US20030202751A1 - Lithographically defined optic array - Google Patents
Lithographically defined optic array Download PDFInfo
- Publication number
- US20030202751A1 US20030202751A1 US09/751,522 US75152200A US2003202751A1 US 20030202751 A1 US20030202751 A1 US 20030202751A1 US 75152200 A US75152200 A US 75152200A US 2003202751 A1 US2003202751 A1 US 2003202751A1
- Authority
- US
- United States
- Prior art keywords
- substrate
- marker
- hole
- optic array
- vias
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/3628—Mechanical coupling means for mounting fibres to supporting carriers
- G02B6/3664—2D cross sectional arrangements of the fibres
- G02B6/3672—2D cross sectional arrangements of the fibres with fibres arranged in a regular matrix array
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4249—Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/3628—Mechanical coupling means for mounting fibres to supporting carriers
- G02B6/3632—Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
- G02B6/3644—Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the coupling means being through-holes or wall apertures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/3628—Mechanical coupling means for mounting fibres to supporting carriers
- G02B6/3684—Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier
- G02B6/3692—Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier with surface micromachining involving etching, e.g. wet or dry etching steps
Definitions
- the invention relates to optical circuits and in particular, two-dimensional (2-D) lithographically defined optical arrays.
- Optical circuits provide many advantages over traditional electrical circuits. They are much faster and potentially much smaller than Controlled Collapse Chip Connector (C4) and Multi-Chip Module (MCM) packages. Optical circuits may also be used in conjunction with electronic MCMs.
- C4 Controlled Collapse Chip Connector
- MCM Multi-Chip Module
- Optical circuits typically use laser light transmitted by optical fiber.
- many optical circuits use edge-emitting lasers (EELs) aligned with optical fiber lying in horizontal grooves on a substrate. This configuration of lasers and optical fiber requires significant area on an optical circuit substrate.
- EELs edge-emitting lasers
- Optical fiber is typically composed of an outer layer and an inner core.
- the outer layer generally has a slightly lower refraction angle (index of refraction) than the inner core. The different refraction angle keeps light traveling in the centrally-aligned core.
- An end of each optical fiber is typically aligned on the substrate with an EEL. The other end of the optical fiber may be aligned with a photodetector.
- EEL refraction angle
- optical fiber and EELs have to be aligned manually. This may take 30 to 40 minutes per alignment according to current techniques.
- EELs are capable of emitting many wavelengths of light and capable of emitting wavelengths in single and multi modes, they are difficult to manufacture and have high power requirements.
- Vertical Cavity Surface Emitting Lasers VCSELs
- VCSELs Vertical Cavity Surface Emitting Lasers
- FIG. 1 shows a schematic, top perspective view of a two-dimensional (2-D) lithographically defined optic array according to an embodiment of the invention.
- FIG. 2 shows an embodiment of the invention having a multi-level waveguide.
- FIG. 3 shows a schematic cross-section view of an embodiment of the invention of a multi-level waveguide.
- FIG. 4 shows an embodiment of the invention having a multi-level waveguide with gas filled vias.
- FIG. 5 shows an embodiment of the invention having a substrate for a multi-level waveguide with cladding-filled vias.
- FIG. 6 shows an embodiment of the invention having a substrate for a multi-level waveguide with polymer core/cladding filled vias.
- FIG. 7 shows an embodiment of the invention having two substrates of a multi-level waveguide with optical fiber and a solder bump/metal pad alignment system.
- FIG. 8 shows an embodiment of the invention having two substrates of a multi-level waveguide with optical fiber and a laser/hole alignment system.
- FIG. 9 shows an embodiment of the invention having a vertical cavity surface emitting laser and an annealed polymer lens.
- an embodiment of the invention is shown in the form of a two-dimensional (2-D) optic array.
- a substrate having a two-dimensional array (xy dimensional array) of vias is formed therein.
- Vias 3 may include optically transmissive materials including, but not limited to, optical fiber, cladding, core/cladding, polymer, or gas.
- the 2-D optic array can be used to transmit light, or other forms of electromagnetic radiation, traveling between a top of substrate 2 (as shown) to a bottom of substrate 2 (as shown) in a primarily vertical direction or vice versa.
- the via array may be lithographically defined by markers 9 (e.g., fiducials) placed on the substrate to aid alignment between multiple optic arrays of similar configuration to that of substrate 2 .
- markers 9 e.g., fiducials
- Multiple optic arrays may thus be stacked to form multi-level optical arrays (e.g., waveguides).
- a two-dimensional array of vias may be formed in substrate 2 , in several different ways.
- vias 3 may be formed using lithographic techniques where, for example, a photoimageable material is introduced over substrate 2 and patterned according to a designated mask pattern to define openings in the photoimageable material. Substrate 2 is then etched through the openings in the photoimageable material to form vias through substrate 2 . Vias 3 may be etched in substrate 2 with a chemical etchant.
- vias 3 in substrate 2 may also be formed with a laser if the substrate comprises a material that is ablatable. The laser can be used to ablate vias 3 into substrate 2 according to a designated pattern.
- Markers 9 are, in one embodiment, similar to markers (targets) used in photolithography operations.
- one or more markers of a selected pattern is (are) introduced over the substrate.
- Alignment tools such as, for example, contact aligners, proximity aligners, scanning projection aligners, steppers, and x-ray aligners
- markers 9 are introduced on substrate 2 prior to the introduction of vias 3 and markers 9 are used to align a mask to locate vias 3 and form the array.
- the width of vias 3 formed in substrate 2 of FIG. 1 may vary depending on the type of transparent material that is to be inserted. For example, if optical fibers are to be inserted into the two dimensional array of vias, the width of the via may be slightly smaller than the diameter of the optical fiber. For example, if the optical fiber has an outer diameter of 10 microns, the via may be on the order of 10 microns or may have a slightly smaller diameter in the event that the via is expanded upon subsequent exposure to a heat source.
- the height (thickness) of substrate 2 may also vary widely depending on the type and size of the substrate used.
- substrate heights may be in the range of approximately 100-600 microns, analogous, in one regard, to optical circuit substrates known in the art, although other heights (thicknesses) are within the scope of the invention.
- Suitable substrates for substrate 2 include, but are not limited to, a semiconductor substrate, a ceramic substrate, a multi-layer ceramic substrate, and a polymeric (e.g., a polyimide) substrate.
- each via may be prepared by inserting optically transmissive material therein to transmit light from the top of substrate 2 (as shown) to the bottom of substrate 2 (as shown).
- vias 3 may contain gas (such as argon or air).
- vias 3 may also have cladding and possibly core materials introduced therein.
- a cladding material of silicon dioxide e.g., a doped silicon dioxide
- An optically transmissive core with an index of refraction greater than the cladding may optionally then be introduced, such as a silicon dioxide material introduced by a plasma enhanced chemical vapor deposition (PECVD) process.
- PECVD plasma enhanced chemical vapor deposition
- each vias 3 may have an optical fiber.
- Other optically transmissive materials can also be used to transmit light through the via.
- each via 3 may be subject to a vacuum.
- substrate 2 with vias 3 may representatively constitute a two-dimensional optical array.
- two or more substrates such as substrate 2 may be assembled (e.g., stacked) into a three-dimensional (3-D) with the vias (e.g., vias 3 ) aligned for light transmission through multiple substrates.
- Light traveling through optically transmissive material in vias 3 may be used to transmit data. It is generally recognized that the shorter the wavelength of the light traveling through a substrate array (such as substrate 2 and vias 3 ), the faster data can be transported through the array. However, shorter wavelength light will more easily disperse as it travels through irregularities in an optical array. If light disperses as it travels through the optical array, the data being transmitted may be lost.
- markers 9 placed on the two-dimensional optical array with respect to the prepared vias or to the optical cores of the optically transmissive material inserted in the prepared vias may also be used to align multiple substrates to form multi-level (e.g., three dimensional) arrays.
- markers 9 may be located consistently for a plurality of substrates that are to be assembled into a multi-level 3-D array.
- vias of the various substrates can be aligned.
- Markers 9 may also be used to align the substrates together in a multi-dimensional array.
- substrate 2 may further include opto-electronic circuits (e.g., VCSELs, photodetectors, etc.), electronic circuits, and conductive material (e.g., interconnects), collectively represented as circuit layer 100 introduced to interact with light in the multi-level array.
- a substrate may include an optical electronic integrated circuit (OEIC) for linking optical and electronic signals.
- OEIC optical electronic integrated circuit
- FIG. 2 an embodiment of the invention in the form of aligned substrates for a multi-level array (e.g., a three-dimensional array) is shown.
- Top substrate 1 (as shown) and bottom substrate 2 (as shown), each with a 2-D optical array of prepared vias are aligned and connected to form a continuous optical path.
- Circuit layer 100 may be introduced on the bottom of bottom substrate 2 (as shown).
- Circuit layer 100 may interact with the optical array through photodetectors 32 aligned with each prepared via 3 of the optic array where, for example, a light signal is converted to an electronic signal.
- a plurality of VCSELs may be aligned with substrate 2 to emit light signals through the three-dimensional array.
- circuit layer 100 may include VCSEL driver circuits and other addressing circuitry for addressing the VCSELs.
- Other methods of interfacing an optic array and an associated circuitry known to those with skill in the art are equally suitable.
- top substrate 1 and bottom substrate 2 may be aligned.
- aligning numerous optic array-containing substrates are described herein.
- Other methods of aligning optic arrays not described herein are also within the scope of the invention.
- FIGS. 3 - 6 show representative cross-sections of optical array substrates such as substrate 2 and illustrate different embodiments of light paths through the substrate.
- substrate 2 for a multi-level array is shown.
- substrates 2 made of certain materials, such as silicon become transparent (transmissive) to light with little dispersion losses. If large enough light wavelengths are used, then prepared vias may not be needed as light may travel through the substrate material between the top surface 20 (as shown) and the bottom surface 21 (as shown) of the substrate.
- alignment between light source 30 e.g., a VCSEL
- light receiver 32 such as a photodetector
- Alignment may be achieved using markers and the alignment method described herein.
- FIG. 4 another embodiment of substrate 2 for a multi-level array is shown. While large wavelengths may be able to travel through the substrate with little dispersion losses, light with smaller wavelengths may transmit data at a faster rate. Vias may need to be cut into the substrate and prepared to minimize dispersion losses with smaller light wavelengths.
- vias 3 can be prepared by filling them with a gas, such as air or argon, or applying a vacuum to them after they are formed in substrate 2 .
- Prepared vias in this embodiment of the invention may minimize dispersion losses for all wavelengths of light used, making it more practical to use wavelengths below 1550 nanometers. However, wavelengths larger than 1550 nanometers may also be used. Alignment between substrates may be necessary to reduce light dispersion losses and line up light sources and light receivers on either side of the substrates.
- substrate 2 for a multi-level array is shown.
- the vias in the substrate are prepared with layers of cladding 4 along the via walls.
- substrate 2 can be heated to thermally grow cladding layer 4 of an oxide (e.g., silicon dioxide) inside vias 3 .
- cladding layer 4 lines walls of vias 3 but an opening for a light transmission remains through the vias. Gas or a vacuum may, optionally, be introduced as a transmissive media.
- FIG. 6 another embodiment of substrate 2 for a multi-level array is shown.
- vias 3 in substrate 2 are prepared with cladding layers 4 grown along the via walls and a separate inner optically transmissive core material 5 introduced in the opening of each via.
- substrate 2 can be heated to thermally grow a cladding layer 4 of, for example, an oxide inside via 3 . If via 3 is not too wide for cladding layer 4 to completely fill it up, then the cladding layer growth is stopped before completely filling via 3 .
- a separate transparent material 5 such as but not limited to an oxide (e.g., silicon dioxide) or a polymer, can then be introduced such as by chemical vapor deposition (CVD) or flowing a polymer into the gap in cladding layer 4 .
- CVD chemical vapor deposition
- the remaining gap in cladding layer 4 may be filled with a separate transparent material 5 such as a polymer.
- Top surface 20 and bottom surface 21 may be planarized by, for example, chemical-mechanical polish or etching to provide planar surfaces.
- the difference in refraction angles between cladding layer 4 and inner transparent core material 5 may minimize dispersion losses of light traveling through inner transparent core material 5 .
- substrates 2 using inner transparent materials 5 may be aligned according to the location of the via walls, dispersion losses may be further minimized by aligning inner transparent core materials 5 between the substrates. Otherwise, while vias 3 may be aligned, inner transparent core materials 5 may not be centered in via 3 and light dispersion may occur between substrates.
- the multi-level array includes top substrate 1 (as shown) and bottom substrate 2 (as shown), each with an optical array, is shown prior to attaching the two substrates.
- Vias 3 in each substrate are first prepared by, in this example, inserting optical fiber 6 in vias of respective substrates.
- One way to insert optical fiber 6 in vias 3 having dimensions (e.g., diameters) on the order of the diameter of the fibers is to heat substrates to a temperature that will cause vias 3 to expand.
- the substrate 2 is made of silicon, the substrate may be heated in the range of approximately 75° C. to 175° C.
- Ends of optical fibers 6 can then be inserted into each via 3 until the end of optical fiber 6 is even with bottom surface 21 . Alternately, the end of the optical fiber can be inserted past bottom surface 21 . The end of the optical fiber may then be attached to a device such as a photodetector, cut (e.g., lapped/planarized) even with the bottom surface 1 , or used in other ways.
- Typical optical fibers 6 have diameters in the range of approximately eight to ten microns with optical fiber cores 7 having diameters in the range of approximately five to six microns.
- the optical fibers should not come out of the holes because the material in the optical fibers should have a greater coefficient of expansion than the substrate material. Therefore, the optical fiber should expand faster than the substrate and actually have a tighter fit as the temperature rises.
- conductive interconnects such as conductive vias terminating in terminals (contact points or contact pads) on the surface of adjacent substrates may be coupled to provide electrical communication between the substrates and, for example, an optical structure to which the substrates are collectively mounted (not shown).
- FIG. 7 shows terminal 8 of substrate 1 having, for example, a solder ball formed thereon, aligned with terminal 9 of substrate 2 to, when coupled, form the electrical interconnection, can be placed on substrates 1 , 2 relative to optical fiber cores 7 .
- the substrates may be aligned and attached.
- Top substrate 1 (as shown) and bottom substrate 2 (as shown) are placed in contact with each other (ideally with the solder bumps on one substrate and metal terminals (pads) 9 on the other substrate in contact), the solder bumps on terminals 8 can be melted onto the metal terminals (pads) 9 . It is appreciated that such terminals may act as conductive vias or conductive contact points for use as an alternative or additional alignment mechanism for the substrates.
- FIG. 8 another embodiment of the invention in the form of two substrates for a multi-level array (e.g., waveguide) is shown. Similar to the embodiment shown in FIG. 7, the embodiment shown in FIG. 8 also uses optical fiber 6 inserted into the top substrate 1 and the bottom substrate 2 . However, instead of aligning the top substrate 1 to the bottom substrate 2 , for example, metal pads, the top substrate 1 and the bottom substrate 2 are aligned by marker holes 10 a and 10 b placed relative to the optical fiber core. After the optical fibers have been inserted into the substrates, a source of electromagnetic radiation (such as laser 34 ) is radiated through marker hole 10 a .
- a source of electromagnetic radiation such as laser 34
- a detector of electromagnetic radiation such as a photodetector 33 is aligned with marker hole 10 b .
- Top substrate 1 and laser 34 are moved relative to bottom substrate 2 and photodetector until marker holes 10 a line up with marker holes 10 b and photodetector 33 detects the laser light.
- Top substrate 1 and bottom substrate 2 are then attached.
- laser 34 could be lined up with marker hole 10 b in bottom substrate 2
- photodetector 33 could be lined up with marker hole 10 a in top substrate 1 .
- marker holes 10 a and 10 b can be placed relative to the location of vias 3 instead of optical fiber core 7 .
- the substrates After the substrates have been prepared, they can be planarized and a circuit layer such as circuit layer 100 can be applied to one or more substrate if such circuit layer had not previously been applied.
- FIG. 9 another embodiment of the invention is shown.
- Vertical cavity surface emitting laser (VCSEL) 30 is attached on top of top substrate 1 (as shown).
- Lens 31 such as a polymer lens is installed onto a via in top substrate 1 to increase the tolerable variance of misalignment between the VCSEL 30 and prepared via 3 .
- a polymer may be applied over the hole and then annealed.
- multi-level waveguides may be flexible to adapt to new technology and may lead to planar surfaces on MCMs incorporating optical fibers.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
A two-dimensional lithographically defined optic array to transmit light through a substrates and aid alignment of multiple substrates. The 2-D lithographically defined optic array can be made up of transparent material filled vias. Additionally, markers can be placed on the substrates relative to either the vias or the optical centers of the transparent material in the vias to aid alignment between multiple substrates containing 2-D lithographically defined optic arrays. Transparent materials such as optical fiber, cladding, and gas may be used in the 2-D optic array to provide a pathway for light. Optionally, a conductive layer may be deposited on a substrate with a 2-D optic array. The conductive layer can then interact with the 2-D optic array through light detecting devices such as photodetectors.
Description
- The invention relates to optical circuits and in particular, two-dimensional (2-D) lithographically defined optical arrays.
- Optical circuits provide many advantages over traditional electrical circuits. They are much faster and potentially much smaller than Controlled Collapse Chip Connector (C4) and Multi-Chip Module (MCM) packages. Optical circuits may also be used in conjunction with electronic MCMs.
- Optical circuits typically use laser light transmitted by optical fiber. For example, many optical circuits use edge-emitting lasers (EELs) aligned with optical fiber lying in horizontal grooves on a substrate. This configuration of lasers and optical fiber requires significant area on an optical circuit substrate.
- Optical fiber is typically composed of an outer layer and an inner core. The outer layer generally has a slightly lower refraction angle (index of refraction) than the inner core. The different refraction angle keeps light traveling in the centrally-aligned core. An end of each optical fiber is typically aligned on the substrate with an EEL. The other end of the optical fiber may be aligned with a photodetector. Typically, in manufacturing these optical circuits, optical fiber and EELs have to be aligned manually. This may take 30 to 40 minutes per alignment according to current techniques.
- While EELs are capable of emitting many wavelengths of light and capable of emitting wavelengths in single and multi modes, they are difficult to manufacture and have high power requirements. Vertical Cavity Surface Emitting Lasers (VCSELs) are much easier to manufacture and have lower power requirements. While some VCSELs may only be able to emit a limited number of wavelengths in multimode emissions, they may be used to direct laser light signals in a vertical direction (i.e., orthogonal to the substrate).
- Conventional products are difficult to align with a VCSEL and guide light vertically through one or more substrates with minimal dispersion losses.
- The invention is illustrated by way of example and not limitation in the accompanying figures:
- FIG. 1 shows a schematic, top perspective view of a two-dimensional (2-D) lithographically defined optic array according to an embodiment of the invention.
- FIG. 2 shows an embodiment of the invention having a multi-level waveguide.
- FIG. 3 shows a schematic cross-section view of an embodiment of the invention of a multi-level waveguide.
- FIG. 4 shows an embodiment of the invention having a multi-level waveguide with gas filled vias.
- FIG. 5 shows an embodiment of the invention having a substrate for a multi-level waveguide with cladding-filled vias.
- FIG. 6 shows an embodiment of the invention having a substrate for a multi-level waveguide with polymer core/cladding filled vias.
- FIG. 7 shows an embodiment of the invention having two substrates of a multi-level waveguide with optical fiber and a solder bump/metal pad alignment system.
- FIG. 8 shows an embodiment of the invention having two substrates of a multi-level waveguide with optical fiber and a laser/hole alignment system.
- FIG. 9 shows an embodiment of the invention having a vertical cavity surface emitting laser and an annealed polymer lens.
- The following description makes reference to numerous specific details in order to provide a thorough understanding of the invention. However, it is to be noted that not every specific detail need be employed to practice the invention. Additionally, well-known details, such as particular materials or methods, have not been described in order to avoid obscuring the present invention.
- Referring to FIG. 1, an embodiment of the invention is shown in the form of a two-dimensional (2-D) optic array. In the embodiment shown in FIG. 1, a substrate having a two-dimensional array (xy dimensional array) of vias is formed therein.
Vias 3 may include optically transmissive materials including, but not limited to, optical fiber, cladding, core/cladding, polymer, or gas. The 2-D optic array can be used to transmit light, or other forms of electromagnetic radiation, traveling between a top of substrate 2 (as shown) to a bottom of substrate 2 (as shown) in a primarily vertical direction or vice versa. The via array may be lithographically defined by markers 9 (e.g., fiducials) placed on the substrate to aid alignment between multiple optic arrays of similar configuration to that ofsubstrate 2. Multiple optic arrays may thus be stacked to form multi-level optical arrays (e.g., waveguides). - A two-dimensional array of vias may be formed in
substrate 2, in several different ways. For example,vias 3 may be formed using lithographic techniques where, for example, a photoimageable material is introduced oversubstrate 2 and patterned according to a designated mask pattern to define openings in the photoimageable material.Substrate 2 is then etched through the openings in the photoimageable material to form vias throughsubstrate 2.Vias 3 may be etched insubstrate 2 with a chemical etchant. Alternatively,vias 3 insubstrate 2 may also be formed with a laser if the substrate comprises a material that is ablatable. The laser can be used to ablatevias 3 intosubstrate 2 according to a designated pattern. -
Markers 9 are, in one embodiment, similar to markers (targets) used in photolithography operations. In one embodiment, one or more markers of a selected pattern is (are) introduced over the substrate. Alignment tools (such as, for example, contact aligners, proximity aligners, scanning projection aligners, steppers, and x-ray aligners) use these alignment markers to align a mask through which a photoimageable material is defined. Accordingly, in one embodiment,markers 9 are introduced onsubstrate 2 prior to the introduction ofvias 3 andmarkers 9 are used to align a mask to locatevias 3 and form the array. - The width of
vias 3 formed insubstrate 2 of FIG. 1 may vary depending on the type of transparent material that is to be inserted. For example, if optical fibers are to be inserted into the two dimensional array of vias, the width of the via may be slightly smaller than the diameter of the optical fiber. For example, if the optical fiber has an outer diameter of 10 microns, the via may be on the order of 10 microns or may have a slightly smaller diameter in the event that the via is expanded upon subsequent exposure to a heat source. The height (thickness) ofsubstrate 2 may also vary widely depending on the type and size of the substrate used. For example, substrate heights (thicknesses) may be in the range of approximately 100-600 microns, analogous, in one regard, to optical circuit substrates known in the art, although other heights (thicknesses) are within the scope of the invention. Suitable substrates forsubstrate 2 include, but are not limited to, a semiconductor substrate, a ceramic substrate, a multi-layer ceramic substrate, and a polymeric (e.g., a polyimide) substrate. - After formation, each via may be prepared by inserting optically transmissive material therein to transmit light from the top of substrate2 (as shown) to the bottom of substrate 2 (as shown). For example,
vias 3 may contain gas (such as argon or air). Alternatively,vias 3 may also have cladding and possibly core materials introduced therein. For example, a cladding material of silicon dioxide (e.g., a doped silicon dioxide) may be grown (and doped) along the side walls of eachvias 3. An optically transmissive core with an index of refraction greater than the cladding may optionally then be introduced, such as a silicon dioxide material introduced by a plasma enhanced chemical vapor deposition (PECVD) process. As noted above and in a further alternative, eachvias 3 may have an optical fiber. Other optically transmissive materials can also be used to transmit light through the via. In addition, instead of inserting a material, each via 3 may be subject to a vacuum. - Collectively,
substrate 2 withvias 3 may representatively constitute a two-dimensional optical array. As noted above, two or more substrates such assubstrate 2 may be assembled (e.g., stacked) into a three-dimensional (3-D) with the vias (e.g., vias 3) aligned for light transmission through multiple substrates. - Light traveling through optically transmissive material in
vias 3 may be used to transmit data. It is generally recognized that the shorter the wavelength of the light traveling through a substrate array (such assubstrate 2 and vias 3), the faster data can be transported through the array. However, shorter wavelength light will more easily disperse as it travels through irregularities in an optical array. If light disperses as it travels through the optical array, the data being transmitted may be lost. - While shorter wavelengths of light may result in faster data transmission speeds, shorter wavelength light is more likely to disperse when traveling between two substrates (e.g., between two substrates such as substrate2). To minimize light dispersion between two adjacent substrates of an array, adjacent substrates may optically aligned. Referring to FIG. 1,
markers 9 placed on the two-dimensional optical array with respect to the prepared vias or to the optical cores of the optically transmissive material inserted in the prepared vias, may also be used to align multiple substrates to form multi-level (e.g., three dimensional) arrays. In other words,markers 9 may be located consistently for a plurality of substrates that are to be assembled into a multi-level 3-D array. Using the same alignment tool and the same mask, vias of the various substrates can be aligned.Markers 9 may also be used to align the substrates together in a multi-dimensional array. - In addition to
vias 3 andmarkers 9,substrate 2 may further include opto-electronic circuits (e.g., VCSELs, photodetectors, etc.), electronic circuits, and conductive material (e.g., interconnects), collectively represented ascircuit layer 100 introduced to interact with light in the multi-level array. In this manner, a substrate may include an optical electronic integrated circuit (OEIC) for linking optical and electronic signals. - Referring to FIG. 2, an embodiment of the invention in the form of aligned substrates for a multi-level array (e.g., a three-dimensional array) is shown. Top substrate1 (as shown) and bottom substrate 2 (as shown), each with a 2-D optical array of prepared vias are aligned and connected to form a continuous optical path.
Circuit layer 100 may be introduced on the bottom of bottom substrate 2 (as shown).Circuit layer 100 may interact with the optical array throughphotodetectors 32 aligned with each prepared via 3 of the optic array where, for example, a light signal is converted to an electronic signal. Alternatively, a plurality of VCSELs may be aligned withsubstrate 2 to emit light signals through the three-dimensional array. In such case,circuit layer 100 may include VCSEL driver circuits and other addressing circuitry for addressing the VCSELs. Other methods of interfacing an optic array and an associated circuitry known to those with skill in the art are equally suitable. - To minimize light dispersion in the array, top substrate1 and
bottom substrate 2 may be aligned. Several methods of aligning numerous optic array-containing substrates are described herein. Other methods of aligning optic arrays not described herein are also within the scope of the invention. - FIGS.3-6 show representative cross-sections of optical array substrates such as
substrate 2 and illustrate different embodiments of light paths through the substrate. Referring to FIG. 3, one embodiment ofsubstrate 2 for a multi-level array is shown. At wavelengths above 1550 nanometers,substrates 2 made of certain materials, such as silicon, become transparent (transmissive) to light with little dispersion losses. If large enough light wavelengths are used, then prepared vias may not be needed as light may travel through the substrate material between the top surface 20 (as shown) and the bottom surface 21 (as shown) of the substrate. In this embodiment, there may not be any prepared vias to be aligned between substrates used with these light wavelengths, but alignment between light source 30 (e.g., a VCSEL) and light receiver 32 (such as a photodetector) may be needed for efficient interaction between the optic array and aconductive layer 100. Alignment may be achieved using markers and the alignment method described herein. - Referring to FIG. 4, another embodiment of
substrate 2 for a multi-level array is shown. While large wavelengths may be able to travel through the substrate with little dispersion losses, light with smaller wavelengths may transmit data at a faster rate. Vias may need to be cut into the substrate and prepared to minimize dispersion losses with smaller light wavelengths. In the embodiment shown in FIG. 4,vias 3 can be prepared by filling them with a gas, such as air or argon, or applying a vacuum to them after they are formed insubstrate 2. Prepared vias in this embodiment of the invention may minimize dispersion losses for all wavelengths of light used, making it more practical to use wavelengths below 1550 nanometers. However, wavelengths larger than 1550 nanometers may also be used. Alignment between substrates may be necessary to reduce light dispersion losses and line up light sources and light receivers on either side of the substrates. - Referring to FIG. 5, another embodiment of
substrate 2 for a multi-level array is shown. In this embodiment, the vias in the substrate are prepared with layers ofcladding 4 along the via walls. For a semiconductor substrate, such as a silicon substrate, after vias 3 have been etched out ofsubstrate 2,substrate 2 can be heated to thermally growcladding layer 4 of an oxide (e.g., silicon dioxide) insidevias 3.Cladding layer 4 lines walls ofvias 3 but an opening for a light transmission remains through the vias. Gas or a vacuum may, optionally, be introduced as a transmissive media. - Referring to FIG. 6, another embodiment of
substrate 2 for a multi-level array is shown. In this embodiment, vias 3 insubstrate 2 are prepared withcladding layers 4 grown along the via walls and a separate inner opticallytransmissive core material 5 introduced in the opening of each via. After vias 3 have been etched out ofsubstrate 2,substrate 2 can be heated to thermally grow acladding layer 4 of, for example, an oxide inside via 3. If via 3 is not too wide forcladding layer 4 to completely fill it up, then the cladding layer growth is stopped before completely filling via 3. A separatetransparent material 5, such as but not limited to an oxide (e.g., silicon dioxide) or a polymer, can then be introduced such as by chemical vapor deposition (CVD) or flowing a polymer into the gap incladding layer 4. For example, via 3 with a diameter of approximately 30 microns, may only be able to grow a 10 micronthick cladding layer 4 on its walls. The remaining gap incladding layer 4, may be filled with a separatetransparent material 5 such as a polymer. -
Top surface 20 andbottom surface 21 may be planarized by, for example, chemical-mechanical polish or etching to provide planar surfaces. The difference in refraction angles betweencladding layer 4 and innertransparent core material 5 may minimize dispersion losses of light traveling through innertransparent core material 5. Whilesubstrates 2 using innertransparent materials 5 may be aligned according to the location of the via walls, dispersion losses may be further minimized by aligning innertransparent core materials 5 between the substrates. Otherwise, whilevias 3 may be aligned, innertransparent core materials 5 may not be centered in via 3 and light dispersion may occur between substrates. - Referring to FIG. 7, an exploded cross-sectional view of embodiment of a multi-level array is shown. In this embodiment, the multi-level array includes top substrate1 (as shown) and bottom substrate 2 (as shown), each with an optical array, is shown prior to attaching the two substrates. Vias 3 in each substrate are first prepared by, in this example, inserting
optical fiber 6 in vias of respective substrates. One way to insertoptical fiber 6 invias 3 having dimensions (e.g., diameters) on the order of the diameter of the fibers is to heat substrates to a temperature that will causevias 3 to expand. In one embodiment, if thesubstrate 2 is made of silicon, the substrate may be heated in the range of approximately 75° C. to 175° C. Ends ofoptical fibers 6 can then be inserted into each via 3 until the end ofoptical fiber 6 is even withbottom surface 21. Alternately, the end of the optical fiber can be inserted pastbottom surface 21. The end of the optical fiber may then be attached to a device such as a photodetector, cut (e.g., lapped/planarized) even with the bottom surface 1, or used in other ways. Typicaloptical fibers 6 have diameters in the range of approximately eight to ten microns withoptical fiber cores 7 having diameters in the range of approximately five to six microns. If the substrates have to be heated after the addition of optical fibers, the optical fibers should not come out of the holes because the material in the optical fibers should have a greater coefficient of expansion than the substrate material. Therefore, the optical fiber should expand faster than the substrate and actually have a tighter fit as the temperature rises. - After inserting
optical fibers 6, conductive interconnects, such as conductive vias terminating in terminals (contact points or contact pads) on the surface of adjacent substrates may be coupled to provide electrical communication between the substrates and, for example, an optical structure to which the substrates are collectively mounted (not shown). FIG. 7 showsterminal 8 of substrate 1 having, for example, a solder ball formed thereon, aligned withterminal 9 ofsubstrate 2 to, when coupled, form the electrical interconnection, can be placed onsubstrates 1, 2 relative tooptical fiber cores 7. After preparing the vias andplacing terminals 9 onsubstrates 1 and 2, the substrates may be aligned and attached. Top substrate 1 (as shown) and bottom substrate 2 (as shown) are placed in contact with each other (ideally with the solder bumps on one substrate and metal terminals (pads) 9 on the other substrate in contact), the solder bumps onterminals 8 can be melted onto the metal terminals (pads) 9. It is appreciated that such terminals may act as conductive vias or conductive contact points for use as an alternative or additional alignment mechanism for the substrates. - Referring to FIG. 8, another embodiment of the invention in the form of two substrates for a multi-level array (e.g., waveguide) is shown. Similar to the embodiment shown in FIG. 7, the embodiment shown in FIG. 8 also uses
optical fiber 6 inserted into the top substrate 1 and thebottom substrate 2. However, instead of aligning the top substrate 1 to thebottom substrate 2, for example, metal pads, the top substrate 1 and thebottom substrate 2 are aligned bymarker holes marker hole 10 a. A detector of electromagnetic radiation, such as aphotodetector 33, is aligned withmarker hole 10 b. Top substrate 1 andlaser 34 are moved relative tobottom substrate 2 and photodetector until marker holes 10 a line up withmarker holes 10 b andphotodetector 33 detects the laser light. Top substrate 1 andbottom substrate 2 are then attached. Alternately,laser 34 could be lined up withmarker hole 10 b inbottom substrate 2, andphotodetector 33 could be lined up withmarker hole 10 a in top substrate 1. Also, alternately, marker holes 10 a and 10 b can be placed relative to the location ofvias 3 instead ofoptical fiber core 7. - After the substrates have been prepared, they can be planarized and a circuit layer such as
circuit layer 100 can be applied to one or more substrate if such circuit layer had not previously been applied. - Referring to FIG. 9, another embodiment of the invention is shown. Vertical cavity surface emitting laser (VCSEL)30 is attached on top of top substrate 1 (as shown).
Lens 31 such as a polymer lens is installed onto a via in top substrate 1 to increase the tolerable variance of misalignment between theVCSEL 30 and prepared via 3. Toform lens 31 of a polymer, a polymer may be applied over the hole and then annealed. - Aligning the substrates with markers may significantly increase the speed of the processing by allowing the process to be done automatically. In addition, multi-level waveguides may be flexible to adapt to new technology and may lead to planar surfaces on MCMs incorporating optical fibers. Although an exemplary embodiment of the invention has been shown and described in the form of a multi-level waveguide, many changes, modifications, and substitutions may be made without departing from the spirit and scope of this invention.
Claims (23)
1. An optic array comprising:
a substrate with a plurality of holes;
at least two optical fibers each embedded in a separate one of said holes; and
a marker placed on said substrate relative to said separate said holes.
2. The optic array of claim 1 , wherein said marker is a solder bump.
3. The optic array of claim 1 , wherein said marker is a metal pad.
4. The optic array of claim 1 , wherein said marker is a hole in the substrate.
5. The optic array of claim 1 , wherein said substrate is made of silicon.
6. The optic array of claim 1 further comprising a vertical cavity surface emitting laser aligned with said optical fiber.
7. The optic array of claim 1 , wherein said marker is placed on said substrate relative to an optical fiber core.
8. A method of making an optic array comprising:
forming a plurality of holes in a substrate;
heating said substrate;
inserting at least two optical fibers each into a separate one of said holes; and
placing a marker on said substrate relative to said separate said holes.
9. The method of claim 8 , wherein said plurality of holes is formed by etching.
10. The method of claim 8 , wherein said substrate is ablatable.
11. The method of claim 10 , wherein said plurality of holes is formed by a laser.
12. The method of claim 8 , wherein said substrate is heated between approximately 75° C. to 175° C.
13. The method of claim 8 , further comprising annealing a polymer over the substrate hole.
14. The method of claim 8 , wherein said marker is a solder bump.
15. The method of claim 8 , wherein said marker is placed on said substrate relative to an optical fiber core.
16. The method of claim 8 , further comprising stacking two or more substrates.
17. The method of claim 16 , further comprising aligning said substrates by aligning said markers.
18. A method of making a multi-chip module with an optic array comprising:
etching a hole in a first substrate;
heating said first substrate;
inserting an optical fiber into said substrate hole;
placing a marker on said first substrate;
placing a marker on a second substrate;
lithographically aligning said first substrate marker with said second substrate marker; and
attaching said first substrate to said second substrate.
19. The method of claim 18 , further comprising annealing a polymer over the substrate hole.
20. The method of claim 18 , wherein said aligning comprises:
placing a solder bump on said first substrate relative to said substrate hole;
placing a metal pad on said second substrate;
moving said first substrate and said second substrate relative to each other to contact said solder bump to said metal pad; and
melting said solder bump to said metal pad.
21. The method of claim 18 , wherein said aligning comprises:
placing a solder bump on said first substrate relative to a first substrate optical fiber core;
placing a metal pad on said second substrate;
moving said first substrate and said second substrate relative to each other to contact said solder bump to said metal pad; and
melting said solder bump to said metal pad.
22. The method of claim 18 , wherein said aligning comprises:
etching a marker hole in said first substrate relative to said first substrate hole;
etching a marker hole in said second substrate;
moving said first substrate and said second substrate relative to each other until a source of electromagnetic radiation radiates through said first substrate marker hole and said second substrate marker hole; and
detecting said source of electromagnetic radiation with a detector of electromagnetic radiation.
23. The method of claim 18 , wherein said aligning comprises:
etching a marker hole in said first substrate relative to a first substrate optic fiber core;
etching a marker hole in said second substrate;
moving said first substrate and said second substrate relative to each other until a source of electromagnetic radiation radiates through said first substrate marker hole and said second substrate marker hole; and
detecting said source of electromagnetic radiation with a detector of electromagnetic radiation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/751,522 US6633707B1 (en) | 2000-12-29 | 2000-12-29 | Lithographically defined optic array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/751,522 US6633707B1 (en) | 2000-12-29 | 2000-12-29 | Lithographically defined optic array |
Publications (2)
Publication Number | Publication Date |
---|---|
US6633707B1 US6633707B1 (en) | 2003-10-14 |
US20030202751A1 true US20030202751A1 (en) | 2003-10-30 |
Family
ID=28792490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/751,522 Expired - Fee Related US6633707B1 (en) | 2000-12-29 | 2000-12-29 | Lithographically defined optic array |
Country Status (1)
Country | Link |
---|---|
US (1) | US6633707B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200049879A1 (en) * | 2018-08-10 | 2020-02-13 | Futaba Corporation | Print head |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002088810A1 (en) * | 2001-05-01 | 2002-11-07 | Corona Optical Systems, Inc. | Alignment apertures in an optically transparent substrate |
US6778718B2 (en) * | 2001-11-09 | 2004-08-17 | Corning Incorporated | Alignment of active optical components with waveguides |
US20030147590A1 (en) * | 2002-02-04 | 2003-08-07 | Michael Hahn | Low back reflection two-dimensional fiber array |
JP3800135B2 (en) * | 2002-06-18 | 2006-07-26 | セイコーエプソン株式会社 | OPTICAL COMMUNICATION MODULE, OPTICAL COMMUNICATION MODULE MANUFACTURING METHOD, AND ELECTRONIC DEVICE |
DE102016213069A1 (en) * | 2016-07-18 | 2018-01-18 | Osram Gmbh | LEDS ARRANGEMENT |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0860721B1 (en) * | 1993-03-31 | 2002-06-26 | Sumitomo Electric Industries, Ltd. | Optical fiber array and method of manufacturing |
JPH07249798A (en) * | 1994-03-09 | 1995-09-26 | Fujitsu Ltd | Optical device securing apparatus and its manufacture |
JPH09138325A (en) * | 1995-11-13 | 1997-05-27 | Nec Corp | Optical fiber packaging structure and its production |
JPH1140823A (en) * | 1997-05-22 | 1999-02-12 | Fujitsu Ltd | Photodetector module |
KR100248058B1 (en) * | 1997-08-27 | 2000-03-15 | 윤종용 | Method coated optical fiber array module |
US6097884A (en) * | 1997-12-08 | 2000-08-01 | Lsi Logic Corporation | Probe points and markers for critical paths and integrated circuits |
US6343171B1 (en) * | 1998-10-09 | 2002-01-29 | Fujitsu Limited | Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making |
KR20000050765A (en) * | 1999-01-14 | 2000-08-05 | 윤종용 | Optical fiber array connector and manufacturing method thereof |
JP2000260815A (en) * | 1999-03-10 | 2000-09-22 | Mitsubishi Electric Corp | Method of melting bump, melting apparatus and method of producing semiconductor device |
DE60030436T2 (en) * | 1999-05-20 | 2007-03-29 | Illumina, Inc., San Diego | DEVICE FOR MOUNTING AND PRESENTING AT LEAST ONE MICROBALL MIXTURE FOR SOLUTIONS AND / OR OPTICAL PICTURE SYSTEMS |
US7771630B2 (en) * | 2000-02-24 | 2010-08-10 | The Regents Of The University Of California | Precise fabrication of polymer microlens arrays |
-
2000
- 2000-12-29 US US09/751,522 patent/US6633707B1/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200049879A1 (en) * | 2018-08-10 | 2020-02-13 | Futaba Corporation | Print head |
CN110816075A (en) * | 2018-08-10 | 2020-02-21 | 双叶电子工业株式会社 | Printing head |
US10823902B2 (en) * | 2018-08-10 | 2020-11-03 | Futaba Corporation | Print head |
TWI777080B (en) * | 2018-08-10 | 2022-09-11 | 日商双葉電子工業股份有限公司 | Print head |
Also Published As
Publication number | Publication date |
---|---|
US6633707B1 (en) | 2003-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7095937B2 (en) | Multi-level waveguide | |
US7496251B2 (en) | Apparatus and methods for integrally packaging optoelectronic devices, IC chips and optical transmission lines | |
US7242823B2 (en) | Optical transmission channel board, board with built-in optical transmission channel, and data processing apparatus | |
US5420954A (en) | Parallel optical interconnect | |
US5848214A (en) | Optically-guiding multichip module | |
CN101147088B (en) | Optical coupling to IC chip | |
US20110206379A1 (en) | Opto-electronic module with improved low power, high speed electrical signal integrity | |
TWI624705B (en) | Optical module including silicon photonics chip and coupler chip | |
Ishii et al. | SMT-compatible large-tolerance" OptoBump" interface for interchip optical interconnections | |
US8818145B2 (en) | Optical interposer with transparent substrate | |
US9958625B2 (en) | Structured substrate for optical fiber alignment | |
JP2003517630A (en) | Hybrid integration of active and passive optical elements on Si substrate | |
US20250012983A1 (en) | Self-Aligned Structure and Method on Interposer-based PIC | |
US6879423B2 (en) | Printed circuit board assembly with multi-channel block-type optical devices packaged therein | |
US20230228953A1 (en) | Self-Aligned Fanout Waveguide Structure on Interposer with Linear Multicore Optical Fiber | |
US6633707B1 (en) | Lithographically defined optic array | |
WO2004010191A1 (en) | Connection to optical backplane | |
US20240345340A1 (en) | Self-aligned structure and method on interposer-based pic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTEL CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MURALI, VENKATESAN;REEL/FRAME:011771/0113 Effective date: 20010401 |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20151014 |