzoic acid, o-methylbenzoic acid, m-methylbenzoic acid, p-methylbenzoic acid, 2,3-dimethylbenzoic acid, 2,4-dimethylbenzoic acid, 2,5-dimethylbenzoic acid, 2,6-dimethylbenzoic acid, 3,4-dimethylbenzoic acid, 3,5-dimethylbenzoic acid, 2,4,6-trimethylbenzoic acid, 2,4,6-trimethoxybenzoic acid, 3,4,5-trimethoxybenzoic acid, 1-naphthoic acid, 2-naphthoic acid, 2-biphenylcarboxylic acid, 1-naphthalenacetic acid and naphthalenacetic acid; aliphatic
- a preferred polyester resin may comprise at least one monofunctional compound units such as, but not limited to, those mentioned above.
- monofunctional compound units such as, but not limited to, those mentioned above.
- those to be derived from one or more monofunctional compounds selected from benzoic acid, 2,4,6-trimethoxybenzoic acid, 2-naphthoic acid, stearic acid and stearyl alcohol are preferred for the polyesters for use in accordance with preferred embodiments, in view of the ease in producing the polyesters and of the costs for their production.
- the thermoplastic polyester of a preferred embodiment comprises or consists essentially of an ethylene terephthalate component, otherwise known as polyethylene terephthalate or PET.
- the PET used in accordance with preferred embodiments may be copolymerized with suitable amounts of one or more comonomer components. It is desirable that the thus-copolymerized polyester resin contains a comonomer component in an amount of from 1 to 6 mol %, relative to the total moles of all constituent units of the polyester, including about 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 and 5.5 mol %.
- some other comonomers may be added to the resin so as to make the resin copolymerized with them within the range noted above.
- Such other comonomers are not specifically defined, for which any of the monomers mentioned above are usable.
- Some preferred monomers include, but are not limited to, neopentyl glycol, cyclohexanedimethanol (CHDM), cyclohexanedicarboxylic acid, isophthalic acid (IPA), and naphthalenedicarboxylic acid (NDC).
- Preferred polyamides are preferably selected from the group of partially aromatic polyamides and can be formed from isophthalic acid, terephthalic acid, cyclohexanedicarboxylic acid, meta- or para-xylylene diamine, 1,3- or 1,4-cyclohexane(bis)methylamine, aliphatic diacids with 6 to 12 carbon atoms, aliphatic amino acids or lactams with 6 to 12 carbon atoms, aliphatic diamines with 4 to 12 carbon atoms, and other generally known polyamide forming diacids and diamines can be used.
- Preferred polyamides may also contain small amounts of trifunctional or tetrafunctional comonomers such as trimellitic anhydride, pyromellitic dianhydride, or other polyamide forming polyacids and polyamines known in the art.
- Preferred partially aromatic polyamides include, but are not limited to, poly(m-xylylene adipamide), poly(hexamethylene isophthalamide), poly(hexamethylene adipamide-co-isophthalamide), poly(hexamethylene adipamide-co-terephthalamide), and poly(hexamethylene isophthalamide-co-terephthalamide).
- One preferred partially aromatic polyamide is poly(m-xylylene adipamide) having a number average molecular weight of 7,000 to 39,000, including 9,000, 11,000, 13,000, 15,000, 17,000, 19,000, 21,000, 23,000, 25,000, 27,000, 29,000, 31,000, 33,000, 35,000 and 37,000, and/or an inherent viscosity of 0.6 to 0.9 dL/g, also including 0.65, 0.7, 0.75, 0.8, and 0.85 dL/g.
- Preferred aliphatic polyamides include, but are not limited to, poly(hexamethylene adipamide) and poly(caprolactam).
- the most preferred low molecular weight aliphatic polyamide is poly(hexamethylene adipamide) having a number average molecular weight of 13,000 to 16,000, but also including 13,500, 14,000, 14,500, 15,000 and 15,500, and/or an inherent viscosity of 0.7 to 0.9 dL/g, but also including 0.75, 0.8, and 0.85 dL/g.
- Aliphatic and partially aromatic polyamides of preferred embodiments used in conjunction with polyester uniformly decrease the acetaldehyde concentration in articles formed from such blends.
- Partially aromatic polyamides are preferred over the aliphatic polyamides where clarity and dispersibility are crucial.
- Polyamides are generally prepared by melt phase polymerization from a diacid-diamine complex which may be prepared either in situ or in a separate step. In either method, the diacid and diamine are used as starting materials. Alternatively, an ester form of the diacid may be used, preferably the dimethyl ester. If the ester is used, the reaction should be carried out at a relatively low temperature, generally 80 to 120° C., until the ester is converted to an amide. The mixture is then heated to the polymerization temperature.
- caprolactam either caprolactam or 6-aminocaproic acid can be used as a starting material and the polymerization may be catalyzed by the addition of adipic acid/hexamethylene diamine salt which results in a nylon 6/66 copolymer.
- the diacid-diamine complex When the diacid-diamine complex is used, the mixture is heated to melting and stirred until equilibration. The molecular weight is controlled by the diacid-diamine ratio. An excess of diamine produces a higher concentration of terminal amino groups which are available to react with acetaldehyde. If the diacid-diamine complex is prepared in a separate step, excess diamine is added prior to the polymerization.
- the polymerization can be carried out either at atmospheric pressure or at elevated pressures.
- a preferred polyamide is MXD6 available from Mitsubishi Gas Chemical (Japan).
- Preferred compatibilizers include, but are not limited to, polyester ionomers, preferably PET ionomers, IPA modified PET, p-toluene sulfonic acid (pTSA) modified PET, pyrometillic dianhydride (PMDA) modified PET, and maleic anhydride modified PET.
- Other preferred compatibilizers include acrylic modified polyolefin type ionomer and low molecular weight bisphenol-A epoxy resin-E44 which may be added directly to a PET/polyamide blend.
- trimellitic anhydride may be added to the polyamide, transesterified, mixed with PET and then coupled using a bifunctional coupler such as, but not limited to, diphenylmethane-4,4-diisocyanate (MDI), diphenylmethane-4,4-diisopropylurethante (DU), or bisoxazoline (BOX).
- a bifunctional coupler such as, but not limited to, diphenylmethane-4,4-diisocyanate (MDI), diphenylmethane-4,4-diisopropylurethante (DU), or bisoxazoline (BOX).
- compatibilizers preferably one or more properties of the polyamide/polyester blends are improved, such properties including, color, haze, and adhesion between a layer comprising a blend and a layer comprising polyester.
- Preferred polyester ionomers include those disclosed in U.S. Pat. No. 6,500,895 B1, the disclosure of which is hereby incorporated by reference in its entirety.
- the ionomers disclosed therein comprise repeating units having the formula:
- R is hydrogen.
- R 1 is alkylene having from one to about six carbon atoms; more preferably R 1 is ethylene or butylene.
- M is preferably an alkali or alkaline earth metal; M is more preferably sodium or potassium.
- Preferred PET ionomers include sulfonated PET.
- a preferred sulfonated PET is Crystar® available from E.I. du Pont de Nemours and Company, Wilmington, Del., USA.
- they may be used in concentrations of about 0.01 weight % to about 15 weight % of the total blend, preferably about 1 weight % to about 10 weight %, also including about 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, and 14 weight %.
- other PET ionomer compatibilizers may be used in similar quantities.
- a preferred modified PET-type compatibilizer is IPA modified PET.
- IPA modified PET preferably comprises from about 1 mole % to about 6 mole % IPA of the total blend, including about 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 and 5.5 mol %.
- modified PET compatibilizers may be used in similar quantities.
- Another preferred ionomer-type compatibilizer is a methacrylic acid modified olefinic ionomer.
- a preferred methacrylic acid modified olefinic ionomer is Surlyn® also available from E.I. du Pont de Nemours and Company.
- methacrylic acid modified olefinic ionomers they may be used in concentrations of about 0.01 weight % to about 15 weight % of the total blend, preferably about 1 weight % to about 10 weight %, also including about 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, and 14 weight %. In other embodiments, other compatibilizers may be used in similar quantities.
- compositions of preferred embodiments can be added to enhance the performance properties of preferred blends.
- crystallization aids for example, crystallization aids, impact modifiers, surface lubricants, denesting agents, stabilizers, antioxidants, ultraviolet light absorbing agents, metal deactivators, colorants such as titanium dioxide and carbon black, nucleating agents such as polyethylene and polypropylene, phosphate stabilizers, fillers, and the like, can be included herein. Additives of these types and the use thereof are well known in the art and do not require extensive discussions. Therefore, only a limited number will be referred to, it being understood that any of these compounds can be used so long as they do not interfere or hinder the present invention.
- the slight yellow color generated during processing can be masked by addition of a blue dye.
- the colorant can be added to either component of the blend during polymerization or added directly to the blend during compounding. If added during blending, the colorant can be added either in pure form or as a concentrate. The amount of a colorant depends on its absorptivity and the desired color for the particular application.
- a preferred colorant is 1-cyano-6-(4-(2-hydroxyethyl)anilino)-3-methyl-3H-dibenzo(F,I,J)-isoquinoline-2,7-dione used in an amount of from 2 to 15 ppm, but also including 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 ppm.
- Desirable additives also include impact modifiers and antioxidants.
- impact modifiers include ethylene/propylene terpolymers, styrene based block copolymers, and various acrylic core/shell type impact modifiers.
- the impact modifiers may be used in conventional amounts from 0.1 to 25 weight percent of the overall composition and preferably in amounts from 0.1 to 10, but also including, 1, 2, 3, 4, 5, 6, 7, 8, and 9, weight percent of the composition.
- antioxidants useful herein include, but are not limited to, hindered phenols, phosphites, diphosphites, polyphosphites, and mixtures thereof. Combinations of aromatic and aliphatic phosphite compounds may also be included. Irgafos XP60 FF (Ciba Geigy) is a preferred antioxidant/processing aid to minimize haze and/or color formation normally associated with polyamide/PET blends.
- nanocomposites may also be added. These nanocomposites or nanoparticles are tiny particles of materials which enhance the barrier properties of a material by creating a more tortuous path for migrating oxygen or carbon dioxide.
- One preferred type of nanoparticular material is a microparticular clay-based product available from Southern Clay Products. Preferably these are added to the polyamide prior to compatibilization of the polyamide with the PET.
- a preferred process for preparing polyamide/polyester/compatibilizer blends involves preparing the polyester, polyamide, and compatibilizer respectively, by processes as mentioned previously.
- the polyester, polyamide, and compatibilizer are dried in an atmosphere of dried air or dried nitrogen, or under reduced pressure.
- the polyester, polyamide, and compatibilizer are mixed and subsequently melt compounded, for example, in a single or twin-screw extruder.
- Melt temperatures should be at least as high as the melting point of the polyester and are typically in the range of 260-310° C.
- the melt compounding temperature is maintained as low as possible within said range.
- the extrudate is withdrawn in strand form, and recovered such as by cutting or pelleting.
- the polyester and polyamide may be dry-blended and over-molded or draw-formed into plastic articles or preforms.
- the pellets or cuttings prepared by melt compounding described above then undergo solid state polymerization (SSP).
- SSP solid state polymerization
- a preferred SSP process comprises heating the pellets or cuttings, preferably under an inert atmosphere, thereby causing solid state polymerization and/or reactive compatibilization to occur.
- SSP advantageously increases the molecular weight and melt viscosity of the blend. Increased melt viscosity results in improved control of the layers in multilayer injection processes.
- the residence time for the mixing portion of the melt compounding may be reduced as the compatibilization process continues during SSP.
- a preferred temperature for SSP is above the glass transition point of the materials but below the melting point of the materials, preferably above 100° C.
- the blends of preferred embodiments serve as excellent starting materials for the production of moldings of all types.
- preferred embodiments may be monolayer or multilayer containers produced by overmolding, such as by using the process noted supra.
- Other embodiments may also be produced by other suitable processes such as coinjection or extrusion.
- Specific applications include various packaging applications such as thermoformed or injection molded trays, lids and cups; injection stretch blow-molded bottles, film and sheet; extrusion blow-molded bottles and multilayer articles. Examples of package contents include, but are not limited to, food, beverages, and cosmetics.
- PET blends with MXD6 are known in the industry and are utilized for oxygen and carbon dioxide barrier enhancement. Published literature shows that improved oxygen barrier properties can be obtained with increasing amounts of MXD6, but this increase also produces significant haze formation.
- MXD6 can be used as a blend in PET or as an inner layer in a multilayer container. These MXD6/PET containers will extend the shelf life of oxygen sensitive food products such as orange juice, tea, beer, etc. In addition, MXD6 can be used to reduce the carbon dioxide permeability of the container or bottle to extend the shelf life of carbonated beverages.
- blends are preferably compatible with recycle streams.
- IPA modified PET where IPA represents 2-5 mole % of the total blend content
- IPA represents 2-5 mole % of the total blend content
- an antioxidant/processing aid such as Irgafos XP
- the presence of the antioxidant or stabilizer/processing aid is thought to prevent oxidation of the MXD6 at PET processing conditions.
- the IPA modified PET resin is believed to compatibilize the MXD6 with the PET. This compatibilization also reduces haze and/or color formation.
- Another compatibilizer that can be used with the polyamide/PET blend is a PET ionomer comprising sulfonated PET.
- the compatibilized polymer blend is used to form a monolayer preform or container such as by injection molding.
- Preferred monolayer preforms or containers comprise a compatibilized polymer blend comprising a polyamide such as MXD6, PET or a PET-containing copolymer, and at least one compatibilizer.
- said compatibilized polymer blend further comprises an antioxidant.
- PET may include one or more of the following: virgin PET, recycled PET, and post-consumer PET.
- Suitable compatibilizers include one or more of the following: PET ionomers, IPA modified PET, p-toluene sulfonic acid (pTSA) modified PET, pyrometillic dianhydride (PMDA) modified PET, maleic anhydride modified PET, acrylic-modified polyolefin ionomer, and bisphenol-A epoxy resin.
- Preferred compatibilizers comprise IPA modified PET and PET ionomers.
- IPA modified PET comprises from about 1 mole % to about 6 mole % IPA of the total blend, also including about 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 and 5.5 mole %.
- Preferred PET ionomers comprise sulfonated PET.
- the compatibilized polymer blend is disposed about the neck and body of the preform or container while in other embodiments at least the body of the container or preform comprises the compatibilized polymer blend.
- the compatibilized polymer blend is used to form a multilayer preform or container such as by processes described above.
- Preferred multilayer preforms or containers comprise at least one layer of a compatibilized polymer blend comprising a polyamide such as MXD6, PET or a PET-containing copolymer, and at least one compatibilizer and at least one layer of a thermoplastic polyester, preferably as PET or a PET-containing copolymer.
- the first layer of the container or preform comprises the compatibilized polymer blend with the second layer of PET adhered directly to said first layer.
- said preform or container comprises one or more compatibilized polymer blend layers and one or more PET layers.
- said compatibilized polymer blend further comprises an antioxidant.
- Suitable compatibilizers include one or more of the following: PET ionomers, IPA modified PET, p-toluene sulfonic acid (pTSA) modified PET, pyrometillic dianhydride (PMDA) modified PET, maleic anhydride modified PET, acrylic-modified polyolefin ionomer, and bisphenol-A epoxy resin.
- Preferred compatibilizers comprise IPA modified PET and PET ionomers.
- IPA modified PET comprises from about 1 mole % to about 6 mole % IPA of the total blend, also including about 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 and 5.5 mole %.
- Preferred PET ionomers comprise sulfonated PET.
- Said thermoplastic layer may include one or more of the following: virgin PET, recycled PET, and post-consumer PET.
- the compatibilized polymer blend is disposed about the neck and body of the preform or container while in other embodiments at least the body of the container or preform comprises the compatibilized polymer blend.
- concentrates of the compatibilized polymer blends may be used.
- the use of concentrates allows for processing flexibility.
- Preferred concentrates may have a majority of either polyamide or PET or a PET-containing copolymer.
- concentrates can then be diluted with PET or PET recycle resin at desired quantities and injection molded as a monolayer or multilayer structure with reduced haze and/or color.
- the final content of polyamide, such as MXD6, in the finished blend following dilution is less than or equal to 15 mole % of the total blend, but also including about 1, 3, 5, 7, 9, and 12 mole %, based on cost versus performance concerns.
- the concentrates may also be used without further dilution, such as by using coextrusion or coinjection, in applications where the polyamide/PET/compatibilizer layer is sandwiched between other layers of the container.
- preferred MXD6/PET/compatibilizer blends where the PET contains IPA and/or a PET ionomer can be utilized via a concentrate.
- Exemplary concentrates include the following wherein the percentages below refer to the percent of the total concentrate (which are not to be taken as limiting on the invention):
- 0.1-10.0 weight % PET ionomer also includes, 1, 2, 3, 4, 5, 6, 7, 8, and 9 weight % PET ionomer of the total concentrate.
- concentrates may have higher percentages of polyamide and/or higher IPA both as concentrates and when diluted.
- the concentrates are blended with polyester, preferably PET, so that the polyamide concentration of the final blend used on the container is equal to or less than 15 mole % of the total blend, including about 1, 3, 5, 7, 9, and 12 mole %.
- other compatibilizers may be used in similar concentrations.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Laminated Bodies (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
- Wrappers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
- This application claims priority under 35 U.S.C. 119(e) from provisional application Ser. No. 60/366,701 filed Mar. 21, 2002, the disclosure of which is incorporated in its entirety herein by reference.
- 1. Field of the Invention
- The present invention relates to compatibilized polymer blends comprising polyester, polyamide and a compatibilizer. Such compatibilized polymer blends, in preferred embodiments, are fabricated into monolayer or multilayer preforms and/or containers.
- 2. Description of the Related Art
- Thermoplastic polyester containers as produced through stretch blow molding have various excellent properties including good transparency, good mechanical characteristics and good flavor barrier properties, and are sanitary and safe for daily use. Therefore, they have many applications in various fields. However, since their gas barrier properties are not always satisfactory, drinks, foods and others in them could be stored only a relatively short period of time.
- In order to achieve extended shelflife of PET containers by improving barrier and mechanical properties, various methods of combining a thermoplastic polyester with a polyamide or Nylon barrier resin such as MXD6 with good gas barrier properties to give laminated structures have been proposed. Prior to stretch blowing, a preform (parison) is first formed. For forming the preform, various techniques e.g. coinjection molding, coextrusion molding, multi-stage, including multilayer, injection molding, etc. are employed. Of these, multilayer injection molding is characterized by many as a suitable apparatus and method and the preforms produced through it would have a three or five layer structure in which each polyamide layer is sandwiched between PET layers and therefore, even though the moldings have no adhesive resin (Ad) layer between the MXD6 layer and the PET layers they could be suitable multi-layered containers with seemingly good appearance at atmospheric pressures.
- However, when such containers filled with drinks, foods and others are shocked, for example, by dropping them, the PET layers and the MXD6 layer are easily delaminated, thereby causing a serious problem with appearance and performance of the containers. In that situation, coinjected molded containers having adhesive layers between each polyamide and PET layer have been proposed. Alternatively, the PET multilayer container may be overdesigned by the incorporation of more overall weight in the preform/bottle to better resist delamination.
- Such options have been investigated. However, the equipment for producing them is often extremely complicated, and, in addition, controlling the thickness and/or positioning of each layer constituting them is often difficult. Therefore, those containers are inferior to others having no adhesive layer in view of the production costs and the processability.
- Other methods have also been investigated of blending MXD6 with any other resins for increasing the delamination resistance of containers with no Ad layer. For example, in JP-A-1-176554 a method of blending MXD6 with a polyamide-ester type thermoplastic resin, in JP-A-1-182023 a method of blending it with a metal-containing polyester type thermoplastic resin, and in JP-A-3-175032 a method of blending it with a thermoplastic polyurethane is disclosed. However, blending MXD6 with such other resins in producing containers lowers the transparency of the containers produced, and the containers will generally have an extremely bad appearance. In addition, the blending increases the production costs, and, depending on the type of the resins to be blended, there will occur still other problems in that the melt stability of the blends will be poor, acetaldehyde content will be high, and the barrier properties will be inadequate.
- In accordance with preferred embodiments, there is provided a compatibilized polymer blend, comprising polyamide, PET or a PET-containing copolymer, and at least one compatibilizer. Preferred compatibilizers include modified PET, including IPA modified PET, p-toluene sulfonic acid (pTSA) modified PET, pyrometillic dianhydride (PMDA) modified PET, and maleic anhydride modified PET; PET ionomers, including sulfonated PET, acrylic-modified polyolefin ionomer; and bisphenol-A epoxy resin, preferably of low molecular weight. In a preferred embodiment, a compatibilized polymer blend comprises polyamide, preferably MXD-6, PET or a PET-containing copolymer, and at least one compatibilizer selected from IPA-modified PET and PET ionomer. Although PET ionomers are preferred, other polyester ionomers such as polybutylene terephthalate (PBT) ionomers and polypropylene (PPT) ionomers may also be used. In some embodiments, the compatibilized polymer blend can further comprise at least one antioxidant. In a preferred embodiment, the blend which forms a monolayer preform or container or one layer of a preform or container comprises 15 mole % or less polyamide.
- In a preferred embodiment, the compatibilized polymer blend is formed by a process comprising blending the polyamide, PET or PET-containing copolymer, and compatibilizer in the melt phase; extruding the blend into pellets; and heating said pellets, preferably in an inert atmosphere, to a temperature between the blend's glass transition temperature and melt temperature thereby causing solid state polymerization and/or reactive compatibilization to occur. In some embodiments, the heating step may be omitted.
- In accordance with preferred embodiments, a compatibilized polymer blend is used to form a monolayer or multilayer preform or container. For example, one preferred preform or container is that which comprises a body and a neck finish, wherein at least said body comprises at least a first layer comprising a compatibilized polymer blend, said compatibilized polymer blend comprising polyamide, PET or a PET-containing copolymer, and at least one compatibilizer, preferably IPA-modified PET or PET ionomer. In a preferred embodiment, the polyamide constitutes less than or equal to about 15 mol % of the blend. In accordance with another preferred embodiment, there is provided a multilayer preform or container, comprising a body portion and a neck finish; wherein at least said body portion comprises at least one layer comprising a compatibilized polymer blend, said compatibilized polymer blend comprising polyamide, PET or a PET-containing copolymer, and at least one compatibilizer, preferably IPA-modified PET or PET ionomer, and at least one layer comprising thermoplastic polyester, preferably PET or PET-containing copolymer. The multilayer preform or container may further comprise a third layer comprising a thermoplastic polyester, preferably PET or PET-containing copolymer.
- In accordance with a preferred embodiment, there is provided a preform or container comprising a body portion and a neck finish, wherein at least said body portion comprises at least first and second layers, wherein said first layer comprises PET or a PET-containing copolymer; and said second layer comprises a compatibilized polymer blend, said compatibilized polymer blend comprising polyamide, PET or a PET-containing copolymer, and at least one compatibilizer selected from IPA-modified PET and PET ionomers.
- Containers and preforms made from preferred compatibilized polymer blends exhibit lower haze as compared to those made from non-compatibilized blends. In multilayer containers and preforms, layers made from compatibilized polymer blends according to preferred embodiments may also exhibit greater adhesion to PET than those made from non-compatibilized blends.
- Disclosed herein are compatibilized polyester/polyamide blends and containers made therefrom with greatly improved impact delamination resistance, adhesion, color, and clarity. In addition, these containers preferably have one or more of the following properties: excellent gas barrier properties against oxygen, carbon dioxide and other gasses, stable resin melts as well as improved appearance.
- A preferred container is of the type used for beverages. Alternatively, embodiments of the container could take the form of jars, tubs, trays or bottles for holding edibles, cosmetics, and the like. Preferred containers may comprise a single layer or multiple layers. As presently contemplated, one embodiment of a container is formed from a preform comprising a body and a neck finish which is stretch blow molded into a container. However, for the sake of simplicity, these embodiments will be described herein primarily as containers or preforms.
- Furthermore, the containers described herein may be described specifically in relation to a particular component, polyethylene terephthalate (PET), but preferred methods are applicable to many other thermoplastics of the polyester type described herein. Other suitable polyesters include, but are not limited to, polypropylene, polyethylene, polycarbonate, polyamides or acrylics.
- In addition, preferred containers described herein may be described specifically in relation to a particular component, MXD6 or nylon, but preferred methods are applicable to other polyamides, and such description should not be taken to exclude such other polyamides.
- As used herein, the terms substantially or predominantly indicates that the component described is present as 50% or more of the total content. PET is used to describe virgin and/or recycled polyethylene terephthalate polymers, including virgin and/or recycled PET-containing copolymers. IPA modified PET is used to describe PET comprising isophthalic acid (IPA).
- In one embodiment, a container is a single layer comprising a blend of polyamide, polyester, and a compatibilizer. Other embodiments comprise at least one layer of a blend of polyamide, polyester, and a compatibilizer and at least one layer comprising a thermoplastic polyester. For example, a multi-layered container may be prepared by over-molding a polyester resin with a polyamide/polyesterterephthalate/compatibilizer resin mixture. In one embodiment, a container may comprise a first layer of thermoplastic polyester and a second layer comprising a blend of a polyamide, such as MXD6, and PET having an isophthalic acid content of from about 2 to 15 mol % wherein the isophthalic acid acts as a compatibilizer. Further, a blend comprising polyamide/PET/compatibilizer, also referred to herein as a compatibilized polymer blend, may also include an antioxidant to prevent haze and/or color formation inherent with polyamide/PET blends. As presently contemplated, one preferred, process for producing these layers comprises an overmolding process as disclosed in U.S. Pat. No. 6,352,426 B1 the disclosure of which is incorporated in its entirety herein by reference. Further, these layers may also be produced by any suitable process, including coinjection, injection molding with or without overmolding, and coextrusion.
- Preferred thermoplastic polyesters include, but are not limited to, condensed polymers that comprise an aromatic dicarboxylic acid or its alkyl ester and a diol. Suitable resins include a polyester resin including or consisting essentially of an ethylene terephthalate component. In one embodiment, it is desirable that the total proportion (mol %) of terephthalic acid units and ethylene glycol units constituting a preferred polyester is at least about 70 mol % relative to the total moles of all constituent units that constitute said polyester, more preferably at least about 90 mol %. Such an embodiment is suitable for most applications, and is especially suitable for hot fill applications. If the total proportion of terephthalic acid units and ethylene glycol units constituting the preferred polyester is smaller than about 70 mol %, the copolyester will be amorphous. When hot filled, stretched containers that comprise such an amorphous copolyester are more susceptible to heat shrinkage, and may have poor heat resistance and lower strength.
- A polyester resin, including, but not limited to those discussed above, may be optionally copolymerized with any other bifunctional compound units except terephthalic acid units and ethylene glycol units, within the range not significantly interfering with the properties needed or desired for the container or preform. In the embodiment discussed above, the proportion (mol %) of the additional units is preferably at most about 30 mol % relative to the total moles of all constituent units that constitute the polyester, more preferably at most 20 mol %, even more preferably at most 10 mol %. Preferred bifunctional compound units that may be in the resin include dicarboxylic acid units, diol units and hydroxycarboxylic acid units. Other bifunctional compounds are also employable for the purpose, including, for example, aliphatic bifunctional compound units, alicyclic bifunctional compound units and aromatic bifunctional compound units.
- Examples of preferred aliphatic bifunctional compound units, include, but are not limited to, divalent structure units to be derived from aliphatic dicarboxylic acids and their ester-forming derivatives, such as malonic acid, succinic acid, adipic acid, azelaic acid and sebacic acid; from aliphatic hydroxycarboxylic acids and their ester-forming derivatives, such as 10-hydroxyoctadecanoic acid, lactic acid, hydroxyacrylic acid, 2-hydroxy-2-methylpropionic acid and hydroxybutyric acid, and from aliphatic diols such as trimethylene glycol, tetramethylene glycol, hexamethylene glycol, neopentyl glycol, methylpentanediol and diethylene glycol. Neopentyl glycol units are preferred aliphatic bifunctional compound units, since copolyesters comprising the units do not lower the heat resistance of the multi-layered containers comprising them and are easy to produce.
- Examples of alicyclic bifunctional compound units include, but are not limited to, divalent structure units to be derived from alicyclic dicarboxylic acids and their ester-forming derivatives, such as cyclohexanedicarboxylic acid, norbornenedicarboxylic acid and tricyclodecanedicarboxylic acid; alicyclic hydroxycarboxylic acids and their ester-forming derivatives such as hydroxymethylcyclohexane-carboxylic acid, hydroxymethylnorbornenecarboxylic acid and hydroxymethyltricyclodecanecarboxylic acid; and alicyclic diols such as cyclohexanedimethanol, norbornenedimethanol and tricyclodecanedimethanol. Cyclohexanedimethanol units or cyclohexanedicarboxylic acid units are preferred alicyclic bifunctional compound units, since copolyesters comprising them are easy to produce. Further, these units improve the drop-impact strength of the containers and greatly improve the transparency thereof.
- The cyclohexanedimethanol unit as referred to herein is meant to indicate at least one divalent unit selected from 1,2-cyclohexanedimethanol units, 1,3-cyclohexanedimethanol units and 1,4-cyclohexanedimethanol units. The cyclohexanedicarboxylic acid unit also referred to herein is to indicate at least one divalent unit selected from 1,2-cyclohexanedicarboxylic acid units, 1,3-cyclohexanedicarboxylic acid units and 1,4-cyclohexanedicarboxylic acid units. Of the alicyclic bifunctional compound units noted above, more preferred are 1,4-cyclohexanedimethanol units and 1,4-cyclohexanedicarboxylic acid units, since they are easily available and since copolyesters comprising them and even moldings from such copolyesters could have higher drop-impact strength.
- Preferred aromatic bifunctional compound units may be any of aromatic dicarboxylic acid units, aromatic hydroxycarboxylic acid units and aromatic diol units. Examples include, but are not limited to, divalent units to be derived from aromatic dicarboxylic acids except terephthalic acid and their ester-forming derivatives, such as isophthalic acid (IPA), phthalic acid, biphenyldicarboxylic acid, diphenyl ether-dicarboxylic acid, diphenyl sulfone-dicarboxylic acid, diphenyl ketone-dicarboxylic acid, sodium sulfoisophthalate, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid and 2,7-naphthalenedicarboxylic acid; aromatic hydroxycarboxylic acids and their ester-forming derivatives, such as hydroxybenzoic acid, hydroxytoluic acid, hydroxynaphthoic acid, 3-(hydroxyphenyl)propionic acid, hydroxyphenylacetic acid and 3-hydroxy-3-phenylpropionic acid, and aromatic diols such as bisphenol compounds and hydroquinone compounds. At least one of isophthalic acid units, phthalic acid units, naphthalenedicarboxylic acid units and 4,4′-biphenyldicarboxylic acid units are preferred as the aromatic dicarboxylic acid units for bifunctional compound units, since copolyesters comprising them are easy to produce and since the monomer costs for them are low.
- In particular, isophthalic acid (IPA) is advantageous in that the moldability of copolyesters comprising IPA is good. Further these IPA copolyesters exhibit a broad range of molding conditions resulting in good moldings and a low percentage of failed moldings. In addition, the acid is further advantageous in that it retards the crystallization rate of the copolyesters comprising it thereby preventing the whitening of the copolyester molding.
- Naphthalenedicarboxylic acid is also advantageous in that it increases the glass transition point of copolyesters comprising it and even increases the heat resistance of containers comprising the copolyesters. In addition, naphthalenedicarboxylic acid-copolymerized polyesters absorb UV rays, and are therefore preferably used in producing containers that are desired to be resistant to UV rays. For the purpose of protecting the contents of containers from UV rays, it is desirable that the thermoplastic polyester to be used for producing the containers has a naphthalenedicarboxylic acid component in an amount of from 0.1 to 15 mol %, more preferably from 1.0 to 10 mol %, but also including about 0.5, 2, 3, 4, 5, 6, 7, 8, 9, 10.5 mol % relative to the sum total of all dicarboxylic acid components constituting it. 2,6-naphthalenedicarboxylic acid component is preferred as naphthalenedicarboxylic acid, since copolyesters comprising it are easy to produce and since the monomer cost for it is low.
- Examples of suitable aromatic bifunctional compound units include, but are not limited to, diol units to be derived from 2,2-bis(4-(2-hydroxyethoxy)phenyl)propane, 2-(4-(2-(2-hydroxyethoxy)-ethoxy)phenyl)-2-(4-(2-hydroxyethoxy)phenyl)propane, 2,2-bis(4-(2-(2-hydroxyethoxy)ethoxy)phenyl)propane, bis(4-(2-hydroxyethoxy)phenyl)sulfone, (4-((2-hydroxyethoxy)ethoxy)phenyl)-(4-(2-hydroxyethoxy)phenyl)sulfone, 1,1-bis(4-(2-hydroxyethoxy)phenyl)cyclohexane, 1-(4-(2-(2-hydroxyethoxy)ethoxy)ethoxy)phenyl)-1-(4-(2-hydroxyethoxy)phenyl)-cyclohexane, 1,1-bis(4-(2-(2-hydroxyethoxy)ethoxy)phenyl)cyclohexane, 2,2-bis(4-(2-hydroxyethoxy)-2,3,5,6-tetrabromophenyl)propane, 1,4-bis(2-hydroxyethoxy)benzene, 1-(2-hydroxyethoxy)-4-(2-(2-hydroxyethoxy)ethoxy)benzene or 1,4-bis(2-(2-hydroxyethoxy)ethoxy)benzene. Of those diol units mentioned above, preferred are 2,2-bis(4-(2-hydroxyethoxy)phenyl)propane units, bis(4-(2-hydroxyethoxy)phenyl)sulfone units and 1,4-bis(2-hydroxyethoxy)benzene units, since polyester resins comprising any of those diol units are easy to produce while having good melt stability. Further, moldings from such resins have good color tone and good impact resistance.
- Suitable polyester resins for the thermoplastic polyester layer of certain embodiments may have one or more bifunctional compound units including, but not limited to, those mentioned above. Resins containing such monomers in addition to terephthalic acid are referred to herein as PET-containing copolymers. Preferred polyester resins may contain a small amount of diethylene glycol units from diethylene glycol, which is a dimer of an ethylene glycol component and is formed as a minor by-product in the process of producing the polyester resin. Because of potential problems involving factors such as glass transition point, heat resistance, mechanical strength and color tone of moldings such as bottles, it is preferred that the proportion of the diethylene glycol units in the polyester resin be kept relatively low. Accordingly, in a preferred embodiment, the proportion of the diethylene glycol units in the polyester resin is smaller than 3 mol %, including 1 and 2 mol %, relative to the total moles of all constituent units of the polyester resin.
- Polyester resins used in accordance with a preferred embodiment may be optionally copolymerized with polyfunctional compound units, including, but not limited to, those preferably derived from at least one polyfunctional compound having at least three groups selected from carboxyl groups, hydroxyl groups and their ester-forming groups. In one embodiment, the proportion of the polyfunctional compound units in the polyester resin are no more than 0.5 mol % relative to the total moles of all constituent units of the polyester. The polyfunctional compounds from which the polyfunctional compound units are derived may be any of polyfunctional compounds, including, but not limited to those having at least three carboxyl groups only, those having at least three hydroxyl groups only, and those having at least three carboxyl and hydroxyl groups in total. Suitable polyfunctional compound units, include, but are not limited to, those derived from aromatic polycarboxylic acids such as trimesic acid, trimellitic acid, 1,2,3-benzenetricarboxylic acid, pyromellitic acid and 1,4,5,8-naphthalenetetracarboxylic acid; aliphatic polycarboxylic acids such as 1,3,5-cyclohexanetricarboxylic acid; aromatic polyalcohols such as 1,3,5-trihydroxybenzene; aliphatic or alicyclic polyalcohols such as trimethylolpropane, pentaerythritol, glycerin and 1,3,5-cyclohexanetriol; aromatic hydroxycarboxylic acids such as 4-hydroxyisophthalic acid, 3-hydroxyisophthalic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid, protocatechuic acid, gallic acid and 2,4-dihydroxyphenylacetic acid; aliphatic hydroxycarboxylic acids such as tartaric acid and malic acid; and their ester-forming derivatives.
- A preferred polyester resin for the thermoplastic polyester layer of a preferred embodiment may comprise at least one polyfunctional compound unit such as, but not limited to, those mentioned above. Of those mentioned above, a preferred polyester resin preferably comprises at least one polyfunctional compound unit to be derived from trimellitic acid, pyromellitic acid, trimesic acid, trimethylolpropane and pentaerythritol, in view of the ease of producing the polyesters and the costs for their production. In addition, embodiments comprising such polyfunctional compound units may further comprise monofunctional compound units to be derived from at least one of monofunctional compounds such as, but not limited to, monocarboxylic acids, monoalcohols and their ester-forming derivatives. In embodiments including such monofunctional compound units, it is desirable that the proportion of the monofunctional compound units is at most about 5 mol %, more preferably at most about 1%, but also including about 2, 3, and 4%, relative to the total moles of all constituent units of the resin. Where the resin contains two or more different monofunctional compound units, the proportion indicates the total of all those units. Monofunctional compounds can be used to retard gellation when used at preferred concentrations. This is because gelling of the resin that satisfies the requirement is retarded in many cases. If the proportion of the monofunctional compound units is larger than about 5 mol %, the polymerization rate in producing the polyester resin, through melt or solid-phase polymerization, may be low which further unfavorably lowers the producibility of said polyester resin. In embodiments including monofunctional compound units, these units function as blocking compound units to block the terminal groups of the molecular chain or the terminal groups of the branched chains in the polyester resin, whereby the polyester resin is prevented from being too crosslinked and from being gelled. Preferred monofunctional compound units are not specifically defined, but preferably include, but are not limited to, those derived from at least one of monocarboxylic acids, monoalcohols and their ester-forming derivatives. Suitable monofunctional compound units, include, but are not limited to, units derived from monofunctional compounds, for example, aromatic monocarboxylic acids such as benzoic acid, o-methoxybenzoic acid, m-methoxybenzoic acid, p-methoxybenzoic acid, o-methylbenzoic acid, m-methylbenzoic acid, p-methylbenzoic acid, 2,3-dimethylbenzoic acid, 2,4-dimethylbenzoic acid, 2,5-dimethylbenzoic acid, 2,6-dimethylbenzoic acid, 3,4-dimethylbenzoic acid, 3,5-dimethylbenzoic acid, 2,4,6-trimethylbenzoic acid, 2,4,6-trimethoxybenzoic acid, 3,4,5-trimethoxybenzoic acid, 1-naphthoic acid, 2-naphthoic acid, 2-biphenylcarboxylic acid, 1-naphthalenacetic acid and naphthalenacetic acid; aliphatic monocarboxylic acids such as n-octanoic acid, n-nonanoic acid, myristic acid, pentadecanoic acid, stearic acid, oleic acid, linolic acid and linolenic acid; ester-forming derivatives of those monocarboxylic acids; aromatic alcohols such as benzyl alcohol, 2,5-dimethylbenzyl alcohol, 2-phenethyl alcohol, phenol, 1-naphthol and 2-naphthol; and aliphatic or alicyclic monoalcohols such as pentadecyl alcohol, stearyl alcohol, polyethylene glycol monoalkyl ethers, polypropylene glycol monoalkyl ethers, polytetramethylene glycol monoalkyl ethers, oleyl alcohol and cyclododecanol.
- A preferred polyester resin may comprise at least one monofunctional compound units such as, but not limited to, those mentioned above. Of the monofunctional compound units mentioned above, those to be derived from one or more monofunctional compounds selected from benzoic acid, 2,4,6-trimethoxybenzoic acid, 2-naphthoic acid, stearic acid and stearyl alcohol are preferred for the polyesters for use in accordance with preferred embodiments, in view of the ease in producing the polyesters and of the costs for their production.
- In view of its moldability, it is desirable that the thermoplastic polyester of a preferred embodiment comprises or consists essentially of an ethylene terephthalate component, otherwise known as polyethylene terephthalate or PET. The PET used in accordance with preferred embodiments may be copolymerized with suitable amounts of one or more comonomer components. It is desirable that the thus-copolymerized polyester resin contains a comonomer component in an amount of from 1 to 6 mol %, relative to the total moles of all constituent units of the polyester, including about 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 and 5.5 mol %. In consideration of the degree of copolymerization with diethylene glycol that may be produced as a by-product in the process of producing the resin, some other comonomers may be added to the resin so as to make the resin copolymerized with them within the range noted above. Such other comonomers are not specifically defined, for which any of the monomers mentioned above are usable. Some preferred monomers include, but are not limited to, neopentyl glycol, cyclohexanedimethanol (CHDM), cyclohexanedicarboxylic acid, isophthalic acid (IPA), and naphthalenedicarboxylic acid (NDC).
- Preferred polyamides are preferably selected from the group of partially aromatic polyamides and can be formed from isophthalic acid, terephthalic acid, cyclohexanedicarboxylic acid, meta- or para-xylylene diamine, 1,3- or 1,4-cyclohexane(bis)methylamine, aliphatic diacids with 6 to 12 carbon atoms, aliphatic amino acids or lactams with 6 to 12 carbon atoms, aliphatic diamines with 4 to 12 carbon atoms, and other generally known polyamide forming diacids and diamines can be used. Preferred polyamides may also contain small amounts of trifunctional or tetrafunctional comonomers such as trimellitic anhydride, pyromellitic dianhydride, or other polyamide forming polyacids and polyamines known in the art. Preferred partially aromatic polyamides include, but are not limited to, poly(m-xylylene adipamide), poly(hexamethylene isophthalamide), poly(hexamethylene adipamide-co-isophthalamide), poly(hexamethylene adipamide-co-terephthalamide), and poly(hexamethylene isophthalamide-co-terephthalamide). One preferred partially aromatic polyamide is poly(m-xylylene adipamide) having a number average molecular weight of 7,000 to 39,000, including 9,000, 11,000, 13,000, 15,000, 17,000, 19,000, 21,000, 23,000, 25,000, 27,000, 29,000, 31,000, 33,000, 35,000 and 37,000, and/or an inherent viscosity of 0.6 to 0.9 dL/g, also including 0.65, 0.7, 0.75, 0.8, and 0.85 dL/g. Preferred aliphatic polyamides include, but are not limited to, poly(hexamethylene adipamide) and poly(caprolactam). The most preferred low molecular weight aliphatic polyamide is poly(hexamethylene adipamide) having a number average molecular weight of 13,000 to 16,000, but also including 13,500, 14,000, 14,500, 15,000 and 15,500, and/or an inherent viscosity of 0.7 to 0.9 dL/g, but also including 0.75, 0.8, and 0.85 dL/g.
- Aliphatic and partially aromatic polyamides of preferred embodiments used in conjunction with polyester, uniformly decrease the acetaldehyde concentration in articles formed from such blends. Partially aromatic polyamides, however, are preferred over the aliphatic polyamides where clarity and dispersibility are crucial.
- Polyamides are generally prepared by melt phase polymerization from a diacid-diamine complex which may be prepared either in situ or in a separate step. In either method, the diacid and diamine are used as starting materials. Alternatively, an ester form of the diacid may be used, preferably the dimethyl ester. If the ester is used, the reaction should be carried out at a relatively low temperature, generally 80 to 120° C., until the ester is converted to an amide. The mixture is then heated to the polymerization temperature. In the case of polycaprolactam, either caprolactam or 6-aminocaproic acid can be used as a starting material and the polymerization may be catalyzed by the addition of adipic acid/hexamethylene diamine salt which results in a nylon 6/66 copolymer. When the diacid-diamine complex is used, the mixture is heated to melting and stirred until equilibration. The molecular weight is controlled by the diacid-diamine ratio. An excess of diamine produces a higher concentration of terminal amino groups which are available to react with acetaldehyde. If the diacid-diamine complex is prepared in a separate step, excess diamine is added prior to the polymerization. The polymerization can be carried out either at atmospheric pressure or at elevated pressures.
- As presently contemplated a preferred polyamide is MXD6 available from Mitsubishi Gas Chemical (Japan).
- Preferred compatibilizers include, but are not limited to, polyester ionomers, preferably PET ionomers, IPA modified PET, p-toluene sulfonic acid (pTSA) modified PET, pyrometillic dianhydride (PMDA) modified PET, and maleic anhydride modified PET. Other preferred compatibilizers include acrylic modified polyolefin type ionomer and low molecular weight bisphenol-A epoxy resin-E44 which may be added directly to a PET/polyamide blend. Further, trimellitic anhydride (TMA) may be added to the polyamide, transesterified, mixed with PET and then coupled using a bifunctional coupler such as, but not limited to, diphenylmethane-4,4-diisocyanate (MDI), diphenylmethane-4,4-diisopropylurethante (DU), or bisoxazoline (BOX). When compatibilizers are used, preferably one or more properties of the polyamide/polyester blends are improved, such properties including, color, haze, and adhesion between a layer comprising a blend and a layer comprising polyester.
-
- wherein R is hydrogen, halogen, alkyl having from one to about twenty carbons, or aryl having from one to about twenty carbons; M is a metal; n=1-5; R1 is an alkylene radical having from one to about twelve carbon atoms; A1 is a 1,2-phenylene, 1,3-phenylene, or 1,4-phenylene radical; and the mole fraction, x, of sulfonate-substituted units, is about 0.1 to about 50 percent of the sum of x and y, with about 0.2 to about 20 mole percent being preferred, about 0.5 to about 10 mole percent being more preferred, and about 1 to about 5 mole percent being even more preferred. Preferably R is hydrogen. Preferably R1 is alkylene having from one to about six carbon atoms; more preferably R1 is ethylene or butylene. M is preferably an alkali or alkaline earth metal; M is more preferably sodium or potassium.
- Preferred PET ionomers include sulfonated PET. A preferred sulfonated PET is Crystar® available from E.I. du Pont de Nemours and Company, Wilmington, Del., USA. In embodiments comprising PET ionomers, they may be used in concentrations of about 0.01 weight % to about 15 weight % of the total blend, preferably about 1 weight % to about 10 weight %, also including about 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, and 14 weight %. In other embodiments, other PET ionomer compatibilizers may be used in similar quantities.
- A preferred modified PET-type compatibilizer is IPA modified PET. In one embodiment, IPA modified PET preferably comprises from about 1 mole % to about 6 mole % IPA of the total blend, including about 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 and 5.5 mol %. In other embodiments, modified PET compatibilizers may be used in similar quantities.
- Another preferred ionomer-type compatibilizer is a methacrylic acid modified olefinic ionomer. A preferred methacrylic acid modified olefinic ionomer is Surlyn® also available from E.I. du Pont de Nemours and Company. In embodiments comprising methacrylic acid modified olefinic ionomers, they may be used in concentrations of about 0.01 weight % to about 15 weight % of the total blend, preferably about 1 weight % to about 10 weight %, also including about 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, and 14 weight %. In other embodiments, other compatibilizers may be used in similar quantities.
- Many other ingredients can be added to the compositions of preferred embodiments to enhance the performance properties of preferred blends. For example, crystallization aids, impact modifiers, surface lubricants, denesting agents, stabilizers, antioxidants, ultraviolet light absorbing agents, metal deactivators, colorants such as titanium dioxide and carbon black, nucleating agents such as polyethylene and polypropylene, phosphate stabilizers, fillers, and the like, can be included herein. Additives of these types and the use thereof are well known in the art and do not require extensive discussions. Therefore, only a limited number will be referred to, it being understood that any of these compounds can be used so long as they do not interfere or hinder the present invention.
- In applications where a clear, colorless resin is desired, the slight yellow color generated during processing can be masked by addition of a blue dye. The colorant can be added to either component of the blend during polymerization or added directly to the blend during compounding. If added during blending, the colorant can be added either in pure form or as a concentrate. The amount of a colorant depends on its absorptivity and the desired color for the particular application. A preferred colorant is 1-cyano-6-(4-(2-hydroxyethyl)anilino)-3-methyl-3H-dibenzo(F,I,J)-isoquinoline-2,7-dione used in an amount of from 2 to 15 ppm, but also including 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 ppm.
- Desirable additives also include impact modifiers and antioxidants. Examples of typical commercially available impact modifiers well-known in the art and useful herein include ethylene/propylene terpolymers, styrene based block copolymers, and various acrylic core/shell type impact modifiers. The impact modifiers may be used in conventional amounts from 0.1 to 25 weight percent of the overall composition and preferably in amounts from 0.1 to 10, but also including, 1, 2, 3, 4, 5, 6, 7, 8, and 9, weight percent of the composition.
- Examples of typical commercially available antioxidants useful herein include, but are not limited to, hindered phenols, phosphites, diphosphites, polyphosphites, and mixtures thereof. Combinations of aromatic and aliphatic phosphite compounds may also be included. Irgafos XP60 FF (Ciba Geigy) is a preferred antioxidant/processing aid to minimize haze and/or color formation normally associated with polyamide/PET blends.
- For improved gas barrier properties, nanocomposites may also be added. These nanocomposites or nanoparticles are tiny particles of materials which enhance the barrier properties of a material by creating a more tortuous path for migrating oxygen or carbon dioxide. One preferred type of nanoparticular material is a microparticular clay-based product available from Southern Clay Products. Preferably these are added to the polyamide prior to compatibilization of the polyamide with the PET.
- A preferred process for preparing polyamide/polyester/compatibilizer blends according to preferred embodiments involves preparing the polyester, polyamide, and compatibilizer respectively, by processes as mentioned previously. The polyester, polyamide, and compatibilizer are dried in an atmosphere of dried air or dried nitrogen, or under reduced pressure. The polyester, polyamide, and compatibilizer are mixed and subsequently melt compounded, for example, in a single or twin-screw extruder. Melt temperatures should be at least as high as the melting point of the polyester and are typically in the range of 260-310° C. Preferably, the melt compounding temperature is maintained as low as possible within said range. After completion of the melt compounding, the extrudate is withdrawn in strand form, and recovered such as by cutting or pelleting. Instead of melt compounding, the polyester and polyamide may be dry-blended and over-molded or draw-formed into plastic articles or preforms.
- In a preferred embodiment, the pellets or cuttings prepared by melt compounding described above then undergo solid state polymerization (SSP). A preferred SSP process comprises heating the pellets or cuttings, preferably under an inert atmosphere, thereby causing solid state polymerization and/or reactive compatibilization to occur. SSP advantageously increases the molecular weight and melt viscosity of the blend. Increased melt viscosity results in improved control of the layers in multilayer injection processes. In addition, when SSP follows melt compounding, the residence time for the mixing portion of the melt compounding may be reduced as the compatibilization process continues during SSP. A preferred temperature for SSP is above the glass transition point of the materials but below the melting point of the materials, preferably above 100° C.
- The blends of preferred embodiments serve as excellent starting materials for the production of moldings of all types. As presently contemplated, preferred embodiments may be monolayer or multilayer containers produced by overmolding, such as by using the process noted supra. Other embodiments may also be produced by other suitable processes such as coinjection or extrusion. Specific applications include various packaging applications such as thermoformed or injection molded trays, lids and cups; injection stretch blow-molded bottles, film and sheet; extrusion blow-molded bottles and multilayer articles. Examples of package contents include, but are not limited to, food, beverages, and cosmetics.
- PET blends with MXD6 are known in the industry and are utilized for oxygen and carbon dioxide barrier enhancement. Published literature shows that improved oxygen barrier properties can be obtained with increasing amounts of MXD6, but this increase also produces significant haze formation.
- MXD6 can be used as a blend in PET or as an inner layer in a multilayer container. These MXD6/PET containers will extend the shelf life of oxygen sensitive food products such as orange juice, tea, beer, etc. In addition, MXD6 can be used to reduce the carbon dioxide permeability of the container or bottle to extend the shelf life of carbonated beverages.
- Although barrier properties of PET bottles made with MXD6/PET blends will provide the desired shelf life, the associated haze and/or color problems preclude the general use of blends in the industry. As the amount of MXD6 increases the haze of blended bottles increases dramatically as compared to multilayer bottles of the same or similar compositions. The advantages of using a blend versus a multilayer structure include the use of monolayer injection molding equipment and relatively few concerns with delamination as with multilayer bottles. However, MXD6 use in the PET bottle industry is primarily with multilayer technology due to clarity and recycling concerns. Thus there is a need in the industry to develop a blend system of PET with MXD6 that minimizes haze and/or color formation and allows for the use of simplified injection molding systems (monolayer or overmolding systems). In addition, blends are preferably compatible with recycle streams.
- In this example two layer 0.5 liter bottles were made from 24 gram overmolded preforms. The overmold resin content was 25% of the total weight of the preform/bottle. The inner layer was a standard PET bottle grade resin such as C93 resin from Dow Chemical. The following blends were made and injected as the outer layer in these PET 2 layer preforms;
Blend % Haze in Bottle 6% MXD6 in PET 15% 6% MXD6 with IPA modified PET (SKF) 7% 6% MXD6 with IPA modified PET (SKF) 5.75% and 0.25% XP antioxidant from Ciba Geigy - Thus, the use of IPA modified PET, where IPA represents 2-5 mole % of the total blend content, achieved at least a 50% drop in the Haze. The use of an antioxidant/processing aid such as Irgafos XP further reduced the haze by 17.8% to produce a bottle with 62% less haze versus the standard MXD6/PET blend. The presence of the antioxidant or stabilizer/processing aid is thought to prevent oxidation of the MXD6 at PET processing conditions. The IPA modified PET resin is believed to compatibilize the MXD6 with the PET. This compatibilization also reduces haze and/or color formation.
- Another compatibilizer that can be used with the polyamide/PET blend is a PET ionomer comprising sulfonated PET.
- In accordance with a preferred embodiment, the compatibilized polymer blend is used to form a monolayer preform or container such as by injection molding. Preferred monolayer preforms or containers comprise a compatibilized polymer blend comprising a polyamide such as MXD6, PET or a PET-containing copolymer, and at least one compatibilizer. In some embodiments, said compatibilized polymer blend further comprises an antioxidant. As discussed above, PET may include one or more of the following: virgin PET, recycled PET, and post-consumer PET. Suitable compatibilizers include one or more of the following: PET ionomers, IPA modified PET, p-toluene sulfonic acid (pTSA) modified PET, pyrometillic dianhydride (PMDA) modified PET, maleic anhydride modified PET, acrylic-modified polyolefin ionomer, and bisphenol-A epoxy resin. Preferred compatibilizers comprise IPA modified PET and PET ionomers. In one embodiment, IPA modified PET comprises from about 1 mole % to about 6 mole % IPA of the total blend, also including about 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 and 5.5 mole %. Preferred PET ionomers comprise sulfonated PET. In some monolayer embodiments the compatibilized polymer blend is disposed about the neck and body of the preform or container while in other embodiments at least the body of the container or preform comprises the compatibilized polymer blend.
- In accordance with a preferred embodiment, the compatibilized polymer blend is used to form a multilayer preform or container such as by processes described above. Preferred multilayer preforms or containers comprise at least one layer of a compatibilized polymer blend comprising a polyamide such as MXD6, PET or a PET-containing copolymer, and at least one compatibilizer and at least one layer of a thermoplastic polyester, preferably as PET or a PET-containing copolymer. In certain embodiments, the first layer of the container or preform comprises the compatibilized polymer blend with the second layer of PET adhered directly to said first layer. In other embodiments, said preform or container comprises one or more compatibilized polymer blend layers and one or more PET layers. In some embodiments, said compatibilized polymer blend further comprises an antioxidant. Suitable compatibilizers include one or more of the following: PET ionomers, IPA modified PET, p-toluene sulfonic acid (pTSA) modified PET, pyrometillic dianhydride (PMDA) modified PET, maleic anhydride modified PET, acrylic-modified polyolefin ionomer, and bisphenol-A epoxy resin. Preferred compatibilizers comprise IPA modified PET and PET ionomers. In one embodiment, IPA modified PET comprises from about 1 mole % to about 6 mole % IPA of the total blend, also including about 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 and 5.5 mole %. Preferred PET ionomers comprise sulfonated PET. Said thermoplastic layer may include one or more of the following: virgin PET, recycled PET, and post-consumer PET. In some multilayer embodiments the compatibilized polymer blend is disposed about the neck and body of the preform or container while in other embodiments at least the body of the container or preform comprises the compatibilized polymer blend.
- In accordance with some embodiments, concentrates of the compatibilized polymer blends may be used. The use of concentrates allows for processing flexibility. Preferred concentrates may have a majority of either polyamide or PET or a PET-containing copolymer. In one embodiment, concentrates can then be diluted with PET or PET recycle resin at desired quantities and injection molded as a monolayer or multilayer structure with reduced haze and/or color. Preferably the final content of polyamide, such as MXD6, in the finished blend following dilution is less than or equal to 15 mole % of the total blend, but also including about 1, 3, 5, 7, 9, and 12 mole %, based on cost versus performance concerns. In other embodiments, the concentrates may also be used without further dilution, such as by using coextrusion or coinjection, in applications where the polyamide/PET/compatibilizer layer is sandwiched between other layers of the container.
- For example, preferred MXD6/PET/compatibilizer blends where the PET contains IPA and/or a PET ionomer can be utilized via a concentrate. Exemplary concentrates include the following wherein the percentages below refer to the percent of the total concentrate (which are not to be taken as limiting on the invention):
- 80 weight % MXD6, 0.25-0.4 weight % Irgafos XP, and 19.75-19.60 weight % IPA modified PET with an IPA range of 1.5-40 mole %
- 80 weight % MXD6 with 20 weight % IPA polymer (100 mole % IPA content).
- MXD6 with 0.1-10.0 weight % PET ionomer and PET copolymer with an IPA content of 1.5-40 mole %
- MXD6 with 0.1-10.0 weight % PET ionomer
- The percentages above should not be taken to limit the invention, for example where 1.5-40 mole % IPA is indicated, this also includes 5, 10, 15, 20, 25, 30 and 35 mole % IPA. Further, 0.1-10.0 weight % PET ionomer also includes, 1, 2, 3, 4, 5, 6, 7, 8, and 9 weight % PET ionomer of the total concentrate. In other embodiments, concentrates may have higher percentages of polyamide and/or higher IPA both as concentrates and when diluted.
- In accordance with a preferred embodiment the concentrates are blended with polyester, preferably PET, so that the polyamide concentration of the final blend used on the container is equal to or less than 15 mole % of the total blend, including about 1, 3, 5, 7, 9, and 12 mole %. In other embodiments utilizing concentrates, other compatibilizers may be used in similar concentrations.
- The concept of blending polyamides such as MXD6, with compatibilizers such as PET ionomers or IPA, promotes compatibilization leading to improved adhesion. For example, the blend of MXD6 with high IPA PET & Irgafos XP will allow the MXD6 to adhere to PET in coinjection or coextrusion without impacting the performance of the MXD6.
- In the case of overmolded preforms, such blends allow for better recycling and compatibility of the total container. When the concentrate is blended with PET prior to forming the bottle, the polyamide/PET/compatibilizer blend content is diluted and thus becomes more compatible with PET as compared to a straight blend of polyamide and PET. Another advantage of an overmolding process is that the blend can be molded in the body of the preform and not in the neck finish where it is not needed, thus further reducing the amount of polyamide in the recycling stream.
- The various methods and techniques described above provide a number of ways to carry out the invention. Of course, it is to be understood that not necessarily all objectives or advantages described may be achieved in accordance with any particular embodiment described herein. Thus, for example, those skilled in the art will recognize that the apparatus may be made and the methods may be performed in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objectives or advantages as may be taught or suggested herein.
- Furthermore, the skilled artisan will recognize the interchangeability of various features from different embodiments. Similarly, the various features and steps discussed above, as well as other known equivalents for each such feature or step, can be mixed and matched by one of ordinary skill in this art to perform methods in accordance with principles described herein.
- Although the invention has been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. Accordingly, the invention is not intended to be limited by the specific disclosures of preferred embodiments herein, but instead by reference to claims attached hereto.
Claims (45)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/395,899 US20040013833A1 (en) | 2002-03-21 | 2003-03-21 | Compatibilized polyester/polyamide blends |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36670102P | 2002-03-21 | 2002-03-21 | |
US10/395,899 US20040013833A1 (en) | 2002-03-21 | 2003-03-21 | Compatibilized polyester/polyamide blends |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040013833A1 true US20040013833A1 (en) | 2004-01-22 |
Family
ID=28454816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/395,899 Abandoned US20040013833A1 (en) | 2002-03-21 | 2003-03-21 | Compatibilized polyester/polyamide blends |
Country Status (3)
Country | Link |
---|---|
US (1) | US20040013833A1 (en) |
AU (1) | AU2003225961A1 (en) |
WO (1) | WO2003080731A2 (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030012904A1 (en) * | 1997-10-17 | 2003-01-16 | Hutchinson Gerald A. | Polyester laminate materials |
US20030219555A1 (en) * | 1997-10-17 | 2003-11-27 | Hutchinson Gerald A. | Coated polyester preforms and articles |
US20040151937A1 (en) * | 2002-11-08 | 2004-08-05 | Hutchinson Gerald A. | Injection mold having a wear resistant portion and a high heat transfer portion |
US20050136201A1 (en) * | 2003-12-22 | 2005-06-23 | Pepsico, Inc. | Method of improving the environmental stretch crack resistance of RPET without solid stating |
WO2006025827A1 (en) | 2004-08-31 | 2006-03-09 | Invista Technologies, S.A.R.L. | Polyester-polyamide blends having low haze |
US20060051451A1 (en) * | 2004-06-10 | 2006-03-09 | Hutchinson Gerald A | Methods and systems for controlling mold temperatures |
US20060065992A1 (en) * | 2004-04-16 | 2006-03-30 | Hutchinson Gerald A | Mono and multi-layer articles and compression methods of making the same |
US20060246245A1 (en) * | 2003-08-26 | 2006-11-02 | . | Method to make single-layer pet bottles with high barrier and improved clarity |
WO2007027606A1 (en) | 2005-08-30 | 2007-03-08 | Advanced Plastics Technologies Luxembourg S.A. | Methods and systems for controlling mold temperatures |
US20070065673A1 (en) * | 2005-09-21 | 2007-03-22 | Hiroyuki Nanba | Stretched polyamide films |
US20070082157A1 (en) * | 2005-10-07 | 2007-04-12 | Heater Paul L | Polyamides and Polyesters Blended With A Lithium Salt Interfacial Tension Reducing Agent |
US20070093616A1 (en) * | 2005-10-25 | 2007-04-26 | Joachim Strauch | Stable Polyamides For Simultaneous Solid Phase Polymerization of Polyesters and Polyamides |
US20070293626A1 (en) * | 2005-12-07 | 2007-12-20 | Shreyas Chakravarti | Polyamide blend compositions |
US20080009574A1 (en) * | 2005-01-24 | 2008-01-10 | Wellman, Inc. | Polyamide-Polyester Polymer Blends and Methods of Making the Same |
US20080044605A1 (en) * | 2000-09-05 | 2008-02-21 | Advanced Plastics Technology Luxembourg S.A. | Multilayer containers and preforms having barrier properties |
WO2008106631A1 (en) * | 2007-03-01 | 2008-09-04 | Prs Mediterranean Ltd. | Process for producing compatibilized polymer blends |
US20090054601A1 (en) * | 2007-08-23 | 2009-02-26 | Guliz Arf Elliott | Composition for maintaining good color when thermally treating polyester-polyamide blends |
WO2009024609A1 (en) * | 2007-08-23 | 2009-02-26 | M & G Polimeri Italia S.P.A. | Polyester-polyamide blends maintaining good color under thermal treatment |
US20090169882A1 (en) * | 2007-12-28 | 2009-07-02 | Louis Jay Jandris | Compatibilized polyester-polyamide with high modulus, and good abrasion and fibrillation resistance and fabric produced thereof |
WO2010103030A2 (en) | 2009-03-13 | 2010-09-16 | Basf Se | Stabilized blends of polyester and polyamide |
WO2010103023A1 (en) | 2009-03-13 | 2010-09-16 | Basf Se | Stabilized blends of polyester and polyamide |
US20100279132A1 (en) * | 2006-10-16 | 2010-11-04 | Valspar Sourcing, Inc. | Multilayer thermoplastic film |
US20120283366A1 (en) * | 2011-05-06 | 2012-11-08 | Graham Packaging Company, L.P. | Activated oxygen scavenging compositions for plastic containers |
US20130092233A1 (en) * | 2011-10-14 | 2013-04-18 | Andreas Pawlik | Multilayer film with polyamide and polyester layers for the production of photovoltaic modules |
US8551589B2 (en) | 2004-04-16 | 2013-10-08 | The Concentrate Manufacturing Company Of Ireland | Mono and multi-layer articles and extrusion methods of making the same |
US20140135434A1 (en) * | 2006-10-02 | 2014-05-15 | Armstrong World Industries, Inc. | Polyester binder for flooring products |
WO2014152538A1 (en) * | 2013-03-15 | 2014-09-25 | Vertellus Specialties Inc. | Impact-modified polyamide compositions |
US20140378583A1 (en) * | 2011-08-26 | 2014-12-25 | Rhodia Operations | Fire-retardant composition of an alloy of polyamide and polyester resins |
US9018293B2 (en) | 2005-10-25 | 2015-04-28 | M&G Usa Corporation | Dispersions of high carboxyl polyamides into polyesters |
US9018284B2 (en) | 2010-05-06 | 2015-04-28 | Graham Packaging Company, L.P. | Oxygen scavenging additives for plastic containers |
US9068113B2 (en) | 2012-05-16 | 2015-06-30 | Graham Packaging Company, L.P. | Low phosphorous oxygen scavenging compositions requiring no induction period |
JP2015137295A (en) * | 2014-01-21 | 2015-07-30 | 三菱瓦斯化学株式会社 | Injection molded body |
JP2016056314A (en) * | 2014-09-11 | 2016-04-21 | 三菱エンジニアリングプラスチックス株式会社 | Thermoplastic polyester resin composition |
US9353262B2 (en) | 2010-08-18 | 2016-05-31 | Vertellus Specialties Inc. | Compositions, methods and articles produced by compounding polyamides with olefin-maleic anhydride polymers |
US9540507B2 (en) | 2007-08-23 | 2017-01-10 | M&G Usa Corporation | Composition for maintaining good color when thermally treating polyester-polyamide blends |
WO2017150109A1 (en) * | 2016-02-29 | 2017-09-08 | 三菱瓦斯化学株式会社 | Container for chlorine-based liquid bleaching agent composition, and bleaching agent article |
US10208200B2 (en) | 2017-03-30 | 2019-02-19 | Graham Packaging Company, L.P. | Dual oxygen-scavenging compositions requiring no induction period |
US11345809B2 (en) | 2014-11-07 | 2022-05-31 | Graham Packaging Company, L.P. | Oxygen scavenging compositions requiring no induction period |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR0317776A (en) | 2002-12-27 | 2005-11-22 | Advanced Plastics Technologies | Apparatus and process for manufacturing and filling flexible pouches |
US20060029822A1 (en) * | 2004-08-04 | 2006-02-09 | Brown Michael J | Containers incorporating polyester-containing multilayer structures |
US20060099362A1 (en) * | 2004-11-05 | 2006-05-11 | Pepsico, Inc. | Enhanced barrier packaging for oxygen sensitive foods |
ITMI20111088A1 (en) * | 2011-06-16 | 2012-12-17 | Point Plastic Srl | MULTI-LAYER FILM IN RECYCLABLE THERMOPLASTIC MATERIAL, CONTAINER INCLUDING SUCH FILM AND RELATED PACKAGE. |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4957980A (en) * | 1988-08-08 | 1990-09-18 | Toyo Boseki Kabushiki Kaisha | Polyester resin composition and hollow molded article thereof |
US5300572A (en) * | 1991-06-14 | 1994-04-05 | Polyplastics Co., Ltd. | Moldable polyester resin compositions and molded articles formed of the same |
US6500895B1 (en) * | 2000-10-13 | 2002-12-31 | General Electric Company | Thermoplastic blend comprising poly(arylene ether) and polyamide |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5077111A (en) * | 1990-01-12 | 1991-12-31 | Continental Pet Technologies, Inc. | Recyclable multilayer plastic preform and container blown therefrom |
JP2001106219A (en) * | 1999-10-06 | 2001-04-17 | Toppan Printing Co Ltd | Pet bottle having high barrier characteristic |
-
2003
- 2003-03-21 AU AU2003225961A patent/AU2003225961A1/en not_active Abandoned
- 2003-03-21 WO PCT/US2003/008999 patent/WO2003080731A2/en not_active Application Discontinuation
- 2003-03-21 US US10/395,899 patent/US20040013833A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4957980A (en) * | 1988-08-08 | 1990-09-18 | Toyo Boseki Kabushiki Kaisha | Polyester resin composition and hollow molded article thereof |
US5300572A (en) * | 1991-06-14 | 1994-04-05 | Polyplastics Co., Ltd. | Moldable polyester resin compositions and molded articles formed of the same |
US6500895B1 (en) * | 2000-10-13 | 2002-12-31 | General Electric Company | Thermoplastic blend comprising poly(arylene ether) and polyamide |
Cited By (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030012904A1 (en) * | 1997-10-17 | 2003-01-16 | Hutchinson Gerald A. | Polyester laminate materials |
US20030219555A1 (en) * | 1997-10-17 | 2003-11-27 | Hutchinson Gerald A. | Coated polyester preforms and articles |
US20040247735A1 (en) * | 1997-10-17 | 2004-12-09 | Hutchinson Gerald A. | Preform molds incorporating high heat conductivity material |
US20080061476A1 (en) * | 1997-10-17 | 2008-03-13 | Advanced Plastics Technologies Luxembourg S.A | Coated polyester preforms and articles |
US7645135B2 (en) | 1997-10-17 | 2010-01-12 | Advanced Plastics Technologies Luxembourg S.A. | Mold for injecting molding preforms |
US20080044605A1 (en) * | 2000-09-05 | 2008-02-21 | Advanced Plastics Technology Luxembourg S.A. | Multilayer containers and preforms having barrier properties |
US20040151937A1 (en) * | 2002-11-08 | 2004-08-05 | Hutchinson Gerald A. | Injection mold having a wear resistant portion and a high heat transfer portion |
US20080203617A1 (en) * | 2002-11-08 | 2008-08-28 | Advanced Plastics Technologies Luxembourg S.A. | Injection mold having a wear resistant portion and a high heat transfer portion |
US7919159B2 (en) * | 2003-08-26 | 2011-04-05 | Invista North America S.Ar.L. | Method to make single-layer PET bottles with high barrier and improved clarity |
US20100209641A1 (en) * | 2003-08-26 | 2010-08-19 | Invista North America S.A.R.I. | Method to make single-layer pet bottles with high barrier and improved clarity |
US20060246245A1 (en) * | 2003-08-26 | 2006-11-02 | . | Method to make single-layer pet bottles with high barrier and improved clarity |
US7943216B2 (en) * | 2003-08-26 | 2011-05-17 | Invista North Americal S.Ar.L. | Method to make single-layer pet bottles with high barrier and improved clarity |
US20050136201A1 (en) * | 2003-12-22 | 2005-06-23 | Pepsico, Inc. | Method of improving the environmental stretch crack resistance of RPET without solid stating |
US20060065992A1 (en) * | 2004-04-16 | 2006-03-30 | Hutchinson Gerald A | Mono and multi-layer articles and compression methods of making the same |
US8551589B2 (en) | 2004-04-16 | 2013-10-08 | The Concentrate Manufacturing Company Of Ireland | Mono and multi-layer articles and extrusion methods of making the same |
US20060051451A1 (en) * | 2004-06-10 | 2006-03-09 | Hutchinson Gerald A | Methods and systems for controlling mold temperatures |
US20080138455A1 (en) * | 2004-06-10 | 2008-06-12 | Advanced Plastics Technologies Luxembourg S.A | Methods and systems for controlling mold temperatures |
WO2006025827A1 (en) | 2004-08-31 | 2006-03-09 | Invista Technologies, S.A.R.L. | Polyester-polyamide blends having low haze |
US20080169590A1 (en) * | 2004-08-31 | 2008-07-17 | Invista North America S.A.R.L. | Polyester-Polyamide Blends Having Low Haze |
US20080009574A1 (en) * | 2005-01-24 | 2008-01-10 | Wellman, Inc. | Polyamide-Polyester Polymer Blends and Methods of Making the Same |
US7717697B2 (en) | 2005-08-30 | 2010-05-18 | Sharon Hutchinson | Methods and systems for controlling mold temperatures |
WO2007027606A1 (en) | 2005-08-30 | 2007-03-08 | Advanced Plastics Technologies Luxembourg S.A. | Methods and systems for controlling mold temperatures |
US20070108668A1 (en) * | 2005-08-30 | 2007-05-17 | Hutchinson Gerald A | Methods and systems for controlling mold temperatures |
US20070065673A1 (en) * | 2005-09-21 | 2007-03-22 | Hiroyuki Nanba | Stretched polyamide films |
US7638202B2 (en) | 2005-09-21 | 2009-12-29 | Mitsubishi Gas Chemical Company, Inc. | Stretched polyamide films |
EP1767348A1 (en) * | 2005-09-21 | 2007-03-28 | Mitsubishi Gas Chemical Company, Inc. | Stretched polyamide films |
US20070088133A1 (en) * | 2005-10-07 | 2007-04-19 | Paul Heater | Process to Make Polyesters With An Interfacial Tension Reducing Agent for Blending with Polyamides |
US8465818B2 (en) | 2005-10-07 | 2013-06-18 | M & G Usa Corporation | Polyamides and polyesters blended with a lithium salt interfacial tension reducing agent |
US20070082157A1 (en) * | 2005-10-07 | 2007-04-12 | Heater Paul L | Polyamides and Polyesters Blended With A Lithium Salt Interfacial Tension Reducing Agent |
US20070093615A1 (en) * | 2005-10-25 | 2007-04-26 | Callander Douglas D | Dispersions of High Carboxyl Polyamides Into Polyesters Using An Interfacial Tension Reducing Agent |
KR101328135B1 (en) | 2005-10-25 | 2013-11-14 | 엠 앤드 지 폴리메리 이탈리아 에스.피.에이. | Improved Dispersions of High Carboxyl Polyamides Into Polyesters Using An Interfacial Tension Reducing Agent |
WO2007049232A3 (en) * | 2005-10-25 | 2007-09-13 | M & G Polimeri Italia Spa | Improved dispersions of high carboxyl polyamides into polyesters using an interfacial tension reducing agent |
EP1943310B1 (en) | 2005-10-25 | 2017-03-15 | M&G USA Corporation | Improved dispersions of high carboxyl polyamides into polyesters using an interfacial tension reducing agent |
US20070093616A1 (en) * | 2005-10-25 | 2007-04-26 | Joachim Strauch | Stable Polyamides For Simultaneous Solid Phase Polymerization of Polyesters and Polyamides |
TWI402304B (en) * | 2005-10-25 | 2013-07-21 | M & G Polimeri Italia Spa | Improved dispersions of high carboxyl polyamides into polyesters using an interfacial tension reducing agent |
US8314174B2 (en) * | 2005-10-25 | 2012-11-20 | M & G Usa Corporation | Dispersions of high carboxyl polyamides into polyesters using an interfacial tension reducing agent |
AU2006307492B2 (en) * | 2005-10-25 | 2011-09-01 | APG Polytech, LLC | Improved dispersions of high carboxyl polyamides into polyesters using an interfacial tension reducing agent |
US9018293B2 (en) | 2005-10-25 | 2015-04-28 | M&G Usa Corporation | Dispersions of high carboxyl polyamides into polyesters |
US20070293626A1 (en) * | 2005-12-07 | 2007-12-20 | Shreyas Chakravarti | Polyamide blend compositions |
US9279063B2 (en) * | 2006-10-02 | 2016-03-08 | Awi Licensing Company | Polyester binder for flooring products |
US20140135434A1 (en) * | 2006-10-02 | 2014-05-15 | Armstrong World Industries, Inc. | Polyester binder for flooring products |
US9637631B2 (en) | 2006-10-02 | 2017-05-02 | Afi Licensing Llc | Polyester binder for flooring products |
US20100279132A1 (en) * | 2006-10-16 | 2010-11-04 | Valspar Sourcing, Inc. | Multilayer thermoplastic film |
US20160031194A1 (en) * | 2006-10-16 | 2016-02-04 | Valspar Sourcing, Inc. | Multilayer thermoplastic film |
US10919273B2 (en) * | 2006-10-16 | 2021-02-16 | Swimc Llc | Multilayer thermoplastic film |
WO2008106631A1 (en) * | 2007-03-01 | 2008-09-04 | Prs Mediterranean Ltd. | Process for producing compatibilized polymer blends |
US8026309B2 (en) | 2007-03-01 | 2011-09-27 | Prs Mediterranean Ltd. | Process for producing compatibilized polymer blends |
US20080214699A1 (en) * | 2007-03-01 | 2008-09-04 | Prs Mediterranean Ltd. | Process for producing compatibilized polymer blends |
US9540507B2 (en) | 2007-08-23 | 2017-01-10 | M&G Usa Corporation | Composition for maintaining good color when thermally treating polyester-polyamide blends |
WO2009024609A1 (en) * | 2007-08-23 | 2009-02-26 | M & G Polimeri Italia S.P.A. | Polyester-polyamide blends maintaining good color under thermal treatment |
RU2475508C2 (en) * | 2007-08-23 | 2013-02-20 | М Энд Г Полимери Италия С.П.А. | Polyester-polyamide mixtures retaining good colour during heat treatment |
AU2008290555B2 (en) * | 2007-08-23 | 2013-02-28 | APG Polytech, LLC | Polyester-polyamide blends maintaining good color under thermal treatment |
US8063124B2 (en) | 2007-08-23 | 2011-11-22 | M&G Usa Corporation | Phosphite stabilizers for ionomeric polyester compounds |
US8436080B2 (en) | 2007-08-23 | 2013-05-07 | M & G Usa Corporation | Composition for maintaining good color when thermally treating polyester-polyamide blends |
US20110057349A1 (en) * | 2007-08-23 | 2011-03-10 | Heater Paul Lewis | Phosphite stabilizers for ionomeric polyester compounds |
US20090054601A1 (en) * | 2007-08-23 | 2009-02-26 | Guliz Arf Elliott | Composition for maintaining good color when thermally treating polyester-polyamide blends |
AU2008288788B2 (en) * | 2007-08-23 | 2013-07-04 | APG Polytech, LLC | Phosphite stabilizers for ionomeric polyester compounds |
CN101784598A (en) * | 2007-08-23 | 2010-07-21 | M&G聚合物意大利有限公司 | phosphite stabilizers for ionomeric polyester compounds |
CN104788914A (en) * | 2007-08-23 | 2015-07-22 | M&G美国有限公司 | Polyester-polymer blends maintaining good color under thermal treatment |
US20090054567A1 (en) * | 2007-08-23 | 2009-02-26 | Heater Paul Lewis | Phosphite stabilizers for ionomeric polyester compounds |
WO2009026555A1 (en) * | 2007-08-23 | 2009-02-26 | M & G Polimeri Italia S.P.A. | Phosphite stabilizers for ionomeric polyester compounds |
US20090169882A1 (en) * | 2007-12-28 | 2009-07-02 | Louis Jay Jandris | Compatibilized polyester-polyamide with high modulus, and good abrasion and fibrillation resistance and fabric produced thereof |
WO2010103030A2 (en) | 2009-03-13 | 2010-09-16 | Basf Se | Stabilized blends of polyester and polyamide |
US20100233405A1 (en) * | 2009-03-13 | 2010-09-16 | Ciba Corporation | Stabilized Blends of Polyester and Polyamide |
US20100233406A1 (en) * | 2009-03-13 | 2010-09-16 | Ciba Corporation | Stabilized Blends of Polyester and Polyamide |
US8440281B2 (en) | 2009-03-13 | 2013-05-14 | Basf Se | Stabilized blends of polyester and polyamide |
WO2010103023A1 (en) | 2009-03-13 | 2010-09-16 | Basf Se | Stabilized blends of polyester and polyamide |
US9018284B2 (en) | 2010-05-06 | 2015-04-28 | Graham Packaging Company, L.P. | Oxygen scavenging additives for plastic containers |
US9353262B2 (en) | 2010-08-18 | 2016-05-31 | Vertellus Specialties Inc. | Compositions, methods and articles produced by compounding polyamides with olefin-maleic anhydride polymers |
CN103502341A (en) * | 2011-05-06 | 2014-01-08 | 格莱汉姆包装公司 | Activated oxygen scavenging compositions for plastic containers |
US20120283366A1 (en) * | 2011-05-06 | 2012-11-08 | Graham Packaging Company, L.P. | Activated oxygen scavenging compositions for plastic containers |
US20140378583A1 (en) * | 2011-08-26 | 2014-12-25 | Rhodia Operations | Fire-retardant composition of an alloy of polyamide and polyester resins |
US9765217B2 (en) * | 2011-08-26 | 2017-09-19 | Rhodia Operations | Fire-retardant composition of an alloy of polyamide and polyester resins |
US10350865B2 (en) * | 2011-10-14 | 2019-07-16 | Evonik Degussa Gmbh | Multilayer film with polyamide and polyester layers for the production of photovoltaic modules |
US20130092233A1 (en) * | 2011-10-14 | 2013-04-18 | Andreas Pawlik | Multilayer film with polyamide and polyester layers for the production of photovoltaic modules |
US9068113B2 (en) | 2012-05-16 | 2015-06-30 | Graham Packaging Company, L.P. | Low phosphorous oxygen scavenging compositions requiring no induction period |
WO2014152538A1 (en) * | 2013-03-15 | 2014-09-25 | Vertellus Specialties Inc. | Impact-modified polyamide compositions |
US10011718B2 (en) | 2013-03-15 | 2018-07-03 | Vertellus Holdings Llc | Impact-modified polyamide compositions |
US10435559B2 (en) | 2013-03-15 | 2019-10-08 | Vertellus Holdings Llc | Impact-modified polyamide compositions |
JP2015137295A (en) * | 2014-01-21 | 2015-07-30 | 三菱瓦斯化学株式会社 | Injection molded body |
JP2016056314A (en) * | 2014-09-11 | 2016-04-21 | 三菱エンジニアリングプラスチックス株式会社 | Thermoplastic polyester resin composition |
US11345809B2 (en) | 2014-11-07 | 2022-05-31 | Graham Packaging Company, L.P. | Oxygen scavenging compositions requiring no induction period |
WO2017150109A1 (en) * | 2016-02-29 | 2017-09-08 | 三菱瓦斯化学株式会社 | Container for chlorine-based liquid bleaching agent composition, and bleaching agent article |
JPWO2017150109A1 (en) * | 2016-02-29 | 2018-12-20 | 三菱瓦斯化学株式会社 | Chlorine-based liquid bleach composition container and bleach article |
US10208200B2 (en) | 2017-03-30 | 2019-02-19 | Graham Packaging Company, L.P. | Dual oxygen-scavenging compositions requiring no induction period |
Also Published As
Publication number | Publication date |
---|---|
AU2003225961A1 (en) | 2003-10-08 |
WO2003080731A3 (en) | 2003-12-04 |
AU2003225961A8 (en) | 2003-10-08 |
WO2003080731A2 (en) | 2003-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040013833A1 (en) | Compatibilized polyester/polyamide blends | |
US5039780A (en) | Copolyester having gas-barrier property | |
US7807270B2 (en) | Multilayered package with barrier properties | |
EP1449646B1 (en) | Multilayer bottle and process for its production | |
EP1985664B1 (en) | Transparent, oxygen-scavenging compositions and articles prepared therefrom | |
JP6519289B2 (en) | Multilayer structure | |
EP1864797A1 (en) | Multilayer blow-molded container and method for producing same | |
US8822001B2 (en) | Delamination resistant multilayer containers | |
EP0822213A1 (en) | Polyester, polyester composition, polyester laminate, and process for producing biaxially stretched polyester bottles | |
KR20070108359A (en) | Blends of oxygen scavenging polyamides with polyesters which contain zinc and cobalt | |
JPH01141737A (en) | Gas barrier multi-layer structure | |
CA2332519A1 (en) | Multi-layered polyester articles containing a residue of phenylenedi(oxyacetic acid) and having good barrier to gas permeation | |
EP1910466A1 (en) | Process for the preparation of transparent, shaped articles containing polyesters comprising a cyclobutanediol | |
KR20170140349A (en) | Multilayer materials and articles made therefrom and methods of making the same | |
KR100458147B1 (en) | Coinjection stretch blow molded container | |
JP6519288B2 (en) | Multilayer structure | |
JP2001277341A (en) | Co-injection stretching blow molded container | |
JP7528748B2 (en) | Multi-layer container | |
JP2005067637A (en) | Hollow container | |
JPH04168148A (en) | Polyester resin composition and its use | |
JP4180186B2 (en) | Co-injection stretch blow molded container having an ethylene-vinyl alcohol copolymer layer | |
WO2020039967A1 (en) | Multilayered container and method for producing same | |
JPH11348197A (en) | Co-injection stretch blow molded polyester container | |
JPH11348194A (en) | Co-injection stretch blow molded container | |
JPS6172051A (en) | Polyester composition and container made thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ADVANCED PLASTICS TECHNOLOGIES LUXEMBOURG S.A., LU Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADVANCED PLASTICS TECHNOLOGIES, LIMITED;REEL/FRAME:017971/0664 Effective date: 20060512 |
|
AS | Assignment |
Owner name: HUTCHINSON, SHARON, COLORADO Free format text: REDACTED FINDINGS OF FACT, CONCLUSIONS OF LAW AND PERMANENT ORDERS;ASSIGNOR:HUTCHINSON, GERALD;REEL/FRAME:023163/0606 Effective date: 20090814 Owner name: HUTCHINSON, SHARON,COLORADO Free format text: REDACTED FINDINGS OF FACT, CONCLUSIONS OF LAW AND PERMANENT ORDERS;ASSIGNOR:HUTCHINSON, GERALD;REEL/FRAME:023163/0606 Effective date: 20090814 |
|
AS | Assignment |
Owner name: HUTCHINSON, SHARON, COLORADO Free format text: PATENT ASSIGNMENT AND ORDER IN AID OF EXECUTION ON JUDGMENT;ASSIGNOR:HUTCHINSON, GERALD;REEL/FRAME:023627/0268 Effective date: 20091204 Owner name: HUTCHINSON, SHARON,COLORADO Free format text: PATENT ASSIGNMENT AND ORDER IN AID OF EXECUTION ON JUDGMENT;ASSIGNOR:HUTCHINSON, GERALD;REEL/FRAME:023627/0268 Effective date: 20091204 |
|
AS | Assignment |
Owner name: ADVANCED PLASTICS TECHNOLOGIES LUXEMBOURG S.A., LU Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUTCHINSON, SHARON;REEL/FRAME:024838/0557 Effective date: 20100802 |