US20030215444A1 - Antibodies which activate an erythropoietin receptor - Google Patents
Antibodies which activate an erythropoietin receptor Download PDFInfo
- Publication number
- US20030215444A1 US20030215444A1 US10/364,276 US36427603A US2003215444A1 US 20030215444 A1 US20030215444 A1 US 20030215444A1 US 36427603 A US36427603 A US 36427603A US 2003215444 A1 US2003215444 A1 US 2003215444A1
- Authority
- US
- United States
- Prior art keywords
- antibody
- epo
- receptor
- cells
- antibodies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108010075944 Erythropoietin Receptors Proteins 0.000 title claims abstract description 38
- 102100036509 Erythropoietin receptor Human genes 0.000 title claims abstract description 38
- 210000004408 hybridoma Anatomy 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000012634 fragment Substances 0.000 claims abstract description 15
- 208000007502 anemia Diseases 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 108020003175 receptors Proteins 0.000 claims description 120
- 102000005962 receptors Human genes 0.000 claims description 120
- 230000004913 activation Effects 0.000 claims description 23
- 230000000694 effects Effects 0.000 claims description 20
- 101000852145 Homo sapiens Erythropoietin receptor Proteins 0.000 claims description 13
- 230000004069 differentiation Effects 0.000 claims description 11
- 230000035755 proliferation Effects 0.000 claims description 10
- 239000000523 sample Substances 0.000 claims description 9
- 239000002671 adjuvant Substances 0.000 claims description 7
- 239000012472 biological sample Substances 0.000 claims description 7
- 210000003013 erythroid precursor cell Anatomy 0.000 claims description 7
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- 241000124008 Mammalia Species 0.000 claims description 2
- 230000010437 erythropoiesis Effects 0.000 abstract description 6
- 102000003951 Erythropoietin Human genes 0.000 description 120
- 108090000394 Erythropoietin Proteins 0.000 description 120
- 229940105423 erythropoietin Drugs 0.000 description 120
- 210000004027 cell Anatomy 0.000 description 102
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 51
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 42
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 33
- 108090000623 proteins and genes Proteins 0.000 description 22
- 230000000925 erythroid effect Effects 0.000 description 21
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 20
- 101000987586 Homo sapiens Eosinophil peroxidase Proteins 0.000 description 20
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 20
- 102000044890 human EPO Human genes 0.000 description 20
- 229940104230 thymidine Drugs 0.000 description 20
- 235000018102 proteins Nutrition 0.000 description 19
- 102000004169 proteins and genes Human genes 0.000 description 19
- 210000002966 serum Anatomy 0.000 description 18
- 108090000765 processed proteins & peptides Proteins 0.000 description 17
- 239000011780 sodium chloride Substances 0.000 description 16
- 239000007983 Tris buffer Substances 0.000 description 15
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 15
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 15
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 15
- 239000003636 conditioned culture medium Substances 0.000 description 14
- 230000000638 stimulation Effects 0.000 description 14
- 238000002360 preparation method Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000002965 ELISA Methods 0.000 description 12
- 239000002953 phosphate buffered saline Substances 0.000 description 12
- 102000004196 processed proteins & peptides Human genes 0.000 description 12
- 230000004927 fusion Effects 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 238000002347 injection Methods 0.000 description 11
- 239000002609 medium Substances 0.000 description 11
- 239000006228 supernatant Substances 0.000 description 11
- 229910001868 water Inorganic materials 0.000 description 11
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 108060003951 Immunoglobulin Proteins 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 9
- 241000699670 Mus sp. Species 0.000 description 9
- 235000001014 amino acid Nutrition 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- 238000005119 centrifugation Methods 0.000 description 9
- 230000012010 growth Effects 0.000 description 9
- 102000018358 immunoglobulin Human genes 0.000 description 9
- 238000012216 screening Methods 0.000 description 9
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 8
- 101100118983 Homo sapiens EPOR gene Proteins 0.000 description 8
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 8
- 238000006471 dimerization reaction Methods 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 229920001213 Polysorbate 20 Polymers 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 239000013615 primer Substances 0.000 description 7
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 6
- 206010003445 Ascites Diseases 0.000 description 6
- 239000000020 Nitrocellulose Substances 0.000 description 6
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 239000012148 binding buffer Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 210000003743 erythrocyte Anatomy 0.000 description 6
- 239000012091 fetal bovine serum Substances 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 229920001220 nitrocellulos Polymers 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 230000004936 stimulating effect Effects 0.000 description 6
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 5
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 5
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 5
- 239000012564 Q sepharose fast flow resin Substances 0.000 description 5
- 125000003275 alpha amino acid group Chemical group 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 5
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 5
- 210000000130 stem cell Anatomy 0.000 description 5
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 4
- 241000283707 Capra Species 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 101150029707 ERBB2 gene Proteins 0.000 description 4
- 239000012981 Hank's balanced salt solution Substances 0.000 description 4
- 101000987583 Mus musculus Eosinophil peroxidase Proteins 0.000 description 4
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 4
- 229920002684 Sepharose Polymers 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000035800 maturation Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000019491 signal transduction Effects 0.000 description 4
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- 210000004988 splenocyte Anatomy 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 239000003656 tris buffered saline Substances 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 239000007995 HEPES buffer Substances 0.000 description 3
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229930182816 L-glutamine Natural products 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- -1 anemia Chemical compound 0.000 description 3
- 239000012911 assay medium Substances 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 230000005757 colony formation Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 210000000267 erythroid cell Anatomy 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000037230 mobility Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 235000020030 perry Nutrition 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- WEEMDRWIKYCTQM-UHFFFAOYSA-N 2,6-dimethoxybenzenecarbothioamide Chemical compound COC1=CC=CC(OC)=C1C(N)=S WEEMDRWIKYCTQM-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 101710106714 Shutoff protein Proteins 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000002788 anti-peptide Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- OHDRQQURAXLVGJ-HLVWOLMTSA-N azane;(2e)-3-ethyl-2-[(e)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N/N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-HLVWOLMTSA-N 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 238000001516 cell proliferation assay Methods 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 239000003797 essential amino acid Substances 0.000 description 2
- 235000020776 essential amino acid Nutrition 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 238000005497 microtitration Methods 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 229940056360 penicillin g Drugs 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- XOJVVFBFDXDTEG-UHFFFAOYSA-N pristane Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 229940054269 sodium pyruvate Drugs 0.000 description 2
- 229960002385 streptomycin sulfate Drugs 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- IPDRTIBDOPMMIQ-VAOFZXAKSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)-2-methyloxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1[C@]1(C)O[C@H](CO)[C@@H](O)C1 IPDRTIBDOPMMIQ-VAOFZXAKSA-N 0.000 description 1
- ROKHBFMPJXMSKD-UHFFFAOYSA-N 2,4,10,14-tetramethylpentadecane Chemical compound CC(C)CCCC(C)CCCCCC(C)CC(C)C ROKHBFMPJXMSKD-UHFFFAOYSA-N 0.000 description 1
- KZDCMKVLEYCGQX-UDPGNSCCSA-N 2-(diethylamino)ethyl 4-aminobenzoate;(2s,5r,6r)-3,3-dimethyl-7-oxo-6-[(2-phenylacetyl)amino]-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid;hydrate Chemical compound O.CCN(CC)CCOC(=O)C1=CC=C(N)C=C1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 KZDCMKVLEYCGQX-UDPGNSCCSA-N 0.000 description 1
- NKDFYOWSKOHCCO-YPVLXUMRSA-N 20-hydroxyecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)(O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 NKDFYOWSKOHCCO-YPVLXUMRSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 102100033051 40S ribosomal protein S19 Human genes 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 208000033932 Blackfan-Diamond anemia Diseases 0.000 description 1
- 101100098985 Caenorhabditis elegans cct-3 gene Proteins 0.000 description 1
- 101800005309 Carboxy-terminal peptide Proteins 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 101710172503 Chemokine-binding protein Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 206010053138 Congenital aplastic anaemia Diseases 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 201000004449 Diamond-Blackfan anemia Diseases 0.000 description 1
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 102000009024 Epidermal Growth Factor Human genes 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 229910004373 HOAc Inorganic materials 0.000 description 1
- 101000920686 Homo sapiens Erythropoietin Proteins 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 239000007760 Iscove's Modified Dulbecco's Medium Substances 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 1
- 229920002535 Polyethylene Glycol 1500 Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710138270 PspA protein Proteins 0.000 description 1
- 239000012979 RPMI medium Substances 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 206010042618 Surgical procedure repeated Diseases 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 238000011091 antibody purification Methods 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- OSQPUMRCKZAIOZ-UHFFFAOYSA-N carbon dioxide;ethanol Chemical compound CCO.O=C=O OSQPUMRCKZAIOZ-UHFFFAOYSA-N 0.000 description 1
- 239000011545 carbonate/bicarbonate buffer Substances 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000002737 cell proliferation kit Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006552 constitutive activation Effects 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 108010005905 delta-hGHR Proteins 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical group CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000012897 dilution medium Substances 0.000 description 1
- DROMNWUQASBTFM-UHFFFAOYSA-N dinonyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCC DROMNWUQASBTFM-UHFFFAOYSA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 239000012997 ficoll-paque Substances 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 210000004754 hybrid cell Anatomy 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Substances N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000012482 interaction analysis Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229960004592 isopropanol Drugs 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000006654 negative regulation of apoptotic process Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- HKOOXMFOFWEVGF-UHFFFAOYSA-N phenylhydrazine Chemical compound NNC1=CC=CC=C1 HKOOXMFOFWEVGF-UHFFFAOYSA-N 0.000 description 1
- 229940067157 phenylhydrazine Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 150000003141 primary amines Chemical group 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009696 proliferative response Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- VUYXVWGKCKTUMF-UHFFFAOYSA-N tetratriacontaethylene glycol monomethyl ether Chemical compound COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO VUYXVWGKCKTUMF-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/71—Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2863—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/74—Inducing cell proliferation
Definitions
- This invention relates to antibodies which recognize an erythropoietin receptor. More particularly, the invention relates to antibodies which activate an erythropoietin receptor and stimulate erythropoiesis.
- EPO Erythropoietin
- EPO Erythropoietin
- EPO-R erythropoietin receptor
- the receptor complex consists of at least two distinct polypeptides, a 66-72 kDa species, and 85 and 100 kDa species (Marcheux et al. J. Biol. Chem. 266, 23380 (1991)); McCaffery et al. J. Biol. Chem. 264, 10507 (1991)).
- a distinct 95 kDa protein was also detected by immunoprecipitation of EPO receptor (Miura & Ihle Blood 81, 1739 (1993)).
- Another crosslinking study revealed three EPO containing complexes of 110, 130 and 145 kDa.
- the 110 and 145 kDa complexes contained EPO receptor since they could be immunoprecipitated with antibodies raised against the receptor (Miura & Ihle, supra). Expression of a carboxy-terminal truncated EPO receptor resulted in detection of the 110 kDa complex but not the 145 kDa complex. This suggests that the higher molecular weight complex contains polypeptides present in the 110 kDa complex and an additional 35 kDa protein.
- the full-length human EPO receptor is a 483 amino acid transmembrane protein with an approximately 224 amino acid extracellular domain and a 25 amino acid signal peptide.
- the human receptor shows about an 82% amino acid sequence homology with tha mouse receptor.
- the cloned full length EPO receptor expressed in mammalian cells has been shown to bind EPO with an affinity (100-300 nM) similar to that of the native receptor on erythroid progenitor cells.
- this form is thought to contain the main EPO binding determinant and is referred to as the EPO receptor.
- the 85 and 100 KDa proteins observed as part of a cross-linked complex are distinct from the EPO receptor but must be in close proximity to EPO because EPO can be crosslinked to them.
- the 85 and 100 KDa proteins are related to each other and the 85 KDa protein may be a proteolytic cleavage product of the 100 KDa species (Sawyer J. Biol. Chem. 264, 13343 (1989)).
- a soluble (truncated) form of the EPO receptor containing only the extracellular domain has been produced and found to bind EPO with an affinity of about 1 nM, or about 3 to 10-fold lower than the full-length receptor (Harris et al. J. Biol. Chem. 267, 15205 (1992); Yang & Jones Blood 82, 1713 (1993)).
- the reason for the reduced affinity as compared to the full length protein is not known.
- Activation of the EPO receptor results in several biological effects. Three of the activities include stimulation of proliferation, stimulation of differentiation and inhibition of apoptosis (Liboi et al. Proc. Natl. Acad. Sci. USA 90, 11351 (1993); Koury Science 248, 378 (1990)).
- the signal transduction pathways resulting in stimulation of proliferation and stimulation of differentiation appear to be separable (Noguchi et al. Mol. Cell. Biol. 8, 2604 (1988); Patel et al. J. Biol. Chem. 267, 21300 (1992); Liboi et al. ibid).
- EPO Activation of the EPO receptor may be due to its dimerization. That is, EPO may act as a crosslinker between two EPO receptor molecules. There is evidence in support of this proposal. An arginine to cysteine mutation at position 129 of the murine EPO receptor results in constitutive activation of the receptor, presumably because of a disulfide bond formed between two receptors subunits (Yoshimura et al. Nature 348, 647 (1990)). In addition EPOR is found in multimeric complexes in cells (Miura & Ihle Arch. Biochem. Biophys. 306, 200 (1993)). However, isolation of a stable multimeric form of purified EPO soluble receptor has not been reported. In addition, dimerization of EPOR may be required, but not by itself be sufficient for complete activation of cells. For example, dimerization may result in a proliferative signal but not a differentiation signal. That is, accessory proteins may be required to send the differentiation signal.
- EPO receptor dimerization and activation may be exploited to identify compounds which are different from EPO but activate the receptor.
- antibodies possess two identical binding sites for antigen.
- An anti-EPOR antibody can bind two EPOR molecules and could bring them into close proximity to each other to allow dimerization. In order to function in vivo, these antibodies must recognize the EPOR on surfaces of cells and bind in a way that allows activation of the signal transduction pathway. In addition, it is desirable that activation result in both proliferation and differentiation of erythroid progenitors.
- a similar approach to understand the activation of human growth hormone receptor (Fuh et al. Science 256, 1677 (1992)) and epidermal growth factor receptor (Schreiber et al. Proc. Natl. Acad. Sci. USA 78, 7535 (1981)) has been reported.
- Baynes et al. Blood 82, 2088-2095 (1993) generated a polyclonal antibody to an amino-terminal peptide in the human EPO receptor.
- the antibody was shown to react with a soluble form of the receptor present in human serum.
- D'Andrea et al. Blood 82, 46-52 (1993) generated monoclonal antibodies to human EPO receptor.
- the antibodies bind to Ba/F3 cells transfected with the human EPO cDNA clone and some inhibit EPO binding and neutalize EPO-dependent growth.
- the invention relates to antibodies or fragments thereof which activate an erythropoietin receptor. Screening of antibodies which recognize the human EPO receptor has revealed that two antibodies, designated Mab 71 and Mab 73, stimulated the proliferation of UT7-EPO cells, an EPO-dependent cell line that does not proliferate in the absence of added EPO. Further, Mab 71 stimulated erythoid colony formation from erythroid progenitors in human blood.
- the antibodies encompassed by the invention may recognize an epitope on an EPO receptor which is recognized by Mab 71 or Mab 73.
- the antibodies are preferably monoclonal antibodies and may be humanized or human antibodies. Also included are hybridoma cell lines which produce the antibodies of the invention.
- kits for detecting EPO receptors in biological samples wherein the methods and kits comprise EPO receptor antibodies of the invention.
- Pharmaceutical compositions comprising EPO receptor antibodies and pharmaceutically acceptable adjuvants are also encompassed by the invention. Such compositons may be used to treat patients having disorders characterized by low red blood cell levels.
- FIG. 1 shows the results of an ELISA assay that measured the binding to the indicated concentrations of synthetic peptides by Mab 71.
- the peptides correspond to the indicated amino acid residues of human EPO receptor.
- Residue 1 is the amino terminal proline found in secreted EPOR upon cleavage of the leader sequence.
- FIG. 2 shows the effect of varying amounts of rHuEPO protein and purified Mabs 71 and 73 on 3 H thymidine uptake of UT7-EPO cells.
- FIG. 3 shows the effect of varying amounts of rHuEPO protein, Mab 71, Mab 73 or a non neutralizing control Mab directed against EPO (Mab F12) on inhibition of 125 I EPO binding to EPO receptors on the surface of OCIM1 cells.
- FIG. 4 shows a coomassie stained SDS gel of purified preparations of monoclonal antibodies 71 and 73 as well as monoclonal antibody fragments (Fabs) derived from Mabs 71 and 73. Samples were run under either reducing (plus 2-mercaptoethanol) or nonreducing (minus 2-mercaptoethanol) conditions.
- FIG. 5 shows the effect of varying amounts of purified rHuEPO protein, Mab 71 or Fab 71 on 3 H thymidine uptake of UT7-EPO cells.
- FIG. 6 shows the effect of varying amounts of purified Mab 71 or Fab 71 on 3 H thymidine uptake of UT7-EPO cells to which are also added 30 munits/ml of recombinant human EPO (rHuEPO).
- FIG. 7 shows a photograph of purified CD 34 + cells from peripheral blood which were grown 21 days in methylcellulose in the presence of EPO or Mab 71 under serum free growth conditions. Photos are of cells incubated with 500 munits/ml EPO (A), 25 munits/ml EPO (B), or 2.1 micrograms/ml Mab 71 (C).
- FIG. 8 shows the effect of varying amounts of rHuEPO, Mab 71 and a control monoclonal antibody raised to Her2/neu on the formation of erythroid colonies from erythroid precursors when grown under serum free growth conditions in soft agar.
- Monoclonal antibodies which recognize the erythropoietin receptor have been generated by immunizing mice with purified soluble human EPO receptor. Soluble human EPO receptor was expressed and purified as described in Examples 1 and 2. Of those Mabs which reacted with soluble human EPO receptor in enzyme-linked immunosorbent assays (ELISAs), 96 mabs were selected for further screening. These mabs were tested for EPO receptor binding by BIAcore analysis (Example 4A) and for binding to EPO receptor on the surface of transfected CHO cells by FACS (Example 4C). The results of these screenings are shown in Table 1.
- the stimulation of UT7-EPO cell growth is likely due to the activation of EPO receptor by Mab 71 and Mab 73.
- the response of UT7-EPO cells was greater in the presence of Mab 71 than Mab 73. It was further found that Mab 71 stimulated erythroid colony formation from human erythroid precursors (see Example 9). This is the first instance of an antibody stimulating the formation of erythroid colonies from erythroid precursors.
- the invention provides for an antibody or fragment thereof which activates an erythropoietin receptor.
- activation of an EPO receptor denotes one or more molecular processes which an EPO receptor undergoes that result in transduction of a signal to the interior of a receptor-bearing cell, wherein the signal ultimately brings about one or more changes in cellular physiology.
- Cellular responses to EPO receptor activation are typically changes in the proliferation or differentation of receptor-bearing cells.
- Receptor-bearing cells are typically erythroid progenitor cells.
- the molecular events leading to signal transduction by EPO receptor are poorly understood.
- EPO receptor dimerization is at least one event which is likely to be required for activation.
- the present disclosure also provides support for this idea. As shown in FIG. 5, stimulation of 3H-thymidine uptake in UT7-EPO cells by Mab 71 is abolished when substituted by the corresponding Fab fragment designated Fab 71. Therefore, replacement of the intact, bivalent antibody with a corresponding monovalent fragment eliminates the proliferative response. In addition Mab 71 inhibits activation of the EPO receptor at high concentrations. Both of these observations support the dimerization model of activation for the EPO receptor.
- Mab 71 has been shown to interact with a synthetic peptide of residues 49 to 78 of the human EPO-R (see example 6). Thus this region of EPO-R when bound by a cross linker such as Mab 71 can result in activation of EPO-R. It is understood that molecules that cross-link two EPO-R molecules by binding to residues 49 to 78 are also encompassed by the invention. These molecules could be antibodies or other bivalent molecular entities that have the property of crosslinking two EPO receptors by binding to residues contained within the region between residues 49 and 78 thereby resulting in dimerization and activation of the EPO receptor.
- EPO receptors of the invention will preferably be mammalian EPO receptors and, in a particularly preferred embodiment, will be human EPO receptor. It is understood that analogs of human EPO receptors are also encompassed by the invention. Such analogs are constructed by insertions, deletions, extensions or substitutions of amino acids in the human EPO receptor sequence. Examples of EPO-R analogs have been described in U.S. Pat. No. 5,292,654 to Yoshimura et al. wherein substitution of a cysteine residue at position 129 of the EPOR amino acid sequence resulted in constitutively activated EPOR.
- EPO-R analogs having amino acids changes in regions other than the antibody binding domains necessary for activation wherein said analogs retain secondary and tertiary structure of the human EPO receptor may be recognized by the antibodies of the present invention. It has been shown that Mab 71 interacts with a synthetic peptide of residues 49 to 78 of the human EPO-R (see Example 6). Therefore, EPO-R analogs having changes in amino acid residues other than those at positions 49 to 78 and retaining the human EPO receptor secondary and tertiary structure are likely to be recognized by Mab 71.
- the numbering of amino acid residues in the human EPOR polypeptide as used herein starts with proline at position 1, which is the amino terminal residue after cleavage of the 25 amino acid signal peptide.
- Antibodies of the invention bind to an epitope on an EPO receptor which is involved in receptor activation.
- antibodies recognize an epitope on an EPO receptor which is recognized by Mab 71 or an epitope which is recognized by Mab 73.
- Mab 71 recognizes a synthetic peptide spanning amino acid residues 49 to 78 in the human EPO-R. Therefore, it is likely that Mab 71 recognizes an epitope on EPO-R which is defined in whole or in part by this sequence.
- epitope on EPO-R which is defined in whole or in part by this sequence.
- epitope on EPO-R which is defined in whole or in part by this sequence.
- epitope on EPO-R which is defined in whole or in part by this sequence.
- epitope on EPO-R which is defined in whole or in part by this sequence.
- epitope on EPO-R which is defined in whole or in part by this sequence.
- epitope on EPO-R which is defined in whole or in part
- the invention also provides polyclonal antibodies, and monoclonal antibodies and fragments thereof.
- Antibody fragments encompass those fragments which activate an EPO receptor.
- humanized antibodies typically produced by recombinant methods, wherein human sequences comprise part or all of an antibody which activates an EPO receptor. Examples of humanized antibodies include chimeric or CDR-grafted antibodies (U.S. Pat. Nos. 4,816,567 and 5,225,539). Also included are fully human antibodies to EPO receptor produced in genetically-altered mice (see PCT Application No. 93/12227).
- Antibodies of the invention may also have a detectable label attached thereto.
- Such a label may be a fluorescent (e.g., fluorescein isothiocyanate, FITC), enzymatic (e.g, horseradish peroxidase), affinity (e.g., biotin) or isotopic label (e.g., 125 I).
- fluorescent e.g., fluorescein isothiocyanate, FITC
- enzymatic e.g, horseradish peroxidase
- affinity e.g., biotin
- isotopic label e.g., 125 I
- hybridoma cell lines producing a monoclonal antibody which activates an EPO receptor.
- the hybridoma cell line produces a monoclonal antibody which recognizes an eptitope on an EPO receptor which is recognized by Mab 71 or Mab 73.
- Generation of hybridoma cell lines producing monoclonal antibodies to human EPO-R are described in Example 3.
- the hybridoma cell line which produces Mab 71 has been deposited with the American Type Culture Collection, Rockville, Md. on ______ under accession no. ______.
- the hybridoma cell line which produces Mab 73 has been deposited with the American Type Culture Collection, Rockville, Md. on ______ under accession no. ______.
- the antibodies of the present invention are useful in diagnosing anemia and other diseases characterized by dysfunctional EPO-R.
- a method of detecting in a biological sample an EPO receptor which is capable of which being activated comprising the steps of: (a) contacting the sample with an antibody which activates an EPO receptor; and (b) detecting activation of the receptor by the antibody.
- the biological samples include tissue specimens, intact cells, or extracts thereof.
- Antibodies may be used as part of a diagnostic kit to detect the presence of EPO receptors in a biological sample. Such kits employ antibodies having an attached label to allow for detection.
- the antibodies are useful for identifying normal or abnormal receptors. The presence of abnormal receptors in a biological sample may be indicative of disorders such as Diamond Blackfan anemia, where it is believed that the EPO receptor is dysfunctional.
- Antibodies of the invention are useful for treating disorders charaterized by low red blood cell levels. Included in the invention are methods of modulating the endogenous activity of an EPO receptor in a mammal, preferably methods of increasing the activity of an EPO receptor. In general, any condition treatable by erythropoietin, such as anemia, may also be treated by the antibodies of the invention. Therapeutic antibodies are administered by an amount and route of delivery that is appropriate for the nature and severity of the condition being treated and may be ascertained by one skilled in the art. Preferably, administration is by injection, either subcutaneous, intramuscular, or intravenous.
- the invention provides for a pharmaceutical composition
- a pharmaceutical composition comprising a therapeutically effective amount of an antibody which activates an EPO-R together with a pharmaceutically acceptable adjuvant, wherein the adjuvant may be selected from one or more of a diluent, carrier, preservative, emulsifier, anti-oxidant and/or stabilizer.
- a “therapeutically effective amount” as used herein refers to that amount of antibody which provides a therapeutic effect for a given condition and administration regimen.
- the therapeutic effect is stimulation of red blood cell production as evidenced by a rise in hematocrit in the patient being treated.
- the antibodies are humanized or human antibodies which may be prepared using procedures known to the skilled worker.
- Pharmaceutically acceptable adjuvants are known to one skilled in the art and are surveyed extensively in Remington's Pharmaceutical Sciences, 18th ed. A. R. Gennaro, ed. Mack, Easton, Pa. (1990).
- PCR reactions were carried out using 2.5 ng of a plasmid containing human EPOR, 5 pmol of each of the above oligonucleotide primers, 10 mM Tris HCl (pH 8.3), 50 mM KCl, 1.5 mM Mg Cl 2 , 200 ⁇ M each dNTP and 1 unit of Taq polymerase. Amplification was for 5 cycles of 30 sec. at 94° C., 1 min. at 50° C., 1 min at 72° C., followed by 20 cycles of 30 sec. at 94° C., 1 min. at 55° C., 1 min at 72° C.
- DNA was purified by passage through a G-50 size exclusion column (Boehringer Mannheim Corp.), then digested with Hind III and XbaI and ligated into the expression vector pDSR ⁇ 2 (DeClerck et al. J. Biol. Chem. 266, 3893 (1991)) which has also been digested with Hind III and XbaI. Clones containing the desired insert were verified by DNA sequence analysis.
- the d40EPOR clone was made by PCR from a full length human EPOR clone (see above).
- the carboxy terminus of d40EPOR is tyr467, the result of adding a stop codon within the primer.
- Primers for PCR amplification were: 5′ primer: 5′-CTC CAA GCT TGC CGT CAC CAT GGA CCA CCT CGG GGC GTC: (SEQ. ID NO:_) CCT-3′ and 3′ primer: 5′-AGG TCG ACT ACT AGT AGT CAG TTG AGA-3′ (SEQ. ID NO:_)
- PCR amplification used pfu polymerase in pfu buffer2 (Stratagene, La Jolla, Calif.). Reaction conditions were: 1 cycle at 96° for 30 sec., 45° for 1 min., 72° for 1 min.; 25 cycles at 96° for 1 min., 55° for 1 min., 72° for 2 min. A final 72° incubation for 5 min. was then performed. The reaction products were separated by agarose gel electrophoresis and the approximately 1.3 Kb band was isolated using a gene clean kit (BIO 101, Vista, Calif.). The purified fragment was ligated into PCR II (TA cloning kit, Invitrogen, San Diego, Calif.).
- the expression plasmid pDSR ⁇ 2-EPOR-X contains sequences encoding human EPOR amino acids Met1-Pro249 as shown in Jones et al. supra.
- Plasmid pDSR ⁇ EPORd40 contains sequences encoding Met1-Tyr467.
- Ten micrograms of each plasmid were independently introduced into CHO cells by calcium phosphate mediated transfection (Wigler et al. Cell 11, 233 (1977)). Individual colonies were selected based upon expression of the dihydrofolate reductase gene from the vector. Expression of human EPOR was monitored by RNA hybridization (Hunt et al., Exp.
- conditioned media containing soluble human EPOR was done in both roller bottles and a hollow fiber bioreactor. Roller bottles were innoculated with 2 ⁇ 10 7 cells in 200 ml growth medium (DMEM: Ham's F12 (1:1) supplemented with non-essential amino acids (NEAA), 30 nM Mtx and 5% fetal bovine serum (FBS) (reagents from GIBCO, Grand Island, N.Y.)). Upon reaching confluence in 3-4 days, the media was replaced with 200 ml DMEM: Ham's F12, NEAA, 30 nM Mtx with no serum. Conditioned media was harvested after 6-7 days and replaced with fresh serum-free media. Second and third harvests were collected.
- DMEM Ham's F12 (1:1) supplemented with non-essential amino acids (NEAA), 30 nM Mtx and 5% fetal bovine serum (FBS) (reagents from GIBCO, Grand Island, N.Y.)
- FBS fetal
- a Cell Pharm biorector cartridge was innoculated with 5 ⁇ 10 8 cells in growth medium (as above) supplemented with 5 ⁇ g/mL gentamicin. The pH was maintained at 7.3. Beginning on day 12 after innoculation the cells were weaned off of serum to generate serum-free conditioned media. Harvesting of conditioned media began on day 17.
- Epoxy-activated Sepharose 6B (Pharmacia, Piscataway, N.J.) is coupled with recombinant human erythropoietin (rHuEPO) essentially as per manufacturer's instructions. 218 mg of rHuEPO in 4.5 mL of 32 m M ZnCl 2 is added to 7.2 g of Epoxy-activated Sepharose 6 B previously hydrated and washed with H2O. This slurry is titrated to pH 10.8 then mixed overnight at room tempurature.
- the coupled resin (Epoxy-EPO) is packed into a column and washed with alternating cycles of 0.5 M NaCl/0.1 M HOAc pH 4 and 0.5 M NaCl/0.1 M Borate pH 8.
- the column is equilibrated with 140 m M NaCl/10 m M Tris pH 7.6 (TBS). It is loaded with 1560 mL of roller bottle produced conditioned media from CHO cells expressing soluble EPO-R (sHuEPO-R).
- the column is washed with 300 m M NaCl/10 m M Tris pH 7.6 then the bound sHuEPOR is eluted with 1 M NaCl/3 M urea/10 m M Tris pH 7.6. Two UV 280 absorbing peaks elute with this buffer.
- the second peak to elute which contains the sHuEPOR, is pooled and diluted 20 fold with H 2 O.
- the diluted pool is then loaded to a 1 mL prepacked column of Mono Q (Pharmacia) and eluted with a NaCl gradient in 10 m M Tris pH 7.6.
- a single peak elutes, which is pooled, aliquoted and stored frozen at ⁇ 80° C.
- Epoxy-EPO column In the second preparation, a larger Epoxy-EPO column is made. 20.4 g of Epoxy-activated Sepharose 6 B is hydrated and washed with H 2 O, then with acetone and finally with 50% formamide in H 2 O pH 10.6. 729 mg of rHuEPO in 15 mL of H 2 O is titrated to pH 10.6, added to the resin and mixed overnight at room tempurature. Any remaining reactive groups are then blocked by addition of ethanolamine to a final concentration of 1 M and mixed for 140 minutes at room temperature. The subsequent steps are performed at 8° ⁇ 2° C.
- Epoxy-EPO is packed into a column and washed with 3 M urea/750 m M NaCl/10 m M Tris pH 7.6, the column is then equilibrated with TBS.
- 100 mL of bioreactor produced conditioned media from CHO cells expressing sHuEPOR are mixed with 2 mL of Q Sepharose Fast Flow (Pharmacia). It is incubated for 30 minutes at 8° ⁇ 2° C. with frequent mixing, then filtered through a 0.45 micron cellulose nitrate bottle top filter (Corning).
- the filtrate is loaded to the Epoxy-EPO column, washed with 250 m M NaCl/10 m M Tris pH 7.6, then eluted with 3 M urea/750 m M NaCl/10 m M Tris pH 7.6.
- the eluted peak is pooled and diluted 20 fold with H 2 O.
- the diluted pool is then loaded to a 15 mL column of Q Sepharose Fast Flow and eluted with a NaCl gradient in 10 m M Tris pH 7.6.
- the single peak that elutes is pooled, aliquoted and stored frozen at ⁇ 80° C.
- Solid (NH 4 ) 2 SO 4 is added to the pool to a final concentration of 1.2 M then filtered through a 0.45 micron cellulose nitrate bottle top filter
- the filtrate is loaded to a 60 mL column of Phenyl Sepharose 6 (low sub, Pharmacia) and eluted with a decreasing gradient of 1.2 M to 0 M (NH 4 ) 2 SO 4 in 20 m M Tris pH 7.6.
- the major eluting peak is pooled and made 2.4 M in (NH 4 ) 2 SO 4 to precipitate the sHuEPORt.
- the precipitated sHuEPOR is harvested by centrifugation, resuspended with H 2 O and titrated to pH 7.9 with Tris-HCl.
- the resultant solution is filtered through a 0.45 micron cellulose nitrate filter, aliquoted and stored frozen at ⁇ 80° C.
- EIA Enzyme-linked Immunosorbent Assay
- EIAs were initially performed to determine serum antibody (Ab) titres of individual animals, and later for screening of potential hybridomas.
- Flat bottom, high-binding, 96-well microtitration EIA/RIA plates (Costar Corporation, Cambridge, Mass.) were coated with purified sHuEPOR at 5 ⁇ g per ml carbonate-bicarbonate buffer, pH 9.2 (0.015 M Na 2 CO 3 , 0.035 M NaHCO 3 ).
- Fifty ⁇ l of the Ab were added to each well. Plates were then covered with acetate film (ICN Biomedicals, Inc., Costa Mesa. Calif.) and were incubated at room temperature (RT) on a rocking platform for 2 hours or over-night at 4° C.
- sHuEPOR lot #1 was used after the first and second boost, lot #2 was used after the third boost.
- sHuEPOR lots #3 and 4 were used for screening of hybridomas. Plates were blocked for 30 minutes at RT with 250 ⁇ l per well 5% BSA solution prepared by mixing 1 part BSA diluent/blocking solution concentrate (Kirkegaard and Perry Laboratories, Inc.) with 1 part deionized water (dH 2 O). Blocking solution having been discarded, 50 ⁇ l of serum 2-fold dilutions (1:400 through 1:51,200) or hybridoma tissue culture supernatants were added to each well.
- BSA solution prepared by mixing 1 part BSA diluent/blocking solution concentrate (Kirkegaard and Perry Laboratories, Inc.) with 1 part deionized water (dH 2 O). Blocking solution having been discarded, 50 ⁇ l of serum 2-fold dilutions (1:400 through 1:51,200) or hybridoma tissue culture supernatants were added
- Serum diluent was 1% BSA (10% BSA diluent/blocking solution concentrate diluted 1:10 in Dulbecco's Phosphate Buffered Saline, D-PBS; Gibco BRL, Grand Island, N.Y.), while hybridoma supernatants were tested undiluted. In the case of hybridoma testing, one well was maintained as a conjugate control, and a second well as a positive Ab control. Plates were again incubated at RT, rocking, for 1 hour, then washed 4 times using a 1 ⁇ preparation of wash solution 20 ⁇ concentrate (Kirkegaard and Perry Laboratories, Inc.) in dH 2 O.
- Goat anti-mouse IgG heavy- and light-chain specific horseradish peroxidase conjugated secondary Ab (Boehringer Mannheim Biochemicals, Indianapolis, Ind.) diluted 1:1000 in 1% BSA was then incubated in each well for 30 minutes. Plates were washed as before, blotted dry and ABTS Peroxidase single component substrate (Kirkegaard and Perry Laboratories, Inc.) was added. Absorbance was read at 405 nm for each well using a Microplate EL310 reader (Bio-tek Instruments, Inc., Winooski, Vt.).
- Half-maximal titre of serum antibody was calculated by plotting the log 10 of the serum dilution versus the optical density at 405 nm, then extrapolating at the 50% point of the maximal optical density obtained by that serum. Hybridomas were selected as positive if optical density scored greater than 5-fold above background.
- mice were subcutaneously injected (SQI) with 50 ⁇ g sHuEPOR; lot 1; antigen) emulsified in Complete Freund's Adjuvant (CFA; 50% vol/vol; Difco Laboratories, Detroit, Mich.). These animals were boosted (SQI) 4 weeks later with 25 ⁇ g antigen (Ag; lot 1) prepared in similar fashion using Incomplete Freund's Adjuvant (ICFA; Difco Laboratories, Detroit, Mich.). Mice were bled via the tail 9 days later and serum antibody (Ab) titres determined by enzyme-linked immunosorbent assay (EIA).
- SIA enzyme-linked immunosorbent assay
- mice 7, 8 and 9 were intravenously injected with 25 ⁇ g of sHuEPOR (lot #3) 8 weeks following the final boost.
- mice Four days later, mice were sacrificed by carbon dioxide and spleens collected under sterile conditions into 25 ml Dulbecco's Modified Eagle's Medium containing 200 U/ml Penicillin G, 200 ⁇ /ml Streptomycin sulfate, and 4 mM glutamine (2 ⁇ P/S/G DMEM). The spleens were trimmed of excess fatty tissue, then rinsed through 3 dishes of clean 2 ⁇ P/S/G DMEM.
- the media was aspirated from the cell pellet and 2 ml of polyethylene glycol (PEG 1500 MWt; Boehringer Mannheim Biochemicals, Indianapolis, Ind.) for fusion 1 of 3.5 ml of PEG for fusion 2 at 37° C. were gently mixed into the media over the course of 1 minute. Thereafter, an equal volume of 2 ⁇ P/S/G DMEM was slowly added. The cells were allowed to rest at 37° C. for 2 minutes, then an additional 9 ml of 2 ⁇ P/S/G DMEM added. The cells were again set at 37° C. for 4 minutes. Finally, 30 ml of 2 ⁇ P/S/G DMEM was added to the cell suspension, and the cells pelleted by centrifugation.
- PEG 1500 MWt Boehringer Mannheim Biochemicals, Indianapolis, Ind.
- Media was aspirated from the pellet and the cells gently resuspended into approximately 56 ml (fusion 1) or 74 ml (fusion 2) of complete medium containing 100 U/ml Penicillin G and 100 ⁇ /ml Streptomycin Sulfate.
- Cells were distributed over 10 96-well flat bottom tissue culture plates (Becton Dickinson Labware; Lincoln Park, N.J.) by single drops from a 5 ml pipette. Plates were incubated in humidified conditions at 37° C., 5% CO 2 , overnight. The next day, an equal volume of selection medium was added to each well.
- Selection consisted of 0.1 mM hypoxanthine, 4 ⁇ 10 ⁇ 4 mM aminopterin, and 1.6 ⁇ 10 ⁇ 2 mM thymidine in complete medium.
- the fusion plates were incubated for 7 to 10 days with 2 changes of medium during this time; HAT selection medium was used after each fluid change.
- Tissue culture supernatants were taken from each hybrid-containing well and tested by EIA for specific antibody reactivity to sHuEPOR. 96 wells which were positive in EIA were subjected to further screening.
- Dot blots of reduced sHuEPOR (lot #4) were used as a secondary screening method for EIA positive hybridomas.
- the Dot Blot SF Microtitration Apparatus (Bio-Rad Laboratories, Inc.; Richmond, Calif.) was set-up according to the instruction manual; nitrocellulose membranes (9 ⁇ 12 cm; Bio-Rad Laboratories, Inc.; Richmond, Calif.) were employed.
- Antigen was first prepared by boiling for 5 minutes under reducing conditions with 2-mercaptoethanol (5% vol/vol; Bio-Rad Laboratories, Inc.; Richmond, Calif.) in Tris-buffered saline solution (TBS; 10 mM Tris pH 7.5, 154 mM NaCl, 0.01% wt/vol Na azide). Twenty-five ng of sHuEPOR (lot #4) was loaded into each well and aspirated through the nitrocellulose membrane for binding.
- Blotto-Tween solution (block solution; 2% wt/vol non-fat dry milk, 50 mM Tris, pH 7.5, 25 mM NaCl, 0.1 mM EDTA, 0.09% vol/vol Tween 20, 0.01% vol/vol anti-foam A) and incubated at RT for 30 minutes. Block solution was aspirated from the wells and the procedure repeated for a second time to ensure complete blocking of non-specific sites on the membrane. This was followed by 3 washes through the membrane with D-PBS containing 0.1% vol/vol polyoxyethylene sorbitan monolaurate (Tween-20; Bio-Rad Laboratories, Inc.; Richmond, Calif.).
- Soluble HuEPOR prepared as described in Examples 1 and 2 was covalently coupled to the sensor chip CM5 via the primary amine group.
- the immobilization was performed at a flow of 5 ul/min in HBS (10 mM HEPES pH 7.4, 150 mM NaCl, 3.4 mM EDTA, 0.05% BIAcore surfactant P-20).
- the carboxylated matrix of the sensor chip was first activated with a 40 ul injection of 1:1 mixture of EDC (400 mM N-ethyl-N-(dimethylamine-propyl)carbodiimide in water, Pharmacia Biosensor AB) and NHS (100 mM N-hydroxysuccinimide in water, Pharmacia Biosensor AB).
- the sensor chip which was immobilized with sHuEPOR could be saturated by an injection of 65 ⁇ l of hybridoma supernatant 1G2.
- 1G2 is a monoclonal antibody raised to sHuEPOR using procedures described in Example 3.
- Each analysis cycle included injections of 20 ul of the hybridoma supernatant with and without one epitope being saturated by the injection of 65 ul of 1G2.
- the ratio of the binding signal in RU of 20 ⁇ l injection after 1G2 saturation versus the binding signal in RU of 20 ⁇ l injection alone is defined as % blocking by 1G2.
- Those antibodies with 80-100% blocking are assigned as group A, those with less than 50% blocking as group B, and those with 50-80% blocking as group C. The results are shown in Table 1.
- Hybridoma supernatants raised against EPOR were tested for binding to EPO receptor on the surface of pDSR ⁇ EPORd40 transfected CHO cells by FACS analysis.
- CHO cells transfected with DNA encoding d40 EPO receptor were constructed as described in Example 1.
- CHO/EPOR cells were scraped from tissue culture dishes and resuspended as single cells in a solution of PBS/0.5% BSA and were then distributed into a 96 well round-bottom plate at approximately 3 ⁇ 10 5 /well. The plate was then placed in the centrifuge at 1000 ⁇ g for 5 min.
- mice (Charles Rivers Laboratories, Wilmington, Mass.), greater that 5 weeks of age were primed with 2, 4, 10, 14-tetramethyl-pentadecane (Pristane; Sigma, St. Louis, Mo.) 7 to 10 days prior to injection of cell lines. Each mouse received a single intraperitoneal injection of 0.5 ml; 10 to 20 animals were injected for each cell line for which ascites fluid was to be prepared.
- Hybridoma lines grown in complete medium until confluency was attained were washed once with D-PBS then counted using a Neubauer Hemacytometer. Each mouse was then intraperitoneally injected with 10 7 cells, and maintained on Rodent Lab Chow and water ad libitum until ascites fluid developed. Mice were monitored for maximum ascites formation, sacrificed under CO 2 , and tapped for fluid collection using an 18G needle inserted into the fluid-filled cavity. The fluid was clarified by centrifugation at 225 ⁇ g for 15 min or for 3 minutes in a microcentrifuge (Eppendorf). Four ml aliquots were then stored at ⁇ 20° C. until purified by Protein-A column chromatography.
- Immunoglobulin from 4 ml of ascites fluid or 10 ml of hybridoma conditioned medium was purified by Protein-A column chromatography.
- the Bio-Rad Monoclonal Antibody Purification System II (MAPS II; Bio-Rad Laboratories; Richmond, Calif.) was used. Briefly, 5 ml of Affi-gel Protein-A suspension was settled into a 1 ⁇ 10 cm disposable glass column. The Protein-A gel was washed with approximately 30 ml of D-PBS then prepared by running 20 ml of Binding Buffer (MAPS II Binding Buffer; Bio-Rad) through the column.
- Protein-A purified immunoglobulin was further fractionated into its 2 component parts, the crystalizable fraction (Fc) and the antibody-binding fraction (Fab), using a Pierce ImmunoPure Fab Preparation kit (Pierce Chemical Company, Rockford, Ill.).
- the protein-A purified immunoglobulin was dialyzed into 20 mM phosphate/10 mM EDTA buffer at pH 7.0, then concentrated to approximately 20 mg/ml.
- Ten mg of immunoglobulin was fractionated. Immobilized papain gel was rinsed twice with digestion buffer containing 42 mg cysteine in 12 ml phosphate buffer as supplied. The immunoglobulin sample was then added to the gel and incubated at 37° C., on a rotating shaker, overnight.
- the solublized Fab was separated from the Fc and undigested immunoglobulin by protein-A purification; unbound fraction was collected here as the Fab sample. This unbound portion was dialyzed overnight against 4 liters D-PBS at 4° C., and concentrated as before.
- sequences of the peptides and their location within the human EPO-R amino acid sequence are as follows: SE-1 PPPNLPDPKFESKAALLAARGPEELCFTE (residuses 1-30) SE-2A LLCFTERLEDLVCFWEEA (residues 25-42) SE-2B CFWEEAASAGVGPGNYSF (residues 37-54) SE-3 PGNYSFSYQLEDEPWKLCRLHQAPTARGAV (residues 49-78) SE-4 TARGAVRFWCSLPTADTSSFVPLELRVTAA (residues 73-102) SE-5 LRVTAASGAPRYHRVIHINEVVLLDAPVGL (residues 97-126 SE-6 DAPVGLVARLADESGHVVLRVLPPPETPMT (residues 121-150) SE-7 PETPMTSHIRYEVDVSAGNGAGSVQRVEIL (residues 145-174) SE-8 QRVEILEGR
- Polystyrene wells (Costar, Cambridge, Mass.) were coated with the above EPO-R peptides at concentrations of 100 ⁇ g/ml, 20 ⁇ /ml and 0.8 ⁇ g/ml respectively in carbonoate-biocarbonate buffer (0.015M Na 2 CO 3 , 0.035M NaHCO 3 , pH 9.2). The plate was incubated at room temperature (RT) for 2 hours then overnight at 4° C. Soluble HuEPOR was coated at concentrations of 10 ⁇ g/ml, 2 ⁇ g/ml, 0.4 ⁇ g/ml and 0.08ug/ml as positive controls under the same conditions.
- the plate was incubated with Mab 71 purified as described in Example 5 at a concentration of 5 ⁇ g/ml in 1% BSA at RT for 2 hours. After washing with washing buffer (Kirkegard and Perry Labs, Inc.) the plate was incubated with 1:1000 dilution of Goat anti-mouse IgG conjugated with horse Radish peroxidase (Boehringer Mannheim) for one hour at RT. The plate was washed and developed with ABTS (Kirkegard and Perry Labs, Inc.) substrate solution. Colorimetry was conducted at 405 nm. The results of Mab binding to the synthetic peptides are shown in FIG.
- Mab 71 binds significant amounts of peptide SE-3 (amino acid residues 49 to 78 inclusive of human EPO-R) compared to the other peptides tested. This indicates that Mab/1 binds to a region of the human EPO-R containing or overlapping residues 49 to 78.
- Antibodies in conditioned medium prepared as described above were assayed for their ability to stimulate uptake of 3H-thymidine by UT7-EPO cells ( Komatsu et al., supra).
- UT7-EPO cells are responsive to EPO and express human EPO receptors on their cell surface.
- UT7-EPO cells were grown in Growth medium (1 ⁇ Iscove's Modified Dulbecco's Medium with L-glutamine, 25 mM HEPES buffer, and 3024 mg/L sodium bicarbonate, but without either alpha-thioglycerol or beta-mercaptoethanol (GIBCO)/10% v/v Fetal Bovine Serum/1% v/v L-glutamine-Penicillin-Streptomycin solution (Irvine Scientific)/1 Unit/ml rHuEPO ) to approximately 3 ⁇ 10 5 cells/ml. Cells were collected by centrifugation (approx.
- methyl- 3 H-Thymidine (1 mCi/ml; 20 Ci/mMole) diluted 1:100 in assay medium was added. Cells were incubated for an additional 4 hours at 37° C. and 5% CO 2 . Labeled cells were harvested onto glass fiber filtermats using a PHD cell harvester(Cambridge Technology Inc.) and deionized water as a washing solution. Filters were rinsed a final time with 2 propanol then dried and counted in a Beckman Model LS6000IC scintillation counter.
- Conditioned medium from tissue culture plates containing antiEPOR Mabs were tested for their ability to stimulate proliferation as described above. Samples at several dilutions were tested. Positive responses were defined as those that stimulated thymidine uptake at least 2-fold over background levels and also resulted in decreasing stimulation as the samples were diluted. As shown in Table 1, two samples out of 24 tested gave a positive response (Mabs 71 and 73). Four samples may have a weak stimulatory activity (? in Table 1). The remaining samples did not give a significant increase over background. A polyclonal serum from the mouse used to generate monoclonals also stimulated thymidine uptake. This suggests that the polyclonal antibody in this serum was also capable of stimulating proliferation of UT7-EPO cells.
- the supernatants were also tested for their ability to inhibit EPO-induced stimulation of thymidine uptake by UT7-EPO cells.
- Cells were incubated with 25 munits/ml rHuEPO and varying amounts of antibody containing conditioned medium.
- Thymidine uptake was measured as described above. The results are shown in Table 1. Most antibodies did not significantly differ from control medium. Of the antibodies showing inhibition of thymidine uptake, two samples (Mabs 58 and 73) showed definite inhibition while three samples (Mabs 65, 88 and 89) showed possible inhibition. Mab 73 inhibited at the highest doses but at lower doses it stimulated thymidine uptake over control values.
- A. UT7-EPO Proliferation Assay Mabs 71 and 73 were purified as described in Example 5. Proliferative activity was determined with UT7-EPO thymidine uptake assays described in Example 7. Both Mabs 71 and 73 stimulated uptake by UT7-EPO cells in a dose dependent manner as did rHuEPO (see FIG. 2). Activity was reduced at high doses of Mab 71. Peaks in stimulatory activity were observed at doses of 1-2 ⁇ /ml for Mab 71 and >100 ⁇ g/ml for Mab 73. A nonneutralizing control antibody (AntiEPO Mab F12) did not stimulate which suggests that the stimulation is specific for EPO receptor antibodies.
- Antibodies to the EPO receptor may bind to the same region as EPO binds.
- cold displacement assays were performed using OCIM1 cells.
- OCIM1 cells are from human origin and known to contain EPO receptors on their cell surface (Broudy et al. Proc. Nat. Acad. Sci. USA 85, 6517 (1988)). Cells were grown in OCIM1 growth medium (Iscove's modified Dulbecco medium(IMDM)/10% fetal bovine serum/1% pen-strep-fungisone) to approximately 2-5 ⁇ 10 5 cells/ml.
- Cells were collected by centrifugation, washed two times in binding buffer (RPMI 1640/1% BSA/25mM HEPES pH 7.3) then resuspended in binding buffer containing 0.1% azide and 10 ⁇ /ml cytochalisin B at 1-2 ⁇ 10 7 cells/ml.
- Cells (100 ⁇ L) in 96 well tissue culture plates were then incubated with 10 ⁇ L sample and 10 ⁇ L 125 I-EPO (Amersham high specific activity; 3000 Ci/mMole, 2 ⁇ Ci/ml) in a 37° humidified tissue culture incubator.
- FIG. 3 shows the results of the cold displacement experiment. Increasing amounts of 125 I-EPO were displaced from EPO receptors on cells as the amount of added unlabeled rHuEPO was increased.
- Mab 71 purified as described in Example 5 also displaced increasing amounts of 125 I-EPO with increasing amounts of antibody. In this case, approximately 4,000 fold more Mab 71 was needed than rHuEPO to displace equivalent amounts of 125 I-EPO.
- Mab 73 showed indications of displacement at the highest doses but a nonneutralizing anti rHuEPO Mab (F12) did not significantly displace.
- F12 nonneutralizing anti rHuEPO Mab
- EPO receptor fragments of Mab 71 were prepared as described in Example 5. The preparations were characterized by SDS gel electrophoresis (Laemmli et al. Nature 227, 680 (1970) as shown in FIG. 4. Samples were boiled in 2% SDS containing sample buffer with or without 0.7M 2-mercaptoethanol, to distinguish reduced (2-mercaptoethanol) from nonreduced (no 2-mercaptoethanol) proteins, then run on 12.5% acrylamide SDS gels. The gels were stained with coomassie blue to visualize the proteins. The sizes of the proteins were estimated by comparing their mobilities to the mobilities of protein standards. Mabs 71 and 73 separated into light and heavy chains when run under reducing conditions.
- the heavy chains were approximately 52 KDa.
- the light chain for 73 was slightly smaller (28 KDa) than for Mab 71 (28.5 KDa).
- the Fab fragments also had two chains: 28.3 and 27.3 KDa for Fab 71 and 27.5 and 26.5 KDa for Fab 73.
- the sizes of Fabs 71 and 73 were approximately 48 and 47 KDa respectively. This indicates that the Fab fragments are monovalent, the complex has one each of the light and heavy chains.
- the mobilities on nonreducing SDS gels for Mabs 71 and 73 indicated that their sizes were approximately 200 KDa. This indicates that these Mabs are bivalent, there are two each of the heavy and light chains.
- Mab 71 inhibits binding of EPO to EPO receptors suggested that the antibody may not activate the EPO receptor in the presence of EPO.
- UT7-EPO cells were incubated with 30 munits/ml rHuEPO and varying amounts of purified Mab 71, Fab 71 or Mab control (raised against Her2/neu). Thymidine uptake was measured as described above. As shown in FIG. 6 Both Mab 71 and Fab 71 inhibited thymidine uptake at high doses. However at doses between approximately 30 and 3000 ⁇ /ml, Mab 71 stimulated thymidine uptake above levels stimulated by rHuEPO alone. Fab 71 and control antibodies did not have this effect. This indicates that Mab 71 and rHuEPO can have an additive effect in EPO receptor activation.
- the low density cells(LD) were collected from the gradient and washed with 500 ml HBSS and resuspended in PBS supplemented with 0.5% bovine serum albumin and 5 mM EDTA at a concentration of 5 ⁇ 10 8 cells/ml.
- the LD cells were then further purified using a CD34 progenitor Cell Isolation Kit (QBend/10) made by Miltenyi Biotech GmbH.
- CD34 progenitor Cell Isolation Kit QBend/10
- cells were tagged with an anti CD34 monoclonal antibody they were then bound to magnetic microspheres according to protocol.
- the tagged cells were next passed through pre-filled MiniMacs separation columns, the columns were washed and the CD34+ cells were then eluted from the column. This process was repeated once more to achieve a higher purity of CD34+ cells.
- the in vitro assay was done on the purified CD34+cells as described by Iscove et. al. (J. Cell. Physiol 83, 309 (1974)) with the following modifications.
- the culture medium was obtained from Gibco BRL (Human bone marrow stem cell proliferation kit; Grand Island, N.Y.). To plate out duplicate 1 ml samples on 35 ⁇ 100 mm tissue culture plates, an excess of 3 ml was prepared in 17 ⁇ 100 sterile polystyrene tubes.
- Each tube received 2.5 ml Stem Cell Growth medium, 0.1 ml CD34+ cells (resuspended at 90,000 cells/ml) 0.015 ml Stem Cell Factor (20 ⁇ /ml), and a combination of sample and Stem Cell Dilution medium equaling 0.385 ml.
- the tubes were vortexed and allowed to settle to allow bubbles to rise.
- the contents were then aliquoted using a 3 ml syringe with a 17 ⁇ 1 ⁇ 1 ⁇ 2 needle.
- the plates were incubated at 37° C. and 10% CO 2 in a humidified tissue culture incubator. Erythroid colonies (orange to red in color) were scored after 21 days. No erythroid colonies were seen in plates lacking EPO or Mab 71.
- rHuEPO (30 mUnits/plate) gave an excess of 400 colonies per plate. Mab 71 also produced erythroid colonies. Peak activity was seen at 2-6 ⁇ /ml. This result indicates that Mab 71 stimulates formation of erythroid colonies.
- Each tube received 0.030 ml each of 100 ⁇ Stock Solutions (2-Mercaptoethanol, nucleosides, cholesterol, Sodium-Pyruvate, Hu-Transferrin, lipids, Hu-Insulin), 0.4 ml deionized BSA (15%), 0.015 ml SCF (20 ug/ml), 0.1 ml CD34+ cells (resuspended at 300,000 cells/ml), 1.080ml methylcellulose (2.3%), and a combination of sample and IMDM equaling 1.195 ml where the sample did not exceed 150 ⁇ l. The plates were then incubated as described above and colonies were scored after 21 days.
- FIG. 7 An example of the erythroid colony types seen is shown in FIG. 7. Colonies incubated with 25 munits of rHuEPO looked similar to those grown with 2.1 ⁇ /ml of purified Mab 71. Higher doses of rHuEPO gave larger colonies. A dose response curve is shown in FIG. 8. Mab 71 had a peak in activity at doses between 1 and 5 ⁇ g/ml. Lower and higher doses resulted in fewer erythroid colonies. A control monoclonal antibody raised to Her2/Neu did not produce any colonies over this dose range. This result indicates that the Mab 71 will stimulate the formation of erythroid colonies from erythroid precursors and that there is not an additional requirement for serum. Thus Mab 71 can stimulate differentiation of erythroid precursors into erythroid cells.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Toxicology (AREA)
- Cell Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Antibodies and fragments thereof which activate an erythropoietin receptor and stimulate erythropoiesis are described. Also described are hybridoma cell lines which produce the antibodies and methods and compositions for the treatment of anemia.
Description
- This invention relates to antibodies which recognize an erythropoietin receptor. More particularly, the invention relates to antibodies which activate an erythropoietin receptor and stimulate erythropoiesis.
- Erythropoietin (EPO) is a glycoprotein hormone involved in the growth and maturation of erythroid progenitor cells into erythrocytes. EPO is produced by the liver during fetal life and by the kidney of adults and stimulates the production of red blood cells from erythroid precursors. Decreased production of EPO, which commonly occurs in adults as a result of renal failure, leads to anemia. EPO has been produced by genetic engineering techniques involving expression and secretion of the protein from a host cell transfected with the gene encoding erythropoietin. Administration of recombinant EPO has been effective in the treatment of anemia. For example, Eschbach et al. (N. Engl J Med 316, 73 (1987)) describe the use of EPO to correct anemia resulting from chronic renal failure.
- The purification of human urinary EPO was described by Miyake et al. (J. Biol. Chem. 252, 5558 (1977)). The identification, cloning, and expression of genes encoding erythropoietin is described in U.S. Pat. No. 4,703,008 to Lin. A description of a method for purification of recombinant EPO from cell medium is included in U.S. Pat. No. 4,667,016 to Lai et al.
- Little is known about the mechanism by which EPO stimulates erythropoiesis. While it is clear that EPO activates cells to grow and/or differentiate by binding to specific cell surface receptors, the specific mechanism of activation as well as the structure of the receptor and any associated protein(s) is not completely understood. The erythropoietin receptor (EPO-R) is thought to exist as a multimeric complex. Sedimentation studies suggested its molecular weight is 330±48 kDa (Mayeux et al. Eur. J. Biochem. 1, 271 (1990)). Crosslinking studies indicated that the receptor complex consists of at least two distinct polypeptides, a 66-72 kDa species, and 85 and 100 kDa species (Mayeux et al. J. Biol. Chem. 266, 23380 (1991)); McCaffery et al. J. Biol. Chem. 264, 10507 (1991)). A distinct 95 kDa protein was also detected by immunoprecipitation of EPO receptor (Miura & Ihle Blood 81, 1739 (1993)). Another crosslinking study revealed three EPO containing complexes of 110, 130 and 145 kDa. The 110 and 145 kDa complexes contained EPO receptor since they could be immunoprecipitated with antibodies raised against the receptor (Miura & Ihle, supra). Expression of a carboxy-terminal truncated EPO receptor resulted in detection of the 110 kDa complex but not the 145 kDa complex. This suggests that the higher molecular weight complex contains polypeptides present in the 110 kDa complex and an additional 35 kDa protein.
- Further insight into the structure and function of the EPO receptor complex was obtained upon cloning and expression of the mouse and human EPO receptors (D'Andrea et al. Cell 57, 277 (1989); Jones et al. Blood 76, 31 (1990); Winkelmann et al. Blood 76, 24 (1990); PCT Application No. WO90/08822; U.S. Pat. No. 5,278,065 to D'Andrea et al.) The full-length human EPO receptor is a 483 amino acid transmembrane protein with an approximately 224 amino acid extracellular domain and a 25 amino acid signal peptide. The human receptor shows about an 82% amino acid sequence homology with tha mouse receptor. The cloned full length EPO receptor expressed in mammalian cells (66-72 KDa) has been shown to bind EPO with an affinity (100-300 nM) similar to that of the native receptor on erythroid progenitor cells. Thus this form is thought to contain the main EPO binding determinant and is referred to as the EPO receptor. The 85 and 100 KDa proteins observed as part of a cross-linked complex are distinct from the EPO receptor but must be in close proximity to EPO because EPO can be crosslinked to them. The 85 and 100 KDa proteins are related to each other and the 85 KDa protein may be a proteolytic cleavage product of the 100 KDa species (Sawyer J. Biol. Chem. 264, 13343 (1989)).
- A soluble (truncated) form of the EPO receptor containing only the extracellular domain has been produced and found to bind EPO with an affinity of about 1 nM, or about 3 to 10-fold lower than the full-length receptor (Harris et al. J. Biol. Chem. 267, 15205 (1992); Yang & Jones Blood 82, 1713 (1993)). The reason for the reduced affinity as compared to the full length protein is not known. There is a possibility that other protein species may also be part of the EPOR complex and contribute to EPO binding thus increasing the affinity. In support of this possibility is the observation of Dong & Goldwasser (Exp. Hematol. 21, 483 (1993)) that fusion of a cell line with a low affinity EPO receptor with a CHO cell which does not bind EPO resulted in a hybrid cell line exhibiting high EPO binding affinity of the receptor for EPO. In addition, transfection of a full length EPOR into CHO cells resulted in a cell line with both high and low affinity receptors as measured by Scatchard analysis. Amplification of the EPOR copy number increased the low affinity but not high affinity binding. These results are consistent with the presence of a limited quantity of a protein present in CHO cells that converts the low affinity EPOR to high affinity.
- Activation of the EPO receptor results in several biological effects. Three of the activities include stimulation of proliferation, stimulation of differentiation and inhibition of apoptosis (Liboi et al. Proc. Natl. Acad. Sci. USA 90, 11351 (1993); Koury Science 248, 378 (1990)). The signal transduction pathways resulting in stimulation of proliferation and stimulation of differentiation appear to be separable (Noguchi et al. Mol. Cell. Biol. 8, 2604 (1988); Patel et al. J. Biol. Chem. 267, 21300 (1992); Liboi et al. ibid). Some results suggest that an accessory protein may be necessary for mediating the differentiation signal (Chiba et al. Nature 362, 646 (1993); Chiba et al. Proc. Natl. Acad. Sci. USA 90, 11593 (1993)). However there is controversy regarding the role of accessory proteins in differentiation since a constitutively activated form of the receptor can stimulate both proliferation and differentiation (Pharr et al. Proc. Natl. Acad. Sci. USA 90, 938 (1993)).
- Activation of the EPO receptor may be due to its dimerization. That is, EPO may act as a crosslinker between two EPO receptor molecules. There is evidence in support of this proposal. An arginine to cysteine mutation at position 129 of the murine EPO receptor results in constitutive activation of the receptor, presumably because of a disulfide bond formed between two receptors subunits (Yoshimura et al. Nature 348, 647 (1990)). In addition EPOR is found in multimeric complexes in cells (Miura & Ihle Arch. Biochem. Biophys. 306, 200 (1993)). However, isolation of a stable multimeric form of purified EPO soluble receptor has not been reported. In addition, dimerization of EPOR may be required, but not by itself be sufficient for complete activation of cells. For example, dimerization may result in a proliferative signal but not a differentiation signal. That is, accessory proteins may be required to send the differentiation signal.
- The possible relationship between EPO receptor dimerization and activation may be exploited to identify compounds which are different from EPO but activate the receptor. For example, antibodies possess two identical binding sites for antigen. An anti-EPOR antibody can bind two EPOR molecules and could bring them into close proximity to each other to allow dimerization. In order to function in vivo, these antibodies must recognize the EPOR on surfaces of cells and bind in a way that allows activation of the signal transduction pathway. In addition, it is desirable that activation result in both proliferation and differentiation of erythroid progenitors. A similar approach to understand the activation of human growth hormone receptor (Fuh et al. Science 256, 1677 (1992)) and epidermal growth factor receptor (Schreiber et al. Proc. Natl. Acad. Sci. USA 78, 7535 (1981)) has been reported.
- It would be desirable to identify molecules which have the property of activating the EPO receptor and stimulating erythropoiesis. In order to do so, an understanding of the mechanism of EPO receptor activation and signal transduction is important. One approach to elucidating this mechanism may be to identify antibodies which recognize the EPO receptor so as to activate the receptor and stimulate erythropoiesis. Such antibodies are useful in therapeutic and diagnostic applications and would also be useful for probing EPO receptor function.
- The following references describe antibodies which bind to the mouse or human EPO receptor:
- D'Andrea et al. inThe Biology of Hemtaopoiesis, Wiley-Liss, Inc. (1990) pp. 153-159, generated polyclonal anti-peptide antibodies against an amino-terminal and a carboxy-terminal peptide of murine EPO receptor. The antibodies were shown to react with mouse EPO receptor in a Western blot.
- Bailey et al. Exp. Hematol. 21, 1535-1543 (1993) generated polyclonal anti-peptide antibodies against synthetic peptides homologous to the extraceullular and cytoplasmic domains of the mouse EPO receptor. Receptor activation by these antibodies, as measured by 3H thymidine uptake into spleen cells from phenylhydrazine treated mice, was not detected.
- Baynes et al. Blood 82, 2088-2095 (1993) generated a polyclonal antibody to an amino-terminal peptide in the human EPO receptor. The antibody was shown to react with a soluble form of the receptor present in human serum.
- D'Andrea et al. Blood 82, 46-52 (1993) generated monoclonal antibodies to human EPO receptor. The antibodies bind to Ba/F3 cells transfected with the human EPO cDNA clone and some inhibit EPO binding and neutalize EPO-dependent growth.
- Fisher et al. Blood 82, 197A (1993) used the same monoclonal antibodies as described in D'Andrea, supra to distinguish erythroid progenitor cells having EPO-dependent growth and maturation from those having EPO-independent growth and maturation.
- None of the antibodies described in the aforementioned references were reported to activate the EPO receptor or stimulate the growth and/or maturation of erythroid progenitor cells.
- Therefore, it is an object of the invention to produce antibodies which recognize an EPO receptor and bind to it such that the receptor is activated. It is a further object of the invention to produce antibodies which bind to an EPO receptor and stimulate erythropoiesis by stimulating the proliferation and/or differentiation of erythroid progenitor cells to erythrocytes. Such antibodies are useful in the treatment of anemia or in the diagnosis of diseases characterized by dysfunctional EPO receptor. Further, such antibodies may lead to the identification of therapeutic agents for the treatment of anemia.
- The invention relates to antibodies or fragments thereof which activate an erythropoietin receptor. Screening of antibodies which recognize the human EPO receptor has revealed that two antibodies, designated
Mab 71 andMab 73, stimulated the proliferation of UT7-EPO cells, an EPO-dependent cell line that does not proliferate in the absence of added EPO. Further,Mab 71 stimulated erythoid colony formation from erythroid progenitors in human blood. The antibodies encompassed by the invention may recognize an epitope on an EPO receptor which is recognized byMab 71 orMab 73. The antibodies are preferably monoclonal antibodies and may be humanized or human antibodies. Also included are hybridoma cell lines which produce the antibodies of the invention. - Also provided for are methods and kits for detecting EPO receptors in biological samples wherein the methods and kits comprise EPO receptor antibodies of the invention. Pharmaceutical compositions comprising EPO receptor antibodies and pharmaceutically acceptable adjuvants are also encompassed by the invention. Such compositons may be used to treat patients having disorders characterized by low red blood cell levels.
- FIG. 1 shows the results of an ELISA assay that measured the binding to the indicated concentrations of synthetic peptides by
Mab 71. The peptides correspond to the indicated amino acid residues of human EPO receptor.Residue 1 is the amino terminal proline found in secreted EPOR upon cleavage of the leader sequence. - FIG. 2 shows the effect of varying amounts of rHuEPO protein and purified
Mabs - FIG. 3 shows the effect of varying amounts of rHuEPO protein,
Mab 71,Mab 73 or a non neutralizing control Mab directed against EPO (Mab F12) on inhibition of 125I EPO binding to EPO receptors on the surface of OCIM1 cells. - FIG. 4 shows a coomassie stained SDS gel of purified preparations of
monoclonal antibodies Mabs - FIG. 5 shows the effect of varying amounts of purified rHuEPO protein,
Mab 71 orFab 71 on 3H thymidine uptake of UT7-EPO cells. - FIG. 6 shows the effect of varying amounts of purified
Mab 71 orFab 71 on 3H thymidine uptake of UT7-EPO cells to which are also added 30 munits/ml of recombinant human EPO (rHuEPO). - FIG. 7 shows a photograph of purified CD 34+ cells from peripheral blood which were grown 21 days in methylcellulose in the presence of EPO or
Mab 71 under serum free growth conditions. Photos are of cells incubated with 500 munits/ml EPO (A), 25 munits/ml EPO (B), or 2.1 micrograms/ml Mab 71 (C). - FIG. 8 shows the effect of varying amounts of rHuEPO,
Mab 71 and a control monoclonal antibody raised to Her2/neu on the formation of erythroid colonies from erythroid precursors when grown under serum free growth conditions in soft agar. - Monoclonal antibodies (Mabs) which recognize the erythropoietin receptor have been generated by immunizing mice with purified soluble human EPO receptor. Soluble human EPO receptor was expressed and purified as described in Examples 1 and 2. Of those Mabs which reacted with soluble human EPO receptor in enzyme-linked immunosorbent assays (ELISAs), 96 mabs were selected for further screening. These mabs were tested for EPO receptor binding by BIAcore analysis (Example 4A) and for binding to EPO receptor on the surface of transfected CHO cells by FACS (Example 4C). The results of these screenings are shown in Table 1. While a number of antibodies bound EPO receptor as determined by BIAcore analysis, only five antibodies of the 96 tested bound EPO receptor displayed on the surface of transfected CHO cells as determined by FACS scanning. 24 antibodies which were positive in ELISA assays (including those five which were positive by FACS scanning) were tested for stimulation of UT7-EPO cell proliferation. Surprisingly, it was found that two antibodies, designated
Mab 71 andMab 73, stimulated the uptake of 3H thymidine into a UT7-EPO cell line (Komatsu et al. Blood 82, 456 (1993)) in the absence of EPO (Example 8A). The UT7-EPO cell line requires the presence of EPO in its medium for growth. Therefore, the stimulation of UT7-EPO cell growth is likely due to the activation of EPO receptor byMab 71 andMab 73. As shown in FIG. 2, the response of UT7-EPO cells was greater in the presence ofMab 71 thanMab 73. It was further found thatMab 71 stimulated erythroid colony formation from human erythroid precursors (see Example 9). This is the first instance of an antibody stimulating the formation of erythroid colonies from erythroid precursors. - The invention provides for an antibody or fragment thereof which activates an erythropoietin receptor. As used herein, the term “activation of an EPO receptor” denotes one or more molecular processes which an EPO receptor undergoes that result in transduction of a signal to the interior of a receptor-bearing cell, wherein the signal ultimately brings about one or more changes in cellular physiology. Cellular responses to EPO receptor activation are typically changes in the proliferation or differentation of receptor-bearing cells. Receptor-bearing cells are typically erythroid progenitor cells. Presently, the molecular events leading to signal transduction by EPO receptor are poorly understood. However, as indicated in the background, some evidence suggests that EPO receptor dimerization is at least one event which is likely to be required for activation. The present disclosure also provides support for this idea. As shown in FIG. 5, stimulation of 3H-thymidine uptake in UT7-EPO cells by
Mab 71 is abolished when substituted by the corresponding Fab fragment designatedFab 71. Therefore, replacement of the intact, bivalent antibody with a corresponding monovalent fragment eliminates the proliferative response. Inaddition Mab 71 inhibits activation of the EPO receptor at high concentrations. Both of these observations support the dimerization model of activation for the EPO receptor.Mab 71 has been shown to interact with a synthetic peptide of residues 49 to 78 of the human EPO-R (see example 6). Thus this region of EPO-R when bound by a cross linker such asMab 71 can result in activation of EPO-R. It is understood that molecules that cross-link two EPO-R molecules by binding to residues 49 to 78 are also encompassed by the invention. These molecules could be antibodies or other bivalent molecular entities that have the property of crosslinking two EPO receptors by binding to residues contained within the region between residues 49 and 78 thereby resulting in dimerization and activation of the EPO receptor. - EPO receptors of the invention will preferably be mammalian EPO receptors and, in a particularly preferred embodiment, will be human EPO receptor. It is understood that analogs of human EPO receptors are also encompassed by the invention. Such analogs are constructed by insertions, deletions, extensions or substitutions of amino acids in the human EPO receptor sequence. Examples of EPO-R analogs have been described in U.S. Pat. No. 5,292,654 to Yoshimura et al. wherein substitution of a cysteine residue at position 129 of the EPOR amino acid sequence resulted in constitutively activated EPOR. In general, EPO-R analogs having amino acids changes in regions other than the antibody binding domains necessary for activation wherein said analogs retain secondary and tertiary structure of the human EPO receptor may be recognized by the antibodies of the present invention. It has been shown that
Mab 71 interacts with a synthetic peptide of residues 49 to 78 of the human EPO-R (see Example 6). Therefore, EPO-R analogs having changes in amino acid residues other than those at positions 49 to 78 and retaining the human EPO receptor secondary and tertiary structure are likely to be recognized byMab 71. The numbering of amino acid residues in the human EPOR polypeptide as used herein starts with proline atposition 1, which is the amino terminal residue after cleavage of the 25 amino acid signal peptide. - Antibodies of the invention bind to an epitope on an EPO receptor which is involved in receptor activation. In one embodiment, antibodies recognize an epitope on an EPO receptor which is recognized by
Mab 71 or an epitope which is recognized byMab 73.Mab 71 recognizes a synthetic peptide spanning amino acid residues 49 to 78 in the human EPO-R. Therefore, it is likely thatMab 71 recognizes an epitope on EPO-R which is defined in whole or in part by this sequence. As used herein, the term “epitope” refers to the region of an EPO-R bound by an antibody wherein the binding prevents association of a second antibody to an EPO-R. - The invention also provides polyclonal antibodies, and monoclonal antibodies and fragments thereof. Antibody fragments encompass those fragments which activate an EPO receptor. Also encompassed are humanized antibodies, typically produced by recombinant methods, wherein human sequences comprise part or all of an antibody which activates an EPO receptor. Examples of humanized antibodies include chimeric or CDR-grafted antibodies (U.S. Pat. Nos. 4,816,567 and 5,225,539). Also included are fully human antibodies to EPO receptor produced in genetically-altered mice (see PCT Application No. 93/12227). Antibodies of the invention may also have a detectable label attached thereto. Such a label may be a fluorescent (e.g., fluorescein isothiocyanate, FITC), enzymatic (e.g, horseradish peroxidase), affinity (e.g., biotin) or isotopic label (e.g.,125I).
- Also encompassed by the invention are hybridoma cell lines producing a monoclonal antibody which activates an EPO receptor. In one embodiment, the hybridoma cell line produces a monoclonal antibody which recognizes an eptitope on an EPO receptor which is recognized by
Mab 71 orMab 73. Generation of hybridoma cell lines producing monoclonal antibodies to human EPO-R are described in Example 3. The hybridoma cell line which producesMab 71 has been deposited with the American Type Culture Collection, Rockville, Md. on ______ under accession no. ______. The hybridoma cell line which producesMab 73 has been deposited with the American Type Culture Collection, Rockville, Md. on ______ under accession no. ______. - The antibodies of the present invention are useful in diagnosing anemia and other diseases characterized by dysfunctional EPO-R. In one embodiment, a method of detecting in a biological sample an EPO receptor which is capable of which being activated comprising the steps of: (a) contacting the sample with an antibody which activates an EPO receptor; and (b) detecting activation of the receptor by the antibody. The biological samples include tissue specimens, intact cells, or extracts thereof. Antibodies may be used as part of a diagnostic kit to detect the presence of EPO receptors in a biological sample. Such kits employ antibodies having an attached label to allow for detection. The antibodies are useful for identifying normal or abnormal receptors. The presence of abnormal receptors in a biological sample may be indicative of disorders such as Diamond Blackfan anemia, where it is believed that the EPO receptor is dysfunctional.
- Antibodies of the invention are useful for treating disorders charaterized by low red blood cell levels. Included in the invention are methods of modulating the endogenous activity of an EPO receptor in a mammal, preferably methods of increasing the activity of an EPO receptor. In general, any condition treatable by erythropoietin, such as anemia, may also be treated by the antibodies of the invention. Therapeutic antibodies are administered by an amount and route of delivery that is appropriate for the nature and severity of the condition being treated and may be ascertained by one skilled in the art. Preferably, administration is by injection, either subcutaneous, intramuscular, or intravenous.
- The invention provides for a pharmaceutical composition comprising a therapeutically effective amount of an antibody which activates an EPO-R together with a pharmaceutically acceptable adjuvant, wherein the adjuvant may be selected from one or more of a diluent, carrier, preservative, emulsifier, anti-oxidant and/or stabilizer. A “therapeutically effective amount” as used herein refers to that amount of antibody which provides a therapeutic effect for a given condition and administration regimen. In the present invention, the therapeutic effect is stimulation of red blood cell production as evidenced by a rise in hematocrit in the patient being treated. In a preferred embodiment, the antibodies are humanized or human antibodies which may be prepared using procedures known to the skilled worker. Pharmaceutically acceptable adjuvants are known to one skilled in the art and are surveyed extensively in Remington's Pharmaceutical Sciences, 18th ed. A. R. Gennaro, ed. Mack, Easton, Pa. (1990).
- The following examples are offered to more fully illustrate the invention, but are not construed as limiting the scope thereof.
- Production of Soluble Human Erythropoietin Receptor
- A. Isolation of Clones for Expression of Soluble Human Erythropoietin Receptor.
- Using a clone containing the human erythropoietin receptor as described by Jones et al. supra, the PCR technique was used to obtain a clone for expression of soluble human erythropoietin receptor (sHuEPOR). Primers for PCR amplification of human erthropoietin receptor were:
5′ primer: CTC CAA GCT TGC CGT CAC CAT GGA CCA CCT CGG GGC GTC CCT; (SEQ. ID NO:_ and 3′ primer: CAG GTC TAG ATT ACT AGG GAT CCA GGT CGC TAG GC (SEQ. ID NO:_ - PCR reactions were carried out using 2.5 ng of a plasmid containing human EPOR, 5 pmol of each of the above oligonucleotide primers, 10 mM Tris HCl (pH 8.3), 50 mM KCl, 1.5 mM Mg Cl2, 200 μM each dNTP and 1 unit of Taq polymerase. Amplification was for 5 cycles of 30 sec. at 94° C., 1 min. at 50° C., 1 min at 72° C., followed by 20 cycles of 30 sec. at 94° C., 1 min. at 55° C., 1 min at 72° C. DNA was purified by passage through a G-50 size exclusion column (Boehringer Mannheim Corp.), then digested with Hind III and XbaI and ligated into the expression vector pDSRα2 (DeClerck et al. J. Biol. Chem. 266, 3893 (1991)) which has also been digested with Hind III and XbaI. Clones containing the desired insert were verified by DNA sequence analysis.
- The d40EPOR clone was made by PCR from a full length human EPOR clone (see above). The carboxy terminus of d40EPOR is tyr467, the result of adding a stop codon within the primer. Primers for PCR amplification were:
5′ primer: 5′-CTC CAA GCT TGC CGT CAC CAT GGA CCA CCT CGG GGC GTC: (SEQ. ID NO:_) CCT-3′ and 3′ primer: 5′-AGG TCG ACT ACT AGT AGT CAG TTG AGA-3′ (SEQ. ID NO:_) - PCR amplification used pfu polymerase in pfu buffer2 (Stratagene, La Jolla, Calif.). Reaction conditions were: 1 cycle at 96° for 30 sec., 45° for 1 min., 72° for 1 min.; 25 cycles at 96° for 1 min., 55° for 1 min., 72° for 2 min. A final 72° incubation for 5 min. was then performed. The reaction products were separated by agarose gel electrophoresis and the approximately 1.3 Kb band was isolated using a gene clean kit (
BIO 101, Vista, Calif.). The purified fragment was ligated into PCR II (TA cloning kit, Invitrogen, San Diego, Calif.). Recombinants were identified by restriction analysis and sequenced to confirm the desired inserts were present. A HindIII-SalI fragment was isolated as described above and ligated into an isolated pDSRα2 vector that had been previously cut with HindIII and SalI. The resultant vector, pDSRαEPORd40 was used for expression in CHO cells. - B. Expression of Soluble Human EPOR and d40 EPOR in CHO Cells
- The expression plasmid pDSRα2-EPOR-X contains sequences encoding human EPOR amino acids Met1-Pro249 as shown in Jones et al. supra. Plasmid pDSRαEPORd40 contains sequences encoding Met1-Tyr467. Ten micrograms of each plasmid were independently introduced into CHO cells by calcium phosphate mediated transfection (Wigler et al. Cell 11, 233 (1977)). Individual colonies were selected based upon expression of the dihydrofolate reductase gene from the vector. Expression of human EPOR was monitored by RNA hybridization (Hunt et al., Exp. Hematol, 19: 779 (1991)) and by Western immuno blotting using an affinity purified antibody. Cell lines which were positive in these assays were selected for further expansion. Cell lines were adapted to 30 nM Methotrexate (Mtx) to stimulate amplification of EPO-R expression.
- Generation of conditioned media containing soluble human EPOR was done in both roller bottles and a hollow fiber bioreactor. Roller bottles were innoculated with 2×107 cells in 200 ml growth medium (DMEM: Ham's F12 (1:1) supplemented with non-essential amino acids (NEAA), 30 nM Mtx and 5% fetal bovine serum (FBS) (reagents from GIBCO, Grand Island, N.Y.)). Upon reaching confluence in 3-4 days, the media was replaced with 200 ml DMEM: Ham's F12, NEAA, 30 nM Mtx with no serum. Conditioned media was harvested after 6-7 days and replaced with fresh serum-free media. Second and third harvests were collected.
- A Cell Pharm biorector cartridge was innoculated with 5×108 cells in growth medium (as above) supplemented with 5 μg/mL gentamicin. The pH was maintained at 7.3. Beginning on day 12 after innoculation the cells were weaned off of serum to generate serum-free conditioned media. Harvesting of conditioned media began on day 17.
- Purification of Soluble Human Erythropoeitin Receptor
- Four different preparations of soluble recombinant human EPOR were made. In the first preparation, Epoxy-activated Sepharose 6B (Pharmacia, Piscataway, N.J.) is coupled with recombinant human erythropoietin (rHuEPO) essentially as per manufacturer's instructions. 218 mg of rHuEPO in 4.5 mL of 32 mM ZnCl2 is added to 7.2 g of Epoxy-activated Sepharose 6 B previously hydrated and washed with H2O. This slurry is titrated to pH 10.8 then mixed overnight at room tempurature. Any remaining reactive groups are then blocked by addition of ethanolamine to a final concentration of 1 M and mixed for 4 hours at room temperature. The subsequent steps are performed at 8°±20° C. The coupled resin (Epoxy-EPO) is packed into a column and washed with alternating cycles of 0.5 M NaCl/0.1
M HOAc pH 4 and 0.5 M NaCl/0.1 M Borate pH 8. The column is equilibrated with 140 mM NaCl/10 mM Tris pH 7.6 (TBS). It is loaded with 1560 mL of roller bottle produced conditioned media from CHO cells expressing soluble EPO-R (sHuEPO-R). After loading is complete, the column is washed with 300 mM NaCl/10 mM Tris pH 7.6 then the bound sHuEPOR is eluted with 1 M NaCl/3 M urea/10 mM Tris pH 7.6. Two UV280 absorbing peaks elute with this buffer. The second peak to elute, which contains the sHuEPOR, is pooled and diluted 20 fold with H2O. The diluted pool is then loaded to a 1 mL prepacked column of Mono Q (Pharmacia) and eluted with a NaCl gradient in 10 mM Tris pH 7.6. A single peak elutes, which is pooled, aliquoted and stored frozen at −80° C. - In the second preparation, a larger Epoxy-EPO column is made. 20.4 g of Epoxy-activated Sepharose 6 B is hydrated and washed with H2O, then with acetone and finally with 50% formamide in H2O pH 10.6. 729 mg of rHuEPO in 15 mL of H2O is titrated to pH 10.6, added to the resin and mixed overnight at room tempurature. Any remaining reactive groups are then blocked by addition of ethanolamine to a final concentration of 1 M and mixed for 140 minutes at room temperature. The subsequent steps are performed at 8°±2° C. The Epoxy-EPO is packed into a column and washed with 3 M urea/750 mM NaCl/10 mM Tris pH 7.6, the column is then equilibrated with TBS. 100 mL of bioreactor produced conditioned media from CHO cells expressing sHuEPOR are mixed with 2 mL of Q Sepharose Fast Flow (Pharmacia). It is incubated for 30 minutes at 8°±2° C. with frequent mixing, then filtered through a 0.45 micron cellulose nitrate bottle top filter (Corning). The filtrate is loaded to the Epoxy-EPO column, washed with 250 mM NaCl/10 mM Tris pH 7.6, then eluted with 3 M urea/750 mM NaCl/10 mM Tris pH 7.6. The eluted peak is pooled and diluted 20 fold with H2O. The diluted pool is then loaded to a 15 mL column of Q Sepharose Fast Flow and eluted with a NaCl gradient in 10 mM Tris pH 7.6. The single peak that elutes is pooled, aliquoted and stored frozen at −80° C.
- In the third preparation, the same Epoxy-EPO column used in
preparation 2 is used. 850 mL of roller bottle produced conditioned media from CHO cells expressing sEPO-R are mixed with 1.7 mL of Q Sepharose Fast Flow. It is processed in the same manner as is done inpreparation 2. - In the fourth preparation, 7.25 L of bioreactor produced conditioned media from CHO cells expressing sHuEPOR are mixed with 110 mL of Q Sepharose Fast Flow. It is incubated for 1 hour at 8°±2° C. with frequent mixing, then filtered through a 0.45 micron cellulose nitrate bottle top filter The filtrate is then diluted with 7.25 L of H2O and loaded to a 770 mL column of Q Sepharose Fast Flow equilibrated in 20 mM Tris pH 7.6. The column is eluted with a NaCl gradient in 20 mM Tris pH 7.6. Fractions containing significant amounts of sHuEPOR based on SDS-PAGE analysis are pooled. Solid (NH4)2SO4 is added to the pool to a final concentration of 1.2 M then filtered through a 0.45 micron cellulose nitrate bottle top filter The filtrate is loaded to a 60 mL column of Phenyl Sepharose 6 (low sub, Pharmacia) and eluted with a decreasing gradient of 1.2 M to 0 M (NH4)2SO4 in 20 mM Tris pH 7.6. The major eluting peak is pooled and made 2.4 M in (NH4)2SO4 to precipitate the sHuEPORt. The precipitated sHuEPOR is harvested by centrifugation, resuspended with H2O and titrated to pH 7.9 with Tris-HCl. The resultant solution is filtered through a 0.45 micron cellulose nitrate filter, aliquoted and stored frozen at −80° C.
- Preparation and Screening of Hybridoma Cell Lines
- A. Enzyme-linked Immunosorbent Assay (EIA)
- EIAs were initially performed to determine serum antibody (Ab) titres of individual animals, and later for screening of potential hybridomas. Flat bottom, high-binding, 96-well microtitration EIA/RIA plates (Costar Corporation, Cambridge, Mass.) were coated with purified sHuEPOR at 5 μg per ml carbonate-bicarbonate buffer, pH 9.2 (0.015 M Na2CO3, 0.035 M NaHCO3). Fifty μl of the Ab were added to each well. Plates were then covered with acetate film (ICN Biomedicals, Inc., Costa Mesa. Calif.) and were incubated at room temperature (RT) on a rocking platform for 2 hours or over-night at 4° C.
sHuEPOR lot # 1 was used after the first and second boost,lot # 2 was used after the third boost.sHuEPOR lots # wash solution 20× concentrate (Kirkegaard and Perry Laboratories, Inc.) in dH2O. Goat anti-mouse IgG heavy- and light-chain specific horseradish peroxidase conjugated secondary Ab (Boehringer Mannheim Biochemicals, Indianapolis, Ind.) diluted 1:1000 in 1% BSA was then incubated in each well for 30 minutes. Plates were washed as before, blotted dry and ABTS Peroxidase single component substrate (Kirkegaard and Perry Laboratories, Inc.) was added. Absorbance was read at 405 nm for each well using a Microplate EL310 reader (Bio-tek Instruments, Inc., Winooski, Vt.). Half-maximal titre of serum antibody was calculated by plotting the log10 of the serum dilution versus the optical density at 405 nm, then extrapolating at the 50% point of the maximal optical density obtained by that serum. Hybridomas were selected as positive if optical density scored greater than 5-fold above background. - B. Immunization
- Ten, 4.5-week old Balb/c mice (Charles Rivers Laboratories, Wilmington, Mass.) were subcutaneously injected (SQI) with 50 μg sHuEPOR;
lot 1; antigen) emulsified in Complete Freund's Adjuvant (CFA; 50% vol/vol; Difco Laboratories, Detroit, Mich.). These animals were boosted (SQI) 4 weeks later with 25 μg antigen (Ag; lot 1) prepared in similar fashion using Incomplete Freund's Adjuvant (ICFA; Difco Laboratories, Detroit, Mich.). Mice were bled via the tail 9 days later and serum antibody (Ab) titres determined by enzyme-linked immunosorbent assay (EIA). As the ½ maximal titre for each mouse rose above 5000, individual animals were selected for the hybridoma preparation. The three animals (#7, 8 and 9) which were used to generate the hybrids of interest (#71A and 73A) required additional boosts at 5 weeks and again at 29 weeks using 12.5 μg Ag (lot 1) and 25 μg Ag (lot 2) respectively. These boosts were performed in the same manner as the initial boost; that is, as an emulsion in 50% vol/vol ICFA. Serum Ab titres continued to be monitored 9 days following each boost. The final titres of these mice prior to fusion were 5026, 6842, and 12,945 for animals 7, 8 and 9, respectively. - C. Cell Fusion
- Animals 7, 8 and 9 were intravenously injected with 25 μg of sHuEPOR (lot #3) 8 weeks following the final boost. Four days later, mice were sacrificed by carbon dioxide and spleens collected under sterile conditions into 25 ml Dulbecco's Modified Eagle's Medium containing 200 U/ml Penicillin G, 200 μ/ml Streptomycin sulfate, and 4 mM glutamine (2× P/S/G DMEM). The spleens were trimmed of excess fatty tissue, then rinsed through 3 dishes of clean 2× P/S/G DMEM. They were next transferred to a sterile stomacher bag (Tekmar, Cincinnati, Ohio) containing 10 ml of 2× P/S/G DMEM, and disrupted to single cell suspension with the Stomacher Lab Blender 80 (Seward Laboratory UAC House; London, England). As cells were released from the spleen capsule into the media, they were removed from the bag and passed through a 70 μm nylon mesh cell strainer (Becton Dickinson and Company; Lincoln Park, N.J.). Fresh media was replaced in the bag and the process continued until the entire cell content of the spleens were released. These splenocytes were washed 3 times by centrifugation at 225× g for 10 minutes. In the first fusion, splenocytes from animal #9 were used; in the second fusion, splenocytes from animals #7 and 8 were pooled.
- Concurrently, log phase cultures of Sp2/0-Ag14 mouse myeloma cells (available from the American Type Culture Collection, Rockville, Md. under accession no. CRL 1581) grown in complete medium (DMEM, 10% fetal bovine serum, 2 mM glutamine, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate, and 10 mM Hepes Buffer; Gibco Laboratories, Inc., Grand Island, N.Y.), were washed in similar fashion. From this myeloma population, 4×107 cells (fusion 1) or 8×107 cells (fusion 2) were taken, mixed with the suspension of splenocytes, and pelleted once again. The media was aspirated from the cell pellet and 2 ml of polyethylene glycol (PEG 1500 MWt; Boehringer Mannheim Biochemicals, Indianapolis, Ind.) for
fusion 1 of 3.5 ml of PEG forfusion 2 at 37° C. were gently mixed into the media over the course of 1 minute. Thereafter, an equal volume of 2× P/S/G DMEM was slowly added. The cells were allowed to rest at 37° C. for 2 minutes, then an additional 9 ml of 2× P/S/G DMEM added. The cells were again set at 37° C. for 4 minutes. Finally, 30 ml of 2× P/S/G DMEM was added to the cell suspension, and the cells pelleted by centrifugation. Media was aspirated from the pellet and the cells gently resuspended into approximately 56 ml (fusion 1) or 74 ml (fusion 2) of complete medium containing 100 U/ml Penicillin G and 100 μ/ml Streptomycin Sulfate. Cells were distributed over 10 96-well flat bottom tissue culture plates (Becton Dickinson Labware; Lincoln Park, N.J.) by single drops from a 5 ml pipette. Plates were incubated in humidified conditions at 37° C., 5% CO2, overnight. The next day, an equal volume of selection medium was added to each well. Selection consisted of 0.1 mM hypoxanthine, 4×10−4 mM aminopterin, and 1.6×10−2 mM thymidine in complete medium. The fusion plates were incubated for 7 to 10 days with 2 changes of medium during this time; HAT selection medium was used after each fluid change. Tissue culture supernatants were taken from each hybrid-containing well and tested by EIA for specific antibody reactivity to sHuEPOR. 96 wells which were positive in EIA were subjected to further screening. - D. Dot Blots
- Dot blots of reduced sHuEPOR (lot #4) were used as a secondary screening method for EIA positive hybridomas. The Dot Blot SF Microtitration Apparatus (Bio-Rad Laboratories, Inc.; Richmond, Calif.) was set-up according to the instruction manual; nitrocellulose membranes (9×12 cm; Bio-Rad Laboratories, Inc.; Richmond, Calif.) were employed. Antigen was first prepared by boiling for 5 minutes under reducing conditions with 2-mercaptoethanol (5% vol/vol; Bio-Rad Laboratories, Inc.; Richmond, Calif.) in Tris-buffered saline solution (TBS; 10 mM Tris pH 7.5, 154 mM NaCl, 0.01% wt/vol Na azide). Twenty-five ng of sHuEPOR (lot #4) was loaded into each well and aspirated through the nitrocellulose membrane for binding. The wells were filled with 250 μl Blotto-Tween solution (block solution; 2% wt/vol non-fat dry milk, 50 mM Tris, pH 7.5, 25 mM NaCl, 0.1 mM EDTA, 0.09% vol/
vol Tween 20, 0.01% vol/vol anti-foam A) and incubated at RT for 30 minutes. Block solution was aspirated from the wells and the procedure repeated for a second time to ensure complete blocking of non-specific sites on the membrane. This was followed by 3 washes through the membrane with D-PBS containing 0.1% vol/vol polyoxyethylene sorbitan monolaurate (Tween-20; Bio-Rad Laboratories, Inc.; Richmond, Calif.). Ninety-five μl of EIA-positive hybridoma conditioned medium was next added to each well and incubated for 45 minutes at RT. Wells were washed 3× with TBS-Tween (20 mM Tris, pH 7.5, 50 mM NaCl, 0.02% vol/vol Tween 20) and 2× with TBS-Tween (20 mM Tris, pH 7.5 0.5 M NaCl, 0.09% vol/vol Tween 20) at 250 μl per wash, aspirating through the membrane after each addition. One-hundred μl of goat anti-mouse IgG, heavy- and light-chain specific, HRP-conjugated secondary antibody (1:1000 diluted in TBS-Tween; Boehringer Mannheim Biochemicals; Indianapolis, Ind.) was incubated in each well for 45 min at RT. Membranes were washed as before, removed from the blot apparatus, dipped into prepared Enhanced Chemiluminescent Reagent (ECL reagent; Amersham Life Sciences, Corporation; Arlington Heights, Ill.), and exposed to X-OMAT AR film (Kodak Scientific Imaging, Rochester, N.Y.). Fifteen seconds later, the film was removed from film cassettes and developed. Each well was scored 3+ to 0 based on intensity of dots for individual hybridoma supernatants. - Anti-EPOR Antibody Binding to EPOR
- A. Antibody Binding to EPO-R by BIAcore Analysis
- Real-time biospecific interaction analysis (BIA, Pharmacia Biosensor AB, Uppsala, Sweden) based on surface plasmon resonance (SPR) (Fiagerstam et al. J. Mol.
Recognition 3, 208 (1990); Malmbory et al. Scand. J. Immunol. 35, 643 (1992)) was used to screen the ELISA positive monoclonal antibodies. - Soluble HuEPOR prepared as described in Examples 1 and 2 was covalently coupled to the sensor chip CM5 via the primary amine group. The immobilization was performed at a flow of 5 ul/min in HBS (10 mM HEPES pH 7.4, 150 mM NaCl, 3.4 mM EDTA, 0.05% BIAcore surfactant P-20). The carboxylated matrix of the sensor chip was first activated with a 40 ul injection of 1:1 mixture of EDC (400 mM N-ethyl-N-(dimethylamine-propyl)carbodiimide in water, Pharmacia Biosensor AB) and NHS (100 mM N-hydroxysuccinimide in water, Pharmacia Biosensor AB). 65 ul of soluble EPO-R(50 ug/ml in 10 mM Na-acetate pH4.0) was injected to immobilize onto the sensor chip. The excess reactive groups of the sensor chip were deactivated with an injection of 50 ul of ethanolamine (Pharmacia Biosensor AB). Each analysis cycle included an injection of 20 ul of hybridoma supernatant,followed by injection of 10 ul of 10 mM HCl for regeneration of the chip. The SPR response is measured in Resonance Units (RU). For most proteins,1000 RU corresponds to a surface concentration of approximately 1 ng/mm2. Results of screening 96 wells which were positive in EIAs are shown in Table 1. In these experiments, background is typically about 20 RU. Binding to EPOR is significant at 50 RU and above.
TABLE 1 EPO-R Monoclonal Antibodies BIACORE (3) FACS (4) Inhibition Stimulation ANTIBODY BIACORE COMPETITION MEAN of EPO of UT7-EPO (1) (2) GROUP FLOURESCENCE Activity (5) Cells (6) 1 98 A — − − 2 8 NT — NT NT 3 7 NT — NT NT 4 65 NT — NT NT 5 13 NT — NT NT 6 9 NT — − − 7 89 C — NT NT 8 46 NT — NT NT 9 29 NT — NT NT 10 69 NT — NT NT 11 4 NT — NT NT 12 153 C — NT NT 13 1499 B — NT NT 14 87 NT — NT NT 15 29 NT — NT NT 16 8 NT — NT NT 17 7 NT — NT NT 18 46 NT — − − 19 9 NT — NT NT 20 7 NT — NT NT 21 49 NT — NT NT 22 8 NT — NT NT 23 4 NT — − − 24 26 NT — NT NT 25 8 NT — NT NT 26 84 NT — NT NT 27 2 NT — NT NT 28 11 NT — NT NT 29 1 NT — NT NT 30 270 A — − − 31 16 NT — − NT 32 18 NT — NT NT 33 15 NT — NT NT 34 25 NT — NT NT 35 363 A — NT NT 36 4 NT — NT NT 37 16 NT — − − 38 13 NT — NT NT 39 574 B — − − 40 15 NT — NT NT 41 22 NT — NT NT 42 23 NT — NT NT 43 6 NT — NT NT 44 13 NT — NT NT 45 13 NT — NT NT 46 7 NT — NT NT 47 10 NT — NT NT 48 5 NT — NT NT 49 69 NT — NT NT 50 345 C — − − 51 31 NT — NT NT 52 6 NT — NT NT 53 130 A — NT NT 54 13 NT — NT NT 55 34 NT — NT NT 56 11 NT — NT NT 57 10 NT — NT NT 58 15 NT 14.99 + ? 59 10 NT — NT NT 60 10 NT — NT NT 61 48 NT — NT NT 62 814 A — − − 63 1539 B — NT NT 64 1222 C — NT NT 65 −5 NT — +/− ? 66 975 C — NT NT 67 1000 A — − ? 68 495 C — NT NT 69 877 A — − − 70 789 A — − ? 71 1584 C 23.55 + (7) +++ 72 1190 B — − − 73 354 C 13.71 − + 74 408 A 18.53 − − 75 947 B — NT NT 76 6 NT — NT NT 77 434 C — − − 78 119 A — NT NT 79 8 NT — NT NT 80 11 NT — NT NT 81 −4 NT — NT NT 82 4 NT — NT NT 82B −13 NT NT NT NT 83 1025 C — − − 84 5 NT — NT NT 85 11 NT — NT NT 86 859 C — NT NT 87 4 NT 12.81 − − 88 4 NT — +/− − 89 −1 NT — +/− − 90 4 NT — NT NT 91 0 NT — − − 92 −3 NT — NT NT 93 2 NT — NT NT 94 5 NT — NT NT 95 417 A — NT NT 96 7 NT — NT NT - B. Epitope Competition Analysis
- The sensor chip which was immobilized with sHuEPOR could be saturated by an injection of 65 μl of hybridoma supernatant 1G2. 1G2 is a monoclonal antibody raised to sHuEPOR using procedures described in Example 3. Each analysis cycle included injections of 20 ul of the hybridoma supernatant with and without one epitope being saturated by the injection of 65 ul of 1G2. The ratio of the binding signal in RU of 20 μl injection after 1G2 saturation versus the binding signal in RU of 20 μl injection alone is defined as % blocking by 1G2. Those antibodies with 80-100% blocking are assigned as group A, those with less than 50% blocking as group B, and those with 50-80% blocking as group C. The results are shown in Table 1.
- C. Antibody Binding to d40EPOR on Transfected CHO Cells by Fluorescence-Activated Cell Sorting (FACS) Analysis
- Hybridoma supernatants raised against EPOR were tested for binding to EPO receptor on the surface of pDSRαEPORd40 transfected CHO cells by FACS analysis. CHO cells transfected with DNA encoding d40 EPO receptor were constructed as described in Example 1. CHO/EPOR cells were scraped from tissue culture dishes and resuspended as single cells in a solution of PBS/0.5% BSA and were then distributed into a 96 well round-bottom plate at approximately 3×105/well. The plate was then placed in the centrifuge at 1000× g for 5 min. After centrifugation, the PBS/BSA supernatant was removed and each of the pelleted cells were resuspended in either a control media or in one of the EPOR hybridoma supernatants. The cells were incubated at 4° C. for 1 hour. After the incubation, cells were washed with PBS/BSA and then resuspended in a solution of fluorescine isothiocyanate (FITC) labelled Goat anti Mouse monoclonal antibody (Southern Biotech, Birmingham Ala.). The cells were incubated again at 40° C. for 1 hour, washed and analyzed by FACS. Of the 96 supernatants tested, five had a mean cell fluorescence greater than control media (see Table 1).
Mab 71 gave the highest level of fluoresence followed byMabs 74, 58, 73 and 87. No other supernatants tested exhibited fluorescence above control values. - Purification of Anti-EPOR Antibodies and Fab Fragments
- A. Ascites Production
- Balb/c mice (Charles Rivers Laboratories, Wilmington, Mass.), greater that 5 weeks of age were primed with 2, 4, 10, 14-tetramethyl-pentadecane (Pristane; Sigma, St. Louis, Mo.) 7 to 10 days prior to injection of cell lines. Each mouse received a single intraperitoneal injection of 0.5 ml; 10 to 20 animals were injected for each cell line for which ascites fluid was to be prepared.
- Hybridoma lines grown in complete medium until confluency was attained, were washed once with D-PBS then counted using a Neubauer Hemacytometer. Each mouse was then intraperitoneally injected with 107 cells, and maintained on Rodent Lab Chow and water ad libitum until ascites fluid developed. Mice were monitored for maximum ascites formation, sacrificed under CO2, and tapped for fluid collection using an 18G needle inserted into the fluid-filled cavity. The fluid was clarified by centrifugation at 225× g for 15 min or for 3 minutes in a microcentrifuge (Eppendorf). Four ml aliquots were then stored at −20° C. until purified by Protein-A column chromatography.
- B. Protein-A Purification of Monoclonal Antibodies:
- Immunoglobulin from 4 ml of ascites fluid or 10 ml of hybridoma conditioned medium was purified by Protein-A column chromatography. The Bio-Rad Monoclonal Antibody Purification System II (MAPS II; Bio-Rad Laboratories; Richmond, Calif.) was used. Briefly, 5 ml of Affi-gel Protein-A suspension was settled into a 1×10 cm disposable glass column. The Protein-A gel was washed with approximately 30 ml of D-PBS then prepared by running 20 ml of Binding Buffer (MAPS II Binding Buffer; Bio-Rad) through the column. Ascites fluid or conditioned medium diluted 1:1 with binding buffer was then added to the top of the column and allowed to flow through. After binding of immunoglobulin to Protein-A, the unbound fraction was discarded. The column was next rinsed of unbound protein with 30 ml of binding buffer to yield an absorbance at 280 nm of less than 0.01. The immunoglobulin-containing fraction was then eluted with Bio-Rad Elution buffer, approximately 30 ml. This fraction was buffer-exchanged overnight at 4° C. by dialysis against 4 liters D-PBS. The resulting PBS-equilibrated immunoglobulin was concentrated by centrifugation at 1700× g in Centricon Concentrator units (Amicon Inc., Beverly, Mass.).
- C. Fractionation of the Antibody-Binding Domain
- Protein-A purified immunoglobulin was further fractionated into its 2 component parts, the crystalizable fraction (Fc) and the antibody-binding fraction (Fab), using a Pierce ImmunoPure Fab Preparation kit (Pierce Chemical Company, Rockford, Ill.). The protein-A purified immunoglobulin was dialyzed into 20 mM phosphate/10 mM EDTA buffer at pH 7.0, then concentrated to approximately 20 mg/ml. Ten mg of immunoglobulin was fractionated. Immobilized papain gel was rinsed twice with digestion buffer containing 42 mg cysteine in 12 ml phosphate buffer as supplied. The immunoglobulin sample was then added to the gel and incubated at 37° C., on a rotating shaker, overnight. The solublized Fab was separated from the Fc and undigested immunoglobulin by protein-A purification; unbound fraction was collected here as the Fab sample. This unbound portion was dialyzed overnight against 4 liters D-PBS at 4° C., and concentrated as before.
- Mapping of
Mab 71 Epitope on EPOR - Overlapping synthetic peptides 17 to 30 amino acids in length were made that spanned
residues 1 to 224 of the human EPO receptor, whereresidue 1 is proline and residue 224 is aspartic acid. The ten different peptides overlapped by six amino acids at both ends. The sequences of the peptides and their location within the human EPO-R amino acid sequence are as follows:SE-1 PPPNLPDPKFESKAALLAARGPEELCFTE (residuses 1-30) SE-2A LLCFTERLEDLVCFWEEA (residues 25-42) SE-2B CFWEEAASAGVGPGNYSF (residues 37-54) SE-3 PGNYSFSYQLEDEPWKLCRLHQAPTARGAV (residues 49-78) SE-4 TARGAVRFWCSLPTADTSSFVPLELRVTAA (residues 73-102) SE-5 LRVTAASGAPRYHRVIHINEVVLLDAPVGL (residues 97-126 SE-6 DAPVGLVARLADESGHVVLRVLPPPETPMT (residues 121-150) SE-7 PETPMTSHIRYEVDVSAGNGAGSVQRVEIL (residues 145-174) SE-8 QRVEILEGRTECVLSNLRGRTRYTFAVRAR (residues 169-198) SE-9 FAVRARMEAPSFGGFWSAWSEPVSLLTPSDLD (residues 193-224) - Polystyrene wells (Costar, Cambridge, Mass.) were coated with the above EPO-R peptides at concentrations of 100 μg/ml, 20 μ/ml and 0.8 μg/ml respectively in carbonoate-biocarbonate buffer (0.015M Na2CO3, 0.035M NaHCO3, pH 9.2). The plate was incubated at room temperature (RT) for 2 hours then overnight at 4° C. Soluble HuEPOR was coated at concentrations of 10μg/ml, 2μg/ml, 0.4 μg/ml and 0.08ug/ml as positive controls under the same conditions. After blocking with 5% BSA in PBS at RT for 30 minutes, the plate was incubated with
Mab 71 purified as described in Example 5 at a concentration of 5μg/ml in 1% BSA at RT for 2 hours. After washing with washing buffer (Kirkegard and Perry Labs, Inc.) the plate was incubated with 1:1000 dilution of Goat anti-mouse IgG conjugated with horse Radish peroxidase (Boehringer Mannheim) for one hour at RT. The plate was washed and developed with ABTS (Kirkegard and Perry Labs, Inc.) substrate solution. Colorimetry was conducted at 405 nm. The results of Mab binding to the synthetic peptides are shown in FIG. 1 and indicate thatMab 71 binds significant amounts of peptide SE-3 (amino acid residues 49 to 78 inclusive of human EPO-R) compared to the other peptides tested. This indicates that Mab/1 binds to a region of the human EPO-R containing or overlapping residues 49 to 78. - Activity of Anti-EPOR Antibodies in Cell Proliferation Assays
- Antibodies in conditioned medium prepared as described above were assayed for their ability to stimulate uptake of 3H-thymidine by UT7-EPO cells (Komatsu et al., supra). UT7-EPO cells are responsive to EPO and express human EPO receptors on their cell surface. UT7-EPO cells were grown in Growth medium (1× Iscove's Modified Dulbecco's Medium with L-glutamine, 25 mM HEPES buffer, and 3024 mg/L sodium bicarbonate, but without either alpha-thioglycerol or beta-mercaptoethanol (GIBCO)/10% v/v Fetal Bovine Serum/1% v/v L-glutamine-Penicillin-Streptomycin solution (Irvine Scientific)/1 Unit/ml rHuEPO ) to approximately 3×105 cells/ml. Cells were collected by centrifugation (approx. 500× G) washed twice with phosphate buffered saline and resuspended at 5×104 cells/ml in Assay medium (1× RPMI Medium 1640 without L-glutamine (Gibco)/1% L-glutamine/4% fetal bovine serum). Test samples or EPO standard (rHuEPO), 100 μL diluted in assay medium at least 5-fold, were added to wells in a 96 well microtiter plate. 50 μL cells were then added (5000 cells/well) and plates were incubated in a humidified incubator at 37° C. and 5% CO2. After 72 hours, 50 μL methyl-3H-Thymidine (1 mCi/ml; 20 Ci/mMole) diluted 1:100 in assay medium was added. Cells were incubated for an additional 4 hours at 37° C. and 5% CO2. Labeled cells were harvested onto glass fiber filtermats using a PHD cell harvester(Cambridge Technology Inc.) and deionized water as a washing solution. Filters were rinsed a final time with 2 propanol then dried and counted in a Beckman Model LS6000IC scintillation counter.
- Conditioned medium from tissue culture plates containing antiEPOR Mabs were tested for their ability to stimulate proliferation as described above. Samples at several dilutions were tested. Positive responses were defined as those that stimulated thymidine uptake at least 2-fold over background levels and also resulted in decreasing stimulation as the samples were diluted. As shown in Table 1, two samples out of 24 tested gave a positive response (
Mabs 71 and 73). Four samples may have a weak stimulatory activity (? in Table 1). The remaining samples did not give a significant increase over background. A polyclonal serum from the mouse used to generate monoclonals also stimulated thymidine uptake. This suggests that the polyclonal antibody in this serum was also capable of stimulating proliferation of UT7-EPO cells. - The supernatants were also tested for their ability to inhibit EPO-induced stimulation of thymidine uptake by UT7-EPO cells. Cells were incubated with 25 munits/ml rHuEPO and varying amounts of antibody containing conditioned medium. Thymidine uptake was measured as described above. The results are shown in Table 1. Most antibodies did not significantly differ from control medium. Of the antibodies showing inhibition of thymidine uptake, two samples (Mabs 58 and 73) showed definite inhibition while three samples (
Mabs 65, 88 and 89) showed possible inhibition.Mab 73 inhibited at the highest doses but at lower doses it stimulated thymidine uptake over control values. - Activation of EPOR by Anti-EPOR Antibodies and Fragments
- A. UT7-EPO
Proliferation Assay Mabs Mabs Mab 71. Peaks in stimulatory activity were observed at doses of 1-2 μ/ml forMab 71 and >100 μg/ml forMab 73. A nonneutralizing control antibody (AntiEPO Mab F12) did not stimulate which suggests that the stimulation is specific for EPO receptor antibodies. - B. EPO Cold Displacement Assays.
- Antibodies to the EPO receptor may bind to the same region as EPO binds. To test this possibility, cold displacement assays were performed using OCIM1 cells. OCIM1 cells are from human origin and known to contain EPO receptors on their cell surface (Broudy et al. Proc. Nat. Acad. Sci. USA 85, 6517 (1988)). Cells were grown in OCIM1 growth medium (Iscove's modified Dulbecco medium(IMDM)/10% fetal bovine serum/1% pen-strep-fungisone) to approximately 2-5×105 cells/ml. Cells were collected by centrifugation, washed two times in binding buffer (RPMI 1640/1% BSA/25mM HEPES pH 7.3) then resuspended in binding buffer containing 0.1% azide and 10 μ/ml cytochalisin B at 1-2×107 cells/ml. Cells (100 μL) in 96 well tissue culture plates were then incubated with 10 μL sample and 10 μL 125I-EPO (Amersham high specific activity; 3000 Ci/mMole, 2 μCi/ml) in a 37° humidified tissue culture incubator. After 3 hours cells were centrifuged through phthalate oil (60:40 (v/v) dibutyl/dinonyl phthalate) in titer tubes. The tubes containing cells were quick frozen in a dry ice-ethanol bath and the cell pellet was clipped and then counted in a LKB 1277 gammamaster automatic gamma counter.
- FIG. 3 shows the results of the cold displacement experiment. Increasing amounts of125I-EPO were displaced from EPO receptors on cells as the amount of added unlabeled rHuEPO was increased. In a similar manner,
Mab 71 purified as described in Example 5 also displaced increasing amounts of 125I-EPO with increasing amounts of antibody. In this case, approximately 4,000 fold more Mab 71 was needed than rHuEPO to displace equivalent amounts of 125I-EPO. Incontrast Mab 73 showed indications of displacement at the highest doses but a nonneutralizing anti rHuEPO Mab (F12) did not significantly displace. These results indicate that Mab F12 did not interfere with binding of EPO to its receptor butMab Mab 71 binds to the EPO receptor and activates it by binding at or close to the EPO binding site. - EPO receptor fragments of
Mab 71 were prepared as described in Example 5. The preparations were characterized by SDS gel electrophoresis (Laemmli et al. Nature 227, 680 (1970) as shown in FIG. 4. Samples were boiled in 2% SDS containing sample buffer with or without 0.7M 2-mercaptoethanol, to distinguish reduced (2-mercaptoethanol) from nonreduced (no 2-mercaptoethanol) proteins, then run on 12.5% acrylamide SDS gels. The gels were stained with coomassie blue to visualize the proteins. The sizes of the proteins were estimated by comparing their mobilities to the mobilities of protein standards.Mabs Fab 71 and 27.5 and 26.5 KDa forFab 73. When these Fab fragments were run under non reducing conditions, the sizes ofFabs Mabs - To see if
monovalent Fab 71 fragments would activate the EPO receptor,Mab 71 and theFab 71 fragment were incubated with UT7-EPO cells and thymidine uptake was measured as described in Example 7. As shown in FIG. 5, both rHuEPO andMab 71 stimulated thymidine uptake. However themonavalent Fab 71 fragment did not. A control monoclonal antibody raised against an unrelated receptor (Her2/neu) also did not stimulate thymidine uptake. This indicates that the antibodies must be bivalent in order to activate the receptor. - D. Stimulation of Thymidine Uptake by
Mab 71 andFab 71 in the Presence of rHuEPO. - The fact that
Mab 71 inhibits binding of EPO to EPO receptors suggested that the antibody may not activate the EPO receptor in the presence of EPO. To test this possibility UT7-EPO cells were incubated with 30 munits/ml rHuEPO and varying amounts of purifiedMab 71,Fab 71 or Mab control (raised against Her2/neu). Thymidine uptake was measured as described above. As shown in FIG. 6 BothMab 71 andFab 71 inhibited thymidine uptake at high doses. However at doses between approximately 30 and 3000 μ/ml,Mab 71 stimulated thymidine uptake above levels stimulated by rHuEPO alone.Fab 71 and control antibodies did not have this effect. This indicates thatMab 71 and rHuEPO can have an additive effect in EPO receptor activation. - Stimulation of Erythroid Colony Formation by Anti-EPOR Antibodies
- To see if purified
Mab 71 would stimulate formation of erythroid cells from precursors in peripheral blood a BFUe assay was done. To purify erythroid cell precursors, normal human donors were lymphopheresed according to standard protocol. The lymphopheresed cells (250 ml) were washed with 250 ml Hank's Balanced Salt Solution (HBSS). The cells were resuspended in HBSS and separated by density centrifugation over a gradient(Ficoll-paque) for 30 min at 500× g. The low density cells(LD) were collected from the gradient and washed with 500 ml HBSS and resuspended in PBS supplemented with 0.5% bovine serum albumin and 5 mM EDTA at a concentration of 5×108 cells/ml. The LD cells were then further purified using a CD34 progenitor Cell Isolation Kit (QBend/10) made by Miltenyi Biotech GmbH. In brief cells were tagged with an anti CD34 monoclonal antibody they were then bound to magnetic microspheres according to protocol. The tagged cells were next passed through pre-filled MiniMacs separation columns, the columns were washed and the CD34+ cells were then eluted from the column. This process was repeated once more to achieve a higher purity of CD34+ cells. The in vitro assay was done on the purified CD34+cells as described by Iscove et. al. (J. Cell. Physiol 83, 309 (1974)) with the following modifications. The culture medium was obtained from Gibco BRL (Human bone marrow stem cell proliferation kit; Grand Island, N.Y.). To plate out duplicate 1 ml samples on 35×100 mm tissue culture plates, an excess of 3 ml was prepared in 17×100 sterile polystyrene tubes. Each tube received 2.5 ml Stem Cell Growth medium, 0.1 ml CD34+ cells (resuspended at 90,000 cells/ml) 0.015 ml Stem Cell Factor (20 μ/ml), and a combination of sample and Stem Cell Dilution medium equaling 0.385 ml. The tubes were vortexed and allowed to settle to allow bubbles to rise. The contents were then aliquoted using a 3 ml syringe with a 17×1−½ needle. The plates were incubated at 37° C. and 10% CO2 in a humidified tissue culture incubator. Erythroid colonies (orange to red in color) were scored after 21 days. No erythroid colonies were seen in plates lacking EPO orMab 71. rHuEPO (30 mUnits/plate) gave an excess of 400 colonies per plate.Mab 71 also produced erythroid colonies. Peak activity was seen at 2-6 μ/ml. This result indicates thatMab 71 stimulates formation of erythroid colonies. - The activity of purified
Mab 71 was also tested for the ability to form erythroid colonies using serum free growth conditions in methylcellulose. CD34+cells were isolated as described above and incubated using the serum free growth medium described in co-pending and co-owned U.S. Ser. No. 08/079,719, hereby incorporated by reference, with the following modifications. The assay tubes were set up without using extracellular matrix molecules, hydrocortisone, and the growth factors EGF, FGF, and PDGF. As described above 3 mL of sample was prepared to plate outduplicate 1 mL samples on plates. Each tube received 0.030 ml each of 100× Stock Solutions (2-Mercaptoethanol, nucleosides, cholesterol, Sodium-Pyruvate, Hu-Transferrin, lipids, Hu-Insulin), 0.4 ml deionized BSA (15%), 0.015 ml SCF (20 ug/ml), 0.1 ml CD34+ cells (resuspended at 300,000 cells/ml), 1.080ml methylcellulose (2.3%), and a combination of sample and IMDM equaling 1.195 ml where the sample did not exceed 150 μl. The plates were then incubated as described above and colonies were scored after 21 days. Erythroid colonies were observed when grown in the presence of EPO orMab 71 but not under conditions lacking these two factors. An example of the erythroid colony types seen is shown in FIG. 7. Colonies incubated with 25 munits of rHuEPO looked similar to those grown with 2.1 μ/ml of purifiedMab 71. Higher doses of rHuEPO gave larger colonies. A dose response curve is shown in FIG. 8.Mab 71 had a peak in activity at doses between 1 and 5 μg/ml. Lower and higher doses resulted in fewer erythroid colonies. A control monoclonal antibody raised to Her2/Neu did not produce any colonies over this dose range. This result indicates that the Mab 71 will stimulate the formation of erythroid colonies from erythroid precursors and that there is not an additional requirement for serum. Thus Mab 71 can stimulate differentiation of erythroid precursors into erythroid cells. - While the present invention has been described in terms of the preferred embodiments, it is understood that variations and modifications will occur to those skilled in the art. Therefore, it is intended that the appended claims cover all such equivalent variations which come within the scope of the invention as claimed.
Claims (26)
1. An antibody or fragment thereof which activates an erythropoietin receptor.
2. The antibody of claim 1 wherein the erythropoietin receptor is a mammalian erythropoietin receptor.
3. The antibody of claim 1 wherein the erythropoietin receptor is a human erythropoietin receptor.
4. The antibody of claim 1 which is a monoclonal antibody.
5. The antibody of claim 1 which is a humanized antibody.
6. The antibody of claim 1 which is a human antibody.
7. The antibody of claim 1 having a detectable label.
8. A hybridoma cell line capable of producing the monoclonal antibody of claim 4 .
9. An antibody of fragment thereof which recognizes an epitope on an erythropoietin receptor which is recognized by the monoclonal antibody produced by the hybridoma cell line ATCC No. ______ or ATCC No. ______.
10. The antibody of claim 9 which activates an erythropoietin receptor.
11. The antibody of claim 9 wherein the erythropoietin receptor is a human erythropoietin receptor.
12. The antibody of claim 9 which is a monoclonal antibody.
13. The antibody of claim 9 which is a humanized antibody.
14. The antibody of claim 9 having a detectable label.
15. A hybridoma cell line capable of producing the monoclonal antibody of claim 12 .
16. An antibody produced by the hybridoma cell line ATCC No. ______ or ATCC No. ______.
17. Hybridoma cell line ATCC No. ______ or ATCC No. ______.
18. A method of detecting in a biological sample an erythropoietin receptor which is capable of being activated, the method comprising the steps of:
(a) contacting the sample with the antibody of claims 1 or 9;
(b) detecting the activation of the receptor by the antibody,
thereby determining the presence of an erythropoietin receptor which is capable of being activated.
19. A kit for detecting in a biological sample an erythropoietin receptor which is capable of being activated comprising the antibody of claims 1 or 9.
20. A method of modulating the endogenous activity of an erythropoietin receptor in a mammal comprising administering an amount of the antibody of claims 1 or 9 effective to modulate the activity of the receptor.
21. The method of claim 20 wherein the modulation of the erythropoietin receptor activity regulates proliferation or differentiation of erythroid progenitor cells.
22. A method of treating anemia in a patient comprising administering a therapeutically effective amount of the antibody of claims 1 or 9.
23. A pharmaceutical composition comprising a therapeutically effective amount of the antibody of claims 1 or 9 in a pharmaceutically acceptable adjuvant.
24. The composition of claim 23 wherein the antibody is a monoclonal antibody.
25. The composition of claim 24 wherein the antibody is a humanized antibody.
26. The composition of claim 24 wherein the antibody is a human antibody.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/364,276 US7081523B2 (en) | 1994-07-26 | 2003-02-10 | Antibodies which activate an erythropoietin receptor |
US11/406,835 US20070014793A1 (en) | 1994-07-26 | 2006-04-18 | Antibodies which activate an erythropoietin receptor |
US11/981,631 US20080182976A1 (en) | 1994-07-26 | 2007-10-30 | Antibodies which activate an erythropoietin receptor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/280,864 US5885574A (en) | 1994-07-26 | 1994-07-26 | Antibodies which activate an erythropoietin receptor |
US9267198A | 1998-06-05 | 1998-06-05 | |
US64009000A | 2000-08-17 | 2000-08-17 | |
US10/364,276 US7081523B2 (en) | 1994-07-26 | 2003-02-10 | Antibodies which activate an erythropoietin receptor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US64009000A Continuation | 1994-07-26 | 2000-08-17 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/406,835 Division US20070014793A1 (en) | 1994-07-26 | 2006-04-18 | Antibodies which activate an erythropoietin receptor |
US11/406,835 Continuation US20070014793A1 (en) | 1994-07-26 | 2006-04-18 | Antibodies which activate an erythropoietin receptor |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030215444A1 true US20030215444A1 (en) | 2003-11-20 |
US7081523B2 US7081523B2 (en) | 2006-07-25 |
Family
ID=23074937
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/280,864 Expired - Lifetime US5885574A (en) | 1994-07-26 | 1994-07-26 | Antibodies which activate an erythropoietin receptor |
US09/092,291 Expired - Fee Related US6319499B1 (en) | 1994-07-26 | 1998-06-05 | Methods for activating an erythropoietin receptor using antibodies |
US10/364,276 Expired - Fee Related US7081523B2 (en) | 1994-07-26 | 2003-02-10 | Antibodies which activate an erythropoietin receptor |
US11/406,835 Abandoned US20070014793A1 (en) | 1994-07-26 | 2006-04-18 | Antibodies which activate an erythropoietin receptor |
US11/981,631 Abandoned US20080182976A1 (en) | 1994-07-26 | 2007-10-30 | Antibodies which activate an erythropoietin receptor |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/280,864 Expired - Lifetime US5885574A (en) | 1994-07-26 | 1994-07-26 | Antibodies which activate an erythropoietin receptor |
US09/092,291 Expired - Fee Related US6319499B1 (en) | 1994-07-26 | 1998-06-05 | Methods for activating an erythropoietin receptor using antibodies |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/406,835 Abandoned US20070014793A1 (en) | 1994-07-26 | 2006-04-18 | Antibodies which activate an erythropoietin receptor |
US11/981,631 Abandoned US20080182976A1 (en) | 1994-07-26 | 2007-10-30 | Antibodies which activate an erythropoietin receptor |
Country Status (17)
Country | Link |
---|---|
US (5) | US5885574A (en) |
EP (2) | EP0773962B1 (en) |
JP (2) | JP3225493B2 (en) |
CN (1) | CN1158134A (en) |
AT (2) | ATE209218T1 (en) |
AU (1) | AU697369B2 (en) |
CA (1) | CA2195868A1 (en) |
DE (2) | DE69524102T2 (en) |
DK (2) | DK0773962T3 (en) |
ES (2) | ES2283355T3 (en) |
IL (1) | IL114717A0 (en) |
MX (1) | MX9700553A (en) |
NZ (1) | NZ290689A (en) |
PT (2) | PT1146056E (en) |
SI (1) | SI0773962T1 (en) |
WO (1) | WO1996003438A1 (en) |
ZA (1) | ZA956215B (en) |
Cited By (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050014802A1 (en) * | 2003-05-30 | 2005-01-20 | Gemin X Biotechnologies Inc. | Triheterocyclic compounds, compositions, and methods for treating cancer or viral diseases |
US20080038265A1 (en) * | 2004-04-09 | 2008-02-14 | Reilly Edward B | Antibodies to Erythropoietin Receptor and Uses Thereof |
US20080051400A1 (en) * | 2006-07-06 | 2008-02-28 | Gemin X Biotechnologies Inc. | Methods for treating or preventing anemia or thrombocytopenia using a triheterocyclic compound |
US20080076739A1 (en) * | 2005-02-22 | 2008-03-27 | Gemin X Biotechnologies Inc. | Methods for treating arthritis using triheterocyclic compounds |
US20080095776A1 (en) * | 2002-10-14 | 2008-04-24 | Abbott Laboratories | Erythropoietin receptor binding antibodies |
WO2009094551A1 (en) | 2008-01-25 | 2009-07-30 | Amgen Inc. | Ferroportin antibodies and methods of use |
WO2010056981A2 (en) | 2008-11-13 | 2010-05-20 | Massachusetts General Hospital | Methods and compositions for regulating iron homeostasis by modulation bmp-6 |
WO2010081679A2 (en) | 2009-01-15 | 2010-07-22 | F. Hoffmann-La Roche Ag | Antibodies against human epo receptor |
US20100297106A1 (en) * | 2007-09-27 | 2010-11-25 | Christopher James Sloey | Pharmaceutical Formulations |
WO2011050333A1 (en) | 2009-10-23 | 2011-04-28 | Amgen Inc. | Vial adapter and system |
US20110165592A1 (en) * | 2008-08-28 | 2011-07-07 | Hoffman-La Roche. Inc. | Antibodies against human epo receptor |
WO2011156373A1 (en) | 2010-06-07 | 2011-12-15 | Amgen Inc. | Drug delivery device |
WO2012135315A1 (en) | 2011-03-31 | 2012-10-04 | Amgen Inc. | Vial adapter and system |
WO2012171996A1 (en) | 2011-06-15 | 2012-12-20 | F. Hoffmann-La Roche Ag | Anti-human epo receptor antibodies and methods of use |
WO2013055873A1 (en) | 2011-10-14 | 2013-04-18 | Amgen Inc. | Injector and method of assembly |
EP2620448A1 (en) | 2008-05-01 | 2013-07-31 | Amgen Inc. | Anti-hepcidin antibodies and methods of use |
US8629250B2 (en) | 2007-02-02 | 2014-01-14 | Amgen Inc. | Hepcidin, hepcidin antagonists and methods of use |
WO2014081780A1 (en) | 2012-11-21 | 2014-05-30 | Amgen Inc. | Drug delivery device |
WO2014143770A1 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Body contour adaptable autoinjector device |
WO2014144096A1 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Drug cassette, autoinjector, and autoinjector system |
WO2014149357A1 (en) | 2013-03-22 | 2014-09-25 | Amgen Inc. | Injector and method of assembly |
WO2015061386A1 (en) | 2013-10-24 | 2015-04-30 | Amgen Inc. | Injector and method of assembly |
WO2015061389A1 (en) | 2013-10-24 | 2015-04-30 | Amgen Inc. | Drug delivery system with temperature-sensitive control |
WO2015119906A1 (en) | 2014-02-05 | 2015-08-13 | Amgen Inc. | Drug delivery system with electromagnetic field generator |
WO2015171777A1 (en) | 2014-05-07 | 2015-11-12 | Amgen Inc. | Autoinjector with shock reducing elements |
WO2015187797A1 (en) | 2014-06-03 | 2015-12-10 | Amgen Inc. | Controllable drug delivery system and method of use |
WO2016049036A1 (en) | 2014-09-22 | 2016-03-31 | Intrinsic Lifesciences Llc | Humanized anti-hepcidin antibodies and uses thereof |
WO2016061220A2 (en) | 2014-10-14 | 2016-04-21 | Amgen Inc. | Drug injection device with visual and audio indicators |
WO2016100781A1 (en) | 2014-12-19 | 2016-06-23 | Amgen Inc. | Drug delivery device with proximity sensor |
WO2016100055A1 (en) | 2014-12-19 | 2016-06-23 | Amgen Inc. | Drug delivery device with live button or user interface field |
WO2017039786A1 (en) | 2015-09-02 | 2017-03-09 | Amgen Inc. | Syringe assembly adapter for a syringe |
US9657098B2 (en) | 2013-03-15 | 2017-05-23 | Intrinsic Lifesciences, Llc | Anti-hepcidin antibodies and uses thereof |
WO2017100501A1 (en) | 2015-12-09 | 2017-06-15 | Amgen Inc. | Auto-injector with signaling cap |
US20170173150A1 (en) * | 2004-05-17 | 2017-06-22 | Jong Y Lee | Compositions and Methods of Preventing Erythropoietin Associated Hypertension |
WO2017120178A1 (en) | 2016-01-06 | 2017-07-13 | Amgen Inc. | Auto-injector with signaling electronics |
WO2017160799A1 (en) | 2016-03-15 | 2017-09-21 | Amgen Inc. | Reducing probability of glass breakage in drug delivery devices |
WO2017189089A1 (en) | 2016-04-29 | 2017-11-02 | Amgen Inc. | Drug delivery device with messaging label |
WO2017192287A1 (en) | 2016-05-02 | 2017-11-09 | Amgen Inc. | Syringe adapter and guide for filling an on-body injector |
WO2017197222A1 (en) | 2016-05-13 | 2017-11-16 | Amgen Inc. | Vial sleeve assembly |
WO2017200989A1 (en) | 2016-05-16 | 2017-11-23 | Amgen Inc. | Data encryption in medical devices with limited computational capability |
WO2017209899A1 (en) | 2016-06-03 | 2017-12-07 | Amgen Inc. | Impact testing apparatuses and methods for drug delivery devices |
WO2018004842A1 (en) | 2016-07-01 | 2018-01-04 | Amgen Inc. | Drug delivery device having minimized risk of component fracture upon impact events |
WO2018034784A1 (en) | 2016-08-17 | 2018-02-22 | Amgen Inc. | Drug delivery device with placement detection |
WO2018081234A1 (en) | 2016-10-25 | 2018-05-03 | Amgen Inc. | On-body injector |
WO2018136398A1 (en) | 2017-01-17 | 2018-07-26 | Amgen Inc. | Injection devices and related methods of use and assembly |
WO2018152073A1 (en) | 2017-02-17 | 2018-08-23 | Amgen Inc. | Insertion mechanism for drug delivery device |
WO2018151890A1 (en) | 2017-02-17 | 2018-08-23 | Amgen Inc. | Drug delivery device with sterile fluid flowpath and related method of assembly |
WO2018165143A1 (en) | 2017-03-06 | 2018-09-13 | Amgen Inc. | Drug delivery device with activation prevention feature |
WO2018165499A1 (en) | 2017-03-09 | 2018-09-13 | Amgen Inc. | Insertion mechanism for drug delivery device |
WO2018164829A1 (en) | 2017-03-07 | 2018-09-13 | Amgen Inc. | Needle insertion by overpressure |
WO2018172219A1 (en) | 2017-03-20 | 2018-09-27 | F. Hoffmann-La Roche Ag | Method for in vitro glycoengineering of an erythropoiesis stimulating protein |
EP3381445A2 (en) | 2007-11-15 | 2018-10-03 | Amgen Inc. | Aqueous formulation of antibody stablised by antioxidants for parenteral administration |
WO2018183039A1 (en) | 2017-03-28 | 2018-10-04 | Amgen Inc. | Plunger rod and syringe assembly system and method |
WO2018226565A1 (en) | 2017-06-08 | 2018-12-13 | Amgen Inc. | Torque driven drug delivery device |
WO2018226515A1 (en) | 2017-06-08 | 2018-12-13 | Amgen Inc. | Syringe assembly for a drug delivery device and method of assembly |
WO2018236619A1 (en) | 2017-06-22 | 2018-12-27 | Amgen Inc. | Device activation impact/shock reduction |
WO2018237225A1 (en) | 2017-06-23 | 2018-12-27 | Amgen Inc. | Electronic drug delivery device comprising a cap activated by a switch assembly |
WO2019014014A1 (en) | 2017-07-14 | 2019-01-17 | Amgen Inc. | Needle insertion-retraction system having dual torsion spring system |
WO2019018169A1 (en) | 2017-07-21 | 2019-01-24 | Amgen Inc. | Gas permeable sealing member for drug container and methods of assembly |
WO2019022950A1 (en) | 2017-07-25 | 2019-01-31 | Amgen Inc. | Drug delivery device with container access system and related method of assembly |
WO2019022951A1 (en) | 2017-07-25 | 2019-01-31 | Amgen Inc. | Drug delivery device with gear module and related method of assembly |
WO2019032482A2 (en) | 2017-08-09 | 2019-02-14 | Amgen Inc. | Hydraulic-pneumatic pressurized chamber drug delivery system |
WO2019036181A1 (en) | 2017-08-18 | 2019-02-21 | Amgen Inc. | Wearable injector with sterile adhesive patch |
WO2019040548A1 (en) | 2017-08-22 | 2019-02-28 | Amgen Inc. | Needle insertion mechanism for drug delivery device |
WO2019070472A1 (en) | 2017-10-04 | 2019-04-11 | Amgen Inc. | Flow adapter for drug delivery device |
WO2019070552A1 (en) | 2017-10-06 | 2019-04-11 | Amgen Inc. | Drug delivery device with interlock assembly and related method of assembly |
WO2019074579A1 (en) | 2017-10-09 | 2019-04-18 | Amgen Inc. | Drug delivery device with drive assembly and related method of assembly |
WO2019089178A1 (en) | 2017-11-06 | 2019-05-09 | Amgen Inc. | Drug delivery device with placement and flow sensing |
WO2019090303A1 (en) | 2017-11-06 | 2019-05-09 | Amgen Inc. | Fill-finish assemblies and related methods |
WO2019090079A1 (en) | 2017-11-03 | 2019-05-09 | Amgen Inc. | System and approaches for sterilizing a drug delivery device |
WO2019094138A1 (en) | 2017-11-10 | 2019-05-16 | Amgen Inc. | Plungers for drug delivery devices |
WO2019099324A1 (en) | 2017-11-16 | 2019-05-23 | Amgen Inc. | Door latch mechanism for drug delivery device |
WO2019099322A1 (en) | 2017-11-16 | 2019-05-23 | Amgen Inc. | Autoinjector with stall and end point detection |
EP3498323A2 (en) | 2011-04-20 | 2019-06-19 | Amgen Inc. | Autoinjector apparatus |
EP3556411A1 (en) | 2015-02-17 | 2019-10-23 | Amgen Inc. | Drug delivery device with vacuum assisted securement and/or feedback |
WO2019231618A1 (en) | 2018-06-01 | 2019-12-05 | Amgen Inc. | Modular fluid path assemblies for drug delivery devices |
WO2019231582A1 (en) | 2018-05-30 | 2019-12-05 | Amgen Inc. | Thermal spring release mechanism for a drug delivery device |
EP3593839A1 (en) | 2013-03-15 | 2020-01-15 | Amgen Inc. | Drug cassette |
WO2020023444A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Delivery devices for administering drugs |
WO2020023336A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Hybrid drug delivery devices with grip portion |
WO2020023220A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Hybrid drug delivery devices with tacky skin attachment portion and related method of preparation |
WO2020023451A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Delivery devices for administering drugs |
WO2020028009A1 (en) | 2018-07-31 | 2020-02-06 | Amgen Inc. | Fluid path assembly for a drug delivery device |
WO2020068623A1 (en) | 2018-09-24 | 2020-04-02 | Amgen Inc. | Interventional dosing systems and methods |
WO2020068476A1 (en) | 2018-09-28 | 2020-04-02 | Amgen Inc. | Muscle wire escapement activation assembly for a drug delivery device |
WO2020072846A1 (en) | 2018-10-05 | 2020-04-09 | Amgen Inc. | Drug delivery device having dose indicator |
WO2020072577A1 (en) | 2018-10-02 | 2020-04-09 | Amgen Inc. | Injection systems for drug delivery with internal force transmission |
WO2020081479A1 (en) | 2018-10-15 | 2020-04-23 | Amgen Inc. | Drug delivery device having damping mechanism |
WO2020081480A1 (en) | 2018-10-15 | 2020-04-23 | Amgen Inc. | Platform assembly process for drug delivery device |
WO2020091956A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial drug delivery member retraction |
WO2020091981A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial drug delivery member retraction |
WO2020092056A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial needle retraction |
WO2020219482A1 (en) | 2019-04-24 | 2020-10-29 | Amgen Inc. | Syringe sterilization verification assemblies and methods |
WO2021041067A2 (en) | 2019-08-23 | 2021-03-04 | Amgen Inc. | Drug delivery device with configurable needle shield engagement components and related methods |
EP3981450A1 (en) | 2015-02-27 | 2022-04-13 | Amgen, Inc | Drug delivery device having a needle guard mechanism with a tunable threshold of resistance to needle guard movement |
WO2022246055A1 (en) | 2021-05-21 | 2022-11-24 | Amgen Inc. | Method of optimizing a filling recipe for a drug container |
WO2024094457A1 (en) | 2022-11-02 | 2024-05-10 | F. Hoffmann-La Roche Ag | Method for producing glycoprotein compositions |
Families Citing this family (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5885574A (en) * | 1994-07-26 | 1999-03-23 | Amgen Inc. | Antibodies which activate an erythropoietin receptor |
US5767078A (en) * | 1995-06-07 | 1998-06-16 | Johnson; Dana L. | Agonist peptide dimers |
AU6163196A (en) * | 1995-06-07 | 1996-12-30 | Smithkline Beecham Corporation | Method for obtaining receptor agonist antibodies |
US20050019325A1 (en) | 1996-01-08 | 2005-01-27 | Carter Paul J. | WSX receptor agonist antibodies |
US7074397B1 (en) | 1996-01-08 | 2006-07-11 | Genentech, Inc. | Method for enhancing proliferation or differentiation of a cell using ob protein |
US6541604B1 (en) | 1996-01-08 | 2003-04-01 | Genentech, Inc. | Leptin receptor having a WSX motif |
US6346390B1 (en) * | 1996-03-08 | 2002-02-12 | Receptron, Inc. | Receptor derived peptides involved in modulation of response to ligand binding |
US6103879A (en) * | 1996-06-21 | 2000-08-15 | Axys Pharmaceuticals, Inc. | Bivalent molecules that form an activating complex with an erythropoietin receptor |
AU3492497A (en) * | 1996-06-21 | 1998-01-07 | Arris Pharmaceutical Corporation | Bivalent molecules that form an activating complex with an erythropoietin receptor |
US6221608B1 (en) * | 1997-01-22 | 2001-04-24 | Ortho Pharmaceutical Corporation | Methods for identifying erythropoietin receptor binding protein |
US6342220B1 (en) | 1997-08-25 | 2002-01-29 | Genentech, Inc. | Agonist antibodies |
US7531643B2 (en) * | 1997-09-11 | 2009-05-12 | Chugai Seiyaku Kabushiki Kaisha | Monoclonal antibody inducing apoptosis |
EP1035132B1 (en) * | 1997-09-11 | 2008-05-14 | Chugai Seiyaku Kabushiki Kaisha | Monoclonal antibody inducing apoptosis |
US7621901B2 (en) * | 1999-02-10 | 2009-11-24 | First Quality Products, Inc. | Disposable pant type absorbent article having improved multifold fastening system and method of making same |
US7696325B2 (en) * | 1999-03-10 | 2010-04-13 | Chugai Seiyaku Kabushiki Kaisha | Polypeptide inducing apoptosis |
EP1167388A4 (en) * | 1999-03-10 | 2002-05-29 | Chugai Pharmaceutical Co Ltd | Single-stranded fv inducing apoptosis |
WO2000061637A1 (en) * | 1999-04-14 | 2000-10-19 | Smithkline Beecham Corporation | Erythropoietin receptor antibodies |
CA2404432A1 (en) * | 2000-03-27 | 2001-10-04 | Thomas Jefferson University | Compositions and methods for identifying and targeting cancer cells |
US7312089B2 (en) * | 2000-04-05 | 2007-12-25 | Jong Y. Lee | Detection of erythropoietin and erythropoietin receptor |
US20040058393A1 (en) * | 2000-04-17 | 2004-03-25 | Naoshi Fukishima | Agonist antibodies |
EP2351838A1 (en) * | 2000-10-20 | 2011-08-03 | Chugai Seiyaku Kabushiki Kaisha | Crosslinking agonistic antibodies |
CN101007849A (en) * | 2000-10-20 | 2007-08-01 | 中外制药株式会社 | Low molecule agonist antibodies |
KR20030055274A (en) | 2000-10-20 | 2003-07-02 | 츄가이 세이야꾸 가부시키가이샤 | Degraded tpo agonist antibody |
AU1091702A (en) * | 2000-10-20 | 2002-04-29 | Chugai Pharmaceutical Co Ltd | Degraded tpo agonist antibody |
CA2424371A1 (en) * | 2000-10-20 | 2003-04-01 | Chugai Seiyaku Kabushiki Kaisha | Agonistic monoclonal antibody fragments |
US7396917B2 (en) * | 2000-12-05 | 2008-07-08 | Alexion Pharmaceuticals, Inc. | Rationally designed antibodies |
ES2316919T3 (en) | 2000-12-05 | 2009-04-16 | Alexion Pharmaceuticals, Inc. | RATIONALALLY DESIGNED ANTIBODIES. |
DE60118625T2 (en) * | 2001-07-26 | 2007-02-22 | Tagra Biotechnologies Ltd. | STABILIZED ASCORBIC ACID -3- PHOSPHATE DERIVATIVES |
AU2002325712C1 (en) * | 2001-08-30 | 2008-07-31 | Stem Cell Therapeutics Inc. | Differentiation of neural stem cells and therapeutic use theeof |
CA2460184A1 (en) * | 2001-09-14 | 2003-03-27 | Stem Cell Therapeutics Inc. | Prolactin induced increase in neural stem cell numbers and therapeutical use thereof |
US20030054551A1 (en) * | 2001-09-18 | 2003-03-20 | Stem Cell Therapeutics Inc. | Effect of growth hormone and IGF-1 on neural stem cells |
US7053050B2 (en) * | 2001-11-02 | 2006-05-30 | Yoshiko Yasuda | Preventives/remedies for proliferative organ diseases chronic arthritic diseases, hypertrophic scar or keloid |
US7300915B2 (en) | 2002-06-05 | 2007-11-27 | The Regents Of The University Of California | Use of erythropoietin and erythropoietin mimetics for the treatment of neuropathic pain |
EP1546198A1 (en) * | 2002-07-31 | 2005-06-29 | Stem Cell Therapeutics Inc. | Method of enhancing neural stem cell proliferation, differentiation, and survival using pituitary adenylate cyclase activating polypeptide (pacap) |
AU2002325432A1 (en) * | 2002-08-02 | 2004-02-23 | Alexandr Mikhailovich Dygay | Medicinal agent and method for curing pathological syndrome associated to hemodiscrasia |
US20040043009A1 (en) * | 2002-09-03 | 2004-03-04 | Donnie Rudd | Method of repairing primate mammalian tissue |
US20040077985A1 (en) * | 2002-09-03 | 2004-04-22 | Donnie Rudd | Method of replenishing cells damaged by treatment for cancer |
US20040044300A1 (en) * | 2002-09-03 | 2004-03-04 | Donnie Rudd | Method of replenishing cells damaged by treatment for cancer |
US20040076605A1 (en) * | 2002-09-03 | 2004-04-22 | Donnie Rudd | Method of regenerating human tissue |
US20040042997A1 (en) * | 2002-09-03 | 2004-03-04 | Donnie Rudd | Method of regenerating human tissue |
US20040076620A1 (en) * | 2002-09-03 | 2004-04-22 | Donnie Rudd | Method of repairing primate mammalian tissue |
DE60324700D1 (en) * | 2002-10-11 | 2008-12-24 | Chugai Pharmaceutical Co Ltd | CELL TOD INDUCTIVE ACTIVE SUBSTANCE |
TWI320716B (en) * | 2002-10-14 | 2010-02-21 | Abbott Lab | Erythropoietin receptor binding antibodies |
US20040071694A1 (en) * | 2002-10-14 | 2004-04-15 | Devries Peter J. | Erythropoietin receptor binding antibodies |
WO2004037195A2 (en) * | 2002-10-22 | 2004-05-06 | Waratah Pharmaceuticals, Inc. | Treatment of diabetes |
KR100473172B1 (en) * | 2002-11-27 | 2005-03-10 | 씨제이 주식회사 | A monoclonal antibody recognizing both human erythropoietin and modified erythropoietin and a hybridoma cell line producing the same |
JP2004279086A (en) * | 2003-03-13 | 2004-10-07 | Konica Minolta Holdings Inc | Radiation image conversion panel and method for manufacturing it |
EP1609803A4 (en) * | 2003-03-31 | 2006-05-24 | Chugai Pharmaceutical Co Ltd | Modified antibody against cd22 and utilization thereof |
WO2004091495A2 (en) * | 2003-04-09 | 2004-10-28 | University Of Utah Research Foundation | Compositions and methods related to production of erythropoietin |
US20070111932A1 (en) * | 2003-07-31 | 2007-05-17 | Stem Cell Therapeutics Inc. | Method of enhancing and/or inducing neuronal migration using erythropoietin |
TW200530266A (en) * | 2003-12-12 | 2005-09-16 | Chugai Pharmaceutical Co Ltd | Method of reinforcing antibody activity |
US20070281327A1 (en) * | 2003-12-12 | 2007-12-06 | Kiyotaka Nakano | Methods of Screening for Modified Antibodies With Agonistic Activities |
KR20060130606A (en) * | 2003-12-12 | 2006-12-19 | 추가이 세이야쿠 가부시키가이샤 | Cell death inducing agent |
TW200530269A (en) | 2003-12-12 | 2005-09-16 | Chugai Pharmaceutical Co Ltd | Anti-Mpl antibodies |
US8298532B2 (en) * | 2004-01-16 | 2012-10-30 | Regeneron Pharmaceuticals, Inc. | Fusion polypeptides capable of activating receptors |
AU2005206536B2 (en) * | 2004-01-16 | 2010-09-02 | Regeneron Pharmaceuticals, Inc. | Fusion polypeptides capable of activating receptors |
WO2005077404A1 (en) | 2004-02-13 | 2005-08-25 | Stem Cell Therapeutics Corp. | Use of luteinizing hormone (lh) and chorionic gonadotropin (hcg) for proliferation of neural stem cells and neurogenesis |
US20050227289A1 (en) | 2004-04-09 | 2005-10-13 | Reilly Edward B | Antibodies to erythropoietin receptor and uses thereof |
US20060018902A1 (en) * | 2004-04-09 | 2006-01-26 | Reilly Edward B | Antibodies to erythropoietin receptor and uses thereof |
CA2582567A1 (en) | 2004-10-07 | 2006-04-13 | Stem Cell Therapeutics Corp. | Stimulation of proliferation of pluripotential stem cells through administration of pregnancy associated compounds |
JP5057967B2 (en) * | 2005-03-31 | 2012-10-24 | 中外製薬株式会社 | sc (Fv) 2 structural isomer |
WO2006123724A1 (en) * | 2005-05-18 | 2006-11-23 | The University Of Tokushima | Novel pharmaceutical using anti-hla antibody |
CN101262885B (en) | 2005-06-10 | 2015-04-01 | 中外制药株式会社 | Pharmaceutical compositions containing sc(Fv)2 |
AU2006256041B2 (en) * | 2005-06-10 | 2012-03-29 | Chugai Seiyaku Kabushiki Kaisha | Stabilizer for protein preparation comprising meglumine and use thereof |
KR20080074108A (en) | 2005-09-27 | 2008-08-12 | 스템 셀 테라퓨틱스 코포레이션 | Oligodendrocyte precursor cell proliferation regulated by prolactin |
AU2007229301B2 (en) * | 2006-03-17 | 2013-08-01 | Stem Cell Therapeutics Corp. | Continuous dosing regimens for neural stem cell proliferating agents and neural stem cell differentiating agents |
AU2007238704A1 (en) * | 2006-04-14 | 2007-10-25 | Amgen Inc. | Erythropoietin receptor agonists |
WO2007120767A2 (en) * | 2006-04-14 | 2007-10-25 | Amgen Inc. | Agonist erythropoietin receptor antibodies |
AR061986A1 (en) * | 2006-07-13 | 2008-08-10 | Chugai Pharmaceutical Co Ltd | CELLULAR DEATH INDUCTIVE AGENTS |
CL2008000719A1 (en) * | 2007-03-12 | 2008-09-05 | Univ Tokushima Chugai Seiyaku | THERAPEUTIC AGENT FOR CANCER RESISTANT TO CHEMOTHERAPEUTIC AGENTS THAT UNDERSTAND AN ANTIBODY THAT RECOGNIZES IT CLASS I AS ACTIVE INGREDIENT; PHARMACEUTICAL COMPOSITION THAT INCLUDES SUCH ANTIBODY; AND METHOD TO TREAT CANCER RESISTANT TO |
GB0812277D0 (en) * | 2008-07-04 | 2008-08-13 | Fusion Antibodies Ltd | Antibody and uses thereof |
CN105535938B (en) | 2009-08-13 | 2022-04-26 | 阿塞勒隆制药公司 | Combined use of GDF traps and erythropoietin receptor activators to increase red blood cell levels |
ES2741477T3 (en) | 2011-10-17 | 2020-02-11 | Acceleron Pharma Inc | Compositions for treating iron overload in thalassemia |
AU2013337677B2 (en) | 2012-11-02 | 2018-06-28 | Celgene Corporation | Activin-ActRII antagonists and uses for treating bone and other disorders |
UY35148A (en) | 2012-11-21 | 2014-05-30 | Amgen Inc | HETERODIMERIC IMMUNOGLOBULINS |
WO2014144817A2 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Inhibitory polypeptides specific to wnt inhibitors |
AU2014318017B2 (en) | 2013-09-05 | 2020-02-06 | Amgen Inc. | Fc-containing molecules exhibiting predictable, consistent, and reproducible glycoform profiles |
EP3808778A1 (en) | 2014-04-18 | 2021-04-21 | Acceleron Pharma Inc. | Methods for increasing red blood cell levels and treating sickle-cell disease |
EP3467501B1 (en) | 2014-05-16 | 2020-11-04 | Amgen Inc. | Assay for detecting th1 and th2 cell populations |
BR112016029226A2 (en) | 2014-06-13 | 2017-10-17 | Acceleron Pharma Inc | methods and compositions for treating ulcers |
WO2016018883A1 (en) * | 2014-07-29 | 2016-02-04 | The Board Of Trustees Of The Leland Stanford Junior University | Tuning dimeric receptor signaling with extracellular ligands that alter receptor orientation and proximity upon binding |
JP6663428B2 (en) | 2014-10-30 | 2020-03-11 | アクセルロン ファーマ, インコーポレイテッド | Methods and compositions for increasing red blood cells using a GDF15 polypeptide |
MA41119A (en) | 2014-12-03 | 2017-10-10 | Acceleron Pharma Inc | METHODS OF TREATMENT OF MYELODYSPLASIC SYNDROMES AND SIDEROBLASTIC ANEMIA |
MD4801C1 (en) | 2014-12-03 | 2022-10-31 | Celgene Corporation | Activin-ActRII antagonists and uses for treating myelodysplastic syndromes |
WO2017079591A2 (en) | 2015-11-04 | 2017-05-11 | Acceleron Pharma Inc. | Methods for increasing red blood cell levels and treating ineffective erythropoiesis |
CA3036104A1 (en) | 2016-09-15 | 2018-03-22 | Acceleron Pharma Inc. | Twisted gastrulation polypeptides and uses thereof |
SG11201908328XA (en) | 2017-03-14 | 2019-10-30 | Amgen Inc | Control of total afucosylated glycoforms of antibodies produced in cell culture |
WO2018197545A1 (en) * | 2017-04-25 | 2018-11-01 | Lipoxen Technologies Limited | Methods of treating multiple myeloma cancers expressing high levels of epo-receptor using psa-epo |
EA202092286A1 (en) | 2018-03-26 | 2021-03-18 | Эмджен Инк. | GENERAL AFUCOSYLATED ANTIBODY GLYCOFORM OBTAINED IN CELL CULTURE |
BR112022005583A2 (en) | 2019-09-26 | 2022-09-20 | Amgen Inc | METHODS FOR PRODUCTION OF ANTIBODY COMPOSITIONS |
US20230273126A1 (en) | 2020-06-04 | 2023-08-31 | Amgen Inc. | Assessment of cleaning procedures of a biotherapeutic manufacturing process |
MX2023004364A (en) | 2020-10-15 | 2023-05-03 | Amgen Inc | Relative unpaired glycans in antibody production methods. |
WO2022261021A1 (en) | 2021-06-07 | 2022-12-15 | Amgen Inc. | Using fucosidase to control afucosylation level of glycosylated proteins |
CA3233279A1 (en) | 2021-10-05 | 2023-04-13 | Amgen Inc. | Fc-gamma receptor ii binding and glycan content |
WO2023215725A1 (en) | 2022-05-02 | 2023-11-09 | Fred Hutchinson Cancer Center | Compositions and methods for cellular immunotherapy |
WO2024220916A1 (en) | 2023-04-20 | 2024-10-24 | Amgen Inc. | Methods of determining relative unpaired glycan content |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4667016A (en) * | 1985-06-20 | 1987-05-19 | Kirin-Amgen, Inc. | Erythropoietin purification |
US4703008A (en) * | 1983-12-13 | 1987-10-27 | Kiren-Amgen, Inc. | DNA sequences encoding erythropoietin |
US4816567A (en) * | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US5225539A (en) * | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
US5278065A (en) * | 1989-02-03 | 1994-01-11 | Genetics Institute, Inc. | Recombinant DNA endoding an erythropoietin receptor |
US5545806A (en) * | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5736137A (en) * | 1992-11-13 | 1998-04-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
US5885574A (en) * | 1994-07-26 | 1999-03-23 | Amgen Inc. | Antibodies which activate an erythropoietin receptor |
US6103879A (en) * | 1996-06-21 | 2000-08-15 | Axys Pharmaceuticals, Inc. | Bivalent molecules that form an activating complex with an erythropoietin receptor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3417558B2 (en) * | 1991-05-10 | 2003-06-16 | ジェネンテク,インコーポレイテッド | Choice of ligand agonists and antagonists |
CA2124967C (en) * | 1991-12-17 | 2008-04-08 | Nils Lonberg | Transgenic non-human animals capable of producing heterologous antibodies |
US5789192A (en) * | 1992-12-10 | 1998-08-04 | Schering Corporation | Mammalian receptors for interleukin-10 (IL-10) |
US5635388A (en) * | 1994-04-04 | 1997-06-03 | Genentech, Inc. | Agonist antibodies against the flk2/flt3 receptor and uses thereof |
-
1994
- 1994-07-26 US US08/280,864 patent/US5885574A/en not_active Expired - Lifetime
-
1995
- 1995-07-24 IL IL11471795A patent/IL114717A0/en unknown
- 1995-07-26 AU AU31499/95A patent/AU697369B2/en not_active Ceased
- 1995-07-26 JP JP50596596A patent/JP3225493B2/en not_active Expired - Fee Related
- 1995-07-26 ZA ZA956215A patent/ZA956215B/en unknown
- 1995-07-26 DK DK95927476T patent/DK0773962T3/en active
- 1995-07-26 EP EP95927476A patent/EP0773962B1/en not_active Expired - Lifetime
- 1995-07-26 WO PCT/US1995/009458 patent/WO1996003438A1/en active IP Right Grant
- 1995-07-26 NZ NZ290689A patent/NZ290689A/en unknown
- 1995-07-26 DE DE69524102T patent/DE69524102T2/en not_active Expired - Fee Related
- 1995-07-26 DK DK01111554T patent/DK1146056T3/en active
- 1995-07-26 PT PT01111554T patent/PT1146056E/en unknown
- 1995-07-26 AT AT95927476T patent/ATE209218T1/en not_active IP Right Cessation
- 1995-07-26 CA CA002195868A patent/CA2195868A1/en not_active Abandoned
- 1995-07-26 DE DE69535419T patent/DE69535419T2/en not_active Expired - Fee Related
- 1995-07-26 PT PT95927476T patent/PT773962E/en unknown
- 1995-07-26 ES ES01111554T patent/ES2283355T3/en not_active Expired - Lifetime
- 1995-07-26 AT AT01111554T patent/ATE356148T1/en not_active IP Right Cessation
- 1995-07-26 CN CN95195117A patent/CN1158134A/en active Pending
- 1995-07-26 SI SI9530563T patent/SI0773962T1/en unknown
- 1995-07-26 EP EP01111554A patent/EP1146056B1/en not_active Expired - Lifetime
- 1995-07-26 ES ES95927476T patent/ES2168376T3/en not_active Expired - Lifetime
- 1995-07-26 MX MX9700553A patent/MX9700553A/en not_active IP Right Cessation
-
1998
- 1998-06-05 US US09/092,291 patent/US6319499B1/en not_active Expired - Fee Related
-
1999
- 1999-09-27 JP JP11273329A patent/JP2000095800A/en active Pending
-
2003
- 2003-02-10 US US10/364,276 patent/US7081523B2/en not_active Expired - Fee Related
-
2006
- 2006-04-18 US US11/406,835 patent/US20070014793A1/en not_active Abandoned
-
2007
- 2007-10-30 US US11/981,631 patent/US20080182976A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816567A (en) * | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4703008A (en) * | 1983-12-13 | 1987-10-27 | Kiren-Amgen, Inc. | DNA sequences encoding erythropoietin |
US4667016A (en) * | 1985-06-20 | 1987-05-19 | Kirin-Amgen, Inc. | Erythropoietin purification |
US5225539A (en) * | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
US5278065A (en) * | 1989-02-03 | 1994-01-11 | Genetics Institute, Inc. | Recombinant DNA endoding an erythropoietin receptor |
US5545806A (en) * | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5736137A (en) * | 1992-11-13 | 1998-04-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
US5885574A (en) * | 1994-07-26 | 1999-03-23 | Amgen Inc. | Antibodies which activate an erythropoietin receptor |
US6103879A (en) * | 1996-06-21 | 2000-08-15 | Axys Pharmaceuticals, Inc. | Bivalent molecules that form an activating complex with an erythropoietin receptor |
Cited By (152)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080095776A1 (en) * | 2002-10-14 | 2008-04-24 | Abbott Laboratories | Erythropoietin receptor binding antibodies |
US20090252746A1 (en) * | 2002-10-14 | 2009-10-08 | Abbott Laboratories | Erythropoietin receptor binding antibodies |
US7396913B2 (en) | 2002-10-14 | 2008-07-08 | Abbott Laboratories | Erythropoietin receptor binding antibodies |
US8420638B2 (en) | 2003-05-30 | 2013-04-16 | Gemin X Pharmaceuticals Canada Inc. | Triheterocyclic compounds and compositions thereof |
US7425553B2 (en) | 2003-05-30 | 2008-09-16 | Gemin X Pharmaceuticals Canada Inc. | Triheterocyclic compounds, compositions, and methods for treating cancer or viral diseases |
US20080318902A1 (en) * | 2003-05-30 | 2008-12-25 | Gemin X Pharmaceuticals Canada Inc. | Triheterocyclic compounds and compositions thereof |
US20080318903A1 (en) * | 2003-05-30 | 2008-12-25 | Gemin X Pharmaceuticals Canada Inc. | Methods for treating cancer |
US20050014802A1 (en) * | 2003-05-30 | 2005-01-20 | Gemin X Biotechnologies Inc. | Triheterocyclic compounds, compositions, and methods for treating cancer or viral diseases |
US7709477B2 (en) | 2003-05-30 | 2010-05-04 | Gemin X Pharmaceuticals Canada Inc. | Methods for treating cancer |
US20080038265A1 (en) * | 2004-04-09 | 2008-02-14 | Reilly Edward B | Antibodies to Erythropoietin Receptor and Uses Thereof |
US20170173150A1 (en) * | 2004-05-17 | 2017-06-22 | Jong Y Lee | Compositions and Methods of Preventing Erythropoietin Associated Hypertension |
US20080076739A1 (en) * | 2005-02-22 | 2008-03-27 | Gemin X Biotechnologies Inc. | Methods for treating arthritis using triheterocyclic compounds |
US20080051400A1 (en) * | 2006-07-06 | 2008-02-28 | Gemin X Biotechnologies Inc. | Methods for treating or preventing anemia or thrombocytopenia using a triheterocyclic compound |
US8629250B2 (en) | 2007-02-02 | 2014-01-14 | Amgen Inc. | Hepcidin, hepcidin antagonists and methods of use |
US20100297106A1 (en) * | 2007-09-27 | 2010-11-25 | Christopher James Sloey | Pharmaceutical Formulations |
US8383114B2 (en) | 2007-09-27 | 2013-02-26 | Amgen Inc. | Pharmaceutical formulations |
US10653781B2 (en) | 2007-09-27 | 2020-05-19 | Amgen Inc. | Pharmaceutical formulations |
US9320797B2 (en) | 2007-09-27 | 2016-04-26 | Amgen Inc. | Pharmaceutical formulations |
EP3381445A2 (en) | 2007-11-15 | 2018-10-03 | Amgen Inc. | Aqueous formulation of antibody stablised by antioxidants for parenteral administration |
US9175078B2 (en) | 2008-01-25 | 2015-11-03 | Amgen Inc. | Ferroportin antibodies and methods of use |
EP2803675A2 (en) | 2008-01-25 | 2014-11-19 | Amgen, Inc | Ferroportin antibodies and methods of use |
EP2574628A1 (en) | 2008-01-25 | 2013-04-03 | Amgen Inc. | Ferroportin antibodies and methods of use |
US9688759B2 (en) | 2008-01-25 | 2017-06-27 | Amgen, Inc. | Ferroportin antibodies and methods of use |
WO2009094551A1 (en) | 2008-01-25 | 2009-07-30 | Amgen Inc. | Ferroportin antibodies and methods of use |
EP2816059A1 (en) | 2008-05-01 | 2014-12-24 | Amgen, Inc | Anti-hepcidin antibodies and methods of use |
EP2620448A1 (en) | 2008-05-01 | 2013-07-31 | Amgen Inc. | Anti-hepcidin antibodies and methods of use |
US20110165592A1 (en) * | 2008-08-28 | 2011-07-07 | Hoffman-La Roche. Inc. | Antibodies against human epo receptor |
EP3693014A1 (en) | 2008-11-13 | 2020-08-12 | The General Hospital Corporation | Methods and compositions for regulating iron homeostasis by modulation bmp-6 |
WO2010056981A2 (en) | 2008-11-13 | 2010-05-20 | Massachusetts General Hospital | Methods and compositions for regulating iron homeostasis by modulation bmp-6 |
US9221909B2 (en) | 2009-01-15 | 2015-12-29 | Hoffmann-La Roche Inc. | Antibodies against human EPO receptor |
WO2010081679A2 (en) | 2009-01-15 | 2010-07-22 | F. Hoffmann-La Roche Ag | Antibodies against human epo receptor |
WO2011050333A1 (en) | 2009-10-23 | 2011-04-28 | Amgen Inc. | Vial adapter and system |
WO2011156373A1 (en) | 2010-06-07 | 2011-12-15 | Amgen Inc. | Drug delivery device |
WO2012135315A1 (en) | 2011-03-31 | 2012-10-04 | Amgen Inc. | Vial adapter and system |
EP4074355A1 (en) | 2011-04-20 | 2022-10-19 | Amgen Inc. | Autoinjector apparatus |
EP3498323A2 (en) | 2011-04-20 | 2019-06-19 | Amgen Inc. | Autoinjector apparatus |
WO2012171996A1 (en) | 2011-06-15 | 2012-12-20 | F. Hoffmann-La Roche Ag | Anti-human epo receptor antibodies and methods of use |
US9187563B2 (en) | 2011-06-15 | 2015-11-17 | Hoffmann-La Roche Inc. | Anti-human EPO receptor antibodies and methods of use |
US8623666B2 (en) | 2011-06-15 | 2014-01-07 | Hoffmann-La Roche Inc. | Method for detecting erythropoietin (EPO) receptor using anti-human EPO receptor antibodies |
WO2013055873A1 (en) | 2011-10-14 | 2013-04-18 | Amgen Inc. | Injector and method of assembly |
EP3335747A1 (en) | 2011-10-14 | 2018-06-20 | Amgen Inc. | Injector and method of assembly |
EP3269413A1 (en) | 2011-10-14 | 2018-01-17 | Amgen, Inc | Injector and method of assembly |
EP3744371A1 (en) | 2011-10-14 | 2020-12-02 | Amgen, Inc | Injector and method of assembly |
EP3045189A1 (en) | 2011-10-14 | 2016-07-20 | Amgen, Inc | Injector and method of assembly |
EP3045190A1 (en) | 2011-10-14 | 2016-07-20 | Amgen, Inc | Injector and method of assembly |
EP4234694A2 (en) | 2012-11-21 | 2023-08-30 | Amgen Inc. | Drug delivery device |
US11458247B2 (en) | 2012-11-21 | 2022-10-04 | Amgen Inc. | Drug delivery device |
US10682474B2 (en) | 2012-11-21 | 2020-06-16 | Amgen Inc. | Drug delivery device |
WO2014081780A1 (en) | 2012-11-21 | 2014-05-30 | Amgen Inc. | Drug delivery device |
US11344681B2 (en) | 2012-11-21 | 2022-05-31 | Amgen Inc. | Drug delivery device |
EP3081249A1 (en) | 2012-11-21 | 2016-10-19 | Amgen, Inc | Drug delivery device |
US11439745B2 (en) | 2012-11-21 | 2022-09-13 | Amgen Inc. | Drug delivery device |
US12115341B2 (en) | 2012-11-21 | 2024-10-15 | Amgen Inc. | Drug delivery device |
EP3593839A1 (en) | 2013-03-15 | 2020-01-15 | Amgen Inc. | Drug cassette |
US10239941B2 (en) | 2013-03-15 | 2019-03-26 | Intrinsic Lifesciences Llc | Anti-hepcidin antibodies and uses thereof |
US9657098B2 (en) | 2013-03-15 | 2017-05-23 | Intrinsic Lifesciences, Llc | Anti-hepcidin antibodies and uses thereof |
US9803011B2 (en) | 2013-03-15 | 2017-10-31 | Intrinsic Lifesciences Llc | Anti-hepcidin antibodies and uses thereof |
WO2014143770A1 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Body contour adaptable autoinjector device |
WO2014144096A1 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Drug cassette, autoinjector, and autoinjector system |
WO2014149357A1 (en) | 2013-03-22 | 2014-09-25 | Amgen Inc. | Injector and method of assembly |
EP3831427A1 (en) | 2013-03-22 | 2021-06-09 | Amgen Inc. | Injector and method of assembly |
EP3957345A1 (en) | 2013-10-24 | 2022-02-23 | Amgen, Inc | Drug delivery system with temperature-sensitive control |
EP3501575A1 (en) | 2013-10-24 | 2019-06-26 | Amgen, Inc | Drug delivery system with temperature-sensitive-control |
EP3421066A1 (en) | 2013-10-24 | 2019-01-02 | Amgen, Inc | Injector and method of assembly |
EP3789064A1 (en) | 2013-10-24 | 2021-03-10 | Amgen, Inc | Injector and method of assembly |
WO2015061389A1 (en) | 2013-10-24 | 2015-04-30 | Amgen Inc. | Drug delivery system with temperature-sensitive control |
WO2015061386A1 (en) | 2013-10-24 | 2015-04-30 | Amgen Inc. | Injector and method of assembly |
WO2015119906A1 (en) | 2014-02-05 | 2015-08-13 | Amgen Inc. | Drug delivery system with electromagnetic field generator |
WO2015171777A1 (en) | 2014-05-07 | 2015-11-12 | Amgen Inc. | Autoinjector with shock reducing elements |
EP3785749A1 (en) | 2014-05-07 | 2021-03-03 | Amgen Inc. | Autoinjector with shock reducing elements |
WO2015187793A1 (en) | 2014-06-03 | 2015-12-10 | Amgen Inc. | Drug delivery system and method of use |
EP4362039A2 (en) | 2014-06-03 | 2024-05-01 | Amgen Inc. | Controllable drug delivery system and method of use |
WO2015187797A1 (en) | 2014-06-03 | 2015-12-10 | Amgen Inc. | Controllable drug delivery system and method of use |
WO2015187799A1 (en) | 2014-06-03 | 2015-12-10 | Amgen Inc. | Systems and methods for remotely processing data collected by a drug delivery device |
EP4036924A1 (en) | 2014-06-03 | 2022-08-03 | Amgen, Inc | Devices and methods for assisting a user of a drug delivery device |
US10323088B2 (en) | 2014-09-22 | 2019-06-18 | Intrinsic Lifesciences Llc | Humanized anti-hepcidin antibodies and uses thereof |
WO2016049036A1 (en) | 2014-09-22 | 2016-03-31 | Intrinsic Lifesciences Llc | Humanized anti-hepcidin antibodies and uses thereof |
WO2016061220A2 (en) | 2014-10-14 | 2016-04-21 | Amgen Inc. | Drug injection device with visual and audio indicators |
EP3943135A2 (en) | 2014-10-14 | 2022-01-26 | Amgen Inc. | Drug injection device with visual and audible indicators |
EP3689394A1 (en) | 2014-12-19 | 2020-08-05 | Amgen Inc. | Drug delivery device with live button or user interface field |
WO2016100781A1 (en) | 2014-12-19 | 2016-06-23 | Amgen Inc. | Drug delivery device with proximity sensor |
WO2016100055A1 (en) | 2014-12-19 | 2016-06-23 | Amgen Inc. | Drug delivery device with live button or user interface field |
EP3848072A1 (en) | 2014-12-19 | 2021-07-14 | Amgen Inc. | Drug delivery device with proximity sensor |
EP3556411A1 (en) | 2015-02-17 | 2019-10-23 | Amgen Inc. | Drug delivery device with vacuum assisted securement and/or feedback |
EP3981450A1 (en) | 2015-02-27 | 2022-04-13 | Amgen, Inc | Drug delivery device having a needle guard mechanism with a tunable threshold of resistance to needle guard movement |
WO2017039786A1 (en) | 2015-09-02 | 2017-03-09 | Amgen Inc. | Syringe assembly adapter for a syringe |
WO2017100501A1 (en) | 2015-12-09 | 2017-06-15 | Amgen Inc. | Auto-injector with signaling cap |
WO2017120178A1 (en) | 2016-01-06 | 2017-07-13 | Amgen Inc. | Auto-injector with signaling electronics |
EP4035711A1 (en) | 2016-03-15 | 2022-08-03 | Amgen Inc. | Reducing probability of glass breakage in drug delivery devices |
WO2017160799A1 (en) | 2016-03-15 | 2017-09-21 | Amgen Inc. | Reducing probability of glass breakage in drug delivery devices |
EP3721922A1 (en) | 2016-03-15 | 2020-10-14 | Amgen Inc. | Reducing probability of glass breakage in drug delivery devices |
WO2017189089A1 (en) | 2016-04-29 | 2017-11-02 | Amgen Inc. | Drug delivery device with messaging label |
WO2017192287A1 (en) | 2016-05-02 | 2017-11-09 | Amgen Inc. | Syringe adapter and guide for filling an on-body injector |
WO2017197222A1 (en) | 2016-05-13 | 2017-11-16 | Amgen Inc. | Vial sleeve assembly |
WO2017200989A1 (en) | 2016-05-16 | 2017-11-23 | Amgen Inc. | Data encryption in medical devices with limited computational capability |
WO2017209899A1 (en) | 2016-06-03 | 2017-12-07 | Amgen Inc. | Impact testing apparatuses and methods for drug delivery devices |
WO2018004842A1 (en) | 2016-07-01 | 2018-01-04 | Amgen Inc. | Drug delivery device having minimized risk of component fracture upon impact events |
WO2018034784A1 (en) | 2016-08-17 | 2018-02-22 | Amgen Inc. | Drug delivery device with placement detection |
WO2018081234A1 (en) | 2016-10-25 | 2018-05-03 | Amgen Inc. | On-body injector |
WO2018136398A1 (en) | 2017-01-17 | 2018-07-26 | Amgen Inc. | Injection devices and related methods of use and assembly |
WO2018151890A1 (en) | 2017-02-17 | 2018-08-23 | Amgen Inc. | Drug delivery device with sterile fluid flowpath and related method of assembly |
WO2018152073A1 (en) | 2017-02-17 | 2018-08-23 | Amgen Inc. | Insertion mechanism for drug delivery device |
WO2018165143A1 (en) | 2017-03-06 | 2018-09-13 | Amgen Inc. | Drug delivery device with activation prevention feature |
WO2018164829A1 (en) | 2017-03-07 | 2018-09-13 | Amgen Inc. | Needle insertion by overpressure |
WO2018165499A1 (en) | 2017-03-09 | 2018-09-13 | Amgen Inc. | Insertion mechanism for drug delivery device |
WO2018172219A1 (en) | 2017-03-20 | 2018-09-27 | F. Hoffmann-La Roche Ag | Method for in vitro glycoengineering of an erythropoiesis stimulating protein |
WO2018183039A1 (en) | 2017-03-28 | 2018-10-04 | Amgen Inc. | Plunger rod and syringe assembly system and method |
EP4241807A2 (en) | 2017-03-28 | 2023-09-13 | Amgen Inc. | Plunger rod and syringe assembly system and method |
WO2018226515A1 (en) | 2017-06-08 | 2018-12-13 | Amgen Inc. | Syringe assembly for a drug delivery device and method of assembly |
WO2018226565A1 (en) | 2017-06-08 | 2018-12-13 | Amgen Inc. | Torque driven drug delivery device |
WO2018236619A1 (en) | 2017-06-22 | 2018-12-27 | Amgen Inc. | Device activation impact/shock reduction |
WO2018237225A1 (en) | 2017-06-23 | 2018-12-27 | Amgen Inc. | Electronic drug delivery device comprising a cap activated by a switch assembly |
WO2019014014A1 (en) | 2017-07-14 | 2019-01-17 | Amgen Inc. | Needle insertion-retraction system having dual torsion spring system |
EP4292576A2 (en) | 2017-07-21 | 2023-12-20 | Amgen Inc. | Gas permeable sealing member for drug container and methods of assembly |
WO2019018169A1 (en) | 2017-07-21 | 2019-01-24 | Amgen Inc. | Gas permeable sealing member for drug container and methods of assembly |
EP4085942A1 (en) | 2017-07-25 | 2022-11-09 | Amgen Inc. | Drug delivery device with gear module and related method of assembly |
WO2019022950A1 (en) | 2017-07-25 | 2019-01-31 | Amgen Inc. | Drug delivery device with container access system and related method of assembly |
WO2019022951A1 (en) | 2017-07-25 | 2019-01-31 | Amgen Inc. | Drug delivery device with gear module and related method of assembly |
WO2019032482A2 (en) | 2017-08-09 | 2019-02-14 | Amgen Inc. | Hydraulic-pneumatic pressurized chamber drug delivery system |
WO2019036181A1 (en) | 2017-08-18 | 2019-02-21 | Amgen Inc. | Wearable injector with sterile adhesive patch |
WO2019040548A1 (en) | 2017-08-22 | 2019-02-28 | Amgen Inc. | Needle insertion mechanism for drug delivery device |
WO2019070472A1 (en) | 2017-10-04 | 2019-04-11 | Amgen Inc. | Flow adapter for drug delivery device |
EP4257164A2 (en) | 2017-10-06 | 2023-10-11 | Amgen Inc. | Drug delivery device with interlock assembly and related method of assembly |
WO2019070552A1 (en) | 2017-10-06 | 2019-04-11 | Amgen Inc. | Drug delivery device with interlock assembly and related method of assembly |
WO2019074579A1 (en) | 2017-10-09 | 2019-04-18 | Amgen Inc. | Drug delivery device with drive assembly and related method of assembly |
WO2019090086A1 (en) | 2017-11-03 | 2019-05-09 | Amgen Inc. | Systems and approaches for sterilizing a drug delivery device |
WO2019090079A1 (en) | 2017-11-03 | 2019-05-09 | Amgen Inc. | System and approaches for sterilizing a drug delivery device |
WO2019090303A1 (en) | 2017-11-06 | 2019-05-09 | Amgen Inc. | Fill-finish assemblies and related methods |
WO2019089178A1 (en) | 2017-11-06 | 2019-05-09 | Amgen Inc. | Drug delivery device with placement and flow sensing |
WO2019094138A1 (en) | 2017-11-10 | 2019-05-16 | Amgen Inc. | Plungers for drug delivery devices |
WO2019099322A1 (en) | 2017-11-16 | 2019-05-23 | Amgen Inc. | Autoinjector with stall and end point detection |
WO2019099324A1 (en) | 2017-11-16 | 2019-05-23 | Amgen Inc. | Door latch mechanism for drug delivery device |
WO2019231582A1 (en) | 2018-05-30 | 2019-12-05 | Amgen Inc. | Thermal spring release mechanism for a drug delivery device |
WO2019231618A1 (en) | 2018-06-01 | 2019-12-05 | Amgen Inc. | Modular fluid path assemblies for drug delivery devices |
WO2020023451A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Delivery devices for administering drugs |
WO2020023444A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Delivery devices for administering drugs |
WO2020023336A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Hybrid drug delivery devices with grip portion |
WO2020023220A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Hybrid drug delivery devices with tacky skin attachment portion and related method of preparation |
WO2020028009A1 (en) | 2018-07-31 | 2020-02-06 | Amgen Inc. | Fluid path assembly for a drug delivery device |
WO2020068623A1 (en) | 2018-09-24 | 2020-04-02 | Amgen Inc. | Interventional dosing systems and methods |
WO2020068476A1 (en) | 2018-09-28 | 2020-04-02 | Amgen Inc. | Muscle wire escapement activation assembly for a drug delivery device |
WO2020072577A1 (en) | 2018-10-02 | 2020-04-09 | Amgen Inc. | Injection systems for drug delivery with internal force transmission |
WO2020072846A1 (en) | 2018-10-05 | 2020-04-09 | Amgen Inc. | Drug delivery device having dose indicator |
WO2020081479A1 (en) | 2018-10-15 | 2020-04-23 | Amgen Inc. | Drug delivery device having damping mechanism |
WO2020081480A1 (en) | 2018-10-15 | 2020-04-23 | Amgen Inc. | Platform assembly process for drug delivery device |
WO2020092056A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial needle retraction |
WO2020091956A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial drug delivery member retraction |
WO2020091981A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial drug delivery member retraction |
WO2020219482A1 (en) | 2019-04-24 | 2020-10-29 | Amgen Inc. | Syringe sterilization verification assemblies and methods |
WO2021041067A2 (en) | 2019-08-23 | 2021-03-04 | Amgen Inc. | Drug delivery device with configurable needle shield engagement components and related methods |
WO2022246055A1 (en) | 2021-05-21 | 2022-11-24 | Amgen Inc. | Method of optimizing a filling recipe for a drug container |
WO2024094457A1 (en) | 2022-11-02 | 2024-05-10 | F. Hoffmann-La Roche Ag | Method for producing glycoprotein compositions |
Also Published As
Publication number | Publication date |
---|---|
IL114717A0 (en) | 1995-11-27 |
DE69524102T2 (en) | 2002-07-04 |
DK0773962T3 (en) | 2002-05-21 |
ATE356148T1 (en) | 2007-03-15 |
CA2195868A1 (en) | 1996-02-08 |
DE69535419D1 (en) | 2007-04-19 |
US6319499B1 (en) | 2001-11-20 |
AU3149995A (en) | 1996-02-22 |
PT1146056E (en) | 2007-05-31 |
JPH09508535A (en) | 1997-09-02 |
CN1158134A (en) | 1997-08-27 |
NZ290689A (en) | 1998-07-28 |
SI0773962T1 (en) | 2002-06-30 |
AU697369B2 (en) | 1998-10-01 |
US20080182976A1 (en) | 2008-07-31 |
US5885574A (en) | 1999-03-23 |
EP1146056A1 (en) | 2001-10-17 |
ES2283355T3 (en) | 2007-11-01 |
ZA956215B (en) | 1997-01-03 |
EP0773962A1 (en) | 1997-05-21 |
US20070014793A1 (en) | 2007-01-18 |
JP3225493B2 (en) | 2001-11-05 |
EP0773962B1 (en) | 2001-11-21 |
DE69535419T2 (en) | 2007-11-08 |
WO1996003438A1 (en) | 1996-02-08 |
EP1146056B1 (en) | 2007-03-07 |
DK1146056T3 (en) | 2007-07-02 |
PT773962E (en) | 2002-05-31 |
ES2168376T3 (en) | 2002-06-16 |
JP2000095800A (en) | 2000-04-04 |
DE69524102D1 (en) | 2002-01-03 |
ATE209218T1 (en) | 2001-12-15 |
US7081523B2 (en) | 2006-07-25 |
MX9700553A (en) | 1997-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7081523B2 (en) | Antibodies which activate an erythropoietin receptor | |
US5705157A (en) | Methods of treating cancerous cells with anti-receptor antibodies | |
RU2047177C1 (en) | Method for detection of ige-producing b-lymphocytes | |
US5597725A (en) | Cadherin-specific antibodies and hybridoma cell lines | |
US5641869A (en) | Method for purifying heregulin | |
US5646250A (en) | Cadherin polypeptides | |
US20030059425A1 (en) | Inhibitory immunoglobulin polypeptides to human pdgf beta receptor | |
MXPA05003997A (en) | Erythropoietin receptor binding antibodies. | |
CZ291047B6 (en) | Pharmaceutical composition containing antagonists of growth factor of vascular endothelial cells | |
EP0619738B1 (en) | Inhibitory immunoglobulin polypeptides to human pdgf beta receptor | |
EP2325203A2 (en) | Cadherin materials and methods | |
US20030228307A1 (en) | Inhibitory immunoglobulin polypeptides to human PDGF beta receptor | |
AU659412B2 (en) | Tissue-derived tumor growth inhibitors | |
CA2701608A1 (en) | Novel compositions and methods for stimulating erythropoiesis in a mammal | |
CN118359718A (en) | Anti-CD 93 antibodies and uses thereof | |
WO1999023207A1 (en) | Monoclonal antibodies to canine cd34 | |
Newman et al. | Antibodies Against the First Ig-Like Domain | |
MXPA99009387A (en) | Osteoprotegerin binding proteins and receptors | |
MXPA99001388A (en) | Methods and means for modifying complement activation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140725 |