US20030213572A1 - Very low COD unbleached pulp - Google Patents
Very low COD unbleached pulp Download PDFInfo
- Publication number
- US20030213572A1 US20030213572A1 US10/209,497 US20949702A US2003213572A1 US 20030213572 A1 US20030213572 A1 US 20030213572A1 US 20949702 A US20949702 A US 20949702A US 2003213572 A1 US2003213572 A1 US 2003213572A1
- Authority
- US
- United States
- Prior art keywords
- pulp
- minutes
- unbleached
- product
- cod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000005406 washing Methods 0.000 claims abstract description 11
- 238000002791 soaking Methods 0.000 abstract description 13
- 238000009792 diffusion process Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 18
- 239000004568 cement Substances 0.000 description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 239000007844 bleaching agent Substances 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 239000000835 fiber Substances 0.000 description 13
- 238000003860 storage Methods 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000000463 material Substances 0.000 description 8
- 239000002023 wood Substances 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 7
- 229920001131 Pulp (paper) Polymers 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000003518 caustics Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 229920002522 Wood fibre Polymers 0.000 description 4
- 239000002655 kraft paper Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000002025 wood fiber Substances 0.000 description 4
- 239000004567 concrete Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000004537 pulping Methods 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 244000283070 Abies balsamea Species 0.000 description 1
- 235000007173 Abies balsamea Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- 235000014466 Douglas bleu Nutrition 0.000 description 1
- 244000166124 Eucalyptus globulus Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- 241001236219 Pinus echinata Species 0.000 description 1
- 235000005018 Pinus echinata Nutrition 0.000 description 1
- 235000017339 Pinus palustris Nutrition 0.000 description 1
- 241000218621 Pinus radiata Species 0.000 description 1
- 235000008577 Pinus radiata Nutrition 0.000 description 1
- 240000001416 Pseudotsuga menziesii Species 0.000 description 1
- 235000005386 Pseudotsuga menziesii var menziesii Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000013055 pulp slurry Substances 0.000 description 1
- 239000011395 ready-mix concrete Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- -1 stucco Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/18—Waste materials; Refuse organic
- C04B18/24—Vegetable refuse, e.g. rice husks, maize-ear refuse; Cellulosic materials, e.g. paper, cork
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/001—Modification of pulp properties
- D21C9/002—Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
- D21C9/004—Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives inorganic compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/02—Washing ; Displacing cooking or pulp-treating liquors contained in the pulp by fluids, e.g. wash water or other pulp-treating agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- the present invention relates to cellulosic pulps, and more particularly, to unbleached cellulosic pulps having a low COD that are useful in cementitious products.
- Fiber-cement siding offers several advantages over other types of siding materials, such as wood siding: it is weatherproof, relatively inexpensive to manufacture, fire-resistant, and invulnerable to rotting or insect damage.
- the present invention provides a pulp product comprising an unbleached pulp that is soaked and washed only in alkaline water, and after soaking and washing, it has a COD less than or equal to 3.0 kg/1000 kg of dry pulp, and preferably 1.7 to 2.8 kg/1000 kg.
- This pulp is produced by repetitively soaking unbleached pulp in alkaline water that is at an elevated temperature so that organics will diffuse out of the fiber and into the water. Subsequently, the repetitively soaked and washed pulp is then preferably dewatered and dried.
- FIG. 1 illustrates the steps of the caustic washing process for the present invention.
- the present invention provides a low chemical oxygen demand (COD) pulp that is particularly useful for reinforcing fiber cement products.
- COD chemical oxygen demand
- the low COD cellulosic pulp that is useful in the present invention is most preferably an unbleached pulp from a kraft pulping process.
- pulped cellulosic fibers can be used, which are derived from wood and non-wood sources. Of all the pulp sources, wood pulp is the most commonly employed because of its availability and price.
- the sulfate pulping process is the most preferred method.
- the preferred wood fiber source is long-fibered coniferous wood species. Examples of these species include the following: Southern pine, Douglas fir, spruce, hemlock, and Radiata pine.
- other chemical pulps can be used that include pulps made from short or long fibered wood species or recycled, wood pulp fibers.
- Short wood fibers which are typically produced from hardwood species such as eucalyptus, can also be used. The processes to produce these wood pulp fibers are well-known to those skilled in the art of pulp manufacturing.
- fibers are commercially available from a number of companies, including the Weyerhaeuser Company.
- wood pulp fiber sources there are other natural cellulosic fiber sources which include straw, flax, kenaf, hemp, or similar materials.
- these non-wood fibers may also be pulped and subsequently used in fiber cement-based composites.
- unbleached pulp preferably unbleached kraft pulp
- a brown stock decker 20 Prior to washing, the unbleached pulp that is used in the present invention must have a relatively low Kappa number.
- the Kappa number is less than or equal to 30, but it is more preferably less than or equal to 25 ⁇ 3.
- the unbleached pulp from the decker is at an alkaline condition and must be maintained at an alkaline condition (pH equal to or greater than 7.0) while it is processed in accordance with the present invention.
- the unbleached pulp from the decker which is at a consistency of approximately 10%, is initially soaked in the first diffusion tower 30 at an alkaline condition for a predetermined length of time and a predetermined elevated temperature.
- This first soaking step is preferably conducted at a temperature of at least 60° C., and more preferably at approximately 65° C. or higher.
- the pulp is soaked in tower 30 preferably for at least 120 minutes.
- the pulp is washed and dewatered in press 40 .
- this dewatering step is optional, but if it is employed, then the pulp may preferably be dewatered to a consistency of approximately 30%.
- the pulp in tower 30 After the initial step in which the pulp in tower 30 has been soaked and dewatered, the pulp is again diluted to a 10% consistency it is then sent to a set of successive diffusion and washing steps.
- the pulp can be placed in a high density storage tank 50 in which it can reside anywhere from 0 to 430 minutes. However, if the high density storage tank is employed during normal operation, the pulp will reside in the tank for approximately 100 minutes.
- the purpose of the high density storage tank is to prevent diffusion tower flow variations from passing to the downstream processes that are after the storage tank.
- the pulp is then introduced into the first of a series 60 n of diffusion tanks at a consistency of approximately 10%. Hot water and steam or only steam are added to the pulp in a second of the series 60 n of diffusion tanks to raise the temperature to a value that is preferably equal to or greater than 80° C.
- the pulp is then repetitively soaked in the remaining series 60 n of diffusion towers. After soaking in each tower 60 n , the pulp is subjected to washing in successive washers 70 n . Preferably the pulp is soaked and washed five times in towers 60 n and washers 70 n before it is forwarded to a storage tank 80 .
- Each of the successive soaking and diffusion steps may take a minimum of 30 minutes but may take up to 100 or more minutes. These time periods include the washing steps that follow each soaking step. It is preferred that the repetitive soaking steps in diffusion towers 60 n occur for a total of at least 280 minutes but preferably 335 minutes and in either case at the elevated temperature of at least 80° C. It is preferred that the total soaking time in diffusion tower 30 , storage vessel 50 , and diffusion towers 60 n ranges from a minimum of 400 minutes (120 minutes in diffusion tower 30 , 0 minutes in vessel 50 , 280 minutes in diffusion towers 60 n ) to a maximum of approximately 1,050 minutes (120 minutes in diffusion tower 30 , 430 minutes in vessel 50 , 500 minutes in diffusion towers 60 n ). Conventionally, however, the soak will occur for approximately 555 minutes (120 minutes in diffusion tower 30 , 100 minutes in vessel 50 , 335 minutes in diffusion towers 60 n ).
- the pulp After the pulp has been repetitively soaked and washed, it is forwarded to the storage tank 80 . In this storage tank, the pulp remains at a consistency of about 10%. Thereafter, the pulp is fed in a conventional manner to a conventional pulp machine 100 and dryer 110 . After the pulp is dried into sheets, it is cut to size, sent to storage 120 , and ultimately shipped to a customer.
- the unbleached and washed pulp produced by the process of the present invention has a COD of less than or equal to 3.0 kg per metric ton (1,000 kg), and preferably less than 1.7 to 2.8 kg/1000 kg. This level of COD is well below that achieved in ordinary pulp mills and particularly in kraft pulp mills.
- a critical feature of the present invention is that the pulp must be maintained at alkaline conditions from the time it begins the initial soaking in tower 30 until the pulp is dried. It is preferred that the pH be maintained at or above 7.0 throughout the entire process, from the soaking in the initial diffusion tower 30 through the repetitive soaks in towers 60 n . Preferably in these steps, the pH is maintained in the range of from 10.0 to 11.0.
- the pulp is then run through the pulp machine 100 and the dryer 110 . In these steps, the pH may be reduced, e.g., to 8.0 to 8.5, but can be run lower. Under certain circumstances, it may be necessary to add caustic solution (20% by weight aqueous sodium hydroxide) to the first diffusion tower 30 .
- caustic at the rate of at least 2 kg per metric ton, and more preferably 3 kg per metric ton, will be sufficient to maintain the alkalinity of the pulp above pH 7.0 throughout the process. It is only necessary to add caustic during the initial portion of the run of the process. For example, at a throughput of about 40 to 50 tons per hour, the caustic needs to be added at the rate of 3 kg per metric ton for the initial 24 to 48 hour period that the pulp is run through the initial tower 30 . This will assure that the alkalinity will be maintained above pH 7.0 throughout the entire process, which includes the drying stage.
- the present invention is carried out in a converted oxygen delignification and bleaching plant that is normally associated with a Kraft pulp mill, which is used to convert unbleached pulp to bleached pulp.
- a typical bleach plant comprises an oxygen delignification reactor that is followed by a series, typically five, of bleach reactors, in which various bleaching agents such as chlorine dioxide are added.
- the bleach plant is converted to use with the present invention by first cutting off the supply of oxygen to the oxygen reactor, and thereafter, the supply of bleaching agents to the bleach reactors is sequentially shut off as the pulp (with no oxygen added) sequentially enters the bleach reactors.
- the oxygen reactor becomes the first diffusion tower 30 .
- caustic is introduced into the pulp via line 32 at the rates set forth above.
- the pulp is resident in the oxygen reactor (tower 30 ) for approximately 120 minutes.
- the pulp is then run through the press that is typically associated with the oxygen reactor (tower 30 ) to increase the consistency from approximately 10% to approximately 30%.
- the pulp is then diluted to 10% consistency and introduced into a high density storage vessel (vessel 50 ).
- the vessel is normally operated at a partial capacity so that the pulp residence time in the storage vessel is approximately 100 minutes.
- the pulp is then introduced into the first bleach reactor vessel (towers 60 n ) that is one of five total. Steam and hot water are added to the pulp when the pulp enters the second of the series 60 n of reactor vessels to raise the temperature of the pulp to 80° C. or higher.
- the residence time for the pulp will vary. In one particular plant, the residence time in the five bleach reaction vessels was on the order of 60 minutes, 30 minutes, 45 minutes, 100 minutes, and 100 minutes, respectively. This residence time is dependent on the size of the successive reactors. It is very important in this cycle that the temperature be maintained at or above 80° C. This is accomplished by adding steam to the vessels, as necessary, to maintain temperatures.
- the pulp After soaking in each bleach reactor vessel, the pulp is run through conventional washing unit (washers 70 n ) that normally following each of the bleach reactors.
- washers 70 n Preferably, fresh water is used to wash the pulp; however, white water from the associated pulp plant may be used, if necessary.
- the pulp from the fifth bleach reaction vessel is washed, it is placed into the vessel that is normally used for bleached pulp storage (vessel 80 ). It is thereafter diluted in successive steps to a consistency of about 1.5% and fed into a pulp head box on the pulp machine 100 .
- the dewatered sheet produced on the pulp machine is then run through the pulp dryer 110 , for example, a Flakt dryer. After drying, the sheet is subsequently cut, stacked, stored, and, thereafter sent to shipping operations.
- the pulp machine and pulp dryer can be eliminated and the pulp can be introduced directly into a jet dryer.
- the jet dryer produces a dried singulated fiber, particularly useful in some cementitious products.
- One suitable jet dryer for use in the present invention is a fluid energy Aljet Model Thermajet, X0870L, manufactured by Fluid Energy Processing and Equipment Company. It is also possible to completely skip the drying stage and use the pulp in a never-dried state.
- Chemical oxygen demand is determined by the following method. Pulp sheets produced in accordance with the preferred embodiment of the present invention just described are torn or cut into small pieces (approximately 4 cm square). The small pieces are mixed and the moisture is measured in accordance with Tappi procedure T412 om-94. Forty grams of pulp, oven dried weight, are then carefully weighed. A 2,000 ml solution of 0.01 N sodium hydroxide solution is prepared using distilled or deionized water and analytical grade sodium hydroxide.
- the pulp is placed in 2,000 ml of the 0.01 N sodium hydroxide solution and placed in a disintegrater and disintegrated for 15 minutes at 3,000 rpm in a British Pulp Evaluation Apparatus (or British disintegrater) described in Tappi 505 sp-95.
- the pulp slurry is then vacuum filtered immediately after disintegration using a Whatman No. 3 filter paper. The filtration time is long enough so that a majority of the filtrate is passed through the filter. Two hundred and fifty ml of filtrate is separated for COD analysis. A sample is preserved with 2.5 ml of 50% sulfuric acid.
- the COD of the filtrate is measured using the titration method described in Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998, Method #5220C, “Closed Reflux, Titrimetric Method”.
- the COD content is then calculated as kilograms per metric ton of pulp based on the oven dried weight of the pulp.
- the pulp produced in accordance with the foregoing example was incorporated into cementitious products at about 8% by weight pulp using the Hatsheck process. (The pulp content may be varied from 6% to 10% by weight if desired.) Cement panels and planks were produced for use in residential and commercial construction. Tilebacker 10 boards used for ceramic tile underlayment were also produced. All of these products exhibited excellent strength characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Civil Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Paper (AREA)
Abstract
A pulp product that has a low COD is comprised of an unbleached pulp that is soaked and washed in alkaline water for a sufficient time so that the COD after soaking and washing is less than or equal to 3.0 kg/1000 kg of dry pulp. The pulp is produced by repetitively soaking and washing an unbleached pulp in alkaline water that is never allowed to drop below pH 7.0. The pulp is soaked and washed for a total of at least 400 minutes at an elevated temperature to produce the pulp product that has a low COD.
Description
- The present invention relates to cellulosic pulps, and more particularly, to unbleached cellulosic pulps having a low COD that are useful in cementitious products.
- The internal structures of houses and other buildings are commonly protected from environmental elements by exterior siding materials. These siding materials are typically planks or panels composed of wood, concrete, brick, aluminum, stucco, wood composites, or fiber-cement composites. A common fiber-cement composite is fiber-cement siding, which is generally composed of cement, silica sand, unbleached wood pulp, and various additives. Fiber-cement siding offers several advantages over other types of siding materials, such as wood siding: it is weatherproof, relatively inexpensive to manufacture, fire-resistant, and invulnerable to rotting or insect damage.
- Commercial fiber-reinforced cement siding planks or panels are made using the Hatcheck process. The Hatsheck process was initially developed for the production of asbestos composites, but it is now used for the manufacture of non-asbestos, cellulose fiber reinforced cement composites. In this process, unbleached cellulose fibers are re-pulped in warm water at an alkaline pH of11 to 12.5; the re-pulped fibers are refined and then mixed with cement, silica sand, and other additives to form a mixture. The fiber-cement mixture, is deposited on a felt band substrate, vacuum dewatered, and cured to form a fiber reinforced cement matrix in sheet form.
- The curing of the cement matrix is hindered by the presence of sugars or other organic materials. These materials retard the hydration reaction of cement and thereby retard the setting or hardening of a mortar or concrete. Cement is purposely retarded in ready-mix concrete during long hours of transportation, for mitigation of stress due to temperature (heat) when used in a large-sized concrete structures, and for decorated washing finishes. When these organic materials are measured, the manufacturers of fiber-cement siding have observed an inverse relationship between the amount of these materials in an unbleached pulp and the strength properties of the final product. The amount of these materials is commonly measured using the chemical oxygen demand (COD) test. When considering the detrimental effect of these materials on strength properties, it is apparent that there are a needs in the art for very low COD unbleached pulp. The present invention fulfills these needs and provides further related advantages.
- The present invention provides a pulp product comprising an unbleached pulp that is soaked and washed only in alkaline water, and after soaking and washing, it has a COD less than or equal to 3.0 kg/1000 kg of dry pulp, and preferably 1.7 to 2.8 kg/1000 kg. This pulp is produced by repetitively soaking unbleached pulp in alkaline water that is at an elevated temperature so that organics will diffuse out of the fiber and into the water. Subsequently, the repetitively soaked and washed pulp is then preferably dewatered and dried.
- The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description and the accompanying drawings, wherein:
- FIG. 1 illustrates the steps of the caustic washing process for the present invention.
- The present invention provides a low chemical oxygen demand (COD) pulp that is particularly useful for reinforcing fiber cement products. The low COD cellulosic pulp that is useful in the present invention is most preferably an unbleached pulp from a kraft pulping process. However, a wide variety of pulped cellulosic fibers can be used, which are derived from wood and non-wood sources. Of all the pulp sources, wood pulp is the most commonly employed because of its availability and price.
- To obtain suitable wood pulp fibers, the sulfate pulping process is the most preferred method. Using this process and considering the desired composite properties, the preferred wood fiber source is long-fibered coniferous wood species. Examples of these species include the following: Southern pine, Douglas fir, spruce, hemlock, and Radiata pine. In addition to these wood fiber sources, other chemical pulps can be used that include pulps made from short or long fibered wood species or recycled, wood pulp fibers. Short wood fibers, which are typically produced from hardwood species such as eucalyptus, can also be used. The processes to produce these wood pulp fibers are well-known to those skilled in the art of pulp manufacturing. These fibers are commercially available from a number of companies, including the Weyerhaeuser Company. In contrast to wood pulp fiber sources, there are other natural cellulosic fiber sources which include straw, flax, kenaf, hemp, or similar materials. Like wood-based fibers, these non-wood fibers may also be pulped and subsequently used in fiber cement-based composites.
- Referring to FIG. 1, unbleached pulp, preferably unbleached kraft pulp, is first passed through conventional brown stock washers10 and a brown stock decker 20 at a consistency of approximately 10% when it exits from the decker. Prior to washing, the unbleached pulp that is used in the present invention must have a relatively low Kappa number. Preferably the Kappa number is less than or equal to 30, but it is more preferably less than or equal to 25±3. The unbleached pulp from the decker is at an alkaline condition and must be maintained at an alkaline condition (pH equal to or greater than 7.0) while it is processed in accordance with the present invention. The unbleached pulp from the decker, which is at a consistency of approximately 10%, is initially soaked in the
first diffusion tower 30 at an alkaline condition for a predetermined length of time and a predetermined elevated temperature. This first soaking step is preferably conducted at a temperature of at least 60° C., and more preferably at approximately 65° C. or higher. The pulp is soaked intower 30 preferably for at least 120 minutes. Aftertower 30, the pulp is washed and dewatered in press 40. However, this dewatering step is optional, but if it is employed, then the pulp may preferably be dewatered to a consistency of approximately 30%. - After the initial step in which the pulp in
tower 30 has been soaked and dewatered, the pulp is again diluted to a 10% consistency it is then sent to a set of successive diffusion and washing steps. Optionally, the pulp can be placed in a high density storage tank 50 in which it can reside anywhere from 0 to 430 minutes. However, if the high density storage tank is employed during normal operation, the pulp will reside in the tank for approximately 100 minutes. The purpose of the high density storage tank is to prevent diffusion tower flow variations from passing to the downstream processes that are after the storage tank. - After the high density storage tank, the pulp is then introduced into the first of a series60 n of diffusion tanks at a consistency of approximately 10%. Hot water and steam or only steam are added to the pulp in a second of the series 60 n of diffusion tanks to raise the temperature to a value that is preferably equal to or greater than 80° C. The pulp is then repetitively soaked in the remaining series 60 n of diffusion towers. After soaking in each tower 60 n, the pulp is subjected to washing in successive washers 70 n. Preferably the pulp is soaked and washed five times in towers 60 n and washers 70 n before it is forwarded to a storage tank 80. Each of the successive soaking and diffusion steps may take a minimum of 30 minutes but may take up to 100 or more minutes. These time periods include the washing steps that follow each soaking step. It is preferred that the repetitive soaking steps in diffusion towers 60 n occur for a total of at least 280 minutes but preferably 335 minutes and in either case at the elevated temperature of at least 80° C. It is preferred that the total soaking time in
diffusion tower 30, storage vessel 50, and diffusion towers 60 n ranges from a minimum of 400 minutes (120 minutes indiffusion tower 30, 0 minutes in vessel 50, 280 minutes in diffusion towers 60 n) to a maximum of approximately 1,050 minutes (120 minutes indiffusion tower 30, 430 minutes in vessel 50, 500 minutes in diffusion towers 60 n). Conventionally, however, the soak will occur for approximately 555 minutes (120 minutes indiffusion tower 30, 100 minutes in vessel 50, 335 minutes in diffusion towers 60 n). - After the pulp has been repetitively soaked and washed, it is forwarded to the storage tank80. In this storage tank, the pulp remains at a consistency of about 10%. Thereafter, the pulp is fed in a conventional manner to a conventional pulp machine 100 and dryer 110. After the pulp is dried into sheets, it is cut to size, sent to storage 120, and ultimately shipped to a customer.
- The unbleached and washed pulp produced by the process of the present invention has a COD of less than or equal to 3.0 kg per metric ton (1,000 kg), and preferably less than 1.7 to 2.8 kg/1000 kg. This level of COD is well below that achieved in ordinary pulp mills and particularly in kraft pulp mills.
- A critical feature of the present invention is that the pulp must be maintained at alkaline conditions from the time it begins the initial soaking in
tower 30 until the pulp is dried. It is preferred that the pH be maintained at or above 7.0 throughout the entire process, from the soaking in theinitial diffusion tower 30 through the repetitive soaks in towers 60 n. Preferably in these steps, the pH is maintained in the range of from 10.0 to 11.0. The pulp is then run through the pulp machine 100 and the dryer 110. In these steps, the pH may be reduced, e.g., to 8.0 to 8.5, but can be run lower. Under certain circumstances, it may be necessary to add caustic solution (20% by weight aqueous sodium hydroxide) to thefirst diffusion tower 30. It has been found that the addition of caustic at the rate of at least 2 kg per metric ton, and more preferably 3 kg per metric ton, will be sufficient to maintain the alkalinity of the pulp above pH 7.0 throughout the process. It is only necessary to add caustic during the initial portion of the run of the process. For example, at a throughput of about 40 to 50 tons per hour, the caustic needs to be added at the rate of 3 kg per metric ton for the initial 24 to 48 hour period that the pulp is run through theinitial tower 30. This will assure that the alkalinity will be maintained above pH 7.0 throughout the entire process, which includes the drying stage. - In the most preferred embodiment, the present invention is carried out in a converted oxygen delignification and bleaching plant that is normally associated with a Kraft pulp mill, which is used to convert unbleached pulp to bleached pulp. A typical bleach plant comprises an oxygen delignification reactor that is followed by a series, typically five, of bleach reactors, in which various bleaching agents such as chlorine dioxide are added. In accordance with the present invention, the bleach plant is converted to use with the present invention by first cutting off the supply of oxygen to the oxygen reactor, and thereafter, the supply of bleaching agents to the bleach reactors is sequentially shut off as the pulp (with no oxygen added) sequentially enters the bleach reactors.
- In this preferred embodiment, the oxygen reactor becomes the
first diffusion tower 30. At the same time that oxygen is cut off from the diffusion tower, caustic is introduced into the pulp via line 32 at the rates set forth above. In the preferred mode of operation, the pulp is resident in the oxygen reactor (tower 30) for approximately 120 minutes. The pulp is then run through the press that is typically associated with the oxygen reactor (tower 30) to increase the consistency from approximately 10% to approximately 30%. The pulp is then diluted to 10% consistency and introduced into a high density storage vessel (vessel 50). The vessel is normally operated at a partial capacity so that the pulp residence time in the storage vessel is approximately 100 minutes. - The pulp is then introduced into the first bleach reactor vessel (towers60 n) that is one of five total. Steam and hot water are added to the pulp when the pulp enters the second of the series 60 n of reactor vessels to raise the temperature of the pulp to 80° C. or higher. Depending on the size of the vessel, the residence time for the pulp will vary. In one particular plant, the residence time in the five bleach reaction vessels was on the order of 60 minutes, 30 minutes, 45 minutes, 100 minutes, and 100 minutes, respectively. This residence time is dependent on the size of the successive reactors. It is very important in this cycle that the temperature be maintained at or above 80° C. This is accomplished by adding steam to the vessels, as necessary, to maintain temperatures. After soaking in each bleach reactor vessel, the pulp is run through conventional washing unit (washers 70 n) that normally following each of the bleach reactors. Preferably, fresh water is used to wash the pulp; however, white water from the associated pulp plant may be used, if necessary.
- After the pulp from the fifth bleach reaction vessel is washed, it is placed into the vessel that is normally used for bleached pulp storage (vessel80). It is thereafter diluted in successive steps to a consistency of about 1.5% and fed into a pulp head box on the pulp machine 100. The dewatered sheet produced on the pulp machine is then run through the pulp dryer 110, for example, a Flakt dryer. After drying, the sheet is subsequently cut, stacked, stored, and, thereafter sent to shipping operations.
- If desired, the pulp machine and pulp dryer can be eliminated and the pulp can be introduced directly into a jet dryer. The jet dryer produces a dried singulated fiber, particularly useful in some cementitious products. One suitable jet dryer for use in the present invention is a fluid energy Aljet Model Thermajet, X0870L, manufactured by Fluid Energy Processing and Equipment Company. It is also possible to completely skip the drying stage and use the pulp in a never-dried state.
- The following example is intended for illustrative purposes only and is not intended to in any way delimit the invention. Chemical oxygen demand (COD) is determined by the following method. Pulp sheets produced in accordance with the preferred embodiment of the present invention just described are torn or cut into small pieces (approximately 4 cm square). The small pieces are mixed and the moisture is measured in accordance with Tappi procedure T412 om-94. Forty grams of pulp, oven dried weight, are then carefully weighed. A 2,000 ml solution of 0.01 N sodium hydroxide solution is prepared using distilled or deionized water and analytical grade sodium hydroxide. Thereafter, the pulp is placed in 2,000 ml of the 0.01 N sodium hydroxide solution and placed in a disintegrater and disintegrated for 15 minutes at 3,000 rpm in a British Pulp Evaluation Apparatus (or British disintegrater) described in Tappi 505 sp-95. The pulp slurry is then vacuum filtered immediately after disintegration using a Whatman No. 3 filter paper. The filtration time is long enough so that a majority of the filtrate is passed through the filter. Two hundred and fifty ml of filtrate is separated for COD analysis. A sample is preserved with 2.5 ml of 50% sulfuric acid. Thereafter, the COD of the filtrate is measured using the titration method described inStandard Methods for the Examination of Water and Wastewater, 20th Edition, 1998, Method #5220C, “Closed Reflux, Titrimetric Method”. The COD content is then calculated as kilograms per metric ton of pulp based on the oven dried weight of the pulp.
- The pulp samples were randomly selected from several production runs through the converted oxygen delignification and bleach plant described above. Unbleached pulp was run at the rate of 45 tons per hour through the converted oxygen delignification and bleach plant. Residence time in the oxygen reactor vessel was on the order of 120 minutes. Residence times in the successive bleach vessels was 60, 35, 45, 100, and 100 minutes respectively. Pulp samples were taken during production runs downstream from the Flakt pulp dryer and tested for COD as set forth above. Samples A, B, C, D, and E were taken over a three-day treatment period. Samples C5, C7, C9, C11, and C13 were taken over a nine-day treatment period. The results are set forth below.
SAMPLE ID COD (kg/metric ton) E 2.34 C13 2.36 C 2.53 B 2.54 C11 2.55 A 2.63 D 2.73 C7 2.75 C5 2.78 C9 2.85 - The pulp produced in accordance with the foregoing example was incorporated into cementitious products at about 8% by weight pulp using the Hatsheck process. (The pulp content may be varied from 6% to 10% by weight if desired.) Cement panels and planks were produced for use in residential and commercial construction. Tilebacker10 boards used for ceramic tile underlayment were also produced. All of these products exhibited excellent strength characteristics.
- While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
Claims (6)
1. A pulp product, comprising unbleached pulp that is soaked and washed in water that is always at alkaline conditions, wherein the pulp product has a COD that is less than or equal to 3.0 kg per 1000 kg dry pulp.
2. The product of claim 1 , wherein said pulp is repetitively soaked and washed for at least 400 minutes at an elevated temperature.
3. The product of claim 2 , wherein said pulp is maintained at a temperature of at least 80° C. for at least a portion of said 400 minutes.
4. The product of claim 1 , wherein said unbleached pulp before washing has a Kappa number of ≦30.
5. The product of claim 4 , wherein said Kappa number is 25±3.
6. A cementitious product containing the pulp of any one of claims 1 through 5.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2002/015521 WO2003097929A1 (en) | 2002-05-15 | 2002-05-15 | Very low cod unbleached pulp |
US10/209,497 US20030213572A1 (en) | 2002-05-15 | 2002-05-15 | Very low COD unbleached pulp |
US10/330,529 US20030213569A1 (en) | 2002-05-15 | 2002-12-26 | Very low COD unbleached pulp |
US10/330,725 US7081184B2 (en) | 2002-05-15 | 2002-12-26 | Process for making a very low COD unbleached pulp |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2002/015521 WO2003097929A1 (en) | 2002-05-15 | 2002-05-15 | Very low cod unbleached pulp |
US10/209,497 US20030213572A1 (en) | 2002-05-15 | 2002-05-15 | Very low COD unbleached pulp |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/015522 Continuation WO2003097930A1 (en) | 2002-05-15 | 2002-05-15 | Process for producing very low cod unbleached pulp |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/330,725 Continuation-In-Part US7081184B2 (en) | 2002-05-15 | 2002-12-26 | Process for making a very low COD unbleached pulp |
US10/330,529 Continuation-In-Part US20030213569A1 (en) | 2002-05-15 | 2002-12-26 | Very low COD unbleached pulp |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030213572A1 true US20030213572A1 (en) | 2003-11-20 |
Family
ID=32044785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/209,497 Abandoned US20030213572A1 (en) | 2002-05-15 | 2002-05-15 | Very low COD unbleached pulp |
Country Status (2)
Country | Link |
---|---|
US (1) | US20030213572A1 (en) |
WO (1) | WO2003097929A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050235883A1 (en) * | 2000-10-04 | 2005-10-27 | Merkley Donald J | Fiber cement composite materials using cellulose fibers loaded with inorganic and/or organic substances |
US7658794B2 (en) | 2000-03-14 | 2010-02-09 | James Hardie Technology Limited | Fiber cement building materials with low density additives |
US7815841B2 (en) | 2000-10-04 | 2010-10-19 | James Hardie Technology Limited | Fiber cement composite materials using sized cellulose fibers |
US7857906B2 (en) | 2001-03-09 | 2010-12-28 | James Hardie Technology Limited | Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility |
US7942964B2 (en) | 2003-01-09 | 2011-05-17 | James Hardie Technology Limited | Fiber cement composite materials using bleached cellulose fibers |
US7993570B2 (en) | 2002-10-07 | 2011-08-09 | James Hardie Technology Limited | Durable medium-density fibre cement composite |
US7998571B2 (en) | 2004-07-09 | 2011-08-16 | James Hardie Technology Limited | Composite cement article incorporating a powder coating and methods of making same |
US8209927B2 (en) | 2007-12-20 | 2012-07-03 | James Hardie Technology Limited | Structural fiber cement building materials |
US8993462B2 (en) | 2006-04-12 | 2015-03-31 | James Hardie Technology Limited | Surface sealed reinforced building element |
EP2302133A3 (en) * | 2009-06-08 | 2017-03-15 | Weyerhaeuser NR Company | Meterable fibrous material |
US9809928B2 (en) | 2007-01-25 | 2017-11-07 | International Paper Company | Product to promote fluid flow |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030213569A1 (en) * | 2002-05-15 | 2003-11-20 | Brian Wester | Very low COD unbleached pulp |
US20040081828A1 (en) | 2002-10-25 | 2004-04-29 | Dezutter Ramon C. | Flowable and meterable densified fiber particle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020112827A1 (en) * | 2000-10-17 | 2002-08-22 | Merkley Donald J. | Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE349525A (en) * | 1928-02-15 | |||
US3264125A (en) * | 1962-12-04 | 1966-08-02 | Versicrete Ind | Manufacture of lightweight concrete products |
US3148106A (en) * | 1964-01-29 | 1964-09-08 | Rayonier Inc | Pulp refining |
-
2002
- 2002-05-15 WO PCT/US2002/015521 patent/WO2003097929A1/en active IP Right Grant
- 2002-05-15 US US10/209,497 patent/US20030213572A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020112827A1 (en) * | 2000-10-17 | 2002-08-22 | Merkley Donald J. | Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8182606B2 (en) | 2000-03-14 | 2012-05-22 | James Hardie Technology Limited | Fiber cement building materials with low density additives |
US7658794B2 (en) | 2000-03-14 | 2010-02-09 | James Hardie Technology Limited | Fiber cement building materials with low density additives |
US7727329B2 (en) | 2000-03-14 | 2010-06-01 | James Hardie Technology Limited | Fiber cement building materials with low density additives |
US8603239B2 (en) | 2000-03-14 | 2013-12-10 | James Hardie Technology Limited | Fiber cement building materials with low density additives |
US7815841B2 (en) | 2000-10-04 | 2010-10-19 | James Hardie Technology Limited | Fiber cement composite materials using sized cellulose fibers |
US20050235883A1 (en) * | 2000-10-04 | 2005-10-27 | Merkley Donald J | Fiber cement composite materials using cellulose fibers loaded with inorganic and/or organic substances |
US7857906B2 (en) | 2001-03-09 | 2010-12-28 | James Hardie Technology Limited | Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility |
US7993570B2 (en) | 2002-10-07 | 2011-08-09 | James Hardie Technology Limited | Durable medium-density fibre cement composite |
US8333836B2 (en) | 2003-01-09 | 2012-12-18 | James Hardie Technology Limited | Fiber cement composite materials using bleached cellulose fibers |
US7942964B2 (en) | 2003-01-09 | 2011-05-17 | James Hardie Technology Limited | Fiber cement composite materials using bleached cellulose fibers |
US7998571B2 (en) | 2004-07-09 | 2011-08-16 | James Hardie Technology Limited | Composite cement article incorporating a powder coating and methods of making same |
US8993462B2 (en) | 2006-04-12 | 2015-03-31 | James Hardie Technology Limited | Surface sealed reinforced building element |
US9809928B2 (en) | 2007-01-25 | 2017-11-07 | International Paper Company | Product to promote fluid flow |
US8209927B2 (en) | 2007-12-20 | 2012-07-03 | James Hardie Technology Limited | Structural fiber cement building materials |
EP2302133A3 (en) * | 2009-06-08 | 2017-03-15 | Weyerhaeuser NR Company | Meterable fibrous material |
US9617687B2 (en) | 2009-06-08 | 2017-04-11 | International Paper Company | Meterable fibrous material |
Also Published As
Publication number | Publication date |
---|---|
WO2003097929A1 (en) | 2003-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7081184B2 (en) | Process for making a very low COD unbleached pulp | |
US7226525B2 (en) | Process for producing very low COD unbleached pulp | |
US8268119B2 (en) | Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials | |
US20030213572A1 (en) | Very low COD unbleached pulp | |
AU2001296904A1 (en) | Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials | |
US20050257904A1 (en) | Method for producing cellulose fiber having improved biostability and the resulting products | |
MXPA03003355A (en) | Gaming device and method. | |
AU2003262433B2 (en) | Very low COD unbleached pulp | |
CA2608137A1 (en) | Modified kraft fibers | |
AU2002309874B2 (en) | Very low COD unbleached pulp | |
CA2482556C (en) | Process for producing very low cod unbleached pulp | |
NZ536094A (en) | A pulp product comprising unbleached pulp, wherein the pulp product has a COD that is between 2.0 kg per 1000 kg dry pulp and 3.0 kg per 100 kg dry pulp | |
NZ536097A (en) | Process for producing very low COD unbleached pulp | |
ZA200408621B (en) | Process for producing very low COD unbleached pulp | |
NZ529817A (en) | Process for making very low COD unbleached pulp | |
EP1574614B1 (en) | Method for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WEYERHAEUSER COMPANY, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VRBANAC, MICHAEL D.;DENNIS, BRIAN E.;LAU, PETER K.;AND OTHERS;REEL/FRAME:013482/0157;SIGNING DATES FROM 20020920 TO 20021104 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |